Science.gov

Sample records for reconstructed dynamic forces

  1. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    NASA Astrophysics Data System (ADS)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  2. Reconstruction of dynamic forces during impact tests of a crushable structure

    SciTech Connect

    Bateman, V.I.; Carne, T.G.; Mayes, R.L.; Davie, N.T.

    1993-12-31

    A force reconstruction technique is being used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degree}) and slapdown (30{degree}) impact conditions. The dynamic force characteristics for the current nose design, determined from these tests, will be used to write a dynamic force specification for a new nose design that will replace the current nose. Two structures for experimentally determining the dynamic force -- deflection characteristics of the old and new noses have been designed and constructed. One structure has the same dynamic characteristics as the bomb and is being used for axial and slapdown orientations with rocket-propelled testing. The second structure has the same mass as the bomb and is being used for iterative axial testing of candidate designs with a pneumatic ram. The structural characteristics of these two structures have been determined and are presented. A force reconstruction algorithm using the Sum of Weighted Accelerations Technique (SWAT) has been developed for each of the two structures. The force reconstruction algorithms have been verified for both structures using laboratory data. The force reconstruction process and the resulting algorithms are described. Data verifying the force reconstruction algorithms is presented.

  3. Crushable structure performance determined from reconstructed dynamic forces during impact tests

    SciTech Connect

    Bateman, V.I.

    1995-01-01

    A force reconstruction technique has been used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degrees}) and slapdown (30{degrees}) impact conditions. The dynamic force characteristics for the nose design, determined from these test results, have been used to write a dynamic force specification for a new nose design that will replace the old nose. The dynamic forces are reconstructed from measured acceleration responses with the Sum of Weighted Accelerations Technique (SWAT) developed at Sandia National Laboratories. Axial characterizations for the old nose are presented from tests at two SNL facilities: a rocket rail launcher facility and an 18-Inch horizontal actuator facility. The characterizations for the old nose are compared to the characterizations for two new nose designs. Slapdown characterizations for the old nose are presented. Incorporation of the test results into a dynamic force specification is discussed.

  4. An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics

    SciTech Connect

    Nakamura, Makoto Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki

    2014-05-14

    We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.

  5. Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Grocott, Simon C. O.; Miller, David W.

    1997-01-01

    The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.

  6. A statistical-dynamical scheme for reconstructing ocean forcing in the Atlantic. Part II: methodology, validation and application to high-resolution ocean models

    NASA Astrophysics Data System (ADS)

    Minvielle, Marie; Cassou, Christophe; Bourdallé-Badie, Romain; Terray, Laurent; Najac, Julien

    2011-02-01

    A novel statistical-dynamical scheme has been developed to reconstruct the sea surface atmospheric variables necessary to force an ocean model. Multiple linear regressions are first built over a so-called learning period and over the entire Atlantic basin from the observed relationship between the surface wind conditions, or predictands, and the anomalous large scale atmospheric circulations, or predictors. The latter are estimated in the extratropics by 500 hPa geopotential height weather regimes and in the tropics by low-level wind classes. The transfer function further combined to an analog step is then used to reconstruct all the surface variables fields over 1958-2002. We show that the proposed hybrid scheme is very skillful in reproducing the mean state, the seasonal cycle and the temporal evolution of all the surface ocean variables at interannual timescale. Deficiencies are found in the level of variance especially in the tropics. It is underestimated for 2-m temperature and humidity as well as for surface radiative fluxes in the interannual frequency band while it is slightly overestimated at higher frequency. Decomposition in empirical orthogonal function (EOF) shows that the spatial and temporal coherence of the forcing fields is however very well captured by the reconstruction method. For dynamical downscaling purposes, reconstructed fields are then interpolated and used to carry out a high-resolution oceanic simulation using the NATL4 (1/4°) model integrated over 1979-2001. This simulation is compared to a reference experiment where the original observed forcing fields are prescribed instead. Mean states between the two experiments are virtually undistinguishable both in terms of surface fluxes and ocean dynamics estimated by the barotropic and the meridional overturning streamfunctions. The 3-dimensional variance of the simulated ocean is well preserved at interannual timescale both for temperature and salinity except in the tropics where it is

  7. A statistical-dynamical scheme for reconstructing ocean forcing in the Atlantic. Part I: weather regimes as predictors for ocean surface variables

    NASA Astrophysics Data System (ADS)

    Cassou, Christophe; Minvielle, Marie; Terray, Laurent; Périgaud, Claire

    2011-01-01

    findings are encouraging for the prospects of basin-scale ocean dynamical downscaling using a weather-typing approach to reconstruct forcing fields for high resolution ocean models (Part II) from coarse resolution climate models.

  8. Force reconstruction from tapping mode force microscopy experiments

    NASA Astrophysics Data System (ADS)

    Payam, Amir F.; Martin-Jimenez, Daniel; Garcia, Ricardo

    2015-05-01

    Fast, accurate, and robust nanomechanical measurements are intensely studied in materials science, applied physics, and molecular biology. Amplitude modulation force microscopy (tapping mode) is the most established nanoscale characterization technique of surfaces for air and liquid environments. However, its quantitative capabilities lag behind its high spatial resolution and robustness. We develop a general method to transform the observables into quantitative force measurements. The force reconstruction algorithm has been deduced on the assumption that the observables (amplitude and phase shift) are slowly varying functions of the tip-surface separation. The accuracy and applicability of the method is validated by numerical simulations and experiments. The method is valid for liquid and air environments, small and large free amplitudes, compliant and rigid materials, and conservative and non-conservative forces.

  9. Force reconstruction using the inverse of the mode-shape matrix

    SciTech Connect

    Carne, T.G.; Bateman, V.I.; Dohrman, C.R.

    1991-01-01

    Force reconstruction is a process in which response signals from a dynamic event are used to infer what the applied force must have been to produce these responses. Force reconstruction is of interest when the input force cannot be directly measured, while the response signals are easily obtained using transducers such as accelerometers or strain gages. In many evaluation tests of a structure, the dynamic response is not sufficient information; one may really need a description of the input force. A new technique for force reconstruction is developed. To estimate the externally applied force, this technique sums the weight-scaled acceleration signals, and is referred to as the Sum of Weighted Accelerations Technique (SWAT). To obtain the scalar weights the inverse of the mode shape matrix is used. Application of this technique is illustrated with both numerical calculations using a mass-spring model and experimental data from a structure impacting a rigid barrier. 16 refs., 13 figs.

  10. The Dynamic Force Table

    ERIC Educational Resources Information Center

    Geddes, John B.; Black, Kelly

    2008-01-01

    We examine an experimental apparatus that is used to motivate the connections between the basic properties of vectors, potential functions, systems of nonlinear equations, and Newton's method for nonlinear systems of equations. The apparatus is an adaptation of a force table where we remove the center-pin and allow the center-ring to move freely.…

  11. Mechanical Forces Governing Tissue Dynamics

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn

    2002-10-01

    We have refined a UV-laser microbeam to investigate the forces at play during morphogenesis, i.e. early biological development, in the fruit fly Drosophila (1). While the microbeam typically is used to ablate tissue with cellular spatial resolution, it has the capability for submicron and thus subcellular spatial resolution. The microbeam can be steered in two-dimensions and UV-laser dissection occurred in vivo while the tissue was imaged in real time using a (visible) laser-scanning confocal microscope. We investigated a morphogenic process, known as dorsal closure, in a genetically engineered strain of Drosophila where green fluorescent protein has been fused to a fragment of a native structural protein (2). This allowed us to visualize the fluorescing contours of two opposing, outer sheets of tissue closing over an inner tissue sheet. Time-lapse imaging captured the contours in native closure as well as in response to UV-laser dissection. Specific patterns of dissection essentially eliminated a selected force: by tracking the changes in contour geometry we estimated the relative magnitude of that force (mechanical jump). Using this approach we identified and characterized a set of forces governing tissue dynamics. We have developed a mechanical model for the dynamics of dorsal closure based on this data set. This model provides a theoretical framework for investigating defective closure in mutant flies. Dorsal closure is a model system for various aspects of cell movement in wound healing and vertebrate development. This research has been supported by the DoD MFEL Program as administered by the AFOSR and by the NIH. 1. M.S. Hutson, Y. Tokutake, M-S. Chang, J.W. Bloor, S. Venakides, D.P. Kiehart, and G.S. Edwards. "Laser dissection of morphogenetic dynamics in Drosophila dorsal closure." In preparation. 2. D.P. Kiehart, et al, J. Cell Biol. 149, 471 (2000).

  12. Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy

    PubMed Central

    Woodside, Michael T.; Block, Steven M.

    2015-01-01

    Folding may be described conceptually in terms of trajectories over a landscape of free energies corresponding to different molecular configurations. In practice, energy landscapes can be difficult to measure. Single-molecule force spectroscopy (SMFS), whereby structural changes are monitored in molecules subjected to controlled forces, has emerged as a powerful tool for probing energy landscapes. We summarize methods for reconstructing landscapes from force spectroscopy measurements under both equilibrium and nonequilibrium conditions. Other complementary, but technically less demanding, methods provide a model-dependent characterization of key features of the landscape. Once reconstructed, energy landscapes can be used to study critical folding parameters, such as the characteristic transition times required for structural changes and the effective diffusion coefficient setting the timescale for motions over the landscape. We also discuss issues that complicate measurement and interpretation, including the possibility of multiple states or pathways and the effects of projecting multiple dimensions onto a single coordinate. PMID:24895850

  13. Reconstructing Directed Networks From Noisy Dynamics

    NASA Astrophysics Data System (ADS)

    Tam, Hiu Ching; Ching, Emily Sc

    Complex systems can be fruitfully studied as networks of many elementary units, known as nodes, interacting with one another with the interactions being the links between the nodes. The overall behavior of the systems depends crucially on the network structure depicting how the nodes are linked with each other. It is usually possible to measure the dynamics of the individual nodes but difficult, if not impossible, to directly measure the interactions or links between the nodes. For most systems of interest, the links are directional in that one node affects the dynamics of the other but not vice versa. Moreover, the strength of interaction can vary for different links. Reconstructing directed and weighted networks from dynamics is one of the biggest challenges in network research. We have studied directed and weighted networks modelled by noisy dynamical systems with nonlinear dynamics and developed a method that reconstructs the links and their directions using only the dynamics of the nodes as input. Our method is motivated by a mathematical result derived for dynamical systems that approach a fixed point in the noise-free limit. We show that our method gives good reconstruction results for several directed and weighted networks with different nonlinear dynamics. Supported by Hong Kong Research Grants Council under Grant No. CUHK 14300914.

  14. Reconstruction of dynamic gated cardiac SPECT

    SciTech Connect

    Jin Mingwu; Yang Yongyi; King, Michael A.

    2006-11-15

    In this paper we propose an image reconstruction procedure which aims to unify gated single photon emission computed tomography (SPECT) and dynamic SPECT into a single method. We divide the cardiac cycle into a number of gate intervals as in gated SPECT, but treat the tracer distribution for each gate as a time-varying signal. By using both dynamic and motion-compensated temporal regularization, our reconstruction procedure will produce an image sequence that shows both cardiac motion and time-varying tracer distribution simultaneously. To demonstrate the proposed reconstruction method, we simulated gated cardiac perfusion imaging using the gated mathematical cardiac-torso (gMCAT) phantom with Tc99m-Teboroxime as the imaging agent. Our results show that the proposed method can produce more accurate reconstruction of gated dynamic images than independent reconstruction of individual gate frames with spatial smoothness alone. In particular, our results show that the former could improve the contrast to noise ratio of a simulated perfusion defect by as much as 100% when compared to the latter.

  15. Fusion of intraoperative force sensoring, surface reconstruction and biomechanical modeling

    NASA Astrophysics Data System (ADS)

    Röhl, S.; Bodenstedt, S.; Küderle, C.; Suwelack, S.; Kenngott, H.; Müller-Stich, B. P.; Dillmann, R.; Speidel, S.

    2012-02-01

    Minimally invasive surgery is medically complex and can heavily benefit from computer assistance. One way to help the surgeon is to integrate preoperative planning data into the surgical workflow. This information can be represented as a customized preoperative model of the surgical site. To use it intraoperatively, it has to be updated during the intervention due to the constantly changing environment. Hence, intraoperative sensor data has to be acquired and registered with the preoperative model. Haptic information which could complement the visual sensor data is still not established. In addition, biomechanical modeling of the surgical site can help in reflecting the changes which cannot be captured by intraoperative sensors. We present a setting where a force sensor is integrated into a laparoscopic instrument. In a test scenario using a silicone liver phantom, we register the measured forces with a reconstructed surface model from stereo endoscopic images and a finite element model. The endoscope, the instrument and the liver phantom are tracked with a Polaris optical tracking system. By fusing this information, we can transfer the deformation onto the finite element model. The purpose of this setting is to demonstrate the principles needed and the methods developed for intraoperative sensor data fusion. One emphasis lies on the calibration of the force sensor with the instrument and first experiments with soft tissue. We also present our solution and first results concerning the integration of the force sensor as well as accuracy to the fusion of force measurements, surface reconstruction and biomechanical modeling.

  16. Remote Dynamic Three-Dimensional Scene Reconstruction

    PubMed Central

    Yang, You; Liu, Qiong; Ji, Rongrong; Gao, Yue

    2013-01-01

    Remote dynamic three-dimensional (3D) scene reconstruction renders the motion structure of a 3D scene remotely by means of both the color video and the corresponding depth maps. It has shown a great potential for telepresence applications like remote monitoring and remote medical imaging. Under this circumstance, video-rate and high resolution are two crucial characteristics for building a good depth map, which however mutually contradict during the depth sensor capturing. Therefore, recent works prefer to only transmit the high-resolution color video to the terminal side, and subsequently the scene depth is reconstructed by estimating the motion vectors from the video, typically using the propagation based methods towards a video-rate depth reconstruction. However, in most of the remote transmission systems, only the compressed color video stream is available. As a result, color video restored from the streams has quality losses, and thus the extracted motion vectors are inaccurate for depth reconstruction. In this paper, we propose a precise and robust scheme for dynamic 3D scene reconstruction by using the compressed color video stream and their inaccurate motion vectors. Our method rectifies the inaccurate motion vectors by analyzing and compensating their quality losses, motion vector absence in spatial prediction, and dislocation in near-boundary region. This rectification ensures the depth maps can be compensated in both video-rate and high resolution at the terminal side towards reducing the system consumption on both the compression and transmission. Our experiments validate that the proposed scheme is robust for depth map and dynamic scene reconstruction on long propagation distance, even with high compression ratio, outperforming the benchmark approaches with at least 3.3950 dB quality gains for remote applications. PMID:23667417

  17. Dynamic atomic force microscopy methods

    NASA Astrophysics Data System (ADS)

    García, Ricardo; Pérez, Rubén

    2002-09-01

    In this report we review the fundamentals, applications and future tendencies of dynamic atomic force microscopy (AFM) methods. Our focus is on understanding why the changes observed in the dynamic properties of a vibrating tip that interacts with a surface make possible to obtain molecular resolution images of membrane proteins in aqueous solutions or to resolve atomic-scale surface defects in ultra high vacuum (UHV). Our description of the two major dynamic AFM modes, amplitude modulation atomic force microscopy (AM-AFM) and frequency modulation atomic force microscopy (FM-AFM) emphasises their common points without ignoring the differences in experimental set-ups and operating conditions. Those differences are introduced by the different feedback parameters, oscillation amplitude in AM-AFM and frequency shift and excitation amplitude in FM-AFM, used to track the topography and composition of a surface. The theoretical analysis of AM-AFM (also known as tapping-mode) emphasises the coexistence, in many situations of interests, of two stable oscillation states, a low and high amplitude solution. The coexistence of those oscillation states is a consequence of the presence of attractive and repulsive components in the interaction force and their non-linear dependence on the tip-surface separation. We show that key relevant experimental properties such as the lateral resolution, image contrast and sample deformation are highly dependent on the oscillation state chosen to operate the instrument. AM-AFM allows to obtain simultaneous topographic and compositional contrast in heterogeneous samples by recording the phase angle difference between the external excitation and the tip motion (phase imaging). Significant applications of AM-AFM such as high-resolution imaging of biomolecules and polymers, large-scale patterning of silicon surfaces, manipulation of single nanoparticles or the fabrication of single electron devices are also reviewed. FM-AFM (also called non

  18. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  19. Dynamic state allocation for MEG source reconstruction

    PubMed Central

    Woolrich, Mark W.; Baker, Adam; Luckhoo, Henry; Mohseni, Hamid; Barnes, Gareth; Brookes, Matthew; Rezek, Iead

    2013-01-01

    Our understanding of the dynamics of neuronal activity in the human brain remains limited, due in part to a lack of adequate methods for reconstructing neuronal activity from noninvasive electrophysiological data. Here, we present a novel adaptive time-varying approach to source reconstruction that can be applied to magnetoencephalography (MEG) and electroencephalography (EEG) data. The method is underpinned by a Hidden Markov Model (HMM), which infers the points in time when particular states re-occur in the sensor space data. HMM inference finds short-lived states on the scale of 100 ms. Intriguingly, this is on the same timescale as EEG microstates. The resulting state time courses can be used to intelligently pool data over these distinct and short-lived periods in time. This is used to compute time-varying data covariance matrices for use in beamforming, resulting in a source reconstruction approach that can tune its spatial filtering properties to those required at different points in time. Proof of principle is demonstrated with simulated data, and we demonstrate improvements when the method is applied to MEG. PMID:23545283

  20. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  1. Sparse decomposition learning based dynamic MRI reconstruction

    NASA Astrophysics Data System (ADS)

    Zhu, Peifei; Zhang, Qieshi; Kamata, Sei-ichiro

    2015-02-01

    Dynamic MRI is widely used for many clinical exams but slow data acquisition becomes a serious problem. The application of Compressed Sensing (CS) demonstrated great potential to increase imaging speed. However, the performance of CS is largely depending on the sparsity of image sequence in the transform domain, where there are still a lot to be improved. In this work, the sparsity is exploited by proposed Sparse Decomposition Learning (SDL) algorithm, which is a combination of low-rank plus sparsity and Blind Compressed Sensing (BCS). With this decomposition, only sparsity component is modeled as a sparse linear combination of temporal basis functions. This enables coefficients to be sparser and remain more details of dynamic components comparing learning the whole images. A reconstruction is performed on the undersampled data where joint multicoil data consistency is enforced by combing Parallel Imaging (PI). The experimental results show the proposed methods decrease about 15~20% of Mean Square Error (MSE) compared to other existing methods.

  2. Dynamic Behavior in Piezoresponse Force Microstopy

    SciTech Connect

    Jesse, Stephen; Baddorf, Arthur P; Kalinin, Sergei V

    2006-01-01

    Frequency-dependent dynamic behavior in piezoresponse force microscopy (PFM) implemented on a beam-deflection atomic force microscope (AFM) is analysed using a combination of modelling and experimental measurements. The PFM signal is comprised of contributions from local electrostatic forces acting on the tip, distributed forces acting on the cantilever, and three components of the electromechanical response vector. These interactions result in the flexural and torsional oscillations of the cantilever, detected as vertical and lateral PFM signals. The relative magnitudes of these contributions depend on geometric parameters of the system, on the stiffnesses and frictional forces of the tip-surface junction, and on the frequency of operation. The dynamic signal formation mechanism in PFM is analysed and conditions for optimal PFM imaging are formulated. An experimental approach for probing cantilever dynamics using frequency-bias spectroscopy and deconvolution of electromechanical and electrostatic contrast is implemented

  3. Dynamic behaviour in piezoresponse force microscopy.

    PubMed

    Jesse, Stephen; Baddorf, Arthur P; Kalinin, Sergei V

    2006-03-28

    Frequency-dependent dynamic behaviour in piezoresponse force microscopy (PFM) implemented on a beam-deflection atomic force microscope (AFM) is analysed using a combination of modelling and experimental measurements. The PFM signal is comprised of contributions from local electrostatic forces acting on the tip, distributed forces acting on the cantilever, and three components of the electromechanical response vector. These interactions result in the flexural and torsional oscillations of the cantilever, detected as vertical and lateral PFM signals. The relative magnitudes of these contributions depend on geometric parameters of the system, on the stiffnesses and frictional forces of the tip-surface junction, and on the frequency of operation. The dynamic signal formation mechanism in PFM is analysed and conditions for optimal PFM imaging are formulated. An experimental approach for probing cantilever dynamics using frequency-bias spectroscopy and deconvolution of electromechanical and electrostatic contrast is implemented. PMID:26558568

  4. [Application of algebraic reconstruction technique of multi-source tomosynthesis in dynamic reconstruction].

    PubMed

    Peng, Jiaju; Zhao, Jun

    2011-07-01

    To reduce the motion artifacts, a new scanning configuration is proposed for tomosynthesis in dynamic reconstruction. In this new configuration, multiple x-ray sources are uniformly distributed on the circular scanning trajectory and moving simultaneously. Numerical experiments are performed using two dynamic digital phantoms and algebraic reconstruction technique. The reconstruction images of single-source tomosynthesis and multi-source tomosynthesis are compared and evaluated. The results show that multi-source tomosynthesis could reduce artifacts effectively, thus improving image quality. The advantages of multi-source tomosynthesis in dynamic reconstruction are important to cardiac imaging and respiratory imaging. PMID:22097745

  5. Undulator with dynamic compensation of magnetic forces

    DOEpatents

    Gluskin, Efim; Trakhtenberg, Emil; Xu, Joseph Z.

    2016-05-31

    A method and apparatus for implementing dynamic compensation of magnetic forces for undulators are provided. An undulator includes a respective set of magnet arrays, each attached to a strongback, and placed on horizontal slides and positioned parallel relative to each other with a predetermined gap. Magnetic forces are compensated by a set of compensation springs placed along the strongback. The compensation springs are conical springs having exponential-force characteristics that substantially match undulator magnetic forces independently of the predetermined gap. The conical springs are positioned along the length of the magnets.

  6. Research on new dynamic force calibration system

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2008-06-01

    Sinusoidal force calibration method based on electrodynamic shaker and interferometric system was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). In that system a load mass are screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition F(t) = ma(t), where m is the total mass acting on the sensing element of the force transducer and a is the time and spatial-dependent acceleration of the mass, which is directly measured by a laser interferometer. This paper will introduce a new dynamic force calibration system developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electrodynamic shakers to generate dynamic force in the range from 1N to 20kN, and heterodyne laser interferometers are used for acceleration measurement. A new air bearing system is developed to increase the performance of shakers and an active vibration isolator is used to reduce enviromental disturbance to the interferometric system.

  7. Reconstructing magma reservoir dynamics from field evidence

    NASA Astrophysics Data System (ADS)

    Verberne, R.; Muntener, O.; Ulmer, P.

    2013-12-01

    Reconstructing the dynamics within magma reservoirs during and after emplacement greatly enhance our understanding of their formation and evolution. By determining the length and timescales over which magma remains mobile within magma reservoirs, fluxes of magma that is possibly extractable can be quantified, providing a link between plutonic and volcanic systems, and constraints on the likelihood of a pluton feeding volcanic eruptions. However, the general absence of marker beds and uncertainties regarding at which crystal fractions super-solidus foliation patterns are recorded make it difficult to reconstruct and quantify deformation inside plutons, especially the deformation that occurred at low crystal fractions. Here we present a case study of the Listino Ring Structure (LRS) of the Adamello Batholith in N-Italy, a 300-500 m-wide semi-circular zone of intensely foliated tonalite containing abundant evidence for magmatic deformation and magma mingling (Brack, 1984). The differences in the interaction between felsic and mafic magmas recorded in the form of mafic dikes, sheets and enclaves can be used to determine spatial and/or temporal differences of magma rheology during evolution of the reservoir. Detailed field mapping shows a clear difference in intrusion style between the southern and eastern sides of the LRS, as mafic magma intrudes into different felsic host magmas. An attempt is made to quantify these differences in terms of the physical state of the host magmas, using a variety of analyses pertaining to the breakup of mafic dikes into enclaves, the assimilation of phenocrysts from the host magma by the mafic magma, and the back-veining of mafic dikes and enclaves. The common component of these analyses is a parametrization of the phase petrology of the magmas as a function of temperature, which allows for the determination of melt fraction and composition at super-solidus conditions, from which physical properties such as density and viscosity can be

  8. Tensor-based dictionary learning for dynamic tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong

    2015-04-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction.

  9. Tensor-based Dictionary Learning for Dynamic Tomographic Reconstruction

    PubMed Central

    Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong

    2015-01-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction. PMID:25779991

  10. Forced synchronization of autonomous dynamical Boolean networks

    SciTech Connect

    Rivera-Durón, R. R. Campos-Cantón, E.; Campos-Cantón, I.; Gauthier, Daniel J.

    2015-08-15

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.

  11. Reconstruction of dynamic structural inputs in the presence of noise

    SciTech Connect

    Bateman, V.I.; Solomon, O.M. Jr.

    1986-08-01

    This report describes a technique to reconstruct dynamic structural inputs by deconvolution of measured data. The structure to which this technique has been applied is a mild steel bar (3 in diameter and 60 in. long) with a conical nose which provides some geometric simulation of penetrating structures which are used in field test. The deconvolution technique successfully reconstructs dynamic inputs to the bar with and without additive white noise present in the measured response.

  12. Identification of dynamic forces using group-sparsity in frequency domain

    NASA Astrophysics Data System (ADS)

    Rezayat, A.; Nassiri, V.; De Pauw, B.; Ertveldt, J.; Vanlanduit, S.; Guillaume, P.

    2016-03-01

    The knowledge of acting dynamic forces is required for the design of structures. Given the structural model, inverse techniques offer the possibility to reconstruct the system's input forces from vibration data. The inverse problem is highly sensitive to measurement noise, and the classical pseudo-inverse method generally fails to find the correct loads. In this paper we propose a new penalty function that combines the advantages of the ℓp-norm properties, together with a modified iterative optimization technique. The new algorithm (G-FISTA) is used to localize and reconstruct dynamic point-forces on a beam structure, with no prior knowledge on the force locations. The algorithm is validated by means of several simulations and experiments. The strain data is measured using Fiber Bragg Gratings (FBG) attached to the beam. The obtained results show that the location and time history of point forces are better estimated using the proposed technique.

  13. Force field dependence of riboswitch dynamics.

    PubMed

    Hanke, Christian A; Gohlke, Holger

    2015-01-01

    Riboswitches are noncoding regulatory elements that control gene expression in response to the presence of metabolites, which bind to the aptamer domain. Metabolite binding appears to occur through a combination of conformational selection and induced fit mechanism. This demands to characterize the structural dynamics of the apo state of aptamer domains. In principle, molecular dynamics (MD) simulations can give insights at the atomistic level into the dynamics of the aptamer domain. However, it is unclear to what extent contemporary force fields can bias such insights. Here, we show that the Amber force field ff99 yields the best agreement with detailed experimental observations on differences in the structural dynamics of wild type and mutant aptamer domains of the guanine-sensing riboswitch (Gsw), including a pronounced influence of Mg2+. In contrast, applying ff99 with parmbsc0 and parmχOL modifications (denoted ff10) results in strongly damped motions and overly stable tertiary loop-loop interactions. These results are based on 58 MD simulations with an aggregate simulation time>11 μs, careful modeling of Mg2+ ions, and thorough statistical testing. Our results suggest that the moderate stabilization of the χ-anti region in ff10 can have an unwanted damping effect on functionally relevant structural dynamics of marginally stable RNA systems. This suggestion is supported by crystal structure analyses of Gsw aptamer domains that reveal χ torsions with high-anti values in the most mobile regions. We expect that future RNA force field development will benefit from considering marginally stable RNA systems and optimization toward good representations of dynamics in addition to structural characteristics. PMID:25726465

  14. Debye Entropic Force and Modified Newtonian Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Xin; Chang, Zhe

    2011-04-01

    Verlinde has suggested that the gravity has an entropic origin, and a gravitational system could be regarded as a thermodynamical system. It is well-known that the equipartition law of energy is invalid at very low temperature. Therefore, entropic force should be modified while the temperature of the holographic screen is very low. It is shown that the modified entropic force is proportional to the square of the acceleration, while the temperature of the holographic screen is much lower than the Debye temperature TD. The modified entropic force returns to the Newton's law of gravitation while the temperature of the holographic screen is much higher than the Debye temperature. The modified entropic force is connected with modified Newtonian dynamics (MOND). The constant a0 involved in MOND is linear in the Debye frequency ωD, which can be regarded as the largest frequency of the bits in screen. We find that there do have a strong connection between MOND and cosmology in the framework of Verlinde's entropic force, if the holographic screen is taken to be bound of the Universe. The Debye frequency is linear in the Hubble constant H0.

  15. The reconstructive urology work force: present and future

    PubMed Central

    2014-01-01

    Indirect measures that determine the number of reconstructive urologists in the US seem to indicate a general shortage in the number of these specially trained surgeons. This shortage may worsen in the future, as the US population continues to age and the number of urologists relative to the general population growth continues to fall. The lack of reconstructive urology expertise seems to drive an inappropriate number of urethrotomies performed in the US, most troubling in those with previous failed urethotomies in whom the subsequent urethrotomy failure rate approaches 100%. Recently increases in the number of fellowship training programs and an increased number of residency centers nationwide that graduate urologists with good basic knowledge of urethroplasty will partly ameliorate this shortage, but wide geographic regions remain without any urologic reconstruction experts. PMID:26813479

  16. A comparison of force reconstruction methods for a lumped mass beam

    SciTech Connect

    Bateman, V.I.; Mayes, R.L.; Carne, T.G.

    1992-11-01

    Two extensions of the force reconstruction method, the Sum of Weighted Accelerations Technique (SWAT), are presented in this paper; and the results are compared to those obtained using SWAT. SWAT requires the use of the structure`s elastic mode shapes for reconstruction of the applied force. Although based on the same theory, the two, new techniques do not rely on mode shapes to reconstruct the applied force and may be applied to structures whose mode shapes are not available. One technique uses the measured force and acceleration responses with the rigid body mode shapes to calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using a CALibrated force input). The second technique uses only the free-decay time response of the structure with the rigid body mode shapes to calculate the scalar weighting vector and is called SWAT-TEEM (SWAT using Time Eliminated Elastic Modes).

  17. A comparison of force reconstruction methods for a lumped mass beam

    SciTech Connect

    Bateman, V.I.; Mayes, R.L.; Carne, T.G.

    1992-01-01

    Two extensions of the force reconstruction method, the Sum of Weighted Accelerations Technique (SWAT), are presented in this paper; and the results are compared to those obtained using SWAT. SWAT requires the use of the structure's elastic mode shapes for reconstruction of the applied force. Although based on the same theory, the two, new techniques do not rely on mode shapes to reconstruct the applied force and may be applied to structures whose mode shapes are not available. One technique uses the measured force and acceleration responses with the rigid body mode shapes to calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using a CALibrated force input). The second technique uses only the free-decay time response of the structure with the rigid body mode shapes to calculate the scalar weighting vector and is called SWAT-TEEM (SWAT using Time Eliminated Elastic Modes).

  18. Dynamics of Turing Patterns under Spatiotemporal Forcing

    NASA Astrophysics Data System (ADS)

    Rüdiger, S.; Míguez, D. G.; Muñuzuri, A. P.; Sagués, F.; Casademunt, J.

    2003-03-01

    We study, both theoretically and experimentally, the dynamical response of Turing patterns to a spatiotemporal forcing in the form of a traveling-wave modulation of a control parameter. We show that from strictly spatial resonance, it is possible to induce new, generic dynamical behaviors, including temporally modulated traveling waves and localized traveling solitonlike solutions. The latter make contact with the soliton solutions of Coullet [

    Phys. Rev. Lett.PRLTAO0031-9007 56, 724 (1986)
    ] and generalize them. The stability diagram for the different propagating modes in the Lengyel-Epstein model is determined numerically. Direct observations of the predicted solutions in experiments carried out with light modulations in the photosensitive chlorine dioxide-iodine-malonic acid reaction are also reported.

  19. Impact-force sparse reconstruction from highly incomplete and inaccurate measurements

    NASA Astrophysics Data System (ADS)

    Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Chen, Xuefeng

    2016-08-01

    The classical l2-norm-based regularization methods applied for force reconstruction inverse problem require that the number of measurements should not be less than the number of unknown sources. Taking into account the sparse nature of impact-force in time domain, we develop a general sparse methodology based on minimizing l1-norm for solving the highly underdetermined model of impact-force reconstruction. A monotonic two-step iterative shrinkage/thresholding (MTWIST) algorithm is proposed to find the sparse solution to such an underdetermined model from highly incomplete and inaccurate measurements, which can be problematic with Tikhonov regularization. MTWIST is highly efficient for large-scale ill-posed problems since it mainly involves matrix-vector multiplies without matrix factorization. In sparsity frame, the proposed sparse regularization method can not only determine the actual impact location from many candidate sources but also simultaneously reconstruct the time history of impact-force. Simulation and experiment including single-source and two-source impact-force reconstruction are conducted on a simply supported rectangular plate and a shell structure to illustrate the effectiveness and applicability of MTWIST, respectively. Both the locations and force time histories of the single-source and two-source cases are accurately reconstructed from a single accelerometer, where the high noise level is considered in simulation and the primary noise in experiment is supposed to be colored noise. Meanwhile, the consecutive impact-forces reconstruction in a large-scale (greater than 104) sparse frame illustrates that MTWIST has advantages of computational efficiency and identification accuracy over Tikhonov regularization.

  20. Forced and internal variability in temperature simulations and reconstructions of the Common Era

    NASA Astrophysics Data System (ADS)

    Fernández-Donado, Laura; Fidel González-Rouco, J.; Garcia-Bustamante, Elena; Smerdon, Jason S.; Luterbacher, Juerg; Raible, Christoph C.

    2016-04-01

    The relatively short ranges of external forcing variability within the CE represent a challenge in as much as the consistency between simulations and reconstructions can be affected by the large uncertainties in their respective responses to the external forcings. One of the core questions within this work relates therefore the extent to which a straight response to the external forcing can be identified during the period under study and whether this signal is common to simulated and reconstructed temperature. This study is based on an exhaustive compilation, analysis and intercomparison of the available hemispherical and global temperature reconstructions as well as a complete ensemble of simulations including both PMIP3/CMIP5 and non-PMIP3 model experiments. In addition, the various external forcing configurations applied to the models are characterized and a Total External Forcing, including all the individual forcing contributors, is developed for each experiment. Based on the linear relationship found at multidecadal and longer timescales during the last millennium between the temperature and the total external forcing, a quantitative metric of the ratio of response, the so-called Last Millennium Transient Climate Response (LMTCR), is obtained and compared for simulations and reconstructions. Within the LMTCR context, a significant quantitative consistency between the simulations and reconstructions is addressed. This work also offers a discussion about the impact that a range of generally accepted methodological approaches might have on the reconstructed ensemble uncertainties and their influences on model-data comparison exercises. A segregation among the various existing spatial targets within the NH, based on the different level of temperatura variability observed in the series, suggests a lower level of model-data consistency during the MCA than previously reported.

  1. Dynamic Ising model: reconstruction of evolutionary trees

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.

    2013-09-01

    An evolutionary tree is a cascade of bifurcations starting from a single common root, generating a growing set of daughter species as time goes by. ‘Species’ here is a general denomination for biological species, spoken languages or any other entity which evolves through heredity. From the N currently alive species within a clade, distances are measured through pairwise comparisons made by geneticists, linguists, etc. The larger is such a distance that, for a pair of species, the older is their last common ancestor. The aim is to reconstruct the previously unknown bifurcations, i.e. the whole clade, from knowledge of the N(N - 1)/2 quoted distances, which are taken for granted. A mechanical method is presented and its applicability is discussed.

  2. Force Production and Reactive Strength Capabilities After Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Flanagan, Eamonn P; Galvin, Lorcan; Harrison, Andrew J

    2008-01-01

    Context: Ambiguity exists in the literature regarding whether individuals can restore function to 100% after anterior cruciate ligament (ACL) reconstruction. The response of force production and reactive strength in stretch-shortening cycle activities after surgery has not been established. Objective: To compare reactive strength and force production capabilities between the involved and uninvolved legs of participants who had undergone ACL reconstruction and rehabilitation with the reactive strength and force production capabilities of a control group. Design: Repeated measures, cross-sectional. Setting: Research laboratory. Patients or Other Participants: Ten participants with ACL reconstructions who had returned to their chosen sports and 10 age-matched and activity-matched control subjects. Intervention(s): We screened the ACL group with the International Knee Documentation Committee Subjective Knee Evaluation Form and functional performance tests to measure a basic level of function. We assessed force production capabilities and reactive strength using squat, countermovement, drop, and rebound jump protocols on a force sledge apparatus. Main Outcome Measure(s): The dependent variables were flight time, peak vertical ground reaction force, leg spring stiffness, and reactive strength index. Results: No participant in the ACL group exhibited functional deficits in comparison with normative values or the control group. Using the force sledge apparatus, we found no notable differences in force production capabilities and reactive strength in the ACL group when comparing the involved with uninvolved legs or the degree of difference between legs with the control group. Conclusions: After ACL reconstruction, rehabilitated participants did not exhibit deficits in force production or reactive strength capabilities. Our results suggest that force production and reactive strength capabilities can be restored to levels comparable with the uninjured control limb and may not

  3. Climate Forcing Reconstructions for Use in PMIP Simulations of the Last Millennium (v1.0)

    NASA Technical Reports Server (NTRS)

    Schmidt, Gavin A.; Jungclaus, J.H.; Steinhilber, F.; Vieira, L. E. A.; Ammann, C. M.; Bard, E.; Braconnot, P.; Crowley, T. J.; Delayque, G.; Joos, F.; Krivova, N. A.; Muscheler, R.; Otto-Bliesner, B. L.; Pongratz, J.; Shindell, D. T.; Solanki, S. K.

    2011-01-01

    Simulations of climate over the Last Millennium (850-1850 CE) have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.

  4. A molecular dynamics investigation of surface reconstruction on magnetite (001)

    NASA Astrophysics Data System (ADS)

    Rustad, J. R.; Wasserman, E.; Felmy, A. R.

    1999-07-01

    Molecular dynamics calculations using analytical potential functions with polarizable oxygen ions have been used to identify a novel mode of reconstruction on the half-occupied tetrahedral layer termination of the magnetite (Fe 3O 4) (001) surface. In the proposed reconstruction, the twofold coordinated iron ion in the top monolayer rotates downward to occupy a vacant half-octahedral site in the plane of the second-layer iron ions. At the same time, half of the tetrahedral iron ions in the third iron layer are pushed upward to occupy an adjacent octahedral vacancy at the level of the second-layer iron ions. The other half of the third-layer iron ions remain roughly in their original positions. The proposed reconstruction is consistent with recent low-energy electron diffraction and X-ray photoelectron spectroscopy results. It also provides a compelling interpretation for the arrangement of atoms suggested by high-resolution scanning-tunneling microscopy studies.

  5. Free energy reconstruction from steered dynamics without post-processing

    SciTech Connect

    Athenes, Manuel; Marinica, Mihai-Cosmin

    2010-09-20

    Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable one to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-{alpha}. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, we accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.

  6. Validation of a Laboratory Method for Evaluating Dynamic Properties of Reconstructed Equine Racetrack Surfaces

    PubMed Central

    Setterbo, Jacob J.; Chau, Anh; Fyhrie, Patricia B.; Hubbard, Mont; Upadhyaya, Shrini K.; Symons, Jennifer E.; Stover, Susan M.

    2012-01-01

    Background Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior. Objective To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties. Methods Track-testing device (TTD) impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack) and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression. Results Most dynamic surface property setting differences (racetrack-laboratory) were small relative to surface material type differences (dirt-synthetic). Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces. Conclusions Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD

  7. Reconstructive tomography in gas dynamics and plasma physics

    NASA Astrophysics Data System (ADS)

    Pikalov, Valerii Vladimirovich; Preobrazhenskii, Nikolai Georgievich

    The physics, mathematics, and principal applications of reconstructive tomography are examined with particular reference to problems in aerodynamics, gas dynamics, and plasma physics. The discussion covers fluoroscopic tomography and tomosynthesis, tomography with a priori constraints, mathematical formalisms of the linear tomography of asymmetric objects, theoretical principles of the linear tomography of two-dimensional objects, and algorithms of two-dimensional linear tomography. Some problems in three-dimensional linear tomography are also discussed.

  8. Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging

    PubMed Central

    Yu, Xingjian; Chen, Shuhang; Hu, Zhenghui; Liu, Meng; Chen, Yunmei; Shi, Pengcheng; Liu, Huafeng

    2015-01-01

    In dynamic Positron Emission Tomography (PET), an estimate of the radio activity concentration is obtained from a series of frames of sinogram data taken at ranging in duration from 10 seconds to minutes under some criteria. So far, all the well-known reconstruction algorithms require known data statistical properties. It limits the speed of data acquisition, besides, it is unable to afford the separated information about the structure and the variation of shape and rate of metabolism which play a major role in improving the visualization of contrast for some requirement of the diagnosing in application. This paper presents a novel low rank-based activity map reconstruction scheme from emission sinograms of dynamic PET, termed as SLCR representing Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging. In this method, the stationary background is formulated as a low rank component while variations between successive frames are abstracted to the sparse. The resulting nuclear norm and l1 norm related minimization problem can also be efficiently solved by many recently developed numerical methods. In this paper, the linearized alternating direction method is applied. The effectiveness of the proposed scheme is illustrated on three data sets. PMID:26540274

  9. Quantitative measurement of tip sample forces by dynamic force spectroscopy in ambient conditions

    NASA Astrophysics Data System (ADS)

    Hölscher, H.; Anczykowski, B.

    2005-03-01

    We introduce a dynamic force spectroscopy technique enabling the quantitative measurement of conservative and dissipative tip-sample forces in ambient conditions. In difference to the commonly detected force-vs-distance curves dynamic force microscopy allows to measure the full range of tip-sample forces without hysteresis effects caused by a jump-to-contact. The approach is based on the specific behavior of a self-driven cantilever (frequency-modulation technique). Experimental applications on different samples (Fischer-sample, silicon wafer) are presented.

  10. Simulated and reconstructed climate in Europe during the last five centuries: joint evaluation of climate models performance and the dynamical consistency of gridded reconstructions

    NASA Astrophysics Data System (ADS)

    José Gómez-Navarro, Juan; Bothe, Oliver; Wagner, Sebastian; Zorita, Eduardo; Werner, Johannes P.; Luterbacher, Jürg; Raible, Christoph C.; Montávez, Juan Pedro

    2015-04-01

    This study jointly analyses European winter and summer temperature and precipitation gridded climate reconstructions and a regional climate simulation reaching a resolution of 45 km over the period 1501-1990. In a first step, the simulation is compared to observational records to establish the model performance and to identify the most prominent caveats. It is found that the regional simulation is able to add value to the driving global simulation, which allows it to reproduce accurately the most prominent characteristics of the European climate, although remarkable biases can also be identified. In a second step, the simulation is compared to a set on independent reconstructions. The high-resolution of the simulation and the reconstructions allows to analyse the European area for nine sub-areas. An overall good agreement is found between the reconstructed and simulated climate variability across different areas, supporting a consistency of both products and the proper calibration of the reconstructions. However, biases appear between both datasets, that thanks to the evaluation of the model performance carried out before, can be attributed to deficiencies in the simulation. Although the simulation responds to external forcing, it largely differers with reconstructions in their estimates of the past climate evolution for European sub-regions. In particular, there are deviations between simulated and reconstructed anomalies during the Maunder and Dalton minima, i.e. the simulated response is much stronger than the reconstructed. This disagreement is to some extent expected given the prominent role of internal variability in the regional evolution of temperature and precipitation. However the inability of the model to reproduce any warm period similar to that recorded around 1740 in the reconstructions indicates fundamental limitations in the simulation that preclude reproducing exceptionally anomalous conditions. Despite these limitations, the simulated climate is a

  11. Dynamic force patterns of an undulatory microswimmer

    NASA Astrophysics Data System (ADS)

    Schulman, Rafael D.; Backholm, Matilda; Ryu, William S.; Dalnoki-Veress, Kari

    2014-05-01

    We probe the viscous forces involved in the undulatory swimming of the model organism C. elegans. Using micropipette deflection, we attain direct measurements of lateral and propulsive forces produced in response to the motion of the worm. We observe excellent agreement of the results with resistive force theory, through which we determine the drag coefficients of this organism. The drag coefficients are in accordance with theoretical predictions. Using a simple scaling argument, we obtain a relationship between the size of the worm and the forces that we measure, which well describes our data.

  12. Dictionary learning and time sparsity for dynamic MR data reconstruction.

    PubMed

    Caballero, Jose; Price, Anthony N; Rueckert, Daniel; Hajnal, Joseph V

    2014-04-01

    The reconstruction of dynamic magnetic resonance data from an undersampled k-space has been shown to have a huge potential in accelerating the acquisition process of this imaging modality. With the introduction of compressed sensing (CS) theory, solutions for undersampled data have arisen which reconstruct images consistent with the acquired samples and compliant with a sparsity model in some transform domain. Fixed basis transforms have been extensively used as sparsifying transforms in the past, but recent developments in dictionary learning (DL) have been shown to outperform them by training an overcomplete basis that is optimal for a particular dataset. We present here an iterative algorithm that enables the application of DL for the reconstruction of cardiac cine data with Cartesian undersampling. This is achieved with local processing of spatio-temporal 3D patches and by independent treatment of the real and imaginary parts of the dataset. The enforcement of temporal gradients is also proposed as an additional constraint that can greatly accelerate the convergence rate and improve the reconstruction for high acceleration rates. The method is compared to and shown to systematically outperform k- t FOCUSS, a successful CS method that uses a fixed basis transform. PMID:24710166

  13. Static and dynamical Meissner force fields

    NASA Technical Reports Server (NTRS)

    Weinberger, B. R.; Lynds, L.; Hull, J. R.; Mulcahy, T. M.

    1991-01-01

    The coupling between copper-based high temperature superconductors (HTS) and magnets is represented by a force field. Zero-field cooled experiments were performed with several forms of superconductors: 1) cold-pressed sintered cylindrical disks; 2) small particles fixed in epoxy polymers; and 3) small particles suspended in hydrocarbon waxes. Using magnets with axial field symmetries, direct spatial force measurements in the range of 0.1 to 10(exp 4) dynes were performed with an analytical balance and force constants were obtained from mechanical vibrational resonances. Force constants increase dramatically with decreasing spatial displacement. The force field displays a strong temperature dependence between 20 and 90 K and decreases exponentially with increasing distance of separation. Distinct slope changes suggest the presence of B-field and temperature-activated processes that define the forces. Hysteresis measurements indicated that the magnitude of force scales roughly with the volume fraction of HTS in composite structures. Thus, the net force resulting from the field interaction appears to arise from regions as small or smaller than the grain size and does not depend on contiguous electron transport over large areas. Results of these experiments are discussed.

  14. Reconstruction of Holocene carbon dynamics in a large boreal peatland complex, southern Finland

    NASA Astrophysics Data System (ADS)

    Mathijssen, Paul J. H.; Väliranta, Minna; Korrensalo, Aino; Alekseychik, Pavel; Vesala, Timo; Rinne, Janne; Tuittila, Eeva-Stiina

    2016-06-01

    Holocene peatland development and associated carbon (C) dynamics were reconstructed for a southern boreal Finnish peatland complex with fen and bog areas. In order to assess the role of local factors and long-term allogenic climate forcing in peatland development patterns, we studied a total of 18 peat cores and reconstructed vertical peat growth and lateral peat area expansion rates, the C accumulation rate (CAR), past vegetation composition and past methane (CH4) fluxes. We combined fossil plant data with measured contemporary CH4 flux - vegetation relationship data to reconstruct CH4 fluxes over time. When these reconstructions were added to the CAR estimations, a more complete picture of Holocene-scale C dynamics was achieved. Basal peat ages showed that expansion of the peat area was rapid between 11,000 and 8000 cal. BP, but decreased during the dry mid-Holocene and is probably currently limited by basal topography. A similar pattern was observed for peat growth and CAR in the fen core, whereas in the bog core CAR increased after ombrotrophication, i.e. after 4400 cal. BP. The effect of fire on vegetation and CAR was more conspicuous at the bog site than at the fen site. The CH4 flux reconstructions showed that during the Holocene CH4 emissions at the fen site decreased from 19 ± 15 to 16 ± 8 g CH4 m-2 yr-1 and at the bog site from 20 ± 15 to 14 ± 8 g CH4 m-2 yr-1. Our results suggest that a combination of changing climate, fire events and local conditions have modified the autogenic peatland development and C dynamics.

  15. Reconstruction of Holocene carbon dynamics in a large boreal peatland complex, southern Finland

    NASA Astrophysics Data System (ADS)

    Mathijssen, Paul J. H.; Väliranta, Minna; Korrensalo, Aino; Alekseychik, Pavel; Vesala, Timo; Rinne, Janne; Tuittila, Eeva-Stiina

    2016-06-01

    Holocene peatland development and associated carbon (C) dynamics were reconstructed for a southern boreal Finnish peatland complex with fen and bog areas. In order to assess the role of local factors and long-term allogenic climate forcing in peatland development patterns, we studied a total of 18 peat cores and reconstructed vertical peat growth and lateral peat area expansion rates, the C accumulation rate (CAR), past vegetation composition and past methane (CH4) fluxes. We combined fossil plant data with measured contemporary CH4 flux - vegetation relationship data to reconstruct CH4 fluxes over time. When these reconstructions were added to the CAR estimations, a more complete picture of Holocene-scale C dynamics was achieved. Basal peat ages showed that expansion of the peat area was rapid between 11,000 and 8000 cal. BP, but decreased during the dry mid-Holocene and is probably currently limited by basal topography. A similar pattern was observed for peat growth and CAR in the fen core, whereas in the bog core CAR increased after ombrotrophication, i.e. after 4400 cal. BP. The effect of fire on vegetation and CAR was more conspicuous at the bog site than at the fen site. The CH4 flux reconstructions showed that during the Holocene CH4 emissions at the fen site decreased from 19 ± 15 to 16 ± 8 g CH4 m-2 yr-1 and at the bog site from 20 ± 15 to 14 ± 8 g CH4 m-2 yr-1. Our results suggest that a combination of changing climate, fire events and local conditions have modified the autogenic peatland development and C dynamics.

  16. Low dose dynamic myocardial CT perfusion using advanced iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Eck, Brendan L.; Fahmi, Rachid; Fuqua, Christopher; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2015-03-01

    Dynamic myocardial CT perfusion (CTP) can provide quantitative functional information for the assessment of coronary artery disease. However, x-ray dose in dynamic CTP is high, typically from 10mSv to >20mSv. We compared the dose reduction potential of advanced iterative reconstruction, Iterative Model Reconstruction (IMR, Philips Healthcare, Cleveland, Ohio) to hybrid iterative reconstruction (iDose4) and filtered back projection (FBP). Dynamic CTP scans were obtained using a porcine model with balloon-induced ischemia in the left anterior descending coronary artery to prescribed fractional flow reserve values. High dose dynamic CTP scans were acquired at 100kVp/100mAs with effective dose of 23mSv. Low dose scans at 75mAs, 50mAs, and 25mAs were simulated by adding x-ray quantum noise and detector electronic noise to the projection space data. Images were reconstructed with FBP, iDose4, and IMR at each dose level. Image quality in static CTP images was assessed by SNR and CNR. Blood flow was obtained using a dynamic CTP analysis pipeline and blood flow image quality was assessed using flow-SNR and flow-CNR. IMR showed highest static image quality according to SNR and CNR. Blood flow in FBP was increasingly over-estimated at reduced dose. Flow was more consistent for iDose4 from 100mAs to 50mAs, but was over-estimated at 25mAs. IMR was most consistent from 100mAs to 25mAs. Static images and flow maps for 100mAs FBP, 50mAs iDose4, and 25mAs IMR showed comparable, clear ischemia, CNR, and flow-CNR values. These results suggest that IMR can enable dynamic CTP at significantly reduced dose, at 5.8mSv or 25% of the comparable 23mSv FBP protocol.

  17. Phase dynamics of coupled oscillators reconstructed from data

    NASA Astrophysics Data System (ADS)

    Rosenblum, Michael; Kralemann, Bjoern; Pikovsky, Arkady

    2013-03-01

    We present a technique for invariant reconstruction of the phase dynamics equations for coupled oscillators from data. The invariant description is achieved by means of a transformation of phase estimates (protophases) obtained from general scalar observables to genuine phases. Staring from the bivariate data, we obtain the coupling functions in terms of these phases. We discuss the importance of the protophase-to-phase transformation for characterization of strength and directionality of interaction. To illustrate the technique we analyse the cardio-respiratory interaction on healthy humans. Our invariant approach is confirmed by high similarity of the coupling functions obtained from different observables of the cardiac system. Next, we generalize the technique to cover the case of small networks of coupled periodic units. We use the partial norms of the reconstructed coupling functions to quantify directed coupling between the oscillators. We illustrate the method by different network motifs for three coupled oscillators. We also discuss nonlinear effects in coupling.

  18. Force reconstruction using the sum of weighted accelerations technique -- Max-Flat procedure

    SciTech Connect

    Carne, T.G.; Mayes, R.L.; Bateman, V.I.

    1993-12-31

    Force reconstruction is a procedure in which the externally applied force is inferred from measured structural response rather than directly measured. In a recently developed technique, the response acceleration time-histories are multiplied by scalar weights and summed to produce the reconstructed force. This reconstruction is called the Sum of Weighted Accelerations Technique (SWAT). One step in the application of this technique is the calculation of the appropriate scalar weights. In this paper a new method of estimating the weights, using measured frequency response function data, is developed and contrasted with the traditional SWAT method of inverting the mode-shape matrix. The technique uses frequency response function data, but is not based on deconvolution. An application that will be discussed as part of this paper is the impact into a rigid barrier of a weapon system with an energy-absorbing nose. The nose had been designed to absorb the energy of impact and to mitigate the shock to the interior components.

  19. Cranial myology and bite force performance of Erlikosaurus andrewsi: a novel approach for digital muscle reconstructions

    PubMed Central

    Lautenschlager, Stephan

    2013-01-01

    The estimation of bite force and bite performance in fossil and extinct animals is a challenging subject in palaeontology and is highly dependent on the reconstruction of the cranial myology. Furthermore, the morphology and arrangement of the adductor muscles considerably affect feeding processes and mastication and thus also have important dietary and ecological ramifications. However, in the past, the reconstruction of the (cranial) muscles was restricted to the identification of muscle attachment sites or simplified computer models. This study presents a detailed reconstruction of the adductor musculature of the Cretaceous therizinosaur Erlikosaurus andrewsi based on a stepwise and iterative approach. The detailed, three-dimensional models of the individual muscles allow for more accurate measurements of the muscle properties (length, cross-section, attachment angle and volume), from which muscle and bite force estimates are calculated. Bite force estimations are found to be the lowest at the tip of the snout (43–65 N) and respectively higher at the first (59–88 N) and last tooth (90–134 N) position. Nevertheless, bite forces are comparatively low for E. andrewsi, both in actual numbers as well as in comparison with other theropod dinosaurs. The results further indicate that the low bite performance was mainly used for leaf-stripping and plant cropping, rather than active mastication or chewing processes. Muscle and thus bite force in E. andrewsi (and most likely all therizinosaurs) is considerably constrained by the cranial anatomy and declines in derived taxa of this clade. This trend is reflected in the changes of dietary preferences from carnivory to herbivory in therizinosaurs. PMID:23061752

  20. Bifurcation, chaos, and scan instability in dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Cantrell, John H.; Cantrell, Sean A.

    2016-03-01

    The dynamical motion at any point on the cantilever of an atomic force microscope can be expressed quite generally as a superposition of simple harmonic oscillators corresponding to the vibrational modes allowed by the cantilever shape. Central to the dynamical equations is the representation of the cantilever-sample interaction force as a polynomial expansion with coefficients that account for the interaction force "stiffness," the cantilever-to-sample energy transfer, and the displacement amplitude of cantilever oscillation. Renormalization of the cantilever beam model shows that for a given cantilever drive frequency cantilever dynamics can be accurately represented by a single nonlinear mass-spring model with frequency-dependent stiffness and damping coefficients [S. A. Cantrell and J. H. Cantrell, J. Appl. Phys. 110, 094314 (2011)]. Application of the Melnikov method to the renormalized dynamical equation is shown to predict a cascade of period doubling bifurcations with increasing cantilever drive force that terminates in chaos. The threshold value of the drive force necessary to initiate bifurcation is shown to depend strongly on the cantilever setpoint and drive frequency, effective damping coefficient, nonlinearity of the cantilever-sample interaction force, and the displacement amplitude of cantilever oscillation. The model predicts the experimentally observed interruptions of the bifurcation cascade for cantilevers of sufficiently large stiffness. Operational factors leading to the loss of image quality in dynamic atomic force microscopy are addressed, and guidelines for optimizing scan stability are proposed using a quantitative analysis based on system dynamical parameters and choice of feedback loop parameter.

  1. Effective reconstruction of dynamics of medium response spectrum

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.

    2008-10-01

    A new algorithm is suggested to visualize the dynamics of medium response spectrum in terahertz diapason by the singly measured set of partially intersected integral characteristics of the signal. The algorithm is based on SVD method and window sliding method. The analysis, we carried out, demonstrates many advantages of the new algorithm in com-parison with the Gabor-Fourier approach, which allows obtaining the dynamics of only one spectral line for one set of measurements. Among which it is necessary to mention the possibility to get the dynamics of many spectral components simultaneously for one set of measurements as well and therefore to get the complete information about the spectrum dynamics. This allows to identify specific materials with known spectral lines and to distinguish materials with similar spectra, which is of great importance for the detection and identification of different chemicals, pharmaceutical substances and explosives. To demonstrate the efficiency of a proposed algorithm, we compare spectrum dynamics of chocolate and soap, which possess the similar spectra. Our investigation shows that their dynamics widely vary in spec-tral lines. The proposed algorithm can be also applied to voice identification and to reconstruction of a laser beam profile with a great number of local maxima. Developed algorithm allows to measure the characteristic time of medium responce. It is very important for various problems of spectroscopy.

  2. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    NASA Astrophysics Data System (ADS)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  3. Conservative and dissipative tip-sample interaction forces probed with dynamic AFM

    NASA Astrophysics Data System (ADS)

    Gotsmann, B.; Seidel, C.; Anczykowski, B.; Fuchs, H.

    1999-10-01

    The conservative and dissipative forces between tip and sample of a dynamic atomic force microscopy (AFM) were investigated using a combination of computer simulations and experimental AFM data obtained by the frequency modulation technique. In this way it became possible to reconstruct complete force versus distance curves and damping coefficient versus distance curves from experimental data without using fit parameters for the interaction force and without using analytical interaction models. A comparison with analytical approaches is given and a way to determine a damping coefficient curve from experimental data is proposed. The results include the determination of the first point of repulsive contact of a vibrating tip when approaching a sample. The capability of quantifying the tip-sample interaction is demonstrated using experimental data obtained with a silicon tip and a mica sample in UHV.

  4. Traceable dynamic calibration of force transducers by primary means

    NASA Astrophysics Data System (ADS)

    Vlajic, Nicholas; Chijioke, Ako

    2016-08-01

    We describe an apparatus for traceable, dynamic calibration of force transducers using harmonic excitation, and report calibration measurements of force transducers using this apparatus. In this system, the force applied to the transducer is produced by the acceleration of an attached mass, and is determined according to Newton’s second law, F  =  ma. The acceleration is measured by primary means, using laser interferometry. The capabilities of this system are demonstrated by performing dynamic calibrations of two shear-web-type force transducers up to a frequency of 2 kHz, with an expanded uncertainty below 1.2%. We give an account of all significant sources of uncertainty, including a detailed consideration of the effects of dynamic tilting (rocking), which is a leading source of uncertainty in such harmonic force calibration systems.

  5. Dynamic Forces in Spur Gears - Measurement, Prediction, and Code Validation

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Townsend, Dennis P.; Rebbechi, Brian; Lin, Hsiang Hsi

    1996-01-01

    Measured and computed values for dynamic loads in spur gears were compared to validate a new version of the NASA gear dynamics code DANST-PC. Strain gage data from six gear sets with different tooth profiles were processed to determine the dynamic forces acting between the gear teeth. Results demonstrate that the analysis code successfully simulates the dynamic behavior of the gears. Differences between analysis and experiment were less than 10 percent under most conditions.

  6. Stable dynamics in forced systems with sufficiently high/low forcing frequency.

    PubMed

    Bartuccelli, M; Gentile, G; Wright, J A

    2016-08-01

    We consider parametrically forced Hamiltonian systems with one-and-a-half degrees of freedom and study the stability of the dynamics when the frequency of the forcing is relatively high or low. We show that, provided the frequency is sufficiently high, Kolmogorov-Arnold-Moser (KAM) theorem may be applied even when the forcing amplitude is far away from the perturbation regime. A similar result is obtained for sufficiently low frequency, but in that case we need the amplitude of the forcing to be not too large; however, we are still able to consider amplitudes which are outside of the perturbation regime. In addition, we find numerically that the dynamics may be stable even when the forcing amplitude is very large, well beyond the range of validity of the analytical results, provided the frequency of the forcing is taken correspondingly low. PMID:27586604

  7. Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function

    NASA Astrophysics Data System (ADS)

    Tung, Ryan C.; Killgore, Jason P.; Hurley, Donna C.

    2014-06-01

    We present a method to correct for surface-coupled inertial and viscous fluid loading forces in contact resonance (CR) atomic force microscopy (AFM) experiments performed in liquid. Based on analytical hydrodynamic theory, the method relies on experimental measurements of the AFM cantilever's free resonance peaks near the sample surface. The free resonance frequencies and quality factors in both air and liquid allow reconstruction of a continuous hydrodynamic function that can be used to adjust the CR data in liquid. Validation experiments utilizing thermally excited free and in-contact spectra were performed to assess the accuracy of our approach. Results show that the method recovers the air frequency values within approximately 6%. Knowledge of fluid loading forces allows current CR analysis techniques formulated for use in air and vacuum environments to be applied to liquid environments. Our technique greatly extends the range of measurement environments available to CR-AFM.

  8. Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function

    SciTech Connect

    Tung, Ryan C. Killgore, Jason P.; Hurley, Donna C.

    2014-06-14

    We present a method to correct for surface-coupled inertial and viscous fluid loading forces in contact resonance (CR) atomic force microscopy (AFM) experiments performed in liquid. Based on analytical hydrodynamic theory, the method relies on experimental measurements of the AFM cantilever's free resonance peaks near the sample surface. The free resonance frequencies and quality factors in both air and liquid allow reconstruction of a continuous hydrodynamic function that can be used to adjust the CR data in liquid. Validation experiments utilizing thermally excited free and in-contact spectra were performed to assess the accuracy of our approach. Results show that the method recovers the air frequency values within approximately 6%. Knowledge of fluid loading forces allows current CR analysis techniques formulated for use in air and vacuum environments to be applied to liquid environments. Our technique greatly extends the range of measurement environments available to CR-AFM.

  9. Dynamic Force Patterns of an Undulatory Microswimmer

    NASA Astrophysics Data System (ADS)

    Schulman, Rafael; Backholm, Matilda; Ryu, William; Dalnoki-Veress, Kari

    2014-03-01

    C. elegans is a millimeter-sized nematode which has served as a model organism in biology for several decades, primarily due to its simple anatomy. Using an undulatory form of locomotion, this worm is capable of propelling itself through various media. Due to the small length scales involved, swimming in this regime is qualitatively different from macroscopic locomotion because the swimmers can be considered to have no inertia. In order to understand the microswimming that this worm exhibits, it is crucial to determine the viscous forces experienced during its motion. Using a micropipette deflection technique in conjunction with high speed imaging, we have directly measured the time-varying forces generated by C. elegans during swimming. Furthermore, by analyzing the body's kinematics over time and applying a model of locomotion, we can compute the theoretical force curves. We observe excellent agreement between the measured and calculated forces. The success of this simple model has important implications in the understanding of microswimming in general.

  10. Force-generation and dynamic instability of microtubule bundles

    PubMed Central

    Laan, Liedewij; Husson, Julien; Munteanu, E. Laura; Kerssemakers, Jacob W. J.; Dogterom, Marileen

    2008-01-01

    Individual dynamic microtubules can generate pushing or pulling forces when their growing or shrinking ends are in contact with cellular objects such as the cortex or chromosomes. These microtubules can operate in parallel bundles, for example when interacting with mitotic chromosomes. Here, we investigate the force-generating capabilities of a bundle of growing microtubules and study the effect that force has on the cooperative dynamics of such a bundle. We used an optical tweezers setup to study microtubule bundles growing against a microfabricated rigid barrier in vitro. We show that multiple microtubules can generate a pushing force that increases linearly with the number of microtubules present. In addition, the bundle can cooperatively switch to a shrinking state, due to a force-induced coupling of the dynamic instability of single microtubules. In the presence of GMPCPP, bundle catastrophes no longer occur, and high bundle forces are reached more effectively. We reproduce the observed behavior with a simple simulation of microtubule bundle dynamics that takes into account previously measured force effects on single microtubules. Using this simulation, we also show that a constant compressive force on a growing bundle leads to oscillations in bundle length that are of potential relevance for chromosome oscillations observed in living cells. PMID:18577596

  11. Dimensional characterization of anesthesia dynamic in reconstructed embedding space.

    PubMed

    Gifani, P; Rabiee, H R; Hashemi, M; Ghanbari, M

    2007-01-01

    The depth of anesthesia quantification has been one of the most research interests in the field of EEG signal processing and nonlinear dynamical analysis has emerged as a novel method for the study of complex systems in the past few decades. In this investigation we use the concept of nonlinear time series analysis techniques to reconstruct the attractor of anesthesia from EEG signal which have been obtained from different hypnotic states during surgery to give a characterization of the dimensional complexity of EEG by Correlation Dimension estimation. The dimension of the anesthesia strange attractor can be thought of as a measure of the degrees of freedom or the ;complexity' of the dynamics at different hypnotic levels. The results imply that for awaked state the correlation dimension is high, On the other hand, for light, moderate and deep hypnotic states these values decrease respectively; which means for anesthetized situation we expect lower correlation dimension. PMID:18003510

  12. Effects of Initial Graft Tension on the Tibiofemoral Compressive Forces and Joint Position Following ACL Reconstruction

    PubMed Central

    Brady, Mark F.; Bradley, Michael P.; Fleming, Braden C.; Fadale, Paul D.; Hulstyn, Michael J.; Banerjee, Rahul

    2007-01-01

    Background The initial tension applied to an ACL graft at the time of fixation modulates knee motion and the tibiofemoral compressive loads. Purpose To establish the relationships between initial graft tension, tibiofemoral compressive force, and the neutral tibiofemoral position in the cadaver knee. Study Design Controlled Laboratory Study. Methods The tibiofemoral compressive forces and joint positions were determined in the ACL-intact knee at 0°, 20° and 90° knee flexion. The ACL was excised and reconstructed with a patellar tendon graft using graft tensions of 1, 15, 30, 60 and 90 N applied at 0°, 20° and 90° knee flexion. The compressive forces and neutral positions were compared between initial tension conditions and the ACL-intact knee. Results Increasing initial graft tension increased the tibiofemoral compressive forces. The forces in the medial compartment were 1.8 times those in the lateral compartment. The compressive forces were dependent on the knee angle at which the tension was applied. The greatest compressive forces occurred when the graft was tensioned with the knee in extension. An increase in initial graft tension caused the tibia to rotate externally compared to the ACL-intact knee. Increases in initial graft tension also caused a significant posterior translation of the tibia relative to the femur. Conclusions Different initial graft tension protocols produced predictable changes in the tibiofemoral compressive forces and joint positions. Clinical Relevance The tibiofemoral compressive force and neutral joint position were best replicated with a low graft tension (1–15 N) when using a patellar tendon graft. PMID:17218659

  13. A comparison of reconstruction methods for undersampled atomic force microscopy images.

    PubMed

    Luo, Yufan; Andersson, Sean B

    2015-12-18

    Non-raster scanning and undersampling of atomic force microscopy (AFM) images is a technique for improving imaging rate and reducing the amount of tip-sample interaction needed to produce an image. Generation of the final image can be done using a variety of image processing techniques based on interpolation or optimization. The choice of reconstruction method has a large impact on the quality of the recovered image and the proper choice depends on the sample under study. In this work we compare interpolation through the use of inpainting algorithms with reconstruction based on optimization through the use of the basis pursuit algorithm commonly used for signal recovery in compressive sensing. Using four different sampling patterns found in non-raster AFM, namely row subsampling, spiral scanning, Lissajous scanning, and random scanning, we subsample data from existing images and compare reconstruction performance against the original image. The results illustrate that inpainting generally produces superior results when the image contains primarily low frequency content while basis pursuit is better when the images have mixed, but sparse, frequency content. Using support vector machines, we then classify images based on their frequency content and sparsity and, from this classification, develop a fast decision strategy to select a reconstruction algorithm to be used on subsampled data. The performance of the classification and decision test are demonstrated on test AFM images. PMID:26585418

  14. A comparison of reconstruction methods for undersampled atomic force microscopy images

    NASA Astrophysics Data System (ADS)

    Luo, Yufan; Andersson, Sean B.

    2015-12-01

    Non-raster scanning and undersampling of atomic force microscopy (AFM) images is a technique for improving imaging rate and reducing the amount of tip-sample interaction needed to produce an image. Generation of the final image can be done using a variety of image processing techniques based on interpolation or optimization. The choice of reconstruction method has a large impact on the quality of the recovered image and the proper choice depends on the sample under study. In this work we compare interpolation through the use of inpainting algorithms with reconstruction based on optimization through the use of the basis pursuit algorithm commonly used for signal recovery in compressive sensing. Using four different sampling patterns found in non-raster AFM, namely row subsampling, spiral scanning, Lissajous scanning, and random scanning, we subsample data from existing images and compare reconstruction performance against the original image. The results illustrate that inpainting generally produces superior results when the image contains primarily low frequency content while basis pursuit is better when the images have mixed, but sparse, frequency content. Using support vector machines, we then classify images based on their frequency content and sparsity and, from this classification, develop a fast decision strategy to select a reconstruction algorithm to be used on subsampled data. The performance of the classification and decision test are demonstrated on test AFM images.

  15. Reconstructing dynamic molecular states from single-cell time series.

    PubMed

    Huang, Lirong; Pauleve, Loic; Zechner, Christoph; Unger, Michael; Hansen, Anders S; Koeppl, Heinz

    2016-09-01

    The notion of state for a system is prevalent in the quantitative sciences and refers to the minimal system summary sufficient to describe the time evolution of the system in a self-consistent manner. This is a prerequisite for a principled understanding of the inner workings of a system. Owing to the complexity of intracellular processes, experimental techniques that can retrieve a sufficient summary are beyond our reach. For the case of stochastic biomolecular reaction networks, we show how to convert the partial state information accessible by experimental techniques into a full system state using mathematical analysis together with a computational model. This is intimately related to the notion of conditional Markov processes and we introduce the posterior master equation and derive novel approximations to the corresponding infinite-dimensional posterior moment dynamics. We exemplify this state reconstruction approach using both in silico data and single-cell data from two gene expression systems in Saccharomyces cerevisiae, where we reconstruct the dynamic promoter and mRNA states from noisy protein abundance measurements. PMID:27605167

  16. Generalized force model of traffic dynamics

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Tilch, Benno

    1998-07-01

    Floating car data of car-following behavior in cities were compared to existing microsimulation models, after their parameters had been calibrated to the experimental data. With these parameter values, additional simulations have been carried out, e.g., of a moving car which approaches a stopped car. It turned out that, in order to manage such kinds of situations without producing accidents, improved traffic models are needed. Good results were obtained with the proposed generalized force model.

  17. Complex force dynamics in atomic force microscopy resolved by wavelet transforms.

    PubMed

    Pukhova, Valentina; Banfi, Francesco; Ferrini, Gabriele

    2013-12-20

    The amplitude and phase evolution of the oscillations of a cantilever after a single tip-sample impact are investigated using a cross-correlation wavelet analysis. The excitation of multiple flexural modes is evidenced and the instantaneous amplitude and phase evolution is extracted from the experimental data at all frequencies simultaneously. The instantaneous total force acting on the tip during a single impact is reconstructed. This method has general relevance for the development of an atomic force spectroscopy of single tip-sample interactions, that develop in a few oscillation cycles of the interacting cantilever eigenmodes and their harmonics. PMID:24285087

  18. Self-force from reconstructed metric perturbations: Numerical implementation in Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Merlin, Cesar; Shah, Abhay G.

    2015-01-01

    We present a first numerical implementation of a new scheme by Pound et al. [1] that enables the calculation of the gravitational self-force in Kerr spacetime from a reconstructed metric-perturbation in a radiation gauge. The numerical task of the metric reconstruction essentially reduces to solving the fully separable Teukolsky equation, rather than having to tackle the linearized Einstein's equations themselves in the Lorenz gauge, which are not separable in Kerr. The method offers significant computational saving compared to existing methods in the Lorenz gauge, and we expect it to become a main workhorse for precision self-force calculations in the future. Here we implement the method for circular orbits on a Schwarzschild background, in order to illustrate its efficacy and accuracy. We use two independent methods for solving the Teukolsky equation, one based on a direct numerical integration, and the other on the analytical approach of Mano, Suzuki, and Takasugi. The relative accuracy of the output self-force is at least 1 0-7 using the first method, and at least 1 0-9 using the second; the two methods agree to within the error bars of the first. We comment on the relation to a related approach by Shah et al. [2], and discuss foreseeable applications to more generic orbits in Kerr spacetime.

  19. Reconstructing the micrometeorological dynamics of the southern Amazonian transitional forest

    NASA Astrophysics Data System (ADS)

    de Paulo, Sergio Roberto; de Paulo, Iramaia Jorge Cabral; De Decker, Yannick

    2015-12-01

    In this work, we reconstruct and analyze the micrometeorological dynamics of the transitional forest located south of the Amazon basin. For this, we use time series of micrometeorological variables collected over five years in the transitional forest of Mato Grosso (Brazil). We employ local feature analysis, a recently proposed extension of principal component analysis, to extract the most relevant physical variables from this set. We show in this way that temperature records contain most of the dynamical information in all seasons. Based on this result, the dimensionality of the space spanned by the system's dynamics and the properties of the so defined attractors are obtained. In the dry season, the system presents a robust oscillatory character described by a well-defined limit cycle. In the wet season, the dynamics becomes more irregular but can still be seen as a periodic behavior affected by external noise. These results can help to develop accurate models for the meteorology of the Amazonian transitional forest and can thus lead to a better understanding of this important ecosystem.

  20. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Kosovic, B; Belles, R; Chow, F K; Monache, L D; Dyer, K; Glascoe, L; Hanley, W; Johannesson, G; Larsen, S; Loosmore, G; Lundquist, J K; Mirin, A; Neuman, S; Nitao, J; Serban, R; Sugiyama, G; Aines, R

    2007-02-22

    Accidental or terrorist releases of hazardous materials into the atmosphere can impact large populations and cause significant loss of life or property damage. Plume predictions have been shown to be extremely valuable in guiding an effective and timely response. The two greatest sources of uncertainty in the prediction of the consequences of hazardous atmospheric releases result from poorly characterized source terms and lack of knowledge about the state of the atmosphere as reflected in the available meteorological data. In this report, we discuss the development of a new event reconstruction methodology that provides probabilistic source term estimates from field measurement data for both accidental and clandestine releases. Accurate plume dispersion prediction requires the following questions to be answered: What was released? When was it released? How much material was released? Where was it released? We have developed a dynamic data-driven event reconstruction capability which couples data and predictive models through Bayesian inference to obtain a solution to this inverse problem. The solution consists of a probability distribution of unknown source term parameters. For consequence assessment, we then use this probability distribution to construct a ''''composite'' forward plume prediction which accounts for the uncertainties in the source term. Since in most cases of practical significance it is impossible to find a closed form solution, Bayesian inference is accomplished by utilizing stochastic sampling methods. This approach takes into consideration both measurement and forward model errors and thus incorporates all the sources of uncertainty in the solution to the inverse problem. Stochastic sampling methods have the additional advantage of being suitable for problems characterized by a non-Gaussian distribution of source term parameters and for cases in which the underlying dynamical system is non-linear. We initially developed a Markov Chain Monte

  1. Molecular Mechanotransduction: how forces trigger cytoskeletal dynamics

    NASA Astrophysics Data System (ADS)

    Ehrlicher, Allen

    2012-02-01

    Mechanical stresses elicit cellular reactions mediated by chemical signals. Defective responses to forces underlie human medical disorders, such as cardiac failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton's structure, the specific molecular switches that convert mechanical stimuli into chemical signals have remained elusive. Here we identify the actin-binding protein, filamin A (FLNa) as a central mechanotransduction element of the cytoskeleton by using Fluorescence Loss After photoConversion (FLAC), a novel high-speed alternative to FRAP. We reconstituted a minimal system consisting of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage between extracellular and intracellular environments, with ß integrin tails connecting to the actin cytoskeleton by binding directly to filamin. FilGAP is a FLNa-binding GTPase-activating protein specific for Rac, which in vivo regulates cell spreading and bleb formation. We demonstrate that both externally-imposed bulk shear and myosin II driven forces differentially regulate the binding of integrin and FilGAP to FLNa. Consistent with structural predictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP to dissociate from FLNa, providing a direct and specific molecular basis for cellular mechanotransduction. These results identify the first molecular mechanotransduction element within the actin cytoskeleton, revealing that mechanical strain of key proteins regulates the binding of signaling molecules. Moreover, GAP activity has been shown to switch cell movement from mesenchymal to amoeboid motility, suggesting that mechanical forces directly impact the invasiveness of cancer.

  2. Reconstruction of missing daily streamflow data using dynamic regression models

    NASA Astrophysics Data System (ADS)

    Tencaliec, Patricia; Favre, Anne-Catherine; Prieur, Clémentine; Mathevet, Thibault

    2015-12-01

    River discharge is one of the most important quantities in hydrology. It provides fundamental records for water resources management and climate change monitoring. Even very short data-gaps in this information can cause extremely different analysis outputs. Therefore, reconstructing missing data of incomplete data sets is an important step regarding the performance of the environmental models, engineering, and research applications, thus it presents a great challenge. The objective of this paper is to introduce an effective technique for reconstructing missing daily discharge data when one has access to only daily streamflow data. The proposed procedure uses a combination of regression and autoregressive integrated moving average models (ARIMA) called dynamic regression model. This model uses the linear relationship between neighbor and correlated stations and then adjusts the residual term by fitting an ARIMA structure. Application of the model to eight daily streamflow data for the Durance river watershed showed that the model yields reliable estimates for the missing data in the time series. Simulation studies were also conducted to evaluate the performance of the procedure.

  3. Application of DIRI dynamic infrared imaging in reconstructive surgery

    NASA Astrophysics Data System (ADS)

    Pawlowski, Marek; Wang, Chengpu; Jin, Feng; Salvitti, Matthew; Tenorio, Xavier

    2006-04-01

    We have developed the BioScanIR System based on QWIP (Quantum Well Infrared Photodetector). Data collected by this sensor are processed using the DIRI (Dynamic Infrared Imaging) algorithms. The combination of DIRI data processing methods with the unique characteristics of the QWIP sensor permit the creation of a new imaging modality capable of detecting minute changes in temperature at the surface of the tissue and organs associated with blood perfusion due to certain diseases such as cancer, vascular disease and diabetes. The BioScanIR System has been successfully applied in reconstructive surgery to localize donor flap feeding vessels (perforators) during the pre-surgical planning stage. The device is also used in post-surgical monitoring of skin flap perfusion. Since the BioScanIR is mobile; it can be moved to the bedside for such monitoring. In comparison to other modalities, the BioScanIR can localize perforators in a single, 20 seconds scan with definitive results available in minutes. The algorithms used include (FFT) Fast Fourier Transformation, motion artifact correction, spectral analysis and thermal image scaling. The BioScanIR is completely non-invasive and non-toxic, requires no exogenous contrast agents and is free of ionizing radiation. In addition to reconstructive surgery applications, the BioScanIR has shown promise as a useful functional imaging modality in neurosurgery, drug discovery in pre-clinical animal models, wound healing and peripheral vascular disease management.

  4. Software for Correcting the Dynamic Error of Force Transducers

    PubMed Central

    Miyashita, Naoki; Watanabe, Kazuhide; Irisa, Kyouhei; Iwashita, Hiroshi; Araki, Ryosuke; Takita, Akihiro; Yamaguchi, Takao; Fujii, Yusaku

    2014-01-01

    Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM), in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper. PMID:25004158

  5. Software for correcting the dynamic error of force transducers.

    PubMed

    Miyashita, Naoki; Watanabe, Kazuhide; Irisa, Kyouhei; Iwashita, Hiroshi; Araki, Ryosuke; Takita, Akihiro; Yamaguchi, Takao; Fujii, Yusaku

    2014-01-01

    Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM), in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper. PMID:25004158

  6. Dynamical downscaling inter-comparison for high resolution climate reconstruction

    NASA Astrophysics Data System (ADS)

    Ferreira, J.; Rocha, A.; Castanheira, J. M.; Carvalho, A. C.

    2012-04-01

    In the scope of the project: "High-resolution Rainfall EroSivity analysis and fORecasTing - RESORT", an evaluation of various methods of dynamic downscaling is presented. The methods evaluated range from the classic method of nesting a regional model results in a global model, in this case the ECMWF reanalysis, to more recently proposed methods, which consist in using Newtonian relaxation methods in order to nudge the results of the regional model to the reanalysis. The method with better results involves using a system of variational data assimilation to incorporate observational data with results from the regional model. The climatology of a simulation of 5 years using this method is tested against observations on mainland Portugal and the ocean in the area of the Portuguese Continental Shelf, which shows that the method developed is suitable for the reconstruction of high resolution climate over continental Portugal.

  7. Curl force dynamics: symmetries, chaos and constants of motion

    NASA Astrophysics Data System (ADS)

    Berry, M. V.; Shukla, Pragya

    2016-06-01

    This is a theoretical study of Newtonian trajectories governed by curl forces, i.e. position-dependent but not derivable from a potential, investigating in particular the possible existence of conserved quantities. Although nonconservative and nonhamiltonian, curl forces are not dissipative because volume in the position–velocity state space is preserved. A physical example is the effective forces exerted on small particles by light. When the force has rotational symmetry, for example when generated by an isolated optical vortex, particles spiral outwards and escape, even with an attractive gradient force, however strong. Without rotational symmetry, and for dynamics in the plane, the state space is four-dimensional, and to search for possible constants of motion we introduce the Volume of section: a numerical procedure, in which orbits are plotted as dots in a three-dimensional subspace. For some curl forces, e.g. optical fields with two opposite-strength vortices, the dots lie on a surface, indicating a hidden constant of motion. For other curl forces, e.g. those from four vortices, the dots explore clouds, in an unfamiliar kind of chaos, suggesting that no constant of motion exists. The curl force dynamics generated by optical vortices could be studied experimentally.

  8. Seasonally forced disease dynamics explored as switching between attractors

    NASA Astrophysics Data System (ADS)

    Keeling, Matt J.; Rohani, Pejman; Grenfell, Bryan T.

    2001-01-01

    Biological phenomena offer a rich diversity of problems that can be understood using mathematical techniques. Three key features common to many biological systems are temporal forcing, stochasticity and nonlinearity. Here, using simple disease models compared to data, we examine how these three factors interact to produce a range of complicated dynamics. The study of disease dynamics has been amongst the most theoretically developed areas of mathematical biology; simple models have been highly successful in explaining the dynamics of a wide variety of diseases. Models of childhood diseases incorporate seasonal variation in contact rates due to the increased mixing during school terms compared to school holidays. This ‘binary’ nature of the seasonal forcing results in dynamics that can be explained as switching between two nonlinear spiral sinks. Finally, we consider the stability of the attractors to understand the interaction between the deterministic dynamics and demographic and environmental stochasticity. Throughout attention is focused on the behaviour of measles, whooping cough and rubella.

  9. Force reconstruction for impact tests of an energy-absorbing nose

    SciTech Connect

    Bateman, V.I.; Garne, T.G.; McCall, D.M.

    1990-01-01

    Delivery of a bomb into hard targets at speeds of up to 120 fps required the design of an energy-absorbing nose. The purpose of the nose is to decelerate the projectile and, by absorbing the kinetic energy with deformation, protect the projectile's internal components from high-level (shock) decelerations. A structural simulation of the projectile was designed to test the dynamic deformation characteristics of the energy-absorbing nose. The simulated projectile was instrumented with eight accelerometers mounted with a shock isolation technique. The dynamic force as a function of nose deformation was the desired result from the impact tests because it provides the designer with a performance criterion for the nose design. The dynamic force was obtained by combining the accelerations using the Sum of Weighted Accelerations Technique (SWAT). Results from two field tests are presented. 12 refs., 8 figs.

  10. Unstable amplitude and noisy image induced by tip contamination in dynamic force mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nie, H.-Y.; McIntyre, N. S.

    2007-02-01

    Liquid 1-decanethiol was confined on an atomic force microscope (AFM) tip apex and the effect was investigated by measuring amplitude-distance curves in dynamic force mode. Within the working distance in the dynamic force mode AFM, the thiol showed strong interactions bridging between a gold-coated probe tip and a gold-coated Si substrate, resulting in unstable amplitude and noisy AFM images. We show that under such a situation, the amplitude change is dominated by the extra forces induced by the active material loaded on the tip apex, overwhelming the amplitude change caused by the geometry of the sample surface, thus resulting in noise in the image the tip collects. We also show that such a contaminant may be removed from the apex by pushing the tip into a material soft enough to avoid damage to the tip.

  11. Forced fluid dynamics from gravity in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Ashok, T.

    2014-03-01

    We consider long wavelength solutions to the Einstein-dilaton system with negative cosmological constant which are dual, under the AdS/CFT correspondence, to solutions of the conformal relativistic Navier-Stokes equations with a dilaton-dependent forcing term. Certain forced fluid flows are known to exhibit turbulence; holographic duals of forced fluid dynamics are therefore of particular interest as they may aid efforts towards an explicit model of holographic steady state turbulence. In recent work, Bhattacharyya et al. have constructed long wavelength asymptotically locally AdS5 bulk space-times with a slowly varying boundary dilaton field which are dual to forced fluid flows on the 4-dimensional boundary. In this paper, we generalise their work to arbitrary space-time dimensions; we explicitly compute the dual bulk metric, the fluid dynamical stress tensor and Lagrangian to second order in a boundary derivative expansion.

  12. Forces associated with pneumatic power screwdriver operation: statics and dynamics.

    PubMed

    Lin, Jia-Hua; Radwin, Robert G; Fronczak, Frank J; Richard, Terry G

    2003-10-10

    The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders. PMID:12933078

  13. Identifying the Stern-Gerlach force of classical electron dynamics.

    PubMed

    Wen, Meng; Bauke, Heiko; Keitel, Christoph H

    2016-01-01

    Different classical theories are commonly applied in various branches of physics to describe the relativistic dynamics of electrons by coupled equations for the orbital motion and spin precession. Exemplarily, we benchmark the Frenkel model and the classical Foldy-Wouthuysen model with spin-dependent forces (Stern-Gerlach forces) to the quantum dynamics as predicted by the Dirac equation. Both classical theories can lead to different or even contradicting predictions how the Stern-Gerlach forces modify the electron's orbital motion, when the electron moves in strong electromagnetic field configurations of emerging high-intensity laser facilities. In this way, one may evaluate the validity and identify the limits of these classical theories via a comparison with possible experiments to provide a proper description of spin-induced dynamics. Our results indicate that the Foldy-Wouthuysen model is qualitatively in better agreement with the Dirac theory than the widely used Frenkel model. PMID:27546820

  14. Identifying the Stern-Gerlach force of classical electron dynamics

    PubMed Central

    Wen, Meng; Bauke, Heiko; Keitel, Christoph H.

    2016-01-01

    Different classical theories are commonly applied in various branches of physics to describe the relativistic dynamics of electrons by coupled equations for the orbital motion and spin precession. Exemplarily, we benchmark the Frenkel model and the classical Foldy-Wouthuysen model with spin-dependent forces (Stern-Gerlach forces) to the quantum dynamics as predicted by the Dirac equation. Both classical theories can lead to different or even contradicting predictions how the Stern-Gerlach forces modify the electron’s orbital motion, when the electron moves in strong electromagnetic field configurations of emerging high-intensity laser facilities. In this way, one may evaluate the validity and identify the limits of these classical theories via a comparison with possible experiments to provide a proper description of spin-induced dynamics. Our results indicate that the Foldy-Wouthuysen model is qualitatively in better agreement with the Dirac theory than the widely used Frenkel model. PMID:27546820

  15. Dynamic Forces Between Two Deformable Oil Droplets in Water

    NASA Astrophysics Data System (ADS)

    Dagastine, Raymond R.; Manica, Rogério; Carnie, Steven L.; Chan, D. Y. C.; Stevens, Geoffrey W.; Grieser, Franz

    2006-07-01

    The understanding of static interactions in colloidal suspensions is well established, whereas dynamic interactions more relevant to biological and other suspended soft-matter systems are less well understood. We present the direct force measurement and quantitative theoretical description for dynamic forces for liquid droplets in another immiscible fluid. Analysis of this system demonstrates the strong link between interfacial deformation, static surface forces, and hydrodynamic drainage, which govern dynamic droplet-droplet interactions over the length scale of nanometers and over the time scales of Brownian collisions. The results and analysis have direct bearing on the control and manipulation of suspended droplets in soft-matter systems ranging from the emulsions in shampoo to cellular interactions.

  16. Force identification of dynamic systems using virtual work principle

    NASA Astrophysics Data System (ADS)

    Xu, Xun; Ou, Jinping

    2015-02-01

    One of the key inverse problems for estimating dynamic forces acting on a structure is to determine the force expansion and the corresponding solving method. This paper presents a moving least square (MLS) method for fitting dynamic forces, which improves the existing traditional methods. The simulation results show that the force expansion order has a tiny effect on the types of forces, which indicates the MLS method's excellent ability for local approximation and noise immunity as well as good fitting function. Then, the differential equation of motion for the system is transformed into an integral equation by using the virtual work principle, which can eliminate the structural acceleration response without introducing the calculation error. Besides, the transformation derives an expression of velocity by integrating by parts, which diminishes the error propagation of the velocity. Hence, the integral equation of motion for the system has a strong constraint to noise with zero mean value. Finally, this paper puts forward an optimization method to solve the equation. The numerical stability can be enhanced as the matrix inversion calculation is avoided. Illustrative examples involving different types of forces demonstrate that the transformation of the differential equation proposed through virtual work principle can eliminate interference efficiently and is robust for dynamic calculation.

  17. Forcing it on: Cytoskeletal dynamics during lymphocyte activation

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Arpita

    2012-02-01

    Formation of the immune synapse during lymphocyte activation involves cell spreading driven by large scale physical rearrangements of the actin cytoskeleton and the cell membrane. Several recent observations suggest that mechanical forces are important for efficient T cell activation. How forces arise from the dynamics of the cytoskeleton and the membrane during contact formation, and their effect on signaling activation is not well understood. We have imaged membrane topography, actin dynamics and the spatiotemporal localization of signaling clusters during the very early stages of spreading. Formation of signaling clusters was closely correlated with the movement and topography of the membrane in contact with the activating surface. Further, we observed membrane waves driven by actin polymerization originating at these signaling clusters. Actin-driven membrane protrusions likely play an important role in force generation at the immune synapse. In order to study cytoskeletal forces during T-cell activation, we studied cell spreading on elastic gels. We found that gel stiffness influences cell morphology, actin dynamics and receptor activation. Efforts to determine the quantitative relationships between cellular forces and signaling are underway. Our results suggest a role for cytoskeleton driven forces during signaling activation in lymphocytes.

  18. Dynamic Force Sensing Using an Optically Trapped Probing System.

    PubMed

    Huang, Yanan; Cheng, Peng; Menq, Chia-Hsiang

    2011-12-01

    This paper presents the design of an adaptive observer that is implemented to enable real-time dynamic force sensing and parameter estimation in an optically trapped probing system. According to the principle of separation of estimation and control, the design of this observer is independent of that of the feedback controller when operating within the linear range of the optical trap. Dynamic force sensing, probe steering/clamping, and Brownian motion control can, therefore, be developed separately and activated simultaneously. The adaptive observer utilizes the measured motion of the trapped probe and input control effort to recursively estimate the probe-sample interaction force in real time, along with the estimation of the probing system's trapping bandwidth. This capability is very important to achieving accurate dynamic force sensing in a time-varying process, wherein the trapping dynamics is nonstationary due to local variations of the surrounding medium. The adaptive estimator utilizes the Kalman filter algorithm to compute the time-varying gain in real time and minimize the estimation error for force probing. A series of experiments are conducted to validate the design of and assess the performance of the adaptive observer. PMID:24382944

  19. Influence of impeller shroud forces on turbopump rotor dynamics

    NASA Technical Reports Server (NTRS)

    Williams, Jim P.; Childs, Dara W.

    1989-01-01

    The shrouded-impeller leakage path forces calculated by Childs (1987) have been analyzed to answer two questions. First, because of certain characteristics of the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were approximated by traditional stiffness, damping and inertia coefficients with the addition of whirl-frequency-dependent direct and cross-coupled stiffness terms. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.

  20. Dynamic enhancement in adhesion forces of microparticles on substrates.

    PubMed

    Xu, Quan; Li, Mingtao; Niu, Jianbing; Xia, Zhenhai

    2013-11-12

    We report a dynamically induced enhancement in interfacial adhesion between microsized particles and substrates under dry and humid conditions. The adhesion force of soft (polystyrene) and hard (SiO2 and Al2O3) microparticles on soft (polystyrene) and hard (fused silica and sapphire) substrates was measured by using an atomic force microscope with retraction (z-piezo) speed ranging over 4 orders of magnitude. The adhesion is strongly enhanced by the dynamic effect. When the retraction speed varies from 0.02 to 156 μm/s, the adhesion force increases by 10% to 50% in dry nitrogen while it increases by 15% to 70% in humid air. Among the material systems tested, the soft-soft contact systems exhibit the smallest dynamic effect while the hard-hard contacts show the largest enhancement. A dynamic model was developed to predict this dynamic effect, which agrees well with the experimental results. The influence of dynamic factors related to the adhesion enhancement, such as particle inertia, viscoelastic deformations, and crack propagation, was discussed to understand the dynamic enhancement mechanisms. PMID:24117392

  1. Dislocation dynamical approach to force fluctuations in nanoindentation experiments

    NASA Astrophysics Data System (ADS)

    Ananthakrishna, G.; Katti, Rohit; K, Srikanth

    2014-09-01

    We develop an approach that combines the power of nonlinear dynamics with the evolution equations for the mobile and immobile dislocation densities and force to explain force fluctuations in nanoindentation experiments. The model includes nucleation, multiplication, and propagation thresholds for mobile dislocations, and other well known dislocation transformation mechanisms. The model predicts all the generic features of nanoindentation such as the Hertzian elastic branch followed by several force drops of decreasing magnitudes, and residual plasticity after unloading. The stress corresponding to the elastic force maximum is close to the yield stress of an ideal solid. The predicted values for all the quantities are close to those reported by experiments. Our model allows us to address the indentation-size effect including the ambiguity in defining the hardness in the force drop dominated regime. At large indentation depths, the hardness remains nearly constant with a marginal decreasing trend.

  2. Approximate photochemical dynamics of azobenzene with reactive force fields

    SciTech Connect

    Li, Yan; Hartke, Bernd

    2013-12-14

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work)

  3. Reconstructing representations of dynamic visual objects in early visual cortex.

    PubMed

    Chong, Edmund; Familiar, Ariana M; Shim, Won Mok

    2016-02-01

    As raw sensory data are partial, our visual system extensively fills in missing details, creating enriched percepts based on incomplete bottom-up information. Despite evidence for internally generated representations at early stages of cortical processing, it is not known whether these representations include missing information of dynamically transforming objects. Long-range apparent motion (AM) provides a unique test case because objects in AM can undergo changes both in position and in features. Using fMRI and encoding methods, we found that the "intermediate" orientation of an apparently rotating grating, never presented in the retinal input but interpolated during AM, is reconstructed in population-level, feature-selective tuning responses in the region of early visual cortex (V1) that corresponds to the retinotopic location of the AM path. This neural representation is absent when AM inducers are presented simultaneously and when AM is visually imagined. Our results demonstrate dynamic filling-in in V1 for object features that are interpolated during kinetic transformations. PMID:26712004

  4. Reconstructing representations of dynamic visual objects in early visual cortex

    PubMed Central

    Chong, Edmund; Familiar, Ariana M.; Shim, Won Mok

    2016-01-01

    As raw sensory data are partial, our visual system extensively fills in missing details, creating enriched percepts based on incomplete bottom-up information. Despite evidence for internally generated representations at early stages of cortical processing, it is not known whether these representations include missing information of dynamically transforming objects. Long-range apparent motion (AM) provides a unique test case because objects in AM can undergo changes both in position and in features. Using fMRI and encoding methods, we found that the “intermediate” orientation of an apparently rotating grating, never presented in the retinal input but interpolated during AM, is reconstructed in population-level, feature-selective tuning responses in the region of early visual cortex (V1) that corresponds to the retinotopic location of the AM path. This neural representation is absent when AM inducers are presented simultaneously and when AM is visually imagined. Our results demonstrate dynamic filling-in in V1 for object features that are interpolated during kinetic transformations. PMID:26712004

  5. Model based control of dynamic atomic force microscope.

    PubMed

    Lee, Chibum; Salapaka, Srinivasa M

    2015-04-01

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments. PMID:25933864

  6. Model based control of dynamic atomic force microscope

    SciTech Connect

    Lee, Chibum; Salapaka, Srinivasa M.

    2015-04-15

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H{sub ∞} control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  7. Dynamic adhesion forces between microparticles and substrates in water.

    PubMed

    Xu, Quan; Li, Mingtao; Zhang, Lipeng; Niu, Jianbing; Xia, Zhenhai

    2014-09-23

    The interactions between micrometer-sized particles and substrates in aqueous environment are fundamental to numerous natural phenomena and industrial processes. Here we report a dynamically induced enhancement in adhesion interactions between microparticles and substrates immerged in water, air, and hexane. The dynamic adhesion force was measured by pulling microsized spheres off various substrate (hydrophilic/hydrophobic) surfaces at different retracting velocities. It was observed that when the pull-off velocity varies from 0.02 to 1500 μm/s, there is 100-200% increase in adhesion force in water while it has a 100% increase in nitrogen and hexane. The dynamic adhesion enhancement reduces with increasing effective contact angle defined by the average cosine of wetting angles of the substrates and the particles, and approaches the values measured in dry nitrogen and hexane as the effective contact angle is larger than 90(o). A dynamic model was developed to predict the adhesion forces resulting from this dynamic effect, and the predictions correlate well with the experimental results. The stronger dynamic adhesion enhancement in water is mainly attributed to electrical double layers and the restructuring of water in the contact area between particles and substrates. PMID:25162139

  8. Monitoring dynamic loads on wind tunnel force balances

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T.; White, William C.

    1989-01-01

    Two devices have been developed at NASA Langley to monitor the dynamic loads incurred during wind-tunnel testing. The Balance Dynamic Display Unit (BDDU), displays and monitors the combined static and dynamic forces and moments in the orthogonal axes. The Balance Critical Point Analyzer scales and sums each normalized signal from the BDDU to obtain combined dynamic and static signals that represent the dynamic loads at predefined high-stress points. The display of each instrument is a multiplex of six analog signals in a way that each channel is displayed sequentially as one-sixth of the horizontal axis on a single oscilloscope trace. Thus this display format permits the operator to quickly and easily monitor the combined static and dynamic level of up to six channels at the same time.

  9. A computationally efficient OMP-based compressed sensing reconstruction for dynamic MRI

    NASA Astrophysics Data System (ADS)

    Usman, M.; Prieto, C.; Odille, F.; Atkinson, D.; Schaeffter, T.; Batchelor, P. G.

    2011-04-01

    Compressed sensing (CS) methods in MRI are computationally intensive. Thus, designing novel CS algorithms that can perform faster reconstructions is crucial for everyday applications. We propose a computationally efficient orthogonal matching pursuit (OMP)-based reconstruction, specifically suited to cardiac MR data. According to the energy distribution of a y-f space obtained from a sliding window reconstruction, we label the y-f space as static or dynamic. For static y-f space images, a computationally efficient masked OMP reconstruction is performed, whereas for dynamic y-f space images, standard OMP reconstruction is used. The proposed method was tested on a dynamic numerical phantom and two cardiac MR datasets. Depending on the field of view composition of the imaging data, compared to the standard OMP method, reconstruction speedup factors ranging from 1.5 to 2.5 are achieved.

  10. Influence of impeller shroud forces on turbopump rotor dynamics

    NASA Technical Reports Server (NTRS)

    Williams, J. P.; Childs, Dara W.

    1993-01-01

    The shrouded-impeller leakage path forces calculated by Childs have been analyzed to answer two questions. First, because of certain characteristics or the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response, and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.

  11. Static and dynamic buckling of reconstructions at triple steps on Si(111) surfaces

    NASA Astrophysics Data System (ADS)

    Zhachuk, R.; Teys, S.; Coutinho, J.; Rayson, M. J.; Briddon, P. R.

    2014-10-01

    Triple steps on Si(111) surfaces are popular building blocks for bottom-up nanostructure assembly, conferring size uniformity and precise positioning of growing nanostructures. In this work, we employ the Si(7 7 10) regular stepped surface as model system to study the triple steps by scanning tunneling microscopy (STM) and large-scale first-principles calculations. We find a surprising cohabitation of reconstruction elements at the step edge that either buckles statically or dynamically at room temperature. The driving force for the observed sequence of buckling patterns is traced back to Coulomb interactions involving charged adatoms and rest-atoms lying on a mini-terrace. These results reconcile the Si(111) triple step model with the experimental STM data.

  12. Static and dynamic buckling of reconstructions at triple steps on Si(111) surfaces

    SciTech Connect

    Zhachuk, R. Teys, S.; Coutinho, J.; Rayson, M. J.; Briddon, P. R.

    2014-10-27

    Triple steps on Si(111) surfaces are popular building blocks for bottom-up nanostructure assembly, conferring size uniformity and precise positioning of growing nanostructures. In this work, we employ the Si(7 7 10) regular stepped surface as model system to study the triple steps by scanning tunneling microscopy (STM) and large-scale first-principles calculations. We find a surprising cohabitation of reconstruction elements at the step edge that either buckles statically or dynamically at room temperature. The driving force for the observed sequence of buckling patterns is traced back to Coulomb interactions involving charged adatoms and rest-atoms lying on a mini-terrace. These results reconcile the Si(111) triple step model with the experimental STM data.

  13. Hidden multiple bond effects in dynamic force spectroscopy.

    PubMed

    Getfert, Sebastian; Reimann, Peter

    2012-03-01

    In dynamic force spectroscopy, a (bio-)molecular complex is subjected to a steadily increasing force until the chemical bond breaks. Repeating the same experiment many times results in a broad distribution of rupture forces, whose quantitative interpretation represents a formidable theoretical challenge. In this study we address the situation that more than a single molecular bond is involved in one experimental run, giving rise to multiple rupture events that are even more difficult to analyze and thus are usually eliminated as far as possible from the further evaluation of the experimental data. We develop and numerically solve a detailed model of a complete dynamic force spectroscopy experiment including a possible clustering of molecules on the substrate surface, the formation of bonds, their dissociation under load, and the postprocessing of the force extension curves. We show that the data, remaining after elimination of obvious multiple rupture events, may still contain a considerable number of hidden multiple bonds, which are experimentally indistinguishable from true single bonds, but which have considerable effects on the resulting rupture force statistics and its consistent theoretical interpretation. PMID:22404941

  14. Hidden Multiple Bond Effects in Dynamic Force Spectroscopy

    PubMed Central

    Getfert, Sebastian; Reimann, Peter

    2012-01-01

    In dynamic force spectroscopy, a (bio-)molecular complex is subjected to a steadily increasing force until the chemical bond breaks. Repeating the same experiment many times results in a broad distribution of rupture forces, whose quantitative interpretation represents a formidable theoretical challenge. In this study we address the situation that more than a single molecular bond is involved in one experimental run, giving rise to multiple rupture events that are even more difficult to analyze and thus are usually eliminated as far as possible from the further evaluation of the experimental data. We develop and numerically solve a detailed model of a complete dynamic force spectroscopy experiment including a possible clustering of molecules on the substrate surface, the formation of bonds, their dissociation under load, and the postprocessing of the force extension curves. We show that the data, remaining after elimination of obvious multiple rupture events, may still contain a considerable number of hidden multiple bonds, which are experimentally indistinguishable from true single bonds, but which have considerable effects on the resulting rupture force statistics and its consistent theoretical interpretation. PMID:22404941

  15. An implicit divalent counterion force field for RNA molecular dynamics

    NASA Astrophysics Data System (ADS)

    Henke, Paul S.; Mak, Chi H.

    2016-03-01

    How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg2+ screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs. This divalent counterion model is computationally efficient. It works with existing atomistic force fields, or coarse-grained models may be tuned to work with it. We provide optimized parameters for a coarse-grained RNA model that takes advantage of this new counterion force field. Using the new model, we illustrate how the structural flexibility of RNA two-way junctions is modified under different salt conditions.

  16. Dynamic Electrode Forces in Gas Metal Arc Welding.

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence Anthony

    In gas metal arc welding, a low-voltage electric -arc plasma is maintained between a work-piece and a wire electrode, both of which are melted by the arc. This thesis examines the dynamic forces that affect the detachment of molten metal drops from the consumable wire electrode. Unlike drops falling from a water faucet, the drops in gas metal arc welding experience strong magnetic forces generated by the interaction of the welding current with its own magnetic field. An extensive set of clear high-speed motion images of metal drops detaching from a welding electrode was collected under a wide variety of conditions. The images are used to measure the surface tension of steel as it is found in a gas metal arc welding plasma. Impulse-response oscillations of pendent molten steel drops are also measured. A derivation of the magnetic forces acting on necking drops is performed. Numerical computations of these forces are performed by using shapes fitted to high -speed images of molten steel drops as they are ejected from the electrode by magnetic forces during short-duty -cycle current pulsing. A dynamic model of drop detachment is developed and used to study the competition between the retaining surface tension force and other forces (magnetic, gravitational, and inertial). Simulations performed with this model are compared with extensive measurements of constant-current welding images and with limited measurements of pulsed -current welding images. The comparisons indicate that the experimental magnetic forces are much less potent than the calculated magnetic forces when welding-current transients are not present. A hypothesis is advanced that internal flows are able to develop under the relatively quiescent conditions that exist during drop development in constant -current welding. An apparatus was constructed to axially vibrate the electrode as it is consumed. Experiments using inertial forces to induce drop detachment are shown. Comparisons of experimental

  17. Ares I-X First Stage Separation Loads and Dynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Demory, Lee; Rooker, BIll; Jarmulowicz, Marc; Glaese, John

    2011-01-01

    The Ares I-X flight test provided NASA with the opportunity to test hardware and gather critical data to ensure the success of future Ares I flights. One of the primary test flight objectives was to evaluate the environment during First Stage separation to better understand the conditions that the J-2X second stage engine will experience at ignition [1]. A secondary objective was to evaluate the effectiveness of the stage separation motors. The Ares I-X flight test vehicle was successfully launched on October 29, 2009, achieving most of its primary and secondary test objectives. Ground based video camera recordings of the separation event appeared to show recontact of the First Stage and the Upper Stage Simulator followed by an unconventional tumbling of the Upper Stage Simulator. Closer inspection of the videos and flight test data showed that recontact did not occur. Also, the motion during staging was as predicted through CFD analysis performed during the Ares I-X development. This paper describes the efforts to reconstruct the vehicle dynamics and loads through the staging event by means of a time integrated simulation developed in TREETOPS, a multi-body dynamics software tool developed at NASA [2]. The simulation was built around vehicle mass and geometry properties at the time of staging and thrust profiles for the first stage solid rocket motor as well as for the booster deceleration motors and booster tumble motors. Aerodynamic forces were determined by models created from a combination of wind tunnel testing and CFD. The initial conditions such as position, velocity, and attitude were obtained from the Best Estimated Trajectory (BET), which is compiled from multiple ground based and vehicle mounted instruments. Dynamic loads were calculated by subtracting the inertial forces from the applied forces. The simulation results were compared to the Best Estimated Trajectory, accelerometer flight data, and to ground based video.

  18. Dynamic disorder in receptor-ligand forced dissociation experiments.

    PubMed

    Liu, Fei; Ou-Yang, Zhong-can; Iwamoto, Mitsumasa

    2006-01-01

    Recently experiments showed that some biological noncovalent bonds increase their lifetimes when they are stretched by an external force, and their lifetimes will decrease when the force increases further. Several specific quantitative models have been proposed to explain the intriguing transitions from the "catch bond" to the "slip bond." In this work we propose that the dynamic disorder of the force-dependent dissociation rate can account for the counterintuitive behaviors of the bonds. A Gaussian stochastic rate model is used to quantitatively describe the transitions observed recently in the single bond P-selctin glycoprotein ligand 1-P-selectin force rupture experiment [Marshall, Nature 423, 190 (2003)]. Our model agrees well with the experimental data. We conclude that the catch bonds could arise from the stronger positive correlation between the height of the intrinsic energy barrier and the distance from the bound state to the barrier; classical pathway scenario or a priori catch bond assumption is not essential. PMID:16486112

  19. Molecular dynamics simulations of methane hydrate using polarizable force fields

    SciTech Connect

    Jiang, H.N.; Jordan, K.D.; Taylor, C.E.

    2007-06-14

    Molecular dynamics simulations of methane hydrate have been carried out using the polarizable AMOEBA and COS/G2 force fields. Properties calculated include the temperature dependence of the lattice constant, the OC and OO radial distribution functions, and the vibrational spectra. Both the AMOEBA and COS/G2 force fields are found to successfully account for the available experimental data, with overall somewhat better agreement with experiment being found for the AMOEBA model. Comparison is made with previous results obtained using TIP4P and SPC/E effective two-body force fields and the polarizable TIP4P-FQ force field, which allows for in-plane polarization only. Significant differences are found between the properties calculated using the TIP4P-FQ model and those obtained using the other models, indicating an inadequacy of restricting explicit polarization to in-plane onl

  20. Reconstruction of principal dynamical modes from climatic variability: nonlinear approach

    NASA Astrophysics Data System (ADS)

    Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander; Kurths, Juergen

    2015-04-01

    Analysis of multivariate time-series produced by complex systems requires efficient tools for reduction of data dimension. We consider this problem in relation to empirical modeling of climate, which implies an analysis of spatial-distributed time-series. The main goal is to establish the number of principal modes which have key contribution to data and actually governs the observed variability. Currently, the number of widely used linear methods based on PCA and factor analysis exists, which yield different data decompositions taking into consideration simultanious/time-lag correlations between spatial grid points. However, the question about possibility of improving the decomposition by taking into account nonlinear couplings between variables often remains untouched. In the report the method for constructing principal dynamic modes on the basis of low-dimensional nonlinear parametric representation of observed multivariate time-series is suggested. It is aimed to extracting the set of latent modes that both explains an essential part of variability, and obeys the simplest evolution law. Thus, this approach can be used for optimal reconstruction of the phase space for empirical prognostic modeling of observed dynamics. The evidence of nonlinear couplings in SST space-distributed data covering the Globe is investigated by the proposed approach. It is demonstrated that the obtained principal modes capture more part of SST variability than principal components (PCs) constructed by either EOF decomposition or its spatio-temporal extension. Relation of these modes to various climate phenomena is shown and discussed in the report. The application of the approach to data-driven forecast of climate bahavior is also discussed.

  1. Superadiabatic forces in Brownian many-body dynamics.

    PubMed

    Fortini, Andrea; de Las Heras, Daniel; Brader, Joseph M; Schmidt, Matthias

    2014-10-17

    Theoretical approaches to nonequilibrium many-body dynamics generally rest upon an adiabatic assumption, whereby the true dynamics is represented as a sequence of equilibrium states. Going beyond this simple approximation is a notoriously difficult problem. For the case of classical Brownian many-body dynamics, we present a simulation method that allows us to isolate and precisely evaluate superadiabatic correlations and the resulting forces. Application of the method to a system of one-dimensional hard particles reveals the importance for the dynamics, as well as the complexity, of these nontrivial out-of-equilibrium contributions. Our findings help clarify the status of dynamical density functional theory and provide a rational basis for the development of improved theories. PMID:25361281

  2. Superadiabatic Forces in Brownian Many-Body Dynamics

    NASA Astrophysics Data System (ADS)

    Fortini, Andrea; de las Heras, Daniel; Brader, Joseph M.; Schmidt, Matthias

    2014-10-01

    Theoretical approaches to nonequilibrium many-body dynamics generally rest upon an adiabatic assumption, whereby the true dynamics is represented as a sequence of equilibrium states. Going beyond this simple approximation is a notoriously difficult problem. For the case of classical Brownian many-body dynamics, we present a simulation method that allows us to isolate and precisely evaluate superadiabatic correlations and the resulting forces. Application of the method to a system of one-dimensional hard particles reveals the importance for the dynamics, as well as the complexity, of these nontrivial out-of-equilibrium contributions. Our findings help clarify the status of dynamical density functional theory and provide a rational basis for the development of improved theories.

  3. A test of improved force field parameters for urea: molecular-dynamics simulations of urea crystals.

    PubMed

    Özpınar, Gül Altınbaş; Beierlein, Frank R; Peukert, Wolfgang; Zahn, Dirk; Clark, Timothy

    2012-08-01

    Molecular-dynamics (MD) simulations of urea crystals of different shapes (cubic, rectangular prismatic, and sheet) have been performed using our previously published force field for urea. This force field has been validated by calculating values for the cohesive energy, sublimation temperature, and melting point from the MD data. The cohesive energies computed from simulations of cubic and rectangular prismatic urea crystals in vacuo at 300 K agreed very well with the experimental sublimation enthalpies reported at 298 K. We also found very good agreement between the melting points as observed experimentally and from simulations. Annealing the crystals just below the melting point leads to reconstruction to form crystal faces that are consistent with experimental observations. The simulations reveal a melting mechanism that involves surface (corner/edge) melting well below the melting point, and rotational disordering of the urea molecules in the corner/edge regions of the crystal, which then facilitates the translational motion of these molecules. PMID:22281810

  4. Enhanced atomic corrugation in dynamic force microscopy—The role of repulsive forces

    NASA Astrophysics Data System (ADS)

    Lichtenstein, L.; Büchner, C.; Stuckenholz, S.; Heyde, M.; Freund, H.-J.

    2012-03-01

    Full range two dimensional (2D) force mapping was performed by means of low temperature dynamic force microscopy (DFM) on a highly complex surface structure. For this purpose, we used a thin film of vitreous silica on a Ru(0001)-support, which is a 2D structural equivalent to silica glass. The 2D spectroscopy shows that the contrast generating shift in vertical distance between two sites on the surface is twice as large on the repulsive branch of the frequency shift-distance curve as compared to the attractive branch. The results give insight into the origin of the formation of atomic resolution in DFM.

  5. Forced vibration of flexible body systems. A dynamic stiffness method

    NASA Astrophysics Data System (ADS)

    Liu, T. S.; Lin, J. C.

    1993-10-01

    Due to the development of high speed machinery, robots, and aerospace structures, the research of flexible body systems undergoing both gross motion and elastic deformation has seen increasing importance. The finite element method and modal analysis are often used in formulating equations of motion for dynamic analysis of the systems which entail time domain, forced vibration analysis. This study develops a new method based on dynamic stiffness to investigate forced vibration of flexible body systems. In contrast to the conventional finite element method, shape functions and stiffness matrices used in this study are derived from equations of motion for continuum beams. Hence, the resulting shape functions are named as dynamic shape functions. By applying the dynamic shape functions, the mass and stiffness matrices of a beam element are derived. The virtual work principle is employed to formulate equations of motion. Not only the coupling of gross motion and elastic deformation, but also the stiffening effect of axial forces is taken into account. Simulation results of a cantilever beam, a rotating beam, and a slider crank mechanism are compared with the literature to verify the proposed method.

  6. Comparing molecular dynamics force fields in the essential subspace.

    PubMed

    Martín-García, Fernando; Papaleo, Elena; Gomez-Puertas, Paulino; Boomsma, Wouter; Lindorff-Larsen, Kresten

    2015-01-01

    The continued development and utility of molecular dynamics simulations requires improvements in both the physical models used (force fields) and in our ability to sample the Boltzmann distribution of these models. Recent developments in both areas have made available multi-microsecond simulations of two proteins, ubiquitin and Protein G, using a number of different force fields. Although these force fields mostly share a common mathematical form, they differ in their parameters and in the philosophy by which these were derived, and previous analyses showed varying levels of agreement with experimental NMR data. To complement the comparison to experiments, we have performed a structural analysis of and comparison between these simulations, thereby providing insight into the relationship between force-field parameterization, the resulting ensemble of conformations and the agreement with experiments. In particular, our results show that, at a coarse level, many of the motional properties are preserved across several, though not all, force fields. At a finer level of detail, however, there are distinct differences in both the structure and dynamics of the two proteins, which can, together with comparison with experimental data, help to select force fields for simulations of proteins. A noteworthy observation is that force fields that have been reparameterized and improved to provide a more accurate energetic description of the balance between helical and coil structures are difficult to distinguish from their "unbalanced" counterparts in these simulations. This observation implies that simulations of stable, folded proteins, even those reaching 10 microseconds in length, may provide relatively little information that can be used to modify torsion parameters to achieve an accurate balance between different secondary structural elements. PMID:25811178

  7. A Robust State-Space Kinetics-Guided Framework for Dynamic PET Image Reconstruction

    PubMed Central

    Tong, S; Alessio, A M; Kinahan, P E; Liu, H; Shi, P

    2011-01-01

    Dynamic PET image reconstruction is a challenging issue due to the low SNR and the large quantity of spatio-temporal data. We propose a robust state-space image reconstruction (SSIR) framework for activity reconstruction in dynamic PET. Unlike statistically-based frame-by-frame methods, tracer kinetic modeling is incorporated to provide physiological guidance for the reconstruction, harnessing the temporal information of the dynamic data. Dynamic reconstruction is formulated in a state-space representation, where a compartmental model describes the kinetic processes in a continuous-time system equation, and the imaging data is expressed in a discrete measurement equation. Tracer activity concentrations are treated as the state variables, and are estimated from the dynamic data. Sampled-data H∞ filtering is adopted for robust estimation. H∞ filtering makes no assumptions on the system and measurement statistics, and guarantees bounded estimation error for finite-energy disturbances, leading to robust performance for dynamic data with low SNR and/or errors. This alternative reconstruction approach could help to deal with unpredictable situations in imaging (e.g. data corruption from failed detector blocks) or inaccurate noise models. Experiments on synthetic phantom and patient PET data are performed to demonstrate feasibility of the SSIR framework, and to explore its potential advantages over frame-by-frame statistical reconstruction approaches. PMID:21441650

  8. Dynamic stability of repulsive-force maglev suspension systems

    SciTech Connect

    Cai, Y.; Rote, D.M.; Mulcahy, T.M.; Wang, Z.

    1996-11-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also documents both measured and calculated magnetic-force data. Because dynamic instability is not acceptable for any commercial maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments on maglev systems and compares the results with predictions calculated by a nonlinear-dynamics computer code. Instabilities of an electrodynamic-suspension system type vehicle model were obtained by experimental observation and computer simulation of a five-degree-of-freedom maglev vehicle moving on a guideway that consists of a pair of L-shaped aluminum conductors attached to a rotating wheel. The experimental and theoretical analyses developed in this study identify basic stability characteristics and future research needs of maglev systems.

  9. Protein displacements under external forces: An atomistic Langevin dynamics approach

    NASA Astrophysics Data System (ADS)

    Gnandt, David; Utz, Nadine; Blumen, Alexander; Koslowski, Thorsten

    2009-02-01

    We present a fully atomistic Langevin dynamics approach as a method to simulate biopolymers under external forces. In the harmonic regime, this approach permits the computation of the long-term dynamics using only the eigenvalues and eigenvectors of the Hessian matrix of second derivatives. We apply this scheme to identify polymorphs of model proteins by their mechanical response fingerprint, and we relate the averaged dynamics of proteins to their biological functionality, with the ion channel gramicidin A, a phosphorylase, and neuropeptide Y as examples. In an environment akin to dilute solutions, even small proteins show relaxation times up to 50 ns. Atomically resolved Langevin dynamics computations have been performed for the stretched gramicidin A ion channel.

  10. Dynamic Force Balances and Cell Shape Changes during Cytokinesis

    NASA Astrophysics Data System (ADS)

    Sain, Anirban; Inamdar, Mandar M.; Jülicher, Frank

    2015-01-01

    During the division of animal cells, an actomyosin ring is formed in the cell cortex. The contraction of this ring induces shape changes of the cell and the formation of a cytokinesis furrow. In many cases, a cell-cell interface forms that separates the two new cells. Here we present a simple physical description of the cell shape changes and the dynamics of the interface closure, based on force balances involving active stresses and viscous friction. We discuss conditions in which the interface closure is either axially symmetric or asymmetric. We show that our model can account for the observed dynamics of ring contraction and interface closure in the C. elegans embryo.

  11. Forced dynamic position control of PMSM with DTC utilization

    NASA Astrophysics Data System (ADS)

    Malek, Michal

    2012-11-01

    Almost one and a half century after the publication of Maxwell’s On Governors, feedback theory with PID controllers in cascade structure is still an essential part of control structures of most controlled electric drives. There are a few control strategies which are “ready” to replace it but they usually miss one of the essential fundamentals of every successful approach - simplicity hand in hand with lucidity. But there is one close relative which is simple and powerful at the same time, is not excessively abstract and without complicated mathematics. The name of this technique is Forced Dynamic Control. In this paper forced dynamic control is presented together with direct torque controlled PMSM drive as unique combination of simple algorithms for inner and outer loop of cascade structure.

  12. Dynamics of taut strings traveled by train of forces

    NASA Astrophysics Data System (ADS)

    Luongo, Angelo; Piccardo, Giuseppe

    2016-03-01

    This paper analyzes the dynamical response of taut strings crossed by systems of traveling forces at constant velocity. Starting from the classic solution for the single moving load, the effect of trains of forces having a step equal to the string length is dealt with. The response is formulated in terms of a linear map, whose reiteration furnishes the discrete-time response, and enables the investigation of the asymptotic behavior of the system. The analytical solution highlights the presence of many critical velocities, for which an instability phenomenon by response accretion may occur. The presence of damping inhibits the onset of instability but also allows to attain large displacements, especially in correspondence of the first critical velocities of the undamped string. Finite-difference numerical solutions confirm the full validity of the proposed analytical solutions. A simple procedure to deduce an improved solution for the problem of the single moving force is outlined in the Appendix.

  13. Jamming transitions in force-based models for pedestrian dynamics.

    PubMed

    Chraibi, Mohcine; Ezaki, Takahiro; Tordeux, Antoine; Nishinari, Katsuhiro; Schadschneider, Andreas; Seyfried, Armin

    2015-10-01

    Force-based models describe pedestrian dynamics in analogy to classical mechanics by a system of second order ordinary differential equations. By investigating the linear stability of two main classes of forces, parameter regions with unstable homogeneous states are identified. In this unstable regime it is then checked whether phase transitions or stop-and-go waves occur. Results based on numerical simulations show, however, that the investigated models lead to unrealistic behavior in the form of backwards moving pedestrians and overlapping. This is one reason why stop-and-go waves have not been observed in these models. The unrealistic behavior is not related to the numerical treatment of the dynamic equations but rather indicates an intrinsic problem of this model class. Identifying the underlying generic problems gives indications how to define models that do not show such unrealistic behavior. As an example we introduce a force-based model which produces realistic jam dynamics without the appearance of unrealistic negative speeds for empirical desired walking speeds. PMID:26565291

  14. Langevin Dynamics with Space-Time Periodic Nonequilibrium Forcing

    NASA Astrophysics Data System (ADS)

    Joubaud, R.; Pavliotis, G. A.; Stoltz, G.

    2015-01-01

    We present results on the ballistic and diffusive behavior of the Langevin dynamics in a periodic potential that is driven away from equilibrium by a space-time periodic driving force, extending some of the results obtained by Collet and Martinez in (J Math Biol, 56(6):765-792 2008). In the hyperbolic scaling, a nontrivial average velocity can be observed even if the external forcing vanishes in average. More surprisingly, an average velocity in the direction opposite to the forcing may develop at the linear response level—a phenomenon called negative mobility. The diffusive limit of the non-equilibrium Langevin dynamics is also studied using the general methodology of central limit theorems for additive functionals of Markov processes. To apply this methodology, which is based on the study of appropriate Poisson equations, we extend recent results on pointwise estimates of the resolvent of the generator associated with the Langevin dynamics. Our theoretical results are illustrated by numerical simulations of a two-dimensional system.

  15. Jamming transitions in force-based models for pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    Chraibi, Mohcine; Ezaki, Takahiro; Tordeux, Antoine; Nishinari, Katsuhiro; Schadschneider, Andreas; Seyfried, Armin

    2015-10-01

    Force-based models describe pedestrian dynamics in analogy to classical mechanics by a system of second order ordinary differential equations. By investigating the linear stability of two main classes of forces, parameter regions with unstable homogeneous states are identified. In this unstable regime it is then checked whether phase transitions or stop-and-go waves occur. Results based on numerical simulations show, however, that the investigated models lead to unrealistic behavior in the form of backwards moving pedestrians and overlapping. This is one reason why stop-and-go waves have not been observed in these models. The unrealistic behavior is not related to the numerical treatment of the dynamic equations but rather indicates an intrinsic problem of this model class. Identifying the underlying generic problems gives indications how to define models that do not show such unrealistic behavior. As an example we introduce a force-based model which produces realistic jam dynamics without the appearance of unrealistic negative speeds for empirical desired walking speeds.

  16. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  17. Satellite Dynamic Damping via Active Force Control Augmentation

    NASA Astrophysics Data System (ADS)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  18. Dynamic calibration of higher eigenmode parameters of a cantilever in atomic force microscopy by using tip–surface interactions

    DOE PAGESBeta

    Borysov, Stanislav S.; Forchheimer, Daniel; Haviland, David B.

    2014-10-29

    Here we present a theoretical framework for the dynamic calibration of the higher eigenmode parameters (stiffness and optical lever inverse responsivity) of a cantilever. The method is based on the tip–surface force reconstruction technique and does not require any prior knowledge of the eigenmode shape or the particular form of the tip–surface interaction. The calibration method proposed requires a single-point force measurement by using a multimodal drive and its accuracy is independent of the unknown physical amplitude of a higher eigenmode.

  19. Correlation of Force Production with Apoptosis in Tissue Dynamics

    NASA Astrophysics Data System (ADS)

    Toyama, Yusuke; Peralta, Xomalin; Venakides, Stephanos; Kiehart, Daniel; Edwards, Glenn

    2007-03-01

    To understand embryo morphogenesis, it is necessary to know the force distribution in the various tissues. Since cells are largely inaccessible to mechanical probes in vivo, measurements of the net forces exerted by cells are challenging. The combination of experimental and theoretical approaches has proven to improve our understanding of these forces. A steerable UV-laser microbeam was used to probe the forces and the resulting kinematics were monitored with confocal microscopy. Dorsal closure is a developmental stage in Drosophila embryogenesis, where the dynamics are a consequence of four biological processes [1]. During this stage, cells that have outlived their usefulness undergo apoptosis, a biological process also known as programmed cell death for cells. Apoptotic events were decreased with genetic techniques or increased by irradiation with a UV-C lamp. We present experimental evidence for force generation correlating with apoptosis. This research has been supported by the NIH (GM33830 and GM61240). [1] M. S. Hutson, et al. Science, 300, 145 (2003).

  20. Dynamic Response of Model Lipid Membranes to Ultrasonic Radiation Force

    PubMed Central

    Prieto, Martin Loynaz; Oralkan, Ömer; Khuri-Yakub, Butrus T.; Maduke, Merritt C.

    2013-01-01

    Low-intensity ultrasound can modulate action potential firing in neurons in vitro and in vivo. It has been suggested that this effect is mediated by mechanical interactions of ultrasound with neural cell membranes. We investigated whether these proposed interactions could be reproduced for further study in a synthetic lipid bilayer system. We measured the response of protein-free model membranes to low-intensity ultrasound using electrophysiology and laser Doppler vibrometry. We find that ultrasonic radiation force causes oscillation and displacement of lipid membranes, resulting in small (<1%) changes in membrane area and capacitance. Under voltage-clamp, the changes in capacitance manifest as capacitive currents with an exponentially decaying sinusoidal time course. The membrane oscillation can be modeled as a fluid dynamic response to a step change in pressure caused by ultrasonic radiation force, which disrupts the balance of forces between bilayer tension and hydrostatic pressure. We also investigated the origin of the radiation force acting on the bilayer. Part of the radiation force results from the reflection of the ultrasound from the solution/air interface above the bilayer (an effect that is specific to our experimental configuration) but part appears to reflect a direct interaction of ultrasound with the bilayer, related to either acoustic streaming or scattering of sound by the bilayer. Based on these results, we conclude that synthetic lipid bilayers can be used to study the effects of ultrasound on cell membranes and membrane proteins. PMID:24194863

  1. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.

    PubMed

    Novosad, Philip; Reader, Andrew J

    2016-06-21

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  2. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    NASA Astrophysics Data System (ADS)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  3. Guided crowd dynamics via modified social force model

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoxia; Dong, Hairong; Wang, Qianling; Chen, Yao; Hu, Xiaoming

    2014-10-01

    Pedestrian dynamics is of great theoretical significance for strategy design of emergency evacuation. Modification of pedestrian dynamics based on the social force model is presented to better reflect pedestrians' behavioral characteristics in emergency. Specifically, the modified model can be used for guided crowd dynamics in large-scale public places such as subway stations and stadiums. This guided crowd model is validated by explicitly comparing its density-speed and density-flow diagrams with fundamental diagrams. Some social phenomena such as gathering, balance and conflicts are clearly observed in simulation, which further illustrate the effectiveness of the proposed modeling method. Also, time delay for pedestrians with time-dependent desired velocities is observed and explained using the established model in this paper. Furthermore, this guided crowd model is applied to the simulation system of Beijing South Railway Station for predictive evacuation experiments.

  4. Wavefront aberration reconstruction from tangential refractive powers measured with spatial dynamic skiascopy.

    PubMed

    Barbero, Sergio

    2012-12-20

    The aim of this work was to study, using numerical simulations, the attainable level of accuracy to reconstruct the wavefront aberrations from tangential refractive power data measured with dynamic skiascopy. Two mathematical methods have been implemented. The first one is based on curve integration of the curvature data, previously interpolated with cubic splines. The second one reconstructs the three-dimensional wavefront surface, represented by a Zernike polynomial expansion, using a two-step least-squares method. The different factors affecting the reconstruction--noise, sampling, and wavefront patterns--were quantified. The results provide useful information to design more efficient experimental setups based on spatial dynamic skiascopy. PMID:23262600

  5. Direct reconstruction of pharmacokinetic parameters in dynamic fluorescence molecular tomography by the augmented Lagrangian method

    NASA Astrophysics Data System (ADS)

    Zhu, Dianwen; Zhang, Wei; Zhao, Yue; Li, Changqing

    2016-03-01

    Dynamic fluorescence molecular tomography (FMT) has the potential to quantify physiological or biochemical information, known as pharmacokinetic parameters, which are important for cancer detection, drug development and delivery etc. To image those parameters, there are indirect methods, which are easier to implement but tend to provide images with low signal-to-noise ratio, and direct methods, which model all the measurement noises together and are statistically more efficient. The direct reconstruction methods in dynamic FMT have attracted a lot of attention recently. However, the coupling of tomographic image reconstruction and nonlinearity of kinetic parameter estimation due to the compartment modeling has imposed a huge computational burden to the direct reconstruction of the kinetic parameters. In this paper, we propose to take advantage of both the direct and indirect reconstruction ideas through a variable splitting strategy under the augmented Lagrangian framework. Each iteration of the direct reconstruction is split into two steps: the dynamic FMT image reconstruction and the node-wise nonlinear least squares fitting of the pharmacokinetic parameter images. Through numerical simulation studies, we have found that the proposed algorithm can achieve good reconstruction results within a small amount of time. This will be the first step for a combined dynamic PET and FMT imaging in the future.

  6. Dynamic mechanoelectrochemistry of polypyrrole membranes via shear-force tracking.

    PubMed

    Northcutt, Robert G; Heinemann, Christian; Sundaresan, Vishnu Baba

    2016-07-14

    Mechanoelectrochemistry is the study of elastic and plastic deformation of materials during reversible reduction and oxidation processes. In this article, we introduce shear-force tracking as a method to dynamically measure mechanical (strain), chemical (ion transport), and electrical (applied redox potentials) responses of the conducting polymer polypyrrole (PPy) during redox reactions. This tracking technique uses a control algorithm to maintain a set distance between a ultramicroelectrode (UME) tip and a surface via shear-force regulation. Due to the sensitivity of shear-force signals in the near field of substrate surfaces, a significantly improved signal to noise ratio (20 : 1) is possible and allows for nanoscale measurement of redox events. Chemomechanical coupling (the ratio of ion transport to resultant extensional actuation) is calculated for PPy-based membranes of various thicknesses based on a mechanistic interpretation of charge storage in redox active conducting polymers. The measured dynamic response demonstrates that chemomechanical coupling is not a constant, as assumed in literature, but is dependent on the polymers state of charge and the direction (ingress/egress) of ion transport. PMID:27263628

  7. Dynamics of forced system with vibro-impact energy sink

    NASA Astrophysics Data System (ADS)

    Gendelman, O. V.; Alloni, A.

    2015-12-01

    The paper treats forced response of primary linear oscillator with vibro-impact energy sink. This system exhibits some features of dynamics, which resemble forced systems with other types of nonlinear energy sinks, such as steady-state and strongly modulated responses. However, the differences are crucial: in the system with vibro-impact sink the strongly modulated response consists of randomly distributed periods of resonant and non-resonant motion. This salient feature allows us to identify this type of dynamic behavior as chaotic strongly modulated response (CSMR). It is demonstrated, that the CSMR exists due to special structure of a slow invariant manifold (SIM); the latter is derived in a course of a multiple-scale analysis of the system. In the considered system, this manifold has only one stable and one unstable branch. This feature defines new class of universality for the nonlinear energy sinks. Very different physical system with topologically similar SIM - the oscillator with rotational energy sink - also exhibits CSMRs. In the system with the vibro-impact sink, such responses are observed even for very low level of the external forcing. This feature makes such system viable for possible energy harvesting applications.

  8. Force-free electrodynamics in dynamical curved spacetimes

    NASA Astrophysics Data System (ADS)

    McWilliams, Sean

    2015-04-01

    We present results on our study of force-free electrodynamics in curved spacetimes. Specifically, we present several improvements to what has become the established set of evolution equations, and we apply these to study the nonlinear stability of analytically known force-free solutions for the first time. We implement our method in a new pseudo-spectral code built on top of the SpEC code for evolving dynamic spacetimes. Finally, we revisit these known solutions and attempt to clarify some interesting properties that render them analytically tractable. Finally, we preview some new work that similarly revisits the established approach to solving another problem in numerical relativity: the post-merger recoil from asymmetric gravitational-wave emission. These new results may have significant implications for the parameter dependence of recoils, and consequently on the statistical expectations for recoil velocities of merged systems.

  9. Implementation of the force decomposition machine for molecular dynamics simulations.

    PubMed

    Borštnik, Urban; Miller, Benjamin T; Brooks, Bernard R; Janežič, Dušanka

    2012-09-01

    We present the design and implementation of the force decomposition machine (FDM), a cluster of personal computers (PCs) that is tailored to running molecular dynamics (MD) simulations using the distributed diagonal force decomposition (DDFD) parallelization method. The cluster interconnect architecture is optimized for the communication pattern of the DDFD method. Our implementation of the FDM relies on standard commodity components even for networking. Although the cluster is meant for DDFD MD simulations, it remains general enough for other parallel computations. An analysis of several MD simulation runs on both the FDM and a standard PC cluster demonstrates that the FDM's interconnect architecture provides a greater performance compared to a more general cluster interconnect. PMID:23085166

  10. Microcantilevers with embedded accelerometers for dynamic atomic force microscopy

    SciTech Connect

    Shaik, Nurul Huda; Raman, Arvind; Reifenberger, Ronald G.

    2014-02-24

    The measurement of the intermittent interaction between an oscillating nanotip and the sample surface is a key challenge in dynamic Atomic Force Microscopy (AFM). Accelerometers integrated onto AFM cantilevers can directly measure this interaction with minimal cantilever modification but have been difficult to realize. Here, we design and fabricate high frequency bandwidth accelerometers on AFM cantilevers to directly measure the tip acceleration in commercial AFM systems. We demonstrate a simple way of calibrating such accelerometers and present experiments using amplitude modulated AFM on freshly cleaved mica samples in water to study the response of the accelerometer.

  11. Dynamic behavior of a beam drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Fralick, G. C.

    1980-01-01

    A cantilevered beam with strain gages attached to the fixed ends and the minimax technique were used in an experiment conducted to determine the dynamic behavior of a drag-force anemometer in high frequency, unsteady flow. In steady flow the output of the anemometer is proportional to stream velocity head and flow angle. Fluid mechanics suggests that, in unsteady flow, the output would also be proportional to the rate of change of fluid velocity. It was determined that effects due to the rate of change of fluid velocity are negligible for the probe geometry and frequencies involved.

  12. Holocene carbon dynamics and radiative forcing of three different types of peatlands in Finland

    NASA Astrophysics Data System (ADS)

    Mathijssen, Paul; Väliranta, Minna; Lohila, Annalea; Minkkinen, Kari; Tuittila, Eeva-Stiina; Tuovinen, Juha-Pekka; Korrensalo, Aino

    2016-04-01

    Peatlands contain approximately a third of all soil carbon globally and as they exchange carbon dioxide (CO2) and methane (CH4) copiously with the atmosphere, changes in peatland carbon budgets have a large impact on the global carbon balance and the concentration of greenhouse gasses in the atmosphere. There has been a growing interest in reconstructing and linking peatland carbon dynamics to past climate variations, because quantitative reconstructions can be used as a basis for future carbon balance predictions. In order to increase our understanding on peatland development and response patterns we quantitatively reconstructed Holocene carbon dynamics of three different peatlands in Finland: a subarctic fen, a boreal peatland complex and a boreal managed pine bog. Several cores from each peatland were investigated. The peatlands showed distinct successional pathways, which were sometimes triggered by fires. Successional stages were partly reflected in carbon accumulation patterns. Sometimes variations in carbon accumulation rates coincided with autogenic changes in peat type and vegetation, but accumulation rates were also related to the large-scale Holocene climate phases. However, Holocene climate changes as such did not seem to result in changes in the peat plant species composition. The mid-Holocene warm and dry climate conditions reduced the carbon accumulation in the subarctic fen and in the fen part of the boreal peatland complex, but when the peatland was in bog phase this effect was not visible. Some bog cores showed a clear increase in carbon accumulation after fen-bog transition, but the pattern was not unanimous. In addition to carbon accumulation, we estimated past CH4 emissions for each peatland respectively by applying different methods and by utilising the established current vegetation-CH4 emission relationship. The reconstructions showed that CH4 emissions always decreased during bog stages, but that the CH4 emissions played a major role in the

  13. A CLASS OF RECONSTRUCTED DISCONTINUOUS GALERKIN METHODS IN COMPUTATIONAL FLUID DYNAMICS

    SciTech Connect

    Hong Luo; Yidong Xia; Robert Nourgaliev

    2011-05-01

    A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness.

  14. Border Forces and Friction Control Epithelial Closure Dynamics

    PubMed Central

    Cochet-Escartin, Olivier; Ranft, Jonas; Silberzan, Pascal; Marcq, Philippe

    2014-01-01

    We study the closure dynamics of a large number of well-controlled circular apertures within an epithelial monolayer, where the collective cell migration responsible for epithelization is triggered by the removal of a spatial constraint rather than by scratching. Based on experimental observations, we propose a physical model that takes into account border forces, friction with the substrate, and tissue rheology. Border protrusive activity drives epithelization despite the presence of a contractile actomyosin cable at the periphery of the wound. The closure dynamics is quantified by an epithelization coefficient, defined as the ratio of protrusive stress to tissue-substrate friction, that allows classification of different phenotypes. The same analysis demonstrates a distinct signature for human cells bearing the oncogenic RasV12 mutation, demonstrating the potential of the approach to quantitatively characterize metastatic transformations. PMID:24411238

  15. Algebraic and analytic reconstruction methods for dynamic tomography.

    PubMed

    Desbat, L; Rit, S; Clackdoyle, R; Mennessier, C; Promayon, E; Ntalampeki, S

    2007-01-01

    In this work, we discuss algebraic and analytic approaches for dynamic tomography. We present a framework of dynamic tomography for both algebraic and analytic approaches. We finally present numerical experiments. PMID:18002059

  16. Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Gupta, Amar Nath; Vincent, Abhilash; Neupane, Krishna; Yu, Hao; Wang, Feng; Woodside, Michael T.

    2011-08-01

    Free-energy-landscape formalisms provide the fundamental conceptual framework for physical descriptions of how proteins and nucleic acids fold into specific three-dimensional structures. Although folding landscapes are difficult to measure experimentally, recent theoretical work by Hummer and Szabo has shown that landscape profiles can be reconstructed from non-equilibrium single-molecule force spectroscopy measurements using an extension of the Jarzynski equality. This method has been applied to simulations and experiments but never validated experimentally. We tested it using force-extension measurements on DNA hairpins with distinct, sequence-dependent folding landscapes. Quantitative agreement was found between the landscape profiles obtained from the non-equilibrium reconstruction and those from equilibrium probability distributions. We also tested the method on a riboswitch aptamer with three partially folded intermediate states, successfully reconstructing the landscape but finding some states difficult to resolve owing to low occupancy or overlap of the potential wells. These measurements validate the landscape-reconstruction method and provide a new test of non-equilibrium work relations.

  17. Multiscale Dynamics of ENSO Impacts on Coral Proxy Environments: Towards Improving Reconstruction Accuracy

    NASA Astrophysics Data System (ADS)

    Stevenson, Samantha; Powell, Brian; Merrifield, Mark; Cobb, Kim; Noone, David; Nusbaumer, Jesse

    2015-04-01

    Oxygen isotope (δ18O) records from tropical coral skeletons are widely used for reconstructing the El Niño/ Southern Oscillation (ENSO). However, data limitations have prevented detailed investigation of the dynamical connection between ENSO variability and δ18O anomalies near sites used for reconstructions, potentially creating large uncertainties. To address this issue, a new, isotope-enabled version of the Regional Ocean Modeling System ("isoROMS") has been developed to simulate seawater oxygen isotope anomalies during historical El Niño and La Niña events at a variety of spatial scales. isoROMS is forced with 20th century (1979-2009) boundary conditions and surface fluxes, in addition to precipitation δ18O from the newly developed isotope-enabled Community Atmosphere Model (iCAM5); it thus functions as an approximate 'reanalysis' of seawater δ18O over the satellite era. The balance of surface and advective/diffusive processes during central and eastern Pacific El Niño events is investigated at sites throughout the tropical Pacific, in order to understand the mechanisms governing the magnitude of individual δ18O excursions in existing proxy records. Budget analysis shows that in many cases impacts on δ18O take place primarily through advective changes, rather than surface fluxes as previously thought. Additionally, mesoscale processes such as tropical instability waves significantly affect temperature and δ18O in some locations, and their importance varies with ENSO phase; this suggests that rectification of such high-frequency variability into the proxy signal may affect estimates of overall ENSO variance. Implications for ENSO estimates using 'pseudoproxy' conversions from instrumental data are discussed.

  18. Mapping van der Waals forces with frequency modulation dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Polesel-Maris, J.; Guo, H.; Zambelli, T.; Gauthier, S.

    2006-08-01

    Nanometre-size gold clusters supported on MoS2(0001) are investigated by means of ultrahigh-vacuum frequency modulation dynamic force microscopy. Topography and frequency shift images are simultaneously obtained using the average tunnelling current to regulate the tip-substrate distance. Two families of clusters are observed, giving different frequency shift images. While the topographic and frequency shift profiles have similar shapes on small clusters (size \\lesssim 1 nm), they are quite different near the top of large clusters (size \\gtrsim 4 nm): the topographic profile is rounded, but the frequency shift profile exhibits rather steep edges and a depression near the centre of the island. It is demonstrated that these differences result from the finite range of van der Waals forces. On small islands, the frequency shift is dominated by the interaction of the tip with the substrate. On large islands, it is dominated by the interaction with the island. The particular observed shape results from the geometry of the island. These interpretations are comforted by analytical and numerical calculations. In particular, the characteristic shape of the frequency shift profiles on large islands can be reproduced by introducing realistic parameters and considering only the contribution of van der Waals forces.

  19. Tomographic bioluminescence imaging reconstruction via a dynamically sparse regularized global method in mouse models.

    PubMed

    Liu, Kai; Tian, Jie; Qin, Chenghu; Yang, Xin; Zhu, Shouping; Han, Dong; Wu, Ping

    2011-04-01

    Generally, the performance of tomographic bioluminescence imaging is dependent on several factors, such as regularization parameters and initial guess of source distribution. In this paper, a global-inexact-Newton based reconstruction method, which is regularized by a dynamic sparse term, is presented for tomographic reconstruction. The proposed method can enhance higher imaging reliability and efficiency. In vivo mouse experimental reconstructions were performed to validate the proposed method. Reconstruction comparisons of the proposed method with other methods demonstrate the applicability on an entire region. Moreover, the reliable performance on a wide range of regularization parameters and initial unknown values were also investigated. Based on the in vivo experiment and a mouse atlas, the tolerance for optical property mismatch was evaluated with optical overestimation and underestimation. Additionally, the reconstruction efficiency was also investigated with different sizes of mouse grids. We showed that this method was reliable for tomographic bioluminescence imaging in practical mouse experimental applications. PMID:21529085

  20. Reconstructing neural dynamics using data assimilation with multiple models

    NASA Astrophysics Data System (ADS)

    Hamilton, Franz; Cressman, John; Peixoto, Nathalia; Sauer, Timothy

    2014-09-01

    Assimilation of data with models of physical processes is a critical component of modern scientific analysis. In recent years, nonlinear versions of Kalman filtering have been developed, in addition to methods that estimate model parameters in parallel with the system state. We propose a substantial extension of these tools to deal with the specific case of unmodeled variables, when training data from the variable is avaiable. The method uses a stack of several, nonidentical copies of a physical model to jointly reconstruct the variable in question. We demonstrate the ability of this technique to accurately recover an unmodeled experimental quantity, such as an ion concentration, from a single voltage trace after the training period is completed. The method is applied to reconstruct the potassium concentration in a neural culture from multielectrode array voltage measurements.

  1. Reconstruction of Covalent Organic Frameworks by Dynamic Equilibrium.

    PubMed

    Gao, Qiang; Bai, Linyi; Zeng, Yongfei; Wang, Peng; Zhang, Xiaojing; Zou, Ruqiang; Zhao, Yanli

    2015-11-16

    Covalent organic frameworks (COFs) are periodic two- or three-dimensional polymeric networks with high surface areas, low density, and designed structures. Because COFs are normally prepared based on reversible formation of covalent bonds with relatively weak stability, their structures can be easily broken or damaged due to changes in the surrounding environment. Thus, developing strategies to realize the reconstruction of COFs in order to extend their usage lifetime is crucial for practical applications. In addition, exploring the kinetics of COF growth under varied reaction conditions is important for better understanding the nucleation and growth processes of COFs. In this work, the reformation mechanism of an imine-based COF using an ex situ characterization method was investigated, disclosing an interesting COF reconstruction progress from disorder to order. The present study shows the regeneration ability of COFs, and the developed method could be generalized for broader use in the field. PMID:26450522

  2. Force Generation, Polymerization Dynamics and Nucleation of Actin Filaments

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe

    We study force generation and actin filament dynamics using stochastic and deterministic methods. First, we treat force generation of bundled actin filaments by polymerization via molecular-level stochastic simulations. In the widely-used Brownian Ratchet model, actin filaments grow freely whenever the tip-obstacle gap created by thermal fluctuation exceeds the monomer size. We name this model the Perfect Brownian Ratchet (PBR) model. In the PBR model, actin monomer diffusion is treated implicitly. We perform a series of simulations based on the PBR, in which obstacle motion is treated explicitly; in most previous studies, obstacle motion has been treated implicitly. We find that the cooperativity of filaments is generally weak in the PBR model, meaning that more filaments would grow more slowly given the same force per filament. Closed-form formulas are also developed, which match the simulation results. These portable and accurate formulas provide guidance for experiments and upper and lower bounds for theoretical analyses. We also studied a variation of the PBR, called the Diffusing Brownian Ratchet (DBR) model, in which both actin monomer and obstacle diffusion are treated explicitly. We find that the growth rate of multiple filaments is even lower, compared with that in PBR. This finding challenges the widely-accepted PBR assumption and suggests that pushing the study of actin dynamics down to the sub-nanometer level yields new insights. We subsequently used a rate equation approach to model the effect of local depletion of actin monomers on the nucleation of actin filaments on biomimetic beads, and how the effect is regulated by capping protein (CP). We find that near the bead surface, a higher CP concentration increases local actin concentration, which leads to an enhanced activities of actin filaments' nucleation. Our model analysis matches the experimental results and lends support to an important but undervalued hypothesis proposed by Carlier and

  3. Dynamic medial patellofemoral ligament reconstruction in recurrent patellar instability: A surgical technique

    PubMed Central

    Kiran, Kopuri Ravi; Srikanth, I Muni; Chinnusamy, Lenin; Deepti, K

    2015-01-01

    The medial patellofemoral ligament (MPFL) is the primary stabilizer of the patellofemoral joint; its reconstruction has been recommended in adults over the past decade after recurrent patellar instability. However, there has been no standardized technique for reconstruction, therefore, ideal graft and technique for reconstruction are yet undetermined. However, dynamic MPFL reconstruction studies claim to be superior to other procedures as it is more anatomical. This preliminary study aims at assessing the outcomes of MPFL reconstruction in a dynamic pattern using hamstring graft. We performed this procedure in four consecutive patients with chronic patellar instability following trauma. MPFL reconstruction was done with hamstring tendons detached distally and secured to patellar periosteum after being passed through a bony tunnel in the patella without an implant and using the medial collateral ligament as a pulley. In all 4 knees, the MPFL reconstruction was isolated and was not associated with any other realignment procedures. No recurrent episodes of dislocation or subluxation were reported at 24 months followup. PMID:26806970

  4. Interacting trophic forcing and the population dynamics of herring.

    PubMed

    Lindegren, Martin; Ostman, Orjan; Gårdmark, Anna

    2011-07-01

    Small pelagic fish occupy a central position in marine ecosystems worldwide, largely by determining the energy transfer from lower trophic levels to predators at the top of the food web, including humans. Population dynamics of small pelagic fish may therefore be regulated neither strictly bottom-up nor top-down, but rather through multiple external and internal drivers. While in many studies single drivers have been identified, potential synergies of multiple factors, as well as their relative importance in regulating population dynamics of small pelagic fish, is a largely unresolved issue. Using a statistical, age-structured modeling approach, we demonstrate the relative importance and influence of bottom-up (e.g., climate, zooplankton availability) and top-down (i.e., fishing and predation) factors on the population dynamics of Bothnian Sea herring (Clupea harengus) throughout its life cycle. Our results indicate significant bottom-up effects of zooplankton and interspecific competition from sprat (Sprattus sprattus), particularly on younger age classes of herring. Although top-down forcing through fishing and predation by grey seals (Halichoerus grypus) and Atlantic cod (Gadus morhua) also was evident, these factors were less important than resource availability and interspecific competition. Understanding key ecological processes and interactions is fundamental to ecosystem-based management practices necessary to promote sustainable exploitation of small pelagic fish. PMID:21870614

  5. A Minimum Fuel Based Estimator for Maneuver and Natrual Dynamics Reconstruction

    NASA Astrophysics Data System (ADS)

    Lubey, D.; Scheeres, D.

    2013-09-01

    The vast and growing population of objects in Earth orbit (active and defunct spacecraft, orbital debris, etc.) offers many unique challenges when it comes to tracking these objects and associating the resulting observations. Complicating these challenges are the inaccurate natural dynamical models of these objects, the active maneuvers of spacecraft that deviate them from their ballistic trajectories, and the fact that spacecraft are tracked and operated by separate agencies. Maneuver detection and reconstruction algorithms can help with each of these issues by estimating mismodeled and unmodeled dynamics through indirect observation of spacecraft. It also helps to verify the associations made by an object correlation algorithm or aid in making those associations, which is essential when tracking objects in orbit. The algorithm developed in this study applies an Optimal Control Problem (OCP) Distance Metric approach to the problems of Maneuver Reconstruction and Dynamics Estimation. This was first developed by Holzinger, Scheeres, and Alfriend (2011), with a subsequent study by Singh, Horwood, and Poore (2012). This method estimates the minimum fuel control policy rather than the state as a typical Kalman Filter would. This difference ensures that the states are connected through a given dynamical model and allows for automatic covariance manipulation, which can help to prevent filter saturation. Using a string of measurements (either verified or hypothesized to correlate with one another), the algorithm outputs a corresponding string of adjoint and state estimates with associated noise. Post-processing techniques are implemented, which when applied to the adjoint estimates can remove noise and expose unmodeled maneuvers and mismodeled natural dynamics. Specifically, the estimated controls are used to determine spacecraft dependent accelerations (atmospheric drag and solar radiation pressure) using an adapted form of the Optimal Control based natural dynamics

  6. The Effect of Graft Strength on Knee Laxity and Graft In-Situ Forces after Posterior Cruciate Ligament Reconstruction

    PubMed Central

    Lai, Yu-Shu; Chen, Wen-Chuan; Huang, Chang-Hung; Cheng, Cheng-Kung; Chan, Kam-Kong; Chang, Ting-Kuo

    2015-01-01

    Surgical reconstruction is generally recommended for posterior cruciate ligament (PCL) injuries; however, the use of grafts is still a controversial problem. In this study, a three-dimensional finite element model of the human tibiofemoral joint with articular cartilage layers, menisci, and four main ligaments was constructed to investigate the effects of graft strengths on knee kinematics and in-situ forces of PCL grafts. Nine different graft strengths with stiffness ranging from 0% (PCL rupture) to 200%, in increments of 25%, of an intact PCL’s strength were used to simulate the PCL reconstruction. A 100 N posterior tibial drawer load was applied to the knee joint at full extension. Results revealed that the maximum posterior translation of the PCL rupture model (0% stiffness) was 6.77 mm in the medial compartment, which resulted in tibial internal rotation of about 3.01°. After PCL reconstruction with any graft strength, the laxity of the medial tibial compartment was noticeably improved. Tibial translation and rotation were similar to the intact knee after PCL reconstruction with graft strengths ranging from 75% to 125% of an intact PCL. When the graft’s strength surpassed 150%, the medial tibia moved forward and external tibial rotation greatly increased. The in-situ forces generated in the PCL grafts ranged from 13.15 N to 75.82 N, depending on the stiffness. In conclusion, the strength of PCL grafts have has a noticeable effect on anterior-posterior translation of the medial tibial compartment and its in-situ force. Similar kinematic response may happen in the models when the PCL graft’s strength lies between 75% and 125% of an intact PCL. PMID:26001045

  7. Reconstruction of evolved dynamic networks from degree correlations

    NASA Astrophysics Data System (ADS)

    Karalus, Steffen; Krug, Joachim

    2016-06-01

    We study the importance of local structural properties in networks which have been evolved for a power-law scaling in their Laplacian spectrum. To this end, the degree distribution, two-point degree correlations, and degree-dependent clustering are extracted from the evolved networks and used to construct random networks with the prescribed distributions. In the analysis of these reconstructed networks it turns out that the degree distribution alone is not sufficient to generate the spectral scaling and the degree-dependent clustering has only an indirect influence. The two-point correlations are found to be the dominant characteristic for the power-law scaling over a broader eigenvalue range.

  8. Modelled vs. reconstructed past fire dynamics - how can we compare?

    NASA Astrophysics Data System (ADS)

    Brücher, Tim; Brovkin, Victor; Kloster, Silvia; Marlon, Jennifer R.; Power, Mitch J.

    2015-04-01

    Fire is an important process that affects climate through changes in CO2 emissions, albedo, and aerosols (Ward et al. 2012). Fire-history reconstructions from charcoal accumulations in sediment indicate that biomass burning has increased since the Last Glacial Maximum (Power et al. 2008; Marlon et al. 2013). Recent comparisons with transient climate model output suggest that this increase in global ?re activity is linked primarily to variations in temperature and secondarily to variations in precipitation (Daniau et al. 2012). In this study, we discuss the best way to compare global ?re model output with charcoal records. Fire models generate quantitative output for burned area and fire-related emissions of CO2, whereas charcoal data indicate relative changes in biomass burning for specific regions and time periods only. However, models can be used to relate trends in charcoal data to trends in quantitative changes in burned area or fire carbon emissions. Charcoal records are often reported as Z-scores (Power et al. 2008). Since Z-scores are non-linear power transformations of charcoal influxes, we must evaluate if, for example, a two-fold increase in the standardized charcoal reconstruction corresponds to a 2- or 200-fold increase in the area burned. In our study we apply the Z-score metric to the model output. This allows us to test how well the model can quantitatively reproduce the charcoal-based reconstructions and how Z-score metrics affect the statistics of model output. The Global Charcoal Database (GCD version 2.5; www.gpwg.org/gpwgdb.html) is used to determine regional and global paleofire trends from 218 sedimentary charcoal records covering part or all of the last 8 ka BP. To retrieve regional and global composites of changes in fire activity over the Holocene the time series of Z-scores are linearly averaged to achieve regional composites. A coupled climate-carbon cycle model, CLIMBA (Brücher et al. 2014), is used for this study. It consists of the

  9. Automated Reconstruction of Three-Dimensional Fish Motion, Forces, and Torques

    PubMed Central

    Voesenek, Cees J.; Pieters, Remco P. M.; van Leeuwen, Johan L.

    2016-01-01

    Fish can move freely through the water column and make complex three-dimensional motions to explore their environment, escape or feed. Nevertheless, the majority of swimming studies is currently limited to two-dimensional analyses. Accurate experimental quantification of changes in body shape, position and orientation (swimming kinematics) in three dimensions is therefore essential to advance biomechanical research of fish swimming. Here, we present a validated method that automatically tracks a swimming fish in three dimensions from multi-camera high-speed video. We use an optimisation procedure to fit a parameterised, morphology-based fish model to each set of video images. This results in a time sequence of position, orientation and body curvature. We post-process this data to derive additional kinematic parameters (e.g. velocities, accelerations) and propose an inverse-dynamics method to compute the resultant forces and torques during swimming. The presented method for quantifying 3D fish motion paves the way for future analyses of swimming biomechanics. PMID:26752597

  10. Reconstruction of dark energy and expansion dynamics using Gaussian processes

    SciTech Connect

    Seikel, Marina; Clarkson, Chris; Smith, Mathew E-mail: chris.clarkson@uct.ac.za

    2012-06-01

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space, as the errors found depend strongly on the parametrisation considered. We present a new non-parametric approach to reconstructing the history of the expansion rate and dark energy using Gaussian Processes, which is a fully Bayesian approach for smoothing data. We present a pedagogical introduction to Gaussian Processes, and discuss how it can be used to robustly differentiate data in a suitable way. Using this method we show that the Dark Energy Survey - Supernova Survey (DES) can accurately recover a slowly evolving equation of state to σ{sub w} = ±0.05 (95% CL) at z = 0 and ±0.25 at z = 0.7, with a minimum error of ±0.025 at the sweet-spot at z ∼ 0.16, provided the other parameters of the model are known. Errors on the expansion history are an order of magnitude smaller, yet make no assumptions about dark energy whatsoever. A code for calculating functions and their first three derivatives using Gaussian processes has been developed and is available for download.

  11. Dynamic piezoresponse force microscopy: Spatially resolved probing of polarization dynamics in time and voltage domains

    SciTech Connect

    Kumar, Amit; Ehara, Y; Wada, A.; Funakubo, Hiroshi; Griggio, Flavio; Trolier-McKinstry, Susan; Jesse, Stephen; Kalinin, Sergei V

    2012-01-01

    An approach for probing dynamic phenomena during hysteresis loop measurements in piezoresponse force microscopy (PFM) is developed. Dynamic PFM (D-PFM) necessitates development of 5-dimensional (5D) data acquisition protocols and associated methods for analysis and visualization of multidimensional data. Using a combination of multivariate statistical analysis and phenomenological fitting, we explore dynamic behavior during polarization switching in model ferroelectric films with dense ferroelastic domain structures and in ferroelectric capacitors. In polydomain films, multivariate analysis of the switching data suggests that ferroelectric and ferroelastic components can be decoupled and time dynamics can be explored. In capacitors, a strong correlation between polarization dynamics and microstructure is observed. The future potential of D-PFM for probing time-dependent hysteretic phenomena in ferroelectrics and ionic systems is discussed.

  12. Laser Actuation of Cantilevers for Picometre Amplitude Dynamic Force Microscopy

    PubMed Central

    Evans, Drew R.; Tayati, Ponlawat; An, Hongjie; Lam, Ping Koy; Craig, Vincent S. J.; Senden, Tim J.

    2014-01-01

    As nanoscale and molecular devices become reality, the ability to probe materials on these scales is increasing in importance. To address this, we have developed a dynamic force microscopy technique where the flexure of the microcantilever is excited using an intensity modulated laser beam to achieve modulation on the picoscale. The flexure arises from thermally induced bending through differential expansion and the conservation of momentum when the photons are reflected and absorbed by the cantilever. In this study, we investigated the photothermal and photon pressure responses of monolithic and layered cantilevers using a modulated laser in air and immersed in water. The developed photon actuation technique is applied to the stretching of single polymer chains. PMID:24993548

  13. Laser actuation of cantilevers for picometre amplitude dynamic force microscopy.

    PubMed

    Evans, Drew R; Tayati, Ponlawat; An, Hongjie; Lam, Ping Koy; Craig, Vincent S J; Senden, Tim J

    2014-01-01

    As nanoscale and molecular devices become reality, the ability to probe materials on these scales is increasing in importance. To address this, we have developed a dynamic force microscopy technique where the flexure of the microcantilever is excited using an intensity modulated laser beam to achieve modulation on the picoscale. The flexure arises from thermally induced bending through differential expansion and the conservation of momentum when the photons are reflected and absorbed by the cantilever. In this study, we investigated the photothermal and photon pressure responses of monolithic and layered cantilevers using a modulated laser in air and immersed in water. The developed photon actuation technique is applied to the stretching of single polymer chains. PMID:24993548

  14. Molecular dynamics simulations of methane hydrate using polarizable force fields

    SciTech Connect

    Jiang, H.N.; Jordan, K.D.; Taylor, C.E.

    2007-03-01

    Molecular dynamics simulations of methane hydrate have been carried out using the AMOEBA and COS/G2 polarizable force fields. Properties examined include the temperature dependence of the lattice constant, the OC and OO radial distribution functions and the vibrational spectra. Both the AMOEBA and COS/G2 models are found to successfully account for the available experimental data, with overall slightly better agreement with experiment being found for the AMOEBA model. Several properties calculated using the AMOEBA and COS/G2 models differ appreciable from the corresponding results obtained previously using the polarizable TIP4P-FQ model. This appears to be due to the inadequacy of the treatment of polarization, especially, the restriction of polarization to in-plane only, in the TIP4P-FQ model.

  15. Charge-state dynamics in electrostatic force spectroscopy

    NASA Astrophysics Data System (ADS)

    Ondráček, Martin; Hapala, Prokop; Jelínek, Pavel

    2016-07-01

    We present a numerical model that allows us to study the response of an oscillating probe in electrostatic force spectroscopy to charge switching in quantum dots at various time scales. The model provides more insight into the behavior of frequency shift and dissipated energy under different scanning conditions when measuring a temporarily charged quantum dot on a surface. Namely, we analyze the dependence of the frequency shift, the dissipated energy, and their fluctuations on the resonance frequency of the tip and on the electron tunneling rates across the tip–quantum dot and quantum dot–sample junctions. We discuss two complementary approaches to simulating the charge dynamics, a stochastic and a deterministic one. In addition, we derive analytic formulas valid for small amplitudes, describing relations between the frequency shift, dissipated energy, and the characteristic rates driving the charging and discharging processes.

  16. Charge-state dynamics in electrostatic force spectroscopy.

    PubMed

    Ondráček, Martin; Hapala, Prokop; Jelínek, Pavel

    2016-07-01

    We present a numerical model that allows us to study the response of an oscillating probe in electrostatic force spectroscopy to charge switching in quantum dots at various time scales. The model provides more insight into the behavior of frequency shift and dissipated energy under different scanning conditions when measuring a temporarily charged quantum dot on a surface. Namely, we analyze the dependence of the frequency shift, the dissipated energy, and their fluctuations on the resonance frequency of the tip and on the electron tunneling rates across the tip-quantum dot and quantum dot-sample junctions. We discuss two complementary approaches to simulating the charge dynamics, a stochastic and a deterministic one. In addition, we derive analytic formulas valid for small amplitudes, describing relations between the frequency shift, dissipated energy, and the characteristic rates driving the charging and discharging processes. PMID:27242270

  17. Force regulated dynamics of RPA on a DNA fork

    PubMed Central

    Kemmerich, Felix E.; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf

    2016-01-01

    Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg2+ concentrations, such that human RPA can melt DNA in absence of force. PMID:27016742

  18. Current Status of Protein Force Fields for Molecular Dynamics

    PubMed Central

    Lopes, Pedro E.M.; Guvench, Olgun

    2015-01-01

    Summary The current status of classical force fields for proteins is reviewed. These include additive force fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. Parametrization strategies developed specifically for the Drude force field are described and compared with the additive CHARMM36 force field. Results from molecular simulations of proteins and small peptides are summarized to illustrate the performance of the Drude and AMOEBA force fields. PMID:25330958

  19. Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures

    PubMed Central

    Chen, Yong; Cai, Jiye; Zhao, Tao; Wang, Chenxi; Dong, Shuo; Luo, Shuqian; Chen, Zheng W.

    2010-01-01

    The thin sectioning has been widely applied in electron microscopy (EM), and successfully used for an in situ observation of inner ultrastructure of cells. This powerful technique has recently been extended to the research field of atomic force microscopy (AFM). However, there have been no reports describing AFM imaging of serial thin sections and three-dimensional (3-D) reconstruction of cells and their inner structures. In the present study, we used AFM to scan serial thin sections approximately 60nm thick of a mouse embryonic stem (ES) cell, and to observe the in situ inner ultrastructure including cell membrane, cytoplasm, mitochondria, nucleus membrane, and linear chromatin. The high-magnification AFM imaging of single mitochondria clearly demonstrated the outer membrane, inner boundary membrane and cristal membrane of mitochondria in the cellular compartment. Importantly, AFM imaging on six serial thin sections of a single mouse ES cell showed that mitochondria underwent sequential changes in the number, morphology and distribution. These nanoscale images allowed us to perform 3-D surface reconstruction of interested interior structures in cells. Based on the serial in situ images, 3-D models of morphological characteristics, numbers and distributions of interior structures of the single ES cells were validated and reconstructed. Our results suggest that the combined AFM and serial-thin-section technique is useful for the nanoscale imaging and 3-D reconstruction of single cells and their inner structures. This technique may facilitate studies of proliferating and differentiating stages of stem cells or somatic cells at a nanoscale. PMID:15850704

  20. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Sugiyama, G; Kosovic, B; Hanley, W; Johannesson, G; Larsen, S; Loosmore, G; Lundquist, J; Mirin, A; Nitao, J; Serban, R; Dyer, K

    2004-10-13

    For atmospheric releases, event reconstruction answers the critical questions - How much material was released? When? Where? and What are the potential consequences? Inaccurate estimation of the source term can lead to gross errors, time delays during a crisis, and even fatalities. We are developing a capability that seamlessly integrates observational data streams with predictive models in order to provide the best possible estimates of unknown source term parameters, as well as optimal and timely situation analyses consistent with both models and data. Our approach utilizes Bayesian inference and stochastic sampling methods (Markov Chain and Sequential Monte Carlo) to reformulate the inverse problem into a solution based on efficient sampling of an ensemble of predictive simulations, guided by statistical comparisons with data.

  1. HYPR: constrained reconstruction for enhanced SNR in dynamic medical imaging

    NASA Astrophysics Data System (ADS)

    Mistretta, C.; Wieben, O.; Velikina, J.; Wu, Y.; Johnson, K.; Korosec, F.; Unal, O.; Chen, G.; Fain, S.; Christian, B.; Nalcioglu, O.; Kruger, R. A.; Block, W.; Samsonov, A.; Speidel, M.; Van Lysel, M.; Rowley, H.; Supanich, M.; Turski, P.; Wu, Yan; Holmes, J.; Kecskemeti, S.; Moran, C.; O'Halloran, R.; Keith, L.; Alexander, A.; Brodsky, E.; Lee, J. E.; Hall, T.; Zagzebski, J.

    2008-03-01

    During the last eight years our group has developed radial acquisitions with angular undersampling factors of several hundred that accelerate MRI in selected applications. As with all previous acceleration techniques, SNR typically falls as least as fast as the inverse square root of the undersampling factor. This limits the SNR available to support the small voxels that these methods can image over short time intervals in applications like time-resolved contrast-enhanced MR angiography (CE-MRA). Instead of processing each time interval independently, we have developed constrained reconstruction methods that exploit the significant correlation between temporal sampling points. A broad class of methods, termed HighlY Constrained Back PRojection (HYPR), generalizes this concept to other modalities and sampling dimensions.

  2. Reconstruction of food conditions for Northeast Atlantic bivalve species based on Dynamic Energy Budgets

    NASA Astrophysics Data System (ADS)

    Freitas, Vânia; Cardoso, Joana F. M. F.; Santos, Sílvia; Campos, Joana; Drent, Jan; Saraiva, Sofia; Witte, Johannes IJ.; Kooijman, Sebastiaan A. L. M.; Van der Veer, Henk W.

    2009-08-01

    Required assimilated energy to support observed growth was reconstructed for four common bivalve species ( Mya arenaria, Cerastoderma edule, Mytilus edulis and Macoma balthica) from various Northeast Atlantic coastal areas, along the species distributional range. The approach applied was based on the Dynamic Energy Budget (DEB) theory whereby observed growth patterns in the field, in combination with prevailing temperatures, were used to reconstruct the average food intake experienced in the field scaled to the maximum possible. For all species, results suggest food limitation over the range of locations. In general, reconstructed food intake indicated better conditions for C. edule compared to the other species, while M. edulis presented the lowest food conditions in all the areas. Despite the indications for a latitudinal trend in primary production, no clear pattern or relationship between reconstructed food conditions and latitude was observed suggesting that any trend may be overruled by local conditions.

  3. Regularized Fully 5D Reconstruction of Cardiac Gated Dynamic SPECT Images.

    PubMed

    Niu, Xiaofeng; Yang, Yongyi; Jin, Mingwu; Wernick, Miles N; King, Michael A

    2010-01-01

    In our recent work, we proposed an image reconstruction procedure aimed to unify gated imaging and dynamic imaging in nuclear cardiac imaging. With this procedure the goal is to obtain an image sequence from a single acquisition which shows simultaneously both cardiac motion and tracer distribution change over the course of imaging. In this work, we further develop and demonstrate this procedure for fully 5D (3D space plus time plus gate) reconstruction in gated, dynamic cardiac SPECT imaging, where the challenge is even greater without the use of multiple fast camera rotations. For 5D reconstruction, we develop and compare two iterative algorithms: one is based on the modified block sequential regularized EM (BSREM-II) algorithm, and the other is based on the one-step late (OSL) algorithm. In our experiments, we simulated gated cardiac imaging with the NURBS-based cardiac-torso (NCAT) phantom and Tc99m-Teboroxime as the imaging agent, where acquisition with the equivalent of only three full camera rotations was used during the course of a 12-minute postinjection period. We conducted a thorough evaluation of the reconstruction results using a number of quantitative measures. Our results demonstrate that the 5D reconstruction procedure can yield gated dynamic images which show quantitative information for both perfusion defect detection and cardiac motion. PMID:24049191

  4. A New Forced Oscillation Capability for the Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Cleckner, Craig S.

    2002-01-01

    A new forced oscillation system has been installed and tested at NASA Langley Research Center's Transonic Dynamics Tunnel (TDT). The system is known as the Oscillating Turntable (OTT) and has been designed for the purpose of oscillating, large semispan models in pitch at frequencies up to 40 Hz to acquire high-quality unsteady pressure and loads data. Precisely controlled motions of a wind-tunnel model on the OTT can yield unsteady aerodynamic phenomena associated with flutter, limit cycle oscillations, shock dynamics, and non-linear aerodynamic effects on many vehicle configurations. This paper will discuss general design and components of the OTT and will present test data from performance testing and from research tests on two rigid semispan wind-tunnel models. The research tests were designed to challenge the OTT over a wide range of operating conditions while acquiring unsteady pressure data on a small rectangular supercritical wing and a large supersonic transport wing. These results will be presented to illustrate the performance capabilities, consistency of oscillations, and usefulness of the OTT as a research tool.

  5. Bayer patterned high dynamic range image reconstruction using adaptive weighting function

    NASA Astrophysics Data System (ADS)

    Kang, Hee; Lee, Suk Ho; Song, Ki Sun; Kang, Moon Gi

    2014-12-01

    It is not easy to acquire a desired high dynamic range (HDR) image directly from a camera due to the limited dynamic range of most image sensors. Therefore, generally, a post-process called HDR image reconstruction is used, which reconstructs an HDR image from a set of differently exposed images to overcome the limited dynamic range. However, conventional HDR image reconstruction methods suffer from noise factors and ghost artifacts. This is due to the fact that the input images taken with a short exposure time contain much noise in the dark regions, which contributes to increased noise in the corresponding dark regions of the reconstructed HDR image. Furthermore, since input images are acquired at different times, the images contain different motion information, which results in ghost artifacts. In this paper, we propose an HDR image reconstruction method which reduces the impact of the noise factors and prevents ghost artifacts. To reduce the influence of the noise factors, the weighting function, which determines the contribution of a certain input image to the reconstructed HDR image, is designed to adapt to the exposure time and local motions. Furthermore, the weighting function is designed to exclude ghosting regions by considering the differences of the luminance and the chrominance values between several input images. Unlike conventional methods, which generally work on a color image processed by the image processing module (IPM), the proposed method works directly on the Bayer raw image. This allows for a linear camera response function and also improves the efficiency in hardware implementation. Experimental results show that the proposed method can reconstruct high-quality Bayer patterned HDR images while being robust against ghost artifacts and noise factors.

  6. Adaptive pulsed laser line extraction for terrain reconstruction using a dynamic vision sensor

    PubMed Central

    Brandli, Christian; Mantel, Thomas A.; Hutter, Marco; Höpflinger, Markus A.; Berner, Raphael; Siegwart, Roland; Delbruck, Tobi

    2014-01-01

    Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor (DVS) with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor's ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500 Hz were achieved using a line laser of 3 mW at a distance of 45 cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2 mm. PMID:24478619

  7. Adaptive pulsed laser line extraction for terrain reconstruction using a dynamic vision sensor.

    PubMed

    Brandli, Christian; Mantel, Thomas A; Hutter, Marco; Höpflinger, Markus A; Berner, Raphael; Siegwart, Roland; Delbruck, Tobi

    2013-01-01

    Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor (DVS) with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor's ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500 Hz were achieved using a line laser of 3 mW at a distance of 45 cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2 mm. PMID:24478619

  8. Comparison study of temporal regularization methods for fully 5D reconstruction of cardiac gated dynamic SPECT.

    PubMed

    Niu, Xiaofeng; Yang, Yongyi; King, Michael A

    2012-09-01

    Temporal regularization plays a critical role in cardiac gated dynamic SPECT reconstruction, of which the goal is to obtain an image sequence from a single acquisition which simultaneously shows both cardiac motion and tracer distribution change over the course of imaging (termed 5D). In our recent work, we explored two different approaches for temporal regularization of the dynamic activities in gated dynamic reconstruction without the use of fast camera rotation: one is the dynamic EM (dEM) approach which is imposed on the temporal trend of the time activity of each voxel, and the other is a B-spline modeling approach in which the time activity is regulated by a set of B-spline basis functions. In this work, we extend the B-spline approach to fully 5D reconstruction and conduct a thorough quantitative comparison with the dEM approach. In the evaluation of the reconstruction results, we apply a number of quantitative measures on two major aspects of the reconstructed dynamic images: (1) the accuracy of the reconstructed activity distribution in the myocardium and (2) the ability of the reconstructed dynamic activities to differentiate perfusion defects from normal myocardial wall uptake. These measures include the mean square error (MSE), bias-variance analysis, accuracy of time-activity curves (TAC), contrast-to-noise ratio of a defect, composite kinetic map of the left ventricle wall and perfusion defect detectability with channelized Hotelling observer. In experiments, we simulated cardiac gated imaging with the NURBS-based cardiac-torso phantom and Tc99m-Teboroxime as the imaging agent, where acquisition with the equivalent of only three full camera rotations was used during the imaging period. The results show that both dEM and B-spline 5D could achieve similar overall accuracy in the myocardium in terms of MSE. However, compared to dEM 5D, the B-spline approach could achieve a more accurate reconstruction of the voxel TACs; in particular, B-spline 5D could

  9. Lacustrine 87Sr/86Sr as a tracer to reconstruct Milankovitch forcing of the Eocene hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Baddouh, M'bark; Meyers, Stephen R.; Carroll, Alan R.; Beard, Brian L.; Johnson, Clark M.

    2016-08-01

    The Green River Formation (GRF) provides one of the premier paleoclimate archives of the Early Eocene Climatic Optimum (∼50 Ma), representing the apex of the early Cenozoic greenhouse climate. Rhythmic lake-level variability expressed in the GRF has inspired numerous hypotheses for the behavior of the Eocene hydrologic cycle, including its linkage to astronomical forcing, solar variability, and the El Niño Southern Oscillation (ENSO). However, the lack of sufficient proxy data to document atmospheric water-mass transport and the geographic pattern of evaporation/precipitation/runoff has made it difficult to discriminate between different models for astronomical forcing. Variable 87Sr/86Sr ratios of bedrock that encompass the GRF provide an opportunity to reconstruct the spatial expression of the Eocene hydrologic cycle and its linkage to lake level. Here Sr isotope data from the Wilkins Peak Member, a rhythmic succession that has been demonstrated to record Milankovitch forcing of lake levels, indicate that high lake levels reflect an increased proportion of runoff from less radiogenic rocks west of the basin, eliminating a number of the existing astronomical-forcing hypotheses. The 87Sr/86Sr variability is consistent with a change in mean ENSO state, which is predicted by climate models to be linked to orbital-insolation. Thus, the 87Sr/86Sr data reveal a coupling of high frequency (ENSO) and low frequency (astronomical) climate variability, and also predict the existence of sizable astronomically-forced alpine snowpack during the last greenhouse climate. More broadly, this study demonstrates the utility of 87Sr/86Sr as a powerful tool for reconstructing the deep-time hydrologic cycle.

  10. Force and Moment Approach for Achievable Dynamics Using Nonlinear Dynamic Inversion

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Bacon, Barton J.

    1999-01-01

    This paper describes a general form of nonlinear dynamic inversion control for use in a generic nonlinear simulation to evaluate candidate augmented aircraft dynamics. The implementation is specifically tailored to the task of quickly assessing an aircraft's control power requirements and defining the achievable dynamic set. The achievable set is evaluated while undergoing complex mission maneuvers, and perfect tracking will be accomplished when the desired dynamics are achievable. Variables are extracted directly from the simulation model each iteration, so robustness is not an issue. Included in this paper is a description of the implementation of the forces and moments from simulation variables, the calculation of control effectiveness coefficients, methods for implementing different types of aerodynamic and thrust vectoring controls, adjustments for control effector failures, and the allocation approach used. A few examples illustrate the perfect tracking results obtained.

  11. The Effects of Balance Training on Static and Dynamic Postural Stability Indices After Acute ACL Reconstruction

    PubMed Central

    Akbari, Asghar; Ghiasi, Fateme; Mir, Mohsen; Hosseinifar, Mohammad

    2016-01-01

    Background: Proprioception and postural stability play an important role in knee movements. However, there are controversies about the overall recovery time of proprioception following knee surgery and onset of balance and neuromuscular training after ACL reconstruction. Therefore, it is necessary to evaluate the effect of balance training in early stage of knee rehabilitation after anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to evaluate the effect of balance exercises on postural stability indices in subjects with anterior cruciate ligament (ACL) reconstruction. Methods: The study was a controlled randomized trial study. Twenty four patients who had ACL reconstructed (balance training group) and twenty four healthy adults without any knee injury (control group) were recruited in the study. The balance exercises group performed balance exercises for 2 weeks. Before and after the interventions, overall, anteroposterior, and mediolateral stability indices were measured with a Biodex Balance System in bilateral and unilateral stance positions with the eyes open and closed. T-tests were used for statistical analysis (p<0.05). Results: Results showed that amount of static stability indices did not change after training and there were not significant differences in static stability indices before and after balance training (p>0.05). Although amount of dynamic stability indices decreased, there were not significant differences in dynamic stability indices before and after balance training (p>0.05). Amount of dynamic stability indices were decreased in balance training group, however, there were not significant differences between groups (p>0.05). Conclusion: These results support that balance exercise could partially improved dynamic stability indices in early stage of ACL reconstruction rehabilitation. The results of this study suggest that balance exercises should be part of the rehabilitation program following ACL reconstruction. PMID

  12. Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.

    PubMed

    Zhao, Li; Fielden, Samuel W; Feng, Xue; Wintermark, Max; Mugler, John P; Meyer, Craig H

    2015-11-01

    Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness. PMID:26169322

  13. Conjugated Polymer Nanoparticle Hybrids: Structure, Dynamics and Forces

    NASA Astrophysics Data System (ADS)

    Perahia, Dvora

    2011-03-01

    While nanoparticles (NPs) have unique tunable elctro-optical properties and exceptional mechanical strength, it remains a challenge to integrate them into devices while retaining the advantages of the nanoscale. Tethering polymeric materials to the NPs surfaces has the potential to stabilize single NPs and direct their assembly. The polymers may serve in several capacities from a simple tether to a matrix to directed assembly tool taking advantage of the inherent structure of the polymers and as an active component in a complex material. However confining a large molecule to a highly curved surface affects the inherent configuration of the polymer. These effects are of particular interests in conjugated polymer-nanoparticle hybrids, where the conformation of the polymers affects not only the assembly of the nanoparticles but also the optical and electronic communication between the NPs. Using molecular dynamic simulations we have studied the structure of a single hybrid of para dialkyl phenylene ethynelyne (PPE) grafted nanoparticles. PPEs are polymers whose conformation determines their degree of conjugation and therefore their electro-optical response. Using simulations coupled with neutron scattering studies we have shown that PPE is a rigid polymer that is fully extended in dilute solutions in good and theta solvents but can be forced into a collapsed configuration in a poor a solvent. When confined to a nanoparticle surface, the PPE chains are fully extended but cluster as the solvent quality is reduced. Results for the conformation of grafted PPE molecules on a single nanoparticle and the forces between two nanoparticles as a function of chain length and solvent quality will be presented. These simulations provide insight to the interactions that result in formation of tunable hybrids. This work has been done in collaboration with Gary S. Grest.

  14. Forcing of stratospheric chemistry and dynamics during the Dalton Minimum

    NASA Astrophysics Data System (ADS)

    Anet, J. G.; Muthers, S.; Rozanov, E.; Raible, C. C.; Peter, T.; Stenke, A.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Schmutz, W.

    2013-11-01

    when all forcing factors are applied during the Dalton Minimum (DM) - this effect is especially well visible for NOx/NOy. Thus, this study also shows the non-linear behaviour of the coupled chemistry-climate system. Finally, we conclude that especially UV and volcanic eruptions dominate the changes in the ozone, temperature and dynamics while the NOx field is dominated by the energetic particle precipitation. Visible radiation changes have only very minor effects on both stratospheric dynamics and chemistry.

  15. A preliminary investigation of the dynamic force-calibration of a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The aerodynamic forces and moments acting upon a magnetically suspended wind tunnel model are derived from calibrations of suspension electro magnet currents against known forces. As an alternative to the conventional calibration method of applying steady forces to the model, early experiences with dynamic calibration are outlined, that is a calibration obtained by oscillating a model in suspension and deriving a force/current relationship from its inertia force and the unsteady components of currents. Advantages of dynamic calibration are speed and simplicity. The two methods of calibration applied to one force component show good agreement.

  16. New SSI and TSI reconstruction suggests large value of the radiative solar forcing

    NASA Astrophysics Data System (ADS)

    Shapiro, A.; Schmutz, W. K.; Thuillier, G.; Rozanov, E.; Haberreiter, M.; Schoell, M.; Shapiro, A.; Nyeki, S.

    2010-12-01

    We have developed and published the COde for Solar Irradiance (COSI) which allows us to calculate the entire solar spectrum. COSI reproduces the spectral irradiance measured by SOLSTICE (up to 320 nm) and SIM (from 320 nm onward) onboard the SORCE satellite during the 2008 solar minimum as well as SOLSPEC during the ATLAS 3 mission in 1994 with high accuracy. COSI is also used as a tool for modeling the variability of the solar irradiance. In our new reconstruction we represent the quiet Sun as a combination of two components. The first corresponds to the least active areas of the Sun as presently observed, while the second component is responsible for the magnetic activity of the quiet Sun. The time-dependent filling factors of these components are calculated based on the solar activity as derived from cosmogenic isotope concentrations in natural archieves. This allows us to obtain a time-dependent reconstructed solar spectrum from 7000 BC to the present with a temporal resolution of 22 years. From 1610 onward we have additional information from sunspot numbers, which allows the reconstruction of the spectral solar irradiance with a yearly resolution. These basic assumptions lead to a total and spectral solar irradiance that was substantially lower during the Maunder minimum than observed today. The difference is remarkably larger than other estimations published in the recent literature. Using our reconstruction as an input to a chemistry-climate model we show that the enhanced UV variability results in significant variations of stratospheric ozone and temperature.

  17. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence

    SciTech Connect

    Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.

    2015-04-21

    Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that

  18. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Mirin, A; Serban, R; Kosovic, B

    2005-03-14

    This is a collaborative LDRD Exploratory Research project involving four directorates--Energy & Environment, Engineering, NAI and Computation. The project seeks to answer the following critical questions regarding atmospheric releases--''How much material was released? When? Where? and What are the potential consequences?'' Inaccurate estimation of the source term can lead to gross errors, time delays during a crisis, and even fatalities. We are developing a capability that seamlessly integrates observational data streams with predictive models in order to provide the best possible estimates of unknown source term parameters, as well as optimal and timely situation analyses consistent with both models and data. Our approach utilizes Bayesian inference and stochastic sampling methods (Markov Chain and Sequential Monte Carlo) to reformulate the inverse problem into a solution based on efficient sampling of an ensemble of predictive simulations, guided by statistical comparisons with data. We are developing a flexible and adaptable data-driven event-reconstruction capability for atmospheric releases that provides (1) quantitative probabilistic estimates of the principal source-term parameters (e.g., the time-varying release rate and location); (2) predictions of increasing fidelity as an event progresses and additional data become available; and (3) analysis tools for sensor network design and uncertainty studies. Our computational framework incorporates multiple stochastic algorithms, operates with a range and variety of atmospheric models, and runs on multiple computer platforms, from workstations to large-scale computing resources. Our final goal is a multi-resolution capability for both real-time operational response and high fidelity multi-scale applications.

  19. Traction force dynamics predict gap formation in activated endothelium.

    PubMed

    Valent, Erik T; van Nieuw Amerongen, Geerten P; van Hinsbergh, Victor W M; Hordijk, Peter L

    2016-09-10

    In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. PMID:27498166

  20. Reconstructing ancient river dynamics from the stratigraphic record: can lessons from the past inform our future?

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Chamberlin, E.; Baisden, T.

    2014-12-01

    The richness of the deep-time record and its potential for revealing important characteristics of ancient fluvial landscapes has been demonstrated time and again, including compelling examples of rivers altering their behavior in response to changes in vegetation patterns or abrupt shifts in water and sediment discharge. At present, reconstructions of ancient river and floodplain dynamics are commonly qualitative, and when quantitative metrics are used, it is often for comparison among ancient deposits. Without being able to reconstruct, more comprehensively, important aspects of ancient river and floodplains dynamics, this information has only anecdotal relevance for evaluating and managing present-day landscapes. While methods for reconstructing hydrodynamic and morphodynamic aspects of ancient rivers and floodplains are useful, uncertainties associated with these snapshots complicate the ability to translate observations from geologic to engineering scales, thereby limiting the utility of insight from Earth's past in decision-making and development of sustainable landscape-management practices for modern fluvial landscapes. Here, we explore the degree to which paleomorphodynamic reconstructions from ancient channel and floodplain deposits can be used to make specific, quantitative inferences about ancient river dynamics. We compare a suite of paleoenvironmental measurements from a variety of ancient fluvial deposits (including reconstructions of paleoflow depth, paleoslope, paleo-channel mobility, the caliber of paleo-sediment load, and paleo-floodplain heterogeneity) in an effort to evaluate sampling and empirical uncertainties associated with these methods and identify promising avenues for developing more detailed landscape reconstructions. This work is aimed at helping to develop strategies for extracting practicable information from the stratigraphic record that is relevant for sustainably managing and predicting changes in today's environments.

  1. Efficient estimation of dynamic cardiac SPECT kinetic parameters using singular value decomposition reconstruction

    SciTech Connect

    Gulberg, G.T.; Huesman, R.H.; Zeng, G.L. |

    1994-05-01

    Error estimates of time activity curves are necessary to obtain efficient estimates of dynamic of dynamic cardiac SPECT kinetic parameters which are determined using weighted least squares fitting that incorporates these error estimates. In cardiac SPECT, iterative algorithms are used to obtain attenuation corrected reconstructions, and the use of an iterative algorithm makes it difficult to estimate the errors of the estimated reconstruction. An alternate approach is to estimate the reconstruction by solving the system of normal equations using singular value decomposition. This method was applied to dynamic data acquired from a canine study. A canine was injected with 25 mCi of Tc-99m-teboroxime and was imaged using a three-detector SPECT system (Picker PRISM 3000). Sequential 5 sec tomographic acquisitions were acquired for 15 min, allowing both the wash-in and wash-out of teboroxime to be measured. The projection data were reconstructed into 64x64 transaxial slices for each 5 sec acquisition using singular value decomposition to calculate the reconstructed estimate, the variance of the estimate, and the covariance between tissue and blood regions-of-interest. One 4096x4096 singular value decomposition was obtained in 71 hours using a 40 mHz Supper SPARC processor. Tissue and blood time-activity curves were generated from the attenuation corrected transaxial reconstructions. The blood activity curve was generated from a region drawn inside the left ventricle. A two-compartment model was fit to the blood and tissue activity curves to give weighted least squares estimates of blood volume fraction and wash-in and wash-out rate constants specifying teboroxime kinetics for regions of the left ventricular myocardium. As expected the weighted least squares estimates of the kinetic parameters had smaller variances than the unweighted estimates, thus demonstrating more efficient parameter estimation.

  2. Experimental investigation of resonance curves in dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Polesel-Maris, Jérôme; Piednoir, Agnès; Zambelli, Tomaso; Bouju, Xavier; Gauthier, Sébastien

    2003-09-01

    A precise experimental investigation of the amplitude and phase resonance curves of a driven dynamic force microscope (DFM) cantilever interacting with an Al2O3(0001) surface in ultra-high vacuum is reported. The large amplitude (a few tens of nanometres), high cantilever stiffness (25 N m-1) and high quality factor (a few 104) characterizing these experiments are typical of the frequency modulation (FM) mode of DFM. The whole range of tip-substrate distances where a stationary oscillation of the cantilever can be maintained is explored. It covers two different regimes: a large distance regime where only long range conservative van der Waals interactions contribute and a small distance regime where short range interactions play a significant role. A comparison is made with frequency shift and excitation amplitude curves as a function of the distance acquired in the FM mode. It is also shown that approach-retract amplitude and phase curves usually obtained in the amplitude modulation mode can be extracted from these data. These experimental results are compared with analytical predictions reported in the literature. An excellent agreement is found in the van der Waals domain, allowing us to evaluate the Hamaker constant for the alumina-vacuum-silicon system.

  3. Blending geological observations and convection models to reconstruct mantle dynamics

    NASA Astrophysics Data System (ADS)

    Coltice, Nicolas; Bocher, Marie; Fournier, Alexandre; Tackley, Paul

    2015-04-01

    Knowledge of the state of the Earth mantle and its temporal evolution is fundamental to a variety of disciplines in Earth Sciences, from the internal dynamics to its many expressions in the geological record (postglacial rebound, sea level change, ore deposit, tectonics or geomagnetic reversals). Mantle convection theory is the centerpiece to unravel the present and past state of the mantle. For the past 40 years considerable efforts have been made to improve the quality of numerical models of mantle convection. However, they are still sparsely used to estimate the convective history of the solid Earth, in comparison to ocean or atmospheric models for weather and climate prediction. The main shortcoming is their inability to successfully produce Earth-like seafloor spreading and continental drift self-consistently. Recent convection models have begun to successfully predict these processes. Such breakthrough opens the opportunity to retrieve the recent dynamics of the Earth's mantle by blending convection models together with advanced geological datasets. A proof of concept will be presented, consisting in a synthetic test based on a sequential data assimilation methodology.

  4. Solar forcing and atmospheric control of paleoflood dynamics in the Bernese Alps, Switzerland

    NASA Astrophysics Data System (ADS)

    Schulte, Lothar; Peña, Juan Carlos; Burjachs, Francesc; Carvalho, Filipe; Llorca, Jaime; Julià, Ramon; Lomax, Johanna; Schmidt, Thomas; Rubio, Patricio; Losada, Justino; Veit, Heinz

    2014-05-01

    A multidisciplinary approach provides data from natural, historical, and instrumental time series, for the study of potential effects of climatic changes on alpine floods outside the known range of extreme events. The research focuses on the densely populated Bernese Alps, which are a true "hot spot" of hydrological risk. For the reconstruction of climate variability and floods, interdecadal-resolution alluvial delta plain records were examined. The multi-proxy approach affords insight into alpine flood dynamics of mid-scale catchments during the last three millennia. Spectral analysis of the geochemical and pollen time series records and climate proxies (δ14C, δ18O isotopes from the Greenland ice, NAO) evidence similar periodicities of 60, 85, 105 and 200 yrs. Thus, the mechanisms of the flood processes are strongly influenced by the North Atlantic dynamics and solar activity. The proxies indicate that cooler climate pulses and transitions from cool to warm climate pulses were an important external driving force of floods. This hypothesis is supported by the reconstructed floods of the Aare and Lütschine rivers from local documentary sources during the last 500 yrs. Flood periods inferred from sedimentary archives (flood layers, geochemical proxies and shifts of river channel) were calibrated by local documentary flood records and compared with the pattern of settlement on flood prone landforms. The generated data series shows also a good correlation with climate proxies, such as the annual temperatures of Europe (Luterbacher et al., 2004), tree ring based summer temperatures of Central Europe (Büntgen et al., 2011) and total solar irradiance according to the model of Steinhilber et al. (2009). With regard to the last two centuries flood magnitude and frequencies (exact dating) as well as driving mechanisms were reconstructed with more precision. Furthermore, a summer flood index of Switzerland (INU) based on damages recorded from 1800 to 2008 AD was performed

  5. Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Duckhoe; Sahin, Ozgur

    2015-03-01

    Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.

  6. (2n × 1) Reconstructions of TiO2(011) Revealed by Noncontact Atomic Force Microscopy and Scanning Tunneling Microscopy

    PubMed Central

    2014-01-01

    We have used noncontact atomic force microscopy (NC-AFM) and scanning tunneling microscopy (STM) to study the rutile TiO2(011) surface. A series of (2n × 1) reconstructions were observed, including two types of (4 × 1) reconstruction. High-resolution NC-AFM and STM images indicate that the (4 × 1)-α phase has the same structural elements as the more widely reported (2 × 1) reconstruction. An array of analogous higher-order (2n × 1) reconstructions were also observed where n = 3–5. On the other hand, the (4 × 1)-β reconstruction seems to be a unique structure without higher-order analogues. A model is proposed for this structure that is also based on the (2 × 1) reconstruction but with additional microfacets of {111} character. PMID:25309642

  7. Reconstructing Source-Sink Dynamics in a Population with a Pelagic Dispersal Phase

    PubMed Central

    Chen, Kun; Ciannelli, Lorenzo; Decker, Mary Beth; Ladd, Carol; Cheng, Wei; Zhou, Ziqian; Chan, Kung-Sik

    2014-01-01

    For many organisms, the reconstruction of source-sink dynamics is hampered by limited knowledge of the spatial assemblage of either the source or sink components or lack of information on the strength of the linkage for any source-sink pair. In the case of marine species with a pelagic dispersal phase, these problems may be mitigated through the use of particle drift simulations based on an ocean circulation model. However, when simulated particle trajectories do not intersect sampling sites, the corroboration of model drift simulations with field data is hampered. Here, we apply a new statistical approach for reconstructing source-sink dynamics that overcomes the aforementioned problems. Our research is motivated by the need for understanding observed changes in jellyfish distributions in the eastern Bering Sea since 1990. By contrasting the source-sink dynamics reconstructed with data from the pre-1990 period with that from the post-1990 period, it appears that changes in jellyfish distribution resulted from the combined effects of higher jellyfish productivity and longer dispersal of jellyfish resulting from a shift in the ocean circulation starting in 1991. A sensitivity analysis suggests that the source-sink reconstruction is robust to typical systematic and random errors in the ocean circulation model driving the particle drift simulations. The jellyfish analysis illustrates that new insights can be gained by studying structural changes in source-sink dynamics. The proposed approach is applicable for the spatial source-sink reconstruction of other species and even abiotic processes, such as sediment transport. PMID:24835251

  8. Half-precessional climate forcing of Indian Ocean monsoon dynamics on the East African equator

    NASA Astrophysics Data System (ADS)

    Verschuren, D.; Sinninghe Damste, J. S.; Moernaut, J.; Kristen, I.; Fagot, M.; Blaauw, M.; Haug, G. H.; Project Members, C.

    2008-12-01

    The EuroCLIMATE project CHALLACEA produced a detailed multi-proxy reconstruction of the climate history of equatorial East Africa, based on the sediment record of Lake Challa, a 4.2 km2, 92-m deep crater lake on the lower East slope of Mt. Kilimanjaro (Kenya/Tanzania). Relatively stable sedimentation dynamics over the past 25,000 years resulted in a unique combination of high temporal resolution, excellent radiometric (210Pb, 14C) age control, and confidence that recording parameters of the climatic proxy signals extracted from the sediment have remained constant through time. The equatorial (3 deg. S) location of our study site in East Africa, where seasonal migration of convective activity spans the widest latitude range worldwide, produced unique information on how varying rainfall contributions from the northeasterly and southeasterly Indian Ocean monsoons shaped regional climate history. The Challa proxy records for temperature (TEX86) and moisture balance (reflection-seismic stratigraphy and the BIT index of soil bacterial input) uniquely weave together tropical climate variability at orbital and shorter time scales. The temporal pattern of reconstructed moisture balance bears the clear signature of half- precessional insolation forcing of Indian Ocean monsoon dynamics, modified by northern-latitude influence on moisture-balance variation at millennial and century time scales. During peak glacial time (but not immediately before) and the Younger Dryas, NH ice sheet influences overrode local insolation influence on monsoon intensity. After the NH ice sheets had melted and a relatively stable interglacial temperature regime developed, precession-driven summer insolation became the dominant determinant of regional moisture balance, with anti-phased patterns of Holocene hydrological change in the northern and southern (sub)tropics, and a uniquely hybrid pattern on the East African equator. In the last 2-3000 years a series of multi-century droughts with links to

  9. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments.

    PubMed

    Guzman, Horacio V; Garcia, Pablo D; Garcia, Ricardo

    2015-01-01

    We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever-tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip-surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years. PMID:25821676

  10. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments

    PubMed Central

    Guzman, Horacio V; Garcia, Pablo D

    2015-01-01

    Summary We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever–tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip–surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years. PMID:25821676

  11. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  12. Dynamic-Feature Extraction, Attribution and Reconstruction (DEAR) Method for Power System Model Reduction

    SciTech Connect

    Wang, Shaobu; Lu, Shuai; Zhou, Ning; Lin, Guang; Elizondo, Marcelo A.; Pai, M. A.

    2014-09-04

    In interconnected power systems, dynamic model reduction can be applied on generators outside the area of interest to mitigate the computational cost with transient stability studies. This paper presents an approach of deriving the reduced dynamic model of the external area based on dynamic response measurements, which comprises of three steps, dynamic-feature extraction, attribution and reconstruction (DEAR). In the DEAR approach, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highest similarity, forming a suboptimal ‘basis’ of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original external system. Network model is un-changed in the DEAR method. Tests on several IEEE standard systems show that the proposed method gets better reduction ratio and response errors than the traditional coherency aggregation methods.

  13. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis.

    PubMed

    Kobayashi, Kazuya; Liang, Yunfeng; Amano, Ken-Ichi; Murata, Sumihiko; Matsuoka, Toshifumi; Takahashi, Satoru; Nishi, Naoya; Sakka, Tetsuo

    2016-04-19

    With the development of atomic force microscopy (AFM), it is now possible to detect the buried liquid-solid interfacial structure in three dimensions at the atomic scale. One of the model surfaces used for AFM is the muscovite surface because it is atomically flat after cleavage along the basal plane. Although it is considered that force profiles obtained by AFM reflect the interfacial structures (e.g., muscovite surface and water structure), the force profiles are not straightforward because of the lack of a quantitative relationship between the force and the interfacial structure. In the present study, molecular dynamics simulations were performed to investigate the relationship between the muscovite-water interfacial structure and the measured AFM force using a capped carbon nanotube (CNT) AFM tip. We provide divided force profiles, where the force contributions from each water layer at the interface are shown. They reveal that the first hydration layer is dominant in the total force from water even after destruction of the layer. Moreover, the lateral structure of the first hydration layer transcribes the muscovite surface structure. It resembles the experimentally resolved surface structure of muscovite in previous AFM studies. The local density profile of water between the tip and the surface provides further insight into the relationship between the water structure and the detected force structure. The detected force structure reflects the basic features of the atomic structure for the local hydration layers. However, details including the peak-peak distance in the force profile (force-distance curve) differ from those in the density profile (density-distance curve) because of disturbance by the tip. PMID:27018633

  14. Reconstructing three-dimensional reentrant cardiac electrical wave dynamics using data assimilation.

    PubMed

    Hoffman, M J; LaVigne, N S; Scorse, S T; Fenton, F H; Cherry, E M

    2016-01-01

    For many years, reentrant scroll waves have been predicted and studied as an underlying mechanism for cardiac arrhythmias using numerical techniques, and high-resolution mapping studies using fluorescence recordings from the surfaces of cardiac tissue preparations have confirmed the presence of visible spiral waves. However, assessing the three-dimensional dynamics of these reentrant waves using experimental techniques has been limited to verifying stable scroll-wave dynamics in relatively thin preparations. We propose a different approach to recovering the three-dimensional dynamics of reentrant waves in the heart. By applying techniques commonly used in weather forecasting, we combine dual-surface observations from a particular experiment with predictions from a numerical model to reconstruct the full three-dimensional time series of the experiment. Here, we use model-generated surrogate observations from a numerical experiment to evaluate the performance of the ensemble Kalman filter in reconstructing such time series for a discordant alternans state in one spatial dimension and for scroll waves in three dimensions. We show that our approach is able to recover time series of both observed and unobserved variables matching the truth. Where nearby observations are available, the error is reduced below the synthetic observation error, with a smaller reduction with increased distance from observations. Our findings demonstrate that state reconstruction for spatiotemporally complex cardiac electrical dynamics is possible and will lead naturally to applications using real experimental data. PMID:26826859

  15. Reconstructing three-dimensional reentrant cardiac electrical wave dynamics using data assimilation

    NASA Astrophysics Data System (ADS)

    Hoffman, M. J.; LaVigne, N. S.; Scorse, S. T.; Fenton, F. H.; Cherry, E. M.

    2016-01-01

    For many years, reentrant scroll waves have been predicted and studied as an underlying mechanism for cardiac arrhythmias using numerical techniques, and high-resolution mapping studies using fluorescence recordings from the surfaces of cardiac tissue preparations have confirmed the presence of visible spiral waves. However, assessing the three-dimensional dynamics of these reentrant waves using experimental techniques has been limited to verifying stable scroll-wave dynamics in relatively thin preparations. We propose a different approach to recovering the three-dimensional dynamics of reentrant waves in the heart. By applying techniques commonly used in weather forecasting, we combine dual-surface observations from a particular experiment with predictions from a numerical model to reconstruct the full three-dimensional time series of the experiment. Here, we use model-generated surrogate observations from a numerical experiment to evaluate the performance of the ensemble Kalman filter in reconstructing such time series for a discordant alternans state in one spatial dimension and for scroll waves in three dimensions. We show that our approach is able to recover time series of both observed and unobserved variables matching the truth. Where nearby observations are available, the error is reduced below the synthetic observation error, with a smaller reduction with increased distance from observations. Our findings demonstrate that state reconstruction for spatiotemporally complex cardiac electrical dynamics is possible and will lead naturally to applications using real experimental data.

  16. Dynamics modeling for parallel haptic interfaces with force sensing and control.

    PubMed

    Bernstein, Nicholas; Lawrence, Dale; Pao, Lucy

    2013-01-01

    Closed-loop force control can be used on haptic interfaces (HIs) to mitigate the effects of mechanism dynamics. A single multidimensional force-torque sensor is often employed to measure the interaction force between the haptic device and the user's hand. The parallel haptic interface at the University of Colorado (CU) instead employs smaller 1D force sensors oriented along each of the five actuating rods to build up a 5D force vector. This paper shows that a particular manipulandum/hand partition in the system dynamics is induced by the placement and type of force sensing, and discusses the implications on force and impedance control for parallel haptic interfaces. The details of a "squaring down" process are also discussed, showing how to obtain reduced degree-of-freedom models from the general six degree-of-freedom dynamics formulation. PMID:24808395

  17. Forcing of stratospheric chemistry and dynamics during the Dalton Minimum

    NASA Astrophysics Data System (ADS)

    Anet, J. G.; Muthers, S.; Rozanov, E.; Raible, C. C.; Peter, T.; Stenke, A.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Schmutz, W.

    2013-06-01

    The response of atmospheric chemistry and climate to volcanic eruptions and a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere-ocean-chemistry general circulation model SOCOL-MPIOM covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric climate in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15% causes global ozone decrease below the stratopause reaching 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the midstratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere allowing more water vapor to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation when all forcing factors are applied during the DM - this effect is especially well visible for NOx/NOy. Thus, this study highlights the non-linear behavior of the coupled chemistry-climate system. Finally, we conclude that

  18. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed. PMID:26964007

  19. Drivers of drift sand dynamics; a reconstruction for the Wekeromse Zand, the Netherlands

    NASA Astrophysics Data System (ADS)

    Hendriks, Chantal; Sonneveld, Marthijn; Wallinga, Jakob

    2013-04-01

    Inland active drift sand landscapes are regarded as unique ecosystems of great historical and geomorphological value. Recent studies have highlighted the role of multiple factors in the initiation and stabilization of drift sand landscapes. To unravel the importance of different forcings (e.g. agricultural practices, climate) and their interplay, insight in the chronology of drift sand dynamics is essential. In this study, we aimed to reconstruct the dynamics of the drift sand landscape of the Wekeromse Zand (central Netherlands) and to develop a conceptual model to understand the processes involved. The Wekeromse Zand study area (370 ha) is located on the border of a central push moraine and is characterised by open active drift sands (14 ha) and vegetated hills and valleys. The surroundings are dominated by modern agricultural practices, and remnants from ancient iron age Celtic Field systems showing that the area has been in agricultural use since at least the Iron Age. For the study area we: i) analysed historical maps going back to the early 19th century, ii) performed a field survey to map the palaeolandscape (before drift sand activation) and iii) employed optically stimulated luminescence (OSL) dating of drift sand deposits on 11 samples from two locations to determine the timing of drift sand deposition. Analysis of the available topographic maps showed no substantial aeolean activity of the area outside its morphological boundaries. OSL dating revealed that two drift sand layers were deposited between 1373 and 1462 AD and between 1680 and 1780 AD. A layer with a higher organic matter content was found at one of the sites. This suggests that the Wekeromse Zand has known three relatively stable periods: i) a period between the start of the Holocene to the Late Medieval Period, ii) in between the Medieval climatic optimum and the climatic Maunder minimum, and iii) current situation. Despite the fact that agricultural activities occurred in this area from the

  20. Dynamics and stability of mechanical systems with follower forces

    NASA Technical Reports Server (NTRS)

    Herrmann, G.

    1971-01-01

    A monograph on problems of stability of equilibrium of mechanical systems with follower forces is presented. Concepts of stability and criteria of stability are reviewed briefly, together with means of analytical specification of follower forces. Nondissipative systems with two degrees of freedom are discussed, and destabilizing effects due to various types of dissipative forces both in discrete and continuous systems, are treated. The analyses are accompanied by some quantative experiments and observations on demonstrational laboratory models.

  1. Force modulating dynamic disorder: a physical model of catch-slip bond transitions in receptor-ligand forced dissociation experiments.

    PubMed

    Liu, Fei; Ou-Yang, Zhong-can

    2006-11-01

    Recent experiments found that some adhesive receptor-ligand complexes have counterintuitive catch-slip transition behaviors: the mean lifetimes of these complexes first increase (catch) with initial application of a small external force, and then decrease (slip) when the force is beyond some threshold. In this work we suggest that the forced dissociation of these complexes might be a typical rate process with dynamic disorder. The one-dimensional force modulating Agmon-Hopfield model is used to describe the transitions in the single-bond P-selectin glycoprotein ligand 1-P-selectin forced dissociation experiments, which were respectively performed in the constant force [Marshall, Nature (Landon) 423, 190 (2003)] and the ramping force [Evans, Proc. Natl. Acad. Sci. U.S.A 98, 11281 (2004)] modes. We find that, an external force can not only accelerate the bond dissociation, but also modulate the complex from the lower-energy barrier to the higher one; the catch-slip bond transition can arise from a particular energy barrier shape. The agreement between our calculation and the experimental data is satisfactory. PMID:17279936

  2. Force feedback coupling with dynamics for physical simulation of product assembly and operation performance

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Tan, Jianrong; Duan, Guifang; Fu, Yun

    2015-01-01

    Most existing force feedback methods are still difficult to meet the requirements of real-time force calculation in virtual assembly and operation with complex objects. In addition, there is often an assumption that the controlled objects are completely free and the target object is only completely fixed or free, thus, the dynamics of the kinematic chain where the controlled objects are located are neglected during the physical simulation of the product manipulation with force feedback interaction. This paper proposes a physical simulation method of product assembly and operation manipulation based on statistically learned contact force prediction model and the coupling of force feedback and dynamics. In the proposed method, based on hidden Markov model (HMM) and local weighting learning (LWL), contact force prediction model is constructed, which can estimate the contact force in real time during interaction. Based on computational load balance model, the computing resources are dynamically assigned and the dynamics integral step is optimized. In addition, smoothing process is performed to the force feedback on the synchronization points. Consequently, we can solve the coupling and synchronization problems of high-frequency feedback force servo, low-frequency dynamics solver servo and scene rendering servo, and realize highly stable and accurate force feedback in the physical simulation of product assembly and operation manipulation. This research proposes a physical simulation method of product assembly and operation manipulation.

  3. Reconstruction of Energy Surfaces from Friction Force Microscopy Measurements with the Jarzynski Equality

    NASA Astrophysics Data System (ADS)

    Berkovich, Ronen; Klafter, Joseph; Urbakh, Michael

    Free energy is one of the most fundamental thermodynamic functions, determining relative phase stability and serving as a generating function for other thermodynamic quantities. The calculation of free energies is a challenging enterprise. In equilibrium statistical mechanics, the free energy is related to the canonical partition function. The partition function itself involves integrations over all degrees of freedom in the system and, in most cases, cannot be easily calculated directly. In 1997, Jarzynski proved a remarkable equality that allows computing the equilibrium free-energy difference between two states from the probability distribution of the nonequilibrium work done on the system to switch between the two states. The Jarzynski equality provides a powerful free-energy difference estimator from a set of irreversible experiments. This method is closely related to free-energy perturbation approach, which is also a computational technique for estimating free-energy differences. The ability to map potential profiles and topologies is of major significance to areas as diverse as biological recognition and nanoscale friction. This capability has been demonstrated for frictional studies where a force between the tip of the scanning force microscope and the surface is probed. The surface free-energy corrugation produces a detectable friction forces. Thus, friction force microscopy (FFM) should be able to discriminate between energetically different areas on the probed surface. Here, we apply the Jarzynski equality for the analysis of FFM measurements and thus obtain a variation of the free energy along a surface.

  4. Reconstruction of the Tambora forcing with global aerosol models : Challenges and limitations

    NASA Astrophysics Data System (ADS)

    Khodri, Myriam; Zanchettin, Davide; Timmreck, Claudia

    2016-04-01

    It is now generally recognised that volcanic eruptions have an important effect on climate variability from inter-annual to decadal timescales. For the largest tropical volcanic eruptions of the last millennium, simulated volcanic surface cooling derived from climate models often disagrees with the cooling seen in tree-ring-based proxies. Furthermore, cooling estimates from simulations show large uncertainties. Such disagreement can be related to several sources, including inconsistency of the currently available volcanic forcing datasets, unrealistic modelled volcanic forcing, insufficient representation of relevant climate processes, and different background climate states simulated at the time of the eruption. In particular, for eruptions that occurred before the observational period forcing characteristics related to the eruption magnitude and stratospheric aerosol properties are deduced from indirect evidences. So, while climatically relevant forcing properties for recent volcanic eruptions are relatively well constrained by direct observations, large uncertainties remain regarding processes of aerosol formation and evolution in the stratosphere after large tropical eruptions of the remote past. Several coordinated modelling assessments have been defined to frame future modeling activities and constrain the above-mentioned uncertainties. Among these, the sixth phase of the Coupled Model Intercomparison Project (CMIP6) has endorsed a multi-model assessment focused on the climatic response to strong volcanic eruptions (VolMIP). VolMIP defines a protocol for idealized volcanic-perturbation experiments to improve comparability among climate model results. Identification of a consensual volcanic forcing dataset for the 1815 Tambora eruption is a key step of VolMIP, as it is the largest-magnitude volcanic eruption of the past five centuries and reference for the VolMIP core experiments. Therefore, as a first key step, five current/state-of-the-art global aerosol

  5. Towards myocardial contraction force image reconstruction for heart disease assessment and intervention planning

    NASA Astrophysics Data System (ADS)

    Haddad, Seyyed M. H.; Drangova, Maria; White, James A.; Samani, Abbas

    2015-03-01

    It is clinically vital to devise a technique to evaluate regional functionality of the myocardium in order to determine the extent and intensity of local damage to the cardiac tissue caused by ischemic injuries. Such a technique can potentially enable cardiologists to discriminate between reversible and irreversible ischemic injuries and to devise appropriate revascularization therapy in case of reversible lesions. The technique is founded on the premise that sufficient contraction force generated by the cardiac tissue can be regarded as a direct and reliable criterion for regional analysis of tissue healthy functionality. To this end, a number of imaging techniques have been developed and, to our knowledge, none of them assess regional cardiac functionality based on a straightforward mechanical measure such as local cardiac contraction forces. . As such, a novel imaging technique is being developed on the basis of quantification and visualisation of local myocardial contraction forces. In this technique, cardiac contraction force distribution is attained through solving an inverse problem within an optimization framework which uses iterative forward mechanical modelling of the myocardium. Hence, a forward mechanical model of the myocardium which is computationally efficient, robust, and adaptable to diverse pathophysiological conditions is necessary for this development. As such, this paper is geared towards developing a novel mechanical model of the healthy and pathological myocardium which considers all aspects of the myocardial mechanics including hyperelasticity, anisotropy, and active contraction force. In this investigation, two major parts, including background tissue and reinforcement bars (fibers) have been considered for modelling the myocardium. The model was implemented using finite element (FE) approach and demonstrated very good performance in simulating normal and infarcted left ventricle (LV) contractile function.

  6. Dendrochronological Modeling and Reconstruction of Large-Scale Climate Variability in Recent Centuries and its Relation to Atmospheric Forcing Functions.

    NASA Astrophysics Data System (ADS)

    D'Arrigo, Rosanne Dorothy

    Tree-ring chronologies from boreal treeline and other sites have been used to reconstruct patterns of climate variability, their relationship to known forcing functions, and climate as modeled using these forcings. Northern Hemisphere temperatures reconstructed for the past three hundred years agree with other proxy data and with temperature derived from a radiative-convective model incorporating volcanic, solar and CO_2 forcings. Superposed epoch analysis shows the effects of volcanism on tree growth and spectral analysis indicated periodicities which might be related to solar or other cycles. Comparison of the reconstructed temperatures with recent instrumental records reveals that the temperature departures within the past decade of elevated atmospheric trace gases levels exceed the "natural" variations in the tree-ring data in past centuries. A CO_2 fertilization effect is not detected in this data through 1973. This issue is further investigated for a high-elevation lodgepole pine site from California. Climate response models indicate that a recent growth increase cannot be completely explained by past climate-growth relationships. The contribution of atmosphere-biosphere CO_2 exchange of boreal forests to Pt. Barrow, Alaska CO_2 amplitudes is found to be significant using a 3 -D tracer model which employs an exchange function based on remote sensing photosynthetic indices. Positive correlations between variations in these amplitudes and tree-ring data suggest that tree-rings may be used as indicators of CO _2 uptake and remote sensing estimates of photosynthetic activity. The northern chronologies show patterns of variation which have climatic implications. Their coefficient of variation reveals periods of agreement/disagreement among the sites which in turn indicate varying periods of spatial coherence in atmospheric circulation patterns. Included among the years of highest variation is 1816, one year following the Tambora eruption. The tree growth anomalies

  7. Effects of ACL Reconstruction on In-Vivo, Dynamic Knee Function

    PubMed Central

    Tashman, Scott; Araki, Daisuke

    2012-01-01

    Synopsis The purposes of this article are to discuss key factors for assessing joint function, to present some recent findings and to address the future directions for evaluating the function of the ACL-injured/reconstructed knees. Well-designed studies, using state-of-the art tools to assess knee kinematics under in vivo, dynamic, high-loading conditions, are necessary to evaluate the relative performance of different procedures for restoring normal joint motion. PMID:23177461

  8. Sharpening our Understanding but Blurring the Boundaries: Dynamic Observations of Surface Reconstruction

    SciTech Connect

    Baer, Donald R.

    2003-08-20

    Every now and then, reading a specific paper stimulates--in my mind at least--a variety of associations and connections that highlight advances that have been made and suggests links between areas that I may not have previously connected. The recent series of papers by McCarty and Bartelt (and co-workers) using low energy electron microscopy (LEEM) to study the dynamics of surface reconstruction of TiO2 , and NiAl sent my thinking in a variety loosely connected directions. Paraphrasing the response of one of my colleagues - the work causes us to think dynamically where we have often thought statically about what happens when surfaces reconstruct. The measurements also highlight the importance of newer techniques to help us visualize and understand phenomena that may have puzzled us for years. The dynamic interactions between surface structure and both the defect structure (and history) of the substrate and the nature of the environment of the specimen highlight an aspect of phenomena that drive surface reconstruction not normally considered and suggests additional and delightful challenges we face in understanding the bulk stability and surface structures of nano-sized objects. Since the physical arrangement of the atoms controls every aspect of the physics and chemistry of a surface or interface, the atomic geometry is a fundamental defining characteristic of a surface. , Details of the structure of a surface, including altered atomic positions, the presence of steps and various types of defects can significantly change the chemistry of a surface and impact processes ranging from the formation of interfaces in electronic components to the efficiency of a catalyst. Because of its importance there has been considerable effort devoted to understanding and predicting surface structures. However, dynamical aspects of surface reconstruction and the significance of material defects in the process have not been part of the standard picture.

  9. Reconstructing local population dynamics in noisy metapopulations--the role of random catastrophes and Allee effects.

    PubMed

    Hart, Edmund M; Avilés, Leticia

    2014-01-01

    Reconstructing the dynamics of populations is complicated by the different types of stochasticity experienced by populations, in particular if some forms of stochasticity introduce bias in parameter estimation in addition to error. Identification of systematic biases is critical when determining whether the intrinsic dynamics of populations are stable or unstable and whether or not populations exhibit an Allee effect, i.e., a minimum size below which deterministic extinction should follow. Using a simulation model that allows for Allee effects and a range of intrinsic dynamics, we investigated how three types of stochasticity--demographic, environmental, and random catastrophes--affect our ability to reconstruct the intrinsic dynamics of populations. Demographic stochasticity aside, which is only problematic in small populations, we find that environmental stochasticity--positive and negative environmental fluctuations--caused increased error in parameter estimation, but bias was rarely problematic, except at the highest levels of noise. Random catastrophes, events causing large-scale mortality and likely to be more common than usually recognized, caused immediate bias in parameter estimates, in particular when Allee effects were large. In the latter case, population stability was predicted when endogenous dynamics were actually unstable and the minimum viable population size was overestimated in populations with small or non-existent Allee effects. Catastrophes also generally increased extinction risk, in particular when endogenous Allee effects were large. We propose a method for identifying data points likely resulting from catastrophic events when such events have not been recorded. Using social spider colonies (Anelosimus spp.) as models for populations, we show that after known or suspected catastrophes are accounted for, reconstructed growth parameters are consistent with intrinsic dynamical instability and substantial Allee effects. Our results are

  10. Reconstructing Local Population Dynamics in Noisy Metapopulations—The Role of Random Catastrophes and Allee Effects

    PubMed Central

    Hart, Edmund M.; Avilés, Leticia

    2014-01-01

    Reconstructing the dynamics of populations is complicated by the different types of stochasticity experienced by populations, in particular if some forms of stochasticity introduce bias in parameter estimation in addition to error. Identification of systematic biases is critical when determining whether the intrinsic dynamics of populations are stable or unstable and whether or not populations exhibit an Allee effect, i.e., a minimum size below which deterministic extinction should follow. Using a simulation model that allows for Allee effects and a range of intrinsic dynamics, we investigated how three types of stochasticity—demographic, environmental, and random catastrophes— affect our ability to reconstruct the intrinsic dynamics of populations. Demographic stochasticity aside, which is only problematic in small populations, we find that environmental stochasticity—positive and negative environmental fluctuations—caused increased error in parameter estimation, but bias was rarely problematic, except at the highest levels of noise. Random catastrophes, events causing large-scale mortality and likely to be more common than usually recognized, caused immediate bias in parameter estimates, in particular when Allee effects were large. In the latter case, population stability was predicted when endogenous dynamics were actually unstable and the minimum viable population size was overestimated in populations with small or non-existent Allee effects. Catastrophes also generally increased extinction risk, in particular when endogenous Allee effects were large. We propose a method for identifying data points likely resulting from catastrophic events when such events have not been recorded. Using social spider colonies (Anelosimus spp.) as models for populations, we show that after known or suspected catastrophes are accounted for, reconstructed growth parameters are consistent with intrinsic dynamical instability and substantial Allee effects. Our results are

  11. Forced orthodontic extrusion and use of CAD/CAM for reconstruction of grossly destructed crown: A multidisciplinary approach

    PubMed Central

    Kumar, Rahul; Patil, Suvarna

    2012-01-01

    The aim of this study is to present a report of a case where forced orthodontic extrusion and computer-aided design and computer-aided manufacturing (CAD/CAM) technique was used for reconstruction of right maxillary central incisor with grossly destructed crown. Aesthetic rehabilitation of a fractured maxillary right central incisor was performed employing a multidisciplinary approach i.e. conventional endodontic treatment followed by orthodontic extrusion and final restoration using CAD-CAM and one piece milled zirconia post and core with full coverage zirconia crown. After the procedure being completed, periapical radiographs taken at 3 month follow up period demonstrated that the post and core remained well adapted to post space and there was a complete healing of periapical lesion. This technique can provide a complete aesthetic rehabilitation of a grossly destructed tooth without hampering the biological width and thus has a better prognosis. PMID:22557823

  12. Forced orthodontic extrusion and use of CAD/CAM for reconstruction of grossly destructed crown: A multidisciplinary approach.

    PubMed

    Kumar, Rahul; Patil, Suvarna

    2012-04-01

    The aim of this study is to present a report of a case where forced orthodontic extrusion and computer-aided design and computer-aided manufacturing (CAD/CAM) technique was used for reconstruction of right maxillary central incisor with grossly destructed crown. Aesthetic rehabilitation of a fractured maxillary right central incisor was performed employing a multidisciplinary approach i.e. conventional endodontic treatment followed by orthodontic extrusion and final restoration using CAD-CAM and one piece milled zirconia post and core with full coverage zirconia crown. After the procedure being completed, periapical radiographs taken at 3 month follow up period demonstrated that the post and core remained well adapted to post space and there was a complete healing of periapical lesion. This technique can provide a complete aesthetic rehabilitation of a grossly destructed tooth without hampering the biological width and thus has a better prognosis. PMID:22557823

  13. Cohesive suction-cup force in cell separation dynamics

    NASA Astrophysics Data System (ADS)

    Vasseur, H.

    2010-07-01

    When an external pulling force is applied onto a cell stuck to its substrate, a reacting "suction-cup" force, due to the slow penetration of the surrounding fluid between the cell and the substrate, opposes to the separation. It can overcome other known adhesive forces when the process is sufficiently violent (typically 105 N/m2). The physical origin of this effect may be compared with that leaning a suction-cup against a bathroom wall. We address the consequences of this effect on i) the separation energy, ii) the fluid motion surrounding the cell, and iii) the inhibition of cell motion.

  14. Rank-sparsity constrained, spectro-temporal reconstruction for retrospectively gated, dynamic CT

    NASA Astrophysics Data System (ADS)

    Clark, D. P.; Lee, C. L.; Kirsch, D. G.; Badea, C. T.

    2015-03-01

    Relative to prospective projection gating, retrospective projection gating for dynamic CT applications allows fast imaging times, minimizing the potential for physiological and anatomic variability. Preclinically, fast imaging is attractive due to the rapid clearance of low molecular weight contrast agents and the rapid heart rate of rodents. Clinically, retrospective gating is relevant for intraoperative C-arm CT. More generally, retrospective sampling provides an opportunity for significant reduction in x-ray dose within the framework of compressive sensing theory and sparsity-constrained iterative reconstruction. Even so, CT reconstruction from projections with random temporal sampling is a very poorly conditioned inverse problem, requiring high fidelity regularization to minimize variability in the reconstructed results. Here, we introduce a highly novel data acquisition and regularization strategy for spectro-temporal (5D) CT reconstruction from retrospectively gated projections. We show that by taking advantage of the rank-sparse structure and separability of the temporal and spectral reconstruction sub-problems, being able to solve each sub-problem independently effectively guarantees that we can solve both problems together. In this paper, we show 4D simulation results (2D + 2 energies + time) using the proposed technique and compare them with two competing techniques— spatio-temporal total variation minimization and prior image constrained compressed sensing. We also show in vivo, 5D (3D + 2 energies + time) myocardial injury data acquired in a mouse, reconstructing 20 data sets (10 phases, 2 energies) and performing material decomposition from data acquired over a single rotation (360°, dose: ~60 mGy).

  15. Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data

    NASA Astrophysics Data System (ADS)

    Raach, Steffen; Schlipf, David; Haizmann, Florian; Cheng, Po Wen

    2014-06-01

    Using the inflowing horizontal and vertical wind shears for individual pitch controller is a promising method if blade bending measurements are not available. Due to the limited information provided by a lidar system the reconstruction of shears in real-time is a challenging task especially for the horizontal shear in the presence of changing wind direction. The internal model principle has shown to be a promising approach to estimate the shears and directions in 10 minutes averages with real measurement data. The static model based wind vector field reconstruction is extended in this work taking into account a dynamic reconstruction model based on Taylor's Frozen Turbulence Hypothesis. The presented method provides time series over several seconds of the wind speed, shears and direction, which can be directly used in advanced optimal preview control. Therefore, this work is an important step towards the application of preview individual blade pitch control under realistic wind conditions. The method is tested using a turbulent wind field and a detailed lidar simulator. For the simulation, the turbulent wind field structure is flowing towards the lidar system and is continuously misaligned with respect to the horizontal axis of the wind turbine. Taylor's Frozen Turbulence Hypothesis is taken into account to model the wind evolution. For the reconstruction, the structure is discretized into several stages where each stage is reduced to an effective wind speed, superposed with a linear horizontal and vertical wind shear. Previous lidar measurements are shifted using again Taylor's Hypothesis. The wind field reconstruction problem is then formulated as a nonlinear optimization problem, which minimizes the residual between the assumed wind model and the lidar measurements to obtain the misalignment angle and the effective wind speed and the wind shears for each stage. This method shows good results in reconstructing the wind characteristics of a three dimensional

  16. Synchronous monitoring of muscle dynamics and muscle force for maximum isometric tetanus

    NASA Astrophysics Data System (ADS)

    Zakir Hossain, M.; Grill, Wolfgang

    2010-03-01

    Skeletal muscle is a classic example of a biological soft matter . At both macro and microscopic levels, skeletal muscle is exquisitely oriented for force generation and movement. In addition to the dynamics of contracting and relaxing muscle which can be monitored with ultrasound, variations in the muscle force are also expected to be monitored. To observe such force and sideways expansion variations synchronously for the skeletal muscle a novel detection scheme has been developed. As already introduced for the detection of sideways expansion variations of the muscle, ultrasonic transducers are mounted sideways on opposing positions of the monitored muscle. To detect variations of the muscle force, angle of pull of the monitored muscle has been restricted by the mechanical pull of the sonic force sensor. Under this condition, any variation in the time-of-flight (TOF) of the transmitted ultrasonic signals can be introduced by the variation of the path length between the transducers. The observed variations of the TOF are compared to the signals obtained by ultrasound monitoring for the muscle dynamics. The general behavior of the muscle dynamics and muscle force shows almost an identical concept. Since muscle force also relates the psychological boosting-up effects, the influence of boosting-up on muscle force and muscle dynamics can also be quantified form this study. Length-tension or force-length and force-velocity relationship can also be derived quantitatively with such monitoring.

  17. Modeling Multibody Stage Separation Dynamics Using Constraint Force Equation Methodology

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Roithmayr, Carlos M.; Toniolo, Matthew D.; Karlgaard, Christopher D.; Pamadi, Bandu N.

    2011-01-01

    This paper discusses the application of the constraint force equation methodology and its implementation for multibody separation problems using three specially designed test cases. The first test case involves two rigid bodies connected by a fixed joint, the second case involves two rigid bodies connected with a universal joint, and the third test case is that of Mach 7 separation of the X-43A vehicle. For the first two cases, the solutions obtained using the constraint force equation method compare well with those obtained using industry- standard benchmark codes. For the X-43A case, the constraint force equation solutions show reasonable agreement with the flight-test data. Use of the constraint force equation method facilitates the analysis of stage separation in end-to-end simulations of launch vehicle trajectories

  18. Source coding for transmission of reconstructed dynamic geometry: a rate-distortion-complexity analysis of different approaches

    NASA Astrophysics Data System (ADS)

    Mekuria, Rufael N.; Cesar, Pablo; Bulterman, Dick C. A.

    2014-09-01

    Live 3D reconstruction of a human as a 3D mesh with commodity electronics is becoming a reality. Immersive applications (i.e. cloud gaming, tele-presence) benefit from effective transmission of such content over a bandwidth limited link. In this paper we outline different approaches for compressing live reconstructed mesh geometry based on distributing mesh reconstruction functions between sender and receiver. We evaluate rate-performance-complexity of different configurations. First, we investigate 3D mesh compression methods (i.e. dynamic/static) from MPEG-4. Second, we evaluate the option of using octree based point cloud compression and receiver side surface reconstruction.

  19. Dynamic Self-Regulation: The Driving Force behind Academic Achievement.

    ERIC Educational Resources Information Center

    Schapiro, Susan R.; Livingston, Jennifer

    2000-01-01

    College freshmen and sophomores (n=342) in an elective class designed to teach active learning strategies and critical thinking completed the Dynamic and Active Learning Inventory. Results supported the theory that self-regulated learning requires not only active, deliberate learning strategies, but also includes a natural dynamic component that…

  20. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  1. Improved dynamic MRI reconstruction by exploiting sparsity and rank-deficiency.

    PubMed

    Majumdar, Angshul

    2013-06-01

    In this paper we address the problem of dynamic MRI reconstruction from partially sampled K-space data. Our work is motivated by previous studies in this area that proposed exploiting the spatiotemporal correlation of the dynamic MRI sequence by posing the reconstruction problem as a least squares minimization regularized by sparsity and low-rank penalties. Ideally the sparsity and low-rank penalties should be represented by the l(0)-norm and the rank of a matrix; however both are NP hard penalties. The previous studies used the convex l(1)-norm as a surrogate for the l(0)-norm and the non-convex Schatten-q norm (0reconstruct the dynamic MRI sequence by solving a least squares minimization problem regularized by l(p)-norm as the sparsity penalty and Schatten-q norm as the low-rank penalty. There are no efficient algorithms to solve the said problems. In this paper, we derive efficient algorithms to solve them. The experiments have been carried out on Dynamic Contrast Enhanced (DCE) MRI datasets. Both quantitative and qualitative analysis indicates the superiority of our proposed improvement over the existing methods. PMID:23218793

  2. Force models for particle-dynamics simulations of granular materials

    SciTech Connect

    Walton, O.R.

    1994-12-01

    Engineering-mechanics contact models are utilized to describe the inelastic, frictional interparticle forces acting in dry granular systems. Simple analyses based on one-dimensional chains are utilized to illustrate wave propagation phenomena in dense and dilute discrete particulates. The variation of restitution coefficient with impact velocity is illustrated for a variety of viscous and hysteretic normal force models. The effects of interparticle friction on material strength in discrete-particle simulations are much closer to measured values than are theories that do not allow article rotations.

  3. Holographic forced fluid dynamics in non-relativistic limit

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Li, Li; Nie, Zhang-Yu; Zhang, Yun-Long

    2012-11-01

    We study the thermodynamics and non-relativistic hydrodynamics of the holographic fluid on a finite cutoff surface in the Gauss-Bonnet gravity. It is shown that the isentropic flow of the fluid is equivalent to a radial component of gravitational field equations. We use the non-relativistic fluid expansion method to study the Einstein-Maxwell-dilaton system with a negative cosmological constant, and obtain the holographic incompressible forced Navier-Stokes equations of the dual fluid at AdS boundary and at a finite cutoff surface, respectively. The concrete forms of external forces are given.

  4. A study of the effect of forcing function characteristics on human operator dynamics in manual control

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Osawa, T.

    1978-01-01

    The effect of the spectrum of the forcing function on the human pilot dynamics in manual control was investigated. A simple compensatory tracking experiment was conducted, where the controlled element was of a second-order dynamics and the forcing function was a random noise having a dominant frequency. The dominant frequency and the power of the forcing function were two variable parameters during the experiment. The results show that the human pilot describing functions are dependent not only on the dynamics of the controlled element, but also on the characteristics of the forcing function. This suggests that the human pilot behavior should be expressed by the transfer function taking into consideration his ability to sense and predict the forcing function.

  5. Superadiabatic forces in the dynamics of the one-dimensional Gaussian core model

    NASA Astrophysics Data System (ADS)

    Bernreuther, Elias; Schmidt, Matthias

    2016-08-01

    Using Brownian dynamics computer simulations we investigate the dynamics of the one-body density and one-body current in a one-dimensional system of particles that interact with a repulsive Gaussian pair potential. We systematically split the internal force distribution into an adiabatic part, which originates from the equilibrium free energy, and a superadiabatic contribution, which is neglected in dynamical density functional theory. We find a strong dependence of the magnitude and phase of the superadiabatic force distribution on the initial state of the system. While the magnitude of the superadiabatic force is small if the system evolves from an equilibrium state inside of a parabolic external potential, it is large for particles with equidistant initial separations at high temperature. We analyze these findings in the light of the known mean-field behavior of Gaussian core particles and discuss a multi-occupancy mechanism which generates superadiabatic forces that are out of phase with respect to the adiabatic force.

  6. Theoretical reconstruction of realistic dynamics of highly coarse-grained cis-1,4-polybutadiene melts

    NASA Astrophysics Data System (ADS)

    Lyubimov, I. Y.; Guenza, M. G.

    2013-03-01

    The theory to reconstruct the atomistic-level chain diffusion from the accelerated dynamics that is measured in mesoscale simulations of the coarse-grained system, is applied here to the dynamics of cis-1,4-polybutadiene melts where each chain is described as a soft interacting colloidal particle. The rescaling formalism accounts for the corrections in the dynamics due to the change in entropy and the change in friction that are a consequence of the coarse-graining procedure. By including these two corrections the dynamics is rescaled to reproduce the realistic dynamics of the system described at the atomistic level. The rescaled diffusion coefficient obtained from mesoscale simulations of coarse-grained cis-1,4-polybutadiene melts shows good agreement with data from united atom simulations performed by Tsolou et al. [Macromolecules 38, 1478 (2005)], 10.1021/ma0491210. The derived monomer friction coefficient is used as an input to the theory for cooperative dynamics that describes the internal dynamics of a polymer moving in a transient regions of slow cooperative motion in a liquid of macromolecules. Theoretically predicted time correlation functions show good agreement with simulations in the whole range of length and time scales in which data are available.

  7. Time resolved lateral dynamic force microscopy for exploring nanoscopic water bridge

    NASA Astrophysics Data System (ADS)

    Kim, Jongwoo; Chang, Sungjin; Sung, Baekman; Kwon, Soyoung; Jhe, Wonho

    2010-03-01

    Lateral dynamic force microscopy based on time-resolved scheme is employed for a good understanding of dynamics of nanoscopic water bridge connecting a sharp tip with a flat sample. In its formation and stepped compression at which the tip and the sample in a true non-contact, the nanoscopic water bridge under oscillatory shear stress shows a transient response behavior for a long time ( >=10^2 ms). This observation obviously demonstrates that an inadequate fast measurement in dynamic force microscopy can lead a misunderstanding of dynamic physical properties of the nanoscopic water.

  8. Three-Dimensional FRET Reconstruction Microscopy for Analysis of Dynamic Molecular Interactions in Live Cells

    PubMed Central

    Hoppe, Adam D.; Shorte, Spencer L.; Swanson, Joel A.; Heintzmann, Rainer

    2008-01-01

    Analysis of cellular pathways requires concentration measurements of dynamically interacting molecules within the three-dimensional (3D) space of single living cells. Förster resonance energy transfer (FRET) microscopy from widefield, from confocal, and potentially from superresolution microscopes can access this information; however, these measurements are distorted by the inherent 3D blurring of optical imaging, spectral overlap of fluorophores, and detection noise. We propose a mathematical model of these processes and demonstrate, through simulation, how these distortions limit the dynamic range and sensitivity of conventional FRET microscopy. Using this model, we devise and validate a new approach (called 3D-FRET stoichiometry reconstruction, 3DFSR) for reconstructing 3D distributions of bound and free fluorescent molecules. Previous attempts to reconstruct 3D-FRET data relied on sequential spectral unmixing and deconvolution, a process that corrupts the detection statistics. We demonstrate that 3DFSR is superior to these approaches since it simultaneously models spectral mixing, optical blurring, and detection noise. To achieve the full potential of this technique, we developed an instrument capable of acquiring 3D-FRET data rapidly and sensitively from single living cells. Compared with conventional FRET microscopy, our 3D-FRET reconstruction technique and new instrumentation provides orders of magnitude gains in both sensitivity and accuracy wherein sustained high-resolution four-dimensional (x,y,z,t) imaging of molecular interactions inside living cells was achieved. These results verify previous observations that Cdc42 signaling is localized to the advancing margins of forming phagosomes in macrophages. PMID:18339754

  9. Free-energy calculation via mean-force dynamics using a logarithmic energy landscape.

    PubMed

    Morishita, Tetsuya; Itoh, Satoru G; Okumura, Hisashi; Mikami, Masuhiro

    2012-06-01

    A method for free-energy calculation based on mean-force dynamics (fictitious dynamics on a potential of mean force) is presented. The method utilizes a logarithmic form of free energy to enhance crossing barriers on a free-energy landscape, which results in efficient sampling of "rare" events. Invoking a conserved quantity in mean-force dynamics, free energy can be estimated on-the-fly without postprocessing. This means that an estimate of the free-energy profile can be locally made in contrast to the other methods based on mean-force dynamics such as metadynamics. The method is benchmarked against conventional methods and its high efficiency is demonstrated in the free-energy calculation for a glycine dipeptide molecule. PMID:23005238

  10. Sliding mode-based lateral vehicle dynamics control using tyre force measurements

    NASA Astrophysics Data System (ADS)

    Kunnappillil Madhusudhanan, Anil; Corno, Matteo; Holweg, Edward

    2015-11-01

    In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.