Science.gov

Sample records for reconnaissance orbiter miniature

  1. The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) Technology Demonstration

    NASA Astrophysics Data System (ADS)

    Nozette, Stewart; Spudis, Paul; Bussey, Ben; Jensen, Robert; Raney, Keith; Winters, Helene; Lichtenberg, Christopher L.; Marinelli, William; Crusan, Jason; Gates, Michele; Robinson, Mark

    2010-01-01

    The Miniature Radio Frequency (Mini-RF) system is manifested on the Lunar Reconnaissance Orbiter (LRO) as a technology demonstration and an extended mission science instrument. Mini-RF represents a significant step forward in spaceborne RF technology and architecture. It combines synthetic aperture radar (SAR) at two wavelengths (S-band and X-band) and two resolutions (150 m and 30 m) with interferometric and communications functionality in one lightweight (16 kg) package. Previous radar observations (Earth-based, and one bistatic data set from Clementine) of the permanently shadowed regions of the lunar poles seem to indicate areas of high circular polarization ratio (CPR) consistent with volume scattering from volatile deposits (e.g. water ice) buried at shallow (0.1-1 m) depth, but only at unfavorable viewing geometries, and with inconclusive results. The LRO Mini-RF utilizes new wideband hybrid polarization architecture to measure the Stokes parameters of the reflected signal. These data will help to differentiate “true” volumetric ice reflections from “false” returns due to angular surface regolith. Additional lunar science investigations (e.g. pyroclastic deposit characterization) will also be attempted during the LRO extended mission. LRO’s lunar operations will be contemporaneous with India’s Chandrayaan-1, which carries the Forerunner Mini-SAR (S-band wavelength and 150-m resolution), and bistatic radar (S-Band) measurements may be possible. On orbit calibration, procedures for LRO Mini-RF have been validated using Chandrayaan 1 and ground-based facilities (Arecibo and Greenbank Radio Observatories).

  2. Lunar Reconnaissance Orbiter Mission Highlights

    NASA Video Gallery

    Since launch on June 18, 2009 as a precursor mission, the Lunar Reconnaissance Orbiter (LRO) has remained in orbit around the moon, collecting vast amounts of science data in support of NASA's expl...

  3. Orbit Determination of the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-01-01

    We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

  4. Overview of the Mars Reconnaissance Orbiter mission

    NASA Technical Reports Server (NTRS)

    Mateer, B.; Graf, J.; Zurek, R.; Jones, R.; Eisen, H.; Johnston, M.; Jai, D. B.

    2002-01-01

    The Mars Reconnaissance Orbiter will deliver to Mars orbit a payload to conduct remote sensing science observations, characterize sites for future landers, and provide critical telecom/navigation relay capability for follow-on missions.

  5. Mars Reconnaissance Orbiter Wrapper Script

    NASA Technical Reports Server (NTRS)

    Gladden, Roy; Fisher, Forest; Khanampornpan, Teerapat

    2008-01-01

    The MRO OLVM wrapper script software allows Mars Reconnaissance Orbiter (MRO) sequence and spacecraft engineers to rapidly simulate a spacecraft command product through a tool that simulates the onboard sequence management software (OLVM). This script parses sequence files to determine the appropriate time boundaries for the sequence, and constructs the script file to be executed by OLVM to span the entirety of the designated sequence. It then constructs script files to be executed by OLVM, constructs the appropriate file directories, populates these directories with needed input files, initiates OLVM to simulate the actual command product that will be sent to the spacecraft, and captures the results of the simulation run to an external file for later review. Additionally, the tool allows a user to manually construct the script, if desired, and then execute the script with a simple command line.

  6. LROC - Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.; Eliason, E.; Hiesinger, H.; Jolliff, B. L.; McEwen, A.; Malin, M. C.; Ravine, M. A.; Thomas, P. C.; Turtle, E. P.

    2009-12-01

    The Lunar Reconnaissance Orbiter (LRO) went into lunar orbit on 23 June 2009. The LRO Camera (LROC) acquired its first lunar images on June 30 and commenced full scale testing and commissioning on July 10. The LROC consists of two narrow-angle cameras (NACs) that provide 0.5 m scale panchromatic images over a combined 5 km swath, and a wide-angle camera (WAC) to provide images at a scale of 100 m per pixel in five visible wavelength bands (415, 566, 604, 643, and 689 nm) and 400 m per pixel in two ultraviolet bands (321 nm and 360 nm) from the nominal 50 km orbit. Early operations were designed to test the performance of the cameras under all nominal operating conditions and provided a baseline for future calibrations. Test sequences included off-nadir slews to image stars and the Earth, 90° yaw sequences to collect flat field calibration data, night imaging for background characterization, and systematic mapping to test performance. LRO initially was placed into a terminator orbit resulting in images acquired under low signal conditions. Over the next three months the incidence angle at the spacecraft’s equator crossing gradually decreased towards high noon, providing a range of illumination conditions. Several hundred south polar images were collected in support of impact site selection for the LCROSS mission; details can be seen in many of the shadows. Commissioning phase images not only proved the instruments’ overall performance was nominal, but also that many geologic features of the lunar surface are well preserved at the meter-scale. Of particular note is the variety of impact-induced morphologies preserved in a near pristine state in and around kilometer-scale and larger young Copernican age impact craters that include: abundant evidence of impact melt of a variety of rheological properties, including coherent flows with surface textures and planimetric properties reflecting supersolidus (e.g., liquid melt) emplacement, blocks delicately perched on

  7. Collaborating miniature drones for surveillance and reconnaissance

    NASA Astrophysics Data System (ADS)

    Bürkle, Axel

    2009-09-01

    The use of miniature Unmanned Aerial Vehicles (UAVs), e.g. quadrocopters, has gained great popularity over the last years. Some complex application scenarios for micro UAVs call for the formation of swarms of multiple drones. In this paper a platform for the creation of such swarms is presented. It consists of commercial quadrocopters enhanced with on-board processing and communication units enabling autonomy of individual drones. Furthermore, a generic ground control station has been realized. Different co-operation strategies for teams of UAVs are currently evaluated with an agent based simulation tool. Finally, complex application scenarios for multiple micro UAVs are presented.

  8. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview

    USGS Publications Warehouse

    Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.

    2010-01-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.

  9. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  10. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.

  11. Mission Design for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Beckman, Mark

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) will be the first mission under NASA's Vision for Space Exploration. LRO will fly in a low 50 km mean altitude lunar polar orbit. LRO will utilize a direct minimum energy lunar transfer and have a launch window of three days every two weeks. The launch window is defined by lunar orbit beta angle at times of extreme lighting conditions. This paper will define the LRO launch window and the science and engineering constraints that drive it. After lunar orbit insertion, LRO will be placed into a commissioning orbit for up to 60 days. This commissioning orbit will be a low altitude quasi-frozen orbit that minimizes stationkeeping costs during commissioning phase. LRO will use a repeating stationkeeping cycle with a pair of maneuvers every lunar sidereal period. The stationkeeping algorithm will bound LRO altitude, maintain ground station contact during maneuvers, and equally distribute periselene between northern and southern hemispheres. Orbit determination for LRO will be at the 50 m level with updated lunar gravity models. This paper will address the quasi-frozen orbit design, stationkeeping algorithms and low lunar orbit determination.

  12. Mars Reconnaissance Orbiter Interplanetary Cruise Navigation

    NASA Technical Reports Server (NTRS)

    You, Tung-Han; Graat, Eric; Halsell, Allen; Highsmith, Dolan; Long, Stacia; Bhat, Ram; Demcak, Stuart; Higa, Earl; Mottinger, Neil; Jah, Moriba

    2007-01-01

    Carrying six science instruments and three engineering payloads, the Mars Reconnaissance Orbiter (MRO) is the first mission in a low Mars orbit to characterize the surface, subsurface, and atmospheric properties with unprecedented detail. After a seven-month interplanetary cruise, MRO arrived at Mars executing a 1.0 km/s Mars Orbit Insertion (MOI) maneuver. MRO achieved a 430 km periapsis altitude with the final orbit solution indicating that only 10 km was attributable to navigation prediction error. With the last interplanetary maneuver performed four months before MOI, this was a significant accomplishment. This paper describes the navigation analyses and results during the 210-day interplanetary cruise. As of August 2007 MRO has returned more than 18 Terabits of scientific data in support of the objectives set by the Mars Exploration Program (MEP). The robust and exceptional interplanetary navigation performance paved the way for a successful MRO mission.

  13. Stationkeeping for the Lunar Reconnaissance Orbiter (LRO)

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Lamb, Rivers

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) is scheduled to launch in 2008 as the first mission under NASA's Vision for Space Exploration. Follo wing several weeks in a quasi-frozen commissioning orbit, LRO will fl y in a 50 km mean altitude lunar polar orbit. During the one year mis sion duration, the orbital dynamics of a low lunar orbit force LRO to perform periodic sets of stationkeeping maneuvers. This paper explor es the characteristics of low lunar orbits and explains how the LRO s tationkeeping plan is designed to accommodate the dynamics in such an orbit. The stationkeeping algorithm used for LRO must meet five miss ion constraints. These five constraints are to maintain ground statio n contact during maneuvers, to control the altitude variation of the orbit, to distribute periselene equally between northern and southern hemispheres, to match eccentricity at the beginning and the end of the sidereal period, and to minimize stationkeeping (Delta)V. This pape r addresses how the maneuver plan for LRO is designed to meet all of the above constraints.

  14. Lunar Reconnaissance Orbiter: Goals and Status

    NASA Astrophysics Data System (ADS)

    Keller, John

    The Lunar Reconnaissance Orbiter (LRO) is the first mission under NASA's Vision for Space Exploration, a plan to return to the moon and eventually to Mars. LRO will launch late this year to conduct the exploration phase of the mission under NASA's Exploration Mission Directorate. The exploration phase will last one year, after which the mission will be transferred to NASA's Science Mission Directorate for the science phase. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. This presentation will give an introduction to each of these instruments and an overview of their objectives.

  15. Thermal Model Correlation for Mars Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Dec, John A.; Gasbarre, Joseph F.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun. The data obtained from these maneuvers allowed the model to be well-correlated with regard to thermal mass, conductive connections, and solar response well before arrival at the planet. Correlation against flight data for both in-cruise maneuvers and drag passes was performed. Adjustments made to the model included orientation during the drag pass, solar flux, Martian surface temperature, through-array resistance, aeroheating gradient due to angle of attack, and aeroheating accommodation coefficient. Methods of correlation included comparing the model to flight temperatures, slopes, temperature deltas between sensors, and solar and planet direction vectors. Correlation and model accuracy over 400 aeroheating drag passes were determined, with overall model accuracy better than 5 C.

  16. Mars Reconnaissance Orbiter Accelerometer Experiment Results

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Bougher, S. W.; Theriot, M. E.; Zurek, R. W.; Blanchard, R. C.; Tolson, R. H.; Murphy, J. R.

    2007-05-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005, designed for aerobraking, achieved Mars Orbital Insertion (MOI), March 10, 2006. Atmospheric density decreases exponentially with increasing height. By small propulsive adjustments of the apoapsis orbital velocity, periapsis altitude is fine tuned to the density surface that safely used the atmosphere of Mars to aerobrake over 400 orbits. MRO periapsis precessed from the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis was brought dramatically from 40,000km at MOI to 460 km at aerobraking completion (ABX) August 30, 2006. After ABX, a few small propulsive maneuvers established the Primary Science Orbit (PSO), which without aerobraking would have required an additional 400 kg of fuel. Each of the 400 plus aerobraking orbits provided a vertical structure and distribution of density, scale heights, and temperatures, along the orbital path, providing key in situ insight into various upper atmosphere (greater than 100 km) processes. One of the major questions for scientists studying Mars is: "Where did the water go?" Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities at the requests of The George Washington University, JPL, and Lockheed Martin. The improved accelerometer sensitivities allowed density measurements to exceed 200km, at least 40 km higher than with Mars Odyssey (MO). This extended vertical structures from MRO into the neutral lower exosphere, a region where various processes may allow atmospheric gasses to escape. Over the eons, water may have been lost in both near the surface and in the upper atmosphere. Thus the water balance throughout the entire atmosphere from subsurface to exosphere may both be critical. Comparisons of data from Mars Global Surveyor (MGS), MO and MRO help characterize key temporal and spatial cycles including: winter polar warming, planetary scale

  17. Addressing terrain masking in orbital reconnaissance

    NASA Astrophysics Data System (ADS)

    Mehta, Sharad; Cico, Luke

    2012-06-01

    During aerial orbital reconnaissance, a sensor system is mounted on an airborne platform for imaging a region on the ground. The latency between the image acquisition and delivery of information to the end-user is critical and must be minimized. Due to fine ground pixel resolution and a large field-of-view for wide-area surveillance applications, a massive volume of data is gathered and imagery products are formed using a real-time multi-processor system. The images are taken at oblique angles, stabilized and ortho-rectified. The line-of-sight of the sensor to the ground is often interrupted by terrain features such as mountains or tall structures as depicted in Figure1. The ortho-rectification process renders the areas hidden from the line-of sight of the sensor with spurious information. This paper discusses an approach for addressing terrain masking in size, weight, and power (SWaP) and memory-restricted onboard processing systems.

  18. Calibration of the Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Tschimmel, M.; Robinson, M. S.; Humm, D. C.; Denevi, B. W.; Lawrence, S. J.; Brylow, S.; Ravine, M.; Ghaemi, T.

    2008-12-01

    The Lunar Reconnaissance Orbiter Camera (LROC) onboard the NASA Lunar Reconnaissance Orbiter (LRO) spacecraft consists of three cameras: the Wide-Angle Camera (WAC) and two identical Narrow Angle Cameras (NAC-L, NAC-R). The WAC is push-frame imager with 5 visible wavelength filters (415 to 680 nm) at a spatial resolution of 100 m/pixel and 2 UV filters (315 and 360 nm) with a resolution of 400 m/pixel. In addition to the multicolor imaging the WAC can operate in monochrome mode to provide a global large- incidence angle basemap and a time-lapse movie of the illumination conditions at both poles. The WAC has a highly linear response, a read noise of 72 e- and a full well capacity of 47,200 e-. The signal-to-noise ratio in each band is 140 in the worst case. There are no out-of-band leaks and the spectral response of each filter is well characterized. Each NAC is a monochrome pushbroom scanner, providing images with a resolution of 50 cm/pixel from a 50-km orbit. A single NAC image has a swath width of 2.5 km and a length of up to 26 km. The NACs are mounted to acquire side-by-side imaging for a combined swath width of 5 km. The NAC is designed to fully characterize future human and robotic landing sites in terms of topography and hazard risks. The North and South poles will be mapped on a 1-meter-scale poleward of 85.5° latitude. Stereo coverage can be provided by pointing the NACs off-nadir. The NACs are also highly linear. Read noise is 71 e- for NAC-L and 74 e- for NAC-R and the full well capacity is 248,500 e- for NAC-L and 262,500 e- for NAC- R. The focal lengths are 699.6 mm for NAC-L and 701.6 mm for NAC-R; the system MTF is 28% for NAC-L and 26% for NAC-R. The signal-to-noise ratio is at least 46 (terminator scene) and can be higher than 200 (high sun scene). Both NACs exhibit a straylight feature, which is caused by out-of-field sources and is of a magnitude of 1-3%. However, as this feature is well understood it can be greatly reduced during ground

  19. Precision Orbit Determination for the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Mazarico, E.; Rowlands, D. D.; Torrence, M. H.; McGarry, J. F.; Neumann, G. A.; Mao, D.; Smith, D. E.; Zuber, M. T.

    2010-05-01

    The Lunar Reconnaissance Orbiter (LRO) spacecraft was launched on June 18, 2009. In mid-September 2009, the spacecraft orbit was changed from its commissioning orbit (30 x 216 km polar) to a quasi-frozen polar orbit with an average altitude of 50km (+-15km). One of the goals of the LRO mission is to develop a new lunar reference frame to facilitate future exploration. Precision Orbit Determination is used to achieve the accuracy requirements, and to precisely geolocate the high-resolution datasets obtained by the LRO instruments. In addition to the tracking data most commonly used to determine spacecraft orbits in planetary missions (radiometric Range and Doppler), LRO benefits from two other types of orbital constraints, both enabled by the Lunar Orbiter Laser Altimeter (LOLA) instrument. The altimetric data collected as the instrument's primary purpose can be used to derive constraints on the orbit geometry at the times of laser groundtrack intersections (crossovers). The multi-beam configuration and high firing-rate of LOLA further improves the strength of these crossovers, compared to what was possible with the MOLA instrument onboard Mars Global Surveyor (MGS). Furthermore, one-way laser ranges (LR) between Earth International Laser Ranging Service (ILRS) stations and the spacecraft are made possible by the addition of a small telescope mounted on the spacecraft high-gain antenna. The photons received from Earth are transmitted to one LOLA detector by a fiber optics bundle. Thanks to the accuracy of the LOLA timing system, the precision of 5-s LR normal points is below 10cm. We present the first results of the Precision Orbit Determination (POD) of LRO through the commissioning and nominal phases of the mission. Orbit quality is discussed, and various gravity fields are evaluated with the new (independent) LRO radio tracking data. The altimetric crossovers are used as an independent data type to evaluate the quality of the orbits. The contribution of the LR

  20. Using Mean Orbit Period in Mars Reconnaissance Orbiter Maneuver Design

    NASA Technical Reports Server (NTRS)

    Chung, Min-Kun J.; Menon, Premkumar R.; Wagner, Sean V.; Williams, Jessica L.

    2014-01-01

    Mars Reconnaissance Orbiter (MRO) has provided communication relays for a number of Mars spacecraft. In 2016 MRO is expected to support a relay for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) spacecraft. In addition, support may be needed by another mission, ESA's ExoMars EDL Demonstrator Module's (EDM), only 21 days after the InSight coverage. The close proximity of these two events presents a unique challenge to a conventional orbit synchronization maneuver where one deterministic maneuver is executed prior to each relay. Since the two events are close together and the difference in required phasing between InSight and EDM may be up to half an orbit (yielding a large execution error), the downtrack timing error can increase rapidly at the EDM encounter. Thus, a new maneuver strategy that does not require a deterministic maneuver in-between the two events (with only a small statistical cleanup) is proposed in the paper. This proposed strategy rests heavily on the stability of the mean orbital period. The ability to search and set the specified mean period is fundamental in the proposed maneuver design as well as in understanding the scope of the problem. The proposed strategy is explained and its result is used to understand and solve the problem in the flight operations environment.

  1. Mars Reconnaissance Orbiter Uplink Analysis Tool

    NASA Technical Reports Server (NTRS)

    Khanampompan, Teerapat; Gladden, Roy; Fisher, Forest; Hwang, Pauline

    2008-01-01

    This software analyzes Mars Reconnaissance Orbiter (MRO) orbital geometry with respect to Mars Exploration Rover (MER) contact windows, and is the first tool of its kind designed specifically to support MRO-MER interface coordination. Prior to this automated tool, this analysis was done manually with Excel and the UNIX command line. In total, the process would take approximately 30 minutes for each analysis. The current automated analysis takes less than 30 seconds. This tool resides on the flight machine and uses a PHP interface that does the entire analysis of the input files and takes into account one-way light time from another input file. Input flies are copied over to the proper directories and are dynamically read into the tool s interface. The user can then choose the corresponding input files based on the time frame desired for analysis. After submission of the Web form, the tool merges the two files into a single, time-ordered listing of events for both spacecraft. The times are converted to the same reference time (Earth Transmit Time) by reading in a light time file and performing the calculations necessary to shift the time formats. The program also has the ability to vary the size of the keep-out window on the main page of the analysis tool by inputting a custom time for padding each MRO event time. The parameters on the form are read in and passed to the second page for analysis. Everything is fully coded in PHP and can be accessed by anyone with access to the machine via Web page. This uplink tool will continue to be used for the duration of the MER mission's needs for X-band uplinks. Future missions also can use the tools to check overflight times as well as potential site observation times. Adaptation of the input files to the proper format, and the window keep-out times, would allow for other analyses. Any operations task that uses the idea of keep-out windows will have a use for this program.

  2. Lunar Reconnaissance Orbiter Contamination Sensitivity Training

    NASA Technical Reports Server (NTRS)

    Rivera, Rachel

    2007-01-01

    The following packet is a contamination control training intended for personnel handling or coming to contact with Lunar Reconnaissance Or biter (LRO) flight hardware. This training is being implemented to f amiliarize personnel, coming into contact with LRO hardware, what its contamination sensitivities are and what can be done by all to maint ain its cleanliness levels.

  3. The Lunar Reconnaissance Orbiter Mini RF System (Invited)

    NASA Astrophysics Data System (ADS)

    Nozette, S.

    2009-12-01

    The Miniature Radio Frequency (Mini-RF) system is manifested on the Lunar Reconnaissance Orbiter (LRO) as a technology demonstration and an extended mission science instrument. Mini-RF represents a significant step forward in space-borne RF technology and architecture. It combines synthetic aperture radar (SAR) at two wavelengths (S and X band) and two resolutions (150 m and 30 m) with interferometric and communications functionality in one lightweight (16kg) package. Previous radar observations (Earth-based, and one bistatic data set from Clementine) of the permanently shadowed regions of the lunar poles seem to indicate areas of high circular polarization ratio (CPR) consistent with volume scattering from volatile deposits (e.g. water ice) buried at shallow (0.1-1 m) depth, but only at unfavorable viewing geometries, and with inconclusive results (ref. 1-5). The LRO Mini-RF utilizes new wide band hybrid polarization architecture to measure the Stokes parameters of the reflected signal. These data will help to differentiate “true” volumetric ice reflections from ”false” returns due to angular surface regolith (ref. 6) . Additional lunar science investigations (e.g. pyroclastic deposit characterization) will also be attempted during the LRO extended mission. LRO’s lunar operations will be contemporaneous with India’s Chandrayaan-1, which carries the Forerunner Mini-SAR (S band wavelength and 150-m resolution). On orbit calibration procedures for LRO Mini RF have been validated using Chandrayaan 1 and ground based facilities (Arecibo and Greenbank Radio Observatories). References: 1) Nozette S. et al. (1996) Science 274, 1495. 2) Simpson R. and Tyler L. (1999) JGR 104, 3845. 3) Nozette S. et al. (2001) JGR 106, 23253. 4) Campbell D. et al., (2006) Nature 443, 835. 5) Feldman W. et al., (2001) JGR 106, 23231. 6) Raney R.K. (2007) IEEE Trans Geosci. Remote Sens. 45, 3397

  4. Lunar Reconnaissance Orbiter (LRO) Sun Safe Mode

    NASA Technical Reports Server (NTRS)

    Garrick, Joseph; Roger, J.

    2010-01-01

    The Lunar Reconnaissance Orbiter (LRO), a spacecraft designed and built at the National Aeronautics and Space Administration s (NASA) Goddard Space Flight Center (GSFC) in Greenbelt, MD, was launched on June 18, 2009 from Cape Canaveral. It is currently in orbit about the Moon taking detailed science measurements and providing a highly accurate mapping of the suface in preparation for the future return of astronauts to a permanent moon base. Onboard the spacecraft is a complex set of algorithms designed by the attitude control engineers at GSFC to control the pointig for all operational events, including anomalies that require the spacecraft to be put into a well known attitude configuration for a sufficiently long duration to allow for the investigation and correction of the anomaly. GSFC level requirements state that each spacecraft s control system design must include a configuration for this pointing and lso be able to maintain a thermally safe and power positive attitude. This stable control algorithm for anomalous events is commonly referred to as the safe mode and consists of control logic thatwill put the spacecraft in this safe configuration defined by the spacecraft s hardware, power and environment capabilities and limitations. The LRO Sun Safe mode consists of a coarse sun-pointing set of algorithms that puts the spacecraft into this thermally safe and power positive attitude and can be achieved wihin a required amount of time from any initial attitude, provided that the system momentum is within the momentum capability of the reaction wheels. On LRO the Sun Safe mode makes use of coarse sun sensors (CSS), an inertial reference unit (IRU) and reaction wheels (RW) to slew the spacecraft to a solar inertial pointing. The CSS and reaction wheels have some level of redundancy because of their numbers. However, the IRU is a single-point-failure piece of hardware. Without the rate information provided by the IRU, the Sun Safe control algorithms could not

  5. Lunar Reconnaissance Orbiter (LRO): Observations for Lunar Exploration and Science

    NASA Astrophysics Data System (ADS)

    Keller, J. W.; Vondrak, R. R.; Garvin, J.; Chin, G.

    2009-12-01

    The Lunar Reconnaissance Orbiter (LRO) has the objectives of mapping the lunar surface, identifying safe landing sites, searching for resources and measuring the space radiation environment. After launch on June 18, 2009, the LRO spacecraft and instruments were activated and calibrated in an eccentric polar lunar orbit until September 15, when LRO was moved to a circular polar orbit with a mean altitude of 50 km. LRO will operate for at least one year to support the goals of NASA’s Exploration Systems Mission Directorate (ESMD), and for at least two years of extended operations for additional lunar science measurements supported by NASA’s Science Mission Directorate (SMD). LRO carries six instruments and a technology demonstration. The LRO instruments are: Cosmic Ray Telescope for the Effects of Radiation (CRaTER), Diviner Lunar Radiometer Exploration Experiment (DLRE), Lyman-Alpha Mapping Project (LAMP), Lunar Exploration Neutron Detector (LEND), Lunar Orbiter Laser Altimeter (LOLA), and Lunar Reconnaissance Orbiter Camera (LROC). The technology demonstration is a synthetic aperture radar system (mini-RF). LRO observations also supports the Lunar Crater Observation and Sensing Satellite (LCROSS), the lunar impact mission that was co-manifested with LRO on the Atlas V launch vehicle. This paper describes the LRO objectives and measurements that support exploration of the Moon and that address the science objectives outlined by the National Academy of Science’s report on the Scientific Context for Exploration of the Moon (SCEM). We also describe data accessibility by the science community.

  6. Precise Orbit Determination of the Lunar Reconnaissance Orbiter and inferred gravity field information

    NASA Astrophysics Data System (ADS)

    Maier, A.; Baur, O.; Krauss, S.

    2014-04-01

    This contribution deals with Precise Orbit Determination of the Lunar Reconnaissance Orbiter, which is tracked with optical laser ranges in addition to radiometric Doppler range-rates and range observations. The optimum parameterization is assessed by overlap analysis tests that indicate the inner precision of the computed orbits. Information about the very long wavelengths of the lunar gravity field is inferred from the spacecraft positions. The NASA software packages GEODYN II and SOLVE were used for orbit determination and gravity field recovery [1].

  7. The Lunar Reconnaissance Orbiter: Plans for the Extended Science Phase

    NASA Technical Reports Server (NTRS)

    Vondrak, R. R.; Keller, J. W.; Chin, G.; Garvin, J. B.; Rice, J. W., Jr.; Petro, N. E.

    2012-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and to investigate the Lunar radiation environment. Having marked the two-year anniversary, we will review here the major results from the LRO mission for both exploration and science and discuss plans and objectives going forward including plans for an extended science phase out to 2014.

  8. Mars Reconnaissance Orbiter Navigation During the Primary Science Phase

    NASA Technical Reports Server (NTRS)

    Highsmith, Dolan; You, Tung-Han; Demcak, Stuart; Graat, Eric; Higa, Earl; Long, Stacia; Bhat, Ram; Mottinger, Neil; Halsell, Allen; Peralta, Fernando

    2008-01-01

    The Mars Reconnaissance Orbiter began science operations in November 2006, with a suite of seven instruments and investigations, some of which required navigation accuracies much better than previous Mars missions. This paper describes the driving performance requirements levied on Navigation and how well those requirements have been met thus far. Trending analyses that have a direct impact on the Navigation performance, such as atmospheric bias determination, are covered in detail, as well as dynamic models, estimation strategy, tracking data reduction techniques, and residual noise.

  9. flexplan: Mission Planning System for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Barnoy, Assaf; Beech, Theresa

    2013-01-01

    flexplan is a mission planning and scheduling (MPS) tool that uses soft algorithms to define mission scheduling rules and constraints. This allows the operator to configure the tool for any mission without the need to modify or recompile code. In addition, flexplan uses an ID system to track every output on the schedule to the input from which it was generated. This allows flexplan to receive feedback as the schedules are executed, and update the status of all activities in a Web-based client. flexplan outputs include various planning reports, stored command loads for the Lunar Reconnaissance Orbiter (LRO), ephemeris loads, and pass scripts for automation.

  10. Lunar Reconnaissance Orbiter (LRO): Observations for Lunar Exploration and Science

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard; Keller, John; Chin, Gordon; Garvin, James

    2010-01-01

    The Lunar Reconnaissance Orbiter (LRO) was implemented to facilitate scientific and engineering-driven mapping of the lunar surface at new spatial scales and with new remote sensing methods, identify safe landing sites, search for in situ resources, and measure the space radiation environment. After its successful launch on June 18,2009, the LRO spacecraft and instruments were activated and calibrated in an eccentric polar lunar orbit until September 15, when LRO was moved to a circular polar orbit with a mean altitude of 50 km. LRO will operate for at least one year to support the goals of NASA's Exploration Systems Mission Directorate (ESMD), and for at least two years of extended operations for additional lunar science measurements supported by NASA's Science Mission Directorate (SMD). LRO carries six instruments with associated science and exploration investigations, and a telecommunications/radar technology demonstration. The LRO instruments are: Cosmic Ray Telescope for the Effects of Radiation (CRaTER), Diviner Lunar Radiometer Experiment (DLRE), Lyman-Alpha Mapping Project (LAMP), Lunar Exploration Neutron Detector (LEND), Lunar Orbiter Laser Altimeter (LOLA), and Lunar Reconnaissance Orbiter Camera (LROC). The technology demonstration is a compact, dual-frequency, hybrid polarity synthetic aperture radar instrument (Mini-RF). LRO observations also support the Lunar Crater Observation and Sensing Satellite (LCROSS), the lunar impact mission that was co-manifested with LRO on the Atlas V (401) launch vehicle. This paper describes the LRO objectives and measurements that support exploration of the Moon and that address the science objectives outlined by the National Academy of Science's report on the Scientific Context for Exploration of the Moon (SCEM). We also describe data accessibility by the science and exploration community.

  11. Status of the Lunar Reconnaissance Orbiter Geodetic Investigation

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-12-01

    We present the status of the Precision Orbit Determination work performed at NASA Goddard Space Flight Center by the Lunar Orbiter Laser Altimeter (LOLA) Science Team. LOLA, the multi-beam laser altimeter instrument onboard the Lunar Reconnaissance Orbiter (LRO), has been operating continuously since July 13, 2009 and has provided more than 4.5 billion measurements as of July 2011. The high precision (10cm) and small footprint (5m) of the altimetric data, as well as the high resolution (25cm per pixel) of the LRO Camera (LROC), require high-accuracy orbits of the LRO spacecraft in order to maximize their scientific value and to enable proper coregistration of the various datasets obtained by LRO. Radiometric tracking data are complemented by altimetric crossover constraints derived from individual LOLA profiles. With a pre-LRO a priori gravity field (GLGM-3), the crossovers helped substantially improve the self-consistency of the reconstructed LRO orbits (assessed through orbit overlaps), from ~70m overlap RMS (radiometric-only) down to ~25m.We also used the LRO tracking and altimetric data to obtain a new solution of the lunar gravity field, specifically designed to provide enhanced orbit accuracy. With this preliminary LRO field (LLGM-1), the radiometric-only orbits achieve ~25m overlap precision. When complemented by the altimetric crossovers, the orbit consistency improves to better than 15m. Results from more than 2 years of radiometric tracking data and LOLA altimetry will be shown, including an updated gravity field solution. Current efforts to use very long integration arcs (4 months at a time) will also be presented, with the goal of combining all the available farside crossover constraints to help refine the short-wavelength farside gravity field.

  12. Precision Orbit Determination for the Lunar Reconnaissance Orbiter: orbit quality and gravity field estimation

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Lemoine, F. G.; Torrence, M. H.; Smith, D. E.; Zuber, M. T.; Mao, D.

    2010-12-01

    We present results of the Precision Orbit Determination work undertaken by the Lunar Orbiter Laser Altimeter (LOLA) Science Team for the Lunar Reconnaissance Orbiter (LRO) mission, in order to meet the position knowledge accuracy requirements (50-m total position) and to precisely geolocate the LRO datasets. In addition to the radiometric tracking data, one-way laser ranges (LR) between Earth stations and the spacecraft are made possible by a small telescope mounted on the spacecraft high-gain antenna. The photons received from Earth are transmitted to one LOLA detector by a fiber optics bundle. The LOLA timing system enables 5-s LR normal points with precision better than 10cm. Other types of geodetic constraints are derived from the altimetric data itself. The orbit geometry can be constrained at the times of laser groundtrack intersections (crossovers). Due to the Moon's slow rotation, orbit solutions and normal equations including altimeter crossovers are processed and created in one month batches. Recent high-resolution topographic maps near the lunar poles are used to produce a new kind of geodetic constraints. Purely geometric, those do not necessitate actual groundtrack intersections. We assess the contributions of those data types, and the quality of our orbits. Solutions which use altimetric crossover meet the horizontal 50-m requirement, and perform usually better (10-20m). We also obtain gravity field solutions based on LRO and historical data. The various LRO data are accumulated into normal equations, separately for each one month batch and for each measurement type, which enables the final weights to be adjusted during the least-squares inversion step. Expansion coefficients to degree and order 150 are estimated, and a Kaula rule is still needed to stabilize the farside field. The gravity field solutions are compared to previous solutions (GLGM-3, LP150Q, SGM100h) and the geopotential predicted from the latest LOLA spherical harmonic expansion.

  13. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO)

    NASA Astrophysics Data System (ADS)

    Murchie, S.; Arvidson, R.; Bedini, P.; Beisser, K.; Bibring, J.-P.; Bishop, J.; Boldt, J.; Cavender, P.; Choo, T.; Clancy, R. T.; Darlington, E. H.; Des Marais, D.; Espiritu, R.; Fort, D.; Green, R.; Guinness, E.; Hayes, J.; Hash, C.; Heffernan, K.; Hemmler, J.; Heyler, G.; Humm, D.; Hutcheson, J.; Izenberg, N.; Lee, R.; Lees, J.; Lohr, D.; Malaret, E.; Martin, T.; McGovern, J. A.; McGuire, P.; Morris, R.; Mustard, J.; Pelkey, S.; Rhodes, E.; Robinson, M.; Roush, T.; Schaefer, E.; Seagrave, G.; Seelos, F.; Silverglate, P.; Slavney, S.; Smith, M.; Shyong, W.-J.; Strohbehn, K.; Taylor, H.; Thompson, P.; Tossman, B.; Wirzburger, M.; Wolff, M.

    2007-05-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a hyperspectral imager on the Mars Reconnaissance Orbiter (MRO) spacecraft. CRISM consists of three subassemblies, a gimbaled Optical Sensor Unit (OSU), a Data Processing Unit (DPU), and the Gimbal Motor Electronics (GME). CRISM's objectives are (1) to map the entire surface using a subset of bands to characterize crustal mineralogy, (2) to map the mineralogy of key areas at high spectral and spatial resolution, and (3) to measure spatial and seasonal variations in the atmosphere. These objectives are addressed using three major types of observations. In multispectral mapping mode, with the OSU pointed at planet nadir, data are collected at a subset of 72 wavelengths covering key mineralogic absorptions and binned to pixel footprints of 100 or 200 m/pixel. Nearly the entire planet can be mapped in this fashion. In targeted mode the OSU is scanned to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution (15-19 m/pixel, 362-3920 nm at 6.55 nm/channel). Ten additional abbreviated, spatially binned images are taken before and after the main image, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In atmospheric mode, only the EPF is acquired. Global grids of the resulting lower data volume observations are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties. Raw, calibrated, and map-projected data are delivered to the community with a spectral library to aid in interpretation.

  14. Science Planning for the NASA Mars Reconnaissance Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wenkert, Daniel D.; Bridges, Nathan T.; Eggemeyer, William Curtis; Hale, Amy Snyder; Kass, David; Martin, Terry Z.; Noland, Stephen J.; Safaeinili, Ali; Smrekar, Suzanne

    2006-01-01

    The Mars Reconnaissance Orbiter (MRO), launched on August 12, 2005, carries six science instruments, each with unique requirements for repetitive global monitoring, regional or global survey mapping, and/or targeted observations of Mars. Some prefer nadir-only observations, while other instruments require many off-nadir observations (especially for stereo viewing). Because the operations requirements are often incompatible, an interactive science planning process has been developed. This process is more complex than in some recent NASA Mars missions, but less complex (and more repetitive) than processes used by many large planetary missions. It takes full advantage of MRO's novel onboard processing capabilities, and uses simple electronic interactions between geographically distributed teams. This paper describes the process used during MRO's Primary Science Phase (PSP) to plan both interactive and non-interactive observations of Mars, and what has already been learned in the tests and rehearsals preparing for PSP.

  15. Engineering a Successful Mission: Lessons from the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Everett, David F.

    2011-01-01

    Schedule pressure is common in the commercial world, where late delivery of a product means delayed income and loss of profit. 12 Research spacecraft developed by NASA, on the other hand, tend to be driven by the high cost of launch vehicles and the public scrutiny of failure-- the primary driver is ensuring proper operation in space for a system that cannot be retrieved for repair. The Lunar Reconnaissance Orbiter (LRO) development faced both schedule pressure and high visibility. The team had to balance the strong push to meet a launch date against the need to ensure that this first mission for Exploration succeeded. This paper will provide an overview of the mission from concept through its first year of operation and explore some of the challenges the systems engineering team faced taking a mission from preliminary design review to pre-ship review in 3 years.

  16. The Lunar Reconnaissance Orbiter: Plans for the Science Phase

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R.; Keller, John W.; Chin, Gordon; Petro, Noah; Rice, James; Garvin, James

    2011-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), which was launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's primary objectives included the search for resources and to investigate the Lunar radiation environment. This phase of the mission was completed on September 15,2010 when the operational responsibility for LRO was transferred from ESMD to NASA's Science Mission directorate (SMD). Under SMD, the mission focuses on a new set of goals related to the history of the Moon, its current state and what its history can tell us about the evolution of the Solar System.

  17. Tracking Data Certification for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick J.; Socoby, Joseph; Hendry, Steve; Campion, Richard

    2010-01-01

    This paper details the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) tracking data certification effort of the Lunar Reconnaissance Orbiter (LRO) Space Communications Network (SCN) complement of tracking stations consisting of the NASA White Sands 1 antenna (WS1), and the commercial provider Universal Space Network (USN) antennas at South Point, Hawaii; Dongara Australia; Weilheim, Germany; and Kiruna, Sweden. Certification assessment required the cooperation and coordination of parties not under the control of either the LRO project or ground stations as uplinks on cooperating spacecraft were necessary. The LRO range-tracking requirement of 10m 1 sigma could be satisfactorily demonstrated using any typical spacecraft capable of range tracking. Though typical Low Earth Orbiting (LEO) or Geosynchronous Earth Orbiting (GEO) spacecraft may be adequate for range certification, their measurement dynamics and noise would be unacceptable for proper Doppler certification of 1-3mm/sec 1 sigma. As LRO will orbit the Moon, it was imperative that a suitable target spacecraft be utilized which can closely mimic the expected lunar orbital Doppler dynamics of +/-1.6km/sec and +/-1.5m/sq sec to +/-0.15m/sq sec, is in view of the ground stations, supports coherent S-Band Doppler tracking measurements, and can be modeled by the FDF. In order to meet the LRO metric tracking data specifications, the SCN ground stations employed previously uncertified numerically controlled tracking receivers. Initial certification testing revealed certain characteristics of the units that required resolution before being granted certification.

  18. Preparations for Lunar Reconnaissance Orbiter gravity and altimetry missions

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Lemoine, F. G.; Neumann, G. A.; Smith, D. E.; Rowlands, D. D.; Zuber, M. T.

    2008-12-01

    The launch of the Lunar Reconnaissance Orbiter is expected in early 2009. We present results of the preparations undertaken at the NASA Goddard Space Flight Center for the Lunar Orbiter Laser Altimeter (LOLA) instrument and the Radio Science experiment. A new lunar reference frame, vital to current exploration efforts for a return to the Moon, will be developed from the combined data sets collected by both experiments. In addition to collecting topographic data, LOLA will assist the Precision Orbit Determination of the LRO spacecraft. The 50-m total positioning requirement is very challenging due to the low altitude (50km on average) and the lack of radio tracking over most of the lunar far side. While commercial S-band tracking data will be the principal measurements used for orbit reconstruction, the unique five-beam altimeter enables the use of the altimetric cross-over technique with unprecedented accuracy. Previous simulations showed that the more numerous (by a factor of 25) crossings could greatly help in reducing the uncertainties in the recovered orbit. We show here that cross-track information contained in the acquired topographic swaths (compared to multiple two-dimensional profiles) can constrain orbits to a few meters horizontally and better than 50cm vertically. Swath cross-overs will be most valuable in mid-latitudes, where cross-overs are sparse and tracks intersect at shallow angles. A spacecraft physical model, for use in the GEODYN II orbit determination program, includes inter-plate self- shadowing in the calculation of the spacecraft cross-sectional area for solar radiation pressure. Simulations indicate that solar radiation effects on the orbit can be on the order of 10-20m. Because the thermal radiation forces are larger and more variable than on Mars, the current model of the thermal flux map was updated, with effects on the order of 1-5m. The benefit of using the self-shadowing model for the albedo and thermal forces is currently being

  19. Orbit determination of the Lunar Reconnaissance Orbiter using laser ranging and radiometric tracking data

    NASA Astrophysics Data System (ADS)

    Löcher, Anno; Kusche, Jürgen

    2014-05-01

    The Lunar Reconnaissance Orbiter (LRO) launched in 2009 by the National Aeronautics and Space Administration (NASA) still orbits the Moon in a polar orbit at an altitude of 50 kilometers and below. Its main objective is the detailed exploration of the Moon's surface by means of the Lunar Orbiter Laser Altimeter (LOLA) and three high resolution cameras bundled in the Lunar Reconnaissance Orbiter Camera (LROC) unit. Referring these observations to a Moon-fixed reference frame requires the computation of highly accurate and consistent orbits. For this task only Earth-based observations are available, primarily radiometric tracking data from stations in the United States, Australia and Europe. In addition, LRO is prepared for one-way laser measurements from specially adapted sites. Currently, 10 laser stations participate more or less regularly in this experiment. For operational reasons, the official LRO orbits from NASA only include radiometric data so far. In this presentation, we investigate the benefit of the laser ranging data by feeding both types of observations in an integrated orbit determination process. All computations are performed by an in-house software development based on a dynamical approach improving orbit and force parameters in an iterative way. Special attention is paid to the determination of bias parameters, in particular of timing biases between radio and laser stations and the drift and aging of the LRO spacecraft clock. The solutions from the combined data set will be compared to radio- and laser-only orbits as well as to the NASA orbits. Further results will show how recent gravity field models from the GRAIL mission can improve the accuracy of the LRO orbits.

  20. Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Garrick, Joseph C.

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.

  1. Atmospheric structure from Mars Reconnaissance Orbiter accelerometer measurements

    NASA Astrophysics Data System (ADS)

    Keating, G.; Bougher, S.; Theriot, M.; Zurek, R.; Blanchard, R.; Tolson, R.; Murphy, J.

    Designed for aerobraking, Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005, achieved Mars Orbital Insertion (MOI), March 10, 2006. Atmospheric density decreases exponentially with increasing height. By small propulsive adjustments of the apoapsis orbital velocity, periapsis altitude is fine tuned to the density surface that will safely use the atmosphere of Mars to aerobrake over 500 orbits. MRO periapsis precesses from the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis is brought dramatically from ˜40,000km at MOI to 460 km at aerobraking completion (ABX) mid September 2006. After ABX, a few small propulsive maneuvers will establish the Primary Science Orbit (PSO), which without aerobraking would have required an additional 400 kg of fuel. Each of the 500 plus aerobraking orbits provides a vertical structure and distribution of density, scale heights, and temperatures, along the orbital path, providing key in situ insight into various upper atmosphere (> 100 km) processes. One of the major questions for scientists studying Mars is: "Where did the water go?" Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities at the requests of The George Washington University, JPL, and Lockheed Martin. The improved accelerometer sensitivities allowed density measurements to exceed 200km, at least 40 km higher than with Mars Odyssey (MO). This extends vertical structures from MRO into the neutral lower exosphere, a region where various processes may allow atmospheric gasses to escape. Over the eons, water may have been lost in both the lower atmosphere and the upper atmosphere, thus the water balance throughout the entire atmosphere from subsurface to exosphere may be equally critical. Comparisons of data from Mars Global Surveyor (MGS), MO and MRO will help characterize key temporal and spatial cycles including: polar vortices, winter polar

  2. Planetary protection implementation on Mars Reconnaissance Orbiter mission

    NASA Astrophysics Data System (ADS)

    Barengoltz, J.; Witte, J.

    2008-09-01

    In August 2005 NASA launched a large orbiting science observatory, the Mars Reconnaissance Orbiter (MRO), for what is scheduled to be a 5.4-year mission. High resolution imaging of the surface is a principal goal of the mission. One consequence of this goal however is the need for a low science orbit. Unfortunately this orbit fails the required 20-year orbit life set in NASA Planetary Protection (PP) requirements [NASA. Planetary protection provisions for robotic extraterrestrial missions, NASA procedural requirements NPR 8020.12C, NASA HQ, Washington, DC, April 2005.]. So rather than sacrifice the science goals of the mission by raising the science orbit, the MRO Project chose to be the first orbiter to pursue the bio-burden reduction approach. Cleaning alone for a large orbiter like MRO is insufficient to achieve the bio-burden threshold requirement in NASA PP requirements. The burden requirement for an orbiter includes spores encapsulated in non-metallic materials and trapped in joints, as well as located on all internal and external surfaces (the total spore burden). Total burden estimates are dominated by the mated and encapsulated burden. The encapsulated burden cannot be cleaned. The total burden of a smaller orbiter (e.g., Mars Odyssey) likely could not have met the requirement by cleaning; for the large MRO it is clearly impossible. Of course, a system-level partial sterilization, with its attendant costs and system design issues, could have been employed. In the approach taken by the MRO Project, hardware which will burn up (completely vaporize or ablate) before reaching the surface or will at least attain high temperature (500 °C for 0.5 s or more) due to entry heating was exempt from burden accounting. Thus the bio-burden estimate was reduced. Lockheed Martin engineers developed a process to perform what is called breakup and burn-up (B&B) analysis.Lockheed Martin Corporation.2 The use of the B&B analysis to comply with the spore burden requirement is

  3. An Overview of the Mars Reconnaissance Orbiter (MRO) Science Mission

    NASA Technical Reports Server (NTRS)

    Zurek, Richard W.; Smrekar, Suzanne E.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) is the latest addition to the suite of missions on or orbiting Mars as part of the NASA Mars Exploration Program. Launched on 12 August 2005, the orbiter successfully entered Mars orbit on 10 March 2006 and finished aerobraking on 30 August 2006. Now in its near-polar, near-circular, low-altitude (approximately 300 km), 3 p.m. orbit, the spacecraft is operating its payload of six scientific instruments throughout a one-Mars-year Primary Science Phase (PSP) of global mapping, regional survey, and targeted observations. Eight scientific investigations were chosen for MRO, two of which use either the spacecraft accelerometers or tracking of the spacecraft telecom signal to acquire data needed for analysis. Six instruments, including three imaging systems, a visible-near infrared spectrometer, a shallow-probing subsurface radar, and a thermal-infrared profiler, were selected to complement and extend the capabilities of current working spacecraft at Mars. Whether observing the atmosphere, surface, or subsurface, the MRO instruments are designed to achieve significantly higher resolution while maintaining coverage comparable to the current best observations. The requirements to return higher-resolution data, to target routinely from a low-altitude orbit, and to operate a complex suite of instruments were major challenges successfully met in the design and build of the spacecraft, as well as by the mission design. Calibration activities during the seven-month cruise to Mars and limited payload operations during a three-day checkout prior to the start of aerobraking demonstrated, where possible, that the spacecraft and payload still had the functions critical to the science mission. Two critical events, the deployment of the SHARAD radar antenna and the opening of the CRISM telescope cover, were successfully accomplished in September 2006. Normal data collection began 7 November 2006 after solar conjunction. As part of its science

  4. An overview of the Mars Reconnaissance Orbiter (MRO) science mission

    NASA Astrophysics Data System (ADS)

    Zurek, Richard W.; Smrekar, Suzanne E.

    2007-05-01

    The Mars Reconnaissance Orbiter (MRO) is the latest addition to the suite of missions on or orbiting Mars as part of the NASA Mars Exploration Program. Launched on 12 August 2005, the orbiter successfully entered Mars orbit on 10 March 2006 and finished aerobraking on 30 August 2006. Now in its near-polar, near-circular, low-altitude (~300 km), 3 p.m. orbit, the spacecraft is operating its payload of six scientific instruments throughout a one-Mars-year Primary Science Phase (PSP) of global mapping, regional survey, and targeted observations. Eight scientific investigations were chosen for MRO, two of which use either the spacecraft accelerometers or tracking of the spacecraft telecom signal to acquire data needed for analysis. Six instruments, including three imaging systems, a visible-near infrared spectrometer, a shallow-probing subsurface radar, and a thermal-infrared profiler, were selected to complement and extend the capabilities of current working spacecraft at Mars. Whether observing the atmosphere, surface, or subsurface, the MRO instruments are designed to achieve significantly higher resolution while maintaining coverage comparable to the current best observations. The requirements to return higher-resolution data, to target routinely from a low-altitude orbit, and to operate a complex suite of instruments were major challenges successfully met in the design and build of the spacecraft, as well as by the mission design. Calibration activities during the seven-month cruise to Mars and limited payload operations during a three-day checkout prior to the start of aerobraking demonstrated, where possible, that the spacecraft and payload still had the functions critical to the science mission. Two critical events, the deployment of the SHARAD radar antenna and the opening of the CRISM telescope cover, were successfully accomplished in September 2006. Normal data collection began 7 November 2006 after solar conjunction. As part of its science mission, MRO will

  5. CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO (Mars Reconnaissance Orbiter)

    NASA Astrophysics Data System (ADS)

    Murchie, Scott L.; Arvidson, Raymond E.; Bedini, Peter; Beisser, K.; Bibring, Jean-Pierre; Bishop, J.; Boldt, John D.; Choo, Tech H.; Clancy, R. Todd; Darlington, Edward H.; Des Marais, D.; Espiritu, R.; Fasold, Melissa J.; Fort, Dennis; Green, Richard N.; Guinness, E.; Hayes, John R.; Hash, C.; Heffernan, Kevin J.; Hemmler, J.; Heyler, Gene A.; Humm, David C.; Hutchison, J.; Izenberg, Noam R.; Lee, Robert E.; Lees, Jeffrey J.; Lohr, David A.; Malaret, Erick R.; Martin, T.; Morris, Richard V.; Mustard, John F.; Rhodes, Edgar A.; Robinson, Mark S.; Roush, Ted L.; Schaefer, Edward D.; Seagrave, Gordon G.; Silverglate, Peter R.; Slavney, S.; Smith, Mark F.; Strohbehn, Kim; Taylor, Howard W.; Thompson, Patrick L.; Tossman, Barry E.

    2004-12-01

    CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) spacecraft in August 2005. MRO"s objectives are to recover climate science originally to have been conducted on the Mars Climate Orbiter (MCO), to identify and characterize sites of possible aqueous activity to which future landed missions may be sent, and to characterize the composition, geology, and stratigraphy of Martian surface deposits. MRO will operate from a sun-synchronous, near-circular (255x320 km altitude), near-polar orbit with a mean local solar time of 3 PM. CRISM"s spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 383 nm to 3960 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.12° field-of-view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer, light is split by a dichroic into VNIR (visible-near-infrared, 383-1071 nm) and IR (infrared, 988-3960 nm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.6 nm spectral spacing and an instantaneous field of view of 61.5 μradians. The Optical Sensor Unit (OSU) can be gimbaled to take out along-track smear, allowing long integration times that afford high signal-to-noise ratio (SNR) at high spectral and spatial resolution. The scan motor and encoder are controlled by a separately housed Gimbal Motor Electronics (GME) unit. A Data Processing Unit (DPU) provides power, command and control, and data editing and compression. CRISM acquires three major types of observations of the Martian surface and atmosphere. In Multispectral Mapping Mode, with the gimbal pointed at planet nadir, data are collected at frame rates

  6. Radio Occultation Measurements with the Mars Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Hinson, David P.; Asmar, S.; Kahan, D.; Akopian, V.; Maalouf, S.

    2012-10-01

    The Mars Reconnaissance Orbiter (MRO) circles Mars in a low-altitude, sun-synchronous, polar orbit, crossing the equator at local times of about 3 and 15 h. There are frequent opportunities for radio occultation (RO) sounding of the martian atmosphere, which has been conducted routinely since January 2008. Observations are limited to one orbit per day, so as to minimize the impact on transmission of data collected by the primary scientific instruments. We are retrieving atmospheric profiles from the MRO RO data, and we are delivering the results to the NASA Planetary Data System (PDS) for archiving and public distribution. The value of these RO profiles derives from their combination of accurate absolute calibration, excellent vertical resolution (about 500 m), and accurate registration in radius. The first attribute qualifies the RO profiles as a reliable standard for cross-instrument calibration, and comparisons are underway with atmospheric observations by the MRO Mars Climate Sounder (MCS). The second attribute yields unique insight into the structure and dynamics of the lower atmosphere (0-10 km) and its interaction with surface reservoirs of dust and volatiles. The third attribute allows precise measurements of geopotential height and surface pressure, which constrain the mass distribution of the atmosphere and its seasonal variations. These attributes also enable long-term monitoring of interannual variability and climatic trends. We will characterize the spatial and seasonal coverage of the observations to date, and we will illustrate the atmospheric phenomena captured by the MRO RO profiles. This research is funded in part by Grant NNX12AL48G of the Mars Data Analysis Program.

  7. Mars Reconnaissance Orbiter: Integrating Results From the Primary Science Phase

    NASA Astrophysics Data System (ADS)

    Zurek, R. W.; Smrekar, S. E.

    2008-12-01

    The Mars Reconnaissance Orbiter (MRO) recently completed its one-Mars-year Primary Science Phase, observing the Martian atmosphere, surface and subsurface with 7 science investigations using 6 science instruments and tracking of the spacecraft as it orbited Mars. In addition, an eighth investigation made use of the onboard accelerometers during a 5-month period of MRO aerobraking to characterize upper atmospheric structure. Hallmarks-and challenges-of the MRO science mission have been: 1) unprecedented spatial resolution at all wavelengths used when observing from orbit; 2) coordinated imaging of local areas; and 3) the balancing of mapping, regional survey, and targeted observation of selected locales, frequently including repeat observations for stereo or for change detection. This talk will give an overview of the data return, including coverage in various observing modes, and will review how the various data sets have combined to provide new perspectives in our attempts to understand Mars, its present climate and its past evolution. Examples include the combination of surface compositional and morphologic information--on scales comparable to those examined by a terrestrial field geologist-to understand modification of the surface, revelations of the interior structure of the polar ice caps and of ice-rich deposits elsewhere which illuminate climate changes in recent geologic time, and monitoring of modern day variations, particularly as they reveal seasonal and inter-annual redistribution of dust and water, but also as they characterize ongoing mass wasting and cratering of the surface. Together, these all point to a complex history of change on Mars, with alternating episodes of significant water activity early in the planet's history, but with some water activity occurring in later geologic times, including the modern era.

  8. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  9. Free space laser communication experiments from Earth to the Lunar Reconnaissance Orbiter in lunar orbit.

    PubMed

    Sun, Xiaoli; Skillman, David R; Hoffman, Evan D; Mao, Dandan; McGarry, Jan F; McIntire, Leva; Zellar, Ronald S; Davidson, Frederic M; Fong, Wai H; Krainak, Michael A; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2013-01-28

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model. PMID:23389171

  10. The Search for Lunar Lobate Scarps Using Images from the Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Banks, M. E.; Watters, T. R.; Robinson, M. S.; Bell, J. F.; Pritchard, M. E.; Williams, N. R.; Daud, K.; Lroc Team

    2011-03-01

    A search for previously undetected lobate scarps was conducted using images from the Lunar Reconnaissance Orbiter Camera. To date, previously undetected lobate scarps have been identified in LROC images and mosaics in 73 different locations.

  11. Launch and Commissioning of the Lunar Reconnaissance Orbiter (LRO)

    NASA Technical Reports Server (NTRS)

    Shah, Neerav; Calhoun, Philip; Garrick, Joseph; Hsu, Oscar; Simpson, James

    2010-01-01

    The Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station. LRO, designed, built, and operated by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. To date, the Guidance, Navigation and Control (GN&C) subsystem has operated nominally and met all requirements. However, during the early phase of the mission, the GN&C Team encountered some anomalies. For example, during the Solar Array and High Gain Antenna deployments, one of the safing action points tripped, which was not expected. Also, the spacecraft transitioned to its safe hold mode, SunSafe, due to encountering an end of file for an ephemeris table. During the five-day lunar acquisition, one of the star trackers triggered the spacecraft to transition into a safe hold configuration, the cause of which was determined. These events offered invaluable insight to better understand the performance of the system they designed. An overview of the GN&C subsystem will be followed by a mission timeline. Then, interesting flight performance as well as anomalies encountered by the GN&C Team will be discussed in chronological order.

  12. Orbit Determination and Navigation Software Testing for the Mars Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Pini, Alex

    2011-01-01

    During the extended science phase of the Mars Reconnaissance Orbiter's lifecycle, the operational duties pertaining to navigation primarily involve orbit determination. The orbit determination process utilizes radiometric tracking data and is used for the prediction and reconstruction of MRO's trajectories. Predictions are done twice per week for ephemeris updates on-board the spacecraft and for planning purposes. Orbit Trim Maneuvers (OTM-s) are also designed using the predicted trajectory. Reconstructions, which incorporate a batch estimator, provide precise information about the spacecraft state to be synchronized with scientific measurements. These tasks were conducted regularly to validate the results obtained by the MRO Navigation Team. Additionally, the team is in the process of converting to newer versions of the navigation software and operating system. The capability to model multiple densities in the Martian atmosphere is also being implemented. However, testing outputs among these different configurations was necessary to ensure compliance to a satisfactory degree.

  13. The Mars Reconnaissance Orbiter Mission: From Launch to the Primary Science Orbit

    NASA Technical Reports Server (NTRS)

    Johnston, Martin D.; Graf, James E.; Zurek, Richard W.; Eisen, Howard J.; Jai, Benhan; Erickson, James K.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) was launched from Cape Canaveral Air Force Station, Florida, USA, aboard an Atlas V-401 launch vehicle on August 12, 2005. The MRO spacecraft carries a very sophisticated scientific payload. Its primary science mission is to to provide global, regional survey, and targeted observations from a low altitude orbit for one Martian year (687 Earth days). After a seven month interplanetary transit, the spacecraft fired its six main engines and established a highly elliptical capture orbit at Mars. During the post-MOI early check-out period, four instruments acquired engineering-quality data. This was followed by five months of aerobraking operations. After aerobraking was terminated, a series of propulsive maneuvers were used to establish the desired low altitude science orbit. As the spacecraft is readied for its primary science mission, spacecraft and instrument checkout and deployment activities have continued.

  14. Orbit determination and gravity field recovery from Doppler tracking data to the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Maier, Andrea; Baur, Oliver

    2016-03-01

    We present results for Precise Orbit Determination (POD) of the Lunar Reconnaissance Orbiter (LRO) based on two-way Doppler range-rates over a time span of ~13 months (January 3, 2011 to February 9, 2012). Different orbital arc lengths and various sets of empirical parameters were tested to seek optimal parametrization. An overlap analysis covering three months of Doppler data shows that the most precise orbits are obtained using an arc length of 2.5 days and estimating arc-wise constant empirical accelerations in along track direction. The overlap analysis over the entire investigated time span of 13 months indicates an orbital precision of 13.79 m, 14.17 m, and 1.28 m in along track, cross track, and radial direction, respectively, with 21.32 m in total position. We compare our orbits to the official science orbits released by the US National Aeronautics and Space Administration (NASA). The differences amount to 9.50 m, 6.98 m, and 1.50 m in along track, cross track, and radial direction, respectively, as well as 12.71 m in total position. Based on the reconstructed LRO orbits, we estimated lunar gravity field coefficients up to spherical harmonic degree and order 60. The results are compared to gravity field solutions derived from data collected by other lunar missions.

  15. SHARAD sounding radar on the Mars Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Seu, Roberto; Phillips, Roger J.; Biccari, Daniela; Orosei, Roberto; Masdea, Arturo; Picardi, Giovanni; Safaeinili, Ali; Campbell, Bruce A.; Plaut, Jeffrey J.; Marinangeli, Lucia; Smrekar, Suzanne E.; Nunes, Daniel C.

    2007-05-01

    SHARAD (SHAllow RADar) is a sounding radar provided by Agenzia Spaziale Italiana (ASI) as a Facility Instrument on the Mars Reconnaissance Orbiter mission. Its 20-MHz center frequency and 10-MHz bandwidth complement the lower-frequency, relatively narrower bandwidth capability of the MARSIS sounding radar. A joint Italian-U.S. team has guided the experiment development and is responsible for data analysis and interpretation. The radar transmits signals at a 700 Hz pulse repetition frequency (PRF) and collects reflections from both the surface and near subsurface of Mars. Vertical and horizontal resolutions are, respectively, 15 m (free-space) and 3-6 km (cross-track) by 0.3-1 km (along-track). The scientific objective of SHARAD is to map, in selected locales, dielectric interfaces to at least several hundred meters depth in the Martian subsurface and to interpret these results in terms of the occurrence and distribution of expected materials, including competent rock, soil, water, and ice. A signal-to-noise ratio of ~50 dB (for a specular surface return) is achieved with 10 W of radiated power by using range and azimuth focusing in ground data processing. Preprocessed data as well as range- and azimuth-focused data will be formatted according to Planetary Data System (PDS) standards and be made available from the ASI Science Data Center (ASDC) and from the Geosciences Node of the Planetary Data System (PDS). Important targets for SHARAD include the polar layered deposits, sedimentary stacks (especially in Terra Meridiani), buried channel systems, buried impact craters, volcanic complexes, and shallow ice deposits in equilibrium with the atmosphere.

  16. Pre-flight and On-orbit Geometric Calibration of the Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.; Wagner, R. V.; Robinson, M. S.; Licht, A.; Thomas, P. C.; Becker, K.; Anderson, J.; Brylow, S. M.; Humm, D. C.; Tschimmel, M.

    2016-04-01

    The Lunar Reconnaissance Orbiter Camera (LROC) consists of two imaging systems that provide multispectral and high resolution imaging of the lunar surface. The Wide Angle Camera (WAC) is a seven color push-frame imager with a 90∘ field of view in monochrome mode and 60∘ field of view in color mode. From the nominal 50 km polar orbit, the WAC acquires images with a nadir ground sampling distance of 75 m for each of the five visible bands and 384 m for the two ultraviolet bands. The Narrow Angle Camera (NAC) consists of two identical cameras capable of acquiring images with a ground sampling distance of 0.5 m from an altitude of 50 km. The LROC team geometrically calibrated each camera before launch at Malin Space Science Systems in San Diego, California and the resulting measurements enabled the generation of a detailed camera model for all three cameras. The cameras were mounted and subsequently launched on the Lunar Reconnaissance Orbiter (LRO) on 18 June 2009. Using a subset of the over 793000 NAC and 207000 WAC images of illuminated terrain collected between 30 June 2009 and 15 December 2013, we improved the interior and exterior orientation parameters for each camera, including the addition of a wavelength dependent radial distortion model for the multispectral WAC. These geometric refinements, along with refined ephemeris, enable seamless projections of NAC image pairs with a geodetic accuracy better than 20 meters and sub-pixel precision and accuracy when orthorectifying WAC images.

  17. Precise orbit determination of the Lunar Reconnaissance Orbiter and first gravity field results

    NASA Astrophysics Data System (ADS)

    Maier, Andrea; Baur, Oliver

    2014-05-01

    The Lunar Reconnaissance Orbiter (LRO) was launched in 2009 and is expected to orbit the Moon until the end of 2014. Among other instruments, LRO has a highly precise altimeter on board demanding an orbit accuracy of one meter in the radial component. Precise orbit determination (POD) is achieved with radiometric observations (Doppler range rates, ranges) on the one hand, and optical laser ranges on the other hand. LRO is the first satellite at a distance of approximately 360 000 to 400 000 km from the Earth that is routinely tracked with optical laser ranges. This measurement type was introduced to achieve orbits of higher precision than it would be possible with radiometric observations only. In this contribution we investigate the strength of each measurement type (radiometric range rates, radiometric ranges, optical laser ranges) based on single-technique orbit estimation. In a next step all measurement types are combined in a joined analysis. In addition to POD results, preliminary gravity field coefficients are presented being a subsequent product of the orbit determination process. POD and gravity field estimation was accomplished with the NASA/GSFC software packages GEODYN and SOLVE.

  18. Orbit determination and gravity field recovery from tracking data to the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Maier, Andrea; Baur, Oliver

    2015-04-01

    The Lunar Reconnaissance Orbiter (LRO), launched in 2009, is well suited for the estimation of the long wavelengths of the lunar gravity field due to its low altitude of 50 km. Further, the orbit of LRO was polar for two years providing global coverage. The satellite has been primarily tracked via S-band (mainly two-way Doppler range-rates and two-way radiometric ranges) from the dedicated station in White Sands and from the Universal Space Network (USN). Due to the onboard altimeter the orbital precision requirement in the radial direction was rigorously defined as 1m. Because simulation studies before LRO's launch showed that this precision could not be reached with S-band observations alone, it was decided to additionally track LRO via optical laser ranges. It is worthwhile to point out that LRO is the first spacecraft in interplanetary space routinely tracked with optical one-way laser ranges. Gravity field recovery from orbit perturbations is intrinsically related to precise orbit determination. This is why considerable effort was made to find the optimum settings for orbit modeling. For a time span of three months we conducted a series of orbit overlapping tests based on Doppler observations to find the optimum arc length and the optimum set of empirical parameters. The analysis of observation residuals and orbit overlap differences showed that the estimated orbits are most precise when subdividing the time span into 2.5 days and estimating one constant empirical acceleration in along track direction. These settings were then used to analyze 13 months of Doppler data to LRO. The processing of the optical one-way laser was difficult due to the involvement of two non-synchronous clocks in one measurement (one clock at the ground station and one clock onboard LRO). The NASA software GEODYN, which was used for orbit determination and parameter estimation, models the LRO clock using a drift rate (first-order term) and an aging rate (second-order term). It seems

  19. Orbit Determination for the Lunar Reconnaissance Orbiter Using an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven; Lowe, Jonathan; Woodburn, James

    2015-01-01

    Orbit determination (OD) analysis results are presented for the Lunar Reconnaissance Orbiter (LRO) using a commercially available Extended Kalman Filter, Analytical Graphics' Orbit Determination Tool Kit (ODTK). Process noise models for lunar gravity and solar radiation pressure (SRP) are described and OD results employing the models are presented. Definitive accuracy using ODTK meets mission requirements and is better than that achieved using the operational LRO OD tool, the Goddard Trajectory Determination System (GTDS). Results demonstrate that a Vasicek stochastic model produces better estimates of the coefficient of solar radiation pressure than a Gauss-Markov model, and prediction accuracy using a Vasicek model meets mission requirements over the analysis span. Modeling the effect of antenna motion on range-rate tracking considerably improves residuals and filter-smoother consistency. Inclusion of off-axis SRP process noise and generalized process noise improves filter performance for both definitive and predicted accuracy. Definitive accuracy from the smoother is better than achieved using GTDS and is close to that achieved by precision OD methods used to generate definitive science orbits. Use of a multi-plate dynamic spacecraft area model with ODTK's force model plugin capability provides additional improvements in predicted accuracy.

  20. Experiences Supporting the Lunar Reconnaissance Orbiter Camera: the Devops Model

    NASA Astrophysics Data System (ADS)

    Licht, A.; Estes, N. M.; Bowman-Cisnesros, E.; Hanger, C. D.

    2013-12-01

    Introduction: The Lunar Reconnaissance Orbiter Camera (LROC) Science Operations Center (SOC) is responsible for instrument targeting, product processing, and archiving [1]. The LROC SOC maintains over 1,000,000 observations with over 300 TB of released data. Processing challenges compound with the acquisition of over 400 Gbits of observations daily creating the need for a robust, efficient, and reliable suite of specialized software. Development Environment: The LROC SOC's software development methodology has evolved over time. Today, the development team operates in close cooperation with the systems administration team in a model known in the IT industry as DevOps. The DevOps model enables a highly productive development environment that facilitates accomplishment of key goals within tight schedules[2]. The LROC SOC DevOps model incorporates industry best practices including prototyping, continuous integration, unit testing, code coverage analysis, version control, and utilizing existing open source software. Scientists and researchers at LROC often prototype algorithms and scripts in a high-level language such as MATLAB or IDL. After the prototype is functionally complete the solution is implemented as production ready software by the developers. Following this process ensures that all controls and requirements set by the LROC SOC DevOps team are met. The LROC SOC also strives to enhance the efficiency of the operations staff by way of weekly presentations and informal mentoring. Many small scripting tasks are assigned to the cognizant operations personnel (end users), allowing for the DevOps team to focus on more complex and mission critical tasks. In addition to leveraging open source software the LROC SOC has also contributed to the open source community by releasing Lunaserv [3]. Findings: The DevOps software model very efficiently provides smooth software releases and maintains team momentum. Scientists prototyping their work has proven to be very efficient

  1. Laser Ranging to the Lunar Reconnaissance Orbiter: improved timing and orbits

    NASA Astrophysics Data System (ADS)

    Mao, D.; Mcgarry, J.; Sun, X.; Torrence, M. H.; Skillman, D.; Hoffman, E.; Mazarico, E.; Rowlands, D. D.; Golder, J.; Barker, M. K.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2013-12-01

    The Laser ranging (LR) experiment to the Lunar Reconnaissance Orbiter (LRO) has been under operation for more than 4 years, since the launch of the spacecraft in June 2009. Led by NASA's Next Generation Satellite Laser Ranging(NGSLR) station at Greenbelt, Maryland, ten laser ranging stations over the world have been participating in the experiment and have collected over 3,200 hours of ranging data. These range measurements are used to monitor the behavior of the LRO clock and to generate orbital solutions for LRO. To achieve high-quality results in range, ground stations like NGSLR are using H-maser clocks to obtain a stable and continuous time baseline for the orbit solutions. An All-View GPS receiver was included at NGSLR since January 2013 which monitors the H-maser time against the master clock at the United State Naval Observatory (USNO) via the GPS satellites. NGSLR has successfully established nano-second level epoch time accuracy and 10-15 clock stability since then. Time transfer experiments using LRO as a common receiver have been verified in ground testing between NGSLR and MOBLAS7 via a ground terminal with a Lunar Orbiter Laser Altimeter (LOLA)-like receiver at Greenbelt, Maryland. Two hour-long ground tests using a LOLA-like detector and two different ground targets yielded results consistent with each other, and those from the previous 10-minute test completed one year ago. Time transfer tests between NGSLR and MOBLAS7 via LRO are ongoing. More time transfer tests are being planned from NGSLR to McDonald Laser Ranging Station (MLRS) in Texas and later from NGSLR to European satellite laser ranging (SLR) stations. Upon the completion of these time transfer experiments, nanosecond-level epoch time accuracy will be brought to stations besides NGSLR, and such high precision of the ground time can contribute to the LRO precision orbit determination (POD) process. Presently, by using the high-resolution GRAIL gravity models, the LRO orbits determined from

  2. Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project

    NASA Technical Reports Server (NTRS)

    Matthews, Richard A.; Matthews, Scott A.

    2008-01-01

    The parameters and restrictions for a horizontal flow ISO Class 6 Clean room to support the assembly of the new LRO (Lunar Reconnaissance Orbiter) were unusual. The project time line was critical. A novel Clean room design was developed and built within the time restraints. This paper describes the design criteria, timing, successful performance, and future benefits of this unique Clean room project.

  3. Compact Reconnaissance Imaging Spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter's primary science phase

    USGS Publications Warehouse

    Murchie, S.L.; Seelos, F.P.; Hash, C.D.; Humm, D.C.; Malaret, E.; McGovern, J.A.; Choo, T.H.; Seelos, K.D.; Buczkowski, D.L.; Morgan, M.F.; Barnouin-Jha, O. S.; Nair, H.; Taylor, H.W.; Patterson, G.W.; Harvel, C.A.; Mustard, J.F.; Arvidson, R. E.; McGuire, P.; Smith, M.D.; Wolff, M.J.; Titus, T.N.; Bibring, J.-P.; Poulet, F.

    2009-01-01

    The part of the Compact Reconnaissance Imaging Spectrometer (CRISM) for Mars investigation conducted during the Mars Reconnaissance Orbiter's (MRO's) primary science phase was a comprehensive investigation of past aqueous environments, structure of the planet's crust, past climate, and current meteorology. The measurements to implement this investigation include over 9500 targeted observations of surface features taken at spatial resolutions of better than 40 m/pixel, monitoring of seasonal variations in atmospheric aerosols and trace gases, and acquisition of a 200 m/pixel map covering over 55% of Mars in 72 selected wavelengths under conditions of relatively low atmospheric opacity. Key results from these data include recognition of a diversity of aqueous mineral-containing deposits, discovery of a widespread distribution of phyllosilicates in early to middle Noachian units, the first definitive detection of carbonates in bedrock, new constraints on the sequence of events that formed Hesperian-aged, sulfate-rich layered deposits, characterization of seasonal polar processes, and monitoring of the 2007 global dust event. Here we describe CRISM's science investigations during the Primary Science Phase, the data sets that were collected and their calibration and uncertainties, and how they have been processed and made available to the scientific community. We also describe the ongoing investigation during MRO's extended science phase. Copyright 2009 by the American Geophysical Union.

  4. Solar Array Disturbances to Spacecraft Pointing During the Lunar Reconnaissance Orbiter (LRO) Mission

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip

    2010-01-01

    The Lunar Reconnaissance Orbiter (LRO), the first spacecraft to support NASA s return to the Moon, launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle. It was initially inserted into a direct trans-lunar trajectory to the Moon. After a five day transit to the Moon, LRO was inserted into the Lunar orbit and successfully lowered to a low altitude elliptical polar orbit for spacecraft commissioning. Successful commissioning was completed in October 2009 when LRO was placed in its near circular mission orbit with an approximate altitude of 50km. LRO will spend at least one year orbiting the Moon, collecting lunar environment science and mapping data, utilizing a suite of seven instruments to enable future human exploration. The objective is to provide key science data necessary to facilitate human return to the Moon as well as identification of opportunities for future science missions. LRO's instrument suite will provide the high resolution imaging data with sub-meter accuracy, highly accurate lunar cartographic maps, mineralogy mapping, amongst other science data of interest. LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing Mode", provides Lunar nadir, off-nadir, and inertial fine pointing for the science data collection and instrument calibration. This controller combines the capability of fine pointing with on-demand large angle full-sky attitude reorientation. It provides simplicity of spacecraft operation as well as additional flexibility for science data collection. A conventional suite of ACS components is employed in the Observing Mode to meet the pointing and control objectives. Actuation is provided by a set of four reaction wheels developed in-house at NASA Goddard Space Flight Center (GSFC). Attitude feedback is provided by a six state Kalman filter which utilizes two SELEX Galileo Star Trackers for attitude updates, and a single Honeywell Miniature

  5. Mars Reconnaissance Orbiter Navigation Strategy for Mars Science Laboratory Entry, Descent and Landing Telecommunication Relay Support

    NASA Technical Reports Server (NTRS)

    Williams, Jessica L.; Menon, Premkumar R.; Demcak, Stuart W.

    2012-01-01

    The Mars Reconnaissance Orbiter (MRO) is an orbiting asset that performs remote sensing observations in order to characterize the surface, subsurface and atmosphere of Mars. To support upcoming NASA Mars Exploration Program Office objectives, MRO will be used as a relay communication link for the Mars Science Laboratory (MSL) mission during the MSL Entry, Descent and Landing sequence. To do so, MRO Navigation must synchronize the MRO Primary Science Orbit (PSO) with a set of target conditions requested by the MSL Navigation Team; this may be accomplished via propulsive maneuvers. This paper describes the MRO Navigation strategy for and operational performance of MSL EDL relay telecommunication support.

  6. Mafic Materials in Scott Crater? A Test for Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.

    2007-01-01

    Clementine 750 nm and multispectral ratio data, along with Lunar Orbiter and radar data, were used to study the crater Scott in the lunar south polar region. The multispectral data provide evidence for mafic materials, impact melts, anorthositic materials, and a small pyroclastic deposit. High-resolution radar data and Lunar Orbiter photography for this area show differences in color and surface texture that correspond with the locations of the hypothesized mafic and anorthositic areas on the crater floor. This region provides a test case for the upcoming Lunar Reconnaissance Orbiter. Verification of the existence of a mafic deposit at this location is relevant to future lunar resource utilization planning.

  7. On-Orbit Geometric Calibration of the Lunar Reconnaissance Orbiter Wide Angle Camera

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.; Wagner, R.; Robinson, M. S.

    2013-12-01

    Lunar Reconnaissance Orbiter (LRO) is equipped with a single Wide Angle Camera (WAC) [1] designed to collect monochromatic and multispectral observations of the lunar surface. Cartographically accurate image mosaics and stereo image based terrain models requires the position of each pixel in a given image be known to a corresponding point on the lunar surface with a high degree of accuracy and precision. The Lunar Reconnaissance Orbiter Camera (LROC) team initially characterized the WAC geometry prior to launch at the Malin Space Science Systems calibration facility. After lunar orbit insertion, the LROC team recognized spatially varying geometric offsets between color bands. These misregistrations made analysis of the color data problematic and showed that refinements to the pre-launch geometric analysis were necessary. The geometric parameters that define the WAC optical system were characterized from statistics gathered from co-registering over 84,000 image pairs. For each pair, we registered all five visible WAC bands to a precisely rectified Narrow Angle Camera (NAC) image (accuracy <15 m) [2] to compute key geometric parameters. In total, we registered 2,896 monochrome and 1,079 color WAC observations to nearly 34,000 NAC observations and collected over 13.7 million data points across the visible portion of the WAC CCD. Using the collected statistics, we refined the relative pointing (yaw, pitch and roll), effective focal length, principal point coordinates, and radial distortion coefficients. This large dataset also revealed spatial offsets between bands after orthorectification due to chromatic aberrations in the optical system. As white light enters the optical system, the light bends at different magnitudes as a function of wavelength, causing a single incident ray to disperse in a spectral spread of color [3,4]. This lateral chromatic aberration effect, also known as 'chromatic difference in magnification' [5] introduces variation to the effective focal

  8. Demonstration of orbit determination for the Lunar Reconnaissance Orbiter using one-way laser ranging data

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; Zuber, M. T.

    2016-09-01

    We used one-way laser ranging data from International Laser Ranging Service (ILRS) ground stations to NASA's Lunar Reconnaissance Orbiter (LRO) for a demonstration of orbit determination. In the one-way setup, the state of LRO and the parameters of the spacecraft and all involved ground station clocks must be estimated simultaneously. This setup introduces many correlated parameters that are resolved by using a priori constraints. Moreover the observation data coverage and errors accumulating from the dynamical and the clock modeling limit the maximum arc length. The objective of this paper is to investigate the effect of the arc length, the dynamical and modeling accuracy and the observation data coverage on the accuracy of the results. We analyzed multiple arcs using lengths of 2 and 7 days during a one-week period in Science Mission phase 02 (SM02, November 2010) and compared the trajectories, the post-fit measurement residuals and the estimated clock parameters. We further incorporated simultaneous passes from multiple stations within the observation data to investigate the expected improvement in positioning. The estimated trajectories were compared to the nominal LRO trajectory and the clock parameters (offset, rate and aging) to the results found in the literature. Arcs estimated with one-way ranging data had differences of 5-30 m compared to the nominal LRO trajectory. While the estimated LRO clock rates agreed closely with the a priori constraints, the aging parameters absorbed clock modeling errors with increasing clock arc length. Because of high correlations between the different ground station clocks and due to limited clock modeling accuracy, their differences only agreed at the order of magnitude with the literature. We found that the incorporation of simultaneous passes requires improved modeling in particular to enable the expected improvement in positioning. We found that gaps in the observation data coverage over 12 h (≈6 successive LRO orbits

  9. Introduction to Special Section on Results of the Lunar Reconnaissance Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R.

    2012-01-01

    Since 2009 the Lunar Reconnaissance Orbiter (LRO) has made comprehensive measurements of the Moon and its environment. The seven LRO instruments use a variety of primarily remote sensing techniques to obtain a unique set of observations. The analyses of the LRO data sets have overturned previous beliefs and deepened our appreciation of the complex nature of our nearest neighbor. This introduction to the special section describes the LRO mission and summarizes some of the science results in the papers that follow.

  10. Integration and Testing of the Lunar Reconnaissance Orbiter Attitude Control System

    NASA Technical Reports Server (NTRS)

    Simpson, Jim; Badgley, Jason; McCaughey, Ken; Brown, Kristen; Calhoun, Philip; Davis, Edward; Garrick, Joseph; Gill, Nathaniel; Hsu, Oscar; Jones, Noble; Oritz-Cruz, Gerardo; Raymond, Juan; Roder, Russell; Shah, Neerav; Wilson, John

    2010-01-01

    Throughout the Lunar Reconnaissance Orbiter (LRO) Integration and Testing (I&T) phase of the project, the Attitude Control System (ACS) team completed numerous tests on each hardware component in ever more flight like environments. The ACS utilizes a select group of attitude sensors and actuators. This paper chronicles the evolutionary steps taken to verify each component was constantly ready for flight as well as providing invaluable trending experience with the actual hardware. The paper includes a discussion of each ACS hardware component, lessons learned of the various stages of I&T, a discussion of the challenges that are unique to the LRO project, as well as a discussion of work for future missions to consider as part of their I&T plan. LRO ACS sensors were carefully installed, tested, and maintained over the 18 month I&T and prelaunch timeline. Care was taken with the optics of the Adcole Coarse Sun Sensors (CSS) to ensure their critical role in the Safe Hold mode was fulfilled. The use of new CSS stimulators provided the means of testing each CSS sensor independently, in ambient and vacuum conditions as well as over a wide range of thermal temperatures. Extreme bright light sources were also used to test the CSS in ambient conditions. The integration of the two SELEX Galileo Star Trackers was carefully planned and executed. Optical ground support equipment was designed and used often to check the performance of the star trackers throughout I&T in ambient and thermal/vacuum conditions. A late discovery of potential contamination of the star tracker light shades is discussed in this paper. This paper reviews how each time the spacecraft was at a new location and orientation, the Honeywell Miniature Inertial Measurement Unit (MIMU) was checked for data output validity. This gyro compassing test was performed at several key testing points in the timeline as well as several times while LRO was on the launch pad. Sensor alignment tests were completed several

  11. Development, Qualification and Integration of the Optical Fiber Array Assemblies for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Switzer, Robert; Chuska, Richard; LaRocca, Frank; Thomas, William Joe; Macmurphy, Shawn

    2008-01-01

    The NASA Goddard Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufacturing at GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and LIDAR. Described here is an account of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO.

  12. Geometric Calibration of the Clementine UVVIS Camera Using Images Acquired by the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.; Wagner, R. V.; Robinson, M. S.

    2016-06-01

    The Clementine UVVIS camera returned over half a million images while in orbit around the Moon in 1994. Since the Clementine mission, our knowledge of lunar topography, gravity, and the location of features on the surface has vastly improved with the success of the Gravity Recovery and Interior Laboratory (GRAIL) mission and ongoing Lunar Reconnaissance Orbiter (LRO) mission. In particular, the Lunar Reconnaissance Orbiter Camera (LROC) has returned over a million images of the Moon since entering orbit in 2009. With the aid of improved ephemeris and on-orbit calibration, the LROC team created a series of precise and accurate global maps. With the updated reference frame, older lunar maps, such as those generated from Clementine UVVIS images, are misaligned making cross-mission analysis difficult. In this study, we use feature-based matching routines to refine and recalibrate the interior and exterior orientation parameters of the Clementine UVVIS camera. After applying these updates and rigorous orthorectification, we are able generate precise and accurate maps from UVVIS images to help support lunar science and future cross-mission investigations.

  13. A Simulation Study of Multi-Beam Altimetry for Lunar Reconnaissance Orbiter and Other Planetary Missions

    NASA Technical Reports Server (NTRS)

    Rowlands, D. D.; Lemoine, F. G.; Chinn, D. S.; Luthcke, S. B.

    2009-01-01

    The combined use of altimetry, Earth-based Doppler and Earth-based range measurements in the lunar reconnaissance orbiter (LRO) mission (Chin et al. in Space Sci Rev 129:391-419, 2007) has been examined in a simulation study. It is found that in the initial phases of the mission orbit and altimeter geolocation accuracies should be better than 10m in the radial component and 60m overall. It is demonstrated that LRO's precise 1-way laser range measurement from Earth-based stations (Smith et al. in Proceedings of the 15th International Laser Ranging Workshop, Canberra, Australia, October 15-20, 2006) will be useful for gravity recovery. The advantages of multiple laser beams are demonstrated for altimeter calibration, orbit determination and gravity recovery in general planetary settings as well as for LRO.

  14. Thermal Modeling of the Mars Reconnaissance Orbiter's Solar Panel and Instruments during Aerobraking

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Gasbarre, Joseph F.; Amundsen, Ruth M.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft s design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.

  15. Mars Reconnaissance Orbiter: Ka Band Radio Science Experiments and the Effect of the Troposphere

    NASA Technical Reports Server (NTRS)

    Asmar, Sami W.; Morabito, David

    2006-01-01

    This viewgraph presentation reviews the possibilities of utilizing the telecommunication links between spacecraft and Earth to examine changes in the phase/frequency, amplitude, and polarization of radio signals to investigate, specifically for the Mars Reconnaissance Orbiter (MRO)mission utilizes X-band coherent (uplink and downlink) carrier Doppler and range for its gravity investigation Gravity team will also take advantage of Ka-band downlink signal Tropospheric calibration data from Advanced Water Vapor Radiometer (AWVR) will be used. The calibration of the received Ka band signal for the effect of the troposphere is discussed.

  16. Inflight Calibration of the Lunar Reconnaissance Orbiter Camera Wide Angle Camera

    NASA Astrophysics Data System (ADS)

    Mahanti, P.; Humm, D. C.; Robinson, M. S.; Boyd, A. K.; Stelling, R.; Sato, H.; Denevi, B. W.; Braden, S. E.; Bowman-Cisneros, E.; Brylow, S. M.; Tschimmel, M.

    2016-04-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) has acquired more than 250,000 images of the illuminated lunar surface and over 190,000 observations of space and non-illuminated Moon since 1 January 2010. These images, along with images from the Narrow Angle Camera (NAC) and other Lunar Reconnaissance Orbiter instrument datasets are enabling new discoveries about the morphology, composition, and geologic/geochemical evolution of the Moon. Characterizing the inflight WAC system performance is crucial to scientific and exploration results. Pre-launch calibration of the WAC provided a baseline characterization that was critical for early targeting and analysis. Here we present an analysis of WAC performance from the inflight data. In the course of our analysis we compare and contrast with the pre-launch performance wherever possible and quantify the uncertainty related to various components of the calibration process. We document the absolute and relative radiometric calibration, point spread function, and scattered light sources and provide estimates of sources of uncertainty for spectral reflectance measurements of the Moon across a range of imaging conditions.

  17. The Lunar Reconnaissance Orbiter Mission - Six years of science and exploration at the Moon

    NASA Astrophysics Data System (ADS)

    Keller, J. W.; Petro, N. E.; Vondrak, R. R.

    2016-07-01

    Since entering lunar orbit on June 23, 2009 the Lunar Reconnaissance Orbiter (LRO) has made comprehensive measurements of the Moon and its environment. The seven LRO instruments use a variety of primarily remote sensing techniques to obtain a unique set of observations. These measurements provide new information regarding the physical properties of the lunar surface, the lunar environment, and the location of volatiles and other resources. Scientific interpretation of these observations improves our understanding of the geologic history of the Moon, its current state, and what its history can tell us about the evolution of the Solar System. Scientific results from LRO observations overturned existing paradigms and deepened our appreciation of the complex nature of our nearest neighbor. This paper summarizes the capabilities, measurements, and some of the science and exploration results of the first six years of the LRO mission.

  18. Aeroheating Analysis for the Mars Reconnaissance Orbiter with Comparison to Flight Data

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2007-01-01

    The aeroheating environment of the Mars Reconnaissance Orbiter (MRO) has been analyzed using the direct simulation Monte Carlo and free-molecular techniques. The results of these analyses were used to develop an aeroheating database to be used for the preflight planning and the in-flight operations support for the aerobraking phase of the MRO mission. The aeroheating predictions calculated for the MRO include the heat transfer coefficient (CH) over a range of angles-of-attack, sideslip angles, and number densities. The effects of flow chemistry, surface temperature, and surface grid resolution were also investigated to determine the aeroheating database uncertainties. Flight heat flux data has been calculated from surface temperature sensor data returned to Earth from the MRO in orbit around Mars during the aerobraking phase of its mission. The heat flux data have been compared to the aeroheating database and agree favorably.

  19. Topography of the Lunar Poles and Application to Geodesy with the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Neumann, Gregory A.; Rowlands, David D.; Smith, David E.; Zuber, Maria T.

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) [1] onboard the Lunar Reconnaissance Orbiter (LRO) [2] has been operating continuously since July 2009 [3], accumulating approx.5.4 billion measurements from 2 billion on-orbit laser shots. LRO s near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, which are each sampled every 2h. With more than 10,000 orbits, high-resolution maps can be constructed [4] and studied [5]. However, this requires careful processing of the raw data, as subtle errors in the spacecraft position and pointing can lead to visible artifacts in the final map. In other locations on the Moon, ground tracks are subparallel and longitudinal separations are typically a few hundred meters. Near the poles, the track intersection angles can be large and the inter-track spacing is small (above 80 latitude, the effective resolution is better than 50m). Precision Orbit Determination (POD) of the LRO spacecraft [6] was performed to satisfy the LOLA and LRO mission requirements, which lead to a significant improvement in the orbit position knowledge over the short-release navigation products. However, with pixel resolutions of 10 to 25 meters, artifacts due to orbit reconstruction still exist. Here, we show how the complete LOLA dataset at both poles can be adjusted geometrically to produce a high-accuracy, high-resolution maps with minimal track artifacts. We also describe how those maps can then feedback to the POD work, by providing topographic base maps with which individual LOLA altimetric measurements can be contributing to orbit changes. These direct altimetry constraints improve accuracy and can be used more simply than the altimetric crossovers [6].

  20. The Lunar Reconnaissance Orbiter: Looking back at the Exploration Mission, Looking Forward to the Science Mission

    NASA Astrophysics Data System (ADS)

    Keller, John; Vondrak, Richard; Chin, Gordon; Garvin, Jim

    The Lunar Reconnaissance Orbiter spacecraft (LRO) was launched on June 18, 2009 and arrived at the Moon 5 days later on June 23. LRO's mission, as part of NASA's Exploration Systems Mission Directorate (ESMD), is to seek safe landing sites for future robotic missions or the return of humans to the Moon. In addition LRO's primary objectives include the search for resources and to investigate the Lunar radiation environment. The Exploration Mission for ESMD will be completed on September 15, 2010. LRO will then begin a two-year Science Mission under NASA's Science Mission Directorate. This presentation updates the status and recent results from the LRO Exploration Mission, as well as the plans and objectives for the Science Mission.

  1. Aeroheating Analysis for the Mars Reconnaissance Orbiter with Comparison to Flight Data

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2006-01-01

    The aeroheating environment of the Mars Reconnaissance Orbiter (MRO) has been analyzed using the Direct Simulation Monte Carlo and free-molecular techniques. The results of these analyses were used to develop an aeroheating database to be used for the pre-flight planning and the in-flight operations support for the aerobraking phase of the MRO mission. The aeroheating predictions calculated for the MRO include the heat transfer coefficient (C(H)) over a range of angles-of-attack, side-slip angles, and number densities. The effects of flow chemistry were also investigated. Flight heat flux data deduced from surface temperature sensors have been compared to pre-flight predictions and agree favorably.

  2. Evidence of recent thrust faulting on the Moon revealed by the Lunar Reconnaissance Orbiter Camera.

    PubMed

    Watters, Thomas R; Robinson, Mark S; Beyer, Ross A; Banks, Maria E; Bell, James F; Pritchard, Matthew E; Hiesinger, Harald; van der Bogert, Carolyn H; Thomas, Peter C; Turtle, Elizabeth P; Williams, Nathan R

    2010-08-20

    Lunar Reconnaissance Orbiter Camera images reveal previously undetected lobate thrust-fault scarps and associated meter-scale secondary tectonic landforms that include narrow extensional troughs or graben, splay faults, and multiple low-relief terraces. Lobate scarps are among the youngest landforms on the Moon, based on their generally crisp appearance, lack of superposed large-diameter impact craters, and the existence of crosscut small-diameter impact craters. Identification of previously known scarps was limited to high-resolution Apollo Panoramic Camera images confined to the equatorial zone. Fourteen lobate scarps were identified, seven of which are at latitudes greater than +/-60 degrees, indicating that the thrust faults are globally distributed. This detection, coupled with the very young apparent age of the faults, suggests global late-stage contraction of the Moon. PMID:20724632

  3. Link Design and Planning for Mars Reconnaissance Orbiter (MRO) Ka-band (32 GHz) Telecom Demonstration

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Davarian, Faramaz; Morabito, David

    2004-01-01

    NASA is planning an engineering telemetry demonstration with Mars Reconnaissance Orbiter (MRO). Capabilities of Ka-band (32 GHz) for use with deep space mission are demonstrated using the link optimization algorithms and weather forecasting. Furthermore, based on the performance of previous deep space missions with Ka-band downlink capabilities, experiment plans are developed for telemetry operations during superior solar conjunction. A general overview of the demonstration is given followed by a description of the mission planning during cruise, the primary science mission and superior conjunction. As part of the primary science mission planning the expected data return for various data optimization methods is calculated. These results indicate that, given MRO's data rates, a link optimized to use of at most two data rates, subject to a minimum availability of 90%, performs almost as well as a link with no limits on the number of data rates subject to the same minimum availability.

  4. The Impact of Lunar Reconnaissance Orbiter Education and Public Outreach Programs

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Canipe, M.; Wenger, M.; Hsu, B.; Jones, A.; Hessen, K.

    2014-07-01

    The Lunar Reconnaissance Orbiter Education and Public Outreach Program includes Lunar Workshops for Educators (LWEs) held at several sites throughout the U.S. and a large public engagement program, International Observe the Moon Night (InOMN). Program evaluation has revealed that LWEs result in growth in participants' knowledge related to current lunar discoveries and exploration of the Moon. Teachers learn about misconceptions about the Moon and ways to teach about lunar science and exploration to address students' misconceptions. The LWEs also impact the teaching practices of some participants more broadly to incorporate inquiry and other teaching techniques modeled in the workshops. InOMN events are social experiences in which visitors reported the value of seeing their children learning new things, being moved by seeing beautiful and valuable objects, and gaining information and knowledge. Each program has met the goal of engaging participants in the excitement of lunar exploration.

  5. Fault dislocation modeled structure of lobate scarps from Lunar Reconnaissance Orbiter Camera digital terrain models

    NASA Astrophysics Data System (ADS)

    Williams, N. R.; Watters, T. R.; Pritchard, M. E.; Banks, M. E.; Bell, J. F.

    2013-02-01

    Before the launch of the Lunar Reconnaissance Orbiter, known characteristics of lobate scarps on the Moon were limited to studies of only a few dozen scarps revealed in Apollo-era photographs within ~20° of the equator. The Lunar Reconnaissance Orbiter Camera now provides meter-scale images of more than 100 lobate scarps, as well as stereo-derived topography of about a dozen scarps. High-resolution digital terrain models (DTMs) provide unprecedented insight into scarp morphology and dimensions. Here, we analyze images and DTMs of the Slipher, Racah X-1, Mandel'shtam-1, Feoktistov, Simpelius-1, and Oppenheimer F lobate scarps. Parameters in fault dislocation models are iteratively varied to provide best fits to DTM topographic profiles to test previous interpretations that the observed landforms are the result of shallow, low-angle thrust faults. Results suggest that these faults occur from the surface down to depths of hundreds of meters, have dip angles of 35-40°, and have typical maximum slips of tens of meters. These lunar scarp models are comparable to modeled geometries of lobate scarps on Mercury, Mars, and asteroid 433 Eros, but are shallower and ~10° steeper than geometries determined in studies with limited Apollo-era data. Frictional and rock mass strength criteria constrain the state of global differential stress between 3.5 and 18.6 MPa at the modeled maximum depths of faulting. Our results are consistent with thermal history models that predict relatively small compressional stresses that likely arise from cooling of a magma ocean.

  6. Initial Results of 3D Topographic Mapping Using Lunar Reconnaissance Orbiter Camera (LROC) Stereo Imagery

    NASA Astrophysics Data System (ADS)

    Li, R.; Oberst, J.; McEwen, A. S.; Archinal, B. A.; Beyer, R. A.; Thomas, P. C.; Chen, Y.; Hwangbo, J.; Lawver, J. D.; Scholten, F.; Mattson, S. S.; Howington-Kraus, A. E.; Robinson, M. S.

    2009-12-01

    The Lunar Reconnaissance Orbiter (LRO), launched June 18, 2009, carries the Lunar Reconnaissance Orbiter Camera (LROC) as one of seven remote sensing instruments on board. The camera system is equipped with a Wide Angle Camera (WAC) and two Narrow Angle Cameras (NAC) for systematic lunar surface mapping and detailed site characterization for potential landing site selection and resource identification. The LROC WAC is a pushframe camera with five 14-line by 704-sample framelets for visible light bands and two 16-line by 512-sample (summed 4x to 4 by 128) UV bands. The WAC can also acquire monochrome images with a 14-line by 1024-sample format. At the nominal 50-km orbit the visible bands ground scale is 75-m/pixel and the UV 383-m/pixel. Overlapping WAC images from adjacent orbits can be used to map topography at a scale of a few hundred meters. The two panchromatic NAC cameras are pushbroom imaging sensors each with a Cassegrain telescope of a 700-mm focal length. The two NAC cameras are aligned with a small overlap in the cross-track direction so that they cover a 5-km swath with a combined field-of-view (FOV) of 5.6°. At an altitude of 50-km, the NAC can provide panchromatic images from its 5,000-pixel linear CCD at a ground scale of 0.5-m/pixel. Calibration of the cameras was performed by using precision collimator measurements to determine the camera principal points and radial lens distortion. The orientation of the two NAC cameras is estimated by a boresight calibration using double and triple overlapping NAC images of the lunar surface. The resulting calibration results are incorporated into a photogrammetric bundle adjustment (BA), which models the LROC camera imaging geometry, in order to refine the exterior orientation (EO) parameters initially retrieved from the SPICE kernels. Consequently, the improved EO parameters can significantly enhance the quality of topographic products derived from LROC NAC imagery. In addition, an analysis of the spacecraft

  7. A Modified Lunar Reconnaissance Orbiter (LRO) High Gain Antenna (HGA) Controller Based on Flight Performance

    NASA Technical Reports Server (NTRS)

    Shah, Neerav

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Lunar Reconnaissance Orbiter (LRO) was launched on June 18, 2009 and is currently in a 50 km mean altitude polar orbit around the Moon. LRO was designed and built by the NASA Goddard Space Flight Center in Greenbelt, MD. The spacecraft is three-axis stabilized via the attitude control system (ACS), which is composed of various control modes using different sets of sensors and actuators. In addition to pointing the spacecraft, the ACS is responsible for pointing LRO s two appendages, the Solar Array (SA) and the High Gain Antenna (HGA). This study reviews LRO s HGA control system. Starting with an overview of the HGA system, the paper delves into the single input single output (SISO) linear analysis followed by the controller design. Based on flight results, an alternate control scheme is devised to address inherent features in the flight control system. The modified control scheme couples the HGA loop with the spacecraft pointing control loop, and through analysis is shown to be stable and improve transient performance. Although proposed, the LRO project decided against implementing this modification.

  8. Mission Life Thermal Analysis and Environment Correlation for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Garrison, Matthew B.; Peabody, Hume

    2012-01-01

    Standard thermal analysis practices include stacking worst-case conditions including environmental heat loads, thermo-optical properties and orbital beta angles. This results in the design being driven by a few bounding thermal cases, although those cases may only represent a very small portion of the actual mission life. The NASA Goddard Space Flight Center Thermal Branch developed a procedure to predict the flight temperatures over the entire mission life, assuming a known beta angle progression, variation in the thermal environment, and a degradation rate in the coatings. This was applied to the Global Precipitation Measurement core spacecraft. In order to assess the validity of this process, this work applies the similar process to the Lunar Reconnaissance Orbiter. A flight-correlated thermal model was exercised to give predictions of the thermal performance over the mission life. These results were then compared against flight data from the first two years of the spacecraft s use. This is used to validate the process and to suggest possible improvements for future analyses.

  9. Stray light lessons learned from the Mars reconnaissance orbiter's optical navigation camera

    NASA Astrophysics Data System (ADS)

    Lowman, Andrew E.; Stauder, John L.

    2004-10-01

    The Optical Navigation Camera (ONC) is a technical demonstration slated to fly on NASA"s Mars Reconnaissance Orbiter in 2005. Conventional navigation methods have reduced accuracy in the days immediately preceding Mars orbit insertion. The resulting uncertainty in spacecraft location limits rover landing sites to relatively safe areas, away from interesting features that may harbor clues to past life on the planet. The ONC will provide accurate navigation on approach for future missions by measuring the locations of the satellites of Mars relative to background stars. Because Mars will be a bright extended object just outside the camera"s field of view, stray light control at small angles is essential. The ONC optomechanical design was analyzed by stray light experts and appropriate baffles were implemented. However, stray light testing revealed significantly higher levels of light than expected at the most critical angles. The primary error source proved to be the interface between ground glass surfaces (and the paint that had been applied to them) and the polished surfaces of the lenses. This paper will describe troubleshooting and correction of the problem, as well as other lessons learned that affected stray light performance.

  10. Interplanetary space weather effects on Lunar Reconnaissance Orbiter avalanche photodiode performance

    NASA Astrophysics Data System (ADS)

    Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.

    2016-05-01

    Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).

  11. Precision Time Transfer and Obit Determination Using Laser Ranging to Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Mao, D.; Barker, M. K.; Clarke, C. B.; Golder, J. E.; Hoffman, E.; Horvath, J. E.; Mazarico, E.; Mcgarry, J.; Neumann, G. A.; Torrence, M. H.; Rowlands, D. D.; Skillman, D.; Smith, D. E.; Sun, X.; Zuber, M. T.

    2011-12-01

    Since the commissioning of LRO in June, 2009, one-way laser ranging (LR) to Lunar Reconnaissance Orbiter (LRO) has been conducted successfully from NASA's Next Generation Satellite Laser Ranging System (NGSLR) at Goddard Geophysical and Astronomical observatory (GGAO) in Greenbelt, Maryland. With the support of the International Laser Ranging Service (ILRS), ten international satellite laser ranging (SLR) ground stations have participated in this experiment and over 1200 hours of ranging data have been collected. In addition to supplementing the precision orbit determination (POD) of LRO, LR is able to perform time transfer between the ground station and the spacecraft clocks. The LRO clock oscillator is stable to 1 part in 10^{12} over several hours, and as stable for much longer periods after correcting for a long-term drift rate and an aging rate. With a precisely-determined LRO ephemeris, the oscillator-determined laser pulse receive time can be differenced with ground station clock transmit times using H-maser and GPS-steered Rb oscillators as references. Simultaneous ranging to LRO among 2, 3, or 4 ground stations has made it possible for relative time transfer among the participating LR stations. Results have shown about 100 ns difference between some LR stations and the primary NGSLR station. At present, the time transfer accuracy is limited to 100 ns at NGSLR. However, an All-View GPS receiver has been installed, which, in combination with a H-maser, is expected to improve the accuracy to 1 ns r.m.s. at NGSLR. Results of new ranging and time transfer experiments using the new time base will be reported. The ability to use LR for time transfer validates the selection of a commercially-supplied, oven-controlled crystal oscillator on board LRO for one-way laser ranging.The increased clock accuracy also provides stronger orbit constraints for LRO POD. The improvements due to including LR data in the LRO POD will be presented.

  12. Insight into gully formation on Mars with CRISM on the Mars Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Nunez, J. I.; Barnouin, O. S.; McGovern, A.; Seelos, F. P.; Seelos, K. D.; Buczkowski, D.; Murchie, S. L.

    2013-12-01

    Gullies are widespread on Mars, with most occurrences found in the southern hemisphere. Indicative of recent downslope movement, multiple alternative models have been proposed for their formation, including groundwater release, melting of snow or near-surface ground ice, dry granular flows, or different CO2-lubricated flows. Ongoing morphological changes to gully channels and aprons observed with the High Resolution Imaging Science Experiment (HiRISE) over intervals as short as one Martian year have indicated seasonal activity consistent with models for gully formation driven by CO2 frost sublimation as well as dry granular flow. To determine if compositional information could provide additional insight into the mechanics of gully formation and seasonal activity, we have analyzed over 100 images of gullies and their apron deposits taken with the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) over multiple Martian years. Newly processed prototype Map-projected Targeted Reduced Data Record (MTRDR) hyperspectral image cubes were used to identify and extract spectral information. Additional Mars Orbital Laser Altimeter (MOLA) and HiRISE DTM data were used to obtain topographical information. Most gullies observed are spectrally indistinct from their surroundings, most likely due to dust coatings. Where spectral contrast was observed, gullies predominantly exposed and transported underlying mafic material downslope. Rarely were hydrated minerals or alteration products observed in place within these gullies or within their apron deposits, indicating very limited chemical reaction with liquid water. Where detected, hydrated minerals include phyllosilicates and sulfates, and usually occur in a pre-existing layer that is exposed and subsequently transported downslope. Gullies do not show evidence for in situ precipitation or alteration as a result of long lived water-rock interactions. Finally, spectral evidence for

  13. Investigation of small scale roughness properties of Martian terrains using Mars Reconnaissance Orbiter data.

    NASA Astrophysics Data System (ADS)

    Ivanov, A. B.; Rossi, A.

    2009-04-01

    Studies of layered terrains in polar regions as well as inside craters and other areas on Mars often require knowledge of local topography at much finer resolution than global MOLA topography allows. For example, in the polar layered deposits spatial relationships are important to understand unconformities that are observed on the edges of the layered terrains [15,3]. Their formation process is not understood at this point, yet fine scale topography, joint with ground penetrating radar like SHARAD and MARSIS may shed light on their 3D structure. Landing site analysis also requires knowledge of local slopes and roughness at scales from 1 to 10 m [1,2]. Mars Orbiter Camera [13] has taken stereo images at these scales, however interpretation was difficult due to unstable behavior of the Mars Global Surveyor spacecraft during image take (wobbling effect). Mars Reconnaissance Orbiter (MRO) is much better stabilized, since it is required for optimal operation of its high resolution camera. In this work we have utilized data from MRO sensors (CTX camera [11] and HIRISE camera [12] in order to derive digital elevation models (DEM) from images targeted as stereo pairs. We employed methods and approaches utilized for the Mars Orbiter Camera (MOC) stereo data [4,5]. CTX data varies in resolution and stereo pairs analyzed in this work can be derived at approximately 10m scale. HIRISE images allow DEM post spacing at around 1 meter. The latter are very big images and our computer infrastructure was only able to process either reduced resolution images, covering larger surface or working with smaller patches at the original resolution. We employed stereo matching technique described in [5,9], in conjunction with radiometric and geometric image processing in ISIS3 [16]. This technique is capable of deriving tiepoint co-registration at subpixel precision and has proven itself when used for Pathfinder and MER operations [8]. Considerable part of this work was to accommodate CTX and

  14. Recent extensional tectonics on the Moon revealed by the Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Watters, Thomas R.; Robinson, Mark S.; Banks, Maria E.; Tran, Thanh; Denevi, Brett W.

    2012-03-01

    Large-scale expressions of lunar tectonics--contractional wrinkle ridges and extensional rilles or graben--are directly related to stresses induced by mare basalt-filled basins. Basin-related extensional tectonic activity ceased about 3.6 Gyr ago, whereas contractional tectonics continued until about 1.2 Gyr ago. In the lunar highlands, relatively young contractional lobate scarps, less than 1 Gyr in age, were first identified in Apollo-era photographs. However, no evidence of extensional landforms was found beyond the influence of mare basalt-filled basins and floor-fractured craters. Here we identify previously undetected small-scale graben in the farside highlands and in the mare basalts in images from the Lunar Reconnaissance Orbiter Camera. Crosscut impact craters with diameters as small as about 10m, a lack of superposed craters, and graben depths as shallow as ~1m suggest these pristine-appearing graben are less than 50 Myr old. Thus, the young graben indicate recent extensional tectonic activity on the Moon where extensional stresses locally exceeded compressional stresses. We propose that these findings may be inconsistent with a totally molten early Moon, given that thermal history models for this scenario predict a high level of late-stage compressional stress that might be expected to completely suppress the formation of graben.

  15. HiRISE focal plane for use on the Mars Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Dorn, David A.; Meiers, William; Burkepile, Jon; Freymiller, Ed D.; Delamere, Alan W.; McEwen, Alfred S.; Maggs, Peter; Pool, Peter J.; Wallace, Iain

    2004-01-01

    The primary mission of the upcoming HiRISE instrument on the Mars Reconnaissance Orbiter spacecraft is to better understand the geologic and climatic processes on Mars and to evaluate future landing sites. To accomplish this goal, a high resolution space-based camera is being developed that employs a 0.5m aperture Cassegrain-type telescope coupled to a large focal plane array (FPA) measuring approximately 14" (L) x 2" (W) x 2" (D). The FPA is populated with 14 time delay and integrate (TDI) format custom charge-coupled device (CCD)-based detectors. The FPA includes panchromatic, near infrared, and blue-green spectral channels. The panchromatic channel has 20,000 pixels in the cross track direction. Each color channel consists of 4,000 pixels in the cross track direction. The minimum ground sampling distance of all channels is 50 cm per pixel. The instrument"s instantaneous field of view is 1.43o x 0.1o. Over the 5-year mission, the FPA will map a portion of the surface of Mars with high spatial resolution and high signal-to-noise ratio (>100:1 at all latitudes). Electronics are housed immediately behind the FPA, which yields a low noise, compact design that is both robust and fault tolerant. Test and characterization data from the FPA and custom CCD-based detectors is discussed along with the results from performance models.

  16. Recent Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Mission

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Vondrak, Richard; Chin, Gordon; Petro, Noah; Gavin, James W.

    2012-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and to investigate the Lunar radiation environment. After spacecraft commissioning, this phase of the mission began on September 15, 2009, completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission is scheduled for 2 years and will be completed in 2012 with an opportunity for an extended mission beyond 2012. Under SMD, the mission focuses on a new set of goals related to understanding the geologic history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having marked the two year anniversary will review here the major results from the LRO mission for both exploration and science and discuss plans and objectives going forward including a proposed 2-year extended mission. These objectives include: 1) understanding the bombardment history of the Moon, 2) interpreting Lunar geologic processes, 3) mapping the global Lunar regolith, 4) identifying volatiles on the Moon, and 5) measuring the Lunar atmosphere and radiation environment.

  17. Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation

    NASA Astrophysics Data System (ADS)

    Harrison, Tanya N.; Osinski, Gordon R.; Tornabene, Livio L.; Jones, Eriita

    2015-05-01

    Hypotheses ranging from fluvial processes and debris flows to CO2 frost-lubricated or entirely dry flows have been proposed for the formation of martian gullies. In order to constrain these potential formation mechanisms, we mapped the global distribution of gullies on Mars using >54,000 images from the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) covering ∼85% of the martian surface at a resolution of ∼6 m/pixel. The results of this mapping effort confirm the results of studies using lower resolution and/or less areally extensive datasets that gullies are confined to the martian mid- to high-latitudes (∼30-80° in both hemispheres). We also find a clear transition in gully orientation with increasing latitude, going from poleward-facing to equator-facing preference. In general, gullies are more developed on poleward-facing walls, and mid-latitude gullies are more developed than those at higher latitudes. Gullies are also found to be strongly correlated with regions of distinct thermophysical properties of sand- to pebble-sized grains, low albedo, and higher thermal inertia. These observations all point to climate, insolation, and thermal properties of the substrate playing key factors in gully formation on Mars, supporting either a melting ground ice or snowpack hypothesis as the source for water involved in gully formation.

  18. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera (LROC) data

    USGS Publications Warehouse

    Gustafson, J. Olaf; Bell, James F.; Gaddis, Lisa R.R.; Hawke, B. Ray Ray; Giguere, Thomas A.

    2012-01-01

    We used a Lunar Reconnaissance Orbiter Camera (LROC) global monochrome Wide-angle Camera (WAC) mosaic to conduct a survey of the Moon to search for previously unidentified pyroclastic deposits. Promising locations were examined in detail using LROC multispectral WAC mosaics, high-resolution LROC Narrow Angle Camera (NAC) images, and Clementine multispectral (ultraviolet-visible or UVVIS) data. Out of 47 potential deposits chosen for closer examination, 12 were selected as probable newly identified pyroclastic deposits. Potential pyroclastic deposits were generally found in settings similar to previously identified deposits, including areas within or near mare deposits adjacent to highlands, within floor-fractured craters, and along fissures in mare deposits. However, a significant new finding is the discovery of localized pyroclastic deposits within floor-fractured craters Anderson E and F on the lunar farside, isolated from other known similar deposits. Our search confirms that most major regional and localized low-albedo pyroclastic deposits have been identified on the Moon down to ~100 m/pix resolution, and that additional newly identified deposits are likely to be either isolated small deposits or additional portions of discontinuous, patchy deposits.

  19. LAMP: The Lyman Alpha Mapping Project on NASA's Lunar Reconnaissance Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Gladstone, G. Randall; Stern, S. Alan; Retherford, Kurt D.; Black, Ronald K.; Slater, David C.; Davis, Michael W.; Versteeg, Maarten H.; Persson, Kristian B.; Parker, Joel W.; Kaufmann, David E.; Egan, Anthony F.; Greathouse, Thomas K.; Feldman, Paul D.; Hurley, Dana; Pryor, Wayne R.; Hendrix, Amanda R.

    2010-01-01

    The Lyman Alpha Mapping Project (LAMP) is a far-ultraviolet (FUV) imaging spectrograph on NASA’s Lunar Reconnaissance Orbiter (LRO) mission. Its main objectives are to (i) identify and localize exposed water frost in permanently shadowed regions (PSRs), (ii) characterize landforms and albedos in PSRs, (iii) demonstrate the feasibility of using natural starlight and sky-glow illumination for future lunar surface mission applications, and (iv) characterize the lunar atmosphere and its variability. As a byproduct, LAMP will map a large fraction of the Moon at FUV wavelengths, allowing new studies of the microphysical and reflectance properties of the regolith. The LAMP FUV spectrograph will accomplish these objectives by measuring the signal reflected from the night-side lunar surface and in PSRs using both the interplanetary HI Lyman- α sky-glow and FUV starlight as light sources. Both these light sources provide fairly uniform, but faint, illumination. With the expected LAMP sensitivity, by the end of the primary 1-year LRO mission, the SNR for a Lyman- α albedo map should be >100 in polar regions >1 km2, providing useful FUV constraints to help characterize subtle compositional and structural features. The LAMP instrument is based on the flight-proven Alice series of spectrographs flying on the Rosetta comet mission and the New Horizons Pluto mission. A general description of the LAMP instrument and its initial ground calibration results are presented here.

  20. A High Power Density Power System Electronics for NASA's Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, A.; Stone, R.; Travis, J.; Kercheval, B.; Alkire, G.; Ter-Minassian, V.

    2009-01-01

    A high power density, modular and state-of-the-art Power System Electronics (PSE) has been developed for the Lunar Reconnaissance Orbiter (LRO) mission. This paper addresses the hardware architecture and performance, the power handling capabilities, and the fabrication technology. The PSE was developed by NASA s Goddard Space Flight Center (GSFC) and is the central location for power handling and distribution of the LRO spacecraft. The PSE packaging design manages and distributes 2200W of solar array input power in a volume less than a cubic foot. The PSE architecture incorporates reliable standard internal and external communication buses, solid state circuit breakers and LiIon battery charge management. Although a single string design, the PSE achieves high reliability by elegantly implementing functional redundancy and internal fault detection and correction. The PSE has been environmentally tested and delivered to the LRO spacecraft for the flight Integration and Test. This modular design is scheduled to flight in early 2009 on board the LRO and Lunar Crater Observation and Sensing Satellite (LCROSS) spacecrafts and is the baseline architecture for future NASA missions such as Global Precipitation Measurement (GPM) and Magnetospheric MultiScale (MMS).

  1. Mars Reconnaissance Orbiter In-flight Anomalies and Lessons Learned: An Update

    NASA Technical Reports Server (NTRS)

    Bayer, Todd J.

    2008-01-01

    The Mars Reconnaissance Orbiter mission has as its primary objectives: advance our understanding of the current Mars climate, the processes that have formed and modified the surface of the planet and the extent to which water has played a role in surface processes; identify sites of possible aqueous activity indicating environments that may have been or are conducive to biological activity; and thus identify and characterize sites for future landed missions; and provide forward and return relay services for current and future Mars landed assets. MRO's crucial role in the long term strategy for Mars exploration requires a high level of reliability during its 5.4 year mission. This requires an architecture which incorporates extensive redundancy and cross-strapping. Because of the distances and hence light-times involved, the spacecraft itself must be able to utilize this redundancy in responding to time-critical failures. For cases where fault protection is unable to recognize a potentially threatening condition, either due to known limitations or software flaws, intervention by ground operations is required. These aspects of MRO's design were discussed in a previous paper [Ref. 1]. This paper provides an update to the original paper, describing MRO's significant in-flight anomalies over the past year, with lessons learned for redundancy and fault protection architectures and for ground operations.

  2. The Lunar Reconnaissance Orbiter - Six Years of Science and Exploration at the Moon

    NASA Astrophysics Data System (ADS)

    Keller, John W.; Petro, Noah E.; McClanahan, Timothy P.; Vondrak, Richard R.

    2015-11-01

    The LRO mission, currently in an extended mission phase, is producing a remotely sensed dataset that is unrivaled in planetary science. With an ever-increasing baseline of measurements the LRO data has revealed the Moon’s surface and environment to be dynamic, with new craters and distal ejecta, variations in volatiles at and near the surface, a variable exosphere, and a surface that responds to variations in the flux of radiation from the Sun. Taken together the LRO dataset has significant value in forming how we understand airless bodies work in the Solar System and how planets evolve. We will discuss recent observations from the mission including, geologically recent volcanism, contemparay impacts, and polar volatiles.We will also discuss the mission's support of future exploration of the Moon. As initially conceived, one of the primary objectives for the Lunar Reconnaissance Orbiter (LRO) was to identify safe landing sites for future human and robotic exploration, and LRO mission remains capable of targeted high resolution observations to support the planning of future robotic missions to the Moon. The LRO team seeks to engage with mission planners to discuss LRO's enabaling capabilities.

  3. Off-axis scatter measurement of the Mars reconnaissance Orbiter (MRO) Optical Navigation Camera (ONC)

    NASA Astrophysics Data System (ADS)

    Stauder, John L.; Lowman, Andrew E.; Thiessen, Dave; Day, Darryl; Miles, D. O.

    2005-08-01

    The Optical Navigation Camera (ONC) is part of NASA's Mars Reconnaissance Orbiter (MRO) scheduled for an August 2005 launch. The design is a 500 mm focal length, F/8.3 Ritchey-Chretien with a refractive field corrector. Prior to flight, the off-axis performance of the ONC was measured at visible wavelengths in the off-axis scatter facility at the Space Dynamics Laboratory (SDL). This unique facility is designed to minimize scatter from the test setup to prevent data corruption. Testing was conducted in a clean room environment, and the results indicate that no detectable contamination of the optics occurred during testing. Measurements were taken in two time frames to correct an unanticipated stray light path, which occurred just outside of the sensor's field-of-view. The source of the offending path was identified as scatter from the edges of the field corrector lenses. Specifically, scatter from the interface between the flat ground glass and polished surfaces resulted in significant "humps" in the off-axis response centered at +/- 1.5°. Retesting showed the removal of the humps, and an overall satisfactory performance of the ONC. The troubleshooting, correction, and lessons learned regarding the above stray light path was reported on in an earlier paper. This paper discusses the measurement process, results, and a comparison to a software prediction and other planetary sensors. The measurement validated the final stray light design and complemented the software analysis.

  4. Orbit Determination for the Lunar Reconnaissance Orbiter Using an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven; Lowe, Jonathan; Woodburn, James

    2015-01-01

    Since launch, the FDF has performed daily OD for LRO using the Goddard Trajectory Determination System (GTDS). GTDS is a batch least-squares (BLS) estimator. The tracking data arc for OD is 36 hours. Current operational OD uses 200 x 200 lunar gravity, solid lunar tides, solar radiation pressure (SRP) using a spherical spacecraft area model, and point mass gravity for the Earth, Sun, and Jupiter. LRO tracking data consists of range and range-rate measurements from: Universal Space Network (USN) stations in Sweden, Germany, Australia, and Hawaii. A NASA antenna at White Sands, New Mexico (WS1S). NASA Deep Space Network (DSN) stations. DSN data was sparse and not included in this study. Tracking is predominantly (50) from WS1S. The OD accuracy requirements are: Definitive ephemeris accuracy of 500 meters total position root-mean-squared (RMS) and18 meters radial RMS. Predicted orbit accuracy less than 800 meters root sum squared (RSS) over an 84-hour prediction span.

  5. Initial Mars Upper Atmospheric Structure Results from the Accelerometer Science Experiment aboard Mars Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Bougher, S. W.; Theriot, M. E.; Tolson, R. H.; Blanchard, R. C.; Zurek, R. W.; Forbes, J. M.; Murphy, J.

    2006-12-01

    Designed for aerobraking, Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005, achieved Mars Orbital Insertion (MOI), March 10, 2006, and successfully completed aerobraking on August 30, 2006. Atmospheric density decreases exponentially with increasing height. By small propulsive adjustments of the apoapsis orbital velocity, periapsis altitude was fine tuned to the density surface that safely used the atmosphere of Mars to aerobrake over 445 orbits, providing 890 vertical structures. MRO periapsis precesses from near the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis is brought dramatically from 40,000km at MOI to 480 km at aerobraking completion (ABX). Without aerobraking this would have required an additional 400kg of fuel. After ABX, two small propulsive orbital adjustment maneuvers September 5, 2006 and September 11, 2006 established the final Primary Science Orbit (PSO). Each of the 445 aerobraking orbits provides, a pair of vertical structures inbound toward periapsis and outbound from periapsis, with a distribution of density, scale heights, temperatures, and pressures along the orbital path, providing key in situ insight into various upper atmosphere (> 100 km) processes. One of the major questions for scientists studying Mars is: Where did the water go? Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities at the requests of The George Washington University, JPL, and Lockheed Martin. The improved accelerometer sensitivities allowed density measurements to exceed 200km, at least 40 km higher than with Mars Odyssey (MO). This extends vertical structures from MRO into the neutral lower exosphere, a region where various processes may allow atmospheric gasses to escape. Over the eons, water may have been lost in both the lower atmosphere and the upper atmosphere, thus the water balance throughout the entire atmosphere from

  6. Investigating at the Moon With new Eyes: The Lunar Reconnaissance Orbiter Mission Camera (LROC)

    NASA Astrophysics Data System (ADS)

    Hiesinger, H.; Robinson, M. S.; McEwen, A. S.; Turtle, E. P.; Eliason, E. M.; Jolliff, B. L.; Malin, M. C.; Thomas, P. C.

    The Lunar Reconnaissance Orbiter Mission Camera (LROC) H. Hiesinger (1,2), M.S. Robinson (3), A.S. McEwen (4), E.P. Turtle (4), E.M. Eliason (4), B.L. Jolliff (5), M.C. Malin (6), and P.C. Thomas (7) (1) Brown Univ., Dept. of Geological Sciences, Providence RI 02912, Harald_Hiesinger@brown.edu, (2) Westfaelische Wilhelms-University, (3) Northwestern Univ., (4) LPL, Univ. of Arizona, (5) Washington Univ., (6) Malin Space Science Systems, (7) Cornell Univ. The Lunar Reconnaissance Orbiter (LRO) mission is scheduled for launch in October 2008 as a first step to return humans to the Moon by 2018. The main goals of the Lunar Reconnaissance Orbiter Camera (LROC) are to: 1) assess meter and smaller- scale features for safety analyses for potential lunar landing sites near polar resources, and elsewhere on the Moon; and 2) acquire multi-temporal images of the poles to characterize the polar illumination environment (100 m scale), identifying regions of permanent shadow and permanent or near permanent illumination over a full lunar year. In addition, LROC will return six high-value datasets such as 1) meter-scale maps of regions of permanent or near permanent illumination of polar massifs; 2) high resolution topography through stereogrammetric and photometric stereo analyses for potential landing sites; 3) a global multispectral map in 7 wavelengths (300-680 nm) to characterize lunar resources, in particular ilmenite; 4) a global 100-m/pixel basemap with incidence angles (60-80 degree) favorable for morphologic interpretations; 5) images of a variety of geologic units at sub-meter resolution to investigate physical properties and regolith variability; and 6) meter-scale coverage overlapping with Apollo Panoramic images (1-2 m/pixel) to document the number of small impacts since 1971-1972, to estimate hazards for future surface operations. LROC consists of two narrow-angle cameras (NACs) which will provide 0.5-m scale panchromatic images over a 5-km swath, a wide

  7. Recent Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Phase

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard; Keller, John W.; Chin, Gordon; Petro, Noah; Garvin, James B.; Rice, James W.

    2012-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and to investigate the Lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September, 2012. The LRO mission has been extended for two years under SMD. The extended mission focuses on a new set of goals related to understanding the geologic history of the Moon, its current state, and what it can tell us about the evolution Of the Solar System. Here we will review the major results from the LRO mission for both exploration and science and discuss plans and objectives going forward including plans for the extended science phase out to 2014. Results from the LRO mission include but are not limited to the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the day and night time temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs, evidence for recent tectonic activity on the Moon, and high resolution maps of the illumination conditions as the poles. The objectives for the second and extended science phases of the mission under SMD include: 1) understanding the bombardment history of the Moon, 2) interpreting Lunar geologic processes, 3) mapping the global Lunar regolith, 4) identifying volatiles on the Moon, and 5

  8. Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Mission

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R.; Keller, J. W.; Chin, G.; Garvin, J.; Petro, N.

    2012-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18,2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and the measurement of the lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and was completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September of 2012. Under SMD, the Science Mission focused on a new set of goals related to understanding the history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having recently marked the completion of the two-year Science Mission, we will review here the major results from the LRO for both exploration and science and discuss plans and objectives for the Extended Science that will last until September, 2014. Some results from the LRO mission are: the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the daytime and nighttime temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs; evidence for recent tectonic activity on the Moon; and high resolution maps of the illumination conditions at the poles.

  9. The Lunar Reconnaissance Orbiter Professional Development Workshop Series: Example of an Excellent Mechanism of Scientific Dissemination

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Millham, R. A.

    2010-12-01

    The Lunar Reconnaissance Orbiter (LRO) Lunar Institute for Educators pilot workshop was held at NASA Goddard Space Flight Center in Greenbelt, MD in July of 2010. At this workshop, educators of grades 6-12 learned about lunar science, exploration, and how our understanding of the Moon has changed since the Apollo missions. The workshop exposed teachers to science results from recent lunar missions, particularly LRO, through presentations and discussions with lunar scientists. It allowed them to explore real LRO data, participate in hands-on lunar science activities, and learn how to incorporate these data and activities into their classrooms. Other workshop activities focused on mitigating student, and teacher, misconceptions about the Moon. As a result of the workshop, educators reported feeling a renewed excitement about the Moon, and more confidence in teaching lunar science to their students. Quarterly follow-up professional development sessions will monitor the progress of the workshop participants throughout the year, and provide additional support to the teachers, as needed. Evaluations from the 2010 pilot program are being used to improve LRO workshops as they expand contextually and geographically in the coming years. Ten workshops will be held across the United States in 2011 and 2012. Areas that have been underserved, with respect to NASA workshops, will be specifically targeted. Educator professional development workshops such as this one are an excellent mechanism for scientists to disseminate the latest discoveries from their missions and research to educators across the country and to get real data in the hands of students, further strengthening the students’ interest and understanding of science, technology, engineering, and math (STEM) content and careers. Making a model: educators construct topographic maps of Play-Doh volcanoes.

  10. Lunar Atmospheric H2 Detections by the LAMP UV Spectrograph on the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Cook, Jason C.; Stern, S.; Chaufray, J.; Feldman, P. D.; Gladstone, G.; Retherford, K. D.; LAMP Sciecne Team

    2013-10-01

    H2 in the lunar atmosphere was predicted by Hodges (1973), who theorized that the low H upper limit derived from Apollo 17 Ultraviolet Spectrometer (UVS) (Fastie et al., 1973; Feldman and Morrison, 1991) suggested that the bulk of solar wind protons must become neutralized and form H2 on the lunar surface. By balancing the H thermal escape rate with the impact rate, Hodges (1973) predicted a night time surface density of N(H2) = 1.2 x 104 cm-3. However, measurements from UVS observations yielded only an upper limit of < 9000 H2 molecules cm-3 (Feldman and Morrison 1991). After reflected energetic neutral hydrogen was detected by IBEX (McComas et al., 2009) and Chandrayaan-1 (Wieser et al., 2009), Hodges (2011) revisited the H2 issue. Based on Hodges (2011) model, the solar wind protons exit the lunar surface as neutral H (98.5%) and protons (1%) at escape speeds. The remaining 0.5% are bound to the lunar atmosphere as neutral H with a H surface density that is compatible with Apollo 17 observations (< 17 cm-3 Feldman and Morrison, 1991). Here we report the detection of H2 seen in twilight observations of the lunar atmosphere observed by the LAMP (Lyman Alpha Mapping Project) instrument aboard NASA’s Lunar Reconnaissance Orbiter. Using millions of seconds of lunar atmospheric integration time collected between September 2009 and March 2013, we have identified the presence of H2 for the first time using ultraviolet spectroscopy. We derive an H2 surface density of (1.2 ± 0.4) x 103 cm-3 at 120 K. This is 10 times smaller than originally predicted, and several times below previous upper limits. We point out that our result is consistent with the prediction made by Wurz et al. (2012), who estimated a surface density between 1050 and 2100 cm-3, depending on how readily atmospheric H2 escapes.

  11. Lunar cosmic ray radiation environments during Luna and Lunar Reconnaissance Orbiter missions

    NASA Astrophysics Data System (ADS)

    Sohn, Jongdae; Oh, Suyeon; Yi, Yu

    2014-09-01

    The RV-2N-series instruments onboard Luna missions and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument onboard Lunar Reconnaissance Orbiter (LRO) were designed to characterize the global lunar radiation environment and its biological impacts by measuring cosmic ray (CR) intensity. In this study, we have shown that the RV-2N-series instruments onboard of Russian Luna missions and the CRaTER reliably detect both background CRs and solar proton events (SPEs) in the lunar radiation environment using the proton intensity measured by the RV-2N-series onboard Luna missions out of the Russian Luna program for the exploration of the Moon (November 1970-August 1975) and the CR intensity on the Moon observed by the CRaTER (June 2009-March 2011). Those were compared with the CR intensities observed by neutron monitors (McMurdo, Thule, Oulu) on the Earth. The sunspot number is used as the index of solar activity (NOAA National Geophysical Data Center). As a result, the background CR intensities on the Moon turned out to have a good anti-correlation with the solar activity. We have also identified the proton intensity increasing events on the Moon which have the similar profiles to those observed by neutron monitors on the Earth. Most of these events show the significant increase of proton intensities in the lunar radiation environment when the SPEs associated with solar eruptions are verified. Therefore, most of the proton intensity increasing events are associated with the energetic solar particles in the lunar environment.

  12. The Widespread Distribution of Swirls in Lunar Reconnaissance Orbiter Camera Images

    NASA Astrophysics Data System (ADS)

    Denevi, B. W.; Robinson, M. S.; Boyd, A. K.; Blewett, D. T.

    2015-10-01

    Lunar swirls, the sinuous high-and low-reflectance features that cannot be mentioned without the associated adjective "enigmatic,"are of interest because of their link to crustal magnetic anomalies [1,2]. These localized magnetic anomalies create mini-magnetospheres [3,4] and may alter the typical surface modification processes or result in altogether distinct processes that form the swirls. One hypothesis is that magnetic anomalies may provide some degree of shielding from the solar wind [1,2], which could impede space weathering due to solar wind sputtering. In this case, swirls would serve as a way to compare areas affected by typical lunar space weathering (solar wind plus micrometeoroid bombardment) to those where space weathering is dominated by micrometeoroid bombardment alone, providing a natural means to assess the relative contributions of these two processes to the alteration of fresh regolith. Alternately,magnetic anomalies may play a role in the sorting of soil grains, such that the high-reflectance portion of swirls may preferentially accumulate feldspar-rich dust [5]or soils with a lower component of nanophase iron [6].Each of these scenarios presumes a pre-existing magnetic anomaly; swirlshave also been suggested to be the result of recent cometary impacts in which the remanent magnetic field is generated by the impact event[7].Here we map the distribution of swirls using ultraviolet and visible images from the Lunar Reconnaissance Orbiter Camera(LROC) Wide Angle Camera (WAC) [8,9]. We explore the relationship of the swirls to crustal magnetic anomalies[10], and examine regions with magnetic anomalies and no swirls.

  13. Lunar Reconnaissance Orbiter (LRO) Command and Data Handling Flight Electronics Subsystem

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang; Yuknis, William; Haghani, Noosha; Pursley, Scott; Haddad, Omar

    2012-01-01

    A document describes a high-performance, modular, and state-of-the-art Command and Data Handling (C&DH) system developed for use on the Lunar Reconnaissance Orbiter (LRO) mission. This system implements a complete hardware C&DH subsystem in a single chassis enclosure that includes a processor card, 48 Gbytes of solid-state recorder memory, data buses including MIL-STD-1553B, custom RS-422, SpaceWire, analog collection, switched power services, and interfaces to the Ka-Band and S-Band RF communications systems. The C&DH team capitalized on extensive experience with hardware and software with PCI bus design, SpaceWire networking, Actel FPGA design, digital flight design techniques, and the use of VxWorks for the real-time operating system. The resulting hardware architecture was implemented to meet the LRO mission requirements. The C&DH comprises an enclosure, a backplane, a low-voltage power converter, a single-board computer, a communications interface board, four data storage boards, a housekeeping and digital input/output board, and an analog data acquisition board. The interfaces between the C&DH and the instruments and avionics are connected through a SpaceWire network, a MIL-STD-1553 bus, and a combination of synchronous and asynchronous serial data transfers over RS-422 and LVDS (low-voltage differential-signaling) electrical interfaces. The C&DH acts as the spacecraft data system with an instrument data manager providing all software and internal bus scheduling, ingestion of science data, distribution of commands, and performing science operations in real time.

  14. Lobate Scarp Modeling with Lunar Reconnaissance Orbiter Camera Digital Terrain Models

    NASA Astrophysics Data System (ADS)

    Williams, N. R.; Watters, T. R.; Pritchard, M. E.; Banks, M. E.; Bell, J. F.; Robinson, M. S.; Tran, T.

    2011-12-01

    Lobate scarps are a type of contractional tectonic landform expressed on the Moon's surface in both highlands and maria. Typically only tens of meters in relief, these linear or curvilinear topographic rises are interpreted to be low-angle thrust fault scarps resulting from global radial contraction. Radial contraction of the Moon can be inferred from shortening across the population of lobate scarps and is estimated at ~100 m. However, the geometry and depth of the underlying faults and mechanical properties of the near-surface lunar crustal materials are not well constrained. The Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NACs) acquire 0.5 to 2.0 m/pixel panchromatic images and digital terrain models (DTMs) with spatial resolutions of 2 m are derived from NAC stereo pairs. Topographic data are being used to constrain models of the lobate scarp thrust faults. DTMs are analyzed for relief and morphology of the Slipher (48.3°N, 160.6°E), Racah X-1 (10°S, 178°E), and Simpelius-1 (73.5°S, 13°E) scarps. Profiles are extracted, detrended, and compared along strike. LROC Wide Angle Camera (WAC) 100 m/pixel image mosaics and topography provide regional contexts. Using elastic dislocation modeling, the fault dip angles, depths, slip, and taper are each varied until the predicted surface displacement best fits the DTM profiles for each lobate scarp. Preliminary best-fit dip angles vary from 30-40°, maximum fault depths extend to several hundred meters, and the amount of slip varies from 10 to 30 meters for the three scarps. The modeled maximum depths suggest that the thrust faults are not deeply rooted.

  15. Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Mission

    NASA Astrophysics Data System (ADS)

    Keller, J. W.; Vondrak, R. R.; Petro, N. E.; Chin, G.; Garvin, J.

    2012-12-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and the measurement of the lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and was completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September of 2012. Under SMD, the Science Mission focused on a new set of goals related to understanding the history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having recently marked the completion of the two-year Science Mission, we will review here the major results from the LRO for both exploration and science and discuss plans and objectives for the Extended Science that will last until September, 2014. Some results from the LRO mission are: the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the daytime and nighttime temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs; evidence for recent tectonic activity on the Moon; and high resolution maps of the illumination conditions at the poles.

  16. The Use of Lunar Data in the Lunar Reconnaissance Orbiter Education Program

    NASA Astrophysics Data System (ADS)

    Stockman, S. A.

    2006-12-01

    In the fall of 2008, the Lunar Reconnaissance Orbiter (LRO) will set forth on a journey to study the moon, paving the way for future human exploration. LRO comprises six research instruments and a technology demonstration that will search for water ice, map the surface of the moon, and assess the chemical composition for identification of potential resources. A key component of a majority of the instrument EPO plans is to engage the public and education audiences through the use of data collected during the mission. In preparation for the wealth of new lunar data the Education and Public Outreach (EPO) program for LRO is supporting the use of current lunar data in education settings in both formal and informal education communities. The LRO EPO program has partnered on funded proposals that reach librarians, small science museums, Girl Scouts, NASA Explorer Schools and in-service teachers. Through our involvement with these projects, we are introducing a broad audience to lunar exploration and are preparing them to utilize LRO data in education settings when it becomes available. LRO instrument EPO teams are developing an array of tools, modules and visualizations to be used with image, topography, and spectrometry data that will be available during and after the LRO mission. They have initiated partnerships with museums, planetariums, public television stations, the Mars Museum Alliance, NASA Explorer Schools, HBCUs and other minority serving institutions, and the Society of Physics students. During this presentation we will discuss the use of planetary data in current partnerships that have been funded by NASA's Office of Education and NASA's Exploration Systems Mission Directorate as well as the LRO instrument team plans. We will also explore opportunities for future collaborative efforts in the development and dissemination of materials that utilize LRO data products.

  17. Exploring the Moon at High-Resolution: First Results From the Lunar Reconnaissance Orbiter Camera (LROC)

    NASA Astrophysics Data System (ADS)

    Robinson, Mark; Hiesinger, Harald; McEwen, Alfred; Jolliff, Brad; Thomas, Peter C.; Turtle, Elizabeth; Eliason, Eric; Malin, Mike; Ravine, A.; Bowman-Cisneros, Ernest

    The Lunar Reconnaissance Orbiter (LRO) spacecraft was launched on an Atlas V 401 rocket from the Cape Canaveral Air Force Station Launch Complex 41 on June 18, 2009. After spending four days in Earth-Moon transit, the spacecraft entered a three month commissioning phase in an elliptical 30×200 km orbit. On September 15, 2009, LRO began its planned one-year nominal mapping mission in a quasi-circular 50 km orbit. A multi-year extended mission in a fixed 30×200 km orbit is optional. The Lunar Reconnaissance Orbiter Camera (LROC) consists of a Wide Angle Camera (WAC) and two Narrow Angle Cameras (NACs). The WAC is a 7-color push-frame camera, which images the Moon at 100 and 400 m/pixel in the visible and UV, respectively, while the two NACs are monochrome narrow-angle linescan imagers with 0.5 m/pixel spatial resolution. LROC was specifically designed to address two of the primary LRO mission requirements and six other key science objectives, including 1) assessment of meter-and smaller-scale features in order to select safe sites for potential lunar landings near polar resources and elsewhere on the Moon; 2) acquire multi-temporal synoptic 100 m/pixel images of the poles during every orbit to unambiguously identify regions of permanent shadow and permanent or near permanent illumination; 3) meter-scale mapping of regions with permanent or near-permanent illumination of polar massifs; 4) repeat observations of potential landing sites and other regions to derive high resolution topography; 5) global multispectral observations in seven wavelengths to characterize lunar resources, particularly ilmenite; 6) a global 100-m/pixel basemap with incidence angles (60° -80° ) favorable for morphological interpretations; 7) sub-meter imaging of a variety of geologic units to characterize their physical properties, the variability of the regolith, and other key science questions; 8) meter-scale coverage overlapping with Apollo-era panoramic images (1-2 m/pixel) to document

  18. Exploring the Moon at High-Resolution: First Results From the Lunar Reconnaissance Orbiter Camera (LROC)

    NASA Astrophysics Data System (ADS)

    Robinson, Mark; Hiesinger, Harald; McEwen, Alfred; Jolliff, Brad; Thomas, Peter C.; Turtle, Elizabeth; Eliason, Eric; Malin, Mike; Ravine, A.; Bowman-Cisneros, Ernest

    The Lunar Reconnaissance Orbiter (LRO) spacecraft was launched on an Atlas V 401 rocket from the Cape Canaveral Air Force Station Launch Complex 41 on June 18, 2009. After spending four days in Earth-Moon transit, the spacecraft entered a three month commissioning phase in an elliptical 30×200 km orbit. On September 15, 2009, LRO began its planned one-year nominal mapping mission in a quasi-circular 50 km orbit. A multi-year extended mission in a fixed 30×200 km orbit is optional. The Lunar Reconnaissance Orbiter Camera (LROC) consists of a Wide Angle Camera (WAC) and two Narrow Angle Cameras (NACs). The WAC is a 7-color push-frame camera, which images the Moon at 100 and 400 m/pixel in the visible and UV, respectively, while the two NACs are monochrome narrow-angle linescan imagers with 0.5 m/pixel spatial resolution. LROC was specifically designed to address two of the primary LRO mission requirements and six other key science objectives, including 1) assessment of meter-and smaller-scale features in order to select safe sites for potential lunar landings near polar resources and elsewhere on the Moon; 2) acquire multi-temporal synoptic 100 m/pixel images of the poles during every orbit to unambiguously identify regions of permanent shadow and permanent or near permanent illumination; 3) meter-scale mapping of regions with permanent or near-permanent illumination of polar massifs; 4) repeat observations of potential landing sites and other regions to derive high resolution topography; 5) global multispectral observations in seven wavelengths to characterize lunar resources, particularly ilmenite; 6) a global 100-m/pixel basemap with incidence angles (60° -80° ) favorable for morphological interpretations; 7) sub-meter imaging of a variety of geologic units to characterize their physical properties, the variability of the regolith, and other key science questions; 8) meter-scale coverage overlapping with Apollo-era panoramic images (1-2 m/pixel) to document

  19. Two Years of Digital Terrain Model Production Using the Lunar Reconnaissance Orbiter Narrow Angle Camera

    NASA Astrophysics Data System (ADS)

    Burns, K.; Robinson, M. S.; Speyerer, E.; LROC Science Team

    2011-12-01

    One of the primary objectives of the Lunar Reconnaissance Orbiter Camera (LROC) is to gather stereo observations with the Narrow Angle Camera (NAC). These stereo observations are used to generate digital terrain models (DTMs). The NAC has a pixel scale of 0.5 to 2.0 meters but was not designed for stereo observations and thus requires the spacecraft to roll off-nadir to acquire these images. Slews interfere with the data collection of the other instruments, so opportunities are currently limited to four per day. Arizona State University has produced DTMs from 95 stereo pairs for 11 Constellation Project (CxP) sites (Aristarchus, Copernicus crater, Gruithuisen domes, Hortensius domes, Ina D-caldera, Lichtenberg crater, Mare Ingenii, Marius hills, Reiner Gamma, South Pole-Aitkin Rim, Sulpicius Gallus) as well as 30 other regions of scientific interest (including: Bhabha crater, highest and lowest elevation points, Highland Ponds, Kugler Anuchin, Linne Crater, Planck Crater, Slipher crater, Sears Crater, Mandel'shtam Crater, Virtanen Graben, Compton/Belkovich, Rumker Domes, King Crater, Luna 16/20/23/24 landing sites, Ranger 6 landing site, Wiener F Crater, Apollo 11/14/15/17, fresh craters, impact melt flows, Larmor Q crater, Mare Tranquillitatis pit, Hansteen Alpha, Moore F Crater, and Lassell Massif). To generate DTMs, the USGS ISIS software and SOCET SET° from BAE Systems are used. To increase the absolute accuracy of the DTMs, data obtained from the Lunar Orbiter Laser Altimeter (LOLA) is used to coregister the NAC images and define the geodetic reference frame. NAC DTMs have been used in examination of several sites, e.g. Compton-Belkovich, Marius Hills and Ina D-caldera [1-3]. LROC will continue to acquire high-resolution stereo images throughout the science phase of the mission and any extended mission opportunities, thus providing a vital dataset for scientific research as well as future human and robotic exploration. [1] B.L. Jolliff (2011) Nature

  20. Optical Fiber Array Assemblies for Space Flight on the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Ott, Jelanie; Matuszeski, Adam

    2011-01-01

    Custom fiber optic bundle array assemblies developed by the Photonics Group at NASA Goddard Space Flight Center were an enabling technology for both the Lunar Orbiter Laser Altimeter (LOLA) and the Laser Ranging (LR) Investigation on the Lunar Reconnaissance Orbiter (LRO) currently in operation. The unique assembly array designs provided considerable decrease in size and weight and met stringent system level requirements. This is the first time optical fiber array bundle assemblies were used in a high performance space flight application. This innovation was achieved using customized Diamond Switzerland AVIM optical connectors. For LOLA, a five fiber array was developed for the receiver telescope to maintain precise alignment for each of the 200/220 micron optical fibers collecting 1,064 nm wavelength light being reflected back from the moon. The array splits to five separate detectors replacing the need for multiple telescopes. An image illustration of the LOLA instrument can be found at the top of the figure. For the laser ranging, a seven-optical-fiber array of 400/440 micron fibers was developed to transmit light from behind the LR receiver telescope located on the end of the high gain antenna system (HGAS). The bundle was routed across two moving gimbals, down the HGAS boom arm, over a deployable mandrel and across the spacecraft to a detector on the LOLA instrument. The routing of the optical fiber bundle and its end locations is identified in the figure. The Laser Ranging array and bundle is currently accepting light at a wavelength of 532 nm sent to the moon from laser stations at Greenbelt MD and other stations around the world to gather precision ranging information from the Earth to the LRO spacecraft. The LR bundle assembly is capable of withstanding temperatures down to -55 C at the connectors, and 20,000 mechanical gimbal cycles at temperatures as cold as -20 C along the length of the seven-fiber bundle (that is packaged into the gimbals). The total

  1. Mars Reconnaissance Orbiter Ka-band (32 GHz) Demonstration: Cruise Phase Operations

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Morabito, David; Border, James S.; Davarian, Faramaz; Lee, Dennis; Mendoza, Ricardo; Britcliffe, Michael; Weinreb, Sander

    2006-01-01

    The X-band (8.41 GHz) frequency currently used for deep space telecommunications is too narrow (50 MHz) to support future high rate missions. Because of this NASA has decided to transition to Ka-band (32 GHz) frequencies. As weather effects cause much larger fluctuations on Ka-band than on X-band, the traditional method of using a few dBs of margin to cover these fluctuations is wasteful of power for Ka-band; therefore, a different operations concept is needed for Ka-band links. As part of the development of the operations concept for Ka-band, NASA has implemented a fully functioning Ka-band communications suite on its Mars Reconnaissance Orbiter (MRO). This suite will be used during the primary science phase to develop and refine the Ka-band operations concept for deep space missions. In order to test the functional readiness of the spacecraft and the Deep Space Network's (DSN) readiness to support the demonstration activities a series of passes over DSN 34-m Beam Waveguide (BWG) antennas were scheduled during the cruise phase of the mission. MRO was launched on August 12, 2005 from Kennedy Space Center, Cape Canaveral, Florida, USA and went into Mars Orbit on March 10, 2006. A total of ten telemetry demonstration and one high gain antenna (HGA) calibration passes were allocated to the Ka-band demonstration. Furthermore, a number of "shadow" passes were also scheduled where, during a regular MRO track over a Ka-band capable antenna, Ka-band was identically configured as the X-band and tracked by the station. In addition, nine Ka-band delta differential one way ranging ((delta)DOR) passes were scheduled. During these passes, the spacecraft and the ground system were put through their respective paces. Among the highlights of these was setting a single day record for data return from a deep space spacecraft (133 Gbits) achieved during one 10-hour pass; achieving the highest data rate ever from a planetary mission (6 Mbps) and successfully demonstrating Ka-band DDOR

  2. Toward a Unified View of the Moon's Polar Volatiles from the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Hayne, Paul

    2016-04-01

    Although the scientific basis for the possibility of water and other volatiles in the cold traps of the lunar polar regions was developed in the 1960's and '70's [1,2], only recently have the data become available to test the theories in detail. Furthermore, comparisons with other planetary bodies, particularly Mercury, have revealed surprising differences that may point to inconsistencies or holes in our understanding of the basic processes involving volatiles on airless bodies [3]. Addressing these gaps in understanding is critical to the future exploration of the Moon, for which water is an important scientific and engineering resource [4]. Launched in 2009, NASA's Lunar Reconnaissance Orbiter (LRO) has been acquiring data from lunar orbit for more than six years. All seven of the remote sensing instruments on the payload have now contributed significantly to advancing understanding of volatiles on the Moon. Here we present results from these investigations, and discuss attempts to synthesize the disparate information to create a self-consistent model for lunar volatiles. In addition to the LRO data, we must take into account results from earlier missions [5,6], ground-based telescopes [7], and sample analyses [8]. The results from these inter-comparisons show that water is likely available in useful quantities, but key additional measurements may be required to resolve remaining uncertainties. [1] Watson, K., Murray, B. C., & Brown, H. (1961), J. Geophys. Res., 66(9), 3033-3045. [2] Arnold, J. R. (1979), J. Geophys. Res. (1978-2012), 84(B10), 5659-5668. [3] Paige, D. A., Siegler, M. A., Harmon, J. K., Neumann, G. A., Mazarico, E. M., Smith, D. E., ... & Solomon, S. C. (2013), Science, 339(6117), 300-303. [4] Hayne, P. O., et al. (2014), Keck Inst. Space Studies Report. [5] Nozette, S., Lichtenberg, C. L., Spudis, P., Bonner, R., Ort, W., Malaret, E., ... & Shoemaker, E. M. (1996), Science, 274(5292), 1495-1498. [6] Pieters, C. M., Goswami, J. N., Clark, R. N

  3. Simultaneous Laser Ranging and Communication from an Earth-Based Satellite Laser Ranging Station to the Lunar Reconnaissance Orbiter in Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.; Krainak, Michael A.; Zuber, Maria T.; Smith, David E.

    2013-01-01

    We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.

  4. Simultaneous laser ranging and communication from an Earth-based satellite laser ranging station to the Lunar Reconnaissance Orbiter in lunar orbit

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.; Krainak, Michael A.; Zuber, Maria T.; Smith, David E.

    2013-03-01

    We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.

  5. NESC Independent Review of the Mars Reconnaissance Orbiter (MRO) Contamination Thermal/Vacuum (T/V) Anomaly Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Leidecker, Henning W.; Panda, Binayak; Piascik, Robert S.; Muirhead, Brian K.; Peeler, Debra

    2009-01-01

    The NESC eras requested by the NASA Jet Propulsion Laboratory (JPL) to conduct an independent review of the Mars Reconnaissance Orbiter (MRO) Thermal/Vacuum (T/V) Anomaly Assessment. Because the anomaly resulted in the surface contamination of the MRO, selected members of the Materials Super Problem Resolution Team (SPRT) and the NASA technical community having technical expertise relative to contamination issues were chosen for the independent review. The consultation consisted of a review of the MRO Project's reported response to the assessment findings, a detailed review of JPL technical assessment final report, and detailed discussions with the JPL assessment team relative to their findings.

  6. Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Phillips, Roger J.; Campbell, Bruce A.; Holt, John W.; Plaut, Jeffrey J.; Carter, Lynn M.; Egan, Anthony F.; Bernardini, Fabrizio; Safaeinili, Ali; Seu, Roberto

    2009-12-01

    We map the subsurface structure of Planum Boreum using sounding data from the Shallow Radar (SHARAD) instrument onboard the Mars Reconnaissance Orbiter. Radar coverage throughout the 1,000,000-km 2 area reveals widespread reflections from basal and internal interfaces of the north polar layered deposits (NPLD). A dome-shaped zone of diffuse reflectivity up to 12 μs (˜1-km thick) underlies two-thirds of the NPLD, predominantly in the main lobe but also extending into the Gemina Lingula lobe across Chasma Boreale. We equate this zone with a basal unit identified in image data as Amazonian sand-rich layered deposits [Byrne, S., Murray, B.C., 2002. J. Geophys. Res. 107, 5044, 12 pp. doi:10.1029/2001JE001615; Fishbaugh, K.E., Head, J.W., 2005. Icarus 174, 444-474; Tanaka, K.L., Rodriguez, J.A.P., Skinner, J.A., Bourke, M.C., Fortezzo, C.M., Herkenhoff, K.E., Kolb, E.J., Okubo, C.H., 2008. Icarus 196, 318-358]. Elsewhere, the NPLD base is remarkably flat-lying and co-planar with the exposed surface of the surrounding Vastitas Borealis materials. Within the NPLD, we delineate and map four units based on the radar-layer packets of Phillips et al. [Phillips, R.J., and 26 colleagues, 2008. Science 320, 1182-1185] that extend throughout the deposits and a fifth unit confined to eastern Gemina Lingula. We estimate the volume of each internal unit and of the entire NPLD stack (821,000 km 3), exclusive of the basal unit. Correlation of these units to models of insolation cycles and polar deposition [Laskar, J., Levrard, B., Mustard, J.F., 2002. Nature 419, 375-377; Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772] is consistent with the 4.2-Ma age of the oldest preserved NPLD obtained by Levrard et al. [Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772]. We suggest a dominant layering mechanism of dust-content variation during

  7. The search for Ar in the lunar atmosphere using the Lunar Reconnaissance Orbiter's LAMP instrument.

    NASA Astrophysics Data System (ADS)

    Cook, J. C.; Stern, S. A.; Feldman, P. D.; Gladstone, R.; Retherford, K. D.; Greathouse, T. K.; Grava, C.

    2014-12-01

    The Apollo 17 mass spectrometer, LACE, first measured mass 40 particles in the lunar atmosphere, and over a nine-month period, detected variations correlated with the lunar day (Hoffman et al., 1973, LPSC, 4, 2865). LACE detected a high particle density at dusk (0.6-1.0x104 cm-3), decreasing through the lunar night to a few hundred cm-3, then increasing rapidly before dawn to levels 2-4 times greater than at dusk. No daytime measurements were made due to instrument saturation. Given the LACE measurements' periodic nature, and the Ar abundance in lunar regolith samples (Kaiser, 1972, EPSL, 13, 387), it was concluded that mass 40 was likely due to Ar. Benna et al. (2014, LPSC, 45, 1535) recently reported that the Neutral Mass Spectrometer (NMS) aboard LADEE also detected Ar (mass 40) with similar diurnal profiles. We report on UV spectra of the lunar atmosphere as obtained by the Lunar Reconnaissance Orbiter (LRO). Aboard LRO is the UV-spectrograph, LAMP (Lyman Alpha Mapping Project), spanning the spectral range 575 to 1965 Å. LAMP is typically oriented toward the surface and has been mapping the Moon since September 2009. LAMP also observes the tenuous lunar atmosphere when the surface is in darkness, but the atmospheric column below LRO is illuminated. We have previously used nadir oriented twilight observations to examine the sparse lunar atmosphere (Feldman et al., 2012, Icarus, 221, 854; Cook et al., 2013, Icarus, 225, 681; Stern et al., 2013, Icarus, 226, 1210; Cook & Stern 2014, Icarus, 236, 48). In Cook et al., 2013, we reported an upper limit for Ar of 2.3x104 cm-3. Since then, we have collected additional data and refined our search method by focusing on the regions (near equator) and local times (dawn and dusk) where Ar has been reported previously. We have carefully considered effective area calibration and g-factor accuracies and find these to be unlikely explanations for the order of magnitude differences. We will report new results, which provide much

  8. Characterizing Geometric Distortion of the Lunar Reconnaissance Orbiter Wide Angle Camera

    NASA Astrophysics Data System (ADS)

    Speyerer, E.; Wagner, R.; Robinson, M. S.; Becker, K. J.; Anderson, J.; Thomas, P. C.

    2011-12-01

    Each month the Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) provides 100 m scale images of nearly the entire Moon, each month with different range of lighting conditions [1]. Pre-flight calibration efforts provided a baseline for correcting the geometric distortion present in the WAC. However, residual errors of 1-2 pixels existed with this original model. In-flight calibration enables the derivation of a precise correction for geometric distortion to provide sub-pixel map projection accuracy. For the in-flight calibration, we compared WAC images to high-resolution (0.5 - 2.0 meter scale) images provided by the Narrow Angle Camera (NAC). Since the NAC has very narrow field of view (2.86°) its geometric accuracy is well characterized. The additions of the WAC-derived 100 m/pixel digital terrain model (GLD100) [2] and refined ephemeris provided by LOLA [3] have improved our efforts to remove small distortion artifacts in the WAC camera model. Since the NAC field of view is always in the same cross-track location in the WAC frame, NAC and WAC images of the same regions, under similar lighting conditions, were map projected. Hundreds of NAC (truth image) and WAC images were then co-registered using an automatic registration algorithm in ISIS [4]. This output was fed into a second ISIS program (fplanemap) that converted the registration offsets to focal plane coordinates for the distorted (original) and undistorted (corrected location derived from the truth image) pixel [4]. With this dataset, offsets in the WAC distortion model were identified and accounted for with a new 2D Taylor series function that has been added to the existing radial model. This technique improves the accurate placement of each pixel across the sensor in target space. We have applied this correction to the 643 nm band and will derive the coefficients for the remaining bands. Once this study is complete, a new camera model, instrument kernel (IK), and frames kernel (FK) will be

  9. A General Closed-Form Solution for the Lunar Reconnaissance Orbiter (LRO) Antenna Pointing System

    NASA Technical Reports Server (NTRS)

    Shah, Neerav; Chen, J. Roger; Hashmall, Joseph A.

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle into a direct insertion trajectory to the Moon LRO, designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. During the mission s nominal life of one year its six instruments and one technology demonstrator will find safe landing site, locate potential resources, characterize the radiation environment and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera (LROC NAC) of the Apollo landing sites have appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Attitude Control System (ACS), in addition to controlling the orientation of the spacecraft is also responsible for pointing the High Gain Antenna (HGA). A dual-axis (or double-gimbaled) antenna, deployed on a meter-long boom, is required to point at a selected Earth ground station. Due to signal loss over the distance from the Moon to Earth, pointing precision for the antenna system is very tight. Since the HGA has to be deployed in spaceflight, its exact geometry relative to the spacecraft body is uncertain. In addition, thermal distortions and mechanical errors/tolerances must be characterized and removed to realize the greatest gain from the antenna system. These reasons necessitate the need for an in-flight calibration. Once in orbit around the moon, a series of attitude maneuvers was conducted to provide data needed to determine optimal parameters to load onboard, which would account for the environmental and mechanical errors at any

  10. Lunar Reconnaissance Orbiter (LRO) Guidance, Navigation and Control (GN&C) Overview

    NASA Technical Reports Server (NTRS)

    Garrick, Joseph; Simpson, James; Shah, Neerav

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle and into a direct insertion trajectory to the oon. LRO, which was designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. The mission has a nominal life of 1 year as its seven instruments find safe landing sites, locate potential resources, characterize the radiation environment, and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera of the Apollo landing sites appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Guidance, Navigation and Control (GN&C) subsystem is made up of an onboard attitude control system (ACS) and a hardware suite of sensors and actuators. The LRO onboard ACS is a collection of algorithms based on high level and derived requirements, and reflect the science and operational events throughout the mission lifetime. The primary control mode is the Observing mode, which maintains the lunar pointing orientation and any offset pointing from this baseline. It is within this mode that all science instrument calibrations, slews and science data is collected. Because of a high accuracy requirement for knowledge and pointing, the Observing mode makes use of star tracker (ST) measurement data to determine an instantaneous attitude pointing. But even the star trackers alone do not meet the tight requirements, so a six-state Kalman Filter is employed to improve the noisy measurement data. The Observing mode obtains its rate information from an inertial reference unit (IRU) and in the

  11. Investigation of small scale roughness properties of Martian terrains using Mars Reconnaissance Orbiter data.

    NASA Astrophysics Data System (ADS)

    Ivanov, A. B.; Rossi, A.

    2009-04-01

    Studies of layered terrains in polar regions as well as inside craters and other areas on Mars often require knowledge of local topography at much finer resolution than global MOLA topography allows. For example, in the polar layered deposits spatial relationships are important to understand unconformities that are observed on the edges of the layered terrains [15,3]. Their formation process is not understood at this point, yet fine scale topography, joint with ground penetrating radar like SHARAD and MARSIS may shed light on their 3D structure. Landing site analysis also requires knowledge of local slopes and roughness at scales from 1 to 10 m [1,2]. Mars Orbiter Camera [13] has taken stereo images at these scales, however interpretation was difficult due to unstable behavior of the Mars Global Surveyor spacecraft during image take (wobbling effect). Mars Reconnaissance Orbiter (MRO) is much better stabilized, since it is required for optimal operation of its high resolution camera. In this work we have utilized data from MRO sensors (CTX camera [11] and HIRISE camera [12] in order to derive digital elevation models (DEM) from images targeted as stereo pairs. We employed methods and approaches utilized for the Mars Orbiter Camera (MOC) stereo data [4,5]. CTX data varies in resolution and stereo pairs analyzed in this work can be derived at approximately 10m scale. HIRISE images allow DEM post spacing at around 1 meter. The latter are very big images and our computer infrastructure was only able to process either reduced resolution images, covering larger surface or working with smaller patches at the original resolution. We employed stereo matching technique described in [5,9], in conjunction with radiometric and geometric image processing in ISIS3 [16]. This technique is capable of deriving tiepoint co-registration at subpixel precision and has proven itself when used for Pathfinder and MER operations [8]. Considerable part of this work was to accommodate CTX and

  12. Color Mosaics and Multispectral Analyses of Mars Reconnaissance Orbit Mars Color Imager (MARCI) Observations

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Anderson, R. B.; Kressler, K.; Wolff, M. J.; Cantor, B.; Science; Operations Teams, M.

    2008-12-01

    The Mars Color Imager (MARCI) on the Mars Reconnaissance Orbiter (MRO) spacecraft is a is a wide-angle, multispectral Charge-Coupled Device (CCD) "push-frame" imaging camera designed to provide frequent, synoptic-scale imaging of Martian atmospheric and surface features and phenomena. MARCI uses a 1024x1024 pixel interline transfer CCD detector that has seven narrowband interference filters bonded directly to the CCD. Five of the filters are in the visible to short-wave near-IR wavelength range (MARCI-VIS: 437, 546, 604, 653, and 718 nm) and two are in the UV (MARCI-UV: 258 and 320 nm). During the MRO primary mission (November 2006 through November 2008), the instrument has acquired data swaths on the dayside of the planet, at an equator-crossing local solar time of about 3:00 p.m. We are analyzing the MARCI-VIS multispectral imaging data from the MRO primary mission in order to investigate (a) color variations in the surface and their potential relationship to variations in iron mineralogy; and (b) the time variability of surface albedo features at the approx. 1 km/pixel scale typical of MARCI nadir-pointed observations. Raw MARCI images were calibrated to radiance factor (I/F) using pre-flight and in-flight calibration files and a pipeline calibration process developed by the science team. We are using these calibrated MARCI files to generate map-projected mosaics of each of the 30 USGS standard quadrangles on Mars in each of the five MARCI-VIS bands. Our mosaicking software searches the MARCI data set to identify files that match a user- defined set of limits such as latitude, longitude, Ls, incidence angle, emission angle, and year. Each of the files matching the desired criteria is then map-projected and inserted in series into an output mosaic covering the desired lat/lon range. In cases of redundant coverage of the same pixels by different files, the user can set the program to use the pixel with the lowest I/F value for each individual MARCI-VIS band, thus

  13. Tectonic Mapping of Mare Frigoris Using Lunar Reconnaissance Orbiter Camera Images

    NASA Astrophysics Data System (ADS)

    Williams, N. R.; Bell, J. F.; Watters, T. R.; Banks, M. E.; Robinson, M. S.

    2012-12-01

    Conventional wisdom has been that extensional tectonism on the Moon largely ended ~3.6 billion years ago and that contractional deformation ended ~1.2 billion years ago. New NASA Lunar Reconnaissance Orbiter Camera (LROC) high resolution images are forcing a re-assessment of this view. Mapping in Mare Frigoris and the surrounding area has revealed many tectonic landforms enabling new investigations of the region's structural evolution. Sinuous wrinkle ridges with hundreds of meters of relief are interpreted as folded basalt layers overlying thrust faults. They have often been associated with lunar mascons identified by positive free-air gravity anomalies where thick basaltic lava causes flexure and subsidence to form ridges. No mascon-like gravity anomaly is associated with Mare Frigoris, yet large ridges deform the mare basalts. Lobate scarps are also found near Frigoris. These asymmetric linear hills inferred to be surface expressions of thrust faults are distributed globally and thought to originate from cooling and radial contraction of the lunar interior. Clusters of meter-scale extensional troughs or graben bounded by normal faults also occur in Frigoris. Tectonic landforms are being mapped in and around Mare Frigoris using LROC Narrow Angle Camera (NAC) images. Preliminary results show that wrinkle ridges in Frigoris occur both near and distal to the basin perimeter, trend E/W in western and central Frigoris, and form a polygonal pattern in the eastern section. Several complex wrinkle ridges are observed to transition into morphologically simpler lobate scarps at mare/highland boundaries, with the contrast in tectonic morphology likely due to the change from layered (mare) to un-layered (highlands) substrate. Lobate scarps in Frigoris occur primarily in the highlands, tend to strike E/W, and often but not always follow the boundary between mare and highlands. Small graben mapped in Frigoris occur in several clusters adjacent to or atop ridges and scarps, and

  14. Lighting Conditions for the Moon's Poles: Integrating Clementine, Kaguya, and Lunar Reconnaissance Orbiter Data Sets

    NASA Astrophysics Data System (ADS)

    Quinn, D. P.; Cahill, J.; Bussey, B.; McGovern, A.; Spudis, P.; Noda, H.; Ishihara, Y.

    2010-12-01

    Lunar poles experience extreme variations in illumination. Areas of permanent shadow and near-permanent illumination are located in close proximity and are attractive candidates for a sustained presence, exploration, and resource exploitation. Here we use Kaguya and Lunar Reconnaissance Orbiter (LRO) laser-altimeter (LALT and LOLA) digital topography models (DTMs) to simulate illumination conditions for both lunar poles using the software LunarShader. Previous comparisons between Clementine optical images and illumination maps derived from Kaguya LALT data suggest accurate and precise prediction of polar lighting conditions (Bussey et al. 2010). Here, maps predicting areas of illumination or shadow are generated at 12-hour intervals for the hypothetical year 2020. Average illumination maps computed from these data for time periods of one month to a year enable the identification and analysis of regions of both sustained illumination or permanent shadow and account for seasonal variations. Temporal illumination profiles are also generated for locations with more sustained illumination for more detailed analysis. Previous analyses focused on models derived from Kaguya DTM’s with high (64 pixels/degree) and low (128 pixels/degree) resolution data sets extending 5° and 10° from each pole (Bussey et al. 2010; Cahill et al. 2010). This work integrates LOLA data (~126 pixels/degree), which extends to 80° latitude. A comparison of average illumination for the three models prepared for the North pole predict similar durations of illumination during the year 2020. Kaguya low- and high-resolution models predict the region with the most sustained illumination will be lit 89% and 86% of the year, respectively. The illumination model computed from LRO’s LOLA data predicts this location will be lit 90% of year. At the South Pole, Kaguya high-resolution data simulations predict an illumination of 78%, 8-10% lower than the other data sets (86% for the Kaguya low

  15. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter

    USGS Publications Warehouse

    Murchie, S.L.; Mustard, J.F.; Ehlmann, B.L.; Milliken, R.E.; Bishop, J.L.; McKeown, N.K.; Noe Dobrea, E.Z.; Seelos, F.P.; Buczkowski, D.L.; Wiseman, S.M.; Arvidson, R. E.; Wray, J.J.; Swayze, G.; Clark, R.N.; Des Marais, D.J.; McEwen, A.S.; Bibring, J.-P.

    2009-01-01

    Martian aqueous mineral deposits have been examined and characterized using data acquired during Mars Reconnaissance Orbiter's (MRO) primary science phase, including Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral images covering the 0.4-3.9 ??m wavelength range, coordinated with higher-spatial resolution HiRISE and Context Imager images. MRO's new high-resolution measurements, combined with earlier data from Thermal Emission Spectrometer; Thermal Emission Imaging System; and Observatoire pour la Min??ralogie, L'Eau, les Glaces et l'Activiti?? on Mars Express, indicate that aqueous minerals are both diverse and widespread on the Martian surface. The aqueous minerals occur in 9-10 classes of deposits characterized by distinct mineral assemblages, morphologies, and geologic settings. Phyllosilicates occur in several settings: in compositionally layered blankets hundreds of meters thick, superposed on eroded Noachian terrains; in lower layers of intracrater depositional fans; in layers with potential chlorides in sediments on intercrater plains; and as thousands of deep exposures in craters and escarpments. Carbonate-bearing rocks form a thin unit surrounding the Isidis basin. Hydrated silica occurs with hydrated sulfates in thin stratified deposits surrounding Valles Marineris. Hydrated sulfates also occur together with crystalline ferric minerals in thick, layered deposits in Terra Meridiani and in Valles Marineris and together with kaolinite in deposits that partially infill some highland craters. In this paper we describe each of the classes of deposits, review hypotheses for their origins, identify new questions posed by existing measurements, and consider their implications for ancient habitable environments. On the basis of current data, two to five classes of Noachian-aged deposits containing phyllosilicates and carbonates may have formed in aqueous environments with pH and water activities suitable for life. Copyright 2009 by the American

  16. Morphometric analysis of small-scale lobate scarps on the Moon using data from the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Banks, M. E.; Watters, T. R.; Robinson, M. S.; Tornabene, L. L.; Tran, T.; Ojha, L.; Williams, N. R.

    2012-03-01

    Prior to Lunar Reconnaissance Orbiter (LRO), the morphology and dimensions of only a limited number of lobate scarps, all located near the equator (within 21°), had been characterized. Topography derived from LRO Camera stereo images and Lunar Orbiter Laser Altimeter (LOLA) ranging is used to measure the relief and analyze the morphology of previously known and newly detected low and high latitude lobate scarps. The asymmetric profiles and maximum slopes on scarp faces (˜5° to 29°) of lunar lobate scarps are similar to those of lobate scarps observed on Mars and Mercury. Scarp lengths range from ˜0.6 to 21.6 km (mean = ˜6.0 km, median = ˜4.4 km, n = 79), and measured relief ranges from ˜5 to 150 m (mean = ˜35 m, median = ˜20 m, n = 26). Assuming a range of 20° to 40° for the fault plane dip, estimated lower limits for the horizontal shortening (S) expressed by the lobate scarp thrust faults range from ˜10 to 410 m. The range in S estimated for the lunar scarps is roughly an order of magnitude lower than estimates of S for lobate scarp thrust faults on Mars and Mercury. The relatively small range of S estimated for the growing number of well-characterized lunar scarps is consistent with a small amount of global contraction.

  17. Experiment LEND of the NASA Lunar Reconnaissance Orbiter for high-resolution mapping of neutron emission of the Moon.

    PubMed

    Mitrofanov, I G; Sanin, A B; Golovin, D V; Litvak, M L; Konovalov, A A; Kozyrev, A S; Malakhov, A V; Mokrousov, M I; Tretyakov, V I; Troshin, V S; Uvarov, V N; Varenikov, A B; Vostrukhin, A A; Shevchenko, V V; Shvetsov, V N; Krylov, A R; Timoshenko, G N; Bobrovnitsky, Y I; Tomilina, T M; Grebennikov, A S; Kazakov, L L; Sagdeev, R Z; Milikh, G N; Bartels, A; Chin, G; Floyd, S; Garvin, J; Keller, J; McClanahan, T; Trombka, J; Boynton, W; Harshman, K; Starr, R; Evans, L

    2008-08-01

    The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed. PMID:18844457

  18. Mars Reconnaissance Orbiter and Opportunity observations of the Burns formation: crater hopping at Meridiani Planum

    USGS Publications Warehouse

    R.E. Arvidson; Bell, J.F., III; Catalano, J.G.; Clark, B. C.; Fox, V.K.; Gellert, Ralf; Grotzinger, J.P.; Guinness, E.A.; Herkenhoff, Kenneth E.; Knoll, A.H.; Lapotre, M.G.A.; McLennan, S.M.; Ming, D. W.; Morris, R.V.; Murchie, S.L.; Powell, K. E.; Smith, M.D.; Squyres, S. W.; Wolff, M.J.; J.J. Wray

    2015-01-01

    Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral (1.0–2.65 µm) along-track oversampled observations covering Victoria, Santa Maria, Endeavour, and Ada craters were processed to 6 m/pixel and used in combination with Opportunity observations to detect and map hydrated Mg and Ca sulfate minerals in the Burns formation. The strongest spectral absorption features were found to be associated with outcrops that are relatively young and fresh (Ada) or preferentially scoured of dust, soil, and coatings by prevailing winds. At Victoria and Santa Maria, the scoured areas are on the southeastern rims and walls, opposite to the sides where wind-blown sands extend out of the craters. At Endeavour, the deepest absorptions are in Botany Bay, a subdued and buried rim segment that exhibits high thermal inertias, extensive outcrops, and is interpreted to be a region of enhanced wind scour extending up and out of the crater. Ada, Victoria, and Santa Maria outcrops expose the upper portion of the preserved Burns formation and show spectral evidence for the presence of kieserite. In contrast, gypsum is pervasive spectrally in the Botany Bay exposures. Gypsum, a relatively insoluble evaporative mineral, is interpreted to have formed close to the contact with the Noachian crust as rising groundwaters brought brines close to and onto the surface, either as a direct precipitate or during later diagenesis. The presence of kieserite at the top of the section is hypothesized to reflect precipitation from evaporatively concentrated brines or dehydration of polyhydrated sulfates

  19. Utilizing the Lunar Laser Ranging datasets alongside the radioscience data from the Lunar Reconnaissance Orbiter to improve the dynamical model of the Moon

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vishnu; Fienga, Agnes; Laskar, Jacques; Manche, Herve; Torre, Jean-Marie; Courde, Clément; Exertier, Pierre

    2015-08-01

    In this poster we elaborate the use of raw navigation data (range and Doppler observations) from the Lunar Reconnaissance Orbiter (LRO) available on the Planetary Data System (PDS), in order to study the orbit of this probe using the orbit determination software (GINS) developed by the French space agency (CNES). The constraints that are derived from this process on combining with the high precision Lunar Laser Ranging (LLR) datasets which are spread over 40 years, facilitates an improved dynamical modeling of the Moon. In addition, the possible advantages that could be exploited by the LLR experiments when operated with lasers in the IR wavelength are analyzed.

  20. Reconnaissance of the HR 8799 Exosolar System. II. Astrometry and Orbital Motion

    NASA Astrophysics Data System (ADS)

    Pueyo, L.; Soummer, R.; Hoffmann, J.; Oppenheimer, R.; Graham, J. R.; Zimmerman, N.; Zhai, C.; Wallace, J. K.; Vescelus, F.; Veicht, A.; Vasisht, G.; Truong, T.; Sivaramakrishnan, A.; Shao, M.; Roberts, L. C., Jr.; Roberts, J. E.; Rice, E.; Parry, I. R.; Nilsson, R.; Lockhart, T.; Ligon, E. R.; King, D.; Hinkley, S.; Hillenbrand, L.; Hale, D.; Dekany, R.; Crepp, J. R.; Cady, E.; Burruss, R.; Brenner, D.; Beichman, C.; Baranec, C.

    2015-04-01

    We present an analysis of the orbital motion of the four substellar objects orbiting HR 8799. Our study relies on the published astrometric history of this system augmented with an epoch obtained with the Project 1640 coronagraph with an integral field spectrograph (IFS) installed at the Palomar Hale telescope. We first focus on the intricacies associated with astrometric estimation using the combination of an extreme adaptive optics system (PALM-3000), a coronagraph, and an IFS. We introduce two new algorithms. The first one retrieves the stellar focal plane position when the star is occulted by a coronagraphic stop. The second one yields precise astrometric and spectrophotometric estimates of faint point sources even when they are initially buried in the speckle noise. The second part of our paper is devoted to studying orbital motion in this system. In order to complement the orbital architectures discussed in the literature, we determine an ensemble of likely Keplerian orbits for HR 8799bcde, using a Bayesian analysis with maximally vague priors regarding the overall configuration of the system. Although the astrometric history is currently too scarce to formally rule out coplanarity, HR 8799d appears to be misaligned with respect to the most likely planes of HR 8799bce orbits. This misalignment is sufficient to question the strictly coplanar assumption made by various authors when identifying a Laplace resonance as a potential architecture. Finally, we establish a high likelihood that HR 8799de have dynamical masses below 13 MJup, using a loose dynamical survival argument based on geometric close encounters. We illustrate how future dynamical analyses will further constrain dynamical masses in the entire system.

  1. Geomorphic knobs of Candor Chasma, Mars: New Mars Reconnaissance Orbiter data and comparisons to terrestrial analogs

    USGS Publications Warehouse

    Chan, M.A.; Ormo, J.; Murchie, S.; Okubo, C.H.; Komatsu, G.; Wray, J.J.; McGuire, P.; McGovern, J.A.

    2010-01-01

    High Resolution Imaging Science Experiment (HiRISE) imagery and digital elevation models of the Candor Chasma region of Valles Marineris, Mars, reveal prominent and distinctive positive-relief knobs amidst light-toned layers. Three classifications of knobs, Types 1, 2, and 3, are distinguished from a combination of HiRISE and Thermal Emission Imaging System (THEMIS) images based on physical expressions (geometries, spatial relationships), and spectral data from Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Type 1 knobs are abundant, concentrated, topographically resistant features with their highest frequency in West Candor, which have consistent stratigraphic correlations of the peak altitude (height). These Type 1 knobs could be erosional remnants of a simple dissected terrain, possibly derived from a more continuous, resistant, capping layer of pre-existing material diagenetically altered through recrystallization or cementation. Types 2 and 3 knobs are not linked to a single stratigraphic layer and are generally solitary to isolated, with variable heights. Type 3 are the largest knobs at nearly an order of magnitude larger than Type 1 knobs. The variable sizes and occasional pits on the tops of Type 2 and 3 knobs suggest a different origin, possibly related to more developed erosion, preferential cementation, or textural differences from sediment/water injection or intrusion, or from a buried impact crater. Enhanced color HiRISE images show a brown coloration of the knob peak crests that is attributable to processing and photometric effects; CRISM data do not show any detectable spectral differences between the knobs and the host rock layers, other than albedo. These intriguing knobs hold important clues to deducing relative rock properties, timing of events, and weathering conditions of Mars history. ?? 2009 Elsevier Inc. All rights reserved.

  2. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument

    USGS Publications Warehouse

    Mustard, J.F.; Murchie, S.L.; Pelkey, S.M.; Ehlmann, B.L.; Milliken, R.E.; Grant, J. A.; Bibring, J.-P.; Poulet, F.; Bishop, J.; Dobrea, E.N.; Roach, L.; Seelos, F.; Arvidson, R. E.; Wiseman, S.; Green, R.; Hash, C.; Humm, D.; Malaret, E.; McGovern, J.A.; Seelos, K.; Clancy, T.; Clark, R.; des Marais, D.; Izenberg, N.; Knudson, A.; Langevin, Y.; Martin, T.; McGuire, P.; Morris, R.; Robinson, M.; Roush, T.; Smith, M.; Swayze, G.; Taylor, H.; Titus, T.; Wolff, M.

    2008-01-01

    Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L'Eau, les Glaces et l'Activitie??) instrument, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity) were specific to surface environments during the earliest era of Mars's history. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability. ??2008 Macmillan Publishers Limited. All rights reserved.

  3. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument.

    PubMed

    Mustard, John F; Murchie, S L; Pelkey, S M; Ehlmann, B L; Milliken, R E; Grant, J A; Bibring, J-P; Poulet, F; Bishop, J; Dobrea, E Noe; Roach, L; Seelos, F; Arvidson, R E; Wiseman, S; Green, R; Hash, C; Humm, D; Malaret, E; McGovern, J A; Seelos, K; Clancy, T; Clark, R; Marais, D D; Izenberg, N; Knudson, A; Langevin, Y; Martin, T; McGuire, P; Morris, R; Robinson, M; Roush, T; Smith, M; Swayze, G; Taylor, H; Titus, T; Wolff, M

    2008-07-17

    Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L'Eau, les Glaces et l'Activitié) instrument, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity) were specific to surface environments during the earliest era of Mars's history. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability. PMID:18633411

  4. Mars Reconnaissance Orbiter and Opportunity observations of the Burns formation: Crater hopping at Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Bell, J. F., III; Catalano, J. G.; Clark, B. C.; Fox, V. K.; Gellert, R.; Grotzinger, J. P.; Guinness, E. A.; Herkenhoff, K. E.; Knoll, A. H.; Lapotre, M. G. A.; McLennan, S. M.; Ming, D. W.; Morris, R. V.; Murchie, S. L.; Powell, K. E.; Smith, M. D.; Squyres, S. W.; Wolff, M. J.; Wray, J. J.

    2015-03-01

    Compact Reconnaissance Imaging Spectrometer for Mars hyperspectral (1.0-2.65 μm) along-track oversampled observations covering Victoria, Santa Maria, Endeavour, and Ada craters were processed to 6 m/pixel and used in combination with Opportunity observations to detect and map hydrated Mg and Ca sulfate minerals in the Burns formation. The strongest spectral absorption features were found to be associated with outcrops that are relatively young and fresh (Ada) or preferentially scoured of dust, soil, and coatings by prevailing winds. At Victoria and Santa Maria, the scoured areas are on the southeastern rims and walls, opposite to the sides where wind-blown sands extend out of the craters. At Endeavour, the deepest absorptions are in Botany Bay, a subdued and buried rim segment that exhibits high thermal inertias, extensive outcrops, and is interpreted to be a region of enhanced wind scour extending up and out of the crater. Ada, Victoria, and Santa Maria outcrops expose the upper portion of the preserved Burns formation and show spectral evidence for the presence of kieserite. In contrast, gypsum is pervasive spectrally in the Botany Bay exposures. Gypsum, a relatively insoluble evaporative mineral, is interpreted to have formed close to the contact with the Noachian crust as rising groundwaters brought brines close to and onto the surface, either as a direct precipitate or during later diagenesis. The presence of kieserite at the top of the section is hypothesized to reflect precipitation from evaporatively concentrated brines or dehydration of polyhydrated sulfates, in both scenarios as the aqueous environment evolved to very arid conditions.

  5. Failure of Harmonic Gears During Verification of a Two-Axis Gimbal for the Mars Reconnaissance Orbiter Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.; Gehling, Russ; Head, Ray

    2006-01-01

    The Mars Reconnaissance Orbiter (MRO) spacecraft has three two-axis gimbal assemblies that support and move the High Gain Antenna and two solar array wings. The gimbal assemblies are required to move almost continuously throughout the mission's seven-year lifetime, requiring a large number of output revolutions for each actuator in the gimbal assemblies. The actuator for each of the six axes consists of a two-phase brushless dc motor with a direct drive to the wave generator of a size-32 cup-type harmonic gear. During life testing of an actuator assembly, the harmonic gear teeth failed completely, leaving the size-32 harmonic gear with a maximum output torque capability less than 10% of its design capability. The investigation that followed the failure revealed limitations of the heritage material choices that were made for the harmonic gear components that had passed similar life requirements on several previous programs. Additionally, the methods used to increase the stiffness of a standard harmonic gear component set, while accepted practice for harmonic gears, is limited in its range. The stiffness of harmonic gear assemblies can be increased up to a maximum stiffness point that, if exceeded, compromises the reliability of the gear components for long life applications.

  6. The Lunar Reconnaissance Orbiter Mission: Seven Years at the Moon - Accomplishments, Data, and Future Prospects

    NASA Astrophysics Data System (ADS)

    Petro, Noah; Keller, John

    2016-07-01

    The LRO Spacecraft has been orbiting the Moon for over 7 years (~91 lunations), and in that time data from the seven instruments has contributed to a revolution in our understanding of the Moon. Since launch the mission goals and instruments science questions have evolved, from the initial characterization of the lunar surface and its environment to studying the variability of surface hydration and measuring the flux of new craters that have formed during LRO's time in lunar orbit. The growing LRO dataset in the PDS presents a unique archive that allows for an unprecedented opportunity to study how an airless body changes over time. The LRO instrument suite [1] is performing nominally, with no significant performance issues since the mission entered the current extended mission. The Mini-RF instrument team is investigating new methods for collecting bistatic data using an Earth-based X-band transmitter [2] during a possible upcoming extended mission starting in September 2016, pending NASA approval. The LRO spacecraft has been in an elliptical, polar orbit with a low perilune over the South Pole since December 2011. This orbit minimizes annual fuel consumption, enabling LRO to use fuel to maximize opportunities for obtaining unique science (e.g., lunar eclipse measurements from Diviner, measuring spacecraft impacts by GRAIL and LADEE). The LRO instrument teams deliver data to the PDS every three months, data that includes raw, calibrated, and gridded/map products [3]. As of January, over 681TB has been archived. These higher-level data products include a number of resources that are useful for mission planners, in addition to planetary scientists. A focus of the mission has been on the South Pole, therefore a number of special products (e.g., illumination maps, high resolution topography, hydration maps) are available. Beyond the poles, high-resolution (~1-2 m spatial resolution) topographic products are available for select areas, as well as maps of rock abundance

  7. Estimating Background and Lunar Contribution to Neutrons Detected by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) Instrument

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Mitrofanov, I. G.; Chin, G.; Boynton, W. V.; Evans, L. G.; Litvak, M. L.; McClanahan, T. P.; Sagdeev, R.; Sanin, A. B.; Starr, R. D.; Su, J. J.

    2014-12-01

    The fraction of hydrogen-bearing species embedded in planetary regolith can be determined from the ratio between measured epithermal neutron leakage flux and the flux measured from similar dry regolith. The Lunar Reconnaissance Orbiter (LRO) spacecraft is equipped with the Lunar Exploration Neutron Detector (LEND) instrument to measure embedded hydrogen in the Moon's polar regions and elsewhere. We have investigated the relative contribution of lunar and non-lunar (spacecraft-sourced) neutrons by modeling maps of the measured count rate from three of the LEND detector systems using linear combinations of maps compiled from the Lunar Prospector Neutron Spectrometer (LPNS) and the LEND detectors, demonstrating that the two systems are compatible and enabling reference signal to be inferred to enable detecting hydrogen and hydrogen-bearing volatiles. The pole-to-equator contrast ratio in epithermal neutrons indicates that the average concentration of hydrogen in the Moon's polar regolith above 80° north or south latitude is ~110 ppmw, or 0.10±0.01 wt% water-equivalent hydrogen. Above 88° north or south, the concentration increases to ~140 ppmw, or 0.13±0.02 wt% water-equivalent hydrogen. Nearly identical suppression of neutron flux at both the north and south poles, despite differences in topography and distribution of permanently-shadowed regions, supports the contention that hydrogen is broadly distributed in the polar regions and increasingly concentrated approaching the poles. Similarity in the degree of neutron suppression in low-energy and high-energy epithermal neutrons suggests that the hydrogen fraction is relatively uniform with depth down to ~1 m; the neutron leakage flux is insensitive to greater depth.

  8. Insolation Effects on the Lunar Hydrogen Budget: Correlated Observations of the Lunar Reconnaissance Orbiter's LEND, LOLA and Diviner Instruments

    NASA Astrophysics Data System (ADS)

    McClanahan, T. P.; Mitrofanov, I.; Boynton, W. V.; Litvak, M.; Milikh, G. M.; Evans, L. G.; Starr, R. D.; Livengood, T. A.; Chin, G.; Harshman, K.; Droege, G.

    2012-12-01

    In this research we correlate the Lunar Reconnaissance Orbiter's (LRO), Diviner radiometer temperature maps that characterize the Moon's thermal environment with maps derived from the Lunar Exploration Neutron Detector (LEND) and Lunar Orbiting Laser Altimeter (LOLA). In previous research, we found evidence that the Moon's Hydrogen budget was broadly influenced by insolation effects. In that analysis we implemented a transformation of LOLA's topography maps, thereby isolating poleward-facing and equator-facing slopes. We then integrated the LEND epithermal neutron maps over these regions and found that the epithermal neutron count rates were significantly lower in poleward-facing slopes vs. equivalent equator-facing slopes, yielding a localized "epithermal contrast". This result suggests higher H / H2O concentrations in poleward-facing slopes vs. comparable equator-facing slopes. It is also consistent with findings in terrestrial and Martian environments indicating similar H / H2O slope contrasts. In support of that finding we determined that the epithermal neutron rates over east and west-facing slopes were as predicted equivalent. The above effects were also similar for both North and South Poles. Together, this support indicated surface insolation is an important factor governing the Moon's Hydrogen budget. Temperature effects of insolation are primarily a function of a cosine process a = i cos Θ, which predicts the effective solar irradiation a, incident to a given surface as a function of its angular orientation Θ, to the source solar irradiation, i. Θ is locally a function of several variables including combined: seasonal, diurnal, topographic, latitude and regolith compositional effects which induces locally dependent and time variable temperature conditions. The Moons low obliquity and increased latitude predictably attenuate solar irradiation, which is well correlated with decreased near-surface temperatures towards the poles. Importantly, topographic

  9. Study of phyllosilicates and carbonates from the Capri Chasma region of Valles Marineris on Mars based on Mars Reconnaissance Orbiter-Compact Reconnaissance Imaging Spectrometer for Mars (MRO-CRISM) observations

    NASA Astrophysics Data System (ADS)

    Jain, Nirmala; Chauhan, Prakash

    2015-04-01

    Spectral reflectance data from the MRO-CRISM (Mars Reconnaissance Orbiter-Compact Reconnaissance Imaging Spectrometer for Mars) of Capri Chasma, a large canyon within Valles Marineris on Mars, have been studied. Results of this analysis reveal the presence of minerals, such as, phyllosilicates (illite, smectite (montmorillonite)) and carbonates (ankerite and manganocalcite). These minerals hint of the aqueous history of Noachian time on Mars. Phyllosilicates are products of chemical weathering of igneous rocks, whereas carbonates could have formed from local aqueous alteration of olivine and other igneous minerals. Four different locations within the Capri Chasma region were studied for spectral reflectance based mineral detection. The study area also shows the spectral signatures of iron-bearing minerals, e.g. olivine with carbonate, indicating partial weathering of parent rocks primarily rich in ferrous mineral. The present study shows that the minerals of Capri Chasma are characterized by the presence of prominent spectral absorption features at 2.31 μm, 2.33 μm, 2.22 μm, 2.48 μm and 2.52 μm wavelength regions, indicating the existence of hydrous minerals, i.e., carbonates and phyllosilicates. The occurrence of carbonates and phyllosilicates in the study area suggests the presence of alkaline environment during the period of their formation. Results of the study are important to understand the formation processes of these mineral assemblages on Mars, which may help in understanding the evolutionary history of the planet.

  10. The rate and causes of lunar space weathering: Insights from Lunar Reconnaissance Orbiter Wide Angle Camera ultraviolet observations

    NASA Astrophysics Data System (ADS)

    Denevi, B. W.; Robinson, M. S.; Sato, H.; Hapke, B. W.; McEwen, A. S.; Hawke, B. R.

    2011-12-01

    Lunar Reconnaissance Orbiter Wide Angle Camera global ultraviolet and visible imaging provides a unique opportunity to examine the rate and causes of space weathering on the Moon. Silicates typically have a strong decrease in reflectance toward UV wavelengths (<~450 nm) due to strong bands at 250 nm and in the far UV. Metallic iron is relatively spectrally neutral, and laboratory spectra suggest that its addition to mature soils in the form of submicroscopic iron (also known as nanophase iron) flattens silicate spectra, significantly reducing spectral slope in the ultraviolet. Reflectance at ultraviolet wavelengths may be especially sensitive to the surface coatings that form due to exposure to space weathering because scattering from the surfaces of grains contributes a larger fraction to the reflectance spectrum at short wavelengths. We find that the UV slope (as measured by the 320/415 nm ratio) is a more sensitive measure of maturity than indexes based on visible and near-infrared wavelengths. Only the youngest features (less than ~100 Ma) retain a UV slope that is distinct from mature soils of the same composition. No craters >20 km have UV slopes that approach those observed in laboratory spectra of fresh lunar materials (powdered lunar rocks). While the 320/415 nm ratio increases by ~18% from powdered rocks to mature soils in laboratory samples, Giordano Bruno, the freshest large crater, only shows a 3% difference between fresh and mature materials. At the resolution of our UV data (400 m/pixel), we observe some small (<5 km) craters that show a ~14% difference in 320/415 nm ratio from their mature surroundings. UV observations show that Reiner Gamma has had significantly lower levels of space weathering than any of the Copernican craters we examined, and was the only region we found with a UV slope that approached laboratory values for fresh powdered rock samples. This is consistent with the hypothesis that its high albedo is due to magnetic shielding from

  11. Evidence for exposed water ice in the Moon's south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements

    NASA Astrophysics Data System (ADS)

    Hayne, Paul O.; Hendrix, Amanda; Sefton-Nash, Elliot; Siegler, Matthew A.; Lucey, Paul G.; Retherford, Kurt D.; Williams, Jean-Pierre; Greenhagen, Benjamin T.; Paige, David A.

    2015-07-01

    We utilize surface temperature measurements and ultraviolet albedo spectra from the Lunar Reconnaissance Orbiter to test the hypothesis that exposed water frost exists within the Moon's shadowed polar craters, and that temperature controls its concentration and spatial distribution. For locations with annual maximum temperatures Tmax greater than the H2O sublimation temperature of ∼110 K, we find no evidence for exposed water frost, based on the LAMP UV spectra. However, we observe a strong change in spectral behavior at locations perennially below ∼110 K, consistent with cold-trapped ice on the surface. In addition to the temperature association, spectral evidence for water frost comes from the following spectral features: (a) decreasing Lyman-α albedo, (b) decreasing "on-band" (129.57-155.57 nm) albedo, and (c) increasing "off-band" (155.57-189.57 nm) albedo. All of these features are consistent with the UV spectrum of water ice, and are expected for water ice layers >∼100 nm in thickness. High regolith porosity, which would darken the surface at all wavelengths, cannot alone explain the observed spectral changes at low temperatures. Given the observed LAMP off-band/on-band albedo ratios at a spatial scale of 250 m, the range of water ice concentrations within the cold traps with Tmax < 110 K is ∼0.1-2.0% by mass, if the ice is intimately mixed with dry regolith. If pure water ice is exposed instead, then up to ∼10% of the surface area on the 250-m scale of the measurements may be ice-covered. The observed distribution of exposed water ice is highly heterogeneous, with some cold traps <110 K having little to no apparent water frost, and others with a significant amount of water frost. As noted by Gladstone et al. (Gladstone, G.R. et al. [2012]. J. Geophys. Res.: Planets 117(E12)), this heterogeneity may be a consequence of the fact that the net supply rate of H2O molecules to the lunar poles is very similar to the net destruction rate within the cold

  12. The transition from complex craters to multi-ring basins on the Moon: Quantitative geometric properties from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter (LOLA) data

    NASA Astrophysics Data System (ADS)

    Baker, David M. H.; Head, James W.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2012-03-01

    The morphologic transition from complex impact craters, to peak-ring basins, and to multi-ring basins has been well-documented for decades. Less clear has been the morphometric characteristics of these landforms due to their large size and the lack of global high-resolution topography data. We use data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft to derive the morphometric characteristics of impact basins on the Moon, assess the trends, and interpret the processes involved in the observed morphologic transitions. We first developed a new technique for measuring and calculating the geometric/morphometric properties of impact basins on the Moon. This new method meets a number of criteria that are important for consideration in any topographic analysis of crater landforms (e.g., multiple data points, complete range of azimuths, systematic, reproducible analysis techniques, avoiding effects of post-event processes, robustness with respect to the statistical techniques). The resulting data more completely capture the azimuthal variation in topography that is characteristic of large impact structures. These new calculations extend the well-defined geometric trends for simple and complex craters out to basin-sized structures. Several new geometric trends for peak-ring basins are observed. Basin depth: A factor of two reduction in the depth to diameter (d/Dr) ratio in the transition from complex craters to peak-ring basins may be characterized by a steeper trend than known previously. The d/Dr ratio for peak-ring basins decreases with rim-crest diameter, which may be due to a non-proportional change in excavation cavity growth or scaling, as may occur in the simple to complex transition, or increased magnitude of floor uplift associated with peak-ring formation. Wall height, width, and slope: Wall height and width increase with increasing rim-crest diameter, while wall slope decreases; decreasing ratios

  13. High resolution imaging science experiment (HiRISE) images of volcanic terrains from the first 6 months of the Mars reconnaissance orbiter primary science phase

    USGS Publications Warehouse

    Keszthelyi, L.; Jaeger, W.; McEwen, A.; Tornabene, L.; Beyer, R.A.; Dundas, C.; Milazzo, M.

    2008-01-01

    In the first 6 months of the Mars Reconnaissance Orbiter's Primary Science Phase, the High Resolution Imaging Science Experiment (HiRISE) camera has returned images sampling the diversity of volcanic terrains on Mars. While many of these features were noted in earlier imaging, they are now seen with unprecedented clarity. We find that some volcanic vents produced predominantly effusive products while others generated mostly pyroclastics. Flood lavas were emplaced in both turbulent and gentle eruptions, producing roofed channels and inflation features. However, many areas on Mars are too heavily mantled to allow meter-scale volcanic features to be discerned. In particular, the major volcanic edifices are extensively mantled, though it is possible that some of the mantle is pyroclastic material rather than atmospheric dust. Support imaging by the Context Imager (CTX) and topographic information derived from stereo imaging are both invaluable in interpreting the HiRISE data. Copyright 2008 by the American Geophysical Union.

  14. A system for generating multi-resolution Digital Terrain Models of Mars based on the ESA Mars Express and NASA Mars Reconnaissance Orbiter data

    NASA Astrophysics Data System (ADS)

    Yershov, V.

    2015-10-01

    We describe a processing system for generating multiresolution digital terrain models (DTM) of Mars within the the iMars project of the European Seventh Framework Programme. This system is based on a non-rigorous sensor model for processing highresolution stereoscopic images obtained fromthe High Resolution Imaging Science Experiment (HiRISE) camera and Context Camera (CTX) onboard the NASA Mars Reconnaissance Orbiter (MRO) spacecraft. The system includes geodetic control based on the polynomial fit of the input CTX images with respect to to a reference image obtained from the ESA Mars Express High Resolution Stereo Camera (HRSC). The input image processing is based on the Integrated Software for Images and Spectrometers (ISIS) and the NASA Ames stereo pipeline. The accuracy of the produced CTX DTM is improved by aligning it with the reference HRSC DTMand the altimetry data from the Mars Orbiter Laser Altimeter (MOLA) onboard the Mars Global Surveyor (MGS) spacecraft. The higher-resolution HiRISE imagery data are processed in the the same way, except that the reference images and DTMs are taken from the CTX results obtained during the first processing stage. A quality assessment of image photogrammetric registration is demonstrated by using data generated by the NASA Ames stereo pipeline and the BAE Socet system. Such DTMs will be produced for all available stereo-pairs and be displayed asWMS layers within the iMarsWeb GIS.

  15. Time-transfer experiments between satellite laser ranging ground stations via one-way laser ranging to the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Mao, D.; Sun, X.; Skillman, D. R.; Mcgarry, J.; Hoffman, E.; Neumann, G. A.; Torrence, M. H.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    Satellite laser ranging (SLR) has long been used to measure the distance from a ground station to an Earth-orbiting satellite in order to determine the spacecraft position in orbit, and to conduct other geodetic measurements such as plate motions. This technique can also be used to transfer time between the station and satellite, and between remote SLR sites, as recently demonstrated by the Time Transfer by Laser Link (T2L2) project by the Centre National d'Etudes Spatiaes (CNES) and Observatorire de la Cote d'Azur (OCA) as well as the Laser Time Transfer (LTT) project by the Shanghai Astronomical Observatory, where two-way and one-way measurements were obtained at the same time. Here we report a new technique to transfer time between distant SLR stations via simultaneous one-way laser ranging (LR) to the Lunar Reconnaissance Orbiter (LRO) spacecraft at lunar distance. The major objectives are to establish accurate ground station times and to improve LRO orbit determination via these measurements. The results of these simultaneous LR measurements are used to compare the SLR station times or transfer time from one to the other using times-of-flight estimated from conventional radio frequency tracking of LRO. The accuracy of the time transfer depends only on the difference of the times-of-flight from each ground station to the spacecraft, and is expected to be at sub-nano second level. The technique has been validated by both a ground-based experiment and an experiment that utilized LRO. Here we present the results to show that sub-nanosecond precision and accuracy are achievable. Both experiments were carried out between the primary LRO-LR station, The Next Generation Satellite Laser Ranging (NGSLR) station, and its nearby station, Mobile Laser System (MOBLAS-7), both at Greenbelt, Maryland. The laser transmit time from both stations were recorded by the same event timer referenced to a Hydrogen maser. The results have been compared to data from a common All

  16. Lunar Reconnaissance Orbiter (LRO) Observations with the Lunar Exploration Neutron Detector (LEND): Neutron Suppression Regions (NSR) and Polar Hydrogen

    NASA Technical Reports Server (NTRS)

    Chin, G.; Mitrofanov, I. G.; Boynton, W. V.; Golovin, D. V.; Evans, L. G.; Harshman, K.; Kozyrev, A. S.; Litvak, M. L.; McClanahan, T.; Milikh, G. M.; Sagdeev, R.; Sanin, A. B.; Shevchenko, V.; Shvetsov, V.; Smith, D.; Starr, R.; Trombka, J.; Zuber, M.

    2011-01-01

    Orbital detection of neutrons has become the dominant remote sensing technique for detecting and inferring H concentrations and its spatial distribution beneath planetary surfaces [Lawrence et al, (2010) Icarus, 205, pp. 195-209, Mitrofanov et al (2007) Science 297(5578), 78-81]. Indications for the presence of localized and relatively high water content was provided by LRO and LCROSS. LEND identified Cabeus, as the most promising LCROSS impact site [Mitrofanov I. et al. (2010) Science, 330, 483], and instruments onboard LRO and LCROSS have measured signatures of water, H2 and other volatiles in the impact plume [Colaprete A. et al. (2010) Science, 339,463, Gladstone R. et al. (2010) Science, 330, 472].

  17. Requirements validation testing on the 7 optical fiber array connector/cable assemblies for the Lunar Reconnaissance Orbiter (LRO)

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Jin, Xiaodan Linda; LaRocca, Frank V.; Matuszeski, Adam; Chuska, Richard F.; MacMurphy, Shawn L.

    2007-09-01

    In the past year, a unique capability has been created by NASA Goddard Space Flight Center (GSFC) in support of Lunar Exploration. The photonics group along with support from the Mechanical Systems Division, developed a seven fiber array assembly using a custom Diamond AVIM PM connector for space flight applications. This technology enabled the Laser Ranging Application for the LRO to be possible. Laser pulses at 532 nm will be transmitted from the earth to the LRO stationed at the moon and used to make distance assessments. The pulses will be collected with the Laser Ranging telescope and focused into the array assemblies. The array assemblies span down a boom, through gimbals and across the space craft to the instrument the Lunar Orbiter Laser Altimeter (LOLA). Through use of a LOLA detector the distance between the LRO and the Earth will be calculated simultaneously while LOLA is mapping the surface of the moon. The seven fiber array assemblies were designed in partnership with W.L. Gore, Diamond Switzerland, and GSFC, manufactured by the Photonics Group at NASA Goddard Space Flight Center (GSFC) and tested for environmental effects there as well. Presented here are the requirements validation testing and results used to insure that these unique assemblies would function adequately during the Laser Ranging 14-month mission. The data and results include in-situ monitoring of the optical assemblies during cold gimbal motion life-testing, radiation, vibration and thermal testing.

  18. Calibration and Validation of Images from the Mars Reconnaissance Orbiter Mars Color Imager (MARCI) and Context Camera (CTX) Instruments

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek; Bell, J. F., III; Malin, M.; Caplinger, M.; Calvin, W. M.; Cantor, B.; Clancy, R. T.; Haberle, R. M.; James, P. B.; Lee, S.; Thomas, P.; Wolff, M. J.

    2006-09-01

    The MRO CTX instrument is a monochrome (611±189; nm), linear array CCD pushbroom camera with a nominal surface resolution of 6 m/pixel. The MARCI instrument is a 2-D CCD framing camera with 5 visible (420, 550, 600, 650, and 720 nm) and 2 UV (260 and 320 nm) filters, a 180° field of view, and a nominal resolution of about 1 km/pixel at nadir. Following Mars Orbital Insertion (MOI) in March 2006, CTX and MARCI images were acquired for initial instrument checkouts and validation of the pre-flight and in-flight calibration pipeline. CTX in-flight bias and dark current levels are derived from masked pixels at the edges of the array. A dark current model derived during pre-flight calibration is applied if the masked pixels exhibit a gradient across the field or noise above an acceptable threshold. The CTX flatfield removes residual pixel non-uniformities and a subtle ''jail bar'' effect caused by the CCD's alternating register readout. Radiances are derived from bias, dark, and flat-corrected images using pre-flight scaling factors. Dividing the average radiances by the solar spectral radiance convolved over the CTX filter transmission and applying a Minnaert phase angle correction yields an average I/F level in the CTX post-MOI Mars images near an expected value of 0.2. Bias and dark current subtraction of the MARCI images uses either a pre-flight model or dark sky data from the far left or far right parts of the field (nominally off the Mars limb). The preflight flatfield data were modified based on in-flight performance to remove residual non-pixel uniformities. Some residual pixel-dependent bias nonuniformities were also corrected using in-flight data. Bias, dark, and flat-corrected images were converted to radiance using pre-flight scaling factors. Phase-corrected 7-filter I/F values for the region of Mars imaged during the post-MOI campaign are consistent with previous data.

  19. Initial results from radio occultation measurements with the Mars Reconnaissance Orbiter: A nocturnal mixed layer in the tropics and comparisons with polar profiles from the Mars Climate Sounder

    NASA Astrophysics Data System (ADS)

    Hinson, David P.; Asmar, Sami W.; Kahan, Daniel S.; Akopian, Varoujan; Haberle, Robert M.; Spiga, Aymeric; Schofield, John T.; Kleinböhl, Armin; Abdou, Wedad A.; Lewis, Stephen R.; Paik, Meegyeong; Maalouf, Sami G.

    2014-11-01

    The Mars Reconnaissance Orbiter (MRO) performs radio occultation (RO) measurements on selected orbits, generally once per day. We have retrieved atmospheric profiles from two subsets of data, yielding a variety of new results that illustrate the scientific value of the observations. One set of measurements sounded the tropics in northern summer at a local time ∼1 h before sunrise. Some of these profiles contain an unexpected layer of neutral stability with a depth of ∼4 km and a pressure at its upper boundary of ∼160 Pa. The mixed layer is bounded above by a temperature inversion and below by another strong inversion adjacent to the surface. This type of structure is observed near Gale Crater, in the Tharsis region, and at a few other locations, whereas profiles in Amazonis Planitia and Elysium Planitia show no sign of a detached mixed layer with an overlying inversion. We supplemented the measurements with numerical simulations by the NASA Ames Mars General Circulation Model, which demonstrate that water ice clouds can generate this distinctive type of temperature structure through their influence on radiative transfer at infrared wavelengths. In particular, the simulations predict the presence of a nocturnal cloud layer in the Tharsis region at a pressure of ∼150 Pa (∼10 km above the surface), and the nighttime radiative cooling at cloud level is sufficient to produce a temperature inversion above the cloud as well as convective instability below the cloud, consistent with the observations. The second set of measurements sounded mid-to-high northern latitudes in spring, when carefully coordinated observations by the MRO Mars Climate Sounder (MCS) are also available. The differences between the RO and MCS temperature profiles are generally consistent with the expected performance of the two instruments. Within this set of 21 comparisons the average temperature difference is less than 1 K where the aerosol opacities are smaller than 10-3km-1 , at

  20. The Lunar Reconnaissance Orbiter (LRO) at the Dynamic Moon: Five Years of Operations in Lunar Orbit - An Overview of the Mission, Key Science Results, Data Products, and Future Measurements

    NASA Astrophysics Data System (ADS)

    Petro, N. E.; Keller, J. W.

    2014-12-01

    The Lunar Reconnaissance Orbiter (LRO) has been orbiting the Moon for over five years. In that time, data from the seven instruments onboard the spacecraft have made significant advances in our understanding of the Moon and its environment. In September 2014 LRO completed its first Extended Science Mission (ESM) and began a second ESM (pending NASA approval). During the ESM and the second ESM, LRO has been in a quasi-stable, eccentric orbit of ~30 x 180 km with a periapse near the South Pole. This orbit enabled high-resolution measurements around the South Pole. LRO's seven instruments are operating nominally, and have experienced no significant degradation since beginning the ESM. The spacecraft has performed exceptionally well, with 98.4% uptime during the mission. LRO retains sufficient fuel so that its current orbit can be maintained for at least 8 years. LRO's science teams have been extremely productive, focusing on the distribution of volatiles, evidence for early differentiation, measuring the lunar impact record, and the Moon's interactions with its external environment. Three of the most exciting findings by LRO have been the identification of LRO-era impacts, global tectonic features, and the transient nature of some volatiles at the surface. These findings are areas of study for future LRO measurements. LRO's data is released to the PDS every 3 months, as of Aug. 2014 528.75 TB of data have been delivered by LRO. Many of the teams have delivered higher-level data products as part of their routine PDS deliveries (e.g., mosaics, maps, derived products). These products are intended to act as useful resources for the science community. Some higher-level LRO data products are of interest for future lunar landers. These products include illumination maps, meter-scale digital elevation models, roughness maps, and 50cm per pixel images of a range of possible landing sites. All of these products are available either from the PDS [1] or individual teams websites

  1. Emission Measurements of Lunar Analogues Measured in a Simulated Lunar Environment for Interpretation of Data Returned from the Diviner Lunar Radiometer on NASA’s Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Thomas, I. R.; Bowles, N. E.; Greenhagen, B. T.; Paige, D. A.

    2009-12-01

    A lunar thermal environment simulator has been constructed, in order to measure emission spectra of lunar analogue minerals in the same thermal environment as is present on the surface of the Moon. This data is directly comparable to measurements made by the Diviner instrument, currently in orbit around the Moon onboard the Lunar Reconnaissance Orbiter (LRO), allowing the composition of the Moon’s surface to be further determined, as part of the Diviner Compositional Investigation[1]. Diviner is a nine-channel infrared mapping radiometer, currently making high resolution (~160m per pixel) observations of the lunar surface from a ~50km lunar orbit[2]. The instrument’s filters are designed to map the temperature, mineralogy, albedo, rock abundance and bulk thermal properties of the surface regolith (soil)[2]. Three channels, located around 8µm, are capable of determining the spectral location of the Christiansen Feature (CF)[3], the primary spectral feature observed in mid-infrared measurements of the Moon[4,5]. Four other channels, from 13 to 400µm, are capable of mapping variations in emissivity of the lunar surface. The CF of a feldspathic mineral is located at a shorter wavelength than a mafic mineral, hence this emissivity maximum can be used as a compositional indicator[6,7]. It is observed as an emissivity maximum, and is enhanced by the lunar environment. In the top few hundreds of microns, at low to mid-latitudes during the daytime, large thermal gradients are induced due to very low heat transport within the lunar regolith[8,9,10,11]. The surface is cooled as it radiates to cold space, but soil transparency in the spectra around the CF region causes radiation to be emitted from the deeper, hotter layers, producing an emission maximum. Regolith grain size, mixing ratios, and the lack of atmosphere on the Moon also affect the shape and location of the CF[6,7,9,12]. The lunar thermal environment simulator creates an equivalent thermal gradient in lunar

  2. Miniature detector measures deep space radiation

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-08-01

    The 1972 journey of Apollo 17 marked not only the last time a human walked on the Moon but also the most recent manned venture beyond the outer reaches of the Earth's atmosphere. With preparations being made for humans to once again explore deep space, important steps are under way to quantify the hazards of leaving low-Earth orbit. One significant risk for long-distance missions is the increased exposure to ionizing radiation—energetic particles that can strip electrons off of otherwise neutral materials, affecting human health and the functioning of spacecraft equipment. The deep space probes that are being sent to measure the risks from ionizing radiation and other hazards can be costly, so maximizing the scientific value of each launch is important. With this goal in mind, Mazur et al. designed and developed a miniature dosimeter that was sent into lunar orbit aboard NASA's Lunar Reconnaissance Orbiter (LRO) in 2009. Weighing only 20 grams, the detector is able to measure fluctuations in ionizing radiation as low as 1 microrad (equivalent to 1.0 × 10-8 joules of energy deposited into 1 kilogram) while requiring minimal power and computer processing. The postage stamp-sized detector tracked radiation dosages for the first year of LRO's mission, with the results being confirmed by other onboard and near-Earth detectors. (Space Weather, doi:10.1029/2010SW000641, 2011)

  3. The future of space reconnaissance

    SciTech Connect

    Richelson, J.T.

    1991-01-01

    Despite the warming of US - Soviet relations, the US will still need to conduct extensive satellite reconnaissance, as will the Soviets. Besides monitoring advances in military technology and compliance with arms-control treaties, satellites have additional targets to examine. As demonstrated by recent events in the Persian Gulf, regional hot spots present constant threats. Targeting weaponry or listening in on an enemy's military communications from space is feasible form any nation operating a spy satellite. But, at the same time, satellites will also enable nations to gauge threats accurately and thus possibly circumvent potential hostilities. In any event, a multitude of orbiting eyes and ears from various countries - hostile, friendly and neutral - will affect international affairs for some time to come. Much of the surveillance technology other countries will use, however, will not match that of the US. Unclassified documents, military experts and former intelligence officials reveal that US satellite reconnaissance, having been an established and accepted component of intelligence operations for more than 30 years, has now reached a pinnacle of high technology. Indeed, analysts think the US may budget as much as $5 billion on space reconnaissance each year; the Department of Defense has already spent an estimated $100 billion since 1960, when the US began launching its photoreconnaissance satellites.

  4. Performance Demonstration of Miniature Phase Transition Cells in Microgravity as a Validation for their use in the Absolute Calibration of Temperature Sensors On-Orbit

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; Best, F. A.; Adler, D. P.; Aguilar, D. M.; Perepezko, J. H.

    2012-12-01

    The next generation of infrared remote sensing missions, including the climate benchmark missions, will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies requiring absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and were further refined under the NASA Instrument Incubator Program (IIP). In particular, the OARS has imbedded thermistors that can be periodically calibrated on-orbit using the melt signatures of small quantities (<0.5g) of three reference materials - mercury, water, and gallium, providing calibration from 233K to 303K. One of the many tests to determine the readiness of this technology for on-orbit application is a demonstration of performance in microgravity to be conducted on the International Space Station (ISS). This demonstration will make use of an Experiment Support Package developed by Utah State Space Dynamics Laboratory to continuously run melt cycles on miniature phase change cells containing gallium, a gallium-tin eutectic, and water. The phase change cells will be mounted in a small aluminum block along with a thermistor temperature sensor. A thermoelectric cooler will be used to change the temperature of the block. The demonstration will use the configuration of the phase transition cells developed under our NASA IIP that has been tested extensively in the laboratory under simulated mission life cycle scenarios - these included vibration, thermal soaks, and deep cycling. Melt signatures

  5. Liquid Water on the Surface of Mars Today: Present Gully Activity Observed by the Mars Reconnaissance Orbiter (MRO) and Mars Global Surveyor (MGS) and Direction for Future Missions

    NASA Astrophysics Data System (ADS)

    Harrison, T. N.; Malin, M. C.; Edgett, K. S.

    2009-12-01

    Eight new flows in martian mid-latitude gullies have been found using the MRO Context Camera and MGS Mars Orbiter Camera. Each formed during 1999-2009. Using MRO HiRISE images, we find that the morphology and inferred emplacement behavior of these features is consistent with those of debris flows fluidized by a liquid medium and not by dry, granular flows. Evidence comes from the patterns of flow around obstacles, ponding in and subsequent overtopping of topographic depressions, and super-elevation of deposits on channel banks where the channels change direction, attributes consistent with a liquid but not with fluid-like granular flow. Additional evidence includes anastomoses in distal reaches and lobate terminations. Of the 8 flows, 3 have formation dates constrained to within a single Mars year (although not the same year); these 3 formed during autumn to early spring, demonstrating that summer warming is not participating in creating the liquid (i.e., that would melt snow or ice). The new gully deposits indicate that some gullies are currently active, suggesting that Mars has liquid water today and it occasionally appears on the planet’s surface. NASA’s Mars Exploration Program has focused on the “follow the water” theme and is now shifting toward “habitability” and life detection. Places where liquid water comes to the Martian surface today warrant detailed investigation. Martian astrobiology involves the search for evidence of extinct and extant life. Discovery of ancient sedimentary rocks shifted emphasis from the Viking-era pursuit of present-day microbial life to MSL’s focus on habitable environments. Recent descriptions of contemporary methane production have renewed interest in searching for extant life. Missions to locations of potential present day life, whether indicated by methane or liquid water, must deal with the associated planetary protection issues (they are “special regions”). More information about such locations is critical

  6. Miniature synthetic-aperture radar system

    NASA Astrophysics Data System (ADS)

    Stockton, Wayne; Stromfors, Richard D.

    1990-11-01

    Loral Defense Systems-Arizona has developed a high-performance synthetic-aperture radar (SAR) for small aircraft and unmanned aerial vehicle (UAV) reconnaissance applications. This miniature radar, called Miniature Synthetic-Aperture Radar (MSAR), is packaged in a small volume and has low weight. It retains key features of large SAR systems, including high-resolution imaging and all-weather operation. The operating frequency of MSAR can optionally be selected to provide foliage penetration capability. Many imaging radar configurations can be derived using this baseline system. MSAR with a data link provides an attractive UAV sensor. MSAR with a real-time image formation processor is well suited to installations where onboard processing and immediate image analysis are required. The MSAR system provides high-resolution imaging for short-to-medium range reconnaissance applications.

  7. Orbiter's Skeleton

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.

  8. SHAred Reconnaissance Pod (SHARP) program

    NASA Astrophysics Data System (ADS)

    Kent, Dennis C.

    2001-12-01

    The SHAred Reconnaissance Pod (SHARP) Program is a United States Navy tactical reconnaissance program that culminates in the supply of visible and infrared imagery products to the fleet. The intent of the program is to provide the warfighter the most robust tactical reconnaissance capability possible in a timely manner. The SHARP concept is a multi-function reconnaissance pod, adaptable to several airborne platforms for tactical manned airborne reconnaissance. The genesis platform is the Navy F/A-18. With regard to multi-platform application, a smart pod approach has been pursued with most of the required functionality being incorporated into the pod. SHARP will replace the Tactical Airborne Reconnaissance Pod System (TARPS) flying on the Navy F-14. This paper outlines the SHARP Program requirements and acquisition approach, along with the SHARP system capabilities and operation.

  9. Night reconnaissance for F-16 multirole reconnaissance pod

    NASA Astrophysics Data System (ADS)

    Brownie, Ralph S.; Larroque, Clement

    2004-08-01

    The Belgian Air Force successfully carried out flight trials of the latest Low Light CCD focal plane technology during December of 2003. Simultaneous imaging of the ground was performed by conventional CCD, Infra Red Linescan and Low Light CCD reconnaissance sensors; provided and integrated by Thales within the Modular Reconnaissance Pod (MRP). This paper reports on the results and compares capability of the technologies.

  10. Miniature Earthmover

    NASA Technical Reports Server (NTRS)

    1996-01-01

    International Machinery Corporation (IMC) developed a miniature earthmover, the 1/8 scale Caterpillar D11N Track-type Tractor, with trademark product approval and manufacturing/marketing license from Caterpillar, Inc. Through Marshall Space Flight Center assistance, the company has acquired infrared remote control technology, originally developed for space exploration. The technology is necessary for exports because of varying restrictions on radio frequency in foreign countries. The Cat D11N weighs only 340 pounds and has the world's first miniature industrial internal combustion engine. The earthmover's uses include mining, construction and demolition work, and hazardous environment work. IMC also has designs of various products for military use and other Caterpillar replicas.

  11. Hypersonic reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Bulk, Tim; Chiarini, David; Hill, Kevin; Kunszt, Bob; Odgen, Chris; Truong, Bon

    1992-01-01

    A conceptual design of a hypersonic reconnaissance aircraft for the U.S. Navy is discussed. After eighteen weeks of work, a waverider design powered by two augmented turbofans was chosen. The aircraft was designed to be based on an aircraft carrier and to cruise 6,000 nautical miles at Mach 4;80,000 feet and above. As a result the size of the aircraft was only allowed to have a length of eighty feet, fifty-two feet in wingspan, and roughly 2,300 square feet in planform area. Since this is a mainly cruise aircraft, sixty percent of its 100,000 pound take-off weight is JP fuel. At cruise, the highest temperature that it will encounter is roughly 1,100 F, which can be handled through the use of a passive cooling system.

  12. The reconnaissance and siting of field hospitals.

    PubMed

    Boreham, A; Bricknell, M C M

    2002-03-01

    This paper describes the reconnaissance function for the siting of deployable field hospitals. It reports two levels of reconnaissance, theatre/operational and tactical. The paper describes the factors to be considered when conducting the reconnaissance and the format of the reconnaissance report. PMID:12024890

  13. High altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdo, Renee Anna; Moller, David

    1990-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000 plus feet, which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 feet for six hours at Mach 0.7, while carrying 3,000 lbs. of payload. In addition, the aircraft must have a minimum range of 6,000 miles. In consideration of the novel nature of this project, the pilot must be able to take control in the event of unforeseen difficulties. Three aircraft configurations were determined to be the most suitable - a joined-wing, a biplane, and a twin-boom conventional airplane. The performance of each configuration was analyzed to investigate the feasibility of the project.

  14. Mars Reconnaissance Orbiter Mission: Systems Engineering Challenges on the Mars Reconnaissance Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Havens, Glen G.

    2007-01-01

    MRO project is a system of systems requiring system engineering team to architect, design, integrate, test, and operate these systems at each level of the project. The challenge of system engineering mission objectives into a single mission architecture that can be integrated tested, launched, and operated. Systems engineering must translate high-level requirements into integrated mission design. Systems engineering challenges were overcome utilizing a combination by creative designs built into MRO's flight and ground systems: a) Design of sophisticated spacecraft targeting and data management capabilities b) Establishment of a strong operations team organization; c) Implementation of robust operational processes; and d) Development of strategic ground tools. The MRO system has met the challenge of its driving requirements: a) MRO began its two-year primary science phase on November 7, 2006, and by July 2007, met it minimum requirement to collect 15 Tbits of data after only eight months of operations. Currently we have collected 22 Tbits. b) Based on current performance, mission data return could return 70 Tbits of data by the end of the primary science phase in 2008.

  15. Performance Demonstration of Miniature Phase Transition Cells in Microgravity as a Validation for their use in the Absolute Calibration of Temperature Sensors On-Orbit

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; Adler, D. P.; Best, F. A.; Aguilar, D. M.; Perepezko, J. H.

    2011-12-01

    The next generation of infrared remote sensing missions, including the climate benchmark missions, will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies requiring absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and are undergoing further refinement under the NASA Instrument Incubator Program (IIP). In particular, the OARS has embedded thermistors that can be periodically calibrated on-orbit using the melt signatures of small quantities (<0.5g) of three reference materials - mercury, water, and gallium (providing calibration from 233K to 303K). One of the many tests to determine the readiness of this technology for on-orbit application is a demonstration of performance in microgravity. We present the details of a demonstration experiment to be conducted on the International Space Station later this year. The demonstration will use the configuration of the phase transition cells developed under our NASA IIP that has been tested extensively in the laboratory under simulated mission life cycle scenarios - these included vibration, thermal soaks, and deep cycling. The planned microgravity demonstration will compare melt signatures obtained pre-flight on the ground with those obtained on the ISS for three phase change materials (water, gallium-tin, and gallium). With a successful demonstration experiment the phase transition cells in a microgravity environment will have cleared the last hurdle before being ready for

  16. LRO Enters Lunar Orbit (Highlights) - Duration: 2 minutes, 33 seconds.

    NASA Video Gallery

    After a four and a half day journey from the Earth, the Lunar Reconnaissance Orbiter, or LRO, successfully entered orbit around the moon. Engineers at NASA's Goddard Space Flight Center in Greenbel...

  17. Mars reconnaissance lander: Vehicle and mission design

    NASA Astrophysics Data System (ADS)

    Williams, H. R.; Bridges, J. C.; Ambrosi, R. M.; Perkinson, M.-C.; Reed, J.; Peacocke, L.; Bannister, N. P.; Howe, S. D.; O'Brien, R. C.; Klein, A. C.

    2011-10-01

    There is enormous potential for more mobile planetary surface science. This is especially true in the case of Mars because the ability to cross challenge terrain, access areas of higher elevation, visit diverse geological features and perform long traverses of up to 200 km supports the search for past water and life. Vehicles capable of a ballistic ‘hop’ have been proposed on several occasions, but those proposals using in-situ acquired propellants are the most promising for significant planetary exploration. This paper considers a mission concept termed Mars Reconnaissance Lander using such a vehicle. We describe an approach where planetary science requirements that cannot be met by a conventional rover are used to derive vehicle and mission requirements. The performance of the hopper vehicle was assessed by adding estimates of gravity losses and mission mass constraints to recently developed methods. A baseline vehicle with a scientific payload of 16.5 kg and conservatively estimated sub-system masses is predicted to achieve a flight range of 0.97 km. Using a simple consideration of system reliability, the required cumulative range of 200 km could be achieved with a probability of around 80%. Such a range is sufficient to explore geologically diverse terrains. We therefore plot an illustrative traverse in Hypanis Valles/Xanthe Terra, which encounters crater wall sections, periglacial terrain, aqueous sedimentary deposits and a traverse up an ancient fluvial channel. Such a diversity of sites could not be considered with a conventional rover. The Mars Reconnaissance Lander mission and vehicle presents some very significant engineering challenges, but would represent a valuable complement to rovers, static landers and orbital observations.

  18. Interannual Comparison of Temporal and Spatial Structure in the Martian Thermosphere from Atmospheric Accelerometer Measurements of Mars Reconnaissance Orbiter (MRO) during Aerobraking and Stellar Occultation Measurements from the SPICAM Ultraviolet Infrared Atmospheric Spectrometer of Mars Express (MEX)

    NASA Astrophysics Data System (ADS)

    Theriot, Michael; Keating, G.; Blanchard, R.; Bougher, S.; Zurek, R.; Tolson, R.; Murphy, J.; Forget, F.; Bertaux, J.

    2006-09-01

    Before MRO's arrival at Mars, during Mars Express orbits 17 to 2888, SPICAM obtained 617 stellar occultation measurements of density and temperature structure from 40km to 140km. SPICAM measurements give global atmospheric structure over an entire Martian year. Where SPICAM derived atmospheric profiles overlap MRO aerobraking altitudes from 100km to 140km, we have made interannual comparisons with in situ MRO accelerometer derived atmospheric profiles for matching season, local solar time, latitude, longitude and altitude. Designed for aerobraking, MRO launched August 12, 2005, and achieved Mars Orbital Insertion (MOI) March 10, 2006. Atmospheric density decreases exponentially with increasing height. Using small propulsive changes to apoapsis orbital velocity, periapsis altitude was adjusted to the necessary density surfaces for safe aerobraking. MRO periapsis precessed from the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis dramatically shrank from 40,000km at MOI to 460 km at aerobraking completion (ABX) mid-September 2006. Then, a few small propulsive maneuvers established the Primary Science Orbit (PSO), which without aerobraking would have required an additional 400 kg of fuel. Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities as requested by The George Washington University, JPL, and Lockheed Martin, enabling good signal-to-noise-ratios up to at least 170km, critical for upper atmospheric science. Each of the 500+ MRO aerobraking orbits provides a distribution of density, scale-height, and temperature along the orbital path, providing key in situ insight into various upper atmosphere (> 100 km) processes. Characterization of key temporal and spatial cycles including: polar vortices, winter polar warming, dust storms, planetary scale waves, gravity waves, and gravitational tides associated with topography, validates and constrains both

  19. Stability-Augmentation Devices for Miniature Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, RIchard M.

    2005-01-01

    Non-aerodynamic mechanical devices are under consideration as means to augment the stability of miniature autonomous and remotely controlled aircraft. Such aircraft can be used for diverse purposes, including military reconnaissance, radio communications, and safety-related monitoring of wide areas. The need for stability-augmentation devices arises because adverse meteorological conditions generally affect smaller aircraft more strongly than they affect larger aircraft: Miniature aircraft often become uncontrollable under conditions that would not be considered severe enough to warrant grounding of larger aircraft. The need for the stability-augmentation devices to be non-aerodynamic arises because there is no known way to create controlled aerodynamic forces sufficient to counteract the uncontrollable meteorological forces on miniature aircraft. A stability-augmentation device of the type under consideration includes a mass pod (a counterweight) at the outer end of a telescoping shaft, plus associated equipment to support the operation of the aircraft. The telescoping shaft and mass pod are stowed in the rear of the aircraft. When deployed, they extend below the aircraft. Optionally, an antenna for radio communication can be integrated into the shaft. At the time of writing this article, the deployment of the telescoping shaft and mass pod was characterized as passive and automatic, but information about the deployment mechanism(s) was not available. The feasibility of this stability-augmentation concept was demonstrated in flights of hand-launched prototype aircraft.

  20. Micro-Miniature Split Stirling Linear Crycooler

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Zehtzer, S.; Vilenchik, H.; Pundak, N.

    2010-04-01

    Novel tactics for rescue, surveillance, reconnaissance, force protection, perimeter security, navigation and targeting often involve the use of miniature infrared imagers, where the cooled imaging systems are known to be superior to their uncooled rivals in terms of working range, resolution and ability to distinguish/track fast moving objects in dynamic infrared scenes. The latest technological advances in industrial applications of high-temperature infrared detectors have spurred the development of linearly driven, long life, dynamically quiet and aurally undetectable micro-miniature split Stirling linear cryogenic coolers. Recent progress in designing highly efficient "moving magnet" resonant linear actuators and dedicated smart electronics have enabled further improvements to the cooler's size, weight, power consumption, cooldown time and ownership costs. The authors report on the development of a novel micro-miniature split Stirling linear cryogenic cooler, where, by means of increasing the driving frequency up to 90 Hz, it appeared possible to shorten the cold finger to 19 mm. The cooler was specifically designed to cool a new generation of 130 K infrared detectors for portable infrared imagers, where compactness, low steady-state power consumption, fast cool-down time, vibration export and aural stealth are of primary concern.

  1. Family of Orbiters

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time.

    All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet.

    Phoenix will land just south of Mars's north polar ice cap.

  2. Multiple Miniature Avionic Displays

    NASA Technical Reports Server (NTRS)

    Rye, Jeffrey M. (Inventor); Dorneich, Michael C. (Inventor); Gannon, Aaron J. (Inventor)

    2008-01-01

    A display screen for displaying multiple sets of information is provided. In one embodiment, an aviation display screen includes a main window and a plurality of miniature windows. The main window is adapted to illustrate one set of information. Each miniature window is adapted to display a set of avionic information. The avionic display is further adapted to toggle a select set of avionic information in one of the miniature windows into the main window.

  3. Miniature propulsion systems

    NASA Astrophysics Data System (ADS)

    Campbell, John G.

    1992-07-01

    Miniature solenoid valves, check valves and a hydrazine gas generator typify the miniaturization used in the liquid propulsion system for the Army Light Weight Exo-Atmospheric Projectile (LEAP). The pressure control subsystem uses a solenoid valve weighing 24 grams to control flow of helium to pressurize the propellant tanks. The attitude control subsystem uses a gas generator weighing 71 grams to produce decomposed hydrazine as the gaseous propellant for miniature 1 lbf ACS thrusters weighing 5.4 grams. The successful use of these miniature components in development tests and a hover test of the LEAP is described.

  4. Miniature Scroll Pumps Fabricated by LIGA

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Shcheglov, Kirill; White, Victor; Bae, Sam

    2009-01-01

    Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of <1 m. Such tight tolerances cannot be achieved easily by conventional machining of high-aspect-ratio structures like those of scroll-pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.

  5. Science and Reconnaissance from the Europa Clipper Mission

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Pappalardo, R. T.; Senske, D.; Vance, S.; Patterson, G.; Paczkowski, B.; Goldstein, B.; Magner, T. J.; Cooke, B.

    2013-12-01

    The Europa Clipper mission concept is the subject of a NASA-funded study by a joint JPL/APL science and technical team. The Clipper spacecraft would launch in the 2021 timeframe and would be placed in orbit around Jupiter to perform a detailed investigation of Europa, a world that shows strong evidence for a liquid water ocean beneath its icy crust, and which could host conditions favorable for life. As envisioned, a highly capable, radiation-tolerant spacecraft with a diverse instrument suite would make repeated close flybys of Europa. The Europa Clipper science objectives are: (1) Ocean and Ice Shell - Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; (2) Composition - Understand the habitability of Europa's ocean through composition and chemistry; (3) Geology - Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. To maximize success of potential future landed missions, the Europa Clipper would include a reconnaissance capability. Reconnaissance objectives are: (1) Landing Safety - Assess the distribution of surface hazards, the load-bearing capacity of the surface, the structure of the subsurface, and the regolith thickness for specific surface sites; (2) Scientific Value - Assess the composition of surface materials, the geologic context of the surface, the potential for geologic activity, the proximity of near surface water, and the potential for active upwelling of ocean material for the reconnaissance sites. We here present updates on the mission concept, the current encounter trajectory, and science and reconnaissance objectives.

  6. Simulation of parafoil reconnaissance imagery

    NASA Astrophysics Data System (ADS)

    Kogler, Kent J.; Sutkus, Linas; Troast, Douglas; Kisatsky, Paul; Charles, Alain M.

    1995-08-01

    Reconnaissance from unmanned platforms is currently of interest to DoD and civil sectors concerned with drug trafficking and illegal immigration. Platforms employed vary from motorized aircraft to tethered balloons. One appraoch currently under evaluation deploys a TV camera suspended from a parafoil delivered to the area of interest by a cannon launched projectile. Imagery is then transmitted to a remote monitor for processing and interpretation. This paper presents results of imagery obtained from simulated parafoil flights in which software techniques were developed to process-in image degradation caused by atmospheric obscurants and perturbations in the normal parafoil flight trajectory induced by wind gusts. The approach to capturing continuous motion imagery from captive flight test recordings, the introduction of simulated effects, and the transfer of the processed imagery back to video tape is described.

  7. Light armored vehicle reconnaissance and surveillance system

    NASA Astrophysics Data System (ADS)

    Barbeau, Nicolas R.

    1994-10-01

    The Canadian Department of National Defence (DND) has established a requirement for a fleet of reconnaissance vehicles equipped with a modern surveillance system to be used in a wide variety of scenarios. This includes conventional operations within NATO, contingency operations in troubled areas as well as UN peacekeeping missions. As such, the Light Armored Vehicles Reconnaissance and Surveillance System will be the first 24 hour all- weather reconnaissance system integrated into a combat vehicle. This paper intends to describe how the operational requirements defined by DND were translated into sensor and system requirements. After a summary of the current configuration, it focuses on product pre-planned improvements and future needs.

  8. Reflections on Miniature Golf.

    ERIC Educational Resources Information Center

    Powell, Nancy Norem; And Others

    1994-01-01

    Describes a transformational geometry project in which groups of students explore symmetry, reflections, translations, rotations, and dilations to design and create one hole of miniature golf large enough to play on. Includes unit plan for transformational geometry. (MKR)

  9. Miniature TV Camera

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Originally devised to observe Saturn stage separation during Apollo flights, Marshall Space Flight Center's Miniature Television Camera, measuring only 4 x 3 x 1 1/2 inches, quickly made its way to the commercial telecommunications market.

  10. Miniature oxygen resuscitator

    NASA Technical Reports Server (NTRS)

    Johnson, G.; Teegen, J. T.; Waddell, H.

    1969-01-01

    Miniature, portable resuscitation system is used during evacuation of patients to medical facilities. A carrying case contains a modified resuscitator head, cylinder of oxygen, two-stage oxygen regulator, low pressure tube, and a mask for mouth and nose.

  11. Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN)

    NASA Astrophysics Data System (ADS)

    Murchie, S. L.; Chabot, N. L.; Buczkowski, D.; Arvidson, R. E.; Castillo, J. C.; Peplowski, P. N.; Ernst, C. M.; Rivkin, A.; Eng, D.; Chmielewski, A. B.; Maki, J.; trebi-Ollenu, A.; Ehlmann, B. L.; Spence, H. E.; Horanyi, M.; Klingelhoefer, G.; Christian, J. A.

    2015-12-01

    The Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN) is a NASA Discovery mission proposal to explore the moons of Mars. Previous Mars-focused spacecraft have raised fundamental questions about Mars' moons: What are their origins and compositions? Why do the moons resemble primitive outer solar system D-type objects? How do geologic processes modify their surfaces? MERLIN answers these questions through a combination of orbital and landed measurements, beginning with reconnaissance of Deimos and investigation of the hypothesized Martian dust belts. Orbital reconnaissance of Phobos occurs, followed by low flyovers to characterize a landing site. MERLIN lands on Phobos, conducting a 90-day investigation. Radiation measurements are acquired throughout all mission phases. Phobos' size and mass provide a low-risk landing environment: controlled descent is so slow that the landing is rehearsed, but gravity is high enough that surface operations do not require anchoring. Existing imaging of Phobos reveals low regional slope regions suitable for landing, and provides knowledge for planning orbital and landed investigations. The payload leverages past NASA investments. Orbital imaging is accomplished by a dual multispectral/high-resolution imager rebuilt from MESSENGER/MDIS. Mars' dust environment is measured by the refurbished engineering model of LADEE/LDEX, and the radiation environment by the flight spare of LRO/CRaTER. The landed workspace is characterized by a color stereo imager updated from MER/HazCam. MERLIN's arm deploys landed instrumentation using proven designs from MER, Phoenix, and MSL. Elemental measurements are acquired by a modified version of Rosetta/APXS, and an uncooled gamma-ray spectrometer. Mineralogical measurements are acquired by a microscopic imaging spectrometer developed under MatISSE. MERLIN delivers seminal science traceable to NASA's Strategic Goals and Objectives, Science Plan, and the Decadal Survey. MERLIN's science

  12. High-altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdi, Renee Anna

    1991-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000+ ft, which is beyond the capabilities of the ER-2, NASA's current high-altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer. The aircraft must be able to satisfy four mission profiles. The first is a polar mission that ranges from Chile to the South Pole and back to Chile, a total range of 6000 n.m. at 100,000 ft with a 2500-lb payload. The second mission is also a polar mission with a decreased altitude and an increased payload. For the third mission, the aircraft will take off at NASA Ames, cruise at 100,000 ft, and land in Chile. The final mission requires the aircraft to make an excursion to 120,000 ft. All four missions require that a subsonic Mach number be maintained because of constraints imposed by the air sampling equipment. Three aircraft configurations were determined to be the most suitable for meeting the requirements. The performance of each is analyzed to investigate the feasibility of the mission requirements.

  13. Miniaturized handheld hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Wu, Huawen; Haibach, Frederick G.; Bergles, Eric; Qian, Jack; Zhang, Charlie; Yang, William

    2014-05-01

    A miniaturized hyperspectral imager is enabled with image sensor integrated with dispersing elements in a very compact form factor, removing the need for expensive, moving, bulky and complex optics that have been used in conventional hyperspectral imagers for decades. The result is a handheld spectral imager that can be installed on miniature UAV drones or conveyor belts in production lines. Eventually, small handhelds can be adapted for use in outpatient medical clinics for point-of-care diagnostics and other in-field applications.

  14. HORUS — Herschel Orbital Reconnaissance of the Uranian System

    NASA Astrophysics Data System (ADS)

    Smith, R. M.; Yozwiak, A. W.; Lederer, A. P.; Turtle, E. P.

    2010-03-01

    A mission concept study of the uranian system is explored under the constraints of the NASA New Frontiers program. The study was designed and led by student interns at the Johns Hopkins University Applied Physics Laboratory.

  15. Copernican craters: Early results from the Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.; Hiesinger, H.; Thomas, P. C.; Robinson, M. S.; van der Bogert, C.; Ostrach, L.; Plescia, J. B.; Bray, V. J.; Tornabene, L. L.

    2009-12-01

    The youngest (Copernican) craters on the Moon provide the best examples of original crater morphology and a record of the impact flux over the last ~1 Ga in the Earth-Moon system. The LRO Narrow Angle Cameras (NAC) provide 50 cm pixels from an altitude of 50 km. With changing incidence angle, global access, and very high data rates, these cameras provide unprecedented data on lunar craters. Stereo image pairs are being acquired for detailed topographic mapping. These data allow comparisons of relative ages of the larger young craters, some of which are tied to absolute radiometric ages from Apollo-returned samples. These relative ages, the crater populations at small diameters, and details of crater morphology including ejecta and melt morphologies, allow better delineation of recent lunar history and the formation and modification of impact craters. Crater counts may also reveal differences in the formation and preservation of small diameter craters as a function of target material (e.g., unconsolidated regolith versus solid impact melt). One key question: Is the current cratering rate constant or does it fluctuate. We will constrain the very recent cratering rate (at 10-100 m diameter) by comparing LROC images with those taken by Apollo nearly 40 years ago to determine the number of new impact craters. The current cratering rate and an assumption of constant cratering rate over time may or may not correctly predict the number of craters superimposed over radiometrically-dated surfaces such as South Ray, Cone, and North Ray craters, which range from 2-50 Ma and are not saturated by 10-100 m craters. If the prediction fails with realistic consideration of errors, then the present-day cratering rate must be atypical. Secondary craters complicate this analysis, but the resolution and coverage of LROC enables improved recognition of secondary craters. Of particular interest for the youngest Copernican craters is the possibility of self-cratering. LROC is providing the the image quality needed to classify small craters by state of degradation (i.e., relative age); concentrations of craters with uniform size and age indicate secondary formation. Portion of LROC image M103703826LE showing a sparsely-cratered pond of impact melt on the floor of farside Copernican crater Necho (4.95 S, 123.6 E).

  16. Miniature Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Sixsmith, Herbert

    1989-01-01

    Miniature turbocompressor designed for reliability and long life. Cryogenic system includes compressor, turboexpander, and heat exchanger provides 5 W of refrigeration at 70 K from 150 W input power. Design speed of machine 510,000 rpm. Compressor has gas-lubricated journal bearings and magnetic thrust bearing. When compressor runs no bearing contact and no wear.

  17. Throw a Miniature Vase

    ERIC Educational Resources Information Center

    Sapiro, Maurice

    1977-01-01

    A direct correlation exists between the acquisition of skills on the potter's wheel and the vertical dimension of the finished pot. Ability equals height. Overlooked somewhere in the search for acquiring technical facility and a means of demonstrating it, is the fascinating world of miniature pottery. Describes the mechanics peculiar to small…

  18. Chukar III-R Reconnaissance System

    NASA Astrophysics Data System (ADS)

    Toops, Laurence C.

    1990-02-01

    This paper describes Northrop's developmental Chukar 111-R reconnaissance system, which is based on the Chukar III target drone. Some military needs for reconnaissance and the advantages of employing an unmanned air vehicle to satisfy these needs are noted. Next, features incorporated into the new Chukar III-R reconnaissance system are described. These features include a high performance unmanned air vehicle (UAV), an infrared line scanner for imaOng targets, radio position-fix enhanced navigation, and a new mission planning and control station. Sensor slight test results, a pay-load mockup, and mission planning and image exploitation capabilities are discussed. The advantages of high speed and low observability are cited. Launch and retrieval techniques are described.

  19. Robotic reconnaissance platform. I. Spectroscopic instruments with rangefinders.

    PubMed

    Matharoo, Inderdeep; Peshko, Igor; Goldenberg, Andrew

    2011-11-01

    In this paper, basic principles of the design and implementation of a portable, multi-functional scientific instrument, operating from a robotic reconnaissance mobile platform are discussed. The current version of the instrument includes a multi-gas laser sensor, multi-functional spectrometer, isotopes identifier, cameras, and rangefinder. An additional set of sensors monitors temperature, pressure, humidity, and background radiation. All components are installed on a mini-robotic platform, which provides data acquisition, processing, and transmittance. The design focuses on the development of calibration-free, reliable, low power-consumption devices. To create a highly survivable, accurate, and reliable instrument, a concept of an inhomogeneous sensory network has been developed. Such a network combines non-identical sensors and provides cross-use of information received from different sensors to describe environmental conditions, to choose appropriate algorithms of data processing, and to achieve high accuracy gas-concentration measurements. The system uses the same lasers to operate different optical devices such as sensors, rangefinders, spectrometers, and isotopes identifiers. Among the innovative elements described in this paper, are a calibration-free, laser multi-gas sensor with range-finding option; a high signal/noise ratio transmittance spectrometer; a single-frequency laser with nano-selector; and low repetition-rate femtosecond fiber lasers operating in near- and middle- infrared spectral ranges. New detailed analyses of absorption spectroscopy theoretical approximations made it possible to achieve high-accuracy gas-concentration measurements with miniature optical sensors. PMID:22128966

  20. Robotic reconnaissance platform. I. Spectroscopic instruments with rangefinders

    SciTech Connect

    Matharoo, Inderdeep; Peshko, Igor; Goldenberg, Andrew

    2011-11-15

    In this paper, basic principles of the design and implementation of a portable, multi-functional scientific instrument, operating from a robotic reconnaissance mobile platform are discussed. The current version of the instrument includes a multi-gas laser sensor, multi-functional spectrometer, isotopes identifier, cameras, and rangefinder. An additional set of sensors monitors temperature, pressure, humidity, and background radiation. All components are installed on a mini-robotic platform, which provides data acquisition, processing, and transmittance. The design focuses on the development of calibration-free, reliable, low power-consumption devices. To create a highly survivable, accurate, and reliable instrument, a concept of an inhomogeneous sensory network has been developed. Such a network combines non-identical sensors and provides cross-use of information received from different sensors to describe environmental conditions, to choose appropriate algorithms of data processing, and to achieve high accuracy gas-concentration measurements. The system uses the same lasers to operate different optical devices such as sensors, rangefinders, spectrometers, and isotopes identifiers. Among the innovative elements described in this paper, are a calibration-free, laser multi-gas sensor with range-finding option; a high signal/noise ratio transmittance spectrometer; a single-frequency laser with nano-selector; and low repetition-rate femtosecond fiber lasers operating in near- and middle- infrared spectral ranges. New detailed analyses of absorption spectroscopy theoretical approximations made it possible to achieve high-accuracy gas-concentration measurements with miniature optical sensors.

  1. Tier-scalable reconnaissance: the challenge of sensor optimization, sensor deployment, sensor fusion, and sensor interoperability

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; George, Thomas; Tarbell, Mark A.

    2007-04-01

    Robotic reconnaissance operations are called for in extreme environments, not only those such as space, including planetary atmospheres, surfaces, and subsurfaces, but also in potentially hazardous or inaccessible operational areas on Earth, such as mine fields, battlefield environments, enemy occupied territories, terrorist infiltrated environments, or areas that have been exposed to biochemical agents or radiation. Real time reconnaissance enables the identification and characterization of transient events. A fundamentally new mission concept for tier-scalable reconnaissance of operational areas, originated by Fink et al., is aimed at replacing the engineering and safety constrained mission designs of the past. The tier-scalable paradigm integrates multi-tier (orbit atmosphere surface/subsurface) and multi-agent (satellite UAV/blimp surface/subsurface sensing platforms) hierarchical mission architectures, introducing not only mission redundancy and safety, but also enabling and optimizing intelligent, less constrained, and distributed reconnaissance in real time. Given the mass, size, and power constraints faced by such a multi-platform approach, this is an ideal application scenario for a diverse set of MEMS sensors. To support such mission architectures, a high degree of operational autonomy is required. Essential elements of such operational autonomy are: (1) automatic mapping of an operational area from different vantage points (including vehicle health monitoring); (2) automatic feature extraction and target/region-of-interest identification within the mapped operational area; and (3) automatic target prioritization for close-up examination. These requirements imply the optimal deployment of MEMS sensors and sensor platforms, sensor fusion, and sensor interoperability.

  2. Mission Planning and Scheduling System for NASA's Lunar Reconnaissance Mission

    NASA Technical Reports Server (NTRS)

    Garcia, Gonzalo; Barnoy, Assaf; Beech, Theresa; Saylor, Rick; Cosgrove, Sager; Ritter, Sheila

    2009-01-01

    In the framework of NASA's return to the Moon efforts, the Lunar Reconnaissance Orbiter (LRO) is the first step. It is an unmanned mission to create a comprehensive atlas of the Moon's features and resources necessary to design and build a lunar outpost. LRO is scheduled for launch in April, 2009. LRO carries a payload comprised of six instruments and one technology demonstration. In addition to its scientific mission LRO will use new technologies, systems and flight operations concepts to reduce risk and increase productivity of future missions. As part of the effort to achieve robust and efficient operations, the LRO Mission Operations Team (MOT) will use its Mission Planning System (MPS) to manage the operational activities of the mission during the Lunar Orbit Insertion (LOI) and operational phases of the mission. The MPS, based on GMV's flexplan tool and developed for NASA with Honeywell Technology Solutions (prime contractor), will receive activity and slew maneuver requests from multiple science operations centers (SOC), as well as from the spacecraft engineers. flexplan will apply scheduling rules to all the requests received and will generate conflict free command schedules in the form of daily stored command loads for the orbiter and a set of daily pass scripts that help automate nominal real-time operations.

  3. Miniaturized Environmental Monitoring Instrumentation

    SciTech Connect

    C. B. Freidhoff

    1997-09-01

    The objective of the Mass Spectrograph on a Chip (MSOC) program is the development of a miniature, multi-species gas sensor fabricated using silicon micromachining technology which will be orders of magnitude smaller and lower power consumption than a conventional mass spectrometer. The sensing and discrimination of this gas sensor are based on an ionic mass spectrograph, using magnetic and/or electrostatic fields. The fields cause a spatial separation of the ions according to their respective mass-to-charge ratio. The fabrication of this device involves the combination of microelectronics with micromechanically built sensors and, ultimately, vacuum pumps. The prototype of a chemical sensor would revolutionize the method of performing environmental monitoring for both commercial and government applications. The portable unit decided upon was the miniaturized gas chromatograph with a mass spectrometer detector, referred to as a GC/MS in the analytical marketplace.

  4. Miniaturization in Biocatalysis

    PubMed Central

    Fernandes, Pedro

    2010-01-01

    The use of biocatalysts for the production of both consumer goods and building blocks for chemical synthesis is consistently gaining relevance. A significant contribution for recent advances towards further implementation of enzymes and whole cells is related to the developments in miniature reactor technology and insights into flow behavior. Due to the high level of parallelization and reduced requirements of chemicals, intensive screening of biocatalysts and process variables has become more feasible and reproducibility of the bioconversion processes has been substantially improved. The present work aims to provide an overview of the applications of miniaturized reactors in bioconversion processes, considering multi-well plates and microfluidic devices, update information on the engineering characterization of the hardware used, and present perspective developments in this area of research. PMID:20479988

  5. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  6. Miniature implantable ultrasonic echosonometer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K. (Inventor)

    1978-01-01

    A miniature echosonometer adapted for implantation in the interior of an animal for imaging the internal structure of a organ, tissue or vessel is presented. The echosonometer includes a receiver/transmitter circuit which is coupled to an ultrasonic transducer. Power is coupled to the echosonometer by electromagnetic induction through the animal's skin. Imaging signals from the echosonometer are electromagnetically transmitted through the animal's skin to an external readout apparatus.

  7. A miniaturized applanation tonometer.

    PubMed

    Ma, J G; Xu, D Z

    1999-08-01

    A miniaturized hand-held applanation tonometer is introduced, in which a special cone prism is employed to be an applanation probe to flatten the eye vertically. The self-weight of the probe is just the applanation force, and the applanation area of the ocular cornea is monitored by the optoelectronic signal. The preliminary test demonstrates its good clinical acceptance and its accuracy meeting clinical needs. PMID:10431459

  8. Miniature multichannel biotelemeter system

    NASA Technical Reports Server (NTRS)

    Carraway, J. B.; Sumida, J. T. (Inventor)

    1974-01-01

    A miniature multichannel biotelemeter system is described. The system includes a transmitter where signals from different sources are sampled to produce a wavetrain of pulses. The transmitter also separates signals by sync pulses. The pulses amplitude modulate a radio frequency carrier which is received at a receiver unit. There the sync pulses are detected by a demultiplexer which routes the pulses from each different source to a separate output channel where the pulses are used to reconstruct the signals from the particular source.

  9. Miniaturizing RFID for magnamosis.

    PubMed

    Jiang, Hao; Chen, Shijie; Kish, Shad; Loh, Lokkee; Zhang, Junmin; Zhang, Xiaorong; Kwiat, Dillon; Harrison, Michael; Roy, Shuvo

    2014-01-01

    Anastomosis is a common surgical procedure using staples or sutures in an open or laparoscopic surgery. A more effective and much less invasive alternative is to apply the mechanical pressure on the tissue over a few days [1]. Since the pressure is produced by the attractive force between two permanent magnets, the procedure is called magnamosis[1]. To ensure the two magnets are perfectly aligned during the surgery, a miniaturized batteryless Radio Frequency IDentification (RFID) tag is developed to wirelessly telemeter the status of a pressure sensitive mechanical switch. Using the multi-layer circular spiral coil design, the diameter of the RFID tag is shrunk to 10, 15, 19 and 27 mm to support the magnamosis for children as well as adults. With the impedance matching network, the operating distance of these four RFID tags are longer than 10 cm in a 20 × 22 cm(2) area, even when the tag's normal direction is 45° off the antenna's normal direction. Measurement results also indicate that there is no noticeable degradation on the operating distance when the tag is immersed in saline or placed next to the rare-earth magnet. The miniaturized RFID tag presented in this paper is able to support the magnamosis and other medical applications that require the miniaturized RFID tag. PMID:25570040

  10. 15 CFR 270.101 - Preliminary reconnaissance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Preliminary reconnaissance. 270.101 Section 270.101 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Establishment...

  11. Miniature interferometer terminals for earth surveying

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Shapiro, I. I.

    1978-01-01

    A system of miniature radio interferometer terminals was proposed for the measurement of vector baselines with uncertainties ranging from the millimeter to the centimeter level for baseline lengths ranging, respectively, from a few to a few hundred kilometers. Each terminal would have no moving parts, could be packaged in a volume of less than 0.1 cu m, and would operate unattended. These units would receive radio signals from low-power (10 w) transmitters on earth-orbiting satellites. The baselines between units could be determined virtually instantaneously and monitored continuously as long as at least four satellites were visible simultaneously.

  12. The Miniature Radio Frequency Instruments (Mini-RF) Global Observations of Earth's Moon

    NASA Technical Reports Server (NTRS)

    Cahill, Joshua T. S.; Thomson, B. J.; Patterson, G. Wesley; Bussey, D. Benjamin J.; Neish, Catherine D.; Lopez, Norberto R.; Turner, F. Scott; Aldridge, T.; McAdam, M.; Meyer, H. M.; Raney, R. K.; Carter, L. M.; Spudis, P. D.; Hiesinger, H.; Pasckert, J. H.

    2014-01-01

    Radar provides a unique means to analyze the surface and subsurface physical properties of geologic deposits, including their wavelength-scale roughness, the relative depth of the deposits, and some limited compositional information. The NASA Lunar Reconnaissance Orbiter's (LRO) Miniature Radio Frequency (Mini-RF) instrument has enabled these analyses on the Moon at a global scale. Mini-RF has accumulated 67% coverage of the lunar surface in S-band (12.6 cm) radar with a resolution of 30 m/pixel. Here we present new Mini-RF global orthorectified uncontrolled S-band maps of the Moon and use them for analysis of lunar surface physical properties. Reported here are readily apparent global- and regional-scale differences in lunar surface physical properties that suggest three distinct terranes, namely: a (1) Nearside Radar Dark Region; (2) Orientale basin and continuous ejecta; and the (3) Highlands Radar Bright Region. Integrating these observations with new data from LRO's Diviner Radiometer rock abundance maps, as well Clementine and Lunar Prospector derived compositional values show multiple distinct lunar surface terranes and sub-terranes based upon both physical and compositional surface properties. Previous geochemical investigations of the Moon suggested its crust is best divided into three to four basic crustal provinces or terranes (Feldspathic Highlands Terrane (-An and -Outer), Procellarum KREEP Terrane, and South Pole Aitken Terrane) that are distinct from one another. However, integration of these geochemical data sets with new geophysical data sets allows us to refine these terranes. The result shows a more complex view of these same crustal provinces and provides valuable scientific and hazard perspectives for future targeted human and robotic exploration.

  13. Miniature Robotic Spacecraft for Inspecting Other Spacecraft

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven; Abbott, Larry; Duran, Steve; Goode, Robert; Howard, Nathan; Jochim, David; Rickman, Steve; Straube, Tim; Studak, Bill; Wagenknecht, Jennifer; Lemke, Matthew; Wade, Randall; Wheeler, Scott; Baggerman, Clinton

    2004-01-01

    A report discusses the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam)-- a compact robotic spacecraft intended to be released from a larger spacecraft for exterior visual inspection of the larger spacecraft. The Mini AERCam is a successor to the AERCam Sprint -- a prior miniature robotic inspection spacecraft that was demonstrated in a space-shuttle flight experiment in 1997. The prototype of the Mini AERCam is a demonstration unit having approximately the form and function of a flight system. The Mini AERCam is approximately spherical with a diameter of about 7.5 in. (.19 cm) and a weight of about 10 lb (.4.5 kg), yet it has significant additional capabilities, relative to the 14-in. (36-cm), 35-lb (16-kg) AERCam Sprint. The Mini AERCam includes miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including two digital video cameras and a high-resolution still camera. The Mini AERCam is designed for either remote piloting or supervised autonomous operations, including station keeping and point-to-point maneuvering. The prototype has been tested on an air-bearing table and in a hardware-in-the-loop orbital simulation of the dynamics of maneuvering in proximity to the International Space Station.

  14. Miniature Heat Transport System for Nanosatellite Technology

    NASA Technical Reports Server (NTRS)

    Douglas, Donya M,

    1999-01-01

    The scientific understanding of key physical processes between the Sun and the Earth require simultaneous measurements from many vantage points in space. Nano-satellite technologies will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections. This recent emphasis on the implementation of smaller satellites leads to a requirement for development of smaller subsystems in several areas. Key technologies under development include: advanced miniaturized chemical propulsion; miniaturized sensors; highly integrated, compact electronics; autonomous onboard and ground operations; miniatures low power tracking techniques for orbit determination; onboard RF communications capable of transmitting data to the ground from far distances; lightweight efficient solar array panels; lightweight, high output battery cells; lightweight yet strong composite materials for the nano-spacecraft and deployer-ship structures. These newer smaller systems may have higher power densities and higher thermal transport requirements than seen on previous small satellites. Furthermore, the small satellites may also have a requirement to maintain thermal control through extended earth shadows, possibly up to 8 hours long. Older thermal control technology, such as heaters, thermostats, and heat pipes, may not be sufficient to meet the requirements of these new systems. Conversely, a miniature two-phase heat transport system (Mini-HTS) such as a Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP) is a viable alternative. A Mini-HTS can provide fine temperature control, thermal diode action, and a highly efficient means of heat transfer. The Mini-HTS would have power capabilities in the range of tens of watts or less and provide thermal control over typical spacecraft ranges. The Mini-HTS would allow the internal portion of the spacecraft to be thermally isolated from the external radiator, thus protecting the internal components from extreme cold temperatures during an

  15. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  16. Miniature Laser Magnetometer

    NASA Technical Reports Server (NTRS)

    Slocum, Robert; Brown, Andy

    2011-01-01

    A conceptual design has been developed for a miniature laser magnetometer (MLM) that will measure the scalar magnitude and vector components of near-Earth magnetic fields. The MLM incorporates a number of technical innovations to achieve high-accuracy and high-resolution performance while significantly reducing the size of the laser-pumped helium magnetometer for use on small satellites and unmanned aerial vehicles (UAVs). and electronics sections that has the capability of measuring both the scalar magnetic field magnitude and the vector magnetic field components. Further more, the high-accuracy scalar measurements are used to calibrate and correct the vector component measurements in order to achieve superior vector accuracy and stability. The correction algorithm applied to the vector components for calibration and the same cell for vector and scalar measurements are major innovations. The separate sensor and electronics section of the MLM instrument allow the sensor to be installed on a boom or otherwise located away from electronics and other noisy magnetic components. The MLM s miniaturization will be accomplished through the use of advanced miniaturized components and packaging methods for the MLM sensor and electronics. The MLM conceptual design includes three key innovations. The first is a new non-magnetic laser package that will allow the placement of the laser pump source near the helium cell sensing elements. The second innovation is the design of compact, nested, triaxial Braunbek coils used in the vector measurements that reduce the coil size by a factor of two compared to existing Helmholtz coils with similar field-generation performance. The third innovation is a compact sensor design that reduces the sensor volume by a factor of eight compared to MLM s predecessor.

  17. Miniature biaxial strain transducer

    NASA Technical Reports Server (NTRS)

    Hoffman, I. S. (Inventor)

    1976-01-01

    A reusable miniature strain transducer for use in the measurement of static or quasi-static, high level, biaxial strain on the surface of test specimens or structures was studied. Two cantilever arms, constructed by machining the material to appropriate flexibility, are self-aligning and constitute the transducing elements of the device. Used in conjunction with strain gages, the device enables testing beyond normal gage limits for high strains and number of load cycles. The device does not require conversion computations since the electrical output of the strain gages is directly proportional to the strain measured.

  18. Miniaturized radiation chirper

    DOEpatents

    Umbarger, C. John; Wolf, Michael A.

    1980-01-01

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  19. Miniature electrical connector

    DOEpatents

    Casper, Robert F.

    1976-01-01

    A miniature coaxial cable electrical connector includes an annular compressible gasket in a receptacle member, the gasket having a generally triangular cross section resiliently engaging and encircling a conically tapered outer surface of a plug member to create an elongated current leakage path at their interface; means for preventing rotation of the plug relative to the receptacle; a metal sleeve forming a portion of the receptacle and encircling the plug member when interconnected; and a split ring in the plug having outwardly and rearwardly projecting fingers spaced from and encircling a portion of a coaxial cable and engageable with the metal sleeve to interlock the receptacle and plug.

  20. Orbital Manoeuvres of Chinas Zi Yuan Satellites

    NASA Astrophysics Data System (ADS)

    Clark, P. S.

    China has launched two satellites in the Zi Yuan programme through to October 2001. The first was the CBERS satellite, developed jointly with Brazil and the second was a domestic satellite which is reportedly being used for reconnaissance work. The orbital behaviour of the two satellites has been completely different and is reviewed in this paper.

  1. The design of four hypersonic reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.; Detwiler, D. T.

    1992-01-01

    Four different hypersonic reconnaissance aircraft were designed by separate student teams. These aircraft were designed to provide the U.S. with a system to acquire aerial tactical reconnaissance when satellite reconnaissance proved unobtainable or ineffective. The design requirements given for this project stated that these aircraft must carry a 7500 lb, 250 cu ft payload of electronic and photographic intelligence gathering equipment over a target area at speeds between Mach 4-7 and at altitudes above 80,000 ft. Two of the aircraft were required to be manned by a crew of two and have a range of 12,000 nmi. One of these was to use airborne refueling to complete its mission while the other was not to use any refueling. The other two aircraft were required to be unmanned with a range of 6,000 nmi. One of these was to take off from another aircraft. The final details of all four aircraft designs along with an overview of the design process is provided.

  2. Perspectives on Simulation and Miniaturization.

    ERIC Educational Resources Information Center

    McCluskey, Michael R.

    Training applications of simulation and miniaturization are examined, as are areas where research is needed to develop cost-effectiveness simulation methodologies for training. In order for simulation and miniaturization techniques to reach maximum levels of effectiveness, systems analysis is needed to define physical and psychological dimensions,…

  3. Miniature Heat Pipes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  4. Miniature drag force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1977-01-01

    A miniature drag force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilevered beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like that of a second order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.

  5. Miniature, ruggedized data collector

    NASA Astrophysics Data System (ADS)

    Jackson, Scott; Calcutt, Wade; Knobler, Ron; Jones, Barry; Klug, Robert

    2009-05-01

    McQ has developed a miniaturized, programmable, ruggedized data collector intended for use in weapon testing or data collection exercises that impose severe stresses on devices under test. The recorder is designed to survive these stresses which include acceleration and shock levels up to 100,000 G. The collector acquires and stores up to four channels of signal data to nonvolatile memory for later retrieval by a user. It is small (< 7 in3), light weight (< 1 lb), and can operate from various battery chemistries. A built-in menuing system, accessible via a USB interface, allows the user to configure parameters of the recorder operation, such as channel gain, filtering, and signal offsets, and also to retrieve recorded data for analysis. An overview of the collector, its features, performance, and potential uses, is presented.

  6. Miniature spectrally selective dosimeter

    NASA Technical Reports Server (NTRS)

    Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr. (Inventor)

    1980-01-01

    A miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas is described. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (E-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two E-cells, and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one E-cell, three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame.

  7. Miniature Latching Valve

    NASA Technical Reports Server (NTRS)

    Johnson, A. David; Benson, Glendon M.

    2008-01-01

    A miniature latching valve has been invented to satisfy a need for an electrically controllable on/off pneumatic valve that is lightweight and compact and remains in the most recently commanded open or closed state when power is not supplied. The valve includes a poppet that is moved into or out of contact with a seat to effect closure or opening, respectively, of the flow path. Motion of the poppet is initiated by electrical heating of one of two opposing pairs of nickel/titanium shape-memory alloy (SMA) wires above their transition temperature: heated wires contract to their remembered length, applying tension to pull the poppet toward or away from the seat. A latch consisting mainly of a bistable Belleville washer (a conical spring) made of a hardened stainless steel operates between two stable positions corresponding to the fully closed or fully open state, holding the poppet in one of these positions when power is not applied to either pair of SMA wires. To obtain maximum actuation force and displacement, the SMA wires must be kept in tension. The mounting fixtures at the ends of the wires must support large tensile stresses without creating stress concentrations that would limit the fatigue lives of the wires. An earlier design provided for each wire to be crimped in a conical opening with a conical steel ferrule that was swaged into the opening to produce a large, uniformly distributed holding force. In a subsequent design, the conical ferrule was replaced with a larger crimped cylindrical ferrule depicted in the figure. A major problem in designing the valve was to protect the SMA wires from a bake-out temperature of 300 C. The problem was solved by incorporating the SMA wires into an actuator module that is inserted into a barrel of the valve body and is held in place by miniature clip rings.

  8. Camouflage target reconnaissance based on hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Hua, Wenshen; Guo, Tong; Liu, Xun

    2015-08-01

    Efficient camouflaged target reconnaissance technology makes great influence on modern warfare. Hyperspectral images can provide large spectral range and high spectral resolution, which are invaluable in discriminating between camouflaged targets and backgrounds. Hyperspectral target detection and classification technology are utilized to achieve single class and multi-class camouflaged targets reconnaissance respectively. Constrained energy minimization (CEM), a widely used algorithm in hyperspectral target detection, is employed to achieve one class camouflage target reconnaissance. Then, support vector machine (SVM), a classification method, is proposed to achieve multi-class camouflage target reconnaissance. Experiments have been conducted to demonstrate the efficiency of the proposed method.

  9. Producing miniature threads. Final report

    SciTech Connect

    Gillespie, L.K.; Robb, J.M.

    1981-11-01

    Miniature precision actuators, timers, and switches typically utilize miniature threads to provide convenient assembly, disassembly and adjustment. Thread rolling provides high-quality external threads with greater strength and lower cost than other thread-producing techniques. Tap breakage is a significant problem when 0.5 and 0.6 Unified National Miniature (UNM) threads must be produced in hard materials such as SAE K95100 high-permeability magnetic steel. Aluminum parts can be tapped with no difficulty in these sizes. Stainless steel 0.5 UNM screws break at loads of 21 lb (53 N). Thread failure occurs at thread heights of 62% full thread or lower.

  10. Testing of an experimental photographic reconnaissance system

    NASA Astrophysics Data System (ADS)

    Keil, H.; Schulz, P.

    1991-07-01

    A scientific flight experiment system for image processing and disturbance safe image transmission was tested, with a view to a Remotely Piloted Vehicle application. The special features of the system are IR image representation and storage, evaluation in the ground station, systems and image sensor control from the ground station, and disturbance safe duplex radio transmission between test aircraft and ground station. This experimental system was demonstrated to be an excellent tool for studies in the field of disturbance safe photographic reconnaissance. Parameters such as the reduction factor of the information flow and the influence of perturbations can be determined.

  11. Miniature electron microscopes for lithography

    NASA Astrophysics Data System (ADS)

    Feinerman, Alan D.; Crewe, David A.; Perng, Dung-Ching; Spindt, Capp A.; Schwoebel, Paul R.; Crewe, Albert V.

    1994-05-01

    Two inexpensive and extremely accurate methods for fabricating miniature 10 - 50 kV and 0.5 - 10 kV electron beam columns have been developed: `slicing,' and `stacking.' Two or three miniature columns could be used to perform a 20 nm or better alignment of an x-ray mask to a substrate. An array of miniature columns could be used for rapid wafer inspection and high throughput electron beam lithography. The column fabrication methods combine the precision of semiconductor processing and fiber optic technologies to create macroscopic structures consisting of charged particle sources, deflecting and focusing electrodes, and detectors. The overall performance of the miniature column also depends on the emission characteristics of the micromachined electron source which is currently being investigated.

  12. Summary of Miniature NMR Development

    SciTech Connect

    Friedman, Gennady; Feinerman, Alan

    2000-12-31

    The effort in this project has been in 3 distinct directions: (1) First, they focused on development of miniature microfabricated micro-coil NMR detectors with maximum Signal-to-Noise (SNR) ratio. (2) Secondly, they focused on design of miniature micro-coil NMR detectors that have minimal effect on the NMR spectrum distortions. (3) Lastly they focused on the development of a permanent magnet capable of generating fields on the order of 1 Tesla with better than 10 ppm uniformity.

  13. Agile manufacturing in Intelligence, Surveillance and Reconnaissance (ISR)

    NASA Astrophysics Data System (ADS)

    DiPadua, Mark; Dalton, George

    2016-05-01

    The objective of the Agile Manufacturing for Intelligence, Surveillance, and Reconnaissance (AMISR) effort is to research, develop, design and build a prototype multi-intelligence (multi-INT), reconfigurable pod demonstrating benefits of agile manufacturing and a modular open systems approach (MOSA) to make podded intelligence, surveillance, and reconnaissance (ISR) capability more affordable and operationally flexible.

  14. Miniature Chemical Sensor

    SciTech Connect

    Andrew C. R. Pipino

    2004-12-13

    A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages.

  15. The Whole new world of miniature technology

    SciTech Connect

    Gillespie, L.K.

    1980-07-01

    In the past ten years, miniaturization of both electrical and mechanical parts has significantly increased. Documentation of the design and production capabilities of miniaturization in the electronics industry is well-defined. Literature on the subject of miniaturization of metal piece parts, however, is hard to find. Some of the current capabilities in the manufacture of miniature metal piece parts or miniature features in larger piece parts are discussed.

  16. Laser diode arrays for naval reconnaissance

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Crosby, Frank J.; Petee, Danny A.; Suiter, Harold R.; Witherspoon, Ned H.

    2003-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) Project has demonstrated a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). Historically, optical aerial detection of minefields has primarily been limited to daytime operations but LDAs promise compact and efficient lighting to allow for enhanced reconnaissance operations for future mine detection systems. When combined with high-resolution intensified imaging systems, LDAs can illuminate otherwise unseen areas. Future wavelength options will open the way for active multispectral imaging with LDAs. The Coastal Systems Station working for the Office of Naval Research on the ALRT project has designed, developed, integrated, and tested both prototype and commercial arrays from a Cessna airborne platform. Detailed test results show the ability to detect several targets of interest in a variety of background conditions. Initial testing of the prototype arrays, reported on last year, was completed and further investigations of the commercial versions were performed. Polarization-state detection studies were performed, and advantageous properties of the source-target-sensor geometry noted. Current project plans are to expand the field-of-view coverage for Naval exercises in the summer of 2003. This paper describes the test collection, data library products, array information, on-going test analysis results, and future planned testing of the LDAs.

  17. Solid state recorders for airborne reconnaissance

    NASA Astrophysics Data System (ADS)

    Klang, Mark R.

    2003-08-01

    Solid state recorders have become the recorder of choice for meeting airborne ruggedized requirements for reconnaissance and flight test. The cost of solid state recorders have decreased over the past few years that they are now less expense than the traditional high speed tape recorders. CALCULEX, Inc manufactures solid state recorders called MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used on many different platforms such as F/A-22, Global Hawk, F-14, F-15, F-16, U-2, RF-4, and Tornado. This paper will discuss the advantages of using solid state recorders to meet the airborne reconnaissance requirement and the ability to record instrumentation data. The CALCULEX recorder has the ability to record sensor data and flight test data in the same chassis. This is an important feature because it eliminates additional boxes on the aircraft. The major advantages to using a solid state recorder include; reliability, small size, light weight, and power. Solid state recorders also have a larger storage capacity and higher bandwidth capability than other recording devices.

  18. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  19. Unmanned reconnaissance aircraft, Predator B in flight.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. ALTAIR/PREDATOR B -- General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator testbed aircraft to validate a variety of command and control technologies for unmanned aerial vehicles (UAV), as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Ten-foot extensions have been added to each wing, giving the Altair an overall wingspan of 84 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of those basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  20. Infrared microsensor payload for miniature unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kostrzewa, Joseph; Meyer, William H.; Laband, Stan; Terre, William A.; Petrovich, Peter; Swanson, Kyle; Sundra, Carrie; Sener, Ward; Wilmott, Jay

    2003-09-01

    Miniature unmanned aerial vehicles (UAVs) are a category of aircraft small enough to be transported, launched, operated, and retrieved by a crew of one or two. The concept is not new, having been in limited use by the U.S. military over the past fifteen years, but interest in potential applications is growing as size and cost of the vehicles come down. An application that is particularly significant to the military and law-enforcement agencies is remote reconnaissance, with one or more onboard sensors transmitting data back to the operator(s) in real time. Typically, a miniature UAV is capable of flying a pre-programmed route autonomously, with manual override as an option. At the conclusion of the mission, the vehicle returns for landing, after which it can be quickly disassembled and stowed until its next use. Thermal imaging extends the utility of miniature UAVs to operations in complete darkness and limited visibility, but historically thermal imagers have been too large and heavy for this application. That changed in 1999 with the introduction of Indigo System's AlphaTM camera, which established a new class of thermal imaging product termed the infrared "microsensor". Substantially smaller and lighter than any other infrared imaging product available at the time, AlphaTMwas the first camera that could be readily packaged into the nose of a miniature UAV. Its low power consumption was also a key enabling feature. Building upon the success of AlphaTM, Indigo then took the microsensor class a step further with its OmegaTM camera, which broke all the records established by AlphaTM for small size, weight, and power. OmegaTM has been successfully integrated into several miniature UAVs, including AeroVironment's Pointer and Raven, as well as the Snake Eye UAV manufactured by BAI Aerosystems. Aspects of the OmegaTM design that have led to its utility on these and other platforms are described, and future prospects for even smaller microsensors are discussed.

  1. Miniaturized Autonomous Extravehicular Robotic Camera (Mini AERCam)

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2001-01-01

    The NASA Johnson Space Center (JSC) Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a low-volume, low-mass free-flying camera system . AERCam project team personnel recently initiated development of a miniaturized version of AERCam known as Mini AERCam. The Mini AERCam target design is a spherical "nanosatellite" free-flyer 7.5 inches in diameter and weighing 1 0 pounds. Mini AERCam is building on the success of the AERCam Sprint STS-87 flight experiment by adding new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving enhanced capability in a smaller package depends on applying miniaturization technology across virtually all subsystems. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion system , rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides beneficial on-orbit views unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by EVA crewmembers.

  2. Miniature Intelligent Sensor Module

    NASA Technical Reports Server (NTRS)

    Beech, Russell S.

    2007-01-01

    An electronic unit denoted the Miniature Intelligent Sensor Module performs sensor-signal-conditioning functions and local processing of sensor data. The unit includes four channels of analog input/output circuitry, a processor, volatile and nonvolatile memory, and two Ethernet communication ports, all housed in a weathertight enclosure. The unit accepts AC or DC power. The analog inputs provide programmable gain, offset, and filtering as well as shunt calibration and auto-zeroing. Analog outputs include sine, square, and triangular waves having programmable frequencies and amplitudes, as well as programmable amplitude DC. One innovative aspect of the design of this unit is the integration of a relatively powerful processor and large amount of memory along with the sensor-signalconditioning circuitry so that sophisticated computer programs can be used to acquire and analyze sensor data and estimate and track the health of the overall sensor-data-acquisition system of which the unit is a part. The unit includes calibration, zeroing, and signalfeedback circuitry to facilitate health monitoring. The processor is also integrated with programmable logic circuitry in such a manner as to simplify and enhance acquisition of data and generation of analog outputs. A notable unique feature of the unit is a cold-junction compensation circuit in the back shell of a sensor connector. This circuit makes it possible to use Ktype thermocouples without compromising a housing seal. Replicas of this unit may prove useful in industrial and manufacturing settings - especially in such large outdoor facilities as refineries. Two features can be expected to simplify installation: the weathertight housings should make it possible to mount the units near sensors, and the Ethernet communication capability of the units should facilitate establishment of communication connections for the units.

  3. An opposition class piloted mission to Mars using telerobotics for landing site reconnaissance and exploration

    NASA Astrophysics Data System (ADS)

    Burley, Philip J.; Fredrickson, Steven E.; Magruder, Darby F.; Rask, John D.

    2001-02-01

    The authors propose a new architecture for a first piloted mission to Mars. A crew travels to and from Mars in the same type of vehicle as will be used for the first piloted landing mission. Two or three surface rovers travel to Mars separately. The rovers land at widely separated potential human landing sites within a single hemisphere. The piloted vehicle (orbiter) achieves an orbit around Mars with a period equal to one Martian day (sol), so that continuous line-of-sight communications exists between the orbiter and the rovers. The crew operates the rovers from orbit using telerobotics and telepresence technology. The rovers, which have traverse ranges measured in kilometers per day, perform extensive landing site reconnaissance, weather observations, and geological sample collection and analysis, including water detection experiments. The mission lasts approximately 40 days in Mars orbit. Major objectives include rigorous flight test of the piloted vehicle, precision landing site characterization and selection at a level of detail unattainable from orbit, and predeployment of the teleoperated rovers for later use as robotic assistants during human surface missions. All of these objectives can reduce the risk to the first crew to land on Mars. Such a mission could be launched at least one synodic period ahead of the earliest planned piloted landing. .

  4. Remote reconnaissance vehicle program. Final report

    SciTech Connect

    Giefer, D.; Hine, R.; Pavelek, M.

    1985-09-01

    This report documents the development and initial use of remote reconnaissance vehicle No. 1 (RRV-1) in the Three Mile Island Unit 2 (TMI-2) cleanup. The RRV-1 is a rugged, remotely operated, highly maneuverable six-wheeled vehicle which is tethered to transmit power and control signals. It has a system for controlled reel-in and pay-out of the tether, TV cameras with remotely controlled lighting, pan, tilt, and zoom capabilities and radiation detectors for floor, wall, and general area measurements. The design, development, and modifications of the vehicle and the operator training program are described, as are the TMI-2 reactor building modifications, the initial entries into the highly contaminated reactor building basement, the data gathered during the initial entries and recommendations for future improvements. The potential for future missions at TMI-2 and the general applicability of such remote devices to other nuclear power plants is also discussed.

  5. Airborne reconnaissance XV; Proceedings of the Meeting, San Diego, CA, July 23, 24, 1991

    SciTech Connect

    Augustyn, T.W.; Henkel, P.A.

    1991-01-01

    Recent advances in airborne reconnaissance are reported focusing on reconnaissance requiremnts; image processing and exploitation, image acquisition and recording; and advanced development. Particular attention is given to low-intensity conflict aircraft systems; low-cost, low-risk approach to tactical reconnaissance; mission verification systems for FMS applications; tactical reconnaissance mission survivability requirements; high-bandwidth recording in a hostile environment; direct-drive film magazines; a CCD performance model for airborne reconnaissance, and an Ericsson digital recce management system.

  6. PERSONNEL PROTECTION THROUGH RECONNAISSANCE ROBOTICS AT SUPERFUND REMEDIAL SITES

    EPA Science Inventory

    Investigation, mitigation, and clean-up of hazardous materials at Superfund sites normally require on-site workers to perform hazardous and sometimes potentially dangerous functions. uch functions include site surveys and the reconnaissance for airborne and buried toxic environme...

  7. Visual thread quality for precision miniature mechanisms

    SciTech Connect

    Gillespie, L.K.

    1981-04-01

    Threaded features have eight visual appearance factors which can affect their function in precision miniature mechanisms. The Bendix practice in deburring, finishing, and accepting these conditions on miniature threads is described as is their impact in assemblies of precision miniature electromechanical assemblies.

  8. Deployable reconnaissance from a VTOL UAS in urban environments

    NASA Astrophysics Data System (ADS)

    Barnett, Shane; Bird, John; Culhane, Andrew; Sharkasi, Adam; Reinholtz, Charles

    2007-04-01

    Reconnaissance collection in unknown or hostile environments can be a dangerous and life threatening task. To reduce this risk, the Unmanned Systems Group at Virginia Tech has produced a fully autonomous reconnaissance system able to provide live video reconnaissance from outside and inside unknown structures. This system consists of an autonomous helicopter which launches a small reconnaissance pod inside a building and an operator control unit (OCU) on a ground station. The helicopter is a modified Bergen Industrial Twin using a Rotomotion flight controller and can fly missions of up to one half hour. The mission planning OCU can control the helicopter remotely through teleoperation or fully autonomously by GPS waypoints. A forward facing camera and template matching aid in navigation by identifying the target building. Once the target structure is identified, vision algorithms will center the UAS adjacent to open windows or doorways. Tunable parameters in the vision algorithm account for varying launch distances and opening sizes. Launch of the reconnaissance pod may be initiated remotely through a human in the loop or autonomously. Compressed air propels the half pound stationary pod or the larger mobile pod into the open portals. Once inside the building, the reconnaissance pod will then transmit live video back to the helicopter. The helicopter acts as a repeater node for increased video range and simplification of communication back to the ground station.

  9. The Challenge To Tactical Reconnaissance: Timeliness Through Technology

    NASA Astrophysics Data System (ADS)

    Stromfors, Richard D.

    1984-12-01

    As you have no doubt gathered from Mr. Henkel's introduction, I have spent over 20 years of my Air Force career involved in the reconnaissance mission either as a tactical reconnaissance pilot, as a tactical reconnaissance inspector, as a writer and speaker on that subject while attending the Air Force Professional Military Education Schools, and currently as the Air Force's operational manager for reconnaissance aircraft. In all of those positions, I've been challenged many times over with what appeared, at first, to be insurmountable problems that upon closer examination weren't irresolvable after all. All of these problems pale, however, when viewed side-by-side with the one challenge that has faced me since I began my military career and, in fact, faces all of us as I talk with you today. That one challenge is the problem of timeliness. Better put: "Getting information to our customers firstest with the mostest." Together we must develop better platforms and sensors to cure this age-old "Achilles heel" in the reconnaissance cycle. Despite all of our best intentions, despite all of the emerging technologies that will be available, and despite all of the dollars that we've thrown at research and development, we in the reconnaissance business still haven't done a good job in this area. We must do better.

  10. Optical system design and integration of the Lunar Orbiter Laser Altimeter.

    PubMed

    Ramos-Izquierdo, Luis; Scott, V Stanley; Connelly, Joseph; Schmidt, Stephen; Mamakos, William; Guzek, Jeffrey; Peters, Carlton; Liiva, Peter; Rodriguez, Michael; Cavanaugh, John; Riris, Haris

    2009-06-01

    The Lunar Orbiter Laser Altimeter (LOLA), developed for the 2009 Lunar Reconnaissance Orbiter (LRO) mission, is designed to measure the Moon's topography via laser ranging. A description of the LOLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented. PMID:19488116

  11. NASA/USRA high altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Richardson, Michael; Gudino, Juan; Chen, Kenny; Luong, Tai; Wilkerson, Dave; Keyvani, Anoosh

    1990-01-01

    At the equator, the ozone layer ranges from approximately 80,000 to 130,000+ feet which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. This project is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 lbs. of payload. In addition, the aircraft must have a minimum of a 6,000 mile range. The low Mach number, payload, and long cruising time are all constraints imposed by the air sampling equipment. A pilot must be able to take control in the event of unforseen difficulties. Three aircraft configurations were determined to be the most suitable for meeting the above requirements, a joined-wing, a bi-plane, and a twin-boom conventional airplane. The techniques used have been deemed reasonable within the limits of 1990 technology. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  12. Nuclear Threat Intelligence, Surveillance, and Reconnaissance

    NASA Astrophysics Data System (ADS)

    Kuliasha, Michael

    2012-03-01

    The National Security Strategy states that the greatest threat to the American people is ``the pursuit of nuclear weapons by violent extremists and their proliferation to additional states.'' The Global Nuclear Detection Architecture (GNDA) addresses a key portion of that threat by focusing on detecting nuclear and radiological materials that are out of regulatory control within permissive operating environments. However, the force protection requirements of the Department of Defense (DoD) range across a wider mission space from permissive environments, where nuclear and radiological materials can be monitored while under regulatory control, to hostile environments where nuclear and radiological materials exist in defiance of international regulations and agreements. This wider range of operating environments and the inherent physics limitations on the range of radiation detection pose great challenges to radiation detection-focused approaches to nuclear threat detection. Consequently, DoD is in the process of defining an intelligence, surveillance, and reconnaissance approach to countering nuclear threats that considers the observable signatures of all elements that comprise a potential threat; information, funds, people, material, equipment, and infrastructure. This strategy represents a shift from radiation detection as the primary sensing modality to radiation detection as one of many sensing modalities, including the human dimension, with a heavy emphasis on data fusion. This presentation will describe the attributes of a layered sensing approach to nuclear threat detection, illustrate the approach with examples, define potential building blocks, and discuss technical challenges.

  13. Surveillance and reconnaissance ground system architecture

    NASA Astrophysics Data System (ADS)

    Devambez, Francois

    2001-12-01

    Modern conflicts induces various modes of deployment, due to the type of conflict, the type of mission, and phase of conflict. It is then impossible to define fixed architecture systems for surveillance ground segments. Thales has developed a structure for a ground segment based on the operational functions required, and on the definition of modules and networks. Theses modules are software and hardware modules, including communications and networks. This ground segment is called MGS (Modular Ground Segment), and is intended for use in airborne reconnaissance systems, surveillance systems, and U.A.V. systems. Main parameters for the definition of a modular ground image exploitation system are : Compliance with various operational configurations, Easy adaptation to the evolution of theses configurations, Interoperability with NATO and multinational forces, Security, Multi-sensors, multi-platforms capabilities, Technical modularity, Evolutivity Reduction of life cycle cost The general performances of the MGS are presented : type of sensors, acquisition process, exploitation of images, report generation, data base management, dissemination, interface with C4I. The MGS is then described as a set of hardware and software modules, and their organization to build numerous operational configurations. Architectures are from minimal configuration intended for a mono-sensor image exploitation system, to a full image intelligence center, for a multilevel exploitation of multi-sensor.

  14. An integrated digital system for earthquake damage reconnaissance

    NASA Astrophysics Data System (ADS)

    Deaton, Scott Lowrey

    PQuake(TM) is an integrated digital system that facilitates earthquake damage reconnaissance. It combines digital photography, handheld GPS technology and custom software for a PalmRTM handheld computer to provide a user-friendly field data collection system. It mitigates the deficiencies involved with traditional reconnaissance techniques by allowing the rapid collection of consistent quantitative and qualitative damage data for both manmade structures and natural features. At the end of each day of reconnaissance, the reconnaissance personnel can upload their data to a personal computer and in minutes using the GIS-extension, create comprehensive maps of the damage. Consequently, PQuake(TM) facilitates more sophisticated planning of the reconnaissance activities, collecting larger quantities of consistent data, collaboration among researchers, near real-time reporting, analysis, visualization and mapping of the data. Additionally, it utilizes a relational database for managing, storing and archiving damage data as well as linking data to digital photographs and GPS waypoints. Consequently, PQuake facilitates the complete workflow process from data collection through analysis and reporting. The limitations of traditional reconnaissance are illustrated through a case history utilizing reconnaissance data collected in Adapazari, Turkey, following the Kocaeli earthquake of August 17, 1999. The damage data was combined with liquefaction analyses performed on geotechnical soundings obtained by PEER months after the event to investigate the building damage associated with local site effects in Adapazari. In particular, this case history demonstrates the necessity and benefits of the PQuake system. The PQuake(TM) system was first field-tested following the Gujarat, India, earthquake in January 2001. Additionally, the system was modified following the September 11, 2001, terrorist attack on the World Trade Centers to document structural and non structural damage to the

  15. Compact Reconnaissance Imaging Spectrometer Observations of Water Vapor and Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd; Murchie, Scott L.

    2009-01-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft began taking observations in September 2006 and has now collected more than a full Martian year of data. Retrievals performed using the near-infrared spectra obtained by CRISM are used to characterize the seasonal and spatial variation of the column abundance of water vapor and the column-averaged mixing ratio of carbon monoxide. CRISM retrievals show nominal behavior in water vapor during northern hemisphere spring and summer with maximum abundance reaching 50 precipitable micrometers. Water vapor abundance during the southern hemisphere spring and summer appears significantly reduced compared to observations by other instruments taken during previous years. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be 700 ppm, but with strong seasonal variations at high latitudes. The summertime near-polar carbon monoxide mixing ratio falls to 200 ppm in the south and 400 ppm in the north as carbon dioxide sublimates from the seasonal polar ice caps and dilutes noncondensable species including carbon monoxide. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure.

  16. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  17. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  18. Handheld interface for miniature sensors

    NASA Astrophysics Data System (ADS)

    Kedia, Sunny; Samson, Scott A.; Farmer, Andrew; Smith, Matthew C.; Fries, David; Bhansali, Shekhar

    2005-02-01

    Miniaturization of laboratory sensors has been enabled by continued evolution of technology. Field portable systems are often desired, because they reduce sample handling, provide rapid feedback capability, and enhance convenience. Fieldable sensor systems should include a method for initiating the analysis, storing and displaying the results, while consuming minimal power and being compact and portable. Low cost will allow widespread usage of these systems. In this paper, we discuss a reconfigurable Personal Data Assistant (PDA) based control and data collection system for use with miniature sensors. The system is based on the Handspring visor PDA and a custom designed motherboard, which connects directly to the PDA microprocessor. The PDA provides a convenient and low cost graphical user interface, moderate processing capability, and integrated battery power. The low power motherboard provides the voltage levels, data collection, and input/output (I/O) capabilities required by many MEMS and miniature sensors. These capabilities are relayed to connectors, where an application specific daughterboard is attached. In this paper, two applications are demonstrated. First, a handheld nucleic acid sequence-based amplification (NASBA) detection sensor consisting of a heated and optical fluorescence detection system is discussed. Second, an electrostatically actuated MEMS micro mirror controller is realized.

  19. Development of a Miniature Multifunctional GPS Receiver for Space Applications

    NASA Astrophysics Data System (ADS)

    Miyano, Tomoyuki; Ishijima, Yoshiyuki; Kumagai, Susumu

    This paper presents the development of a miniature multifunctional GPS receiver at NASDA. The design and implementation method for a spaceborne GPS receiver has been investigated, and a breadboard model of a parallel signal search system incorporating matched filtering, an essential technique for next-generation GPS receivers, has been manufactured. The time to acquisition (TTA) of a GPS signal was measured on the breadboard model using a GPS simulator. The test results of the trial product show that TTA is within 60 msec, and time to first fix (TTFF) of the navigation calculation in a low-altitude orbit is within 5.3 min in the worst-case scenario.

  20. Study on the shipboard radar reconnaissance equipment azimuth benchmark method

    NASA Astrophysics Data System (ADS)

    Liu, Zhenxing; Jiang, Ning; Ma, Qian; Liu, Songtao; Wang, Longtao

    2015-10-01

    The future naval battle will take place in a complex electromagnetic environment. Therefore, seizing the electromagnetic superiority has become the major actions of the navy. Radar reconnaissance equipment is an important part of the system to obtain and master battlefield electromagnetic radiation source information. Azimuth measurement function is one of the main function radar reconnaissance equipments. Whether the accuracy of direction finding meets the requirements, determines the vessels successful or not active jamming, passive jamming, guided missile attack and other combat missions, having a direct bearing on the vessels combat capabilities . How to test the performance of radar reconnaissance equipment, while affecting the task as little as possible is a problem. This paper, based on radar signal simulator and GPS positioning equipment, researches and experiments on one new method, which povides the azimuth benchmark required by the direction-finding precision test anytime anywhere, for the ships at jetty to test radar reconnaissance equipment performance in direction-finding. It provides a powerful means for the naval radar reconnaissance equipments daily maintenance and repair work[1].

  1. F/A-18 tactical reconnaissance (tac recce) capability

    NASA Astrophysics Data System (ADS)

    Heinz, David; Pugh, Gregory G.; Wolters, David

    1996-11-01

    In 1995 the F/A-18 TAC RECCE Program was expanded beyond the initial electro-optic and infrared image recording capability of the Advanced Tactical Air Reconnaissance System (ATARS). The program now also includes integration of new high-resolution Synthetic Aperture Radar (SAR) reconnaissance modes and air-to-ground data link of ATARS and SAR image data. Delivery of the first reconnaissance equipment production units and fleet release is scheduled for 1998. F/A-18D two-seat aircraft will be retrofit with the RECCE equipment and designated F/A-18D(RC) (Reconnaissance Capable). This presentation describes recent F/A-18D(RC) operational assessment results, tactical reconnaissance equipment, functions, and interfaces for the 1998 fleet release. The equipment consists of the ATARS, the aircraft RECCE kit (access door, sensor windows, fairings), the upgraded APG-73 radar, and the data link pod. Functions include mission planning, automatic and manual acquisition of RECCE targets, image data recording, crew-station image review and edit, and data link. Interfaces include those with the Tactical Automated Mission Planning System, ground exploitation stations, and the aircraft carrier environment.

  2. Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert; Senske, David; Prockter, Louise; Paczkowski, Brian; Vance, Steve; Goldstein, Barry; Magner, Thomas; Cooke, Brian

    2015-04-01

    Europa is recognized by the Planetary Science De-cadal Survey as a prime candidate to search for a pre-sent-day habitable environment in our solar system. As such, NASA has pursued a series of studies, facilitated by a Europa Science Definition Team (SDT), to define a strategy to best advance our scientific understanding of this icy world with the science goal: Explore Europa to investigate its habitability. (In June of 2014, the SDT completed its task of identifying the overarching science objectives and investigations.) Working in concert with a technical team, a set of mission archi-tectures were evaluated to determine the best way to achieve the SDT defined science objectives. The fa-vored architecture would consist of a spacecraft in Ju-piter orbit making many close flybys of Europa, con-centrating on remote sensing to explore the moon. In-novative mission design would use gravitational per-turbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's sur-face, with nominally 45 close flybys, typically at alti-tudes from 25 to 100 km. This concept has become known as the Europa Clipper. The Europa SDT recommended three science ob-jectives for the Europa Clipper: Ice Shell and Ocean: Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition: Understand the habitability of Europa's ocean through composition and chemistry; and Geology: Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The Europa SDT also considered implications of the Hubble Space Telescope detection of possible plumes at Europa. To feed forward to potential subsequent future ex-ploration that could be enabled by a lander, it was deemed that the Europa Clipper mission concept should provide the

  3. Development of Miniaturized Optimized Smart Sensors (MOSS) for space plasmas

    NASA Technical Reports Server (NTRS)

    Young, D. T.

    1993-01-01

    The cost of space plasma sensors is high for several reasons: (1) Most are one-of-a-kind and state-of-the-art, (2) the cost of launch to orbit is high, (3) ruggedness and reliability requirements lead to costly development and test programs, and (4) overhead is added by overly elaborate or generalized spacecraft interface requirements. Possible approaches to reducing costs include development of small 'sensors' (defined as including all necessary optics, detectors, and related electronics) that will ultimately lead to cheaper missions by reducing (2), improving (3), and, through work with spacecraft designers, reducing (4). Despite this logical approach, there is no guarantee that smaller sensors are necessarily either better or cheaper. We have previously advocated applying analytical 'quality factors' to plasma sensors (and spacecraft) and have begun to develop miniaturized particle optical systems by applying quantitative optimization criteria. We are currently designing a Miniaturized Optimized Smart Sensor (MOSS) in which miniaturized electronics (e.g., employing new power supply topology and extensive us of gate arrays and hybrid circuits) are fully integrated with newly developed particle optics to give significant savings in volume and mass. The goal of the SwRI MOSS program is development of a fully self-contained and functional plasma sensor weighing 1 lb and requiring 1 W. MOSS will require only a typical spacecraft DC power source (e.g., 30 V) and command/data interfaces in order to be fully functional, and will provide measurement capabilities comparable in most ways to current sensors.

  4. Sensor Configuration For A Short To Medium Range Reconnaissance Pod

    NASA Astrophysics Data System (ADS)

    Johansson, Ingvar H.

    1987-02-01

    The GREEN BARON pod is designed and developed specifically for penetrating reconnaissance and for reconnaissance up to medium distance. An Infra Red Line Scanner (IRLS) in combination with a panoramic camera are the main short range sensors, the IRLS as an allweather sensor and the panoramic camera to get horizon to horizon coverage and stereo interpretation. For reconnaissance up to medium distance our choice was a camera with 12 inch focal length. This focal length gives moderate focusing problems when operating over a wide distance range. Influence on performance caused by environment is easier to deal with compared to operating a camera with longer focal length. This paper concentrates on the reasons for choosing a focal length of 12 inch for the pod.

  5. Dual spectral band reconnaissance systems for multiple platforms

    NASA Astrophysics Data System (ADS)

    Wyatt, Steve H.

    2002-11-01

    Recon/Optical, Inc. (ROI) has a family of digital, dual spectral band (visible/IR) cameras that is readily applicable for reconnaissance missions on virtually any airborne platform available today. Each camera is based on a modular design that allows reconfiguration for a multitude of volumetric and mission constraints. The open architecture facilitates integration as either a reconnaissance system components or as the system master controller. Output data can be formatted to satisfy either NITF or STANAG requirements making the camera adaptable to applications throughout the world. These cameras offer several key features, including a stabilization system, that can be tuned to each platform, optional data compression to optimize data storage and data link performance, and a camera-mounted inertial measurement unit for improved pointing accuracy. These and other core capabilities are especially beneficial to users with unique platform integration requirements. Camera flexibility translates into low-risk integration to a variety of reconnaissance platforms.

  6. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Surveyor '98 Climate Orbiter is shown here during acoustic tests that simulate launch conditions. The orbiter was to conduct a two year primary mission to profile the Martian atmosphere and map the surface. To carry out these scientific objectives, the spacecraft carried a rebuilt version of the pressure modulated infrared radiometer, lost with the Mars Observer spacecraft, and a miniaturized dual camera system the size of a pair of binoculars, provided by Malin Space Science Systems, Inc., San Diego, California. During its primary mission, the orbiter was to monitor Mars atmosphere and surface globally on a daily basis for one Martian year (two Earth years), observing the appearance and movement of atmospheric dust and water vapor, as well as characterizing seasonal changes of the planet's surface. Imaging of the surface morphology would also provide important clues about the planet's climate in its early history. The mission was part of NASA's Mars Surveyor program, a sustained program of robotic exploration of the red planet, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, DC. Lockheed Martin Astronautics was NASA's industrial partner in the mission. Unfortunately, Mars Climate Orbiter burned up in the Martian atmosphere on September 23, 1999, due to a metric conversion error that caused the spacecraft to be off course.

  7. Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES)

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C.; Cooper, J.; Mahaffy, P.; Fairbrother D.; dePater, I.; Schultze-Makuch, D.; Pitman, J.

    2007-01-01

    Cassini and Huygens have made exciting discoveries at Titan and Enceladus, and at the same time made us aware of how little we understand about these bodies. For example, the source, and/or recycling mechanism, of methane in Titan's atmosphere is still puzzling. Indeed, river beds (mostly dry) and lakes have been spotted, and occasional clouds have been seen, but the physics to explain the observations is still mostly lacking, since our "image" of Titan is still sketchy and quite incomplete. Enceladus, only -500 km in extent, is even more puzzling, with its fiery plumes of vapor, dust and ice emanating from its south polar region, "feeding" Saturn's E ring. Long term variability of magnetospheric plasma, neutral gas, E-ring ice grain density, radio emissions, and corotation of Saturn's planetary magnetic field in response to Enceladus plume activity are of great interest for Saturn system science. Both Titan and Enceladus are bodies of considerable astrobiological interest in view of high organic abundances at Titan and potential subsurface liquid water at Enceladus. We propose to develop a new mission to Titan and Enceladus, the Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES), to address these questions using novel new technologies. TOAMES is a multi-faceted mission that starts with orbit insertion around Saturn using aerobraking with Titan's extended atmosphere. We then have an orbital tour around Saturn (for 1-2 years) and close encounters with Enceladus, before it goes into orbit around Titan (via aerocapture). During the early reconnaissance phase around Titan, perhaps 6 months long, the orbiter will use altimetry, radio science and remote sensing instruments to measure Titan's global topography, subsurface structure and atmospheric winds. This information will be used to determine where and when to release the Aerorover, so that it can navigate safely around Titan and identify prime sites for surface sampling and analysis. In situ instruments

  8. Miniaturization of flight deflection measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.

  9. Miniature Autonomous Robotic Vehicle (MARV)

    SciTech Connect

    Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

    1996-12-31

    Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

  10. Miniature drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1981-01-01

    A miniature drag force anemometer is described which is capable of measuring unsteady as well as steady state velocity head and flow direction. It consists of a cantilevered beam with strain gages located at the base of the beam as the force measuring element. The dynamics of the beam are like those of lightly damped second order system with a natural frequency as high as 40 kilohertz depending on beam geometry and material. The anemometer is used in both forward and reversed flow. Anemometer characteristics and several designs are presented along with discussions of several applications.

  11. Personal miniature electrophysiological tape recorder

    NASA Astrophysics Data System (ADS)

    Green, H.

    1981-11-01

    The use of a personal miniature electrophysiological tape recorder to measure the physiological reactions of space flight personnel to space flight stress and weightlessness is described. The Oxford Instruments Medilog recorder, a battery-powered, four-channel cassette tape recorder with 24 hour endurance is carried on the person and will record EKG, EOG, EEG, and timing and event markers. The data will give information about heart rate and morphology changes, and document adaptation to zero gravity on the part of subjects who, unlike highly trained astronauts, are more representative of the normal population than were the subjects of previous space flight studies.

  12. Miniature drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1981-01-01

    A miniature drag-force anemometer is described which is capable of measuring unsteady as well as steady-state velocity head and flow direction. It consists of a cantilevered beam with strain gages located at the base of the beam as the force measuring element. The dynamics of the beam are like those of a lightly damped second-order system with a natural frequency as high as 40 kilohertz depending on beam geometry and material. The anemometer can be used in both forward and reversed flow. Anemometer characteristics and several designs are presented along with discussions of several applications.

  13. Personal miniature electrophysiological tape recorder

    NASA Technical Reports Server (NTRS)

    Green, H.

    1981-01-01

    The use of a personal miniature electrophysiological tape recorder to measure the physiological reactions of space flight personnel to space flight stress and weightlessness is described. The Oxford Instruments Medilog recorder, a battery-powered, four-channel cassette tape recorder with 24 hour endurance is carried on the person and will record EKG, EOG, EEG, and timing and event markers. The data will give information about heart rate and morphology changes, and document adaptation to zero gravity on the part of subjects who, unlike highly trained astronauts, are more representative of the normal population than were the subjects of previous space flight studies.

  14. A miniature optical breathing sensor

    PubMed Central

    Mathew, Jinesh; Semenova, Yuliya; Farrell, Gerald

    2012-01-01

    We demonstrate a novel miniature optical breathing sensor based on an Agarose infiltrated photonic crystal fiber interferometer. The sensor detects the variation in relative humidity that occurs between inhaled and exhaled breath. The sensor interrogation system can determine the breathing pattern in real time and can also predict the breathing rate and the breathing status during respiration. The sensor is suitable for monitoring patients during a magnetic resonance imaging scan where use of sedatives and anesthetics necessitates breathing monitoring; electronic sensors are not suitable in such an environment and a visual observation of the patient's respiratory efforts is often difficult. PMID:23243581

  15. A miniature remote deadweight calibrator

    NASA Astrophysics Data System (ADS)

    Supplee, Frank H., Jr.; Tcheng, Ping

    A miniature, computer-controlled, deadweight calibrator was developed to remotely calibrate a force transducer mounted in a cryogenic chamber. This simple mechanism allows automatic loading and unloading of deadweights placed onto a skin friction balance during calibrations. Equipment for the calibrator includes a specially designed set of five interlocking 200-milligram weights, a motorized lifting platform, and a controller box taking commands from a microcomputer on an IEEE interface. The computer is also used to record and reduce the calibration data and control other calibration parameters. The full-scale load for this device is 1,000 milligrams; however, the concept can be extended to accommodate other calibration ranges.

  16. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  17. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  18. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  19. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  20. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  1. Miniature Telerobots in Space Applications

    NASA Technical Reports Server (NTRS)

    Venema, S. C.; Hannaford, B.

    1995-01-01

    Ground controlled telerobots can be used to reduce astronaut workload while retaining much of the human capabilities of planning, execution, and error recovery for specific tasks. Miniature robots can be used for delicate and time consuming tasks such as biological experiment servicing without incurring the significant mass and power penalties associated with larger robot systems. However, questions remain regarding the technical and economic effectiveness of such mini-telerobotic systems. This paper address some of these open issues and the details of two projects which will provide some of the needed answers. The Microtrex project is a joint University of Washington/NASA project which plans on flying a miniature robot as a Space Shuttle experiment to evaluate the effects of microgravity on ground-controlled manipulation while subject to variable time-delay communications. A related project involving the University of Washington and Boeing Defense and Space will evaluate the effectiveness f using a minirobot to service biological experiments in a space station experiment 'glove-box' rack mock-up, again while subject to realistic communications constraints.

  2. Miniature multimode monolithic flextensional transducers.

    PubMed

    Hladky-Hennion, Anne-Christine; Uzgur, A Erman; Markley, Douglas C; Safari, Ahmad; Cochran, Joe K; Newnham, Robert E

    2007-10-01

    Traditional flextensional transducers classified in seven groups based on their designs have been used extensively in 1-100 kHz range for mine hunting, fish finding, oil explorations, and biomedical applications. In this study, a new family of small, low cost underwater, and biomedical transducers has been developed. After the fabrication of transducers, finite-elements analysis (FEA) was used extensively in order to optimize these miniature versions of high-power, low-frequency flextensional transducer designs to achieve broad bandwidth for both transmitting and receiving, engineered vibration modes, and optimized acoustic directivity patterns. Transducer topologies with various shapes, cross sections, and symmetries can be fabricated through high-volume, low-cost ceramic and metal extrusion processes. Miniaturized transducers posses resonance frequencies in the range of above 1 MHz to below 10 kHz. Symmetry and design of the transducer, polling patterns, driving and receiving electrode geometries, and driving conditions have a strong effect on the vibration modes, resonance frequencies, and radiation patterns. This paper is devoted to small, multimode flextensional transducers with active shells, which combine the advantages of small size and low-cost manufacturing with control of the shape of the acoustic radiation/receive pattern. The performance of the transducers is emphasized. PMID:18019236

  3. Lightweight, Miniature Inertial Measurement System

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  4. Miniaturized neural interfaces and implants

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin

    2012-03-01

    Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.

  5. System design of the CRISM (compact reconnaissance imaging spectrometer for Mars) hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Silverglate, Peter R.; Fort, Dennis E.

    2004-01-01

    CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) in August 2005. The MRO will circle Mars in a polar orbit at a nominal altitude of 325 km. The CRISM spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 400 nm to 4050 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.06º field of view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer light is split by a dichroic into VNIR (visible-near infrared) (λ <= 1.05 μm) and IR (infrared) (λ >= 1.05 μm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.55 nm spectral spacing and an instantaneous field of view of 60 μradians. The orbital motion of the MRO pushbroom scans the spectrometer slit across the Martian surface, allowing the planet to be mapped in 558 spectral bands. There are four major mapping modes: A quick initial multi-spectral mapping of a major portion of the Martian surface in 59 selected spectral bands at a spatial resolution of 600 μradians (10:1 binning); an extended multi-spectral mapping of the entire Martian surface in 59 selected spectral bands at a spatial resolution of 300 μradians (5:1 binning); a high resolution Target Mode, performing hyperspectral mapping of selected targets of interest at full spatial and spectral resolution; and an atmospheric Emission Phase Function (EPF) mode for atmospheric study and correction at full spectral resolution at a spatial resolution of 300 μradians (5:1 binning). The instrument is gimbaled to allow scanning over +/-60° for the EPF and Target modes. The scanning also permits orbital motion compensation, enabling

  6. System design of the CRISM (compact reconnaissance imaging spectrometer for Mars) hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Silverglate, Peter R.; Fort, Dennis E.

    2003-12-01

    CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) in August 2005. The MRO will circle Mars in a polar orbit at a nominal altitude of 325 km. The CRISM spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 400 nm to 4050 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.06º field of view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer light is split by a dichroic into VNIR (visible-near infrared) (λ <= 1.05 μm) and IR (infrared) (λ >= 1.05 μm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.55 nm spectral spacing and an instantaneous field of view of 60 μradians. The orbital motion of the MRO pushbroom scans the spectrometer slit across the Martian surface, allowing the planet to be mapped in 558 spectral bands. There are four major mapping modes: A quick initial multi-spectral mapping of a major portion of the Martian surface in 59 selected spectral bands at a spatial resolution of 600 μradians (10:1 binning); an extended multi-spectral mapping of the entire Martian surface in 59 selected spectral bands at a spatial resolution of 300 μradians (5:1 binning); a high resolution Target Mode, performing hyperspectral mapping of selected targets of interest at full spatial and spectral resolution; and an atmospheric Emission Phase Function (EPF) mode for atmospheric study and correction at full spectral resolution at a spatial resolution of 300 μradians (5:1 binning). The instrument is gimbaled to allow scanning over +/-60° for the EPF and Target modes. The scanning also permits orbital motion compensation, enabling

  7. Hydropower study. Blackwater Dam, Webster, New Hampshire. Reconnaissance report

    SciTech Connect

    Not Available

    1981-08-01

    The principal thrust of this limited reconnaissance effort is to determine whether any economically feasible hydropower development could be undertaken at Blackwater Dam. Baseline environmental, recreational, social and cultural conditions in the study area have been identified. Due to time and funding limitations only two alternatives were considered. If the study is continued several alternatives will be evaluated.

  8. DESIGN OF A REMOTELY CONTROLLED HOVERCRAFT VEHICLE FOR SPILL RECONNAISSANCE

    EPA Science Inventory

    This program was undertaken to prepare a conceptual design for a practical prototype of a remotely-controlled reconnaissance vehicle for use in hazardous material spill environment. Data from past hazardous material spills were analyzed to determine the type of vehicle best suite...

  9. A PRELIMINARY RECONNAISSANCE OF THE LANGUAGES OF ASIA.

    ERIC Educational Resources Information Center

    MULDER, J.W.; STUART, DON G.

    THE PRESENT PRELIMINARY RECONNAISSANCE OF THE LANGUAGE OF ASIA WAS INTENDED TO PROVIDE A GENERAL BASIC REFERENCE WORK FOR THE GUIDANCE AND ORIENTATION OF GOVERNMENT OFFICIALS, EDUCATORS, AND OTHERS CHARGED WITH THE RESPONSIBILITY OF DEVELOPING RESEARCH AND EDUCATION IN THE FIELD OF THE SO-CALLED NEGLECTED LANGUAGES. EXCLUDED FROM THIS WORK WERE…

  10. Optical Disc Utilized As A Data Storage System For Reconnaissance

    NASA Astrophysics Data System (ADS)

    Herzog, Donald G.

    1984-01-01

    Electra-optic and Radar sensing reconnaissance systems have many advantages including remote transmission and image data processing that conventional film camera systems do not have. However, data storage and retrieval that was naturally and easily accomplished with film must now be accommodated by other techniques. The optical disc data storage and retrieval systems offer significant advantage towards fulfilling this need. This paper will provide an overview description of the technology, some of the fundamental alternatives of configuration approach, and some examples of where it may be considered in the reconnaissance system. Silver halide film has been and still is the work horse of the image based reconnaissance field. It will not be replaced in the near future either, but rather a gradual transition to total electronic systems is expected. It is not the intent of this paper to debase film, because in fact it has its advantages. We have learned to optimize its advantages and minimize its disadvantages. However optical disc systems have a definite role to play in the reconnaissance field.

  11. Geospatial Intelligence (GEOINT) and Intelligence Surveillance and Reconnaissance (ISR) convergence

    NASA Astrophysics Data System (ADS)

    Lee, Michael G.

    2013-05-01

    An examination of the potentialities, benefits and challenges of the confluence, integration and operation of Geospatial Intelligence (GEOINT) capabilities, products and techniques within the larger context of the Intelligence, Surveillance and Reconnaissance (ISR) arena, particularly in regards to persistent surveillance and Full Motion Video (FMV).

  12. Environmental study of miniature slip rings

    NASA Technical Reports Server (NTRS)

    Radnik, J. L.

    1967-01-01

    Investigation studied the long term operation of miniature slip ring assembles in high vacuum of space and included the influence of ring, brush, and insulator materials on electrical noise and mechanical wear. Results show that soft metal vapor plating and niobium diselenide miniature slip rings are beneficial.

  13. Miniature reaction chamber and devices incorporating same

    DOEpatents

    Mathies, Richard A.; Woolley, Adam T.

    2000-10-17

    The present invention generally relates to miniaturized devices for carrying out and controlling chemical reactions and analyses. In particular, the present invention provides devices which have miniature temperature controlled reaction chambers for carrying out a variety of synthetic and diagnostic applications, such as PCR amplification, nucleic acid hybridization, chemical labeling, nucleic acid fragmentation and the like.

  14. Anthrax vaccine associated deaths in miniature horses.

    PubMed

    Wobeser, Bruce K

    2015-04-01

    During a widespread anthrax outbreak in Canada, miniature horses were vaccinated using a live spore anthrax vaccine. Several of these horses died from an apparent immune-mediated vasculitis temporally associated with this vaccination. During the course of the outbreak, other miniature horses from different regions with a similar vaccination history, clinical signs, and necropsy findings were found. PMID:25829553

  15. Miniaturized high-performance starring thermal imaging system

    NASA Astrophysics Data System (ADS)

    Cabanski, Wolfgang A.; Breiter, Rainer; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann; Ennenga, L.; Lipinski, Ulrich M.; Wehrhahn, T.

    2000-07-01

    new zoom lens F/2.0 allows to select field of views from 2 degree to 15 degrees horizontal. This covers a wide area of military and paramilitary applications. The whole camera is miniaturized to fit into existing gunner and commander sights for main battle tanks as well as for infantry fighting vehicles. The overall design is compatible in optical, electrical and mechanical direction with the fielded OPHELIOS cameras and so an easy upgrade for existing fire control, reconnaissance and platform systems. The overall design is made under consideration of mil standard environments and is able to withstand vehicle, airborne and shipborne stress. The presentation gives an overview of the different components of the new camera system. Theoretical range performance data are discussed together with measured NETD, MTF and MRTD data of the unit.

  16. Advances in Miniaturized Instruments for Genomics

    PubMed Central

    2014-01-01

    In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices. PMID:25114919

  17. Orbit to orbit transportation

    NASA Technical Reports Server (NTRS)

    Bergeron, R. P.

    1980-01-01

    Orbital transfer vehicle propulsion options for SPS include both chemical (COTV) and electrical (EOTV) options. The proposed EOTV construction method is similar to that of the SPS and, by the addition of a transmitting antenna, may serve as a demonstration or precursor satellite option. The results of the studies led to the selection of a single stage COTV for crew and priority cargo transfer. An EOTV concept is favored for cargo transfer because of the more favorable orbital burden factor over chemical systems. The gallium arsenide solar array is favored over the silicon array because of its self annealing characteristics of radiation damage encountered during multiple transitions through the Van Allen radiation belt. Transportation system operations are depicted. A heavy lift launch vehicle (HLLV) delivers cargo and propellants to LEO, which are transferred to a dedicated EOTV by means of an intraorbit transfer vehicle (IOTV) for subsequent transfer to GEO. The space shuttle is used for crew transfer from Earth to LEO. At the LEO base, the crew module is removed from the shuttle cargo bay and mated to a COTV for transfer to GEO. Upon arrival at GEO, the SPS construction cargo is transferred from the EOTV to the SPS construction base by IOTV. Crew consumables and resupply propellants are transported to GEO by the EOTV. Transportation requirements are dominated by the vast quantity of materials to be transported to LEO and GEO.

  18. Miniaturized flow injection analysis system

    DOEpatents

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  19. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, D.N. Jr.; Simpson, M.L.

    1997-10-21

    A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.

  20. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, Jr., David N.; Simpson, Marc L.

    1997-01-01

    A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.

  1. Miniature drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Fralick, G. C.

    1977-01-01

    A miniature drag-force anemometer is described which is capable of measuring dynamic velocity head and flow direction. The anemometer consists of a silicon cantilever beam 2.5 mm long, 1.5 mm wide, and 0.25 mm thick with an integrated diffused strain-gage bridge, located at the base of the beam, as the force measuring element. The dynamics of the beam are like those of a second-order system with a natural frequency of about 42 kHz and a damping coefficient of 0.007. The anemometer can be used in both forward and reversed flow. Measured flow characteristics up to Mach 0.6 are presented along with application examples including turbulence measurements.

  2. Miniature mechanical transfer optical coupler

    DOEpatents

    Abel, Philip; Watterson, Carl

    2011-02-15

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  3. Miniaturized flow injection analysis system

    DOEpatents

    Folta, James A.

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  4. Orbital pseudotumor

    MedlinePlus

    ... Names Idiopathic orbital inflammatory syndrome (IOIS) Images Skull anatomy References Goodlick TA, Kay MD, Glaser JS, Tse DT, Chang WJ. Orbital disease and neuro-ophthalmology. In: Tasman W, Jaeger EA, eds. Duane’s ...

  5. Kepler's Orbit

    NASA Video Gallery

    Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...

  6. Orbital cellulitis

    MedlinePlus

    ... Haemophilus influenzae B) vaccine. The bacteria Staphylococcus aureus , Streptococcus pneumoniae , and beta-hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and can lead ...

  7. Miniaturization of Planar Horn Motors

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Ostlund, Patrick N.; Chang, Zensheu; Bao, Xiaoqi; Bar-Cohen, Yoseph; Widholm, Scott E.; Badescu, Mircea

    2012-01-01

    There is a great need for compact, efficient motors for driving various mechanisms including robots or mobility platforms. A study is currently underway to develop a new type of piezoelectric actuators with significantly more strength, low mass, small footprint, and efficiency. The actuators/motors utilize piezoelectric actuated horns which have a very high power density and high electromechanical conversion efficiency. The horns are fabricated using our recently developed novel pre-stress flexures that make them thermally stable and increases their coupling efficiency. The monolithic design and integrated flexures that pre-stresses the piezoelectric stack eliminates the use of stress bolt. This design allows embedding solid-state motors and actuators in any structure so that the only macroscopically moving parts are the rotor or the linear translator. The developed actuator uses a stack/horn actuation and has a Barth motor configuration, which potentially generates very large torque and speeds that do not require gearing. Finite element modeling and design tools were investigated to determine the requirements and operation parameters and the results were used to design and fabricate a motor. This new design offers a highly promising actuation mechanism that can potentially be miniaturized and integrated into systems and structures. It can be configured in many shapes to operate as multi-degrees of freedom and multi-dimensional motors/actuators including unidirectional, bidirectional, 2D and 3D. In this manuscript, we are reporting the experimental measurements from a bench top design and the results from the efforts to miniaturize the design using 2x2x2 mm piezoelectric stacks integrated into thin plates that are of the order of3 x 3x 0.2 cm.

  8. UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment.

    PubMed

    Chen, Jessie Y C

    2010-08-01

    A military reconnaissance environment was simulated to examine the performance of ground robotics operators who were instructed to utilise streaming video from an unmanned aerial vehicle (UAV) to navigate his/her ground robot to the locations of the targets. The effects of participants' spatial ability on their performance and workload were also investigated. Results showed that participants' overall performance (speed and accuracy) was better when she/he had access to images from larger UAVs with fixed orientations, compared with other UAV conditions (baseline- no UAV, micro air vehicle and UAV with orbiting views). Participants experienced the highest workload when the UAV was orbiting. Those individuals with higher spatial ability performed significantly better and reported less workload than those with lower spatial ability. The results of the current study will further understanding of ground robot operators' target search performance based on streaming video from UAVs. The results will also facilitate the implementation of ground/air robots in military environments and will be useful to the future military system design and training community. PMID:20658388

  9. The Performance of a Miniature Plant Cultivation System Designed for Space Flight Application

    NASA Technical Reports Server (NTRS)

    Heyenga, Gerard; Kliss, Mark; Blackford, Cameron

    2005-01-01

    Constraints in both launch opportunities and the availability of in-flight resources for Shuttle and Space Station life science habitat facilities has presented a compelling impetus to improve the operational flexibility, efficiency and miniaturization of many of these systems. Such advances would not only invigorate the level of research being conducted in low Earth orbit but also present the opportunity to expand life science studies to outer space and planetary bodies. Work has been directed towards the development of a miniature plant cultivation module (PCM) capable of supporting the automated and controlled growth and spectral monitoring of small plant species such as Arabidopsis thaliana. This paper will present data on the operational performance and efficiency of the cultivation module, and the extent to which such a system may be used to support plant growth studies in low Earth orbit and beyond.

  10. Development of a Miniaturized Hollow-Waveguide Gas Correlation Radiometer for Trace Gas Measurements in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Georgieva, E. M.; Blalock, G. W.; Marx, C. T.; Heaps, W. S.

    2012-01-01

    We present preliminary results in the development of a miniaturized gas correlation radiometer (GCR) for column trace gas measurements in the Martian atmosphere. The GCR is designed as an orbiting instrument capable of mapping multiple trace gases and identifying active regions on the Mars surface.

  11. Field reconnaissance of the 2007 Niigata-Chuetsu Oki earthquake

    NASA Astrophysics Data System (ADS)

    Apostolakis, Georgios; Qu, Bing; Ecemis, Nurhan; Dogruel, Seda

    2007-12-01

    As part of the 2007 Tri-Center Field Mission to Japan, a reconnaissance team comprised of fourteen graduate students and three faculty members from three U.S. earthquake engineering research centers, namely, Multidisciplinary Center for Earthquake Engineering Research (MCEER), Mid-America Earthquake Center (MAE), and Pacific Earthquake Engineering Research Center (PEER), undertook a reconnaissance visit to the affected area shortly after the 2007 Niigata-Chuetsu Oki earthquake. This mission provided an opportunity to review the nature of the earthquake damage that occurred, as well as to assess the significance of the damage from an educational perspective. This paper reports on the seismological characteristics of the earthquake, preliminary findings of geotechnical and structural damage, and the causes of the observed failures or collapses. In addition, economic and socio-economic considerations and experiences to enhance earthquake resilience are presented.

  12. Reconnaissance for uranium-bearing carbonaceous materials in southern Utah

    USGS Publications Warehouse

    Zeller, H.D.

    1955-01-01

    A reconnaissance investigation for uranium-bearing carbonaceous materials was made in three major areas of southern Utah: Kaiparowits Plateau, Henry Mountains, and Kolob Terrace. No uranium deposits of economic interest were found. A few l- to 2-foot beds of carbonaceous shale in the Dakota(?) sandstone contain 0.006-0.007 percent uranium. Other carbonaceous sediments that were examined contain 0. 002 percent or less uranium.

  13. Scanning Miniature Microscopes without Lenses

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the

  14. Computational imaging for miniature cameras

    NASA Astrophysics Data System (ADS)

    Salahieh, Basel

    Miniature cameras play a key role in numerous imaging applications ranging from endoscopy and metrology inspection devices to smartphones and head-mount acquisition systems. However, due to the physical constraints, the imaging conditions, and the low quality of small optics, their imaging capabilities are limited in terms of the delivered resolution, the acquired depth of field, and the captured dynamic range. Computational imaging jointly addresses the imaging system and the reconstructing algorithms to bypass the traditional limits of optical systems and deliver better restorations for various applications. The scene is encoded into a set of efficient measurements which could then be computationally decoded to output a richer estimate of the scene as compared with the raw images captured by conventional imagers. In this dissertation, three task-based computational imaging techniques are developed to make low-quality miniature cameras capable of delivering realistic high-resolution reconstructions, providing full-focus imaging, and acquiring depth information for high dynamic range objects. For the superresolution task, a non-regularized direct superresolution algorithm is developed to achieve realistic restorations without being penalized by improper assumptions (e.g., optimizers, priors, and regularizers) made in the inverse problem. An adaptive frequency-based filtering scheme is introduced to upper bound the reconstruction errors while still producing more fine details as compared with previous methods under realistic imaging conditions. For the full-focus imaging task, a computational depth-based deconvolution technique is proposed to bring a scene captured by an ordinary fixed-focus camera to a full-focus based on a depth-variant point spread function prior. The ringing artifacts are suppressed on three levels: block tiling to eliminate boundary artifacts, adaptive reference maps to reduce ringing initiated by sharp edges, and block-wise deconvolution or

  15. Miniature infrared data acquisition and telemetry system

    NASA Technical Reports Server (NTRS)

    Stokes, J. H.; Ward, S. M.

    1985-01-01

    The Miniature Infrared Data Acquisition and Telemetry (MIRDAT) Phase 1 study was performed to determine the technical and commercial feasibility of producing a miniaturized electro-optical telemetry system. This system acquires and transmits experimental data from aircraft scale models for realtime monitoring in wind tunnels. During the Phase 1 study, miniature prototype MIRDAT telemetry devices were constructed, successfully tested in the laboratory and delivered to the user for wind tunnel testing. A search was conducted for commercially available components and advanced hybrid techniques to further miniaturize the system during Phase 2 development. A design specification was generated from laboratory testing, user requirements and discussions with component manufacturers. Finally, a preliminary design of the proposed MIRDAT system was documented for Phase 2 development.

  16. Miniature capacitor functions as pressure sensor

    NASA Technical Reports Server (NTRS)

    Harrison, R. G.

    1967-01-01

    Miniature capacitor operates as a differential pressure telemetry sensor during free flight of test model in a hypersonic wind tunnel. The capacitor incorporates a beryllium copper diaphragm. It is also used as an absolute pressure sensor.

  17. Using Miniature Landforms in Teaching Geomorphology.

    ERIC Educational Resources Information Center

    Petersen, James F.

    1986-01-01

    This paper explores the uses of true landform miniatures and small-scale analogues and suggests ways to teach geomorphological concepts using small-scale relief features as illustrative examples. (JDH)

  18. Reconnaissance examination of selected oil-sand outcrops in Wyoming

    SciTech Connect

    Ver Ploeg, A.

    1986-08-01

    Numerous surface occurrences of oil sands and oil seeps have been reported in the geologic literature for Wyoming. Seventy-eight reported occurrences are listed in Wyoming Geological Survey Open-File Report 82-5. Most of the listed deposits are taken from old references with vague descriptions and locations. Field reconnaissance examinations of selected oil-sand occurrences were conducted to describe them better and to assess their potential economic importance. A reconnaissance geologic map of each examined deposit was constructed, and the deposits were sampled and described. Ten occurrences were described during the 1984 and 1985 field seasons. The oil-sand occurrences were all sandstone reservoirs ranging from Pennsylvanian to Tertiary. Based on these reconnaissance examinations, only three occurrences appeared to be potentially significant. The Rattlesnake Hills occurrence, west of Casper, is an asymmetrical anticline with oil-impregnated sands in the Mesaverde Formation, Frontier Formation, and, most extensively, the Muddy Sandstone. Other formations in the structure contain minor amounts of oil staining. The Muddy Creek occurrence, southwest of Rawlins, contains oil-impregnated sandstones in the lower Wasatch Formation. This stratigraphically controlled trap dips to the west into the Washakie basin. The Conant Creek occurrence, southeast of Riverton, includes stratigraphically controlled oil sands in the relatively flat Wagon Bed Formation.

  19. Hydrologic reconnaissance of western Arctic Alaska, 1976 and 1977

    USGS Publications Warehouse

    Childers, Joseph M.; Kernodle, Donald R.; Loeffler, Robert M.

    1979-01-01

    Reconnaissance water-resource investigations were conducted on the western Alaskan Arctic Slope during April 1976 and August 1977; these months are times of winter and summer low flow. The information gathered is important for coordinated development in the area. Such development has been spurred by oil and gas discoveries on the North Slope, most notably at Prudhoe Bay. Little water resources information is currently available. The study area extended from the Colville River to the vicinity of Kotzebue. It included the western Arctic Slope and the western foothills of the Brooks Range. Nine springs, nine lakes and eleven rivers were sampled during the April 1976 reconnaissance trip. Its purpose was to locate winter flow and describe its quantity and quality. Field water-quality measurements made at these sites were: ice thickness, water depth, discharge (spring and streams), specific conductance, water temperature, dissolved oxygen, alkalinity (bicarbonate, HOC3), and pH. A followup summer trip was made in August 1977 to determine flood characteristics of twenty selected streams. Bankfull and maximum evident flood-peak discharges were determined by measuring channel geometry and estimating channel roughness. Aquatic invertebrate samples were collected at springs and flood survey sites visited during both reconnaissance trips. (Woodard-USGS)

  20. Multi-Temporal Analysis of WWII Reconnaissance Photos

    NASA Astrophysics Data System (ADS)

    Meixner, P.; Eckstein, M.

    2016-06-01

    There are millions of aerial photographs from the period of the Second Wold War available in the Allied archives, obtained by aerial photo reconnaissance, covering most of today's European countries. They are spanning the time from 1938 until the end of the war and even beyond. Photo reconnaissance provided intelligence information for the Allied headquarters and accompanied the bombing offensive against the German homeland and the occupied territories. One of the initial principal targets in Bohemia were the synthetized fuel works STW AG (Sudetenländische Treibstoffwerke AG) in Zaluzi (formerly Maltheuren) near Most (formerly Brück), Czech Republic. The STW AG synthetized fuel plant was not only subject to bombing raids, but a subject to quite intensive photo reconnaissance, too - long before the start of the bombing campaign. With a multi-temporal analysis of the available imagery from international archives we will demonstrate the factory build-up during 1942 and 1943, the effects of the bombing raids in 1944 and the struggle to keep the plant working in the last year of the war. Furthermore we would like to show the impact the bombings have today, in form of potential unexploded ordnance in the adjacent area of the open cast mines.

  1. Audio-magnetotelluric methods in reconnaissance geothermal exploration

    USGS Publications Warehouse

    Hoover, D.B.; Long, C.L.

    1976-01-01

    and 18 600 Hz where artificial VLF sources are available. As a reconnaissance technique we use AMT surveys in conjunction with regional gravity, magnetic, and telluric surveys. The exploration depth is a function of the resistivities of the lithologic section, but typically ranges from the surface to 0.2 km in low-resistivity areas and to greater than 2 km in high-resistivity regions. Results of the initial reconnaissance AMT surveys provide a rational basis for deciding on the extent of costlier follow-up surveys. As part of the U.S. Geological Survey geothermal program, surveys were conducted in Long Valley and Surprise Valley, California; the Vale, Ore-Weiser, Idaho region; and Bruneau-Grand View, Raft River, and Island Park regions of Idaho. AMT surveys in five additional known geothermal resource areas (KGRA's) have been scheduled for completion by May 1975. In the Raft River and Bruneau-Grand View regions and Long Valley, follow-up electrical surveys substantiated the effectiveness of the AMT technique for reconnaissance surveying.

  2. Miniaturized GPS/MEMS IMU integrated board

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  3. Miniature Electrostatic Ion Thruster With Magnet

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A miniature electrostatic ion thruster is proposed that, with one exception, would be based on the same principles as those of the device described in the previous article, "Miniature Bipolar Electrostatic Ion Thruster". The exceptional feature of this thruster would be that, in addition to using electric fields for linear acceleration of ions and electrons, it would use a magnetic field to rotationally accelerate slow electrons into the ion stream to neutralize the ions.

  4. The Miniature X-ray Spectrograph (MiXS)

    NASA Astrophysics Data System (ADS)

    Martinez Oliveros, Juan Carlos; Glesener, Lindsay; Saint Hilaire, Pascal; Sundkvist, David; Hurford, Gordon; Bain, Hazel; Bale, Stuart D.; Krucker, Sam

    2015-04-01

    The Miniature X-ray Spectrograph (MiXS) is an innovative, small, and fully functional solar X-ray observatory concept designed to fit within a 6U CubeSat platform. MiXS will provide the community with X-ray spectroscopy up to 100 keV of solar flares at a small fraction of the cost of a conventional mission. It includes layered Si/CdTe detectors, providing routine observations of both soft and hard X-ray emission with low background. If selected for funding, MiXS will provide hard X-ray (HXR) spectroscopy throughout the declining phase of this solar cycle allowing continuous solar observations while new generation HXR instrumentation put in orbit. MiXS is the first stage of a much ambitious cube design the Miniature Xray Imager (MiXI), which can provide to the community X-ray imaging up to 40 - 50 keV. In the next solar cycle, coordinated observations between Solar Orbiter’s STIX instrument and future MiXS or MiXI iterations will enable solar flare observation from two vantage points, while new observatories will be commissioned. This will provide new insight into the directivity of flare HXR emission and will allow detailed study of both coronal and footpoint sources within the same flare. These results may have profound implications for theories of flare acceleration processes. We describe here the MiXS concept and its usefulness to the solar and heliophysics communities.

  5. Miniature electrically operated diaphragm valve

    DOEpatents

    Adkins, Douglas R.; Spletzer, Barry L.; Wong, Chungnin C.; Frye-Mason, Gregory C.; Fischer, Gary J.; Hesketh, Peter J.

    2001-01-01

    The present invention provides a miniature electrically operated valve that can stand off significant pressures, that can be inexpensively produced, and that can be made to operate without continuous electrical power. A valve according to the present invention comprises a housing and a beam mounted with the housing. A diaphragm mounted with the housing forms a sealed fluid volume. An electromagnetic energy source, such as an electromagnetic coil, mounts with the housing and when energized urges the beam in one direction. The beam can be urged in the opposing direction by passive means or by reversing the polarity of the electromagnetic energy source or by a second electromagnetic energy source. Two fluid ports mount with the housing. A first fluid port mounts so that, as the beam is urged in one direction or the opposite, the beam urges the diaphragm to move between engaging and substantially sealing the fluid port and disengaging and not substantially sealing the fluid port. A seat can be mounted with the diaphragm to aid in sealing the fluid port. Latching mechanisms such as permanent magnets can be mounted so that the valve remains in the open or closed positions without continuous electrical power input. Fluid can flow through the housing between the two fluid ports when the diaphragm does not seal the first fluid port, but can be prevented from flowing by urging the beam so that the diaphragm seals the first fluid port. Various embodiments accommodate various latching mechanisms, electromagnetic energy sources, number of fluid ports, and diaphragm design considerations.

  6. Miniature curved artificial compound eyes

    PubMed Central

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L’Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A.; Franceschini, Nicolas

    2013-01-01

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574

  7. Miniature curved artificial compound eyes.

    PubMed

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L'Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A; Franceschini, Nicolas

    2013-06-01

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574

  8. Miniature Ion-Array Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A figure is shown that depicts a proposed miniature ion-mobility spectrometer that would share many features of design and operation of the instrument described in another article. The main differences between that instrument and this one would lie in the configuration and mode of operation of the filter and detector electrodes. A filter electrode and detector electrodes would be located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a combination of (1) a transverse AC electric field that would effect differential transverse dispersal of ions and (2) a transverse DC electric field that would drive the dispersed ions toward the detector electrodes at different distances along the drift tube. The electric current collected by each detector electrode would be a measure of the current, and thus of the abundance of the species of ions impinging on that electrode. The currents collected by all the detector electrodes could be measured simultaneously to obtain continuous readings of abundances of species. The downstream momentum of accelerated ions would be maintained through neutralization on the electrodes; the momentum of the resulting neutral atoms would serve to expel gases from spectrometer, without need for a pump.

  9. Miniature Quadrupole Mass Spectrometer Array

    NASA Technical Reports Server (NTRS)

    Karmon, D.; Darrech, M.; Chutjian, A.; Jan, D.

    1999-01-01

    JPL is funded by Code U to develop a Miniature QMSA for an EVA flight test. The initial intent was to fly an experiment internal to the astronaut suit during a shuttle EVA. Following discussions with JSC the suit application was abandoned in favor of other more urgent needs. The JSC EVA office was particularly interested in hydrazine detection on the astronaut suit. While discussing and exploring the implementation of such an experiment, managers at JSC suggested combining the interests of two JSC groups. The Life Support and Thermal Systems Branch, Crew and Thermal Systems Division has a need for an ammonia detection instrument, while the EVA office has a need for hydrazine detection. The two groups were pursuing separate single-purpose solutions. Instead, the JPL QMSA offers a single instrument solution via a portable instrument to be used by an astronaut on an EVA. Such an instrument would serve both the ammonia leak detection and the hydrazine contamination needs. The need for the QMSA was defined as urgent and targeted for a January 1999 flight. While the original JPL task (as funded by Code U) was for an experiment flight with JPL delivery in October 1998, this task was for a qualified flight instrument with a planned JPL delivery in August 1998. This schedule was very demanding and dictated a fast-tract implementation.

  10. Field Reconnaissance Geologic Mapping of the Columbia Hills, Mars: Results from MER Spirit and MRO HiRISE Observations

    USGS Publications Warehouse

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F., III; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, Kevin W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhofer, G.; McEwen, A.; Rice, J. W., Jr.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.

  11. MISSE-7 MESA Miniaturized Electrostatic Analyzer - Ion Spectra Analysis Preliminary Results

    NASA Astrophysics Data System (ADS)

    Enloe, C. L.; Balthazor, R. L.; McHarg, M. G.; Clark, A. L.; Waite, D.; Wallerstein, A. J.; Wilson, K. A.

    2011-12-01

    The 7th Materials on the International Space Station Experiment (MISSE-7) was launched in November 2009 and retrieved on STS-134 in April 2011. One of the onboard experiments, the Miniaturized Electrostatic Analyzer (MESA), is a small low-cost low-size/weight/power ion and electron spectrometer that was pointed into ram during the majority of the time onboard. Over 800 Mb of data has been obtained by taking spectra every three minutes on-orbit. The data has been analyzed with a novel "parameterizing the parameters" method suitable for on-orbit data analysis using low-cost microcontrollers. Preliminary results are shown.

  12. [Orbital inflammation].

    PubMed

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. PMID:25455557

  13. Miniature Ion-Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to

  14. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  15. Miniature EVA Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  16. Miniature Bipolar Electrostatic Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  17. The Lunar Regolith as a Remote Sensing Target for the Lunar Reconnaissance Orbiter (LRO)

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    2009-01-01

    Of the 6 instruments and one technology demonstration aboard the LRO, only CRaTER does not measure some kind of interaction of particles with the lunar regolith. LEND detects neutron fluence that contains information about the number density of protons in the upper regolith. To infer the presence of protons, the PI must assume a model that characterizes the surface as a collection of atoms. Thus, LEND does not sense the regolith as a structure. LROC, LOLA, and LAMP sense reflected photons whose wavelength is much shorter than the median particle size in the regolith. The photons interact with electrons, either in atomic shells or in chemical bonds. These interactions occur within a nanometer or so of the surface of a particle. Thus, the particles are macroscopic objects and models of the reflection process invoke ray-tracing optics. DIVINER senses photons that have been emitted by surface particles through thermal phonon processes. The wavelengths detected by the instrument are of the same order as the median particle size, and the photons contain information on particle dimensions as well as the molecular bonds in the constituent compounds. The Mini-RF synthetic aperture radar generates and detects photons of a few centimeters wavelength that interact with the regolith as a dielectric, the dielectric properties of the particulate component being described through effective medium theory. However, the interaction with rocks (macroscopic objects of interest to geologists) can be characterized using Fresnel or Mie models of electromagnetic properties.

  18. Impact Chronology of the Moon — Results from the Lunar Reconnaissance Orbiter Camera (LROC)

    NASA Astrophysics Data System (ADS)

    Hiesinger, H.; van der Bogert, C. H.; Pasckert, J. H.; Plescia, J. B.; Robinson, M. S.

    2016-05-01

    We present absolute model ages (AMAs) based on crater size-frequency distribution (CSFD) measurements for Copernicus, Tycho, North Ray, Cone, and Autolycus craters to test and possibly improve the lunar cratering chronology.

  19. HiRISE: The High Resolution Imaging Science Experiment for Mars Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    McEwen, A. S.; Delamere, W. A.; Eliason, E. M.; Grant, J. A.; Gulick, V. C.; Hansen, C. J.; Herkenhoff, K. E.; Keszthelyi, L.; Kirk, R. L.; Mellon, M. T.

    2002-01-01

    HiRISE, an experiment on the 2005 MRO mission, will provide an unprecedented combination of ground sampling dimension (25-50 cm/pixel), signal-to-noise ratio (greater than 100:1 at all latitudes), swath width (5-10 km), partial 3-color coverage, greater than 2% coverage of Mars at 1 m/pixel or better, and stereo imaging. Additional information is contained in the original extended abstract.

  20. Photometric anomalies in the Apollo landing sites as seen from the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Kaydash, Vadym; Shkuratov, Yuriy; Korokhin, Viktor; Videen, Gorden

    2011-01-01

    Phase-ratio imagery is a new tool of qualitative photometric analyses of the upper layer of the lunar regolith, which allows the identification of natural surface structure anomalies and artificially altered regolith. We apply phase-ratio imagery to analyze the Apollo-14, -15, and -17 landing sites. This reveals photometric anomalies of ˜170 × 120 m size that are characterized by lower values of the phase-function steepness, indicating a smoothing of the surface microstructure caused by the engine jets of the landing modules. Other photometric anomalies characterized by higher phase-function slopes are the result of regolith loosening by astronaut boots and the wheels of the Modular Equipment Transporter and the Lunar Roving Vehicle. We also provide a possible explanation for the high brightness of the wheel tracks seen in on-surface images acquired at very large phase angles.

  1. The Luna-Glob Candidate Landing Region: Geological Mapping Based on the Lunar Reconnaissance Orbiter Data

    NASA Astrophysics Data System (ADS)

    Abdrakhimov, A. M.; Ivanov, M. A.; Basilevsky, A. T.; Dickson, J. L.; Head, J. W.; Zuber, M. T.; Smith, D. E.; Mazarico, E.; Neish, C. D.; Bussey, D. B. J.

    2012-03-01

    The new regional detailed geologic map was made using recent LRO data for the Luna-Glob mission. The most probable unit that could be sampled by the lander is a feldspathic Imbrian highland plains-forming material, resembling the Cayley Formation.

  2. Mars reconnaissance orbiter's high resolution imaging science experiment (HiRISE)

    USGS Publications Warehouse

    McEwen, A.S.; Eliason, E.M.; Bergstrom, J.W.; Bridges, N.T.; Hansen, C.J.; Delamere, W.A.; Grant, J. A.; Gulick, V.C.; Herkenhoff, K. E.; Keszthelyi, L.; Kirk, R.L.; Mellon, M.T.; Squyres, S. W.; Thomas, N.; Weitz, C.M.

    2007-01-01

    The HiRISE camera features a 0.5 m diameter primary mirror, 12 m effective focal length, and a focal plane system that can acquire images containing up to 28 Gb (gigabits) of data in as little as 6 seconds. HiRISE will provide detailed images (0.25 to 1.3 m/pixel) covering ???1% of the Martian surface during the 2-year Primary Science Phase (PSP) beginning November 2006. Most images will include color data covering 20% of the potential field of view. A top priority is to acquire ???1000 stereo pairs and apply precision geometric corrections to enable topographic measurements to better than 25 cm vertical precision. We expect to return more than 12 Tb of HiRISE data during the 2-year PSP, and use pixel binning, conversion from 14 to 8 bit values, and a lossless compression system to increase coverage. HiRISE images are acquired via 14 CCD detectors, each with 2 output channels, and with multiple choices for pixel binning and number of Time Delay and Integration lines. HiRISE will support Mars exploration by locating and characterizing past, present, and future landing sites, unsuccessful landing sites, and past and potentially future rover traverses. We will investigate cratering, volcanism, tectonism, hydrology, sedimentary processes, stratigraphy, aeolian processes, mass wasting, landscape evolution, seasonal processes, climate change, spectrophotometry, glacial and periglacial processes, polar geology, and regolith properties. An Internet Web site (HiWeb) will enable anyone in the world to suggest HiRISE targets on Mars and to easily locate, view, and download HiRISE data products. Copyright 2007 by the American Geophysical Union.

  3. First Retrieval of Surface Lambert Albedos From Mars Reconnaissance Orbiter CRISM Data

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Arvidson, R. E.; Murchie, S. L.; Wolff, M. J.; Smith, M. D.; Martin, T. Z.; Milliken, R. E.; Mustard, J. F.; Pelkey, S. M.; Lichtenberg, K. A.; Cavender, P. J.; Humm, D. C.; Titus, T. N.; Malaret, E. R.

    2006-12-01

    We have developed a pipeline-processing software system to convert radiance-on-sensor for each of 72 out of 544 CRISM spectral bands used in global mapping to the corresponding surface Lambert albedo, accounting for atmospheric, thermal, and photoclinometric effects. We will present and interpret first results from this software system for the retrieval of Lambert albedos from CRISM data. For the multispectral mapping modes, these pipeline-processed 72 spectral bands constitute all of the available bands, for wavelengths from 0.362-3.920 μm, at 100-200 m/pixel spatial resolution, and ~ 0.006\\spaceμm spectral resolution. For the hyperspectral targeted modes, these pipeline-processed 72 spectral bands are only a selection of all of the 544 spectral bands, but at a resolution of 15-38 m/pixel. The pipeline processing for both types of observing modes (multispectral and hyperspectral) will use climatology, based on data from MGS/TES, in order to estimate ice- and dust-aerosol optical depths, prior to the atmospheric correction with lookup tables based upon radiative-transport calculations via DISORT. There is one DISORT atmospheric-correction lookup table for converting radiance-on-sensor to Lambert albedo for each of the 72 spectral bands. The measurements of the Emission Phase Function (EPF) during targeting will not be employed in this pipeline processing system. We are developing a separate system for extracting more accurate aerosol optical depths and surface scattering properties. This separate system will use direct calls (instead of lookup tables) to the DISORT code for all 544 bands, and it will use the EPF data directly, bootstrapping from the climatology data for the aerosol optical depths. The pipeline processing will thermally correct the albedos for the spectral bands above ~ 2.6 μm, by a choice between 4 different techniques for determining surface temperature: 1) climatology, 2) empirical estimation of the albedo at 3.9 μm from the measured albedo at 2.5 μm, 3) a physical thermal model (PTM) based upon maps of thermal inertia from TES and coarse-resolution surface slopes (SS) from MOLA, and 4) a photoclinometric extension to the PTM that uses CRISM albedos at 0.41 μm to compute the SS at CRISM spatial resolution. For the thermal correction, we expect that each of these 4 different techniques will be valuable for some fraction of the observations.

  4. Operational Demonstration of Ka-Band Telecommunications for the Mars Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Townes, S. A.; Breidenthal, J. C.; Moyd, K. I.; Patterson, J. E.; Shambayati, S.; Amoozegar, F.; Morabito, D.; Border, J. S.

    2003-01-01

    The objectives of the operational demonstration are to verify that the anticipated benefits of the higher carrier frequency can actually be realized under realistic operating conditions, and if possible to provide a significant enhancement to scientific data return.

  5. The New View of the Moon: Redefining Future Surface Exploration Using the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Lawrence, S. J.; Jolliff, B. L.; Stopar, J. D.; Speyerer, E. J.; Denevi, B. W.; Robinson, M. S.; Petro, N. E.; Gaddis, L.; Gruener, J.; Draper, D.; Thomson, B. J.; Ostrach, L. R.

    2016-05-01

    The profound importance of LRO past and future observations to future Exploration is discussed, as well as the best destinations for surface exploration to achieve core planetary science and human exploration goals.

  6. Empirical Photometric Normalization for the Seven Band UV-VIS Lunar Reconnaissance Orbiter Wide Angle Camera

    NASA Astrophysics Data System (ADS)

    Boyd, A. K.; Robinson, M. S.; Nuno, R. G.; Sato, H.

    2014-12-01

    We present results on a near-global (80°S to 80°N) seven color Wide Angle Camera (WAC) photometric normalization and color analysis. Over 100,000 WAC color observations were calibrated to reflectance (radiance factor: IoF), and photometric angles (i,e,g), latitude, and longitude were calculated and stored for each WAC pixel. Photometric angles were calculated using the WAC GLD100 [1], and a six-dimensional data set (3 spatial and 3 photometric) was reduced to three by photometrically normalizing the IoF with a global wavelength-dependent, 3rd-order multivariate polynomial. The multispectral mosaic was normalized to a standard viewing geometry (incidence angle=30°, emission angle=0°, phase angle=30°).The WAC has a 60° cross-track field-of-view in color mode, which allows the acquisition of a near global data set each month; however, the phase angle can change by as much as 60° across each image. These large changes in viewing geometry present challenges to the required photometric normalization. In the ratio of the 321 nm and 689 nm wavelengths, the Moon has a standard deviation less than 3% in the highlands and 7% globally; thus to allow confident identification of true color differences, the photometric normalization must be precise. Pyroclastic deposits in Marius Hills, Sinus Aestuum, and Mare Serenitatis are among the least reflective materials, with 643 nm normalized reflectance values less than 0.036.Low-reflectance deposits are generally concentrated close to the equator on the nearside, whereas high-reflectance materials are dispersed globally. The highest reflectance materials occur at Giordano Bruno and Virtanen craters and are attributed to exposure of immature materials. Immature ejecta has shallower spectral slope compared to the mean highlands spectra (321 nm to 689 nm), and UV weathering characteristics can be seen when comparing different aged Copernican ejecta [2]. Copernican ejecta is found to have 643 nm reflectance values greater than 0.36 in some areas. The range of reflectance on the Moon is 10x from the least to most reflective.The new empirical normalized reflectance presented here correlates with an independent Hapke model based normalization [3] with an R-squared value of 0.985.[1] Scholten et al. LPSC XVII (2011) [2] Denevi et al. JGR Planets (2014) [3] Sato et al. JGR Planets (2014)

  7. Advances in miniature spectrometer and sensor development

    NASA Astrophysics Data System (ADS)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  8. Automated motion imagery exploitation for surveillance and reconnaissance

    NASA Astrophysics Data System (ADS)

    Se, Stephen; Laliberte, France; Kotamraju, Vinay; Dutkiewicz, Melanie

    2012-06-01

    Airborne surveillance and reconnaissance are essential for many military missions. Such capabilities are critical for troop protection, situational awareness, mission planning and others, such as post-operation analysis / damage assessment. Motion imagery gathered from both manned and unmanned platforms provides surveillance and reconnaissance information that can be used for pre- and post-operation analysis, but these sensors can gather large amounts of video data. It is extremely labour-intensive for operators to analyse hours of collected data without the aid of automated tools. At MDA Systems Ltd. (MDA), we have previously developed a suite of automated video exploitation tools that can process airborne video, including mosaicking, change detection and 3D reconstruction, within a GIS framework. The mosaicking tool produces a geo-referenced 2D map from the sequence of video frames. The change detection tool identifies differences between two repeat-pass videos taken of the same terrain. The 3D reconstruction tool creates calibrated geo-referenced photo-realistic 3D models. The key objectives of the on-going project are to improve the robustness, accuracy and speed of these tools, and make them more user-friendly to operational users. Robustness and accuracy are essential to provide actionable intelligence, surveillance and reconnaissance information. Speed is important to reduce operator time on data analysis. We are porting some processor-intensive algorithms to run on a Graphics Processing Unit (GPU) in order to improve throughput. Many aspects of video processing are highly parallel and well-suited for optimization on GPUs, which are now commonly available on computers. Moreover, we are extending the tools to handle video data from various airborne platforms and developing the interface to the Coalition Shared Database (CSD). The CSD server enables the dissemination and storage of data from different sensors among NATO countries. The CSD interface allows

  9. A Laser Interferometric Miniature Sensor

    SciTech Connect

    Carr, Dustin W., PhD.; Baldwin, Patrick C.; Milburn, Howard; Robinson, David

    2011-09-12

    This is the second year of a Phase II Small Business Innovation Research (SBIR) contract geared towards the development of a new seismic sensor. Ground-based seismic monitoring systems have proven to be very capable in identifying nuclear tests, and can provide somewhat precise information on the location and yield of the explosive device. Making these measurements, however, currently requires very expensive and bulky seismometers that are difficult to deploy in places where they are most needed. A high performance, compact device can enable rapid deployment of large scale arrays, which can in turn be used to provide higher quality data during times of critical need. The use of a laser interferometer-based device has shown considerable promise, while also presenting significant challenges. The greatest strength of this optical readout technique is the ability to decouple the mechanical design from the transducer, thus enabling a miniaturized design that is not accessible with conventional sensing techniques. However, the nonlinearity in the optical response must be accounted for in the sensor output. Previously, we had proposed using a force-feedback approach to position the sensor at a point of maximum linearity. However, it can be shown that the combined nonlinearities of the optical response and the force-feedback curve necessarily results in a significant amount of unwanted noise at low frequencies. Having realized this, we have developed a new approach that eliminates force feedback, allowing the proof mass to move freely at all times. This takes advantage of some advanced optical spatial filtering that was developed at Symphony Acoustics for other types of sensors, and was recently adapted to this work. After processing the signals in real time, the digital output of the device is intrinsically linear, and the sensor can operate at any orientation with the same level of resolution, while instantly adapting to significant changes in orientation. Ultimately, we

  10. Satellite spectral data and archaeological reconnaissance in western Greece

    NASA Technical Reports Server (NTRS)

    Cooper, Frederick A.; Bauer, M. E.; Cullen, Brenda C.

    1991-01-01

    A Macro-geographical reconnaissance of the Western Peloponnesos adopts spectral signatures taken by Landsat-5 Thematic Mapper as a new instrument of archaeological survey in Greece. Ancient records indicate that indigenous resources contributed to the prosperity of the region. Natural resources and Ancient, Medieval, and Pre-modern Folklife in the Western Peloponnesos describes the principal lines of research. For a supervised classification of attested ancient resources, a variety of biophysical surface features were pinpointed: stone quarries, coal mines, forests of oak and silver fir, terracotta-producing clay beds, crops, and various wild but exploited shrubs such as flax.

  11. A reconnaissance for uranium in New Mexico, 1953

    USGS Publications Warehouse

    Griggs, Roy Lee

    1954-01-01

    In the fall of 1953 a reconnaissance for uranium was made in the Datil area of west-central New Mexico, and in the Cerrillos mining district, the Glorieta and Tecolote districts, and the Las Vegas and Colfax sill areas of north-central to northeastern New Mexico. Traces of radioactive materials were detected at many places, and deposits of uranium minerals, which may be of possible economic significance, were found near the village of Datil. Small amounts of uranium are widespread in sandstone beds in the Mesaverde formation. The sample of highest grade contained 0. 056 percent

  12. Miniature Long-life Space Cryocoolers

    NASA Technical Reports Server (NTRS)

    Tward, E.

    1993-01-01

    TRW has designed, built, and tested a miniature integral Stirling cooler and a miniature pulse tube cooler intended for long-life space application. Both efficient, low-vibration coolers were developed for cooling IR sensors to temperatures as low as 50 K on lightsats. The vibrationally balanced nonwearing design Stirling cooler incorporates clearance seals maintained by flexure springs for both the compressor and the drive displacer. The design achieved its performance goal of 0.25 W at 65 K for an input power to the compressor of 12 W. The cooler recently passed launch vibration tests prior to its entry into an extended life test and its first scheduled flight in 1995. The vibrationally balanced, miniature pulse tube cooler intended for a 10-year long-life space application incorporates a flexure bearing compressor vibrationally balanced by a motor-controlled balancer and a completely passive pulse tube cold head.

  13. Fabrication method for miniature plastic gripper

    DOEpatents

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1998-07-21

    A miniature plastic gripper is described actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  14. Fabrication method for miniature plastic gripper

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.; Lee, Abraham P.; Northrup, Milton A.; Folta, James A.

    1998-01-01

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  15. Miniature plastic gripper and fabrication method

    DOEpatents

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1997-03-11

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same are disclosed. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  16. Miniature plastic gripper and fabrication method

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.; Lee, Abraham P.; Northrup, Milton A.; Folta, James A.

    1997-01-01

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  17. Goniometry and Limb Girth in Miniature Dachshunds

    PubMed Central

    Thomovsky, Stephanie A.; Chen, Annie V.; Kiszonas, Alecia M.; Lutskas, Lori A.

    2016-01-01

    Purpose. To report the mean and median pelvic limb joint angles and girth measurements in miniature Dachshunds presenting with varying degrees of pelvic limb weakness secondary to thoracolumbar intervertebral disc extrusion. Methods. 15 miniature Dachshunds who presented to WSU-VTH for thoracolumbar disc extrusion. Dachshunds varied in neurologic status from ambulatory paraparetic to paraplegic at the time of measurements. Results. There were no significant differences in joint angles or girth among the three groups (ambulatory paraparetic, nonambulatory paraparetic, or paraplegic) (P > 0.05). When group was disregarded and values for extension, flexion, and girth combined, no differences existed. Conclusions. Goniometry and limb girth measurements can successfully be made in the miniature Dachshund; however, the shape of the Dachshund leg makes obtaining these values challenging. There were no differences in joint angle or girth measurements between dogs with varying neurologic dysfunction at the time of measurement. PMID:27403455

  18. FY 2006 Miniature Spherical Retroreflectors Final Report

    SciTech Connect

    Anheier, Norman C.; Bernacki, Bruce E.; Krishnaswami, Kannan

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.

  19. Electronic systems miniaturization using programmable logic devices

    SciTech Connect

    Ashton, E.C.; Bergeson, G.C.

    1990-10-01

    This report describes the steps which were taken to miniaturize a target circuit using Erasable Programmable Logic Devices (EPLDs). The original objective of this project was to explore the miniaturization of a circuit using both Application Specific Integrated Circuits (ASICs) and EPLDs to meet the following goals: balance cost and circuit density; reduce fabrication time; improve quality control issues by keeping much of the design in-house; and eliminate security risks by partitioning the design into ASIC and PLD (EPLD) sections. Due to cost considerations, the target circuit was miniaturized using only PLDs. The results of this project indicate that PLDs are capable of realizing fairly dense circuitry, are considerably less expensive than ASICs (by a factor of 500--1000), and are able to eliminate security risks and reduce fabrication time by keeping the design completely in-house.

  20. Compact Miniaturized Antenna for 210 MHz RFID

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Chun, Kue

    2008-01-01

    This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.

  1. Method and system for assembling miniaturized devices

    DOEpatents

    Montesanti, Richard C.; Klingmann, Jeffrey L.; Seugling, Richard M.

    2013-03-12

    An apparatus for assembling a miniaturized device includes a manipulator system including six manipulators operable to position and orient components of the miniaturized device with submicron precision and micron-level accuracy. The manipulator system includes a first plurality of motorized axes, a second plurality of manual axes, and force and torque and sensors. Each of the six manipulators includes at least one translation stage, at least one rotation stage, tooling attached to the at least one translation stage or the at least one rotation stage, and an attachment mechanism disposed at a distal end of the tooling and operable to attach at least a portion of the miniaturized device to the tooling. The apparatus also includes an optical coordinate-measuring machine (OCMM) including a machine-vision system, a laser-based distance-measuring probe, and a touch probe. The apparatus also includes an operator control system coupled to the manipulator system and the OCMM.

  2. FY 2005 Miniature Spherical Retroreflectors Final Report

    SciTech Connect

    Anheier, Norman C.; Bernacki, Bruce E.; Johnson, Bradley R.; Riley, Brian J.; Sliger, William A.

    2005-12-01

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical and chromatic aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional bistatic LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.

  3. Closeup of STS-26 Discovery, OV-103, orbital maneuvering system (OMS) leak

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Closeup of STS-26 Discovery, Orbiter Vehicle (OV) 103, orbital maneuvering system (OMS) reaction control system (RCS) nitrogen tetroxide gas leak was captured by a Cobra borescope and displayed on a video monitor. The borescope has a miniature videocamera at the end of a flexible rubber tube and is able to be maneuvered into other inaccessible locations.

  4. Aerosol Particle Size Retrievals from the Compact Reconnaissance Imaging Spectrometer for Mars

    NASA Astrophysics Data System (ADS)

    Guzewich, S.; Smith, M. D.; Wolff, M. J.

    2013-12-01

    During the extended mission of the Mars Reconnaisance Orbiter, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has made periodic limb-viewing geometry observations of the Martian atmosphere. Sufficient radiance is typically available to produce a vertical distribution of dust and water ice aerosols from the surface to approximately 50 km altitude. Radiative transfer modeling is conducted to achieve a best fit between the observed and modeled spectrum. The spherical geometry of the limb-viewing geometry is handled using a pseudo-spherical approximation that is computationally efficient and accurate to within a few percent of a Monte Carlo method for the geometries observed. Different particle sizes of dust and water ice have unique extinction coefficients across the visible and near-infrared portion of the spectrum observed by CRISM. We use a wide range of wavelengths across the CRISM spectrum to conduct the retrieval. Here we provide initial results on the retrieval of dust and water ice particle sizes over the duration of the CRISM limb-viewing observations.

  5. Team Reconnaissance: A Process for Involving Teachers in the Preplanning of Experiential Education Projects.

    ERIC Educational Resources Information Center

    Kielsmeier, Jim

    Too often inadequate preparation in facilitating an outdoor experience is the rule and the subsequent group experience suffers. In an organization like Outward Bound where areas are used repeatedly, an evolutionary form of reconnaissance is often adequate. However, for school groups, this form of reconnaissance is not practical since too few of…

  6. Coulomb Repulsion in Miniature Ion Mobility Spectrometry

    SciTech Connect

    Xu, J.; Whitten, W.B.; Ramsey, J.M.

    1999-08-08

    We have undertaken a study of ion mobility resolution in a miniature ion mobility spectrometer with a drift channel 1.7 mm in diameter and 35 mm in length. The device attained a maximum resolution of 14 in separating ions of NO, O{sub 2}, and methyl iodine. The ions were generated by pulses from a frequency-quadrupled Nd:YAG laser. Broadening due to Coulomb repulsion was modeled theoretically and shown experimentally to have a major effect on the resolution of the miniature device.

  7. Miniature rotating transmissive optical drum scanner

    NASA Technical Reports Server (NTRS)

    Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)

    2013-01-01

    A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.

  8. Continuous flow nitration in miniaturized devices

    PubMed Central

    2014-01-01

    Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161

  9. Batch fabrication of precision miniature permanent magnets

    DOEpatents

    Christenson, Todd R.; Garino, Terry J.; Venturini, Eugene L.

    2002-01-01

    A new class of processes for fabrication of precision miniature rare earth permanent magnets is disclosed. Such magnets typically have sizes in the range 0.1 to 10 millimeters, and dimensional tolerances as small as one micron. Very large magnetic fields can be produced by such magnets, lending to their potential application in MEMS and related electromechanical applications, and in miniature millimeter-wave vacuum tubes. This abstract contains simplifications, and is supplied only for purposes of searching, not to limit or alter the scope or meaning of any claims herein.

  10. Research on miniature gas analysis systems

    NASA Technical Reports Server (NTRS)

    Angell, J. B.

    1974-01-01

    Technology for fabricating very small valves, whose function will be to introduce a small sample of the gas to be analyzed into the main carrier gas stream flowing through the chromatograph column is described. In addition, some analyses were made of the factors governing the resolution of gas chromatographs, particularly those with miniature columns. These analyses show how important the column lining thickness is in governing the ability of a miniature column to separate components of an unknown gas. A brief description of column lining factors is included. Preliminary work on a super small thermistor detector is included.

  11. Miniature biotelemeter gives multichannel wideband biomedical data

    NASA Technical Reports Server (NTRS)

    Carraway, J. B.

    1972-01-01

    A miniature biotelemeter was developed for sensing and transmitting multiple channels of biomedical data over a radio link. The design of this miniature, 10-channel, wideband (5 kHz/channel), pulse amplitude modulation/ frequency modulation biotelemeter takes advantage of modern device technology (e.g., integrated circuit operational amplifiers, complementary symmetry/metal oxide semiconductor logic, and solid state switches) and hybrid packaging techniques. The telemeter is being used to monitor 10 channels of neuron firings from specific regions of the brain in rats implanted with chronic electrodes. Design, fabrication, and testing of an engineering model biotelemeter are described.

  12. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Cooper, J. F.; Mahaffy, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; Acuna, M.; Allen, M.; Bjoraker, G.; Brasunas, J.; Farrell, W.; Burchell, M. J.; Burger, M.; Chin, G.; Coates, A. J.; Farrell, W.; Flasar, M.; Gerlach, B.; Gorevan, S.; Hartle, R. E.; Im, Eastwood; Jennings, D.; Johnson, R. E.

    2007-01-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. One could also use aerobraking to put spacecraft into orbit around Saturn first for an Enceladus phase of the mission and then later use aerocapture to put spacecraft into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG approx. 1000 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan's atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  13. MiXI: The Miniature X-ray Imager

    NASA Astrophysics Data System (ADS)

    Martinez Oliveros, Juan Carlos; Glesener, L.; Hurford, G. J.; Sundkvist, D.; Krucker, S.; Bale, S.

    2013-07-01

    The Miniature X-ray Imager (MiXI) is an ambitious, innovative, small, and fully functional solar X-ray observatory concept designed to fit within a 6U CubeSat platform. MiXI will provide the community with X-ray imaging and spectroscopy of solar flares, but at a small fraction of the cost of a conventional mission. MiXI will observe from 3 to 50 keV. It includes rotation modulation collimators and layered Si/CdTe detectors, providing routine observations of both soft and hard X-ray emission with low background. If selected for funding, MiXI could launch in 2017 to coincide with the launch of Solar Orbiter. In the next solar cycle, coordinated observations between the STIX instrument onboard Solar Orbiter and a future version of MiXI will enable solar flare observation from two vantage points. This will provide new insight into the directivity of flare HXR emission and will allow detailed study of both coronal and footpoint sources in the same flare. These results may have profound implications for theories of flare acceleration processes. We describe here the MiXI concept and its usefulness to the solar and heliophysics communities.

  14. The advanced linked extended reconnaissance and targeting technology demonstration project

    NASA Astrophysics Data System (ADS)

    Cruickshank, James; de Villers, Yves; Maheux, Jean; Edwards, Mark; Gains, David; Rea, Terry; Banbury, Simon; Gauthier, Michelle

    2007-06-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing key operational needs of the future Canadian Army's Surveillance and Reconnaissance forces by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. We discuss concepts for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as beyond line-of-sight systems such as a mini-UAV and unattended ground sensors. The authors address technical issues associated with the use of fully digital IR and day video cameras and discuss video-rate image processing developed to assist the operator to recognize poorly visible targets. Automatic target detection and recognition algorithms processing both IR and visible-band images have been investigated to draw the operator's attention to possible targets. The machine generated information display requirements are presented with the human factors engineering aspects of the user interface in this complex environment, with a view to establishing user trust in the automation. The paper concludes with a summary of achievements to date and steps to project completion.

  15. Hydrologic reconnaissance of the eastern North Slope, Alaska, 1975

    USGS Publications Warehouse

    Childers, Joseph M.; Sloan, C.E.; Meckel, J.P.; Nauman, J.W.

    1977-01-01

    The part of the Arctic coast of Alaska between the Colville River and the Canadian boundary was visited in April, August, and November 1975. The study area is characterized by its cold climate and is largely uninhabited, but oil and gas discoveries have spurred development of parts of the area. Sensible, coordinated development requires information about water resources. The purpose of the April reconnaissance was to locate winter streamflow and describe its quantity and quality. A followup summer trip was made in August to determine the flood characteristics of selected streams by measuring channel geometry in relation to bankfull discharge and the maximum evident flood and by estimating channel roughness. In addition, one lake was sampled, the discharge of a few springs was measured, and samples of spring water were taken. Because streamflow in August was assumed to be representative of normal summer flow, water quality was examined in streams for which flood surveys had been made. Samples of aquatic invertebrate populations were taken from most sites on the April and August trips. Another reconnaissance trip from Prudhoe Bay east to Canada was made in November to measure discharge in selected streams and springs, to measure ice thickness and water depth in selected lakes, and to collect water samples for water-quality analyses. Tables of data, photographs, and maps are included. (Woodard-USGS)

  16. Scatterscore : A reconnaissance method to evaluate changes in water quality

    SciTech Connect

    Kim, A.G.; Cardone, C.R.

    2005-12-01

    Water quality data collected in periodic monitoring programs are often difficult to evaluate, especially if the number of parameters is large, the sampling schedule varies, and values are of different orders of magnitude. The Scatterscore Water Quality Evaluation was developed to yield a quantitative score, based on all measured variables in periodic water quality reports, indicating positive, negative or random change. This new methodology calculates a reconnaissance score based on the differences between up-gradient (control) versus down-gradient (treatment) water quality data sets. All parameters measured over a period of time at two or more sampling points are compared. The relationship between the ranges of measured values and the ratio of the medians for each parameter produces a data point that falls into one of four sections on a scattergram. The number and average values of positive, negative and random change points is used to calculate a Scatterscore that indicates the magnitude and direction of overall change in water quality. The Scatterscore Water Quality Evaluation, a reconnaissance method to track general changes, has been applied to 20 sites at which coal utilization by-products (CUB) were used to control acid mine drainage (AMD).

  17. Reconnaissance for uranium and thorium in Alaska, 1954

    USGS Publications Warehouse

    Matzko, John J.; Bates, Robert G.

    1957-01-01

    During 1954 reconnaissance investigations to locate minable deposits of uranium and thorium in Alaska were unsuccessful. Areas examined, from which prospectors had submitted radioactive samples, include Cap Yakataga, Kodiak Island, and Shirley Lake. Unconcentrated gravels from the beach at Cape Yakataga average about 0.001 percent equivalent uranium. Uranothorianite has been identified by X-ray diffraction data and is the principal source of radioactivity in the Cape Yakataga beach sands studied; but the zircon, monazite, and uranothorite are also radioactive. The black, opaque uranothorianite generally occurs as minute euhedral cubs, the majority of which will pass through a 100-mesh screen. The bedrock source of the radioactive samples from Kodiak Island was not found; the maximum radioactivity of samples from the Shirley Lake area was equivalent to about 0.02 percent uranium. Radiometric traverses of the 460-foot level of the Garnet shaft of the Nixon Fork mine in the Nixon Fork mining district indicated a maximum of 0.15 mr/hr. In the Hot Springs district, drill hole concentrates of gravels examined contained a maximum of 0.03 percent equivalent uranium. A radioactivity anomaly noted during the Survey's airborne reconnaissance of portions of the Territory during 1954 is located in the Fairhaven district. A ground check disclosed that the radioactivity was due to accessory minerals in the granitic rock.

  18. Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability

    NASA Astrophysics Data System (ADS)

    Senske, D.; Pappalardo, R. T.; Prockter, L. M.; Paczkowski, B.; Vance, S.; Goldstein, B.; Magner, T. J.; Cooke, B.

    2014-12-01

    Europa is a prime candidate to search for a present-day habitable environment in our solar system. As such, NASA has engaged a Science Definition Team (SDT) to define a strategy to advance our scientific understanding of this icy world with the goal: Explore Europa to investigate its habitability. A mission architecture is defined where a spacecraft in Jupiter orbit would make many close flybys of Europa, concentrating on remote sensing to explore the moon. The spacecraft trajectory would permit ~45 flybys at a variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's surface. This concept is known as the Europa Clipper. The SDT recommended three science objectives for the Europa Clipper: Ice Shell and Ocean--Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition--Understand the habitability of Europa's ocean through composition and chemistry; Geology--Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The SDT also considered implications of the recent HST detection of plumes at Europa. To feed forward to potential future exploration that could be enabled by a lander, it was deemed that the Clipper should provide the capability to perform reconnaissance. In consultation with NASA Headquarters, the SDT developed a reconnaissance goal: Characterize Scientifically Compelling Sites, and Hazards, for a Potential Future Landed Mission to Europa. This leads to two objectives: Site Safety--Assess the distribution of surface hazards, the load-bearing capacity of the surface, the structure of the subsurface, and the regolith thickness; Science Value--Assess the composition of surface materials, the geologic context of the surface, the potential for geological activity, the proximity of near surface water, and the potential for active

  19. Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Smith, M. D.; Clancy, R. T.; Arvidson, R.; Kahre, M.; Seelos, F.; Murchie, S.; Savijärvi, H.

    2009-06-01

    Observations by the Compact Reconnaissance Imaging Spectrometer (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) over the range 440-2920 nm of the very dusty Martian atmosphere of the 2007 planet-encircling dust event are combined with those made by both Mars Exploration Rovers (MERs) to better characterize the single scattering albedo (ω 0) of Martian dust aerosols. Using the diagnostic geometry of the CRISM emission phase function (EPF) sequences and the “ground truth” connection provided at both MER locations allows one to more effectively isolate the single scattering albedo (ω 0). This approach eliminates a significant portion of the type of uncertainty involved in many of the earlier radiative transfer analyses. Furthermore, the use of a “first principles” or microphysical representation of the aerosol scattering properties offers a direct path to produce a set of complex refractive indices (m = n + ik) that are consistent with the retrieved ω 0 values. We consider a family of effective particle radii: 1.2, 1.4, 1.6, and 1.8 μm. The resulting set of model data comparisons, ω 0, and m are presented along with an assessment of potential sources of error and uncertainty. We discuss our results within the context of previous work, including the apparent dichotomy of the literature values: “dark” (solar band ω 0 = 0.89-0.90) and “bright” (solar band ω 0 = 0.92-0.94). Previous work suggests that a mean radius of 1.8 μm is representative for the conditions sampled by the CRISM observations. Using the m for this case and a smaller effective particle radius more appropriate for diffuse dust conditions (1.4 μm), we examine EPF-derived optical depths relative to the MER 880 nm optical depths. Finally, we explore the potential impact of the resulting brighter solar band ω 0 of 0.94 to atmospheric temperatures in the planetary boundary layer.

  20. Two Views of Islam: Ceramic Tile Design and Miniatures.

    ERIC Educational Resources Information Center

    Macaulay, Sara Grove

    2001-01-01

    Describes an art project focusing on Islamic art that consists of two parts: (1) ceramic tile design; and (2) Islamic miniatures. Provides background information on Islamic art and step-by-step instructions for designing the Islamic tile and miniature. Includes learning objectives and resources on Islamic tile miniatures. (CMK)

  1. A miniature mass spectrometer for hydrazine detection

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Sinha, M. P.

    2003-01-01

    A Miniature Mass Spectrometer (MMS) with a focal plane (Mattauch-Herzog) geometry has been developed at the Jet Propulsion Laboratory. The MMS has the potential to meet the NASA requirements of 10 parts per billion sensitivity for Hydrazine detection, as well as the requirements for instant response, portability, and low maintenance.

  2. Miniaturization of EISCAP sensor for triglyceride detection.

    PubMed

    Vemulachedu, Hareesh; Fernandez, Renny Edwin; Bhattacharya, Enakshi; Chadha, Anju

    2009-12-01

    In this paper we discuss the fabrication and characterization of miniaturized triglyceride biosensors on crystalline silicon and porous silicon (PS) substrates. The sensors are miniaturized Electrolyte Insulator Semiconductor Capacitors (mini-EISCAPs), which primarily sense the pH variation of the electrolyte used. The lipase enzyme, which catalyses the hydrolysis of triglycerides, was immobilized on the sensor surface. Triglyceride solutions introduced into the enzyme immobilized sensor produced butyric acid which causes the change in pH of the electrolyte. Miniaturized EISCAP sensors were fabricated using bulk micromachining technique and have silicon nitride as the pH sensitive dielectric layer. The sensors are cubical pits of dimensions 1,500 microm x 1,500 microm x 100 microm which can hold an electrolyte volume of 0.1 microl. The pH changes in the solution can be sensed through the EISCAP sensors by monitoring the flatband voltage shift in the Capacitance-Voltage (C-V) characteristics taken during the course of the reaction. The reaction rate is found to be quite high in the miniature cells when compared to the sensors of bigger dimensions. PMID:18649048

  3. Miniature pulse tube cooler at 100HZ

    NASA Astrophysics Data System (ADS)

    Chen, Houlei; Xu, Nana; Yin, Chuanlin; Cai, Jinghui; Liang, Jingtao

    2012-06-01

    Miniature pulse tube coolers operating at 100Hz have been designed and manufactured. The regenerator is designed by REGEN 3.2, and the inertance tube is simulated by DeltaE. An in-line prototype is manufactured according to the theoretical design parameters initially. On that basis, a coaxial cooler is developed and with double inlet it gains higher cooling performance.

  4. Miniaturized symmetrization optics for junction laser

    NASA Technical Reports Server (NTRS)

    Hammer, Jacob M. (Inventor); Kaiser, Charlie J. (Inventor); Neil, Clyde C. (Inventor)

    1982-01-01

    Miniaturized optics comprising transverse and lateral cylindrical lenses composed of millimeter-sized rods with diameters, indices-of-refraction and spacing such that substantially all the light emitted as an asymmetrical beam from the emitting junction of the laser is collected and translated to a symmetrical beam.

  5. Miniature Marimbas: Migrant Workers' Memories of Home.

    ERIC Educational Resources Information Center

    Howell, Jayne

    1995-01-01

    Three Mexican migrant workers attending classes at Geneseo (New York) Migrant Center used leftover art materials to represent their home village in miniature. A spontaneous artistic expression, the objects allowed the men an opportunity to reminisce and reinforce cultural and interpersonal ties, and gave insight about their background and culture…

  6. Miniature Housings for Electronics With Standard Interfaces

    NASA Technical Reports Server (NTRS)

    Howard, David E.; Smith, Dennis A.; Alhorn, Dean C.

    2006-01-01

    A family of general-purpose miniature housings has been designed to contain diverse sensors, actuators, and drive circuits plus associated digital electronic readout and control circuits. The circuits contained in the housings communicate with the external world via standard RS-485 interfaces.

  7. MINIATURE ACID CONDENSATION SYSTEM: DESIGN AND OPERATION

    EPA Science Inventory

    An extractive source sampling system was designed and constructed. The sampling system measures gaseous sulfuric acid and sulfur dioxide in combustion emissions. The miniature acid condensation system (MACS) includes a high-temperature quartz probe and quartz-filter holder. Since...

  8. A low-power and high-precision miniaturized digital sun sensor

    NASA Astrophysics Data System (ADS)

    de Boer, B. M.; Durkut, M.

    2013-09-01

    A prototype miniaturized digital sun sensor (miniDSS) was developed by TNO. It is expected to be launched on QuadSat for in-orbit demonstration. The single-chip sun sensor comprises an application specific integrated circuit (ASIC) on which an active pixel sensor (APS), read-out and processing circuitry as well as communication circuitry are combined. The sun sensor consumes only 65 mW, has a volume of 69x52x14 mm3 and a mass of just 72 grams. Although the miniDSS is a miniaturized and low-power device, the accuracy is not compromised by this. The uncalibrated accuracy is in the order of a few hundreds of a degree, across the field of view of 102°x102°. The sensor is albedo insensitive.

  9. The Advanced Linked Extended Reconnaissance & Targeting Technology Demonstration project

    NASA Astrophysics Data System (ADS)

    Edwards, Mark

    2008-04-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing many operational needs of the future Canadian Army's Surveillance and Reconnaissance forces. Using the surveillance system of the Coyote reconnaissance vehicle as an experimental platform, the ALERT TD project aims to significantly enhance situational awareness by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. The project is exploiting important advances made in computer processing capability, displays technology, digital communications, and sensor technology since the design of the original surveillance system. As the major research area within the project, concepts are discussed for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as from beyond line-of-sight systems such as mini-UAVs and unattended ground sensors. Video-rate image processing has been developed to assist the operator to detect poorly visible targets. As a second major area of research, automatic target cueing capabilities have been added to the system. These include scene change detection, automatic target detection and aided target recognition algorithms processing both IR and visible-band images to draw the operator's attention to possible targets. The merits of incorporating scene change detection algorithms are also discussed. In the area of multi-sensor data fusion, up to Joint Defence Labs level 2 has been demonstrated. The human factors engineering aspects of the user interface in this complex environment are presented, drawing upon multiple user group sessions with military surveillance system operators. The paper concludes with Lessons Learned from the project. The ALERT system has been used in a number of C4ISR

  10. Orbital cellulitis.

    PubMed Central

    Martin-Hirsch, D P; Habashi, S; Hinton, A H; Kotecha, B

    1992-01-01

    Orbital cellulitis is an emergency. It may cause blindness and progress to life-threatening sequelae such as brain abscess, meningitis and cavernous sinus thrombosis. Successful management is dependent upon urgent referral and immediate treatment. Although isolated eyelid erythema and swelling usually indicate primary infection anterior to the orbital septum, they may also be the first signs of an underlying frontal or ethmoidal sinusitis. The condition always requires emergency referral to both an ophthalmologist and otorhinolaryngologist. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1388488

  11. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  12. Radar View of Layering near Mars' South Pole, Orbit 1360

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A radargram from the Shallow Subsurface Radar instrument (SHARAD) on NASA's Mars Reconnaissance Orbiter reveals detailed structure in the polar layered deposits of Mars' south pole.

    The horizontal scale of the radargram is distance along the orbiter's ground track, about 650 kilometers (400 miles) from about 74 degrees south latitude on the left to about 85 degrees south latitude at right. The vertical scale is time delay of radar signals reflected back to the spacecraft from the surface and subsurface. For reference, the white double-headed arrow indicates a distance of about 800 meters (2,600 feet) between one of the strongest subsurface reflectors and ground level, based on an assumed velocity of the radar waves in the subsurface. This reflector marks the base of the polar layered deposits. The color scale varies from black for weak reflections to white for strong reflections.

    The sounding radar collected the data presented here during orbit 1360 of the mission, on Nov. 10, 2006.

    The Shallow Subsurface Radar was provided by the Italian Space Agency (ASI). Its operations are led by the University of Rome and its data are analyzed by a joint U.S.-Italian science team. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington.

  13. THe high altitude reconnaissance platform (HARP) and its capabilities

    SciTech Connect

    Rusk, D.; Rose, R.L.; Gibeau, E.

    1996-10-01

    The High Altitude Reconnaissance Platform (HARP), a Learjet 36A, is a multi-purpose, long-range, high-altitude aircraft specially modified to serve as a meteorological observation platform. Its instrument suite includes: particle probes, Ka-band radar, two-color lidar, infrared spectroradiometer, thermometer, hygrometer, liquid water probe, and a gust probe. Aeromet scientists have developed software and hardware systems that combine data using sensor fusion concepts, providing detailed environmental information. The HARP answers the need for defining and predicting meteorological conditions throughout large atmospheric volumes particularly in areas where conventional surface and upper-air observations are not available. It also fills the need for gathering and predicting meteorological conditions along an optical sensor`s line of sight or a missile`s reentry path. 6 refs., 2 figs., 4 tabs.

  14. Demo III: reconnaissance, surveilance, and target acquisition (RSTA) preliminary design

    NASA Astrophysics Data System (ADS)

    Klarquist, William N.; Bonner, Kevin G.; Gothard, Benny M.

    1999-01-01

    One of the principal roles of the Demo III Experimental Unmanned Ground Vehicle will be as a forward scout performing Reconnaissance, Surveillance, and Target Acquisition (RSTA) operations. This paper will present the elements of the preliminary design process for satisfying the rigorous Demo III ATR requirements, including military vehicle deductibility at a maximum range of 6 km and dismounted soldier detection at 2km. The constituent design issues include sensor selection, sensor suite mounting and stabilization, processing architecture, and algorithm selection. In the context of this selection and design process the lessons learned from previous Unmanned Ground Vehicle RSTA efforts will be introduced and the contractual and subsystem derived requirements will be presented as well as the interface issues for the RSTA subsystem in conjunction with the navigation, mission execution, and communication subsystems.

  15. Reconnaissance geothermal resource assessment of 40 sites in California

    SciTech Connect

    Leivas, E.; Martin, R.C.; Higgins, C.T.; Bezore, S.P.

    1981-01-01

    Results are set forth for a continuing reconnaissance-level assessment of promising geothermal sites scattered through California. The studies involve acquisition of new data based upon field observations, compilation of data from published and unpublished sources, and evaluation of the data to identify areas suitable for more intensive area-specific studies. Forty sites were chosen for reporting on the basis of their relative potential for development as a significant resource. The name and location of each site is given, and after a brief synopsis, the geothermal features, chemistry, geology, and history of the site are reported. Three sites are recommended for more detailed study on the basis of potential for use by a large number of consumers, large volume of water, and the likelihood that the resource underlies a large area. (LEW)

  16. Processing and analysis of radiometer measurements for airborne reconnaissance

    NASA Technical Reports Server (NTRS)

    Suess, Helmut

    1990-01-01

    This paper describes selected results of airborne, radiometric imaging measurements at 90 GHz and 140 GHz relevant for the application in reconnaissance. Using a temperature resolution below 0.5 K and an angular resolution of about 1-degree high-quality images show the capability of discriminating between many brightness temperature classes within our natural environment and man-made objects. Measurement examples are given for cloud and fog penetration at 90 GHz, for the detection of vehicles on roads, and for the detection and classification of airports and airplanes. The application of different contour enhancement methods (Marr-Hildreth and Canny) shows the possibility of extracting lines and shapes precisely in order to improve automatic target recognition. The registration of the passive images with corresponding X-band synthetic aperture images from the same area is carried out and the high degree of correlation is discussed.

  17. Laser interrogation of surface agents (LISA) for chemical agent reconnaissance

    NASA Astrophysics Data System (ADS)

    Higdon, N. S.; Chyba, Thomas H.; Richter, Dale A.; Ponsardin, Patrick L.; Armstrong, Wayne T.; Lobb, C. T.; Kelly, Brian T.; Babnick, Robert D.; Sedlacek, Arthur J., III

    2002-06-01

    Laser Interrogation of Surface Agents (LISA) is a new technique which exploits Raman scattering to provide standoff detection and identification of surface-deposited chemical agents. ITT Industries, Advanced Engineering and Sciences Division is developing the LISA technology under a cost-sharing arrangement with the US Army Soldier and Biological Chemical Command for incorporation on the Army's future reconnaissance vehicles. A field-engineered prototype LISA-Recon system is being designed to demonstrate on-the- move measurements of chemical contaminants. In this article, we will describe the LISA technique, data form proof-of- concept measurements, the LISA-Recon design, and some of the future realizations envisioned for military sensing applications.

  18. Optical Sensor Demands On Real-Time Reconnaissance Data Transmission

    NASA Astrophysics Data System (ADS)

    McAhron, Max C.

    1987-02-01

    The application of optical sensors (photographic, electro-optic, and infrared) to the tactical military reconnaissance scenario is increasing both in number and performance expectations. The resolution and collection rate capabilities of these optical sensors lead to massive amounts of raw data requiring reduction and interpretation. Exploitation of the collected information must be accomplished in near-real-time (immediate to several minutes) to fully realize the sensor's potential in the tactical operating environment. Exploitation delayed hours from collection becomes useless at best and misinformation at worst. Herein, the first objective is to approximately quantify the existing capabilities for data collection, recording, and transmission, both in rate and volume. The second objective is to suggest several means whereby preprocessing may reduce the volume of data without influencing the substantive information. The third objective is to suggest means whereby the sensor utilization is more selective, thereby providing a better focus of the collection process.

  19. HuntIR thermal imagers for reconnaissance and targeting applications

    NASA Astrophysics Data System (ADS)

    Breiter, Rainer; Cabanski, Wolfgang A.; Ihle, Tobias; Mauk, Karl-Heinz; Rode, Werner

    2004-08-01

    A new family of light handheld military thermal imagers for reconnaissance and targeting applications was developed based on AIM's IR components like IR detection modules, command and control electronics and image processing units. Three different types of imagers provide solutions for different requirements in identification ranges of targets. The highest performance device makes use of a FPA MCT 384x288 MWIR detector with a motorized double field of view optics. An identification range up to 2400m for the NATO standard target was proven according to the FGAN-FOM TRM3 range model. The device provides a mechanical adaptation to weapon systems and provides target markers for common hand weapons of the German army. A single field of view MCT device for 1000m ranges and an uncooled device on the lower performance end complete the imager family. Electronics for intelligent power management from batteries and display electronics were developed to provide stand alone operation. The modular concept allows the use of the same image processing unit for all devices providing special features for best performance like scene-based non-uniformity correction together with an optical calibration element and dynamic reduction including automatic histogram equalization for optimized scene display and text or graphics overlay. Due to the modular concept the components like the image processing unit are already used and validated in programs like the thermal sight for the self defense gun of the reconnaissance vehicle FENNEK together with a 320x240 LWIR uncooled microbolometer detector or with the MCT 384x288 MWIR detection module in a thermal imager for the German army UAV Luna.

  20. Management Of Airborne Reconnaissance Images Through Real-Time Processing

    NASA Astrophysics Data System (ADS)

    Endsley, Neil H.

    1985-12-01

    Digital reconnaissance images gathered by low-altitude over-flights with resolutions on the order of a few feet and fields of view up to 120 degrees can generate millions of pixels per second. Storing this data in-flight, transmitting it to the ground, and analyzing it presents significant problems to the tactical community. One potential solution is in-flight preview and pruning of the data where an operator keeps or transmits only those image segments which on first view contain potential intelligence data. To do this, the images must be presented to the operator in a geometrically correct form. Wide-angle dis-tortion, distortions induced by yaw, pitch, roll and altitude variations, and distortions due to non-ideal alignment of the focal plane array must be removed so the operator can quickly assess the scene content and make decisions on which image segments to keep. When multiple sensors are used with a common field of view, they must be mutually coregistered to permit multispectral or multimode processing to exploit these rich data dimensions. In addition, the operator should be able to alter the apparent point of view of the image, i.e., be able to zoom in and out, rotate, and roam through the displayed field of view while maintaining geometric and radiometric precision. These disparate requirements have a common feature in the ability to perform real-time image geometry manipulation. The role of image geometry manipulation, or image warping, is reviewed and a "strawman" system dis-cussed which incorporates the Pipelined Resampling Processor (PRP). The PRP is a real-time image warping processor discussed at this conference in previous years"2'3". Actual results from the PRP prototype are presented. In addition, other image processing aids such as image enhancement and object classification are discussed as they apply to reconnaissance applications.

  1. A reconnaissance study of radon concentration in Hamadan city, Iran.

    NASA Astrophysics Data System (ADS)

    Gillmore, G. K.; Jabari Vasal, Naghi

    2009-04-01

    This paper presents results of a reconnaissance study that used CR-39 alpha track-etch detectors to measure radon concentrations in dwellings in Hamadan, western Iran, significantly, built on permeable alluvial fan deposits. The indoor radon levels recorded varied from 4 to 364 Bq/m3 with a mean value of 107.87 Bq/m3 which is 2.5 times the average global population-weighted indoor radon concentration - these data augment the very few published studies on indoor radon levels in Iran. The maximum radon concentration in Hamadan occurs during the winter period (January to March) with lower concentrations during the autumn. The effective dose equivalent to the population in Hamadan is estimated from this reconnaissance study to be in the region of 2.7 mSv/y, which is above the guidelines for dose to a member of the public of 1 mSv/y suggested by the International Commission on Radiological Protection (ICRP) in 1993, although further work is required to confirm these results. This study supports other work in a number of countries that indicates such permeable 'surficial' deposits as being of intermediate to high radon potential. In western Iran, the presence of hammered clay floors, the widespread presence of excavated qanats to distribute water underground, the textural properties of surficial deposits and human behaviour intended to cope with winds are likely to be important factors influencing radon concentrations in older buildings. Keywords: Radon; health; dwellings; clay floors; alluvial fan; surficial geology; Hamadan; Iran

  2. Location of Buried Mineshafts and Adits Using Reconnaissance Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Culshaw, Martin; Donnelly, Laurance; McCann, David

    Britain has a long history of mining activity, which stretches back some 3000 years to the excavation of flint in East Anglia. The legacy of this long period of activity is the presence of many buried mineshafts and adits, whose location is often unknown precisely and in many cases not even recorded in historical mining records. As has been shown by Donnelly et al (2003) the discovery of a mineshaft in an area of housing development can have a profound effect on property values in its vicinity. Hence, urgent action must be taken to establish at the site investigation stage of a development to determine whether any mineshafts are present at the site so that remedial action can be taken before construction commences. A study of historical information and the drilling may well enable the developer to locate any suspected mineshafts and adits on his site. However, the use of geophysical reconnaissance methods across the whole site may well provide sufficient information to simplify the drilling programme and reduce its cost to a minimum. In this paper a number of rapid reconnaissance geophysical methods are described and evaluated in terms of their success in the location of buried mineshafts and adits. It has shown that a combination of ground conductivity and magnetic surveys provides a most effective approach on open sites in greenfield and brownfield areas. Ground penetrating radar and micro-gravity surveys have proved to be a valuable approach in urban areas where the use of many geophysical methods is prevented by the presence of various types of cultural noise. On a regional scale the infrared thermography method is being increasingly used but care must be taken to overcome certain environmental difficulties. The practical use of all these geophysical methods in the field is illustrated by a number of appropriate case histories.

  3. Tier-Scalable Reconnaissance Missions for Autonomous Exploration and Spatio-Temporal Monitoring of Climate Change with Particular Application to Glaciers and their Environs

    NASA Astrophysics Data System (ADS)

    Fink, W.; Tarbell, M. A.; Furfaro, R.; Kargel, J. S.

    2010-12-01

    Spatio-temporal monitoring of climate change and its impacts is needed globally and thus requires satellite-based observations and analysis. However, needed ground truth can only be obtained in situ. In situ exploration of extreme and often hazardous environments can pose a significant challenge to human access. We propose the use of a disruptive exploration paradigm that has earlier been introduced with autonomous robotic space exploration, termed Tier-Scalable Reconnaissance (PSS 2005; SCIENCE 2010). Tier-scalable reconnaissance utilizes orbital, aerial, and surface/subsurface robotic platforms working in concert, enabling event-driven and integrated global to regional to local reconnaissance capabilities. We report on the development of a robotic test bed for Tier-scalable Reconnaissance at the University of Arizona and Caltech (SCIENCE 2010) for distributed and science-driven autonomous exploration, mapping, and spatio-temporal monitoring of climate change in hazardous or inaccessible environments. We focus in particular on glaciers and their environs, especially glacier lakes. Such glacier lakes can pose a significant natural hazard to inhabited areas and economies downstream. The test bed currently comprises several robotic surface vehicles: rovers equipped with cameras, and boats equipped with cameras and side-scanning sonar technology for bathymetry and the characterization of subsurface structures in glacier lakes and other water bodies. To achieve a fully operational Tier-scalable Reconnaissance test bed, aerial platforms will be integrated in short order. Automated mapping and spatio-temporal monitoring of glaciers and their environs necessitate increasing degrees of operational autonomy: (1) Automatic mapping of an operational area from different vantages (i.e., airborne, surface, subsurface); (2) automatic sensor deployment and sensor data gathering; (3) automatic feature extraction and region-of-interest/anomaly identification within the mapped

  4. Miniature Sapphire Acoustic Resonator - MSAR

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, Robert L.

    2011-01-01

    mechanical energy and back. Such an electrostatic tweeter type excitation of a mechanical resonator will be tested at 5 MHz. Finite element calculation will be applied to resonator design for the desired resonator frequency and optimum configuration. The experiment consists of the sapphire resonator sandwiched between parallel electrodes. A DC+AC voltage can be applied to generate a force to act on a sapphire resonator. With the frequency of the AC voltage tuned to the sapphire resonator frequency, a resonant condition occurs and the sapphire Q can be measured with a high-frequency impedance analyzer. To achieve high Q values, many experimental factors such as vacuum seal, gas damping effects, charge buildup on the sapphire surface, heat dissipation, sapphire anchoring, and the sapphire mounting configuration will need attention. The effects of these parameters will be calculated and folded into the resonator design. It is envisioned that the initial test configuration would allow for movable electrodes to check gap spacing dependency and verify the input impedance prediction. Quartz oscillators are key components in nearly all ground- and space-based communication, tracking, and radio science applications. They play a key role as local oscillators for atomic frequency standards and serve as flywheel oscillators or to improve phase noise in high performance frequency and timing distribution systems. With ultra-stable performance from one to three seconds, an Earth-orbit or moon-based MSAR can enhance available performance options for spacecraft due to elimination of atmospheric path degradation.

  5. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Astrophysics Data System (ADS)

    Sittler, Edward C.; Cooper, J. F.; Mahaffey, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; TOAM Team

    2006-12-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG 500 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan’s atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  6. Miniaturization of holographic Fourier-transform spectrometers.

    PubMed

    Agladze, Nikolay I; Sievers, Albert J

    2004-12-20

    Wave propagation equations in the stationary-phase approximation have been used to identify the theoretical bounds of a miniature holographic Fourier-transform spectrometer (HFTS). It is demonstrated that the HFTS throughput can be larger than for a scanning Fourier-transform spectrometer. Given room- or a higher-temperature constraint, a small HFTS has the potential to outperform a small multichannel dispersive spectrograph with the same resolving power because of the size dependence of the signal-to-noise ratio. These predictions are used to analyze the performance of a miniature HFTS made from simple optical components covering a broad spectral range from the UV to the near IR. The importance of specific primary aberrations in limiting the HFTS performance has been both identified and verified. PMID:15646777

  7. Design considerations for miniaturized PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Meyers, Jeremy P.; Maynard, Helen L.

    In this paper, we consider the design of a miniaturized proton-exchange membrane (PEM) fuel cell for powering 0.5-20 W portable telecommunication and computing devices. Our design is implemented on a silicon substrate to take advantage of advanced silicon processing technology in order to minimize production costs. The reduced length scales afforded by silicon processing allow us to consider designs that would be prohibited by excessive Ohmic losses in larger systems. We employ a mathematical model to quantify the effects of the secondary current distribution on two competing cell designs. In addition to the design of the cell itself, we discuss key integration issues and engineering trade-offs relevant to all miniaturized fuel cell systems: air movement, fuel delivery and water balance, thermal management and load handling.

  8. Miniaturized Wilkinson Power Dividers Utilizing Capacitive Loading

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Weller, Thomas M.

    2001-01-01

    This letter reports the miniaturization of a planar Wilkinson power divider by capacitive loading of the quarter wave transmission lines employed in conventional Wilkinson power dividers. Reduction of the transmission line segments from lambda/4 to between lambda/5 and lambda/12 are reported here. The input and output lines at the three ports and the lines comprising the divider itself are coplanar waveguide (CPW) and asymmetric coplanar stripline (ACPS), respectively. The 10 GHZ power dividers are fabricated on high resistivity silicon (HRS) and alumina wafers. These miniaturized dividers are 74% smaller than conventional Wilkinson power dividers, and have a return loss better than +30 dB and an insertion loss less than 0.55 dB. Design equations and a discussion about the effect of parasitic reactance on the isolation are presented for the first time.

  9. Skeletal atavism in a miniature horse.

    PubMed

    Tyson, Reid; Graham, John P; Colahan, Patrick T; Berry, Clifford R

    2004-01-01

    An 8-month-old miniature horse filly was presented for evaluation of severe rotational and angular limb deformities of the thoracic and pelvic limbs. On radiographic examination, complete ulnas and fibulas were identified. These findings are consistent with a condition previously described as a form of atavism. The term atavism is used to describe the reappearance of a trait or character that was seen in all earlier evolutionary specimens of a particular species, but has not been seen in recent ancestors. The atavistic traits of complete ulnas and fibulas have previously been described in Welsh and Shetland Ponies, all of which had severe rotational and angular limb deformities. In this horse, bilateral osteochondritis dissecans of the medial trochlear ridge of the talii were also identified. To the authors' knowledge, this is the first report of the atavistic traits of complete ulnas and fibulas seen in the miniature horse. PMID:15373256

  10. Miniature sensor suitable for electronic nose applications

    NASA Astrophysics Data System (ADS)

    Pinnaduwage, Lal A.; Gehl, Anthony C.; Allman, Steve L.; Johansson, Alicia; Boisen, Anja

    2007-05-01

    A major research effort has been devoted over the years for the development of chemical sensors for the detection of chemical and explosive vapors. However, the deployment of such chemical sensors will require the use of multiple sensors (probably tens of sensors) in a sensor package to achieve selective detection. In order to keep the overall detector unit small, miniature sensors with sufficient sensitivity of detection will be needed. We report sensitive detection of dimethyl methylphosphonate (DMMP), a stimulant for the nerve agents, using a miniature sensor unit based on piezoresistive microcantilevers. The sensor can detect parts-per-trillion concentrations of DMMP within 10s exposure times. The small size of the sensor makes it ideally suited for electronic nose applications.

  11. ESA's Comet Orbiter Rosetta and Lander Philae

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S.; Schwehm, G.; Schulz, R.; Ulamec, S.

    2014-05-01

    Rosetta is the first mission designed to orbit, and deploy a Lander onto the surface of, a comet, 67P/Churyumov-Gerasimenko (67P/C-G). After an active Cruise Phase, which included three swingbys at the Earth, one at Mars and two flybys at Main Belt asteroids, the spacecraft is scheduled to orbit the comet nucleus and, after careful reconnaissance, deliver to the surface, while still at a distance of about 3 AU from the Sun, its Lander (Philae). The Lander payload, which comprises ten onboard experiments, will investigate the physical properties of the cometary surface/subsurface, measuring in particular their chemical, mineralogical and isotopic compositions. The lifetime of the Lander will depend on the prevailing cometary environment. The spacecraft will meanwhile continue to orbit and map the comet as it advances along its trajectory toward the Sun, utilizing eleven payload experiments to investigate how the comet becomes gradually more active and how its interactions with the solar wind develop. Post-perihelion Rosetta will continue to orbit, and make observations of the gradually declining comet environment out to a distance of ˜ 2 AU.

  12. Raytheon Advanced Miniature Cryocooler Characterization Testing

    NASA Astrophysics Data System (ADS)

    Conrad, T.; Yates, R.; Schaefer, B.; Bellis, L.; Pillar, M.; Barr, M.

    2015-12-01

    The Raytheon Advanced Miniature (RAM) cryocooler is a flight packaged, high frequency pulse tube cooler with an integrated surge volume and inertance tube. Its design has been fully optimized to make use of the Raytheon Advanced Regenerator, resulting in improved efficiency relative to previous Raytheon pulse tube coolers. In this paper, thermodynamic characterization data for the RAM cryocooler is presented along with details of its design specifications.

  13. Miniature tilting pad gas lubricated bearing

    SciTech Connect

    Sixsmith, H.; Swift, W.L.

    1983-12-01

    This paper describes the design and development of a miniature tilting pad gas bearing developed for use in very small turbomachines. The bearings have been developed for cryogenic turboexpanders with shaft diameters down to about 0.3 cm and rotational speeds up to one million rpm. Cryogenic expansion turbines incorporating this type of bearing should be suitable for refrigeration rates down to about 10 w.

  14. High Q Miniature Sapphire Acoustic Resonator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, R. L.

    2010-01-01

    We have demonstrated high Q measurements in a room temperature Miniature Sapphire Acoustic Resonator (MSAR). Initial measurements of bulk acoustic modes in room temperature sapphire at 39 MHz have demonstrated a Q of 8.8 x 10(exp 6). The long term goal of this work is to integrate such a high Q resonator with small, low noise quartz oscillator electronics, providing a fractional frequency stability better than 1 x 10(exp -14) @ 1s.

  15. A miniature tilting pad gas lubricated bearing

    NASA Astrophysics Data System (ADS)

    Sixsmith, H.; Swift, W. L.

    1983-12-01

    This paper describes the design and development of a miniature tilting pad gas bearing developed for use in very small turbomachines. The bearings have been developed for cryogenic turboexpanders with shaft diameters down to about 0.3 cm and rotational speeds up to one million rpm. Cryogenic expansion turbines incorporating this type of bearing should be suitable for refrigeration rates down to about 10 w.

  16. A miniature tilting pad gas lubricated bearing

    NASA Technical Reports Server (NTRS)

    Sixsmith, H.; Swift, W. L.

    1983-01-01

    This paper describes the design and development of a miniature tilting pad gas bearing developed for use in very small turbomachines. The bearings have been developed for cryogenic turboexpanders with shaft diameters down to about 0.3 cm and rotational speeds up to one million rpm. Cryogenic expansion turbines incorporating this type of bearing should be suitable for refrigeration rates down to about 10 w.

  17. Miniature Reversal Electron-Attachment Detector

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara

    1994-01-01

    Miniature reversal electron-attachment detector (miniREAD) enables direct injection of air or vapor at atmospheric pressure from monitored area into mass-spectrometric instrument to detect explosives, narcotics, or other substances, vapors of which suspected of being present in low concentrations. In comparison with older reversal electron-attachment detector, miniREAD simpler in design; more rugged; and easier to build, repair, and maintain. In addition, probably more sensitive.

  18. Imaging performance of a miniature integrated microendoscope

    PubMed Central

    Rogers, Jeremy D.; Landau, Sara; Tkaczyk, Tomasz S.; Descour, Michael R.; Rahman, Mohammed S.; Richards-Kortum, Rebecca; Kärkäinen, Ari H. O.; Christenson, Todd

    2011-01-01

    An integrated miniature multi-modal microscope (4M device) for microendoscopy was built and tested. Imaging performance is evaluated and imaging results are presented for both fluorescence and reflectance samples. Images of biological samples show successful imaging of both thin layers of fixed cells prepared on a slide as well as thick samples of excised fixed porcine epithelial tissue, thus demonstrating the potential for in vivo use. PMID:19021400

  19. Miniature, Variable-Speed Control Moment Gyroscope

    NASA Technical Reports Server (NTRS)

    Bilski, Steve; Kline-Schoder, Robert; Sorensen, Paul

    2011-01-01

    The Miniature Variable-Speed Control Moment Gyroscope (MVS-CMG) was designed for small satellites (mass from less than 1 kg up to 500 kg). Currently available CMGs are too large and heavy, and available miniature CMGs do not provide sufficient control authority for use on practical satellites. This primarily results from the need to greatly increase the speed of rotation of the flywheel in order to reduce the flywheel size and mass. This goal was achieved by making use of a proprietary, space-qualified, high-speed (100,000 rpm) motor technology to spin the flywheel at a speed ten times faster than other known miniature CMGs under development. NASA is supporting innovations in propulsion, power, and guidance and navigation systems for low-cost small spacecraft. One of the key enabling technologies is attitude control mechanisms. CMGs are particularly attractive for spacecraft attitude control since they can achieve higher torques with lower mass and power than reaction wheels, and they provide continuous torque capability that enables precision pointing (in contrast to on-off thruster control). The aim of this work was to develop a miniature, variable-speed CMG that is sized for use on small satellites. To achieve improved agility, these spacecraft must be able to slew at high rate, which requires attitude control actuators that can apply torques on the order of 5 N-m. The MVS-CMG is specifically designed to achieve a high-torque output with a minimum flywheel and system mass. The flywheel can be run over a wide range of speeds, which is important to help reduce/eliminate potential gimbal lock, and can be used to optimize the operational envelope of the CMG.

  20. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...

  1. Ground-water reconnaissance of the central Weber River area, Morgan and Summit Counties, Utah

    USGS Publications Warehouse

    Gates, Joseph S.; Steiger, Judy I.; Green, Ronald T.

    1984-01-01

    A reconnaissance of ground water in the central Weber River area obtained data to help State administrators devise a policy for acting on applications to appropriate ground water resulting from recent and future influxes of residents.

  2. Airborne reconnaissance XIII; Proceedings of the Meeting, San Diego, CA, Aug. 7-9, 1989

    NASA Technical Reports Server (NTRS)

    Henkel, Paul A. (Editor); Lagesse, Francis R. (Editor); Schurter, Wayne W. (Editor)

    1989-01-01

    The present conference on airborne reconnaissance discusses topics in imagery exploitation, reconsystem modeling and analysis, and reconnaissance optics and electronics configurations. Attention is given to airborne minefield detection, the optimization of an IR linescanner for RPV operations, real-time display of IR linescanner data for RPVs, three-dimensional model-guided site recognition, the AMIDARS high-performance real-time display, and MMW sensor image analysis. Also discussed are reconnaissance concepts for the 3-5 micron spectral window, sensor concept development for hazard detection, a stabilization system for a large aperture camera, three-axis image stabilization with a two-axis mirror, the results of performance tests on the TOW target collimator design, and the replacement of film by electrooptic media in advanced tactical airborne reconnaissance.

  3. BREVEL: a Franco/German reconnaissance and target-localization UAV system

    NASA Astrophysics Data System (ADS)

    Schlenkrich, Volker; Stahl, Karl-Hermann

    1993-12-01

    At the end of 1992 Eurodrone, a jointly owned company by MATRA DEFENSE in France and STN in Germany were awarded a contract by the french and german government to develop a reconnaissance and target localization system based on UAV. This article describes the rationale for the chosen design of the system and its performance. The system provides realtime reconnaissance and target localization with high accuracy.

  4. Miniature Loop Heat Pipe (MLHP) Thermal Management System

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2004-01-01

    The MLHP Thermal Management System consists of a loop heat pipe (LHP) with multiple evaporators and condensers, thermal electrical coolers, and deployable radiators coated with variable emittance coatings (VECs). All components are miniaturized. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, versatility, and reliability of the system, including flexible locations of instruments and radiators, a single interface temperature for multiple instruments, cooling the on instruments and warming the off instruments simultaneously, improving. start-up success, maintaining a constant LHP operating temperature over a wide range of instrument powers, effecting automatic thermal switching and thermal diode actions, and reducing supplemental heater powers. It can fully achieve low mass, low power and compactness necessary for future small spacecraft. Potential applications of the MLHP thermal technology for future missions include: 1) Magnetospheric Constellation; 2) Solar Sentinels; 3) Mars Science Laboratory; 4) Mars Scouts; 5) Mars Telecom Orbiter; 6) Space Interferometry Mission; 7) Laser Interferometer Space Antenna; 8) Jupiter Icy Moon Orbiter; 9) Terrestrial Planet Finder; 10) Single Aperture Far-Infrared Observatory, and 11) Exploration Missions. The MLHP Thermal Management System combines the operating features of a variable conductance heat pipe, a thermal switch, a thermal diode, and a state-of-the-art LHP into a single integrated thermal system. It offers many advantages over conventional thermal control techniques, and can be a technology enabler for future space missions. Successful flight validation will bring the benefits of MLHP technology to the small satellite arena and will have cross-cutting applications to both Space Science and Earth Science Enterprises.

  5. MiXI: The Miniature X-ray Imager

    NASA Astrophysics Data System (ADS)

    Martinez Oliveros, J. C.; Glesener, L.; Sundkvist, D. J.; Saint-Hilaire, P.; Bain, H. M.; Fivian, M. D.; Hurford, G. J.; Sample, J. G.; Bale, S. D.; Krucker, S.

    2014-12-01

    The Miniature X-ray Imager (MiXI) is an innovative, small, and fully functional solar X-ray observatory concept designed to fit within a 6U CubeSat platform. MiXI will provide the community with X-ray imaging in the energy range from ~6 to 40-50 keV and spectroscopy up to 100 keV of solar flares at a small fraction of the cost of a conventional mission. It includes rotation modulation collimators and layered Si/CdTe detectors, providing routine observations of both soft and hard X-ray emission with low background. Coordinated observations between MiXI and the STIX instrument onboard Solar Orbiter will enable solar flare observation from two vantage points, providing new insights into the directivity of flare HXR emission and will allow detailed study of both coronal and footpoint sources within the same flare. These results may have profound implications for theories of flare acceleration processes.

  6. Orbit analysis

    SciTech Connect

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  7. Interpreting Radar View near Mars' North Pole, Orbit 1512

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A radargram from the Shallow Subsurface Radar instrument (SHARAD) on NASA's Mars Reconnaissance Orbiter is shown in the upper-right panel and reveals detailed structure in the polar layered deposits of the north pole of Mars (with blowups shown in the upper-left panels). The sounding radar collected the data presented here during orbit 1512 of the mission, on Nov. 22, 2006.

    The horizontal scale in the radargram is distance along the ground track. It can be referenced to the ground track map shown in the lower right. The radar traversed from about 83.5 degrees to 80.5 degrees north latitude, or about 180 kilometers (110 miles). The ground track map shows elevation measured by the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. Green indicates low elevation; reddish-white indicates higher elevation. The traverse is from the high elevation of the plateau formed by the layers to the lowlands below.

    The vertical scale on the radargram is time delay of the radar signals reflected back to Mars Reconnaissance Orbiter from the surface and subsurface. For reference, using an assumed velocity of the radar waves in the subsurface, time is converted to depth below the surface in two places: about 600 meters (2,000 feet) to the lowest of an upper series of bright reflectors and about 2,000 meters (6,500 feet) to the base of the polar layered deposits. The color scale of the radargram varies from black for weak reflections to bright yellow for strong reflections.

    The lower-left panel is a image from the Mars Orbiter Camera on Mars Global Surveyor showing exposed polar layering in the walls of a canyon near the north pole. The layering is divided into a finely structured upper unit (labeled 'Upper PLD') and less-well-defined stratigraphy in the lower unit (labeled 'Lower PLD'). The radargram clearly reveals the complexity of the layering in the upper unit, additional reflections from the lower unit, and the base of the entire stack of

  8. Objectives for Mars Orbital Missions in the 2020s: Report from a MEPAG Science Analysis Group

    NASA Astrophysics Data System (ADS)

    Zurek, R. W.; Campbell, B. A.; Diniega, S.; Lock, R. E.

    2015-12-01

    NASA Headquarters is looking at possible missions to Mars to follow the proposed 2020 Mars rover mission currently in development. One option being considered is a multi-functional orbiter, launched in the early 2020's, whose capabilities could address objectives in the following areas: • Replenishment of the telecommunications and reconnaissance infrastructure presently provided by the aging Mars Odyssey and Mars Reconnaissance Orbiters; • Scientific and technical progress on the NRC Planetary Science Decadal Survey priorities, updated MEPAG Goals, and/or follow-up of new discoveries; • Location and quantification of in situ resources for utilization by future robotic and human surface-based missions; and • Data needed to address Strategic Knowledge Gaps (SKGs), again for possible human missions. The Mars Exploration Program Analysis Group (MEPAG) was asked to prepare an analysis of possible science objectives and remote sensing capabilities that could be implemented by such a multi-purpose Mars orbiter launched in the 2022/24 timeframe. MEPAG conducted this analysis through formation of a Next Orbiter Science Analysis Group (NEX-SAG), which was chartered jointly by the NASA Science and Human Exploration Directorates. The SAG was asked to conduct this study within a range of mission capabilities, including the possible first use of Solar Electric Propulsion (SEP) in the Mars system. SEP could provide additional power enabling new payload components and possible changes in orbit (e.g., orbital inclination change) that permit different mission observational campaigns (e.g., polar and non-polar). Special attention was paid towards identifying synergies between science investigations, reconnaissance, and resource/SKG needs. We will present the findings and conclusions of this NEX-SAG regarding possible objectives for the next NASA Orbiter to Mars.

  9. A mineral reconnaissance of the Jabal Khida quadrangle, Saudi Arabia

    USGS Publications Warehouse

    Whitlow, Jesse William

    1968-01-01

    Reconnaissance of the Jabal Khida quadrangle shows that granite and granodiorite (unit gg), biotite and hornblende granite (unit gr) and alkalic and paralkalic granit (unit gp) divisions for granites seems valid, but that two ages of metamorphic and extrusive rocks are mapped as the Halaben formation (unit ha/hc). Semiquantitative analyses of 113 samples collected in the quadrangle were made spectrographically on minus 30 plus 80 mesh wadi sand for 27 elements, and chemically on concentrates of heavy minerals and magnetite from wadi sand. Anomalous amounts of silver, beryllium, molybdenum, niobium, tin, cobalt, chromium, copper, lead, nickel, titanium, and vanadium are found in the sand samples, but the anomalies are low. Anomalous tungsten is present in some concentrates from wadi sand. A small alkalic and paralkalic granite (gp) at the west side of the quadrangle contains tin, niobium, and a low anomaly of lead. The area should be studied for commercial tin and niobium. Beryllium is in the granite and granodiorite (gg) adjacent to the alkalic granite. Concentrates from wadi sand derived from two alkalic granite (gp) bodies in the north-central part of the quadrangle contain 330 ppm tungsten.

  10. Littoral environmental reconnaissance using tactical imagery from unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Holland, K. Todd; Lalejini, David M.; Spansel, Steven D.; Holman, Robert A.

    2010-04-01

    The dynamic nature of littoral regions requires a reconnaissance approach that can rapidly quantify environmental conditions. Inadequate estimation of these conditions can have substantial impacts on the performance of Naval systems. Given that expeditionary warfare operations can occur over timescales on the order of hours, exploitation of video imagery from tactical vehicles such as Unmanned Aircraft Systems (UAS) has proved to be a reliable and adaptive solution. Tactical littoral products that can be created by exploiting UAS imagery include estimates of surf conditions, dominant wave period, wave direction, nearshore currents, and bathymetry. These vehicles can fly for durations of 1-2 hours at altitudes of less than 1000 m (beneath typical cloud cover) to obtain imagery at pixel resolutions better than 1 m. The main advantage of using imaging sensors carried by these vehicles is that the data is available in the region of operational interest where other data collection approaches would be difficult or impossible to employ. The through-the-sensor exploitation technique we have developed operates in two phases. The first step is to align individual image frames to a common reference and then georegister the alignment into a mapped image sequence. The second phase involves signal processing of pixel intensity time series (virtual sensors) to determine spatial relationships over time. Geophysical relationships, such as linear wave dispersion, can then be applied to these processed data to invert for environmental parameters such as bathymetry.

  11. Fitting modular reconnaissance systems into modern high-performance aircraft

    NASA Astrophysics Data System (ADS)

    Stroot, Jacquelyn R.; Pingel, Leslie L.

    1990-11-01

    The installation of the Advanced Tactical Air Reconnaissance System (ATARS) in the F/A-18D(RC) presented a complex set of design challenges. At the time of the F/A-18D(RC) ATARS option exercise, the design and development of the ATARS subsystems and the parameters of the F/A-18D(RC) were essentially fixed. ATARS is to be installed in the gun bay of the F/A-18D(RC), taking up no additional room, nor adding any more weight than what was removed. The F/A-18D(RC) installation solution required innovations in mounting, cooling, and fit techniques, which made constant trade study essential. The successful installation in the F/A-18D(RC) is the result of coupling fundamental design engineering with brainstorming and nonstandard approaches to every situation. ATARS is sponsored by the Aeronautical Systems Division, Wright-Patterson AFB, Ohio. The F/A-18D(RC) installation is being funded to the Air Force by the Naval Air Systems Command, Washington, D.C.

  12. Reconnaissance for radioactive materials in the southern part of Brazil

    USGS Publications Warehouse

    Pierson, Charles T.; Haynes, Donald D.; Filho, Evaristo Ribeiro

    1957-01-01

    During 1954-1956 a reconnaissance for radioactive minerals was made with carborne, airborne and handborne scintillation equipment in the southern Brazilian states of Rio de Janeiro, Sao Paulo, Parana, Santa Catarina and Rio Grande do Sul. During the traverse covering more than 5,000 kilometers the authors checked the radioactivity of Precambrian igneous and metamorphic rocks, Paleozoic, Mesozoic and Cenozoic sedimentary rocks, and Mesozoic alkalic intrusive and basaltic extrusive rocks. The 22 samples collected contained from 0.003 to 0.029 percent equivalent uranium oxide and from 0.10 to 0.91 percent equivalent thorimn; two samples were taken from radioactive pegmati tes for mineralogic studies. None of the localities is at present a commercial source of uranium or thorium; however, additional work should be done near the alkalic stock at Lages in the State of Santa Catarina and at the Passo das Tropas fossil plant locality near Santa Maria in the state of Rio Grande do Sul. Near Lages highly altered alkalic rock from a dike contained 0.026 percent uranium oxide. At Passo das Tropas highly altered, limonite-impregnated sandstone from the Rio do Rasto group of sedimentary rocks contained 0.029 percent uranium oxide.

  13. Automated multi-INT fusion for tactical reconnaissance

    NASA Astrophysics Data System (ADS)

    Walls, Thomas J.; Boudreau, Andrew J.; Wilson, Michael L.; Haws, Jonathan R.; Johnson, Troy; Petersen, Brad

    2014-06-01

    The capabilities of tactical intelligence, surveillance, and reconnaissance (ISR) payloads continue to expand from single sensor imagers to integrated systems of systems architectures. We describe here flight test results of the Sensor Management System (SMS) designed to provide a flexible central coordination component capable of managing multiple collaborative sensor systems onboard an aircraft or unmanned aerial system (UAS). The SMS architecture is designed to be sensor and data agnostic and provide flexible networked access for both data providers and data consumers. It supports pre-planned and ad-hoc missions, with provisions for on-demand tasking and updates from users connected via data links. The SMS system is STANAG 4575 compliant as a removable memory module (RMM) and can act as a vehicle specific module (VSM) to provide STANAG 4586 compliance (level-3 interoperability) to a noncompliant sensor system. The SMS architecture will be described and results from several flight tests that included multiple sensor combinations and live data link updates will be shown.

  14. Airborne infrared hyperspectral imager for intelligence, surveillance and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Lagueux, Philippe; Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-09-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a bellymounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  15. Airborne infrared hyperspectral imager for intelligence, surveillance, and reconnaissance applications

    NASA Astrophysics Data System (ADS)

    Puckrin, Eldon; Turcotte, Caroline S.; Gagnon, Marc-André; Bastedo, John; Farley, Vincent; Chamberland, Martin

    2012-06-01

    Persistent surveillance and collection of airborne intelligence, surveillance and reconnaissance information is critical in today's warfare against terrorism. High resolution imagery in visible and infrared bands provides valuable detection capabilities based on target shapes and temperatures. However, the spectral resolution provided by a hyperspectral imager adds a spectral dimension to the measurements, leading to additional tools for detection and identification of targets, based on their spectral signature. The Telops Hyper-Cam sensor is an interferometer-based imaging system that enables the spatial and spectral analysis of targets using a single sensor. It is based on the Fourier-transform technology yielding high spectral resolution and enabling high accuracy radiometric calibration. It provides datacubes of up to 320×256 pixels at spectral resolutions as fine as 0.25 cm-1. The LWIR version covers the 8.0 to 11.8 μm spectral range. The Hyper-Cam has been recently used for the first time in two compact airborne platforms: a belly-mounted gyro-stabilized platform and a gyro-stabilized gimbal ball. Both platforms are described in this paper, and successful results of high-altitude detection and identification of targets, including industrial plumes, and chemical spills are presented.

  16. A reconnaissance study of radon concentrations in Hamadan city, Iran

    NASA Astrophysics Data System (ADS)

    Gillmore, G. K.; Jabarivasal, N.

    2010-04-01

    This paper presents results of a reconnaissance study that used CR-39 alpha track-etch detectors to measure radon concentrations in dwellings in Hamadan, western Iran, significantly, built on permeable alluvial fan deposits. The indoor radon levels recorded varied from 4 (i.e. below the lower limit of detection for the method) to 364 Bq/m3 with a mean value of 108 Bq/m3 which is 2.5 times the average global population-weighted indoor radon concentration - these data augment the very few published studies on indoor radon levels in Iran. The maximum radon concentration in Hamadan occurs during the winter period (January to March) with lower concentrations during the autumn. The effective dose equivalent to the population in Hamadan is estimated from this study to be in the region of 2.7 mSv/y, which is above the guidelines for dose to a member of the public of 1 mSv/y suggested by the International Commission on Radiological Protection (ICRP) in 1993. This study supports other work in a number of countries that indicates such permeable "surficial" deposits as being of intermediate to high radon potential. In western Iran, the presence of hammered clay floors, the widespread presence of excavated qanats, the textural properties of surficial deposits and human behaviour intended to cope with winds are likely to be important factors influencing radon concentrations in older buildings.

  17. Hydrogeologic reconnaissance of Poro Point and vicinity, Luzon Island, Philippines

    USGS Publications Warehouse

    Worts, George Frank

    1964-01-01

    In 1961 a reconnaissance of the geology and ground-water hydrology of Poro Point, on the west coast of Luzon Island, Philippines, was made on behalf of the U.S. Department of the Navy. Poro Point, which marks the northern end of Lingayen Gulf, is about half a mile wide and projects northwestward about 2 miles into the China Sea. The point is underlain by coralline limestone of probable Pleistocene age. The aquifer system consists of a fresh-water lens floating on salt water within the coralline limestone. Several tube wells obtain fresh water from the lens, but in May, at the end of the 6-month dry season during which rainfall totals only 40 inches, the water becomes brackish. 'Skimming wells' are considered the best method of obtaining fresh water from the lens, whose annual range in average thickness is probably 25 to 40 feet. Recharge is about 2,000-3,000 acre-feet per year and is derived wholly from precipitation during the 6-month wet season in which rainfall totals about 92 inches. The approximate amount of ground water stored in the fresh-water lens ranges from about 3,000 acre-feet at the end of the dry season to about 5,000 acre-feet at the end of the wet season. Most of the ground water is discharged through seeps and submarine springs around Poro Point; pumpage in 1961 was only about 100 acre-feet.

  18. Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    USGS Publications Warehouse

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, K.W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhfer, G.; McEwen, A.; Rice, J.W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity

  19. Fabrication of miniaturized electrostatic deflectors using LIGA

    SciTech Connect

    Jackson, K.H.; Khan-Malek, C.; Muray, L.P.

    1997-04-01

    Miniaturized electron beam columns ({open_quotes}microcolumns{close_quotes}) have been demonstrated to be suitable candidates for scanning electron microscopy (SEM), e-beam lithography and other high resolution, low voltage applications. In the present technology, microcolumns consist of {open_quotes}selectively scaled{close_quotes} micro-sized lenses and apertures, fabricated from silicon membranes with e-beam lithography, reactive ion beam etching and other semiconductor thin-film techniques. These miniaturized electron-optical elements provide significant advantages over conventional optics in performance and ease of fabrication. Since lens aberrations scale roughly with size, it is possible to fabricate simple microcolumns with extremely high brightness sources and electrostatic objective lenses, with resolution and beam current comparable to conventional e-beam columns. Moreover since microcolumns typically operate at low voltages (1 KeV), the proximity effects encountered in e-beam lithography become negligible. For high throughput applications, batch fabrication methods may be used to build large parallel arrays of microcolumns. To date, the best reported performance with a 1 keV cold field emission cathode, is 30 nm resolution at a working distance of 2mm in a 3.5mm column. Fabrication of the microcolumn deflector and stigmator, however, have remained beyond the capabilities of conventional machining operations and semiconductor processing technology. This work examines the LIGA process as a superior alternative to fabrication of the deflectors, especially in terms of degree of miniaturization, dimensional control, placement accuracy, run-out, facet smoothness and choice of suitable materials. LIGA is a combination of deep X-ray lithography, electroplating, and injection molding processes which allow the fabrication of microstructures.

  20. Miniaturized Mid-Infrared Sensor Technologies

    SciTech Connect

    Kim, S; Young, C; Mizaikoff, B

    2007-08-16

    Fundamental vibrational and rotational modes associated with most inorganic and organic molecules are spectroscopically accessible within the mid-infrared (MIR; 3-20 {micro}m) regime of the electromagnetic spectrum. The interaction between MIR photons and organic molecules provides particularly sharp transitions, which - despite the wide variety of organic molecules - provide unique MIR absorption spectra reflecting the molecularly characteristic arrangement of chemical bonds within the probed molecules via the frequency position of the associated vibrational and rotational transitions. Given the inherent molecular selectivity and achievable sensitivity, MIR spectroscopy provides an ideal platform for optical sensing applications. Despite this potential, early MIR sensing applications were limited to localized applications due to the size of the involved instrumentation, and limited availability of appropriately compact MIR optical components including light sources, detectors, waveguides, and spectrometers. During the last decades, engineering advances in photonics and optical engineering have facilitated the translation of benchtop-style MIR spectroscopy into miniaturized optical sensing schemes providing a footprint compatible with portable instrumentation requirements for field deployable analytical tools. In this trend article, we will discuss recent advances and future strategies for miniaturizing MIR sensor technology. The Beer-Lambert law implies that achievable limit of detection (LOD) for any optical sensor system improves by increasing the interaction length between photons and target analyte species such as e.g., folding the optical path multiple times as in multi-pass gas phase sensing; however, this governing paradigm naturally leads to an increase in system dimensions. Hence, miniaturization of optical sensing system requires scaling down of each optical component, yet improving the performance of each optical element within a smaller form factor for

  1. Chromosome Evolution and Genome Miniaturization in Minifish

    PubMed Central

    Liu, Shaojun; Hui, Tan Heok; Tan, Sze Ley; Hong, Yunhan

    2012-01-01

    Background Paedocypris is a newly established genus of fish in Southeast Asia. Paedocypris is characterized by several unique features, including a tiny adult size (thus named miniature fish or minifish), fragmentary habitats of acidic peat blackwater swamps, an unusual reproduction mode and truncated development. These peculiarities lend themselves excellent for studying chromosome evolution and rapid speciation in vertebrates but also make them highly controversial for the phylogenetic position. Methodology and Principal Findings We have established an organ procedure to prepare chromosome spreads from tiny organs of minifish and performed a cytogenetic study on two species of the genus Paedocypris, namely P. carbunculus (Pc) and P. sp. “Singkep” (Ps). We found 30 and 34 chromosomes in diploid cells of Pc and Ps, respectively, which are unusual in teleost fishes. The diploid metaphase has 5 pairs of metacentrics and 7 pairs of subtelocentrics in Pc compared to 3 pairs of metacentrics and 11 pairs of subtelocentrics in Ps, whereas the haploid metaphase contains 5 metacentrics and 7 subtelocentrics in Pc compared to 3 metacentrics and 11 subtelocentrics Ps. Chromosome behavior in first meiosis revealed the presence of a chromosomal ring consisting of 2 metacentrics in Pc, suggesting that centric fusion rather than fission was responsible for the karyotypic evolution from Ps to Pc. Flow cytometry revealed that Pc had a 45% nuclear staining intensity relative to medaka whose genome is 700 Mb in size and contains 0.81 pg DNA. The Pc genome should have 315 Mb in length and 0.36 pg of DNA, which represent one of the smallest values in vertebrates, suggesting genome miniaturization in this organism. Conclusions Our data demonstrate that gross chromosome rearrangements and genome miniaturization have accompanied the evolution of Paedocypris fishes. Our data also place Paedocypris outside currently described taxa of the Cypriniformes. PMID:22615970

  2. Development of Californium-252 Miniature Source Assemblies

    SciTech Connect

    Notspecified, N. A.

    2007-06-26

    The purpose of this CRADA between ORNL and lsotron, Inc. is to develop miniature californium-252 sources configured for remote handling that can be used in neutron brachytherapy for treatment of cancer. Brachytherapy places the · radioactive source at or near the site of the tumor, using a catheter. The CRADA ran from late 1999 through November 2005. The heart of a Cf-252 source is the radioactive core wire, which is sealed inside a metallic source capsule. Previous Cf-252 medical sources were based on a cermet wire with californium oxide dispersed in palladium, typically >1-mm diameter and <0.1% Cf-252 by weight. Previously, the standard medical source in the U.S. was the Applicator Tube (AT) source. 23-mm long, 2.8-mm diameter, with ~30 {micro}g of Cf-252, and which required manual loading into patients by medical staff. The goal of this work was to develop capabilities and technology to fabricate higher-intensity Cf-252 sources attached to a positioning cable, with overall diameter approaching that of exist ing photon (iridium-192) brachytherapy sources (i.e., ~1.1 mm). This work was successful in developing and demonstrating new technologies and procedures for the fabrication of miniaturized Cf-252 sources. CRADA-designed equipment reduced the wire diameters significantly (patent pending). Short wire segments were cut and successfully welded inside capsules meeting the miniaturization goals. A batch of seven prototype sources was prepared that met fabrication specifications. Although their neutron emissions were not maximized, they were still several times more intense than the previous AT sources. Very robust source-to-cable attachment methods were demonstrated (patent issued). A shipping canister was designed and built to contain the completed source assembly. lsotron designed and built a computer-controlled remote afterloader system to deliver the new sources for treatments.

  3. Miniature laser direct-detection radar

    NASA Astrophysics Data System (ADS)

    Acharekar, Madhu; Lebeau, Robert

    1992-06-01

    A miniature laser with a total volume less than 15 cu cm and weight less than 100 g has been designed, fabricated, and assembled. The laser uses a composite rod consisting of Nd:Cr:GSGG material rod cladded with an Er:Cr:YSGG tube. The laser provides output at 1 and 3 micron wavelengths. The size and weight reduction is obtained by chemical pumping which eliminates the prime power and the power supply. The laser is used as an illuminator in a direct detection radar.

  4. Miniature integrated-optical wavelength analyzer chip

    NASA Astrophysics Data System (ADS)

    Kunz, R. E.; Dübendorfer, J.

    1995-11-01

    A novel integrated-optical chip suitable for realizing compact miniature wavelength analyzers with high linear dispersion is presented. The chip performs the complete task of converting the spectrum of an input beam into a corresponding spatial irradiance distribution without the need for an imaging function. We demonstrate the feasibility of this approach experimentally by monitoring the changes in the mode spectrum of a laser diode on varying its case temperature. Comparing the results with simultaneous measurements by a commercial spectrometer yielded a rms wavelength deviation of 0.01 nm.

  5. Miniature Robotic Submarine for Exploring Harsh Environments

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Bruhn, Fredrik; Carsey, Frank

    2004-01-01

    The miniature autonomous submersible explorer (MASE) has been proposed as a means of scientific exploration -- especially, looking for signs of life -- in harsh, relatively inaccessible underwater environments. Basically, the MASE would be a small instrumented robotic submarine (see figure) that could launch itself or could be launched from another vehicle. Examples of environments that might be explored by use of the MASE include subglacial lakes, deep-ocean hydrothermal vents, acidic or alkaline lakes, brine lenses in permafrost, and ocean regions under Antarctic ice shelves.

  6. Miniaturized bendable 400 MHz artificial magnetic conductor

    NASA Astrophysics Data System (ADS)

    Presse, Anthony; Tarot, Anne-Claude

    2016-04-01

    A bendable artificial magnetic conductor (AMC) with a resonant frequency of 400 MHz is proposed. The dimensions of the unit cell are 50 × 50 mm2 or 0.07 × 0.07 λ0. The miniaturization is achieved with closely coupled patches printed on each side of a 0.127-mm-thick dielectric substrate. This last one is stacked on a flexible 3-mm-thick silicone over a ground plane. An AMC prototype is simulated and manufactured. Also, a printed inverted-F antenna is used to highlight the bandwidth of the AMC.

  7. A miniature solid propellant rocket motor

    SciTech Connect

    Grubelich, M.C.; Hagan, M.; Mulligan, E.

    1997-08-01

    A miniature solid-propellant rocket motor has been developed to impart a specific motion to an object deployed in space. This rocket motor effectively eliminated the need for a cold-gas thruster system or mechanical spin-up system. A low-energy igniter, an XMC4397, employing a semiconductor bridge was used to ignite the rocket motor. The rocket motor was ground-tested in a vacuum tank to verify predicted space performance and successfully flown in a Sandia National Laboratories flight vehicle program.

  8. A miniature chemiresistor sensor for carbon dioxide.

    PubMed

    Srinives, Sira; Sarkar, Tapan; Hernandez, Raul; Mulchandani, Ashok

    2015-05-18

    A carpet-like nanostructure of polyaniline (PANI) nanothin film functionalized with poly(ethyleneimine), PEI, was used as a miniature chemiresistor sensor for detection of CO2 at room temperature. Good sensing performance was observed upon exposing the PEI-PANI device to 50-5000 ppm CO2 in presence of humidity with negligible interference from ammonia, carbon monoxide, methane and nitrogen dioxide. The sensing mechanism relied on acid-base reaction, CO2 dissolution and amine-catalyzed hydration that yielded carbamates and carbonic acid for a subsequent pH detection. The sensing device showed reliable results in detecting an unknown concentration of CO2 in air. PMID:25910446

  9. A pareto-optimal characterization of miniaturized distributed occulter/telescope systems

    NASA Astrophysics Data System (ADS)

    Koenig, Adam W.; D'Amico, Simone; Macintosh, Bruce; Titus, Charles J.

    2015-09-01

    Distributed occulter/telescope systems hold great promise in the field of direct exoplanet imaging. However, proposed missions using this concept such as the New Worlds Observer or Exo-S (NASA) are exceptionally large with occulter diameters of tens of meters and inter-spacecraft separations of tens of megameters, requiring deployment in deep space. The estimated costs associated with these missions are in the billions of dollars. In order to reduce the risk associated with these missions, it is desirable to first deploy a low-cost technology demonstrator mission to prove that the distributed occulter telescope concept is valid. To that end, this work assesses the feasibility of miniaturizing the optics of the distributed occulter/telescope to enable deployment on micro- or nano-satellites in earth orbit. A variant of the convex optimization formulation introduced by previous authors is used to generate a pareto-optimal characterization between the achievable occulter contrast and a set of critical design variables (occulter radius, inner working angle, science spectrum, etc). This characterization is performed for two different sets of engineering constraints, corresponding to different levels of design complexity. The results of this study are compared to the performance requirements for imaging targets of scientific interest, namely exozodiacal dust disks, in order to identify promising design envelopes. The result of this work is a comprehensive trade of the capabilities of miniaturized, binary, petal-shaped occulters. This research demonstrates that there exist miniaturized occulter geometries compatible with micro- or nano-satellites in earth orbit suitable for imaging exozodiacal dust disks. In addition, this study provides a valuable methodology and performance guidelines for future distributed occulter/telescope designs.

  10. Orbital Winch

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)

    2016-01-01

    Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.

  11. Miniature acoustic guidance system for endotracheal tubes

    NASA Astrophysics Data System (ADS)

    Juan, Eduardo J.

    Ensuring that the distal end of an endotracheal tube is properly located within the trachea, and that the tube is not obstructed by mucous deposition, is a major clinical concern in patients that require mechanical ventilation. A novel acoustic system was developed to allow for the continuous monitoring of endotracheal tube position and patency. A miniature sound source and two sensing microphones are placed in-line between the ventilator hose and the proximal end of the endotracheal tube. Reflections of an acoustic pulse from the endotracheal tube lumen and the airways are digitally analyzed to estimate the location and degree of obstruction, as well as the position of the distal end of the tube in the airway. The system was evaluated through computer simulations, in vitro studies, and in a rabbit model. The system noninvasively estimated tube position in vivo to within roughly 4.5 mm, and differentiated between proper tracheal, and erroneous bronchial or esophageal intubation in all cases. In addition, the system estimated the area and location of lumen obstructions in vitro to within 14% and 3.5 mm, respectively. These findings indicate that this miniature technology could improve the quality of care provided to the ventilated adult and infant.

  12. Maximizing strain in miniaturized dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Araromi, Oluwaseun; Shea, Herbert

    2015-04-01

    We present a theoretical model to optimise the unidirectional motion of a rigid object bonded to a miniaturized dielectric elastomer actuator (DEA), a configuration found for example in AMI's haptic feedback devices, or in our tuneable RF phase shifter. Recent work has shown that unidirectional motion is maximized when the membrane is both anistropically prestretched and subjected to a dead load in the direction of actuation. However, the use of dead weights for miniaturized devices is clearly highly impractical. Consequently smaller devices use the membrane itself to generate the opposing force. Since the membrane covers the entire frame, one has the same prestretch condition in the active (actuated) and passive zones. Because the passive zone contracts when the active zone expands, it does not provide a constant restoring force, reducing the maximum achievable actuation strain. We have determined the optimal ratio between the size of the electrode (active zone) and the passive zone, as well as the optimal prestretch in both in-plane directions, in order to maximize the absolute displacement of the rigid object placed at the active/passive border. Our model and experiments show that the ideal active ratio is 50%, with a displacement twice smaller than what can be obtained with a dead load. We expand our fabrication process to also show how DEAs can be laser-post-processed to remove carefully chosen regions of the passive elastomer membrane, thereby increasing the actuation strain of the device.

  13. Miniature Linear Actuator for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Willey, Cliff E.; Hill, Stuart W.

    2004-01-01

    A report discusses the development of a kit of mechanisms intended for use aboard future spacecraft having masses between 10 and 100 kg. The report focuses mostly on two prototypes of one of the mechanisms: a miniature linear actuator based on a shape-memory-alloy (SMA) wire. In this actuator, as in SMA-wire actuators described previously in NASA Tech Briefs, a spring biases a moving part toward one limit of its stroke and is restrained or pulled toward the other limit of the stroke by an SMA wire, which assumes a slightly lesser or greater "remembered" length, depending on whether or not an electric current is applied to the wire to heat it above a transition temperature. Topics addressed in the report include the need to develop mechanisms like these, the general approach to be taken in designing SMA actuators, tests of the two prototypes of the miniature linear actuators, and improvements in the second prototype over the first prototype resulting in reduced mass and increased stroke. The report also presents recommendations for future development, briefly discusses problems of tolerances and working with small parts, states a need for better understanding of behaviors of SMAs, and presents conclusions.

  14. Miniaturized kappa goniometer for macromolecular crystallography

    SciTech Connect

    Rosenbaum, G.; Westbrook, E. M.

    1997-07-01

    A goniometer with kappa geometry has been designed and built specifically for macromolecular crystallography. The main feature is a miniaturized kappa stage made possible by the small weight of specimen and specimen holder. The design goal was to: 1) eliminate interference between stage and area detector for specimen-to-detector distances of 100 mm and more; 2) minimize the sphere of confusion on expectation of dealing with very small crystals at third generation sources; 3) minimize the solid angle of shadow and inaccessible positioning of the sample due to interference of the stage with other objects in the sample area; 4) achieve a rotation speed of 10 degree/s at 0.5% constancy and 0.4 s acceleration time for 0.05 s exposures of 0.2 degree fine slice frames every 2 seconds, and 5) to achieve precise synchronization between rotation angle and shutter opening and closing. The kappa stage is mounted on a commercial high precision rotary table, designed for use in both horizontal and vertical orientation. This table provides the high precision rotation for data acquisition. The required crisp response and constant speed is delivered by a high output direct drive DC-motor, controlled by a closed-loop controller using feedback from a precision angular encoder. The kappa- and phi-motions are used for sample positioning only and are driven by miniature DC-motors equipped with integral encoders.

  15. Miniaturized kappa goniometer for macromolecular crystallography

    SciTech Connect

    Rosenbaum, G.; Westbrook, E.M.

    1997-07-01

    A goniometer with kappa geometry has been designed and built specifically for macromolecular crystallography. The main feature is a miniaturized kappa stage made possible by the small weight of specimen and specimen holder. The design goal was to: 1) eliminate interference between stage and area detector for specimen-to-detector distances of 100 mm and more; 2) minimize the sphere of confusion on expectation of dealing with very small crystals at third generation sources; 3) minimize the solid angle of shadow and inaccessible positioning of the sample due to interference of the stage with other objects in the sample area; 4) achieve a rotation speed of 10 degree/s at 0.5{percent} constancy and 0.4 s acceleration time for 0.05 s exposures of 0.2 degree fine slice frames every 2 seconds, and 5) to achieve precise synchronization between rotation angle and shutter opening and closing. The kappa stage is mounted on a commercial high precision rotary table, designed for use in both horizontal and vertical orientation. This table provides the high precision rotation for data acquisition. The required crisp response and constant speed is delivered by a high output direct drive DC-motor, controlled by a closed-loop controller using feedback from a precision angular encoder. The kappa- and phi-motions are used for sample positioning only and are driven by miniature DC-motors equipped with integral encoders.{copyright} {ital 1997 American Institute of Physics.}

  16. Miniature bioreactors: current practices and future opportunities

    PubMed Central

    Betts, Jonathan I; Baganz, Frank

    2006-01-01

    This review focuses on the emerging field of miniature bioreactors (MBRs), and examines the way in which they are used to speed up many areas of bioprocessing. MBRs aim to achieve this acceleration as a result of their inherent high-throughput capability, which results from their ability to perform many cell cultivations in parallel. There are several applications for MBRs, ranging from media development and strain improvement to process optimisation. The potential of MBRs for use in these applications will be explained in detail in this review. MBRs are currently based on several existing bioreactor platforms such as shaken devices, stirred-tank reactors and bubble columns. This review will present the advantages and disadvantages of each design together with an appraisal of prototype and commercialised devices developed for parallel operation. Finally we will discuss how MBRs can be used in conjunction with automated robotic systems and other miniature process units to deliver a fully-integrated, high-throughput (HT) solution for cell cultivation process development. PMID:16725043

  17. Miniature Free-Space Electrostatic Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Stephens, James B.

    2006-01-01

    A miniature electrostatic ion thruster is proposed for maneuvering small spacecraft. In a thruster based on this concept, one or more propellant gases would be introduced into an ionizer based on the same principles as those of the device described in an earlier article, "Miniature Bipolar Electrostatic Ion Thruster". On the front side, positive ions leaving an ionizer element would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid around the periphery of the concave laminate structure. On the front side, electrons leaving an ionizer element would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In a thruster design consisting of multiple membrane ionizers in a thin laminate structure with a peripheral accelerator grid, the direction of thrust could then be controlled (without need for moving parts in the thruster) by regulating the supply of gas to specific ionizer.

  18. Miniaturized integration of a fluorescence microscope

    PubMed Central

    Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.

    2013-01-01

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102

  19. Miniaturized optical neuroimaging in unrestrained animals.

    PubMed

    Yu, Hang; Senarathna, Janaka; Tyler, Betty M; Thakor, Nitish V; Pathak, Arvind P

    2015-06-01

    The confluence of technological advances in optics, miniaturized electronic components and the availability of ever increasing and affordable computational power have ushered in a new era in functional neuroimaging, namely, an era in which neuroimaging of cortical function in unrestrained and unanesthetized rodents has become a reality. Traditional optical neuroimaging required animals to be anesthetized and restrained. This greatly limited the kinds of experiments that could be performed in vivo. Now one can assess blood flow and oxygenation changes resulting from functional activity and image functional response in disease models such as stroke and seizure, and even conduct long-term imaging of tumor physiology, all without the confounding effects of anesthetics or animal restraints. These advances are shedding new light on mammalian brain organization and function, and helping to elucidate loss of this organization or 'dysfunction' in a wide array of central nervous system disease models. In this review, we highlight recent advances in the fabrication, characterization and application of miniaturized head-mounted optical neuroimaging systems pioneered by innovative investigators from a wide array of disciplines. We broadly classify these systems into those based on exogenous contrast agents, such as single- and two-photon microscopy systems; and those based on endogenous contrast mechanisms, such as multispectral or laser speckle contrast imaging systems. Finally, we conclude with a discussion of the strengths and weaknesses of these approaches along with a perspective on the future of this exciting new frontier in neuroimaging. PMID:25791782

  20. Interpreting Radar View near Mars' South Pole, Orbit 1334

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A radargram from the Shallow Subsurface Radar instrument (SHARAD) on NASA's Mars Reconnaissance Orbiter is shown in the upper-right panel and reveals detailed structure in the polar layered deposits of the south pole of Mars.

    The sounding radar collected the data presented here during orbit 1334 of the mission, on Nov. 8, 2006.

    The horizontal scale in the radargram is distance along the ground track. It can be referenced to the ground track map shown in the lower right. The radar traversed from about 75 to 85 degrees south latitude, or about 590 kilometers (370 miles). The ground track map shows elevation measured by the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. Green indicates low elevation; reddish-white indicates higher elevation. The traverse proceeds up onto a plateau formed by the layers.

    The vertical scale on the radargram is time delay of the radar signals reflected back to Mars Reconnaissance Orbiter from the surface and subsurface. For reference, using an assumed velocity of the radar waves in the subsurface, time is converted to depth below the surface at one place: about 1,500 meters (5,000 feet) to one of the deeper subsurface reflectors. The color scale varies from black for weak reflections to white for strong reflections.

    The middle panel shows mapping of the major subsurface reflectors, some of which can be traced for a distance of 100 kilometers (60 miles) or more. The layers are not all horizontal and the reflectors are not always parallel to one another. Some of this is due to variations in surface elevation, which produce differing velocity path lengths for different reflector depths. However, some of this behavior is due to spatial variations in the deposition and removal of material in the layered deposits, a result of the recent climate history of Mars.

    The Shallow Subsurface Radar was provided by the Italian Space Agency (ASI). Its operations are led by the University of Rome and its

  1. Interpreting Radar View near Mars' South Pole, Orbit 1360

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A radargram from the Shallow Subsurface Radar instrument (SHARAD) on NASA's Mars Reconnaissance Orbiter is shown in the upper-right panel and reveals detailed structure in the polar layered deposits of the south pole of Mars.

    The sounding radar collected the data presented here during orbit 1360 of the mission, on Nov. 10, 2006.

    The horizontal scale in the radargram is distance along the ground track. It can be referenced to the ground track map shown in the lower right. The radar traversed from about 74 degrees to 85 degrees south latitude, or about 650 kilometers (400 miles). The ground track map shows elevation measured by the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. Green indicates low elevation; reddish-white indicates higher elevation. The traverse proceeds up onto a plateau formed by the layers.

    The vertical scale on the radargram is time delay of the radar signals reflected back to Mars Reconnaissance Orbiter from the surface and subsurface. For reference, using an assumed velocity of the radar waves in the subsurface, time is converted to depth below the surface at one place: about 800 meters (2,600 feet) to one of the strongest subsurface reflectors. This reflector marks the base of the polar layered deposits. The color scale varies from black for weak reflections to white for strong reflections.

    The middle panel shows mapping of the major subsurface reflectors, some of which can be traced for a distance of 100 kilometers (60 miles) or more. The layering manifests the recent climate history of Mars, recorded by the deposition and removal of ice and dust.

    The Shallow Subsurface Radar was provided by the Italian Space Agency (ASI). Its operations are led by the University of Rome and its data are analyzed by a joint U.S.-Italian science team. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science

  2. Condor TAC: EO/IR tactical aerial reconnaissance photography system

    NASA Astrophysics Data System (ADS)

    Petrushevsky, Vladimir; Tsur, David

    2012-06-01

    Based on the experience gained with the Condor2 long-range oblique photography (LOROP) camera, ELOP is expanding its airborne reconnaissance product line with the Condor TAC tactical photography system. The latter was designed for overflight imaging of extended areas from a fighter or special mission aircraft, at day and night. The Condor TAC is mounted in an aerodynamically shaped pod and can operate in wide envelope of flight altitude and speed. Besides the camera, the pod contains mission management and video processing unit (MVU), solid state recorder (SSR), wide-band data link (DL) for real-time imagery transmission, and two environmental control units (ECU). Complex multi-segment optical windows were successfully developed for the system. The camera system design is modular and highly flexible. Two independent imaging payload modules are mounted inside a gimbal system. Each of the modules is equipped with a strap-down IMU, and may carry a cluster of cameras or a single large camera with gross weight up to 35 kg. The payload modules are interchangeable, with an identical interface to the gimbal. The modularity and open architecture of the system facilitate its adaptation to various operational requirements, as well as allow easy and relatively non-expensive upgrades and configuration changes. In the current configuration, both EO and IR payload modules are equipped with a combination of longer focal length cameras for bi-directional panoramic scan at medium and high flight altitudes, and shorter focal length cameras for fixed wide angle coverage at low altitudes. All the camera types are equipped with standard format, off-the-shelf area detector arrays. Precise motion compensation is achieved by calibrated back-scan mirrors.

  3. Scalable sensor management for automated fusion and tactical reconnaissance

    NASA Astrophysics Data System (ADS)

    Walls, Thomas J.; Wilson, Michael L.; Partridge, Darin C.; Haws, Jonathan R.; Jensen, Mark D.; Johnson, Troy R.; Petersen, Brad D.; Sullivan, Stephanie W.

    2013-05-01

    The capabilities of tactical intelligence, surveillance, and reconnaissance (ISR) payloads are expanding from single sensor imagers to integrated systems-of-systems architectures. Increasingly, these systems-of-systems include multiple sensing modalities that can act as force multipliers for the intelligence analyst. Currently, the separate sensing modalities operate largely independent of one another, providing a selection of operating modes but not an integrated intelligence product. We describe here a Sensor Management System (SMS) designed to provide a small, compact processing unit capable of managing multiple collaborative sensor systems on-board an aircraft. Its purpose is to increase sensor cooperation and collaboration to achieve intelligent data collection and exploitation. The SMS architecture is designed to be largely sensor and data agnostic and provide flexible networked access for both data providers and data consumers. It supports pre-planned and ad-hoc missions, with provisions for on-demand tasking and updates from users connected via data links. Management of sensors and user agents takes place over standard network protocols such that any number and combination of sensors and user agents, either on the local network or connected via data link, can register with the SMS at any time during the mission. The SMS provides control over sensor data collection to handle logging and routing of data products to subscribing user agents. It also supports the addition of algorithmic data processing agents for feature/target extraction and provides for subsequent cueing from one sensor to another. The SMS architecture was designed to scale from a small UAV carrying a limited number of payloads to an aircraft carrying a large number of payloads. The SMS system is STANAG 4575 compliant as a removable memory module (RMM) and can act as a vehicle specific module (VSM) to provide STANAG 4586 compliance (level-3 interoperability) to a non-compliant sensor system

  4. Lunar Lava Tubes - The Promise of New Orbital Data

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2009-01-01

    The basaltic plains of the Moon contain lava channels on scales of tens of meters to hundreds of kilometers. Many of these channels are segmented, strongly suggesting that some portions include covered lava tubes. Lunar lava tubes are expected to provide unique environments below the harsh lunar surface, maintaining near-isothermal conditions and substantial shielding from solar and galactic radiation. A lava tube has often been suggested as natural shelter for a future human outpost. Previous searches for lunar lava tubes have been limited by a combination of image resolution and completeness of coverage. The five robotic Lunar Orbiter spacecraft combined to photograph essentially the entire lunar surface with a resolution of 60 m, and covered selected sites with resolutions as high as 2 m. The highest-resolution Apollo images, from the mapping and panoramic cameras, covered swaths totaling 16% of the lunar surface, at resolutions of approximately 5 m. The Lunar Reconnaissance Orbiter -- launched in June 2009 to a polar orbit -- carries a suite of instruments that will revolutionize lunar remote sensing, including the identification and characterization of lava tubes. The Lunar Reconnaissance Orbiter Camera (LROC) system includes a multi-spectral wide-angle camera with a resolution of 70 m, allowing a comprehensive survey of the entire lunar surface. The LROC narrow-angle camera is providing targeted images at resolutions of 0.5 - 2 m, including stereo coverage, which should allow detection of tube entrances and breakdown structures. The Lunar Orbiter Laser Altimeter is producing a global topographic map with a vertical resolution of 1 m and a horizontal resolution of 50 m. These data will be critical to understanding lava dynamics and tube emplacement.

  5. Miniature spinning as a fiber quality assessment tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Miniature spinning has long been used to assess cotton varieties in a timely manner. It has been an accepted fact that the quality of miniature spinning is less than optimal, but that it allows a direct comparison between cottons during varietal studies. Recently, researchers have made processing ...

  6. Congenital urethral stenosis in a male miniature piglet

    PubMed Central

    Pouleur-Larrat, Bénédicte; Maccolini, Edouard; Carmel, Eric Norman; Hélie, Pierre

    2014-01-01

    A 2-month-old male miniature pig showed progressive abdominal pain, pollakiuria, and stranguria that progressed to complete urinary obstruction. Postmortem examination revealed idiopathic urethral stenosis at the level of the recess, of probable congenital origin. Urinary tract malformations should be included in the differential diagnosis of miniature piglets with urinary disorders. PMID:24891635

  7. The Miniature Job Training and Evaluation Approach: Additional Findings.

    ERIC Educational Resources Information Center

    Siegel, Arthur I.

    1983-01-01

    Describes miniature job training and evaluation situations administered to 1,034 "low aptitude" Navy recruits. Checklist criterion data describing the on-the-job performance of the sample were collected after the recruits were on their fleet assignments. The results confirmed the predictive validity of the miniature job training approach.…

  8. The Athena Miniature Thermal Emission Spectrometer (Mini-TES)

    NASA Astrophysics Data System (ADS)

    Christensen, P. R.; Mehall, G. L.; Gorelick, N.; Silverman, S.

    2000-07-01

    The Miniature Thermal Emission Spectrometer (Mini-TES) is a mature, high-performance infrared remote sensing instrument designed specifically for use on the martian surface. The major objectives of the Mini-TES portion of the Athena investigation are: (1) to map the mineralogy of rocks and soils from the near field to the horizon; (2) to determine the temperature profile and dust, water vapor and water ice abundance of the lower atmosphere; and (3) to determine the thermophysical properties (particle size, induration, and sub-surface layering) of the surrounding terrain. The instrument uses optical, electronic, and mechanical designs with high heritage from the Mars Global Surveyor TES instrument currently in orbit around Mars. The Mini-TES will provide infrared spectral image cubes of the full 360 deg scene around the rover from 50 deg below to 30 deg above the horizon at spatial resolutions of 8 and 20 mrad (8 and 20 cm at 10 m distance). Mini-TES covers the spectral range from 5 to 30 microns (2000 to 333/cm) with a spectral resolution of 10/cm . An elevation mirror capable of rotating more than 180 deg is mounted atop the mast between the two Pan-cam camera heads, reflecting radiation down through the mast and the azimuthal drive system, and into the Mini-TES telescope and interferometer. This system provides a full panoramic view of the surface, the atmosphere, and an internal, full-aperture calibration target. The spectrometer telescope is a 6.35-cm diameter reflecting Cassegrain that feeds a flat-plate Michelson interferometer. The instrument uses an uncooled deuterated triglycine sulfate (DTGS) pyroelectric detector that can operate from -40 to +40 C with no required cooling or heating.

  9. Miniature LED endoilluminators for vitreoretinal surgery

    NASA Astrophysics Data System (ADS)

    Hessling, M.; Koelbl, P. S.; Lingenfelder, C.; Koch, F.

    2015-07-01

    Two innovative approaches for intraocular illumination during vitreoretinal surgery by application of white LEDs are being developed. Both techniques are less harmful to the patient, more convenient for the surgeon and smaller and cheaper compared to conventional illumination by Xenon light sources and optical fibers. These two novel approaches are: I) The miniature LED chandelier endoilluminator consisting of a single white LED with a "light probe" on top of the LED housing that fits in a small incision in the wall of the eye. II) The alternative transscleral LED endoilluminator is integrated into an eye speculum that presses the flat LED top against the eye. The intraocular space is only illuminated by light transmitted through the sclera. In contrast to conventional illumination techniques for vitreoretinal surgery no incision is necessary. Both approaches are evaluated with regard to potential photochemical and thermal risks for the patient's retina and they are tested on porcine eyes.

  10. Miniature fiber optic surface plasmon resonance biosensors

    NASA Astrophysics Data System (ADS)

    Slavik, Radan; Brynda, Eduard; Homola, Jiri; Ctyroky, Jiri

    1999-01-01

    A novel design of surface plasmon resonance fiber optic sensor is reported which leads to a compact, highly miniaturized sensing element with excellent sensitivity. The sensing device is based on a side-polished single-mode optical fiber with a thin metal overlayer supporting surface plasmon waves. The strength of interaction between a fiber mode and a surface plasmon wave depends strongly on the refractive index near the sensing surface. Therefore, refractive index changes associated with biospecific interaction between antibodies immobilized on the sensor and antigen molecules can be monitored by measuring light intensity variations. Detection of horse radish peroxidase (HRP) of the concentration of 100 ng/ml has been accomplished using the fiber optic sensor with a matrix of monoclonal antibodies against HRP immobilized on the sensor surface.

  11. Miniature Ring-Shaped Peristaltic Pump

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi; Lih, Shyh-Shiuh

    2004-01-01

    An experimental miniature peristaltic pump exploits piezoelectrically excited flexural waves that travel around a ring: A fluid is carried in the containers formed in the valleys between the peaks of the flexural waves, What sets the present pump apart from other pumps that exploit piezoelectrically excited flexural waves is the ring shape, which makes it possible to take advantage of some of the desirable characteristics of previously developed piezoelectric rotary motors. A major advantage of the circular (in contradistinction to a straight-line) wave path is that the flexural waves do not come to a stop and, instead, keep propagating around the ring. Hence, a significant portion of the excitation energy supplied during each cycle is reused during the next cycle, with the result that the pump operates more effectively than it otherwise would.

  12. Gallbladder lymphoma in a miniature dachshund.

    PubMed

    Nagata, Nao; Shibata, Sanae; Sakai, Hiroki; Konno, Hiroaki; Takashima, Satoshi; Kawabe, Mifumi; Mori, Takashi; Kitagawa, Hitoshi; Washizu, Makoto

    2015-01-01

    A 7-year-old, miniature dachshund was referred for examination and treatment of persistent anorexia, deep yellow-coloured urine and leucocytosis. The clinical sign of jaundice, results from a serum biochemistry profile and ultrasonographic images suggested a biliary tract obstruction. A cholecystectomy was performed to remove the obstruction. Histopathological assessment of the resected gallbladder and partial common bile duct indicated diffuse large B-cell lymphoma. Twelve days after the initial operation, a second procedure was performed due to bile leakage into the abdominal cavity. Chemotherapy was administered twice after the second operation but discontinued, because the dog showed adverse effects. The dog is still alive 24 months after the surgery. To the authors' knowledge, this is the first description of canine gallbladder lymphoma. PMID:25311915

  13. Power Electronics for a Miniaturized Arcjet

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bowers, Glen E.

    1997-01-01

    A 0.3 kW Power Processing Unit (PPU) was designed, tested on resistive loads, and then integrated with a miniaturized arcjet. The main goal of the design was to minimize size and mass while maintaining reasonable efficiency. In order to obtain the desired reductions in mass, simple topologies and control methods were considered. The PPU design incorporates a 50 kHz, current-mode-control, pulse-width-modulated (PWM), push-pull topology. An input voltage of 28 +/- 4V was chosen for compatibility with typical unregulated low voltage busses anticipated for smallsats. An efficiency of 0.90 under nominal operating conditions was obtained. The component mass of the PPU was 0.475 kg and could be improved by optimization of the output filter design. The estimated mass for a flight PPU based on this design is less than a kilogram.

  14. An automated miniature robotic vehicle inspection system

    SciTech Connect

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  15. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  16. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, R.F.; Dietrich, D.D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability is disclosed. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three. 6 figs.

  17. A miniaturized pointing mount for Spacelab missions

    NASA Technical Reports Server (NTRS)

    Fritz, C. G.; Howell, T., Jr.; Nicaise, P. D.; Parker, J. R.

    1975-01-01

    A Miniaturized Pointing Mount (MPM) for Spacelab missions is defined and simulation results are described. This mount is proposed to complement the Spacelab Instrument Pointing System (IPS). It uses the same mount isolator concept as the Spacelab IPS but is much more efficient and economical for the accommodation of small shuttle payloads. The MPM is built from star tracker assemblies left over from the Apollo Telescope Mount program thereby assuring low cost and development risk. Simulation results indicate a high level of instrument stability can be expected. The short development time of the MPM would permit it to serve as a precursor to the Spacelab IPS for verifying critical new concepts such as the mount isolation and hold down mechanisms.

  18. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  19. A miniaturized fibrinolytic assay for plasminogen activators

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Nachtwey, D. S.; Damron, K. L.

    1991-01-01

    This report describes a micro-clot lysis assay (MCLA) for evaluating fibrinolytic activity of plasminogen activators (PA). Fibrin clots were formed in wells of microtiter plates. Lysis of the clots by PA, indicated by change in turbidity (optical density, OD), was monitored with a microplate reader at five minutes intervals. Log-log plots of PA dilution versus endpoint, the time at which the OD value was halfway between the maximum and minimum value for each well, were linear over a broad range of PA concentrations (2-200 International units/ml). The MCLA is a modification and miniaturization of well established fibrinolytic methods. The significant practical advantages of the MCLA are that it is a simple, relatively sensitive, non-radioactive, quantitative, kinetic, fibrinolytic micro-technique which can be automated.

  20. Miniaturized attitude control system for nanosatellites

    NASA Astrophysics Data System (ADS)

    Candini, Gian Paolo; Piergentili, Fabrizio; Santoni, Fabio

    2012-12-01

    A miniaturized attitude control system suitable for nanosatellites, developed using only commercial off-the-shelf components, is described in the paper. It is a complete and independent system to be used on board nanosatellites, allowing automated attitude control. To integrate this system into nanosatellites such as Cubesats its size has been reduced down to a cube of side about 5 cm. The result is a low cost attitude control system built with terrestrial components, integrating three micro magnetotorquers, three micro reaction wheels, three magnetometers and redundant control electronics, capable of performing automatics operations on request from the ground. The system can operate as a real time maneuvering system, executing commands sent from the ground or as a standalone attitude control system receiving the solar array status from a hosting satellite and the satellite ephemeris transmitted from the ground station. The main characteristics of the developed system and test results are depicted in this paper.

  1. Miniature linear-to-rotary motion actuator

    NASA Technical Reports Server (NTRS)

    Sorokach, Michael R., Jr.

    1993-01-01

    A miniature hydraulic actuation system capable of converting linear actuator motion to control surface rotary motion has been designed for application to active controls on dynamic wind tunnel models. Due to space constraints and the torque requirements of an oscillating control surface at frequencies up to 50 Hertz, a new actuation system was developed to meet research objectives. This new actuation system was designed and developed to overcome the output torque limitations and fluid loss/sealing difficulties associated with an existing vane type actuator. Static control surface deflections and dynamic control surface oscillations through a given angle are provided by the actuation system. The actuator design has been incorporated into a transonic flutter model with an active trailing edge flap and two active spoilers. The model is scheduled for testing in the LaRC 16 Foot Transonic Dynamics Tunnel during Summer 1993. This paper will discuss the actuation system, its design, development difficulties, test results, and application to aerospace vehicles.

  2. Miniature, sub-nanometer resolution Talbot spectrometer.

    PubMed

    Ye, Erika; Atabaki, Amir H; Han, Ningren; Ram, Rajeev J

    2016-06-01

    Miniaturization of optical spectrometers has a significant practical value as it can enable compact, affordable spectroscopic systems for chemical and biological sensing applications. For many applications, the spectrometer must gather light from sources that span a wide range of emission angles and wavelengths. Here, we report a lens-free spectrometer that is simultaneously compact (<0.6  cm3), of high resolution (<1  nm), and has a clear aperture (of 10×10  mm). The wavelength-scale pattern in the dispersive element strongly diffracts the input light to produce non-paraxial mid-field diffraction patterns that are then recorded using an optimally matched image sensor and processed to reconstruct the spectrum. PMID:27244382

  3. A pair of miniature helium expansion turbines

    SciTech Connect

    Sixsmith, H.; Swift, W.

    1982-01-01

    Two miniature cryogenic turboexpanders are discussed. These were developed to provide first and second stage expansion in small helium liquifiers or refrigerators. The design of each is virtually identical although the design operating conditions varied more than 30% in specific speed. The expanders run at high speeds in pressurized helium bearings with an integral brake heat exchanger. The vital components are contained in a cartridge, held in place by a single nut, which can be removed and replaced in less than one minute. Specifications and descriptions are discussed are parameters itemized. The assembly is diagramed with an photo of the brazed bearing assembly and titanium shaft. Expander operation is discussed. A subsequent discussion is recorded concerning the efficiency of the turbine, which is similar to that of an NBS turbine.

  4. Miniature Neutron-Alpha Activation Spectrometer

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar; Holloway, James Paul; He, Zhong; Goldsten, John

    2002-10-01

    We are developing a miniature neutron-alpha activation spectrometer for in-situ analysis of chem-bio samples, including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform for Mars or outer-planet missions. In the neutron-activation mode, penetrating analysis will be performed of the whole sample using a γ spectrometer and in the α-activation mode, the sample surface will be analyzed using Rutherford-backscatter and x-ray spectrometers. Novel in our approach is the development of a switchable radioactive neutron source and a small high-resolution γ detector. The detectors and electronics will benefit from remote unattended operation capabilities resulting from our NEAR XGRS heritage and recent development of a Ge γ detector for MESSENGER. Much of the technology used in this instrument can be adapted to portable or unattended terrestrial applications for detection of explosives, chemical toxins, nuclear weapons, and contraband.

  5. Self-folding miniature elastic electric devices

    NASA Astrophysics Data System (ADS)

    Miyashita, Shuhei; Meeker, Laura; Tolley, Michael T.; Wood, Robert J.; Rus, Daniela

    2014-09-01

    Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor.

  6. Miniature reciprocating heat pumps and engines

    NASA Technical Reports Server (NTRS)

    Thiesen, Jack H. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2003-01-01

    The present invention discloses a miniature thermodynamic device that can be constructed using standard micro-fabrication techniques. The device can be used to provide cooling, generate power, compress gases, pump fluids and reduce pressure below ambient (operate as a vacuum pump). Embodiments of the invention relating to the production of a cooling effect and the generation of electrical power, change the thermodynamic state of the system by extracting energy from a pressurized fluid. Energy extraction is attained using an expansion process, which is as nearly isentropic as possible for the appropriately chosen fluid. An isentropic expansion occurs when a compressed gas does work to expand, and in the disclosed embodiments, the gas does work by overcoming either an electrostatic or a magnetic force.

  7. Integrated measurement system for miniature camera modules

    NASA Astrophysics Data System (ADS)

    Tervonen, Ari; Nivala, Ilkka; Ryytty, Pasi; Saari, Hannu; Ojanen, Harri; Viinikanoja, Jarkko

    2006-04-01

    Particularly for miniature camera modules, manufactured in high volumes, characterization and measurement approaches are needed that provide information on camera key properties efficiently. An integrated measurement system named has been developed that uses images taken on specifically designed test chart targets, which are then automatically analysed by software. The chart combines target elements for measurement of optoelectronic conversion function, resolution, noise, uniformity, distortion and colour reproduction. The software applies machine vision to recognize the various target elements from the images, and to register analysis locations properly. The actual analysis methods conform with existing standards. The software includes graphical user interface, and in addition to the automatic analysis, also user-defined analysis can be flexibly done. The software supports modifications in the chart layout, batch analysis of images and storing the results in spreadsheet report format.

  8. Miniature solid-state gas compressor

    DOEpatents

    Lawless, William N.; Cross, Leslie E.; Steyert, William A.

    1985-01-01

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described.

  9. Miniature solid-state gas compressor

    DOEpatents

    Lawless, W.N.; Cross, L.E.; Steyert, W.A.

    1985-05-07

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described. 9 figs.

  10. An automated miniature robotic vehicle inspection system

    NASA Astrophysics Data System (ADS)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-02-01

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  11. LOP- LONG-TERM ORBIT PREDICTOR

    NASA Technical Reports Server (NTRS)

    Kwok, J. H.

    1994-01-01

    The Long-Term Orbit Predictor (LOP) trajectory propagation program is a useful tool in lifetime analysis of orbiting spacecraft. LOP is suitable for studying planetary orbit missions with reconnaissance (flyby) and exploratory (mapping) trajectories. Sample data is included for a geosynchronous station drift cycle study, a Venus radar mapping strategy, a frozen orbit about Mars, and a repeat ground trace orbit. LOP uses the variation-of-parameters method in formulating the equations of motion. Terms involving the mean anomaly are removed from numerical integrations so that large step sizes, on the order of days, are possible. Consequently, LOP executes much faster than programs based on Cowell's method, such as the companion program ASAP (the Artificial Satellite Analysis Program, NPO-17522, also available through COSMIC). The program uses a force model with a gravity field of up to 21 by 21, lunisolar perturbation, drag, and solar radiation pressure. The input includes classical orbital elements (either mean or oscillating), orbital elements of the sun relative to the planet, reference time and dates, drag coefficients, gravitational constants, planet radius, rotation rate. The printed output contains the classical elements for each time step or event step, and additional orbital data such as true anomaly, eccentric anomaly, latitude, longitude, periapsis altitude, and the rate of change per day of certain elements. Selected output is additionally written to a plot file for postprocessing by the user. LOP is written in FORTRAN 77 for batch execution on IBM PC compatibles running MS-DOS with a minimum of 256K RAM. Recompiling the source requires the Lahey F77 v2.2 compiler. The LOP package includes examples that use LOTUS 1-2-3 for graphical displays, but any graphics software package should be able to handle the ASCII plot file. The program is available on two 5.25 inch 360K MS-DOS format diskettes. The program was written in 1986 and last updated in 1989. LOP is

  12. Miniaturized spectral imager for Aalto-1 nanosatellite

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Näsilä, Antti; Praks, Jaan; Saari, Heikki; Antila, Jarkko

    2011-11-01

    The Aalto-1 is a 3U-cubesat project coordinated by Aalto University. The satellite, Aalto-1, will be mainly built by students as project assignments and thesis works. VTT Technical Research Centre of Finland will develop the main Earth observation payload, a miniaturized spectral imager, for the satellite. It is a novel highly miniaturized tunable filter type spectral imager. Mass of the spectral imager will be less than 400 grams, and dimensions will be approximately 80 mm x 80 mm x 45 mm. The spectral imager is based on a tunable Fabry-Pérot interferometer (FPI) accompanied by an RGB CMOS image sensor. The FPI consists of two highly reflective surfaces separated by a tunable air gap and it is based either on a microelectromechanical (MEMS) or piezo-actuated structure. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force. Benefits of the MEMS FPI are low mass and small size. However, large aperture (2-10 mm) MEMS FPIs are currently under development, thus it is not yet known if their performance is adequate. The piezo-actuated FPI uses three piezo-actuators and is controlled in a closed capacitive feedback loop. The drawback of the piezo-actuated FPI is its higher mass. However, it has a large aperture which enables a shorter exposure times. Selection of the FPI type will be done after thorough evaluation. Depending on the selected FPI type, the spectral resolution of the imager will be 5 - 10 nm at full width at half maximum and it will operate in the visible and/or near infrared range.

  13. Miniature, Lightweight, One-Time-Opening Valve

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Wu, Juinn Jenq; Leland, Robert

    2008-01-01

    The figure depicts the main parts of a prototype miniature, lightweight, onetime- opening valve. Like some other miniature one-time-opening valves reported in previous issues of NASA Tech Briefs, this valve is opened by melting a material that blocks the flow path. This valve is designed to remain closed at some temperature between room temperature and cryogenic temperature until the time of opening. The prototype valve includes a 1/8-in. (3-mm) aluminum tube, one end of which is plugged with a solder comprising about 37 weight percent of lead and 63 weight percent of tin. The tube and the solder both have a coefficient of thermal expansion of 23 micron/m-K at room temperature. Before plugging, the interior surface of the plug end of the tube is cleaned with a commercial flux paste developed specifically for preparing aluminum for bonding with lead/tin solder. The solder is then melted into the cleaned end of the tube, forming the plug. In a test, the plugged tube was pressurized to 1,000 psi (6.9 MPa) with helium and leak-tested. It was then cooled to a temperature of 77 K (about 196 C) and again leak-tested at the same pressure. Finally, at a lower pressure, the plugged end of the tube was heated to about 200 C (the melting temperature of the solder is 183 C), causing the solder plug to be ejected (see figure). It has been estimated that in a subsequent version of the valve, the plug could be melted by electrical heating, using a nichrome wire having a mass of only 10 g.

  14. Sedimentary basins reconnaissance using the magnetic Tilt-Depth method

    USGS Publications Warehouse

    Salem, A.; Williams, S.; Samson, E.; Fairhead, D.; Ravat, D.; Blakely, R.J.

    2010-01-01

    basement). The method is especially valuable as a reconnaissance tool in regions where drillhole or seismic information are either scarce, lacking, or ambiguous.

  15. Sedimentary basins reconnaissance using the magnetic Tilt-Depth method

    NASA Astrophysics Data System (ADS)

    Salem, Ahmed; Williams, Simon; Samson, Esuene; Fairhead, Derek; Ravat, Dhananjay; Blakely, Richard J.

    2010-09-01

    basement). The method is especially valuable as a reconnaissance tool in regions where drillhole or seismic information are either scarce, lacking, or ambiguous.

  16. Further ecological and shoreline stability reconnaissance surveys of Back Island, Behm Canal, Southeast Alaska

    SciTech Connect

    Young, J.S.; Strand, J.A.; Ecker, R.M.

    1987-09-01

    A diver reconnaissance of the intertidal and subtidal zones of Back Island was performed to catalog potentially vulnerable shellfish, other invertebrates, and marine plant resources occurring at three proposed alternate pier sites on the west side of Back Island. Additionally, a limited survey of terrestrial vegetation was conducted in the vicinity of one of the proposed alternate pier sites to describe the littoral community and to list the dominant plant species found there. Finally, a reconnaissance survey of the shoreline of Back Island was conducted to evaluate potential changes in shoreline stability resulting from construction of onshore portions of the Southeast Alaska Acoustic Measurement Facility (SEAFAC).

  17. Achromatic miniature lens system for coherent Raman scattering microscopy

    PubMed Central

    Mittal, Richa; Balu, Mihaela; Wilder-Smith, Petra; Potma, Eric O.

    2013-01-01

    We discuss the design and performance of a miniature objective lens optimized for coherent Raman scattering microscopy. The packaged lens assembly has a numerical aperture of 0.51 in water and an outer diameter of 8 mm. The lens system exhibits minimum chromatic aberrations, and produces coherent Raman scattering images with sub-micrometer lateral resolution (0.648 μm) using near-infrared excitation pulses. We demonstrate that despite the small dimensions of the miniature objective, the performance of this lens system is comparable to standard microscope objective lenses, offering opportunities for miniaturizing coherent Raman scattering imaging probes without sacrificing the image quality. PMID:24156075

  18. A MEMS-based miniature DNA analysis system

    SciTech Connect

    Northrup, M.A.; Gonzalez, C.; Hadley, D.

    1995-04-25

    We detail the design and development of a miniature thermal cycling instrument for performing the polymerase chain reaction (PCR) that uses microfabricated, silicon-based reaction chambers. The MEMS-based, battery-operated instrument shows significant improvements over commercial thermal cycling instrumentation. Several different biological systems have been amplified and verified with the miniature PCR instrument including the Human Immunodeficiency Virus; both cloned and genomic DNA templates of {beta} globin; and the genetic disease, Cystic Fibrosis from human DNA. The miniaturization of a PCR thermal cycler is the initial module of a fully-integrated portable, low-power, rapid, and highly efficient bioanalytical instrument.

  19. Miniaturized, Portable Sensors Monitor Metabolic Health

    NASA Technical Reports Server (NTRS)

    2014-01-01

    In order to measure astronauts' metabolic rates in space, Glenn Research Center partnered with Case Western University and the Cleveland Clinic to develop the Portable Unit for Metabolic Analysis (PUMA). Cleveland-based Orbital Research licensed and then modified PUMA to help the US Navy assess pilot oxygen problems and is now designing a device that can be used in hospitals.

  20. Miniaturized Airborne Imaging Central Server System

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and