Science.gov

Sample records for reconstructed dynamic forces

  1. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    NASA Astrophysics Data System (ADS)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  2. Reconstruction of dynamic forces during impact tests of a crushable structure

    SciTech Connect

    Bateman, V.I.; Carne, T.G.; Mayes, R.L.; Davie, N.T.

    1993-12-31

    A force reconstruction technique is being used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degree}) and slapdown (30{degree}) impact conditions. The dynamic force characteristics for the current nose design, determined from these tests, will be used to write a dynamic force specification for a new nose design that will replace the current nose. Two structures for experimentally determining the dynamic force -- deflection characteristics of the old and new noses have been designed and constructed. One structure has the same dynamic characteristics as the bomb and is being used for axial and slapdown orientations with rocket-propelled testing. The second structure has the same mass as the bomb and is being used for iterative axial testing of candidate designs with a pneumatic ram. The structural characteristics of these two structures have been determined and are presented. A force reconstruction algorithm using the Sum of Weighted Accelerations Technique (SWAT) has been developed for each of the two structures. The force reconstruction algorithms have been verified for both structures using laboratory data. The force reconstruction process and the resulting algorithms are described. Data verifying the force reconstruction algorithms is presented.

  3. Crushable structure performance determined from reconstructed dynamic forces during impact tests

    SciTech Connect

    Bateman, V.I.

    1995-01-01

    A force reconstruction technique has been used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degrees}) and slapdown (30{degrees}) impact conditions. The dynamic force characteristics for the nose design, determined from these test results, have been used to write a dynamic force specification for a new nose design that will replace the old nose. The dynamic forces are reconstructed from measured acceleration responses with the Sum of Weighted Accelerations Technique (SWAT) developed at Sandia National Laboratories. Axial characterizations for the old nose are presented from tests at two SNL facilities: a rocket rail launcher facility and an 18-Inch horizontal actuator facility. The characterizations for the old nose are compared to the characterizations for two new nose designs. Slapdown characterizations for the old nose are presented. Incorporation of the test results into a dynamic force specification is discussed.

  4. An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics

    SciTech Connect

    Nakamura, Makoto Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki

    2014-05-14

    We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields.

  5. Dynamic Reconstruction and Multivariable Control for Force-Actuated, Thin Facesheet Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Grocott, Simon C. O.; Miller, David W.

    1997-01-01

    The Multiple Mirror Telescope (MMT) under development at the University of Arizona takes a new approach in adaptive optics placing a large (0.65 m) force-actuated, thin facesheet deformable mirror at the secondary of an astronomical telescope, thus reducing the effects of emissivity which are important in IR astronomy. However, The large size of the mirror and low stiffness actuators used drive the natural frequencies of the mirror down into the bandwidth of the atmospheric distortion. Conventional adaptive optics takes a quasi-static approach to controlling the, deformable mirror. However, flexibility within the control bandwidth calls for a new approach to adaptive optics. Dynamic influence functions are used to characterize the influence of each actuator on the surface of the deformable mirror. A linearized model of atmospheric distortion is combined with dynamic influence functions to produce a dynamic reconstructor. This dynamic reconstructor is recognized as an optimal control problem. Solving the optimal control problem for a system with hundreds of actuators and sensors is formidable. Exploiting the circularly symmetric geometry of the mirror, and a suitable model of atmospheric distortion, the control problem is divided into a number of smaller decoupled control problems using circulant matrix theory. A hierarchic control scheme which seeks to emulate the quasi-static control approach that is generally used in adaptive optics is compared to the proposed dynamic reconstruction technique. Although dynamic reconstruction requires somewhat more computational power to implement, it achieves better performance with less power usage, and is less sensitive than the hierarchic technique.

  6. A statistical-dynamical scheme for reconstructing ocean forcing in the Atlantic. Part II: methodology, validation and application to high-resolution ocean models

    NASA Astrophysics Data System (ADS)

    Minvielle, Marie; Cassou, Christophe; Bourdallé-Badie, Romain; Terray, Laurent; Najac, Julien

    2011-02-01

    A novel statistical-dynamical scheme has been developed to reconstruct the sea surface atmospheric variables necessary to force an ocean model. Multiple linear regressions are first built over a so-called learning period and over the entire Atlantic basin from the observed relationship between the surface wind conditions, or predictands, and the anomalous large scale atmospheric circulations, or predictors. The latter are estimated in the extratropics by 500 hPa geopotential height weather regimes and in the tropics by low-level wind classes. The transfer function further combined to an analog step is then used to reconstruct all the surface variables fields over 1958-2002. We show that the proposed hybrid scheme is very skillful in reproducing the mean state, the seasonal cycle and the temporal evolution of all the surface ocean variables at interannual timescale. Deficiencies are found in the level of variance especially in the tropics. It is underestimated for 2-m temperature and humidity as well as for surface radiative fluxes in the interannual frequency band while it is slightly overestimated at higher frequency. Decomposition in empirical orthogonal function (EOF) shows that the spatial and temporal coherence of the forcing fields is however very well captured by the reconstruction method. For dynamical downscaling purposes, reconstructed fields are then interpolated and used to carry out a high-resolution oceanic simulation using the NATL4 (1/4°) model integrated over 1979-2001. This simulation is compared to a reference experiment where the original observed forcing fields are prescribed instead. Mean states between the two experiments are virtually undistinguishable both in terms of surface fluxes and ocean dynamics estimated by the barotropic and the meridional overturning streamfunctions. The 3-dimensional variance of the simulated ocean is well preserved at interannual timescale both for temperature and salinity except in the tropics where it is

  7. A statistical-dynamical scheme for reconstructing ocean forcing in the Atlantic. Part I: weather regimes as predictors for ocean surface variables

    NASA Astrophysics Data System (ADS)

    Cassou, Christophe; Minvielle, Marie; Terray, Laurent; Périgaud, Claire

    2011-01-01

    findings are encouraging for the prospects of basin-scale ocean dynamical downscaling using a weather-typing approach to reconstruct forcing fields for high resolution ocean models (Part II) from coarse resolution climate models.

  8. Force reconstruction from tapping mode force microscopy experiments

    NASA Astrophysics Data System (ADS)

    Payam, Amir F.; Martin-Jimenez, Daniel; Garcia, Ricardo

    2015-05-01

    Fast, accurate, and robust nanomechanical measurements are intensely studied in materials science, applied physics, and molecular biology. Amplitude modulation force microscopy (tapping mode) is the most established nanoscale characterization technique of surfaces for air and liquid environments. However, its quantitative capabilities lag behind its high spatial resolution and robustness. We develop a general method to transform the observables into quantitative force measurements. The force reconstruction algorithm has been deduced on the assumption that the observables (amplitude and phase shift) are slowly varying functions of the tip-surface separation. The accuracy and applicability of the method is validated by numerical simulations and experiments. The method is valid for liquid and air environments, small and large free amplitudes, compliant and rigid materials, and conservative and non-conservative forces.

  9. Force reconstruction using the inverse of the mode-shape matrix

    SciTech Connect

    Carne, T.G.; Bateman, V.I.; Dohrman, C.R.

    1991-01-01

    Force reconstruction is a process in which response signals from a dynamic event are used to infer what the applied force must have been to produce these responses. Force reconstruction is of interest when the input force cannot be directly measured, while the response signals are easily obtained using transducers such as accelerometers or strain gages. In many evaluation tests of a structure, the dynamic response is not sufficient information; one may really need a description of the input force. A new technique for force reconstruction is developed. To estimate the externally applied force, this technique sums the weight-scaled acceleration signals, and is referred to as the Sum of Weighted Accelerations Technique (SWAT). To obtain the scalar weights the inverse of the mode shape matrix is used. Application of this technique is illustrated with both numerical calculations using a mass-spring model and experimental data from a structure impacting a rigid barrier. 16 refs., 13 figs.

  10. The Dynamic Force Table

    ERIC Educational Resources Information Center

    Geddes, John B.; Black, Kelly

    2008-01-01

    We examine an experimental apparatus that is used to motivate the connections between the basic properties of vectors, potential functions, systems of nonlinear equations, and Newton's method for nonlinear systems of equations. The apparatus is an adaptation of a force table where we remove the center-pin and allow the center-ring to move freely.…

  11. Mechanical Forces Governing Tissue Dynamics

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn

    2002-10-01

    We have refined a UV-laser microbeam to investigate the forces at play during morphogenesis, i.e. early biological development, in the fruit fly Drosophila (1). While the microbeam typically is used to ablate tissue with cellular spatial resolution, it has the capability for submicron and thus subcellular spatial resolution. The microbeam can be steered in two-dimensions and UV-laser dissection occurred in vivo while the tissue was imaged in real time using a (visible) laser-scanning confocal microscope. We investigated a morphogenic process, known as dorsal closure, in a genetically engineered strain of Drosophila where green fluorescent protein has been fused to a fragment of a native structural protein (2). This allowed us to visualize the fluorescing contours of two opposing, outer sheets of tissue closing over an inner tissue sheet. Time-lapse imaging captured the contours in native closure as well as in response to UV-laser dissection. Specific patterns of dissection essentially eliminated a selected force: by tracking the changes in contour geometry we estimated the relative magnitude of that force (mechanical jump). Using this approach we identified and characterized a set of forces governing tissue dynamics. We have developed a mechanical model for the dynamics of dorsal closure based on this data set. This model provides a theoretical framework for investigating defective closure in mutant flies. Dorsal closure is a model system for various aspects of cell movement in wound healing and vertebrate development. This research has been supported by the DoD MFEL Program as administered by the AFOSR and by the NIH. 1. M.S. Hutson, Y. Tokutake, M-S. Chang, J.W. Bloor, S. Venakides, D.P. Kiehart, and G.S. Edwards. "Laser dissection of morphogenetic dynamics in Drosophila dorsal closure." In preparation. 2. D.P. Kiehart, et al, J. Cell Biol. 149, 471 (2000).

  12. Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy

    PubMed Central

    Woodside, Michael T.; Block, Steven M.

    2015-01-01

    Folding may be described conceptually in terms of trajectories over a landscape of free energies corresponding to different molecular configurations. In practice, energy landscapes can be difficult to measure. Single-molecule force spectroscopy (SMFS), whereby structural changes are monitored in molecules subjected to controlled forces, has emerged as a powerful tool for probing energy landscapes. We summarize methods for reconstructing landscapes from force spectroscopy measurements under both equilibrium and nonequilibrium conditions. Other complementary, but technically less demanding, methods provide a model-dependent characterization of key features of the landscape. Once reconstructed, energy landscapes can be used to study critical folding parameters, such as the characteristic transition times required for structural changes and the effective diffusion coefficient setting the timescale for motions over the landscape. We also discuss issues that complicate measurement and interpretation, including the possibility of multiple states or pathways and the effects of projecting multiple dimensions onto a single coordinate. PMID:24895850

  13. Reconstructing Directed Networks From Noisy Dynamics

    NASA Astrophysics Data System (ADS)

    Tam, Hiu Ching; Ching, Emily Sc

    Complex systems can be fruitfully studied as networks of many elementary units, known as nodes, interacting with one another with the interactions being the links between the nodes. The overall behavior of the systems depends crucially on the network structure depicting how the nodes are linked with each other. It is usually possible to measure the dynamics of the individual nodes but difficult, if not impossible, to directly measure the interactions or links between the nodes. For most systems of interest, the links are directional in that one node affects the dynamics of the other but not vice versa. Moreover, the strength of interaction can vary for different links. Reconstructing directed and weighted networks from dynamics is one of the biggest challenges in network research. We have studied directed and weighted networks modelled by noisy dynamical systems with nonlinear dynamics and developed a method that reconstructs the links and their directions using only the dynamics of the nodes as input. Our method is motivated by a mathematical result derived for dynamical systems that approach a fixed point in the noise-free limit. We show that our method gives good reconstruction results for several directed and weighted networks with different nonlinear dynamics. Supported by Hong Kong Research Grants Council under Grant No. CUHK 14300914.

  14. Reconstruction of dynamic gated cardiac SPECT

    SciTech Connect

    Jin Mingwu; Yang Yongyi; King, Michael A.

    2006-11-15

    In this paper we propose an image reconstruction procedure which aims to unify gated single photon emission computed tomography (SPECT) and dynamic SPECT into a single method. We divide the cardiac cycle into a number of gate intervals as in gated SPECT, but treat the tracer distribution for each gate as a time-varying signal. By using both dynamic and motion-compensated temporal regularization, our reconstruction procedure will produce an image sequence that shows both cardiac motion and time-varying tracer distribution simultaneously. To demonstrate the proposed reconstruction method, we simulated gated cardiac perfusion imaging using the gated mathematical cardiac-torso (gMCAT) phantom with Tc99m-Teboroxime as the imaging agent. Our results show that the proposed method can produce more accurate reconstruction of gated dynamic images than independent reconstruction of individual gate frames with spatial smoothness alone. In particular, our results show that the former could improve the contrast to noise ratio of a simulated perfusion defect by as much as 100% when compared to the latter.

  15. Fusion of intraoperative force sensoring, surface reconstruction and biomechanical modeling

    NASA Astrophysics Data System (ADS)

    Röhl, S.; Bodenstedt, S.; Küderle, C.; Suwelack, S.; Kenngott, H.; Müller-Stich, B. P.; Dillmann, R.; Speidel, S.

    2012-02-01

    Minimally invasive surgery is medically complex and can heavily benefit from computer assistance. One way to help the surgeon is to integrate preoperative planning data into the surgical workflow. This information can be represented as a customized preoperative model of the surgical site. To use it intraoperatively, it has to be updated during the intervention due to the constantly changing environment. Hence, intraoperative sensor data has to be acquired and registered with the preoperative model. Haptic information which could complement the visual sensor data is still not established. In addition, biomechanical modeling of the surgical site can help in reflecting the changes which cannot be captured by intraoperative sensors. We present a setting where a force sensor is integrated into a laparoscopic instrument. In a test scenario using a silicone liver phantom, we register the measured forces with a reconstructed surface model from stereo endoscopic images and a finite element model. The endoscope, the instrument and the liver phantom are tracked with a Polaris optical tracking system. By fusing this information, we can transfer the deformation onto the finite element model. The purpose of this setting is to demonstrate the principles needed and the methods developed for intraoperative sensor data fusion. One emphasis lies on the calibration of the force sensor with the instrument and first experiments with soft tissue. We also present our solution and first results concerning the integration of the force sensor as well as accuracy to the fusion of force measurements, surface reconstruction and biomechanical modeling.

  16. Remote Dynamic Three-Dimensional Scene Reconstruction

    PubMed Central

    Yang, You; Liu, Qiong; Ji, Rongrong; Gao, Yue

    2013-01-01

    Remote dynamic three-dimensional (3D) scene reconstruction renders the motion structure of a 3D scene remotely by means of both the color video and the corresponding depth maps. It has shown a great potential for telepresence applications like remote monitoring and remote medical imaging. Under this circumstance, video-rate and high resolution are two crucial characteristics for building a good depth map, which however mutually contradict during the depth sensor capturing. Therefore, recent works prefer to only transmit the high-resolution color video to the terminal side, and subsequently the scene depth is reconstructed by estimating the motion vectors from the video, typically using the propagation based methods towards a video-rate depth reconstruction. However, in most of the remote transmission systems, only the compressed color video stream is available. As a result, color video restored from the streams has quality losses, and thus the extracted motion vectors are inaccurate for depth reconstruction. In this paper, we propose a precise and robust scheme for dynamic 3D scene reconstruction by using the compressed color video stream and their inaccurate motion vectors. Our method rectifies the inaccurate motion vectors by analyzing and compensating their quality losses, motion vector absence in spatial prediction, and dislocation in near-boundary region. This rectification ensures the depth maps can be compensated in both video-rate and high resolution at the terminal side towards reducing the system consumption on both the compression and transmission. Our experiments validate that the proposed scheme is robust for depth map and dynamic scene reconstruction on long propagation distance, even with high compression ratio, outperforming the benchmark approaches with at least 3.3950 dB quality gains for remote applications. PMID:23667417

  17. Dynamic atomic force microscopy methods

    NASA Astrophysics Data System (ADS)

    García, Ricardo; Pérez, Rubén

    2002-09-01

    In this report we review the fundamentals, applications and future tendencies of dynamic atomic force microscopy (AFM) methods. Our focus is on understanding why the changes observed in the dynamic properties of a vibrating tip that interacts with a surface make possible to obtain molecular resolution images of membrane proteins in aqueous solutions or to resolve atomic-scale surface defects in ultra high vacuum (UHV). Our description of the two major dynamic AFM modes, amplitude modulation atomic force microscopy (AM-AFM) and frequency modulation atomic force microscopy (FM-AFM) emphasises their common points without ignoring the differences in experimental set-ups and operating conditions. Those differences are introduced by the different feedback parameters, oscillation amplitude in AM-AFM and frequency shift and excitation amplitude in FM-AFM, used to track the topography and composition of a surface. The theoretical analysis of AM-AFM (also known as tapping-mode) emphasises the coexistence, in many situations of interests, of two stable oscillation states, a low and high amplitude solution. The coexistence of those oscillation states is a consequence of the presence of attractive and repulsive components in the interaction force and their non-linear dependence on the tip-surface separation. We show that key relevant experimental properties such as the lateral resolution, image contrast and sample deformation are highly dependent on the oscillation state chosen to operate the instrument. AM-AFM allows to obtain simultaneous topographic and compositional contrast in heterogeneous samples by recording the phase angle difference between the external excitation and the tip motion (phase imaging). Significant applications of AM-AFM such as high-resolution imaging of biomolecules and polymers, large-scale patterning of silicon surfaces, manipulation of single nanoparticles or the fabrication of single electron devices are also reviewed. FM-AFM (also called non

  18. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  19. Dynamic state allocation for MEG source reconstruction

    PubMed Central

    Woolrich, Mark W.; Baker, Adam; Luckhoo, Henry; Mohseni, Hamid; Barnes, Gareth; Brookes, Matthew; Rezek, Iead

    2013-01-01

    Our understanding of the dynamics of neuronal activity in the human brain remains limited, due in part to a lack of adequate methods for reconstructing neuronal activity from noninvasive electrophysiological data. Here, we present a novel adaptive time-varying approach to source reconstruction that can be applied to magnetoencephalography (MEG) and electroencephalography (EEG) data. The method is underpinned by a Hidden Markov Model (HMM), which infers the points in time when particular states re-occur in the sensor space data. HMM inference finds short-lived states on the scale of 100 ms. Intriguingly, this is on the same timescale as EEG microstates. The resulting state time courses can be used to intelligently pool data over these distinct and short-lived periods in time. This is used to compute time-varying data covariance matrices for use in beamforming, resulting in a source reconstruction approach that can tune its spatial filtering properties to those required at different points in time. Proof of principle is demonstrated with simulated data, and we demonstrate improvements when the method is applied to MEG. PMID:23545283

  20. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  1. Sparse decomposition learning based dynamic MRI reconstruction

    NASA Astrophysics Data System (ADS)

    Zhu, Peifei; Zhang, Qieshi; Kamata, Sei-ichiro

    2015-02-01

    Dynamic MRI is widely used for many clinical exams but slow data acquisition becomes a serious problem. The application of Compressed Sensing (CS) demonstrated great potential to increase imaging speed. However, the performance of CS is largely depending on the sparsity of image sequence in the transform domain, where there are still a lot to be improved. In this work, the sparsity is exploited by proposed Sparse Decomposition Learning (SDL) algorithm, which is a combination of low-rank plus sparsity and Blind Compressed Sensing (BCS). With this decomposition, only sparsity component is modeled as a sparse linear combination of temporal basis functions. This enables coefficients to be sparser and remain more details of dynamic components comparing learning the whole images. A reconstruction is performed on the undersampled data where joint multicoil data consistency is enforced by combing Parallel Imaging (PI). The experimental results show the proposed methods decrease about 15~20% of Mean Square Error (MSE) compared to other existing methods.

  2. Dynamic Behavior in Piezoresponse Force Microstopy

    SciTech Connect

    Jesse, Stephen; Baddorf, Arthur P; Kalinin, Sergei V

    2006-01-01

    Frequency-dependent dynamic behavior in piezoresponse force microscopy (PFM) implemented on a beam-deflection atomic force microscope (AFM) is analysed using a combination of modelling and experimental measurements. The PFM signal is comprised of contributions from local electrostatic forces acting on the tip, distributed forces acting on the cantilever, and three components of the electromechanical response vector. These interactions result in the flexural and torsional oscillations of the cantilever, detected as vertical and lateral PFM signals. The relative magnitudes of these contributions depend on geometric parameters of the system, on the stiffnesses and frictional forces of the tip-surface junction, and on the frequency of operation. The dynamic signal formation mechanism in PFM is analysed and conditions for optimal PFM imaging are formulated. An experimental approach for probing cantilever dynamics using frequency-bias spectroscopy and deconvolution of electromechanical and electrostatic contrast is implemented

  3. Dynamic behaviour in piezoresponse force microscopy.

    PubMed

    Jesse, Stephen; Baddorf, Arthur P; Kalinin, Sergei V

    2006-03-28

    Frequency-dependent dynamic behaviour in piezoresponse force microscopy (PFM) implemented on a beam-deflection atomic force microscope (AFM) is analysed using a combination of modelling and experimental measurements. The PFM signal is comprised of contributions from local electrostatic forces acting on the tip, distributed forces acting on the cantilever, and three components of the electromechanical response vector. These interactions result in the flexural and torsional oscillations of the cantilever, detected as vertical and lateral PFM signals. The relative magnitudes of these contributions depend on geometric parameters of the system, on the stiffnesses and frictional forces of the tip-surface junction, and on the frequency of operation. The dynamic signal formation mechanism in PFM is analysed and conditions for optimal PFM imaging are formulated. An experimental approach for probing cantilever dynamics using frequency-bias spectroscopy and deconvolution of electromechanical and electrostatic contrast is implemented. PMID:26558568

  4. [Application of algebraic reconstruction technique of multi-source tomosynthesis in dynamic reconstruction].

    PubMed

    Peng, Jiaju; Zhao, Jun

    2011-07-01

    To reduce the motion artifacts, a new scanning configuration is proposed for tomosynthesis in dynamic reconstruction. In this new configuration, multiple x-ray sources are uniformly distributed on the circular scanning trajectory and moving simultaneously. Numerical experiments are performed using two dynamic digital phantoms and algebraic reconstruction technique. The reconstruction images of single-source tomosynthesis and multi-source tomosynthesis are compared and evaluated. The results show that multi-source tomosynthesis could reduce artifacts effectively, thus improving image quality. The advantages of multi-source tomosynthesis in dynamic reconstruction are important to cardiac imaging and respiratory imaging. PMID:22097745

  5. Undulator with dynamic compensation of magnetic forces

    DOEpatents

    Gluskin, Efim; Trakhtenberg, Emil; Xu, Joseph Z.

    2016-05-31

    A method and apparatus for implementing dynamic compensation of magnetic forces for undulators are provided. An undulator includes a respective set of magnet arrays, each attached to a strongback, and placed on horizontal slides and positioned parallel relative to each other with a predetermined gap. Magnetic forces are compensated by a set of compensation springs placed along the strongback. The compensation springs are conical springs having exponential-force characteristics that substantially match undulator magnetic forces independently of the predetermined gap. The conical springs are positioned along the length of the magnets.

  6. Research on new dynamic force calibration system

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2008-06-01

    Sinusoidal force calibration method based on electrodynamic shaker and interferometric system was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). In that system a load mass are screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition F(t) = ma(t), where m is the total mass acting on the sensing element of the force transducer and a is the time and spatial-dependent acceleration of the mass, which is directly measured by a laser interferometer. This paper will introduce a new dynamic force calibration system developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electrodynamic shakers to generate dynamic force in the range from 1N to 20kN, and heterodyne laser interferometers are used for acceleration measurement. A new air bearing system is developed to increase the performance of shakers and an active vibration isolator is used to reduce enviromental disturbance to the interferometric system.

  7. Reconstructing magma reservoir dynamics from field evidence

    NASA Astrophysics Data System (ADS)

    Verberne, R.; Muntener, O.; Ulmer, P.

    2013-12-01

    Reconstructing the dynamics within magma reservoirs during and after emplacement greatly enhance our understanding of their formation and evolution. By determining the length and timescales over which magma remains mobile within magma reservoirs, fluxes of magma that is possibly extractable can be quantified, providing a link between plutonic and volcanic systems, and constraints on the likelihood of a pluton feeding volcanic eruptions. However, the general absence of marker beds and uncertainties regarding at which crystal fractions super-solidus foliation patterns are recorded make it difficult to reconstruct and quantify deformation inside plutons, especially the deformation that occurred at low crystal fractions. Here we present a case study of the Listino Ring Structure (LRS) of the Adamello Batholith in N-Italy, a 300-500 m-wide semi-circular zone of intensely foliated tonalite containing abundant evidence for magmatic deformation and magma mingling (Brack, 1984). The differences in the interaction between felsic and mafic magmas recorded in the form of mafic dikes, sheets and enclaves can be used to determine spatial and/or temporal differences of magma rheology during evolution of the reservoir. Detailed field mapping shows a clear difference in intrusion style between the southern and eastern sides of the LRS, as mafic magma intrudes into different felsic host magmas. An attempt is made to quantify these differences in terms of the physical state of the host magmas, using a variety of analyses pertaining to the breakup of mafic dikes into enclaves, the assimilation of phenocrysts from the host magma by the mafic magma, and the back-veining of mafic dikes and enclaves. The common component of these analyses is a parametrization of the phase petrology of the magmas as a function of temperature, which allows for the determination of melt fraction and composition at super-solidus conditions, from which physical properties such as density and viscosity can be

  8. Tensor-based dictionary learning for dynamic tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong

    2015-04-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction.

  9. Tensor-based Dictionary Learning for Dynamic Tomographic Reconstruction

    PubMed Central

    Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong

    2015-01-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction. PMID:25779991

  10. Forced synchronization of autonomous dynamical Boolean networks

    SciTech Connect

    Rivera-Durón, R. R. Campos-Cantón, E.; Campos-Cantón, I.; Gauthier, Daniel J.

    2015-08-15

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.

  11. Reconstruction of dynamic structural inputs in the presence of noise

    SciTech Connect

    Bateman, V.I.; Solomon, O.M. Jr.

    1986-08-01

    This report describes a technique to reconstruct dynamic structural inputs by deconvolution of measured data. The structure to which this technique has been applied is a mild steel bar (3 in diameter and 60 in. long) with a conical nose which provides some geometric simulation of penetrating structures which are used in field test. The deconvolution technique successfully reconstructs dynamic inputs to the bar with and without additive white noise present in the measured response.

  12. Identification of dynamic forces using group-sparsity in frequency domain

    NASA Astrophysics Data System (ADS)

    Rezayat, A.; Nassiri, V.; De Pauw, B.; Ertveldt, J.; Vanlanduit, S.; Guillaume, P.

    2016-03-01

    The knowledge of acting dynamic forces is required for the design of structures. Given the structural model, inverse techniques offer the possibility to reconstruct the system's input forces from vibration data. The inverse problem is highly sensitive to measurement noise, and the classical pseudo-inverse method generally fails to find the correct loads. In this paper we propose a new penalty function that combines the advantages of the ℓp-norm properties, together with a modified iterative optimization technique. The new algorithm (G-FISTA) is used to localize and reconstruct dynamic point-forces on a beam structure, with no prior knowledge on the force locations. The algorithm is validated by means of several simulations and experiments. The strain data is measured using Fiber Bragg Gratings (FBG) attached to the beam. The obtained results show that the location and time history of point forces are better estimated using the proposed technique.

  13. Force field dependence of riboswitch dynamics.

    PubMed

    Hanke, Christian A; Gohlke, Holger

    2015-01-01

    Riboswitches are noncoding regulatory elements that control gene expression in response to the presence of metabolites, which bind to the aptamer domain. Metabolite binding appears to occur through a combination of conformational selection and induced fit mechanism. This demands to characterize the structural dynamics of the apo state of aptamer domains. In principle, molecular dynamics (MD) simulations can give insights at the atomistic level into the dynamics of the aptamer domain. However, it is unclear to what extent contemporary force fields can bias such insights. Here, we show that the Amber force field ff99 yields the best agreement with detailed experimental observations on differences in the structural dynamics of wild type and mutant aptamer domains of the guanine-sensing riboswitch (Gsw), including a pronounced influence of Mg2+. In contrast, applying ff99 with parmbsc0 and parmχOL modifications (denoted ff10) results in strongly damped motions and overly stable tertiary loop-loop interactions. These results are based on 58 MD simulations with an aggregate simulation time>11 μs, careful modeling of Mg2+ ions, and thorough statistical testing. Our results suggest that the moderate stabilization of the χ-anti region in ff10 can have an unwanted damping effect on functionally relevant structural dynamics of marginally stable RNA systems. This suggestion is supported by crystal structure analyses of Gsw aptamer domains that reveal χ torsions with high-anti values in the most mobile regions. We expect that future RNA force field development will benefit from considering marginally stable RNA systems and optimization toward good representations of dynamics in addition to structural characteristics. PMID:25726465

  14. Debye Entropic Force and Modified Newtonian Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Xin; Chang, Zhe

    2011-04-01

    Verlinde has suggested that the gravity has an entropic origin, and a gravitational system could be regarded as a thermodynamical system. It is well-known that the equipartition law of energy is invalid at very low temperature. Therefore, entropic force should be modified while the temperature of the holographic screen is very low. It is shown that the modified entropic force is proportional to the square of the acceleration, while the temperature of the holographic screen is much lower than the Debye temperature TD. The modified entropic force returns to the Newton's law of gravitation while the temperature of the holographic screen is much higher than the Debye temperature. The modified entropic force is connected with modified Newtonian dynamics (MOND). The constant a0 involved in MOND is linear in the Debye frequency ωD, which can be regarded as the largest frequency of the bits in screen. We find that there do have a strong connection between MOND and cosmology in the framework of Verlinde's entropic force, if the holographic screen is taken to be bound of the Universe. The Debye frequency is linear in the Hubble constant H0.

  15. The reconstructive urology work force: present and future

    PubMed Central

    2014-01-01

    Indirect measures that determine the number of reconstructive urologists in the US seem to indicate a general shortage in the number of these specially trained surgeons. This shortage may worsen in the future, as the US population continues to age and the number of urologists relative to the general population growth continues to fall. The lack of reconstructive urology expertise seems to drive an inappropriate number of urethrotomies performed in the US, most troubling in those with previous failed urethotomies in whom the subsequent urethrotomy failure rate approaches 100%. Recently increases in the number of fellowship training programs and an increased number of residency centers nationwide that graduate urologists with good basic knowledge of urethroplasty will partly ameliorate this shortage, but wide geographic regions remain without any urologic reconstruction experts. PMID:26813479

  16. A comparison of force reconstruction methods for a lumped mass beam

    SciTech Connect

    Bateman, V.I.; Mayes, R.L.; Carne, T.G.

    1992-11-01

    Two extensions of the force reconstruction method, the Sum of Weighted Accelerations Technique (SWAT), are presented in this paper; and the results are compared to those obtained using SWAT. SWAT requires the use of the structure`s elastic mode shapes for reconstruction of the applied force. Although based on the same theory, the two, new techniques do not rely on mode shapes to reconstruct the applied force and may be applied to structures whose mode shapes are not available. One technique uses the measured force and acceleration responses with the rigid body mode shapes to calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using a CALibrated force input). The second technique uses only the free-decay time response of the structure with the rigid body mode shapes to calculate the scalar weighting vector and is called SWAT-TEEM (SWAT using Time Eliminated Elastic Modes).

  17. A comparison of force reconstruction methods for a lumped mass beam

    SciTech Connect

    Bateman, V.I.; Mayes, R.L.; Carne, T.G.

    1992-01-01

    Two extensions of the force reconstruction method, the Sum of Weighted Accelerations Technique (SWAT), are presented in this paper; and the results are compared to those obtained using SWAT. SWAT requires the use of the structure's elastic mode shapes for reconstruction of the applied force. Although based on the same theory, the two, new techniques do not rely on mode shapes to reconstruct the applied force and may be applied to structures whose mode shapes are not available. One technique uses the measured force and acceleration responses with the rigid body mode shapes to calculate the scalar weighting vector, so the technique is called SWAT-CAL (SWAT using a CALibrated force input). The second technique uses only the free-decay time response of the structure with the rigid body mode shapes to calculate the scalar weighting vector and is called SWAT-TEEM (SWAT using Time Eliminated Elastic Modes).

  18. Dynamics of Turing Patterns under Spatiotemporal Forcing

    NASA Astrophysics Data System (ADS)

    Rüdiger, S.; Míguez, D. G.; Muñuzuri, A. P.; Sagués, F.; Casademunt, J.

    2003-03-01

    We study, both theoretically and experimentally, the dynamical response of Turing patterns to a spatiotemporal forcing in the form of a traveling-wave modulation of a control parameter. We show that from strictly spatial resonance, it is possible to induce new, generic dynamical behaviors, including temporally modulated traveling waves and localized traveling solitonlike solutions. The latter make contact with the soliton solutions of Coullet [

    Phys. Rev. Lett.PRLTAO0031-9007 56, 724 (1986)
    ] and generalize them. The stability diagram for the different propagating modes in the Lengyel-Epstein model is determined numerically. Direct observations of the predicted solutions in experiments carried out with light modulations in the photosensitive chlorine dioxide-iodine-malonic acid reaction are also reported.

  19. Forced and internal variability in temperature simulations and reconstructions of the Common Era

    NASA Astrophysics Data System (ADS)

    Fernández-Donado, Laura; Fidel González-Rouco, J.; Garcia-Bustamante, Elena; Smerdon, Jason S.; Luterbacher, Juerg; Raible, Christoph C.

    2016-04-01

    The relatively short ranges of external forcing variability within the CE represent a challenge in as much as the consistency between simulations and reconstructions can be affected by the large uncertainties in their respective responses to the external forcings. One of the core questions within this work relates therefore the extent to which a straight response to the external forcing can be identified during the period under study and whether this signal is common to simulated and reconstructed temperature. This study is based on an exhaustive compilation, analysis and intercomparison of the available hemispherical and global temperature reconstructions as well as a complete ensemble of simulations including both PMIP3/CMIP5 and non-PMIP3 model experiments. In addition, the various external forcing configurations applied to the models are characterized and a Total External Forcing, including all the individual forcing contributors, is developed for each experiment. Based on the linear relationship found at multidecadal and longer timescales during the last millennium between the temperature and the total external forcing, a quantitative metric of the ratio of response, the so-called Last Millennium Transient Climate Response (LMTCR), is obtained and compared for simulations and reconstructions. Within the LMTCR context, a significant quantitative consistency between the simulations and reconstructions is addressed. This work also offers a discussion about the impact that a range of generally accepted methodological approaches might have on the reconstructed ensemble uncertainties and their influences on model-data comparison exercises. A segregation among the various existing spatial targets within the NH, based on the different level of temperatura variability observed in the series, suggests a lower level of model-data consistency during the MCA than previously reported.

  20. Impact-force sparse reconstruction from highly incomplete and inaccurate measurements

    NASA Astrophysics Data System (ADS)

    Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Chen, Xuefeng

    2016-08-01

    The classical l2-norm-based regularization methods applied for force reconstruction inverse problem require that the number of measurements should not be less than the number of unknown sources. Taking into account the sparse nature of impact-force in time domain, we develop a general sparse methodology based on minimizing l1-norm for solving the highly underdetermined model of impact-force reconstruction. A monotonic two-step iterative shrinkage/thresholding (MTWIST) algorithm is proposed to find the sparse solution to such an underdetermined model from highly incomplete and inaccurate measurements, which can be problematic with Tikhonov regularization. MTWIST is highly efficient for large-scale ill-posed problems since it mainly involves matrix-vector multiplies without matrix factorization. In sparsity frame, the proposed sparse regularization method can not only determine the actual impact location from many candidate sources but also simultaneously reconstruct the time history of impact-force. Simulation and experiment including single-source and two-source impact-force reconstruction are conducted on a simply supported rectangular plate and a shell structure to illustrate the effectiveness and applicability of MTWIST, respectively. Both the locations and force time histories of the single-source and two-source cases are accurately reconstructed from a single accelerometer, where the high noise level is considered in simulation and the primary noise in experiment is supposed to be colored noise. Meanwhile, the consecutive impact-forces reconstruction in a large-scale (greater than 104) sparse frame illustrates that MTWIST has advantages of computational efficiency and identification accuracy over Tikhonov regularization.

  1. Dynamic Ising model: reconstruction of evolutionary trees

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.

    2013-09-01

    An evolutionary tree is a cascade of bifurcations starting from a single common root, generating a growing set of daughter species as time goes by. ‘Species’ here is a general denomination for biological species, spoken languages or any other entity which evolves through heredity. From the N currently alive species within a clade, distances are measured through pairwise comparisons made by geneticists, linguists, etc. The larger is such a distance that, for a pair of species, the older is their last common ancestor. The aim is to reconstruct the previously unknown bifurcations, i.e. the whole clade, from knowledge of the N(N - 1)/2 quoted distances, which are taken for granted. A mechanical method is presented and its applicability is discussed.

  2. Force Production and Reactive Strength Capabilities After Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Flanagan, Eamonn P; Galvin, Lorcan; Harrison, Andrew J

    2008-01-01

    Context: Ambiguity exists in the literature regarding whether individuals can restore function to 100% after anterior cruciate ligament (ACL) reconstruction. The response of force production and reactive strength in stretch-shortening cycle activities after surgery has not been established. Objective: To compare reactive strength and force production capabilities between the involved and uninvolved legs of participants who had undergone ACL reconstruction and rehabilitation with the reactive strength and force production capabilities of a control group. Design: Repeated measures, cross-sectional. Setting: Research laboratory. Patients or Other Participants: Ten participants with ACL reconstructions who had returned to their chosen sports and 10 age-matched and activity-matched control subjects. Intervention(s): We screened the ACL group with the International Knee Documentation Committee Subjective Knee Evaluation Form and functional performance tests to measure a basic level of function. We assessed force production capabilities and reactive strength using squat, countermovement, drop, and rebound jump protocols on a force sledge apparatus. Main Outcome Measure(s): The dependent variables were flight time, peak vertical ground reaction force, leg spring stiffness, and reactive strength index. Results: No participant in the ACL group exhibited functional deficits in comparison with normative values or the control group. Using the force sledge apparatus, we found no notable differences in force production capabilities and reactive strength in the ACL group when comparing the involved with uninvolved legs or the degree of difference between legs with the control group. Conclusions: After ACL reconstruction, rehabilitated participants did not exhibit deficits in force production or reactive strength capabilities. Our results suggest that force production and reactive strength capabilities can be restored to levels comparable with the uninjured control limb and may not

  3. Climate Forcing Reconstructions for Use in PMIP Simulations of the Last Millennium (v1.0)

    NASA Technical Reports Server (NTRS)

    Schmidt, Gavin A.; Jungclaus, J.H.; Steinhilber, F.; Vieira, L. E. A.; Ammann, C. M.; Bard, E.; Braconnot, P.; Crowley, T. J.; Delayque, G.; Joos, F.; Krivova, N. A.; Muscheler, R.; Otto-Bliesner, B. L.; Pongratz, J.; Shindell, D. T.; Solanki, S. K.

    2011-01-01

    Simulations of climate over the Last Millennium (850-1850 CE) have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.

  4. A molecular dynamics investigation of surface reconstruction on magnetite (001)

    NASA Astrophysics Data System (ADS)

    Rustad, J. R.; Wasserman, E.; Felmy, A. R.

    1999-07-01

    Molecular dynamics calculations using analytical potential functions with polarizable oxygen ions have been used to identify a novel mode of reconstruction on the half-occupied tetrahedral layer termination of the magnetite (Fe 3O 4) (001) surface. In the proposed reconstruction, the twofold coordinated iron ion in the top monolayer rotates downward to occupy a vacant half-octahedral site in the plane of the second-layer iron ions. At the same time, half of the tetrahedral iron ions in the third iron layer are pushed upward to occupy an adjacent octahedral vacancy at the level of the second-layer iron ions. The other half of the third-layer iron ions remain roughly in their original positions. The proposed reconstruction is consistent with recent low-energy electron diffraction and X-ray photoelectron spectroscopy results. It also provides a compelling interpretation for the arrangement of atoms suggested by high-resolution scanning-tunneling microscopy studies.

  5. Free energy reconstruction from steered dynamics without post-processing

    SciTech Connect

    Athenes, Manuel; Marinica, Mihai-Cosmin

    2010-09-20

    Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable one to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-{alpha}. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, we accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.

  6. Validation of a Laboratory Method for Evaluating Dynamic Properties of Reconstructed Equine Racetrack Surfaces

    PubMed Central

    Setterbo, Jacob J.; Chau, Anh; Fyhrie, Patricia B.; Hubbard, Mont; Upadhyaya, Shrini K.; Symons, Jennifer E.; Stover, Susan M.

    2012-01-01

    Background Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior. Objective To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties. Methods Track-testing device (TTD) impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack) and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression. Results Most dynamic surface property setting differences (racetrack-laboratory) were small relative to surface material type differences (dirt-synthetic). Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces. Conclusions Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD

  7. Reconstructive tomography in gas dynamics and plasma physics

    NASA Astrophysics Data System (ADS)

    Pikalov, Valerii Vladimirovich; Preobrazhenskii, Nikolai Georgievich

    The physics, mathematics, and principal applications of reconstructive tomography are examined with particular reference to problems in aerodynamics, gas dynamics, and plasma physics. The discussion covers fluoroscopic tomography and tomosynthesis, tomography with a priori constraints, mathematical formalisms of the linear tomography of asymmetric objects, theoretical principles of the linear tomography of two-dimensional objects, and algorithms of two-dimensional linear tomography. Some problems in three-dimensional linear tomography are also discussed.

  8. Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging

    PubMed Central

    Yu, Xingjian; Chen, Shuhang; Hu, Zhenghui; Liu, Meng; Chen, Yunmei; Shi, Pengcheng; Liu, Huafeng

    2015-01-01

    In dynamic Positron Emission Tomography (PET), an estimate of the radio activity concentration is obtained from a series of frames of sinogram data taken at ranging in duration from 10 seconds to minutes under some criteria. So far, all the well-known reconstruction algorithms require known data statistical properties. It limits the speed of data acquisition, besides, it is unable to afford the separated information about the structure and the variation of shape and rate of metabolism which play a major role in improving the visualization of contrast for some requirement of the diagnosing in application. This paper presents a novel low rank-based activity map reconstruction scheme from emission sinograms of dynamic PET, termed as SLCR representing Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging. In this method, the stationary background is formulated as a low rank component while variations between successive frames are abstracted to the sparse. The resulting nuclear norm and l1 norm related minimization problem can also be efficiently solved by many recently developed numerical methods. In this paper, the linearized alternating direction method is applied. The effectiveness of the proposed scheme is illustrated on three data sets. PMID:26540274

  9. Quantitative measurement of tip sample forces by dynamic force spectroscopy in ambient conditions

    NASA Astrophysics Data System (ADS)

    Hölscher, H.; Anczykowski, B.

    2005-03-01

    We introduce a dynamic force spectroscopy technique enabling the quantitative measurement of conservative and dissipative tip-sample forces in ambient conditions. In difference to the commonly detected force-vs-distance curves dynamic force microscopy allows to measure the full range of tip-sample forces without hysteresis effects caused by a jump-to-contact. The approach is based on the specific behavior of a self-driven cantilever (frequency-modulation technique). Experimental applications on different samples (Fischer-sample, silicon wafer) are presented.

  10. Simulated and reconstructed climate in Europe during the last five centuries: joint evaluation of climate models performance and the dynamical consistency of gridded reconstructions

    NASA Astrophysics Data System (ADS)

    José Gómez-Navarro, Juan; Bothe, Oliver; Wagner, Sebastian; Zorita, Eduardo; Werner, Johannes P.; Luterbacher, Jürg; Raible, Christoph C.; Montávez, Juan Pedro

    2015-04-01

    This study jointly analyses European winter and summer temperature and precipitation gridded climate reconstructions and a regional climate simulation reaching a resolution of 45 km over the period 1501-1990. In a first step, the simulation is compared to observational records to establish the model performance and to identify the most prominent caveats. It is found that the regional simulation is able to add value to the driving global simulation, which allows it to reproduce accurately the most prominent characteristics of the European climate, although remarkable biases can also be identified. In a second step, the simulation is compared to a set on independent reconstructions. The high-resolution of the simulation and the reconstructions allows to analyse the European area for nine sub-areas. An overall good agreement is found between the reconstructed and simulated climate variability across different areas, supporting a consistency of both products and the proper calibration of the reconstructions. However, biases appear between both datasets, that thanks to the evaluation of the model performance carried out before, can be attributed to deficiencies in the simulation. Although the simulation responds to external forcing, it largely differers with reconstructions in their estimates of the past climate evolution for European sub-regions. In particular, there are deviations between simulated and reconstructed anomalies during the Maunder and Dalton minima, i.e. the simulated response is much stronger than the reconstructed. This disagreement is to some extent expected given the prominent role of internal variability in the regional evolution of temperature and precipitation. However the inability of the model to reproduce any warm period similar to that recorded around 1740 in the reconstructions indicates fundamental limitations in the simulation that preclude reproducing exceptionally anomalous conditions. Despite these limitations, the simulated climate is a

  11. Dynamic force patterns of an undulatory microswimmer

    NASA Astrophysics Data System (ADS)

    Schulman, Rafael D.; Backholm, Matilda; Ryu, William S.; Dalnoki-Veress, Kari

    2014-05-01

    We probe the viscous forces involved in the undulatory swimming of the model organism C. elegans. Using micropipette deflection, we attain direct measurements of lateral and propulsive forces produced in response to the motion of the worm. We observe excellent agreement of the results with resistive force theory, through which we determine the drag coefficients of this organism. The drag coefficients are in accordance with theoretical predictions. Using a simple scaling argument, we obtain a relationship between the size of the worm and the forces that we measure, which well describes our data.

  12. Dictionary learning and time sparsity for dynamic MR data reconstruction.

    PubMed

    Caballero, Jose; Price, Anthony N; Rueckert, Daniel; Hajnal, Joseph V

    2014-04-01

    The reconstruction of dynamic magnetic resonance data from an undersampled k-space has been shown to have a huge potential in accelerating the acquisition process of this imaging modality. With the introduction of compressed sensing (CS) theory, solutions for undersampled data have arisen which reconstruct images consistent with the acquired samples and compliant with a sparsity model in some transform domain. Fixed basis transforms have been extensively used as sparsifying transforms in the past, but recent developments in dictionary learning (DL) have been shown to outperform them by training an overcomplete basis that is optimal for a particular dataset. We present here an iterative algorithm that enables the application of DL for the reconstruction of cardiac cine data with Cartesian undersampling. This is achieved with local processing of spatio-temporal 3D patches and by independent treatment of the real and imaginary parts of the dataset. The enforcement of temporal gradients is also proposed as an additional constraint that can greatly accelerate the convergence rate and improve the reconstruction for high acceleration rates. The method is compared to and shown to systematically outperform k- t FOCUSS, a successful CS method that uses a fixed basis transform. PMID:24710166

  13. Static and dynamical Meissner force fields

    NASA Technical Reports Server (NTRS)

    Weinberger, B. R.; Lynds, L.; Hull, J. R.; Mulcahy, T. M.

    1991-01-01

    The coupling between copper-based high temperature superconductors (HTS) and magnets is represented by a force field. Zero-field cooled experiments were performed with several forms of superconductors: 1) cold-pressed sintered cylindrical disks; 2) small particles fixed in epoxy polymers; and 3) small particles suspended in hydrocarbon waxes. Using magnets with axial field symmetries, direct spatial force measurements in the range of 0.1 to 10(exp 4) dynes were performed with an analytical balance and force constants were obtained from mechanical vibrational resonances. Force constants increase dramatically with decreasing spatial displacement. The force field displays a strong temperature dependence between 20 and 90 K and decreases exponentially with increasing distance of separation. Distinct slope changes suggest the presence of B-field and temperature-activated processes that define the forces. Hysteresis measurements indicated that the magnitude of force scales roughly with the volume fraction of HTS in composite structures. Thus, the net force resulting from the field interaction appears to arise from regions as small or smaller than the grain size and does not depend on contiguous electron transport over large areas. Results of these experiments are discussed.

  14. Reconstruction of Holocene carbon dynamics in a large boreal peatland complex, southern Finland

    NASA Astrophysics Data System (ADS)

    Mathijssen, Paul J. H.; Väliranta, Minna; Korrensalo, Aino; Alekseychik, Pavel; Vesala, Timo; Rinne, Janne; Tuittila, Eeva-Stiina

    2016-06-01

    Holocene peatland development and associated carbon (C) dynamics were reconstructed for a southern boreal Finnish peatland complex with fen and bog areas. In order to assess the role of local factors and long-term allogenic climate forcing in peatland development patterns, we studied a total of 18 peat cores and reconstructed vertical peat growth and lateral peat area expansion rates, the C accumulation rate (CAR), past vegetation composition and past methane (CH4) fluxes. We combined fossil plant data with measured contemporary CH4 flux - vegetation relationship data to reconstruct CH4 fluxes over time. When these reconstructions were added to the CAR estimations, a more complete picture of Holocene-scale C dynamics was achieved. Basal peat ages showed that expansion of the peat area was rapid between 11,000 and 8000 cal. BP, but decreased during the dry mid-Holocene and is probably currently limited by basal topography. A similar pattern was observed for peat growth and CAR in the fen core, whereas in the bog core CAR increased after ombrotrophication, i.e. after 4400 cal. BP. The effect of fire on vegetation and CAR was more conspicuous at the bog site than at the fen site. The CH4 flux reconstructions showed that during the Holocene CH4 emissions at the fen site decreased from 19 ± 15 to 16 ± 8 g CH4 m-2 yr-1 and at the bog site from 20 ± 15 to 14 ± 8 g CH4 m-2 yr-1. Our results suggest that a combination of changing climate, fire events and local conditions have modified the autogenic peatland development and C dynamics.

  15. Reconstruction of Holocene carbon dynamics in a large boreal peatland complex, southern Finland

    NASA Astrophysics Data System (ADS)

    Mathijssen, Paul J. H.; Väliranta, Minna; Korrensalo, Aino; Alekseychik, Pavel; Vesala, Timo; Rinne, Janne; Tuittila, Eeva-Stiina

    2016-06-01

    Holocene peatland development and associated carbon (C) dynamics were reconstructed for a southern boreal Finnish peatland complex with fen and bog areas. In order to assess the role of local factors and long-term allogenic climate forcing in peatland development patterns, we studied a total of 18 peat cores and reconstructed vertical peat growth and lateral peat area expansion rates, the C accumulation rate (CAR), past vegetation composition and past methane (CH4) fluxes. We combined fossil plant data with measured contemporary CH4 flux - vegetation relationship data to reconstruct CH4 fluxes over time. When these reconstructions were added to the CAR estimations, a more complete picture of Holocene-scale C dynamics was achieved. Basal peat ages showed that expansion of the peat area was rapid between 11,000 and 8000 cal. BP, but decreased during the dry mid-Holocene and is probably currently limited by basal topography. A similar pattern was observed for peat growth and CAR in the fen core, whereas in the bog core CAR increased after ombrotrophication, i.e. after 4400 cal. BP. The effect of fire on vegetation and CAR was more conspicuous at the bog site than at the fen site. The CH4 flux reconstructions showed that during the Holocene CH4 emissions at the fen site decreased from 19 ± 15 to 16 ± 8 g CH4 m-2 yr-1 and at the bog site from 20 ± 15 to 14 ± 8 g CH4 m-2 yr-1. Our results suggest that a combination of changing climate, fire events and local conditions have modified the autogenic peatland development and C dynamics.

  16. Low dose dynamic myocardial CT perfusion using advanced iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Eck, Brendan L.; Fahmi, Rachid; Fuqua, Christopher; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2015-03-01

    Dynamic myocardial CT perfusion (CTP) can provide quantitative functional information for the assessment of coronary artery disease. However, x-ray dose in dynamic CTP is high, typically from 10mSv to >20mSv. We compared the dose reduction potential of advanced iterative reconstruction, Iterative Model Reconstruction (IMR, Philips Healthcare, Cleveland, Ohio) to hybrid iterative reconstruction (iDose4) and filtered back projection (FBP). Dynamic CTP scans were obtained using a porcine model with balloon-induced ischemia in the left anterior descending coronary artery to prescribed fractional flow reserve values. High dose dynamic CTP scans were acquired at 100kVp/100mAs with effective dose of 23mSv. Low dose scans at 75mAs, 50mAs, and 25mAs were simulated by adding x-ray quantum noise and detector electronic noise to the projection space data. Images were reconstructed with FBP, iDose4, and IMR at each dose level. Image quality in static CTP images was assessed by SNR and CNR. Blood flow was obtained using a dynamic CTP analysis pipeline and blood flow image quality was assessed using flow-SNR and flow-CNR. IMR showed highest static image quality according to SNR and CNR. Blood flow in FBP was increasingly over-estimated at reduced dose. Flow was more consistent for iDose4 from 100mAs to 50mAs, but was over-estimated at 25mAs. IMR was most consistent from 100mAs to 25mAs. Static images and flow maps for 100mAs FBP, 50mAs iDose4, and 25mAs IMR showed comparable, clear ischemia, CNR, and flow-CNR values. These results suggest that IMR can enable dynamic CTP at significantly reduced dose, at 5.8mSv or 25% of the comparable 23mSv FBP protocol.

  17. Phase dynamics of coupled oscillators reconstructed from data

    NASA Astrophysics Data System (ADS)

    Rosenblum, Michael; Kralemann, Bjoern; Pikovsky, Arkady

    2013-03-01

    We present a technique for invariant reconstruction of the phase dynamics equations for coupled oscillators from data. The invariant description is achieved by means of a transformation of phase estimates (protophases) obtained from general scalar observables to genuine phases. Staring from the bivariate data, we obtain the coupling functions in terms of these phases. We discuss the importance of the protophase-to-phase transformation for characterization of strength and directionality of interaction. To illustrate the technique we analyse the cardio-respiratory interaction on healthy humans. Our invariant approach is confirmed by high similarity of the coupling functions obtained from different observables of the cardiac system. Next, we generalize the technique to cover the case of small networks of coupled periodic units. We use the partial norms of the reconstructed coupling functions to quantify directed coupling between the oscillators. We illustrate the method by different network motifs for three coupled oscillators. We also discuss nonlinear effects in coupling.

  18. Force reconstruction using the sum of weighted accelerations technique -- Max-Flat procedure

    SciTech Connect

    Carne, T.G.; Mayes, R.L.; Bateman, V.I.

    1993-12-31

    Force reconstruction is a procedure in which the externally applied force is inferred from measured structural response rather than directly measured. In a recently developed technique, the response acceleration time-histories are multiplied by scalar weights and summed to produce the reconstructed force. This reconstruction is called the Sum of Weighted Accelerations Technique (SWAT). One step in the application of this technique is the calculation of the appropriate scalar weights. In this paper a new method of estimating the weights, using measured frequency response function data, is developed and contrasted with the traditional SWAT method of inverting the mode-shape matrix. The technique uses frequency response function data, but is not based on deconvolution. An application that will be discussed as part of this paper is the impact into a rigid barrier of a weapon system with an energy-absorbing nose. The nose had been designed to absorb the energy of impact and to mitigate the shock to the interior components.

  19. Cranial myology and bite force performance of Erlikosaurus andrewsi: a novel approach for digital muscle reconstructions

    PubMed Central

    Lautenschlager, Stephan

    2013-01-01

    The estimation of bite force and bite performance in fossil and extinct animals is a challenging subject in palaeontology and is highly dependent on the reconstruction of the cranial myology. Furthermore, the morphology and arrangement of the adductor muscles considerably affect feeding processes and mastication and thus also have important dietary and ecological ramifications. However, in the past, the reconstruction of the (cranial) muscles was restricted to the identification of muscle attachment sites or simplified computer models. This study presents a detailed reconstruction of the adductor musculature of the Cretaceous therizinosaur Erlikosaurus andrewsi based on a stepwise and iterative approach. The detailed, three-dimensional models of the individual muscles allow for more accurate measurements of the muscle properties (length, cross-section, attachment angle and volume), from which muscle and bite force estimates are calculated. Bite force estimations are found to be the lowest at the tip of the snout (43–65 N) and respectively higher at the first (59–88 N) and last tooth (90–134 N) position. Nevertheless, bite forces are comparatively low for E. andrewsi, both in actual numbers as well as in comparison with other theropod dinosaurs. The results further indicate that the low bite performance was mainly used for leaf-stripping and plant cropping, rather than active mastication or chewing processes. Muscle and thus bite force in E. andrewsi (and most likely all therizinosaurs) is considerably constrained by the cranial anatomy and declines in derived taxa of this clade. This trend is reflected in the changes of dietary preferences from carnivory to herbivory in therizinosaurs. PMID:23061752

  20. Bifurcation, chaos, and scan instability in dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Cantrell, John H.; Cantrell, Sean A.

    2016-03-01

    The dynamical motion at any point on the cantilever of an atomic force microscope can be expressed quite generally as a superposition of simple harmonic oscillators corresponding to the vibrational modes allowed by the cantilever shape. Central to the dynamical equations is the representation of the cantilever-sample interaction force as a polynomial expansion with coefficients that account for the interaction force "stiffness," the cantilever-to-sample energy transfer, and the displacement amplitude of cantilever oscillation. Renormalization of the cantilever beam model shows that for a given cantilever drive frequency cantilever dynamics can be accurately represented by a single nonlinear mass-spring model with frequency-dependent stiffness and damping coefficients [S. A. Cantrell and J. H. Cantrell, J. Appl. Phys. 110, 094314 (2011)]. Application of the Melnikov method to the renormalized dynamical equation is shown to predict a cascade of period doubling bifurcations with increasing cantilever drive force that terminates in chaos. The threshold value of the drive force necessary to initiate bifurcation is shown to depend strongly on the cantilever setpoint and drive frequency, effective damping coefficient, nonlinearity of the cantilever-sample interaction force, and the displacement amplitude of cantilever oscillation. The model predicts the experimentally observed interruptions of the bifurcation cascade for cantilevers of sufficiently large stiffness. Operational factors leading to the loss of image quality in dynamic atomic force microscopy are addressed, and guidelines for optimizing scan stability are proposed using a quantitative analysis based on system dynamical parameters and choice of feedback loop parameter.

  1. Effective reconstruction of dynamics of medium response spectrum

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.

    2008-10-01

    A new algorithm is suggested to visualize the dynamics of medium response spectrum in terahertz diapason by the singly measured set of partially intersected integral characteristics of the signal. The algorithm is based on SVD method and window sliding method. The analysis, we carried out, demonstrates many advantages of the new algorithm in com-parison with the Gabor-Fourier approach, which allows obtaining the dynamics of only one spectral line for one set of measurements. Among which it is necessary to mention the possibility to get the dynamics of many spectral components simultaneously for one set of measurements as well and therefore to get the complete information about the spectrum dynamics. This allows to identify specific materials with known spectral lines and to distinguish materials with similar spectra, which is of great importance for the detection and identification of different chemicals, pharmaceutical substances and explosives. To demonstrate the efficiency of a proposed algorithm, we compare spectrum dynamics of chocolate and soap, which possess the similar spectra. Our investigation shows that their dynamics widely vary in spec-tral lines. The proposed algorithm can be also applied to voice identification and to reconstruction of a laser beam profile with a great number of local maxima. Developed algorithm allows to measure the characteristic time of medium responce. It is very important for various problems of spectroscopy.

  2. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    NASA Astrophysics Data System (ADS)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  3. Traceable dynamic calibration of force transducers by primary means

    NASA Astrophysics Data System (ADS)

    Vlajic, Nicholas; Chijioke, Ako

    2016-08-01

    We describe an apparatus for traceable, dynamic calibration of force transducers using harmonic excitation, and report calibration measurements of force transducers using this apparatus. In this system, the force applied to the transducer is produced by the acceleration of an attached mass, and is determined according to Newton’s second law, F  =  ma. The acceleration is measured by primary means, using laser interferometry. The capabilities of this system are demonstrated by performing dynamic calibrations of two shear-web-type force transducers up to a frequency of 2 kHz, with an expanded uncertainty below 1.2%. We give an account of all significant sources of uncertainty, including a detailed consideration of the effects of dynamic tilting (rocking), which is a leading source of uncertainty in such harmonic force calibration systems.

  4. Conservative and dissipative tip-sample interaction forces probed with dynamic AFM

    NASA Astrophysics Data System (ADS)

    Gotsmann, B.; Seidel, C.; Anczykowski, B.; Fuchs, H.

    1999-10-01

    The conservative and dissipative forces between tip and sample of a dynamic atomic force microscopy (AFM) were investigated using a combination of computer simulations and experimental AFM data obtained by the frequency modulation technique. In this way it became possible to reconstruct complete force versus distance curves and damping coefficient versus distance curves from experimental data without using fit parameters for the interaction force and without using analytical interaction models. A comparison with analytical approaches is given and a way to determine a damping coefficient curve from experimental data is proposed. The results include the determination of the first point of repulsive contact of a vibrating tip when approaching a sample. The capability of quantifying the tip-sample interaction is demonstrated using experimental data obtained with a silicon tip and a mica sample in UHV.

  5. Stable dynamics in forced systems with sufficiently high/low forcing frequency.

    PubMed

    Bartuccelli, M; Gentile, G; Wright, J A

    2016-08-01

    We consider parametrically forced Hamiltonian systems with one-and-a-half degrees of freedom and study the stability of the dynamics when the frequency of the forcing is relatively high or low. We show that, provided the frequency is sufficiently high, Kolmogorov-Arnold-Moser (KAM) theorem may be applied even when the forcing amplitude is far away from the perturbation regime. A similar result is obtained for sufficiently low frequency, but in that case we need the amplitude of the forcing to be not too large; however, we are still able to consider amplitudes which are outside of the perturbation regime. In addition, we find numerically that the dynamics may be stable even when the forcing amplitude is very large, well beyond the range of validity of the analytical results, provided the frequency of the forcing is taken correspondingly low. PMID:27586604

  6. Dynamic Forces in Spur Gears - Measurement, Prediction, and Code Validation

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Townsend, Dennis P.; Rebbechi, Brian; Lin, Hsiang Hsi

    1996-01-01

    Measured and computed values for dynamic loads in spur gears were compared to validate a new version of the NASA gear dynamics code DANST-PC. Strain gage data from six gear sets with different tooth profiles were processed to determine the dynamic forces acting between the gear teeth. Results demonstrate that the analysis code successfully simulates the dynamic behavior of the gears. Differences between analysis and experiment were less than 10 percent under most conditions.

  7. Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function

    NASA Astrophysics Data System (ADS)

    Tung, Ryan C.; Killgore, Jason P.; Hurley, Donna C.

    2014-06-01

    We present a method to correct for surface-coupled inertial and viscous fluid loading forces in contact resonance (CR) atomic force microscopy (AFM) experiments performed in liquid. Based on analytical hydrodynamic theory, the method relies on experimental measurements of the AFM cantilever's free resonance peaks near the sample surface. The free resonance frequencies and quality factors in both air and liquid allow reconstruction of a continuous hydrodynamic function that can be used to adjust the CR data in liquid. Validation experiments utilizing thermally excited free and in-contact spectra were performed to assess the accuracy of our approach. Results show that the method recovers the air frequency values within approximately 6%. Knowledge of fluid loading forces allows current CR analysis techniques formulated for use in air and vacuum environments to be applied to liquid environments. Our technique greatly extends the range of measurement environments available to CR-AFM.

  8. Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function

    SciTech Connect

    Tung, Ryan C. Killgore, Jason P.; Hurley, Donna C.

    2014-06-14

    We present a method to correct for surface-coupled inertial and viscous fluid loading forces in contact resonance (CR) atomic force microscopy (AFM) experiments performed in liquid. Based on analytical hydrodynamic theory, the method relies on experimental measurements of the AFM cantilever's free resonance peaks near the sample surface. The free resonance frequencies and quality factors in both air and liquid allow reconstruction of a continuous hydrodynamic function that can be used to adjust the CR data in liquid. Validation experiments utilizing thermally excited free and in-contact spectra were performed to assess the accuracy of our approach. Results show that the method recovers the air frequency values within approximately 6%. Knowledge of fluid loading forces allows current CR analysis techniques formulated for use in air and vacuum environments to be applied to liquid environments. Our technique greatly extends the range of measurement environments available to CR-AFM.

  9. Dynamic Force Patterns of an Undulatory Microswimmer

    NASA Astrophysics Data System (ADS)

    Schulman, Rafael; Backholm, Matilda; Ryu, William; Dalnoki-Veress, Kari

    2014-03-01

    C. elegans is a millimeter-sized nematode which has served as a model organism in biology for several decades, primarily due to its simple anatomy. Using an undulatory form of locomotion, this worm is capable of propelling itself through various media. Due to the small length scales involved, swimming in this regime is qualitatively different from macroscopic locomotion because the swimmers can be considered to have no inertia. In order to understand the microswimming that this worm exhibits, it is crucial to determine the viscous forces experienced during its motion. Using a micropipette deflection technique in conjunction with high speed imaging, we have directly measured the time-varying forces generated by C. elegans during swimming. Furthermore, by analyzing the body's kinematics over time and applying a model of locomotion, we can compute the theoretical force curves. We observe excellent agreement between the measured and calculated forces. The success of this simple model has important implications in the understanding of microswimming in general.

  10. Force-generation and dynamic instability of microtubule bundles

    PubMed Central

    Laan, Liedewij; Husson, Julien; Munteanu, E. Laura; Kerssemakers, Jacob W. J.; Dogterom, Marileen

    2008-01-01

    Individual dynamic microtubules can generate pushing or pulling forces when their growing or shrinking ends are in contact with cellular objects such as the cortex or chromosomes. These microtubules can operate in parallel bundles, for example when interacting with mitotic chromosomes. Here, we investigate the force-generating capabilities of a bundle of growing microtubules and study the effect that force has on the cooperative dynamics of such a bundle. We used an optical tweezers setup to study microtubule bundles growing against a microfabricated rigid barrier in vitro. We show that multiple microtubules can generate a pushing force that increases linearly with the number of microtubules present. In addition, the bundle can cooperatively switch to a shrinking state, due to a force-induced coupling of the dynamic instability of single microtubules. In the presence of GMPCPP, bundle catastrophes no longer occur, and high bundle forces are reached more effectively. We reproduce the observed behavior with a simple simulation of microtubule bundle dynamics that takes into account previously measured force effects on single microtubules. Using this simulation, we also show that a constant compressive force on a growing bundle leads to oscillations in bundle length that are of potential relevance for chromosome oscillations observed in living cells. PMID:18577596

  11. Dimensional characterization of anesthesia dynamic in reconstructed embedding space.

    PubMed

    Gifani, P; Rabiee, H R; Hashemi, M; Ghanbari, M

    2007-01-01

    The depth of anesthesia quantification has been one of the most research interests in the field of EEG signal processing and nonlinear dynamical analysis has emerged as a novel method for the study of complex systems in the past few decades. In this investigation we use the concept of nonlinear time series analysis techniques to reconstruct the attractor of anesthesia from EEG signal which have been obtained from different hypnotic states during surgery to give a characterization of the dimensional complexity of EEG by Correlation Dimension estimation. The dimension of the anesthesia strange attractor can be thought of as a measure of the degrees of freedom or the ;complexity' of the dynamics at different hypnotic levels. The results imply that for awaked state the correlation dimension is high, On the other hand, for light, moderate and deep hypnotic states these values decrease respectively; which means for anesthetized situation we expect lower correlation dimension. PMID:18003510

  12. Effects of Initial Graft Tension on the Tibiofemoral Compressive Forces and Joint Position Following ACL Reconstruction

    PubMed Central

    Brady, Mark F.; Bradley, Michael P.; Fleming, Braden C.; Fadale, Paul D.; Hulstyn, Michael J.; Banerjee, Rahul

    2007-01-01

    Background The initial tension applied to an ACL graft at the time of fixation modulates knee motion and the tibiofemoral compressive loads. Purpose To establish the relationships between initial graft tension, tibiofemoral compressive force, and the neutral tibiofemoral position in the cadaver knee. Study Design Controlled Laboratory Study. Methods The tibiofemoral compressive forces and joint positions were determined in the ACL-intact knee at 0°, 20° and 90° knee flexion. The ACL was excised and reconstructed with a patellar tendon graft using graft tensions of 1, 15, 30, 60 and 90 N applied at 0°, 20° and 90° knee flexion. The compressive forces and neutral positions were compared between initial tension conditions and the ACL-intact knee. Results Increasing initial graft tension increased the tibiofemoral compressive forces. The forces in the medial compartment were 1.8 times those in the lateral compartment. The compressive forces were dependent on the knee angle at which the tension was applied. The greatest compressive forces occurred when the graft was tensioned with the knee in extension. An increase in initial graft tension caused the tibia to rotate externally compared to the ACL-intact knee. Increases in initial graft tension also caused a significant posterior translation of the tibia relative to the femur. Conclusions Different initial graft tension protocols produced predictable changes in the tibiofemoral compressive forces and joint positions. Clinical Relevance The tibiofemoral compressive force and neutral joint position were best replicated with a low graft tension (1–15 N) when using a patellar tendon graft. PMID:17218659

  13. A comparison of reconstruction methods for undersampled atomic force microscopy images.

    PubMed

    Luo, Yufan; Andersson, Sean B

    2015-12-18

    Non-raster scanning and undersampling of atomic force microscopy (AFM) images is a technique for improving imaging rate and reducing the amount of tip-sample interaction needed to produce an image. Generation of the final image can be done using a variety of image processing techniques based on interpolation or optimization. The choice of reconstruction method has a large impact on the quality of the recovered image and the proper choice depends on the sample under study. In this work we compare interpolation through the use of inpainting algorithms with reconstruction based on optimization through the use of the basis pursuit algorithm commonly used for signal recovery in compressive sensing. Using four different sampling patterns found in non-raster AFM, namely row subsampling, spiral scanning, Lissajous scanning, and random scanning, we subsample data from existing images and compare reconstruction performance against the original image. The results illustrate that inpainting generally produces superior results when the image contains primarily low frequency content while basis pursuit is better when the images have mixed, but sparse, frequency content. Using support vector machines, we then classify images based on their frequency content and sparsity and, from this classification, develop a fast decision strategy to select a reconstruction algorithm to be used on subsampled data. The performance of the classification and decision test are demonstrated on test AFM images. PMID:26585418

  14. A comparison of reconstruction methods for undersampled atomic force microscopy images

    NASA Astrophysics Data System (ADS)

    Luo, Yufan; Andersson, Sean B.

    2015-12-01

    Non-raster scanning and undersampling of atomic force microscopy (AFM) images is a technique for improving imaging rate and reducing the amount of tip-sample interaction needed to produce an image. Generation of the final image can be done using a variety of image processing techniques based on interpolation or optimization. The choice of reconstruction method has a large impact on the quality of the recovered image and the proper choice depends on the sample under study. In this work we compare interpolation through the use of inpainting algorithms with reconstruction based on optimization through the use of the basis pursuit algorithm commonly used for signal recovery in compressive sensing. Using four different sampling patterns found in non-raster AFM, namely row subsampling, spiral scanning, Lissajous scanning, and random scanning, we subsample data from existing images and compare reconstruction performance against the original image. The results illustrate that inpainting generally produces superior results when the image contains primarily low frequency content while basis pursuit is better when the images have mixed, but sparse, frequency content. Using support vector machines, we then classify images based on their frequency content and sparsity and, from this classification, develop a fast decision strategy to select a reconstruction algorithm to be used on subsampled data. The performance of the classification and decision test are demonstrated on test AFM images.

  15. Reconstructing dynamic molecular states from single-cell time series.

    PubMed

    Huang, Lirong; Pauleve, Loic; Zechner, Christoph; Unger, Michael; Hansen, Anders S; Koeppl, Heinz

    2016-09-01

    The notion of state for a system is prevalent in the quantitative sciences and refers to the minimal system summary sufficient to describe the time evolution of the system in a self-consistent manner. This is a prerequisite for a principled understanding of the inner workings of a system. Owing to the complexity of intracellular processes, experimental techniques that can retrieve a sufficient summary are beyond our reach. For the case of stochastic biomolecular reaction networks, we show how to convert the partial state information accessible by experimental techniques into a full system state using mathematical analysis together with a computational model. This is intimately related to the notion of conditional Markov processes and we introduce the posterior master equation and derive novel approximations to the corresponding infinite-dimensional posterior moment dynamics. We exemplify this state reconstruction approach using both in silico data and single-cell data from two gene expression systems in Saccharomyces cerevisiae, where we reconstruct the dynamic promoter and mRNA states from noisy protein abundance measurements. PMID:27605167

  16. Generalized force model of traffic dynamics

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Tilch, Benno

    1998-07-01

    Floating car data of car-following behavior in cities were compared to existing microsimulation models, after their parameters had been calibrated to the experimental data. With these parameter values, additional simulations have been carried out, e.g., of a moving car which approaches a stopped car. It turned out that, in order to manage such kinds of situations without producing accidents, improved traffic models are needed. Good results were obtained with the proposed generalized force model.

  17. Complex force dynamics in atomic force microscopy resolved by wavelet transforms.

    PubMed

    Pukhova, Valentina; Banfi, Francesco; Ferrini, Gabriele

    2013-12-20

    The amplitude and phase evolution of the oscillations of a cantilever after a single tip-sample impact are investigated using a cross-correlation wavelet analysis. The excitation of multiple flexural modes is evidenced and the instantaneous amplitude and phase evolution is extracted from the experimental data at all frequencies simultaneously. The instantaneous total force acting on the tip during a single impact is reconstructed. This method has general relevance for the development of an atomic force spectroscopy of single tip-sample interactions, that develop in a few oscillation cycles of the interacting cantilever eigenmodes and their harmonics. PMID:24285087

  18. Self-force from reconstructed metric perturbations: Numerical implementation in Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Merlin, Cesar; Shah, Abhay G.

    2015-01-01

    We present a first numerical implementation of a new scheme by Pound et al. [1] that enables the calculation of the gravitational self-force in Kerr spacetime from a reconstructed metric-perturbation in a radiation gauge. The numerical task of the metric reconstruction essentially reduces to solving the fully separable Teukolsky equation, rather than having to tackle the linearized Einstein's equations themselves in the Lorenz gauge, which are not separable in Kerr. The method offers significant computational saving compared to existing methods in the Lorenz gauge, and we expect it to become a main workhorse for precision self-force calculations in the future. Here we implement the method for circular orbits on a Schwarzschild background, in order to illustrate its efficacy and accuracy. We use two independent methods for solving the Teukolsky equation, one based on a direct numerical integration, and the other on the analytical approach of Mano, Suzuki, and Takasugi. The relative accuracy of the output self-force is at least 1 0-7 using the first method, and at least 1 0-9 using the second; the two methods agree to within the error bars of the first. We comment on the relation to a related approach by Shah et al. [2], and discuss foreseeable applications to more generic orbits in Kerr spacetime.

  19. Reconstructing the micrometeorological dynamics of the southern Amazonian transitional forest

    NASA Astrophysics Data System (ADS)

    de Paulo, Sergio Roberto; de Paulo, Iramaia Jorge Cabral; De Decker, Yannick

    2015-12-01

    In this work, we reconstruct and analyze the micrometeorological dynamics of the transitional forest located south of the Amazon basin. For this, we use time series of micrometeorological variables collected over five years in the transitional forest of Mato Grosso (Brazil). We employ local feature analysis, a recently proposed extension of principal component analysis, to extract the most relevant physical variables from this set. We show in this way that temperature records contain most of the dynamical information in all seasons. Based on this result, the dimensionality of the space spanned by the system's dynamics and the properties of the so defined attractors are obtained. In the dry season, the system presents a robust oscillatory character described by a well-defined limit cycle. In the wet season, the dynamics becomes more irregular but can still be seen as a periodic behavior affected by external noise. These results can help to develop accurate models for the meteorology of the Amazonian transitional forest and can thus lead to a better understanding of this important ecosystem.

  20. Molecular Mechanotransduction: how forces trigger cytoskeletal dynamics

    NASA Astrophysics Data System (ADS)

    Ehrlicher, Allen

    2012-02-01

    Mechanical stresses elicit cellular reactions mediated by chemical signals. Defective responses to forces underlie human medical disorders, such as cardiac failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton's structure, the specific molecular switches that convert mechanical stimuli into chemical signals have remained elusive. Here we identify the actin-binding protein, filamin A (FLNa) as a central mechanotransduction element of the cytoskeleton by using Fluorescence Loss After photoConversion (FLAC), a novel high-speed alternative to FRAP. We reconstituted a minimal system consisting of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage between extracellular and intracellular environments, with ß integrin tails connecting to the actin cytoskeleton by binding directly to filamin. FilGAP is a FLNa-binding GTPase-activating protein specific for Rac, which in vivo regulates cell spreading and bleb formation. We demonstrate that both externally-imposed bulk shear and myosin II driven forces differentially regulate the binding of integrin and FilGAP to FLNa. Consistent with structural predictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP to dissociate from FLNa, providing a direct and specific molecular basis for cellular mechanotransduction. These results identify the first molecular mechanotransduction element within the actin cytoskeleton, revealing that mechanical strain of key proteins regulates the binding of signaling molecules. Moreover, GAP activity has been shown to switch cell movement from mesenchymal to amoeboid motility, suggesting that mechanical forces directly impact the invasiveness of cancer.

  1. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Kosovic, B; Belles, R; Chow, F K; Monache, L D; Dyer, K; Glascoe, L; Hanley, W; Johannesson, G; Larsen, S; Loosmore, G; Lundquist, J K; Mirin, A; Neuman, S; Nitao, J; Serban, R; Sugiyama, G; Aines, R

    2007-02-22

    Accidental or terrorist releases of hazardous materials into the atmosphere can impact large populations and cause significant loss of life or property damage. Plume predictions have been shown to be extremely valuable in guiding an effective and timely response. The two greatest sources of uncertainty in the prediction of the consequences of hazardous atmospheric releases result from poorly characterized source terms and lack of knowledge about the state of the atmosphere as reflected in the available meteorological data. In this report, we discuss the development of a new event reconstruction methodology that provides probabilistic source term estimates from field measurement data for both accidental and clandestine releases. Accurate plume dispersion prediction requires the following questions to be answered: What was released? When was it released? How much material was released? Where was it released? We have developed a dynamic data-driven event reconstruction capability which couples data and predictive models through Bayesian inference to obtain a solution to this inverse problem. The solution consists of a probability distribution of unknown source term parameters. For consequence assessment, we then use this probability distribution to construct a ''''composite'' forward plume prediction which accounts for the uncertainties in the source term. Since in most cases of practical significance it is impossible to find a closed form solution, Bayesian inference is accomplished by utilizing stochastic sampling methods. This approach takes into consideration both measurement and forward model errors and thus incorporates all the sources of uncertainty in the solution to the inverse problem. Stochastic sampling methods have the additional advantage of being suitable for problems characterized by a non-Gaussian distribution of source term parameters and for cases in which the underlying dynamical system is non-linear. We initially developed a Markov Chain Monte

  2. Reconstruction of missing daily streamflow data using dynamic regression models

    NASA Astrophysics Data System (ADS)

    Tencaliec, Patricia; Favre, Anne-Catherine; Prieur, Clémentine; Mathevet, Thibault

    2015-12-01

    River discharge is one of the most important quantities in hydrology. It provides fundamental records for water resources management and climate change monitoring. Even very short data-gaps in this information can cause extremely different analysis outputs. Therefore, reconstructing missing data of incomplete data sets is an important step regarding the performance of the environmental models, engineering, and research applications, thus it presents a great challenge. The objective of this paper is to introduce an effective technique for reconstructing missing daily discharge data when one has access to only daily streamflow data. The proposed procedure uses a combination of regression and autoregressive integrated moving average models (ARIMA) called dynamic regression model. This model uses the linear relationship between neighbor and correlated stations and then adjusts the residual term by fitting an ARIMA structure. Application of the model to eight daily streamflow data for the Durance river watershed showed that the model yields reliable estimates for the missing data in the time series. Simulation studies were also conducted to evaluate the performance of the procedure.

  3. Application of DIRI dynamic infrared imaging in reconstructive surgery

    NASA Astrophysics Data System (ADS)

    Pawlowski, Marek; Wang, Chengpu; Jin, Feng; Salvitti, Matthew; Tenorio, Xavier

    2006-04-01

    We have developed the BioScanIR System based on QWIP (Quantum Well Infrared Photodetector). Data collected by this sensor are processed using the DIRI (Dynamic Infrared Imaging) algorithms. The combination of DIRI data processing methods with the unique characteristics of the QWIP sensor permit the creation of a new imaging modality capable of detecting minute changes in temperature at the surface of the tissue and organs associated with blood perfusion due to certain diseases such as cancer, vascular disease and diabetes. The BioScanIR System has been successfully applied in reconstructive surgery to localize donor flap feeding vessels (perforators) during the pre-surgical planning stage. The device is also used in post-surgical monitoring of skin flap perfusion. Since the BioScanIR is mobile; it can be moved to the bedside for such monitoring. In comparison to other modalities, the BioScanIR can localize perforators in a single, 20 seconds scan with definitive results available in minutes. The algorithms used include (FFT) Fast Fourier Transformation, motion artifact correction, spectral analysis and thermal image scaling. The BioScanIR is completely non-invasive and non-toxic, requires no exogenous contrast agents and is free of ionizing radiation. In addition to reconstructive surgery applications, the BioScanIR has shown promise as a useful functional imaging modality in neurosurgery, drug discovery in pre-clinical animal models, wound healing and peripheral vascular disease management.

  4. Software for Correcting the Dynamic Error of Force Transducers

    PubMed Central

    Miyashita, Naoki; Watanabe, Kazuhide; Irisa, Kyouhei; Iwashita, Hiroshi; Araki, Ryosuke; Takita, Akihiro; Yamaguchi, Takao; Fujii, Yusaku

    2014-01-01

    Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM), in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper. PMID:25004158

  5. Software for correcting the dynamic error of force transducers.

    PubMed

    Miyashita, Naoki; Watanabe, Kazuhide; Irisa, Kyouhei; Iwashita, Hiroshi; Araki, Ryosuke; Takita, Akihiro; Yamaguchi, Takao; Fujii, Yusaku

    2014-01-01

    Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM), in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper. PMID:25004158

  6. Dynamical downscaling inter-comparison for high resolution climate reconstruction

    NASA Astrophysics Data System (ADS)

    Ferreira, J.; Rocha, A.; Castanheira, J. M.; Carvalho, A. C.

    2012-04-01

    In the scope of the project: "High-resolution Rainfall EroSivity analysis and fORecasTing - RESORT", an evaluation of various methods of dynamic downscaling is presented. The methods evaluated range from the classic method of nesting a regional model results in a global model, in this case the ECMWF reanalysis, to more recently proposed methods, which consist in using Newtonian relaxation methods in order to nudge the results of the regional model to the reanalysis. The method with better results involves using a system of variational data assimilation to incorporate observational data with results from the regional model. The climatology of a simulation of 5 years using this method is tested against observations on mainland Portugal and the ocean in the area of the Portuguese Continental Shelf, which shows that the method developed is suitable for the reconstruction of high resolution climate over continental Portugal.

  7. Curl force dynamics: symmetries, chaos and constants of motion

    NASA Astrophysics Data System (ADS)

    Berry, M. V.; Shukla, Pragya

    2016-06-01

    This is a theoretical study of Newtonian trajectories governed by curl forces, i.e. position-dependent but not derivable from a potential, investigating in particular the possible existence of conserved quantities. Although nonconservative and nonhamiltonian, curl forces are not dissipative because volume in the position–velocity state space is preserved. A physical example is the effective forces exerted on small particles by light. When the force has rotational symmetry, for example when generated by an isolated optical vortex, particles spiral outwards and escape, even with an attractive gradient force, however strong. Without rotational symmetry, and for dynamics in the plane, the state space is four-dimensional, and to search for possible constants of motion we introduce the Volume of section: a numerical procedure, in which orbits are plotted as dots in a three-dimensional subspace. For some curl forces, e.g. optical fields with two opposite-strength vortices, the dots lie on a surface, indicating a hidden constant of motion. For other curl forces, e.g. those from four vortices, the dots explore clouds, in an unfamiliar kind of chaos, suggesting that no constant of motion exists. The curl force dynamics generated by optical vortices could be studied experimentally.

  8. Seasonally forced disease dynamics explored as switching between attractors

    NASA Astrophysics Data System (ADS)

    Keeling, Matt J.; Rohani, Pejman; Grenfell, Bryan T.

    2001-01-01

    Biological phenomena offer a rich diversity of problems that can be understood using mathematical techniques. Three key features common to many biological systems are temporal forcing, stochasticity and nonlinearity. Here, using simple disease models compared to data, we examine how these three factors interact to produce a range of complicated dynamics. The study of disease dynamics has been amongst the most theoretically developed areas of mathematical biology; simple models have been highly successful in explaining the dynamics of a wide variety of diseases. Models of childhood diseases incorporate seasonal variation in contact rates due to the increased mixing during school terms compared to school holidays. This ‘binary’ nature of the seasonal forcing results in dynamics that can be explained as switching between two nonlinear spiral sinks. Finally, we consider the stability of the attractors to understand the interaction between the deterministic dynamics and demographic and environmental stochasticity. Throughout attention is focused on the behaviour of measles, whooping cough and rubella.

  9. Force reconstruction for impact tests of an energy-absorbing nose

    SciTech Connect

    Bateman, V.I.; Garne, T.G.; McCall, D.M.

    1990-01-01

    Delivery of a bomb into hard targets at speeds of up to 120 fps required the design of an energy-absorbing nose. The purpose of the nose is to decelerate the projectile and, by absorbing the kinetic energy with deformation, protect the projectile's internal components from high-level (shock) decelerations. A structural simulation of the projectile was designed to test the dynamic deformation characteristics of the energy-absorbing nose. The simulated projectile was instrumented with eight accelerometers mounted with a shock isolation technique. The dynamic force as a function of nose deformation was the desired result from the impact tests because it provides the designer with a performance criterion for the nose design. The dynamic force was obtained by combining the accelerations using the Sum of Weighted Accelerations Technique (SWAT). Results from two field tests are presented. 12 refs., 8 figs.

  10. Unstable amplitude and noisy image induced by tip contamination in dynamic force mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nie, H.-Y.; McIntyre, N. S.

    2007-02-01

    Liquid 1-decanethiol was confined on an atomic force microscope (AFM) tip apex and the effect was investigated by measuring amplitude-distance curves in dynamic force mode. Within the working distance in the dynamic force mode AFM, the thiol showed strong interactions bridging between a gold-coated probe tip and a gold-coated Si substrate, resulting in unstable amplitude and noisy AFM images. We show that under such a situation, the amplitude change is dominated by the extra forces induced by the active material loaded on the tip apex, overwhelming the amplitude change caused by the geometry of the sample surface, thus resulting in noise in the image the tip collects. We also show that such a contaminant may be removed from the apex by pushing the tip into a material soft enough to avoid damage to the tip.

  11. Forced fluid dynamics from gravity in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Ashok, T.

    2014-03-01

    We consider long wavelength solutions to the Einstein-dilaton system with negative cosmological constant which are dual, under the AdS/CFT correspondence, to solutions of the conformal relativistic Navier-Stokes equations with a dilaton-dependent forcing term. Certain forced fluid flows are known to exhibit turbulence; holographic duals of forced fluid dynamics are therefore of particular interest as they may aid efforts towards an explicit model of holographic steady state turbulence. In recent work, Bhattacharyya et al. have constructed long wavelength asymptotically locally AdS5 bulk space-times with a slowly varying boundary dilaton field which are dual to forced fluid flows on the 4-dimensional boundary. In this paper, we generalise their work to arbitrary space-time dimensions; we explicitly compute the dual bulk metric, the fluid dynamical stress tensor and Lagrangian to second order in a boundary derivative expansion.

  12. Forces associated with pneumatic power screwdriver operation: statics and dynamics.

    PubMed

    Lin, Jia-Hua; Radwin, Robert G; Fronczak, Frank J; Richard, Terry G

    2003-10-10

    The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders. PMID:12933078

  13. Identifying the Stern-Gerlach force of classical electron dynamics

    PubMed Central

    Wen, Meng; Bauke, Heiko; Keitel, Christoph H.

    2016-01-01

    Different classical theories are commonly applied in various branches of physics to describe the relativistic dynamics of electrons by coupled equations for the orbital motion and spin precession. Exemplarily, we benchmark the Frenkel model and the classical Foldy-Wouthuysen model with spin-dependent forces (Stern-Gerlach forces) to the quantum dynamics as predicted by the Dirac equation. Both classical theories can lead to different or even contradicting predictions how the Stern-Gerlach forces modify the electron’s orbital motion, when the electron moves in strong electromagnetic field configurations of emerging high-intensity laser facilities. In this way, one may evaluate the validity and identify the limits of these classical theories via a comparison with possible experiments to provide a proper description of spin-induced dynamics. Our results indicate that the Foldy-Wouthuysen model is qualitatively in better agreement with the Dirac theory than the widely used Frenkel model. PMID:27546820

  14. Identifying the Stern-Gerlach force of classical electron dynamics.

    PubMed

    Wen, Meng; Bauke, Heiko; Keitel, Christoph H

    2016-01-01

    Different classical theories are commonly applied in various branches of physics to describe the relativistic dynamics of electrons by coupled equations for the orbital motion and spin precession. Exemplarily, we benchmark the Frenkel model and the classical Foldy-Wouthuysen model with spin-dependent forces (Stern-Gerlach forces) to the quantum dynamics as predicted by the Dirac equation. Both classical theories can lead to different or even contradicting predictions how the Stern-Gerlach forces modify the electron's orbital motion, when the electron moves in strong electromagnetic field configurations of emerging high-intensity laser facilities. In this way, one may evaluate the validity and identify the limits of these classical theories via a comparison with possible experiments to provide a proper description of spin-induced dynamics. Our results indicate that the Foldy-Wouthuysen model is qualitatively in better agreement with the Dirac theory than the widely used Frenkel model. PMID:27546820

  15. Dynamic Forces Between Two Deformable Oil Droplets in Water

    NASA Astrophysics Data System (ADS)

    Dagastine, Raymond R.; Manica, Rogério; Carnie, Steven L.; Chan, D. Y. C.; Stevens, Geoffrey W.; Grieser, Franz

    2006-07-01

    The understanding of static interactions in colloidal suspensions is well established, whereas dynamic interactions more relevant to biological and other suspended soft-matter systems are less well understood. We present the direct force measurement and quantitative theoretical description for dynamic forces for liquid droplets in another immiscible fluid. Analysis of this system demonstrates the strong link between interfacial deformation, static surface forces, and hydrodynamic drainage, which govern dynamic droplet-droplet interactions over the length scale of nanometers and over the time scales of Brownian collisions. The results and analysis have direct bearing on the control and manipulation of suspended droplets in soft-matter systems ranging from the emulsions in shampoo to cellular interactions.

  16. Forcing it on: Cytoskeletal dynamics during lymphocyte activation

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Arpita

    2012-02-01

    Formation of the immune synapse during lymphocyte activation involves cell spreading driven by large scale physical rearrangements of the actin cytoskeleton and the cell membrane. Several recent observations suggest that mechanical forces are important for efficient T cell activation. How forces arise from the dynamics of the cytoskeleton and the membrane during contact formation, and their effect on signaling activation is not well understood. We have imaged membrane topography, actin dynamics and the spatiotemporal localization of signaling clusters during the very early stages of spreading. Formation of signaling clusters was closely correlated with the movement and topography of the membrane in contact with the activating surface. Further, we observed membrane waves driven by actin polymerization originating at these signaling clusters. Actin-driven membrane protrusions likely play an important role in force generation at the immune synapse. In order to study cytoskeletal forces during T-cell activation, we studied cell spreading on elastic gels. We found that gel stiffness influences cell morphology, actin dynamics and receptor activation. Efforts to determine the quantitative relationships between cellular forces and signaling are underway. Our results suggest a role for cytoskeleton driven forces during signaling activation in lymphocytes.

  17. Force identification of dynamic systems using virtual work principle

    NASA Astrophysics Data System (ADS)

    Xu, Xun; Ou, Jinping

    2015-02-01

    One of the key inverse problems for estimating dynamic forces acting on a structure is to determine the force expansion and the corresponding solving method. This paper presents a moving least square (MLS) method for fitting dynamic forces, which improves the existing traditional methods. The simulation results show that the force expansion order has a tiny effect on the types of forces, which indicates the MLS method's excellent ability for local approximation and noise immunity as well as good fitting function. Then, the differential equation of motion for the system is transformed into an integral equation by using the virtual work principle, which can eliminate the structural acceleration response without introducing the calculation error. Besides, the transformation derives an expression of velocity by integrating by parts, which diminishes the error propagation of the velocity. Hence, the integral equation of motion for the system has a strong constraint to noise with zero mean value. Finally, this paper puts forward an optimization method to solve the equation. The numerical stability can be enhanced as the matrix inversion calculation is avoided. Illustrative examples involving different types of forces demonstrate that the transformation of the differential equation proposed through virtual work principle can eliminate interference efficiently and is robust for dynamic calculation.

  18. Dynamic Force Sensing Using an Optically Trapped Probing System.

    PubMed

    Huang, Yanan; Cheng, Peng; Menq, Chia-Hsiang

    2011-12-01

    This paper presents the design of an adaptive observer that is implemented to enable real-time dynamic force sensing and parameter estimation in an optically trapped probing system. According to the principle of separation of estimation and control, the design of this observer is independent of that of the feedback controller when operating within the linear range of the optical trap. Dynamic force sensing, probe steering/clamping, and Brownian motion control can, therefore, be developed separately and activated simultaneously. The adaptive observer utilizes the measured motion of the trapped probe and input control effort to recursively estimate the probe-sample interaction force in real time, along with the estimation of the probing system's trapping bandwidth. This capability is very important to achieving accurate dynamic force sensing in a time-varying process, wherein the trapping dynamics is nonstationary due to local variations of the surrounding medium. The adaptive estimator utilizes the Kalman filter algorithm to compute the time-varying gain in real time and minimize the estimation error for force probing. A series of experiments are conducted to validate the design of and assess the performance of the adaptive observer. PMID:24382944

  19. Influence of impeller shroud forces on turbopump rotor dynamics

    NASA Technical Reports Server (NTRS)

    Williams, Jim P.; Childs, Dara W.

    1989-01-01

    The shrouded-impeller leakage path forces calculated by Childs (1987) have been analyzed to answer two questions. First, because of certain characteristics of the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were approximated by traditional stiffness, damping and inertia coefficients with the addition of whirl-frequency-dependent direct and cross-coupled stiffness terms. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.

  20. Dynamic enhancement in adhesion forces of microparticles on substrates.

    PubMed

    Xu, Quan; Li, Mingtao; Niu, Jianbing; Xia, Zhenhai

    2013-11-12

    We report a dynamically induced enhancement in interfacial adhesion between microsized particles and substrates under dry and humid conditions. The adhesion force of soft (polystyrene) and hard (SiO2 and Al2O3) microparticles on soft (polystyrene) and hard (fused silica and sapphire) substrates was measured by using an atomic force microscope with retraction (z-piezo) speed ranging over 4 orders of magnitude. The adhesion is strongly enhanced by the dynamic effect. When the retraction speed varies from 0.02 to 156 μm/s, the adhesion force increases by 10% to 50% in dry nitrogen while it increases by 15% to 70% in humid air. Among the material systems tested, the soft-soft contact systems exhibit the smallest dynamic effect while the hard-hard contacts show the largest enhancement. A dynamic model was developed to predict this dynamic effect, which agrees well with the experimental results. The influence of dynamic factors related to the adhesion enhancement, such as particle inertia, viscoelastic deformations, and crack propagation, was discussed to understand the dynamic enhancement mechanisms. PMID:24117392

  1. Dislocation dynamical approach to force fluctuations in nanoindentation experiments

    NASA Astrophysics Data System (ADS)

    Ananthakrishna, G.; Katti, Rohit; K, Srikanth

    2014-09-01

    We develop an approach that combines the power of nonlinear dynamics with the evolution equations for the mobile and immobile dislocation densities and force to explain force fluctuations in nanoindentation experiments. The model includes nucleation, multiplication, and propagation thresholds for mobile dislocations, and other well known dislocation transformation mechanisms. The model predicts all the generic features of nanoindentation such as the Hertzian elastic branch followed by several force drops of decreasing magnitudes, and residual plasticity after unloading. The stress corresponding to the elastic force maximum is close to the yield stress of an ideal solid. The predicted values for all the quantities are close to those reported by experiments. Our model allows us to address the indentation-size effect including the ambiguity in defining the hardness in the force drop dominated regime. At large indentation depths, the hardness remains nearly constant with a marginal decreasing trend.

  2. Approximate photochemical dynamics of azobenzene with reactive force fields

    SciTech Connect

    Li, Yan; Hartke, Bernd

    2013-12-14

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work)

  3. Reconstructing representations of dynamic visual objects in early visual cortex.

    PubMed

    Chong, Edmund; Familiar, Ariana M; Shim, Won Mok

    2016-02-01

    As raw sensory data are partial, our visual system extensively fills in missing details, creating enriched percepts based on incomplete bottom-up information. Despite evidence for internally generated representations at early stages of cortical processing, it is not known whether these representations include missing information of dynamically transforming objects. Long-range apparent motion (AM) provides a unique test case because objects in AM can undergo changes both in position and in features. Using fMRI and encoding methods, we found that the "intermediate" orientation of an apparently rotating grating, never presented in the retinal input but interpolated during AM, is reconstructed in population-level, feature-selective tuning responses in the region of early visual cortex (V1) that corresponds to the retinotopic location of the AM path. This neural representation is absent when AM inducers are presented simultaneously and when AM is visually imagined. Our results demonstrate dynamic filling-in in V1 for object features that are interpolated during kinetic transformations. PMID:26712004

  4. Reconstructing representations of dynamic visual objects in early visual cortex

    PubMed Central

    Chong, Edmund; Familiar, Ariana M.; Shim, Won Mok

    2016-01-01

    As raw sensory data are partial, our visual system extensively fills in missing details, creating enriched percepts based on incomplete bottom-up information. Despite evidence for internally generated representations at early stages of cortical processing, it is not known whether these representations include missing information of dynamically transforming objects. Long-range apparent motion (AM) provides a unique test case because objects in AM can undergo changes both in position and in features. Using fMRI and encoding methods, we found that the “intermediate” orientation of an apparently rotating grating, never presented in the retinal input but interpolated during AM, is reconstructed in population-level, feature-selective tuning responses in the region of early visual cortex (V1) that corresponds to the retinotopic location of the AM path. This neural representation is absent when AM inducers are presented simultaneously and when AM is visually imagined. Our results demonstrate dynamic filling-in in V1 for object features that are interpolated during kinetic transformations. PMID:26712004

  5. Model based control of dynamic atomic force microscope

    SciTech Connect

    Lee, Chibum; Salapaka, Srinivasa M.

    2015-04-15

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H{sub ∞} control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  6. Model based control of dynamic atomic force microscope.

    PubMed

    Lee, Chibum; Salapaka, Srinivasa M

    2015-04-01

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments. PMID:25933864

  7. Dynamic adhesion forces between microparticles and substrates in water.

    PubMed

    Xu, Quan; Li, Mingtao; Zhang, Lipeng; Niu, Jianbing; Xia, Zhenhai

    2014-09-23

    The interactions between micrometer-sized particles and substrates in aqueous environment are fundamental to numerous natural phenomena and industrial processes. Here we report a dynamically induced enhancement in adhesion interactions between microparticles and substrates immerged in water, air, and hexane. The dynamic adhesion force was measured by pulling microsized spheres off various substrate (hydrophilic/hydrophobic) surfaces at different retracting velocities. It was observed that when the pull-off velocity varies from 0.02 to 1500 μm/s, there is 100-200% increase in adhesion force in water while it has a 100% increase in nitrogen and hexane. The dynamic adhesion enhancement reduces with increasing effective contact angle defined by the average cosine of wetting angles of the substrates and the particles, and approaches the values measured in dry nitrogen and hexane as the effective contact angle is larger than 90(o). A dynamic model was developed to predict the adhesion forces resulting from this dynamic effect, and the predictions correlate well with the experimental results. The stronger dynamic adhesion enhancement in water is mainly attributed to electrical double layers and the restructuring of water in the contact area between particles and substrates. PMID:25162139

  8. Monitoring dynamic loads on wind tunnel force balances

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T.; White, William C.

    1989-01-01

    Two devices have been developed at NASA Langley to monitor the dynamic loads incurred during wind-tunnel testing. The Balance Dynamic Display Unit (BDDU), displays and monitors the combined static and dynamic forces and moments in the orthogonal axes. The Balance Critical Point Analyzer scales and sums each normalized signal from the BDDU to obtain combined dynamic and static signals that represent the dynamic loads at predefined high-stress points. The display of each instrument is a multiplex of six analog signals in a way that each channel is displayed sequentially as one-sixth of the horizontal axis on a single oscilloscope trace. Thus this display format permits the operator to quickly and easily monitor the combined static and dynamic level of up to six channels at the same time.

  9. Influence of impeller shroud forces on turbopump rotor dynamics

    NASA Technical Reports Server (NTRS)

    Williams, J. P.; Childs, Dara W.

    1993-01-01

    The shrouded-impeller leakage path forces calculated by Childs have been analyzed to answer two questions. First, because of certain characteristics or the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response, and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.

  10. A computationally efficient OMP-based compressed sensing reconstruction for dynamic MRI

    NASA Astrophysics Data System (ADS)

    Usman, M.; Prieto, C.; Odille, F.; Atkinson, D.; Schaeffter, T.; Batchelor, P. G.

    2011-04-01

    Compressed sensing (CS) methods in MRI are computationally intensive. Thus, designing novel CS algorithms that can perform faster reconstructions is crucial for everyday applications. We propose a computationally efficient orthogonal matching pursuit (OMP)-based reconstruction, specifically suited to cardiac MR data. According to the energy distribution of a y-f space obtained from a sliding window reconstruction, we label the y-f space as static or dynamic. For static y-f space images, a computationally efficient masked OMP reconstruction is performed, whereas for dynamic y-f space images, standard OMP reconstruction is used. The proposed method was tested on a dynamic numerical phantom and two cardiac MR datasets. Depending on the field of view composition of the imaging data, compared to the standard OMP method, reconstruction speedup factors ranging from 1.5 to 2.5 are achieved.

  11. Static and dynamic buckling of reconstructions at triple steps on Si(111) surfaces

    NASA Astrophysics Data System (ADS)

    Zhachuk, R.; Teys, S.; Coutinho, J.; Rayson, M. J.; Briddon, P. R.

    2014-10-01

    Triple steps on Si(111) surfaces are popular building blocks for bottom-up nanostructure assembly, conferring size uniformity and precise positioning of growing nanostructures. In this work, we employ the Si(7 7 10) regular stepped surface as model system to study the triple steps by scanning tunneling microscopy (STM) and large-scale first-principles calculations. We find a surprising cohabitation of reconstruction elements at the step edge that either buckles statically or dynamically at room temperature. The driving force for the observed sequence of buckling patterns is traced back to Coulomb interactions involving charged adatoms and rest-atoms lying on a mini-terrace. These results reconcile the Si(111) triple step model with the experimental STM data.

  12. Static and dynamic buckling of reconstructions at triple steps on Si(111) surfaces

    SciTech Connect

    Zhachuk, R. Teys, S.; Coutinho, J.; Rayson, M. J.; Briddon, P. R.

    2014-10-27

    Triple steps on Si(111) surfaces are popular building blocks for bottom-up nanostructure assembly, conferring size uniformity and precise positioning of growing nanostructures. In this work, we employ the Si(7 7 10) regular stepped surface as model system to study the triple steps by scanning tunneling microscopy (STM) and large-scale first-principles calculations. We find a surprising cohabitation of reconstruction elements at the step edge that either buckles statically or dynamically at room temperature. The driving force for the observed sequence of buckling patterns is traced back to Coulomb interactions involving charged adatoms and rest-atoms lying on a mini-terrace. These results reconcile the Si(111) triple step model with the experimental STM data.

  13. Hidden multiple bond effects in dynamic force spectroscopy.

    PubMed

    Getfert, Sebastian; Reimann, Peter

    2012-03-01

    In dynamic force spectroscopy, a (bio-)molecular complex is subjected to a steadily increasing force until the chemical bond breaks. Repeating the same experiment many times results in a broad distribution of rupture forces, whose quantitative interpretation represents a formidable theoretical challenge. In this study we address the situation that more than a single molecular bond is involved in one experimental run, giving rise to multiple rupture events that are even more difficult to analyze and thus are usually eliminated as far as possible from the further evaluation of the experimental data. We develop and numerically solve a detailed model of a complete dynamic force spectroscopy experiment including a possible clustering of molecules on the substrate surface, the formation of bonds, their dissociation under load, and the postprocessing of the force extension curves. We show that the data, remaining after elimination of obvious multiple rupture events, may still contain a considerable number of hidden multiple bonds, which are experimentally indistinguishable from true single bonds, but which have considerable effects on the resulting rupture force statistics and its consistent theoretical interpretation. PMID:22404941

  14. Hidden Multiple Bond Effects in Dynamic Force Spectroscopy

    PubMed Central

    Getfert, Sebastian; Reimann, Peter

    2012-01-01

    In dynamic force spectroscopy, a (bio-)molecular complex is subjected to a steadily increasing force until the chemical bond breaks. Repeating the same experiment many times results in a broad distribution of rupture forces, whose quantitative interpretation represents a formidable theoretical challenge. In this study we address the situation that more than a single molecular bond is involved in one experimental run, giving rise to multiple rupture events that are even more difficult to analyze and thus are usually eliminated as far as possible from the further evaluation of the experimental data. We develop and numerically solve a detailed model of a complete dynamic force spectroscopy experiment including a possible clustering of molecules on the substrate surface, the formation of bonds, their dissociation under load, and the postprocessing of the force extension curves. We show that the data, remaining after elimination of obvious multiple rupture events, may still contain a considerable number of hidden multiple bonds, which are experimentally indistinguishable from true single bonds, but which have considerable effects on the resulting rupture force statistics and its consistent theoretical interpretation. PMID:22404941

  15. An implicit divalent counterion force field for RNA molecular dynamics

    NASA Astrophysics Data System (ADS)

    Henke, Paul S.; Mak, Chi H.

    2016-03-01

    How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg2+ screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs. This divalent counterion model is computationally efficient. It works with existing atomistic force fields, or coarse-grained models may be tuned to work with it. We provide optimized parameters for a coarse-grained RNA model that takes advantage of this new counterion force field. Using the new model, we illustrate how the structural flexibility of RNA two-way junctions is modified under different salt conditions.

  16. Dynamic Electrode Forces in Gas Metal Arc Welding.

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence Anthony

    In gas metal arc welding, a low-voltage electric -arc plasma is maintained between a work-piece and a wire electrode, both of which are melted by the arc. This thesis examines the dynamic forces that affect the detachment of molten metal drops from the consumable wire electrode. Unlike drops falling from a water faucet, the drops in gas metal arc welding experience strong magnetic forces generated by the interaction of the welding current with its own magnetic field. An extensive set of clear high-speed motion images of metal drops detaching from a welding electrode was collected under a wide variety of conditions. The images are used to measure the surface tension of steel as it is found in a gas metal arc welding plasma. Impulse-response oscillations of pendent molten steel drops are also measured. A derivation of the magnetic forces acting on necking drops is performed. Numerical computations of these forces are performed by using shapes fitted to high -speed images of molten steel drops as they are ejected from the electrode by magnetic forces during short-duty -cycle current pulsing. A dynamic model of drop detachment is developed and used to study the competition between the retaining surface tension force and other forces (magnetic, gravitational, and inertial). Simulations performed with this model are compared with extensive measurements of constant-current welding images and with limited measurements of pulsed -current welding images. The comparisons indicate that the experimental magnetic forces are much less potent than the calculated magnetic forces when welding-current transients are not present. A hypothesis is advanced that internal flows are able to develop under the relatively quiescent conditions that exist during drop development in constant -current welding. An apparatus was constructed to axially vibrate the electrode as it is consumed. Experiments using inertial forces to induce drop detachment are shown. Comparisons of experimental

  17. Dynamic disorder in receptor-ligand forced dissociation experiments.

    PubMed

    Liu, Fei; Ou-Yang, Zhong-can; Iwamoto, Mitsumasa

    2006-01-01

    Recently experiments showed that some biological noncovalent bonds increase their lifetimes when they are stretched by an external force, and their lifetimes will decrease when the force increases further. Several specific quantitative models have been proposed to explain the intriguing transitions from the "catch bond" to the "slip bond." In this work we propose that the dynamic disorder of the force-dependent dissociation rate can account for the counterintuitive behaviors of the bonds. A Gaussian stochastic rate model is used to quantitatively describe the transitions observed recently in the single bond P-selctin glycoprotein ligand 1-P-selectin force rupture experiment [Marshall, Nature 423, 190 (2003)]. Our model agrees well with the experimental data. We conclude that the catch bonds could arise from the stronger positive correlation between the height of the intrinsic energy barrier and the distance from the bound state to the barrier; classical pathway scenario or a priori catch bond assumption is not essential. PMID:16486112

  18. Molecular dynamics simulations of methane hydrate using polarizable force fields

    SciTech Connect

    Jiang, H.N.; Jordan, K.D.; Taylor, C.E.

    2007-06-14

    Molecular dynamics simulations of methane hydrate have been carried out using the polarizable AMOEBA and COS/G2 force fields. Properties calculated include the temperature dependence of the lattice constant, the OC and OO radial distribution functions, and the vibrational spectra. Both the AMOEBA and COS/G2 force fields are found to successfully account for the available experimental data, with overall somewhat better agreement with experiment being found for the AMOEBA model. Comparison is made with previous results obtained using TIP4P and SPC/E effective two-body force fields and the polarizable TIP4P-FQ force field, which allows for in-plane polarization only. Significant differences are found between the properties calculated using the TIP4P-FQ model and those obtained using the other models, indicating an inadequacy of restricting explicit polarization to in-plane onl

  19. Ares I-X First Stage Separation Loads and Dynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Demory, Lee; Rooker, BIll; Jarmulowicz, Marc; Glaese, John

    2011-01-01

    The Ares I-X flight test provided NASA with the opportunity to test hardware and gather critical data to ensure the success of future Ares I flights. One of the primary test flight objectives was to evaluate the environment during First Stage separation to better understand the conditions that the J-2X second stage engine will experience at ignition [1]. A secondary objective was to evaluate the effectiveness of the stage separation motors. The Ares I-X flight test vehicle was successfully launched on October 29, 2009, achieving most of its primary and secondary test objectives. Ground based video camera recordings of the separation event appeared to show recontact of the First Stage and the Upper Stage Simulator followed by an unconventional tumbling of the Upper Stage Simulator. Closer inspection of the videos and flight test data showed that recontact did not occur. Also, the motion during staging was as predicted through CFD analysis performed during the Ares I-X development. This paper describes the efforts to reconstruct the vehicle dynamics and loads through the staging event by means of a time integrated simulation developed in TREETOPS, a multi-body dynamics software tool developed at NASA [2]. The simulation was built around vehicle mass and geometry properties at the time of staging and thrust profiles for the first stage solid rocket motor as well as for the booster deceleration motors and booster tumble motors. Aerodynamic forces were determined by models created from a combination of wind tunnel testing and CFD. The initial conditions such as position, velocity, and attitude were obtained from the Best Estimated Trajectory (BET), which is compiled from multiple ground based and vehicle mounted instruments. Dynamic loads were calculated by subtracting the inertial forces from the applied forces. The simulation results were compared to the Best Estimated Trajectory, accelerometer flight data, and to ground based video.

  20. Reconstruction of principal dynamical modes from climatic variability: nonlinear approach

    NASA Astrophysics Data System (ADS)

    Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander; Kurths, Juergen

    2015-04-01

    Analysis of multivariate time-series produced by complex systems requires efficient tools for reduction of data dimension. We consider this problem in relation to empirical modeling of climate, which implies an analysis of spatial-distributed time-series. The main goal is to establish the number of principal modes which have key contribution to data and actually governs the observed variability. Currently, the number of widely used linear methods based on PCA and factor analysis exists, which yield different data decompositions taking into consideration simultanious/time-lag correlations between spatial grid points. However, the question about possibility of improving the decomposition by taking into account nonlinear couplings between variables often remains untouched. In the report the method for constructing principal dynamic modes on the basis of low-dimensional nonlinear parametric representation of observed multivariate time-series is suggested. It is aimed to extracting the set of latent modes that both explains an essential part of variability, and obeys the simplest evolution law. Thus, this approach can be used for optimal reconstruction of the phase space for empirical prognostic modeling of observed dynamics. The evidence of nonlinear couplings in SST space-distributed data covering the Globe is investigated by the proposed approach. It is demonstrated that the obtained principal modes capture more part of SST variability than principal components (PCs) constructed by either EOF decomposition or its spatio-temporal extension. Relation of these modes to various climate phenomena is shown and discussed in the report. The application of the approach to data-driven forecast of climate bahavior is also discussed.

  1. Superadiabatic forces in Brownian many-body dynamics.

    PubMed

    Fortini, Andrea; de Las Heras, Daniel; Brader, Joseph M; Schmidt, Matthias

    2014-10-17

    Theoretical approaches to nonequilibrium many-body dynamics generally rest upon an adiabatic assumption, whereby the true dynamics is represented as a sequence of equilibrium states. Going beyond this simple approximation is a notoriously difficult problem. For the case of classical Brownian many-body dynamics, we present a simulation method that allows us to isolate and precisely evaluate superadiabatic correlations and the resulting forces. Application of the method to a system of one-dimensional hard particles reveals the importance for the dynamics, as well as the complexity, of these nontrivial out-of-equilibrium contributions. Our findings help clarify the status of dynamical density functional theory and provide a rational basis for the development of improved theories. PMID:25361281

  2. Superadiabatic Forces in Brownian Many-Body Dynamics

    NASA Astrophysics Data System (ADS)

    Fortini, Andrea; de las Heras, Daniel; Brader, Joseph M.; Schmidt, Matthias

    2014-10-01

    Theoretical approaches to nonequilibrium many-body dynamics generally rest upon an adiabatic assumption, whereby the true dynamics is represented as a sequence of equilibrium states. Going beyond this simple approximation is a notoriously difficult problem. For the case of classical Brownian many-body dynamics, we present a simulation method that allows us to isolate and precisely evaluate superadiabatic correlations and the resulting forces. Application of the method to a system of one-dimensional hard particles reveals the importance for the dynamics, as well as the complexity, of these nontrivial out-of-equilibrium contributions. Our findings help clarify the status of dynamical density functional theory and provide a rational basis for the development of improved theories.

  3. A test of improved force field parameters for urea: molecular-dynamics simulations of urea crystals.

    PubMed

    Özpınar, Gül Altınbaş; Beierlein, Frank R; Peukert, Wolfgang; Zahn, Dirk; Clark, Timothy

    2012-08-01

    Molecular-dynamics (MD) simulations of urea crystals of different shapes (cubic, rectangular prismatic, and sheet) have been performed using our previously published force field for urea. This force field has been validated by calculating values for the cohesive energy, sublimation temperature, and melting point from the MD data. The cohesive energies computed from simulations of cubic and rectangular prismatic urea crystals in vacuo at 300 K agreed very well with the experimental sublimation enthalpies reported at 298 K. We also found very good agreement between the melting points as observed experimentally and from simulations. Annealing the crystals just below the melting point leads to reconstruction to form crystal faces that are consistent with experimental observations. The simulations reveal a melting mechanism that involves surface (corner/edge) melting well below the melting point, and rotational disordering of the urea molecules in the corner/edge regions of the crystal, which then facilitates the translational motion of these molecules. PMID:22281810

  4. Enhanced atomic corrugation in dynamic force microscopy—The role of repulsive forces

    NASA Astrophysics Data System (ADS)

    Lichtenstein, L.; Büchner, C.; Stuckenholz, S.; Heyde, M.; Freund, H.-J.

    2012-03-01

    Full range two dimensional (2D) force mapping was performed by means of low temperature dynamic force microscopy (DFM) on a highly complex surface structure. For this purpose, we used a thin film of vitreous silica on a Ru(0001)-support, which is a 2D structural equivalent to silica glass. The 2D spectroscopy shows that the contrast generating shift in vertical distance between two sites on the surface is twice as large on the repulsive branch of the frequency shift-distance curve as compared to the attractive branch. The results give insight into the origin of the formation of atomic resolution in DFM.

  5. Forced vibration of flexible body systems. A dynamic stiffness method

    NASA Astrophysics Data System (ADS)

    Liu, T. S.; Lin, J. C.

    1993-10-01

    Due to the development of high speed machinery, robots, and aerospace structures, the research of flexible body systems undergoing both gross motion and elastic deformation has seen increasing importance. The finite element method and modal analysis are often used in formulating equations of motion for dynamic analysis of the systems which entail time domain, forced vibration analysis. This study develops a new method based on dynamic stiffness to investigate forced vibration of flexible body systems. In contrast to the conventional finite element method, shape functions and stiffness matrices used in this study are derived from equations of motion for continuum beams. Hence, the resulting shape functions are named as dynamic shape functions. By applying the dynamic shape functions, the mass and stiffness matrices of a beam element are derived. The virtual work principle is employed to formulate equations of motion. Not only the coupling of gross motion and elastic deformation, but also the stiffening effect of axial forces is taken into account. Simulation results of a cantilever beam, a rotating beam, and a slider crank mechanism are compared with the literature to verify the proposed method.

  6. Comparing molecular dynamics force fields in the essential subspace.

    PubMed

    Martín-García, Fernando; Papaleo, Elena; Gomez-Puertas, Paulino; Boomsma, Wouter; Lindorff-Larsen, Kresten

    2015-01-01

    The continued development and utility of molecular dynamics simulations requires improvements in both the physical models used (force fields) and in our ability to sample the Boltzmann distribution of these models. Recent developments in both areas have made available multi-microsecond simulations of two proteins, ubiquitin and Protein G, using a number of different force fields. Although these force fields mostly share a common mathematical form, they differ in their parameters and in the philosophy by which these were derived, and previous analyses showed varying levels of agreement with experimental NMR data. To complement the comparison to experiments, we have performed a structural analysis of and comparison between these simulations, thereby providing insight into the relationship between force-field parameterization, the resulting ensemble of conformations and the agreement with experiments. In particular, our results show that, at a coarse level, many of the motional properties are preserved across several, though not all, force fields. At a finer level of detail, however, there are distinct differences in both the structure and dynamics of the two proteins, which can, together with comparison with experimental data, help to select force fields for simulations of proteins. A noteworthy observation is that force fields that have been reparameterized and improved to provide a more accurate energetic description of the balance between helical and coil structures are difficult to distinguish from their "unbalanced" counterparts in these simulations. This observation implies that simulations of stable, folded proteins, even those reaching 10 microseconds in length, may provide relatively little information that can be used to modify torsion parameters to achieve an accurate balance between different secondary structural elements. PMID:25811178

  7. A Robust State-Space Kinetics-Guided Framework for Dynamic PET Image Reconstruction

    PubMed Central

    Tong, S; Alessio, A M; Kinahan, P E; Liu, H; Shi, P

    2011-01-01

    Dynamic PET image reconstruction is a challenging issue due to the low SNR and the large quantity of spatio-temporal data. We propose a robust state-space image reconstruction (SSIR) framework for activity reconstruction in dynamic PET. Unlike statistically-based frame-by-frame methods, tracer kinetic modeling is incorporated to provide physiological guidance for the reconstruction, harnessing the temporal information of the dynamic data. Dynamic reconstruction is formulated in a state-space representation, where a compartmental model describes the kinetic processes in a continuous-time system equation, and the imaging data is expressed in a discrete measurement equation. Tracer activity concentrations are treated as the state variables, and are estimated from the dynamic data. Sampled-data H∞ filtering is adopted for robust estimation. H∞ filtering makes no assumptions on the system and measurement statistics, and guarantees bounded estimation error for finite-energy disturbances, leading to robust performance for dynamic data with low SNR and/or errors. This alternative reconstruction approach could help to deal with unpredictable situations in imaging (e.g. data corruption from failed detector blocks) or inaccurate noise models. Experiments on synthetic phantom and patient PET data are performed to demonstrate feasibility of the SSIR framework, and to explore its potential advantages over frame-by-frame statistical reconstruction approaches. PMID:21441650

  8. Protein displacements under external forces: An atomistic Langevin dynamics approach

    NASA Astrophysics Data System (ADS)

    Gnandt, David; Utz, Nadine; Blumen, Alexander; Koslowski, Thorsten

    2009-02-01

    We present a fully atomistic Langevin dynamics approach as a method to simulate biopolymers under external forces. In the harmonic regime, this approach permits the computation of the long-term dynamics using only the eigenvalues and eigenvectors of the Hessian matrix of second derivatives. We apply this scheme to identify polymorphs of model proteins by their mechanical response fingerprint, and we relate the averaged dynamics of proteins to their biological functionality, with the ion channel gramicidin A, a phosphorylase, and neuropeptide Y as examples. In an environment akin to dilute solutions, even small proteins show relaxation times up to 50 ns. Atomically resolved Langevin dynamics computations have been performed for the stretched gramicidin A ion channel.

  9. Dynamic stability of repulsive-force maglev suspension systems

    SciTech Connect

    Cai, Y.; Rote, D.M.; Mulcahy, T.M.; Wang, Z.

    1996-11-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also documents both measured and calculated magnetic-force data. Because dynamic instability is not acceptable for any commercial maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments on maglev systems and compares the results with predictions calculated by a nonlinear-dynamics computer code. Instabilities of an electrodynamic-suspension system type vehicle model were obtained by experimental observation and computer simulation of a five-degree-of-freedom maglev vehicle moving on a guideway that consists of a pair of L-shaped aluminum conductors attached to a rotating wheel. The experimental and theoretical analyses developed in this study identify basic stability characteristics and future research needs of maglev systems.

  10. Dynamic Force Balances and Cell Shape Changes during Cytokinesis

    NASA Astrophysics Data System (ADS)

    Sain, Anirban; Inamdar, Mandar M.; Jülicher, Frank

    2015-01-01

    During the division of animal cells, an actomyosin ring is formed in the cell cortex. The contraction of this ring induces shape changes of the cell and the formation of a cytokinesis furrow. In many cases, a cell-cell interface forms that separates the two new cells. Here we present a simple physical description of the cell shape changes and the dynamics of the interface closure, based on force balances involving active stresses and viscous friction. We discuss conditions in which the interface closure is either axially symmetric or asymmetric. We show that our model can account for the observed dynamics of ring contraction and interface closure in the C. elegans embryo.

  11. Dynamics of taut strings traveled by train of forces

    NASA Astrophysics Data System (ADS)

    Luongo, Angelo; Piccardo, Giuseppe

    2016-03-01

    This paper analyzes the dynamical response of taut strings crossed by systems of traveling forces at constant velocity. Starting from the classic solution for the single moving load, the effect of trains of forces having a step equal to the string length is dealt with. The response is formulated in terms of a linear map, whose reiteration furnishes the discrete-time response, and enables the investigation of the asymptotic behavior of the system. The analytical solution highlights the presence of many critical velocities, for which an instability phenomenon by response accretion may occur. The presence of damping inhibits the onset of instability but also allows to attain large displacements, especially in correspondence of the first critical velocities of the undamped string. Finite-difference numerical solutions confirm the full validity of the proposed analytical solutions. A simple procedure to deduce an improved solution for the problem of the single moving force is outlined in the Appendix.

  12. Forced dynamic position control of PMSM with DTC utilization

    NASA Astrophysics Data System (ADS)

    Malek, Michal

    2012-11-01

    Almost one and a half century after the publication of Maxwell’s On Governors, feedback theory with PID controllers in cascade structure is still an essential part of control structures of most controlled electric drives. There are a few control strategies which are “ready” to replace it but they usually miss one of the essential fundamentals of every successful approach - simplicity hand in hand with lucidity. But there is one close relative which is simple and powerful at the same time, is not excessively abstract and without complicated mathematics. The name of this technique is Forced Dynamic Control. In this paper forced dynamic control is presented together with direct torque controlled PMSM drive as unique combination of simple algorithms for inner and outer loop of cascade structure.

  13. Langevin Dynamics with Space-Time Periodic Nonequilibrium Forcing

    NASA Astrophysics Data System (ADS)

    Joubaud, R.; Pavliotis, G. A.; Stoltz, G.

    2015-01-01

    We present results on the ballistic and diffusive behavior of the Langevin dynamics in a periodic potential that is driven away from equilibrium by a space-time periodic driving force, extending some of the results obtained by Collet and Martinez in (J Math Biol, 56(6):765-792 2008). In the hyperbolic scaling, a nontrivial average velocity can be observed even if the external forcing vanishes in average. More surprisingly, an average velocity in the direction opposite to the forcing may develop at the linear response level—a phenomenon called negative mobility. The diffusive limit of the non-equilibrium Langevin dynamics is also studied using the general methodology of central limit theorems for additive functionals of Markov processes. To apply this methodology, which is based on the study of appropriate Poisson equations, we extend recent results on pointwise estimates of the resolvent of the generator associated with the Langevin dynamics. Our theoretical results are illustrated by numerical simulations of a two-dimensional system.

  14. Jamming transitions in force-based models for pedestrian dynamics.

    PubMed

    Chraibi, Mohcine; Ezaki, Takahiro; Tordeux, Antoine; Nishinari, Katsuhiro; Schadschneider, Andreas; Seyfried, Armin

    2015-10-01

    Force-based models describe pedestrian dynamics in analogy to classical mechanics by a system of second order ordinary differential equations. By investigating the linear stability of two main classes of forces, parameter regions with unstable homogeneous states are identified. In this unstable regime it is then checked whether phase transitions or stop-and-go waves occur. Results based on numerical simulations show, however, that the investigated models lead to unrealistic behavior in the form of backwards moving pedestrians and overlapping. This is one reason why stop-and-go waves have not been observed in these models. The unrealistic behavior is not related to the numerical treatment of the dynamic equations but rather indicates an intrinsic problem of this model class. Identifying the underlying generic problems gives indications how to define models that do not show such unrealistic behavior. As an example we introduce a force-based model which produces realistic jam dynamics without the appearance of unrealistic negative speeds for empirical desired walking speeds. PMID:26565291

  15. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  16. Jamming transitions in force-based models for pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    Chraibi, Mohcine; Ezaki, Takahiro; Tordeux, Antoine; Nishinari, Katsuhiro; Schadschneider, Andreas; Seyfried, Armin

    2015-10-01

    Force-based models describe pedestrian dynamics in analogy to classical mechanics by a system of second order ordinary differential equations. By investigating the linear stability of two main classes of forces, parameter regions with unstable homogeneous states are identified. In this unstable regime it is then checked whether phase transitions or stop-and-go waves occur. Results based on numerical simulations show, however, that the investigated models lead to unrealistic behavior in the form of backwards moving pedestrians and overlapping. This is one reason why stop-and-go waves have not been observed in these models. The unrealistic behavior is not related to the numerical treatment of the dynamic equations but rather indicates an intrinsic problem of this model class. Identifying the underlying generic problems gives indications how to define models that do not show such unrealistic behavior. As an example we introduce a force-based model which produces realistic jam dynamics without the appearance of unrealistic negative speeds for empirical desired walking speeds.

  17. Satellite Dynamic Damping via Active Force Control Augmentation

    NASA Astrophysics Data System (ADS)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  18. Dynamic calibration of higher eigenmode parameters of a cantilever in atomic force microscopy by using tip–surface interactions

    DOE PAGESBeta

    Borysov, Stanislav S.; Forchheimer, Daniel; Haviland, David B.

    2014-10-29

    Here we present a theoretical framework for the dynamic calibration of the higher eigenmode parameters (stiffness and optical lever inverse responsivity) of a cantilever. The method is based on the tip–surface force reconstruction technique and does not require any prior knowledge of the eigenmode shape or the particular form of the tip–surface interaction. The calibration method proposed requires a single-point force measurement by using a multimodal drive and its accuracy is independent of the unknown physical amplitude of a higher eigenmode.

  19. Correlation of Force Production with Apoptosis in Tissue Dynamics

    NASA Astrophysics Data System (ADS)

    Toyama, Yusuke; Peralta, Xomalin; Venakides, Stephanos; Kiehart, Daniel; Edwards, Glenn

    2007-03-01

    To understand embryo morphogenesis, it is necessary to know the force distribution in the various tissues. Since cells are largely inaccessible to mechanical probes in vivo, measurements of the net forces exerted by cells are challenging. The combination of experimental and theoretical approaches has proven to improve our understanding of these forces. A steerable UV-laser microbeam was used to probe the forces and the resulting kinematics were monitored with confocal microscopy. Dorsal closure is a developmental stage in Drosophila embryogenesis, where the dynamics are a consequence of four biological processes [1]. During this stage, cells that have outlived their usefulness undergo apoptosis, a biological process also known as programmed cell death for cells. Apoptotic events were decreased with genetic techniques or increased by irradiation with a UV-C lamp. We present experimental evidence for force generation correlating with apoptosis. This research has been supported by the NIH (GM33830 and GM61240). [1] M. S. Hutson, et al. Science, 300, 145 (2003).

  20. Dynamic Response of Model Lipid Membranes to Ultrasonic Radiation Force

    PubMed Central

    Prieto, Martin Loynaz; Oralkan, Ömer; Khuri-Yakub, Butrus T.; Maduke, Merritt C.

    2013-01-01

    Low-intensity ultrasound can modulate action potential firing in neurons in vitro and in vivo. It has been suggested that this effect is mediated by mechanical interactions of ultrasound with neural cell membranes. We investigated whether these proposed interactions could be reproduced for further study in a synthetic lipid bilayer system. We measured the response of protein-free model membranes to low-intensity ultrasound using electrophysiology and laser Doppler vibrometry. We find that ultrasonic radiation force causes oscillation and displacement of lipid membranes, resulting in small (<1%) changes in membrane area and capacitance. Under voltage-clamp, the changes in capacitance manifest as capacitive currents with an exponentially decaying sinusoidal time course. The membrane oscillation can be modeled as a fluid dynamic response to a step change in pressure caused by ultrasonic radiation force, which disrupts the balance of forces between bilayer tension and hydrostatic pressure. We also investigated the origin of the radiation force acting on the bilayer. Part of the radiation force results from the reflection of the ultrasound from the solution/air interface above the bilayer (an effect that is specific to our experimental configuration) but part appears to reflect a direct interaction of ultrasound with the bilayer, related to either acoustic streaming or scattering of sound by the bilayer. Based on these results, we conclude that synthetic lipid bilayers can be used to study the effects of ultrasound on cell membranes and membrane proteins. PMID:24194863

  1. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.

    PubMed

    Novosad, Philip; Reader, Andrew J

    2016-06-21

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  2. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    NASA Astrophysics Data System (ADS)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  3. Guided crowd dynamics via modified social force model

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoxia; Dong, Hairong; Wang, Qianling; Chen, Yao; Hu, Xiaoming

    2014-10-01

    Pedestrian dynamics is of great theoretical significance for strategy design of emergency evacuation. Modification of pedestrian dynamics based on the social force model is presented to better reflect pedestrians' behavioral characteristics in emergency. Specifically, the modified model can be used for guided crowd dynamics in large-scale public places such as subway stations and stadiums. This guided crowd model is validated by explicitly comparing its density-speed and density-flow diagrams with fundamental diagrams. Some social phenomena such as gathering, balance and conflicts are clearly observed in simulation, which further illustrate the effectiveness of the proposed modeling method. Also, time delay for pedestrians with time-dependent desired velocities is observed and explained using the established model in this paper. Furthermore, this guided crowd model is applied to the simulation system of Beijing South Railway Station for predictive evacuation experiments.

  4. Wavefront aberration reconstruction from tangential refractive powers measured with spatial dynamic skiascopy.

    PubMed

    Barbero, Sergio

    2012-12-20

    The aim of this work was to study, using numerical simulations, the attainable level of accuracy to reconstruct the wavefront aberrations from tangential refractive power data measured with dynamic skiascopy. Two mathematical methods have been implemented. The first one is based on curve integration of the curvature data, previously interpolated with cubic splines. The second one reconstructs the three-dimensional wavefront surface, represented by a Zernike polynomial expansion, using a two-step least-squares method. The different factors affecting the reconstruction--noise, sampling, and wavefront patterns--were quantified. The results provide useful information to design more efficient experimental setups based on spatial dynamic skiascopy. PMID:23262600

  5. Direct reconstruction of pharmacokinetic parameters in dynamic fluorescence molecular tomography by the augmented Lagrangian method

    NASA Astrophysics Data System (ADS)

    Zhu, Dianwen; Zhang, Wei; Zhao, Yue; Li, Changqing

    2016-03-01

    Dynamic fluorescence molecular tomography (FMT) has the potential to quantify physiological or biochemical information, known as pharmacokinetic parameters, which are important for cancer detection, drug development and delivery etc. To image those parameters, there are indirect methods, which are easier to implement but tend to provide images with low signal-to-noise ratio, and direct methods, which model all the measurement noises together and are statistically more efficient. The direct reconstruction methods in dynamic FMT have attracted a lot of attention recently. However, the coupling of tomographic image reconstruction and nonlinearity of kinetic parameter estimation due to the compartment modeling has imposed a huge computational burden to the direct reconstruction of the kinetic parameters. In this paper, we propose to take advantage of both the direct and indirect reconstruction ideas through a variable splitting strategy under the augmented Lagrangian framework. Each iteration of the direct reconstruction is split into two steps: the dynamic FMT image reconstruction and the node-wise nonlinear least squares fitting of the pharmacokinetic parameter images. Through numerical simulation studies, we have found that the proposed algorithm can achieve good reconstruction results within a small amount of time. This will be the first step for a combined dynamic PET and FMT imaging in the future.

  6. Dynamic mechanoelectrochemistry of polypyrrole membranes via shear-force tracking.

    PubMed

    Northcutt, Robert G; Heinemann, Christian; Sundaresan, Vishnu Baba

    2016-07-14

    Mechanoelectrochemistry is the study of elastic and plastic deformation of materials during reversible reduction and oxidation processes. In this article, we introduce shear-force tracking as a method to dynamically measure mechanical (strain), chemical (ion transport), and electrical (applied redox potentials) responses of the conducting polymer polypyrrole (PPy) during redox reactions. This tracking technique uses a control algorithm to maintain a set distance between a ultramicroelectrode (UME) tip and a surface via shear-force regulation. Due to the sensitivity of shear-force signals in the near field of substrate surfaces, a significantly improved signal to noise ratio (20 : 1) is possible and allows for nanoscale measurement of redox events. Chemomechanical coupling (the ratio of ion transport to resultant extensional actuation) is calculated for PPy-based membranes of various thicknesses based on a mechanistic interpretation of charge storage in redox active conducting polymers. The measured dynamic response demonstrates that chemomechanical coupling is not a constant, as assumed in literature, but is dependent on the polymers state of charge and the direction (ingress/egress) of ion transport. PMID:27263628

  7. Dynamics of forced system with vibro-impact energy sink

    NASA Astrophysics Data System (ADS)

    Gendelman, O. V.; Alloni, A.

    2015-12-01

    The paper treats forced response of primary linear oscillator with vibro-impact energy sink. This system exhibits some features of dynamics, which resemble forced systems with other types of nonlinear energy sinks, such as steady-state and strongly modulated responses. However, the differences are crucial: in the system with vibro-impact sink the strongly modulated response consists of randomly distributed periods of resonant and non-resonant motion. This salient feature allows us to identify this type of dynamic behavior as chaotic strongly modulated response (CSMR). It is demonstrated, that the CSMR exists due to special structure of a slow invariant manifold (SIM); the latter is derived in a course of a multiple-scale analysis of the system. In the considered system, this manifold has only one stable and one unstable branch. This feature defines new class of universality for the nonlinear energy sinks. Very different physical system with topologically similar SIM - the oscillator with rotational energy sink - also exhibits CSMRs. In the system with the vibro-impact sink, such responses are observed even for very low level of the external forcing. This feature makes such system viable for possible energy harvesting applications.

  8. Implementation of the force decomposition machine for molecular dynamics simulations.

    PubMed

    Borštnik, Urban; Miller, Benjamin T; Brooks, Bernard R; Janežič, Dušanka

    2012-09-01

    We present the design and implementation of the force decomposition machine (FDM), a cluster of personal computers (PCs) that is tailored to running molecular dynamics (MD) simulations using the distributed diagonal force decomposition (DDFD) parallelization method. The cluster interconnect architecture is optimized for the communication pattern of the DDFD method. Our implementation of the FDM relies on standard commodity components even for networking. Although the cluster is meant for DDFD MD simulations, it remains general enough for other parallel computations. An analysis of several MD simulation runs on both the FDM and a standard PC cluster demonstrates that the FDM's interconnect architecture provides a greater performance compared to a more general cluster interconnect. PMID:23085166

  9. Force-free electrodynamics in dynamical curved spacetimes

    NASA Astrophysics Data System (ADS)

    McWilliams, Sean

    2015-04-01

    We present results on our study of force-free electrodynamics in curved spacetimes. Specifically, we present several improvements to what has become the established set of evolution equations, and we apply these to study the nonlinear stability of analytically known force-free solutions for the first time. We implement our method in a new pseudo-spectral code built on top of the SpEC code for evolving dynamic spacetimes. Finally, we revisit these known solutions and attempt to clarify some interesting properties that render them analytically tractable. Finally, we preview some new work that similarly revisits the established approach to solving another problem in numerical relativity: the post-merger recoil from asymmetric gravitational-wave emission. These new results may have significant implications for the parameter dependence of recoils, and consequently on the statistical expectations for recoil velocities of merged systems.

  10. Microcantilevers with embedded accelerometers for dynamic atomic force microscopy

    SciTech Connect

    Shaik, Nurul Huda; Raman, Arvind; Reifenberger, Ronald G.

    2014-02-24

    The measurement of the intermittent interaction between an oscillating nanotip and the sample surface is a key challenge in dynamic Atomic Force Microscopy (AFM). Accelerometers integrated onto AFM cantilevers can directly measure this interaction with minimal cantilever modification but have been difficult to realize. Here, we design and fabricate high frequency bandwidth accelerometers on AFM cantilevers to directly measure the tip acceleration in commercial AFM systems. We demonstrate a simple way of calibrating such accelerometers and present experiments using amplitude modulated AFM on freshly cleaved mica samples in water to study the response of the accelerometer.

  11. Dynamic behavior of a beam drag-force anemometer

    NASA Technical Reports Server (NTRS)

    Fralick, G. C.

    1980-01-01

    A cantilevered beam with strain gages attached to the fixed ends and the minimax technique were used in an experiment conducted to determine the dynamic behavior of a drag-force anemometer in high frequency, unsteady flow. In steady flow the output of the anemometer is proportional to stream velocity head and flow angle. Fluid mechanics suggests that, in unsteady flow, the output would also be proportional to the rate of change of fluid velocity. It was determined that effects due to the rate of change of fluid velocity are negligible for the probe geometry and frequencies involved.

  12. Holocene carbon dynamics and radiative forcing of three different types of peatlands in Finland

    NASA Astrophysics Data System (ADS)

    Mathijssen, Paul; Väliranta, Minna; Lohila, Annalea; Minkkinen, Kari; Tuittila, Eeva-Stiina; Tuovinen, Juha-Pekka; Korrensalo, Aino

    2016-04-01

    Peatlands contain approximately a third of all soil carbon globally and as they exchange carbon dioxide (CO2) and methane (CH4) copiously with the atmosphere, changes in peatland carbon budgets have a large impact on the global carbon balance and the concentration of greenhouse gasses in the atmosphere. There has been a growing interest in reconstructing and linking peatland carbon dynamics to past climate variations, because quantitative reconstructions can be used as a basis for future carbon balance predictions. In order to increase our understanding on peatland development and response patterns we quantitatively reconstructed Holocene carbon dynamics of three different peatlands in Finland: a subarctic fen, a boreal peatland complex and a boreal managed pine bog. Several cores from each peatland were investigated. The peatlands showed distinct successional pathways, which were sometimes triggered by fires. Successional stages were partly reflected in carbon accumulation patterns. Sometimes variations in carbon accumulation rates coincided with autogenic changes in peat type and vegetation, but accumulation rates were also related to the large-scale Holocene climate phases. However, Holocene climate changes as such did not seem to result in changes in the peat plant species composition. The mid-Holocene warm and dry climate conditions reduced the carbon accumulation in the subarctic fen and in the fen part of the boreal peatland complex, but when the peatland was in bog phase this effect was not visible. Some bog cores showed a clear increase in carbon accumulation after fen-bog transition, but the pattern was not unanimous. In addition to carbon accumulation, we estimated past CH4 emissions for each peatland respectively by applying different methods and by utilising the established current vegetation-CH4 emission relationship. The reconstructions showed that CH4 emissions always decreased during bog stages, but that the CH4 emissions played a major role in the

  13. A CLASS OF RECONSTRUCTED DISCONTINUOUS GALERKIN METHODS IN COMPUTATIONAL FLUID DYNAMICS

    SciTech Connect

    Hong Luo; Yidong Xia; Robert Nourgaliev

    2011-05-01

    A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison. Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness.

  14. Border Forces and Friction Control Epithelial Closure Dynamics

    PubMed Central

    Cochet-Escartin, Olivier; Ranft, Jonas; Silberzan, Pascal; Marcq, Philippe

    2014-01-01

    We study the closure dynamics of a large number of well-controlled circular apertures within an epithelial monolayer, where the collective cell migration responsible for epithelization is triggered by the removal of a spatial constraint rather than by scratching. Based on experimental observations, we propose a physical model that takes into account border forces, friction with the substrate, and tissue rheology. Border protrusive activity drives epithelization despite the presence of a contractile actomyosin cable at the periphery of the wound. The closure dynamics is quantified by an epithelization coefficient, defined as the ratio of protrusive stress to tissue-substrate friction, that allows classification of different phenotypes. The same analysis demonstrates a distinct signature for human cells bearing the oncogenic RasV12 mutation, demonstrating the potential of the approach to quantitatively characterize metastatic transformations. PMID:24411238

  15. Algebraic and analytic reconstruction methods for dynamic tomography.

    PubMed

    Desbat, L; Rit, S; Clackdoyle, R; Mennessier, C; Promayon, E; Ntalampeki, S

    2007-01-01

    In this work, we discuss algebraic and analytic approaches for dynamic tomography. We present a framework of dynamic tomography for both algebraic and analytic approaches. We finally present numerical experiments. PMID:18002059

  16. Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Gupta, Amar Nath; Vincent, Abhilash; Neupane, Krishna; Yu, Hao; Wang, Feng; Woodside, Michael T.

    2011-08-01

    Free-energy-landscape formalisms provide the fundamental conceptual framework for physical descriptions of how proteins and nucleic acids fold into specific three-dimensional structures. Although folding landscapes are difficult to measure experimentally, recent theoretical work by Hummer and Szabo has shown that landscape profiles can be reconstructed from non-equilibrium single-molecule force spectroscopy measurements using an extension of the Jarzynski equality. This method has been applied to simulations and experiments but never validated experimentally. We tested it using force-extension measurements on DNA hairpins with distinct, sequence-dependent folding landscapes. Quantitative agreement was found between the landscape profiles obtained from the non-equilibrium reconstruction and those from equilibrium probability distributions. We also tested the method on a riboswitch aptamer with three partially folded intermediate states, successfully reconstructing the landscape but finding some states difficult to resolve owing to low occupancy or overlap of the potential wells. These measurements validate the landscape-reconstruction method and provide a new test of non-equilibrium work relations.

  17. Multiscale Dynamics of ENSO Impacts on Coral Proxy Environments: Towards Improving Reconstruction Accuracy

    NASA Astrophysics Data System (ADS)

    Stevenson, Samantha; Powell, Brian; Merrifield, Mark; Cobb, Kim; Noone, David; Nusbaumer, Jesse

    2015-04-01

    Oxygen isotope (δ18O) records from tropical coral skeletons are widely used for reconstructing the El Niño/ Southern Oscillation (ENSO). However, data limitations have prevented detailed investigation of the dynamical connection between ENSO variability and δ18O anomalies near sites used for reconstructions, potentially creating large uncertainties. To address this issue, a new, isotope-enabled version of the Regional Ocean Modeling System ("isoROMS") has been developed to simulate seawater oxygen isotope anomalies during historical El Niño and La Niña events at a variety of spatial scales. isoROMS is forced with 20th century (1979-2009) boundary conditions and surface fluxes, in addition to precipitation δ18O from the newly developed isotope-enabled Community Atmosphere Model (iCAM5); it thus functions as an approximate 'reanalysis' of seawater δ18O over the satellite era. The balance of surface and advective/diffusive processes during central and eastern Pacific El Niño events is investigated at sites throughout the tropical Pacific, in order to understand the mechanisms governing the magnitude of individual δ18O excursions in existing proxy records. Budget analysis shows that in many cases impacts on δ18O take place primarily through advective changes, rather than surface fluxes as previously thought. Additionally, mesoscale processes such as tropical instability waves significantly affect temperature and δ18O in some locations, and their importance varies with ENSO phase; this suggests that rectification of such high-frequency variability into the proxy signal may affect estimates of overall ENSO variance. Implications for ENSO estimates using 'pseudoproxy' conversions from instrumental data are discussed.

  18. Mapping van der Waals forces with frequency modulation dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Polesel-Maris, J.; Guo, H.; Zambelli, T.; Gauthier, S.

    2006-08-01

    Nanometre-size gold clusters supported on MoS2(0001) are investigated by means of ultrahigh-vacuum frequency modulation dynamic force microscopy. Topography and frequency shift images are simultaneously obtained using the average tunnelling current to regulate the tip-substrate distance. Two families of clusters are observed, giving different frequency shift images. While the topographic and frequency shift profiles have similar shapes on small clusters (size \\lesssim 1 nm), they are quite different near the top of large clusters (size \\gtrsim 4 nm): the topographic profile is rounded, but the frequency shift profile exhibits rather steep edges and a depression near the centre of the island. It is demonstrated that these differences result from the finite range of van der Waals forces. On small islands, the frequency shift is dominated by the interaction of the tip with the substrate. On large islands, it is dominated by the interaction with the island. The particular observed shape results from the geometry of the island. These interpretations are comforted by analytical and numerical calculations. In particular, the characteristic shape of the frequency shift profiles on large islands can be reproduced by introducing realistic parameters and considering only the contribution of van der Waals forces.

  19. Tomographic bioluminescence imaging reconstruction via a dynamically sparse regularized global method in mouse models.

    PubMed

    Liu, Kai; Tian, Jie; Qin, Chenghu; Yang, Xin; Zhu, Shouping; Han, Dong; Wu, Ping

    2011-04-01

    Generally, the performance of tomographic bioluminescence imaging is dependent on several factors, such as regularization parameters and initial guess of source distribution. In this paper, a global-inexact-Newton based reconstruction method, which is regularized by a dynamic sparse term, is presented for tomographic reconstruction. The proposed method can enhance higher imaging reliability and efficiency. In vivo mouse experimental reconstructions were performed to validate the proposed method. Reconstruction comparisons of the proposed method with other methods demonstrate the applicability on an entire region. Moreover, the reliable performance on a wide range of regularization parameters and initial unknown values were also investigated. Based on the in vivo experiment and a mouse atlas, the tolerance for optical property mismatch was evaluated with optical overestimation and underestimation. Additionally, the reconstruction efficiency was also investigated with different sizes of mouse grids. We showed that this method was reliable for tomographic bioluminescence imaging in practical mouse experimental applications. PMID:21529085

  20. Reconstructing neural dynamics using data assimilation with multiple models

    NASA Astrophysics Data System (ADS)

    Hamilton, Franz; Cressman, John; Peixoto, Nathalia; Sauer, Timothy

    2014-09-01

    Assimilation of data with models of physical processes is a critical component of modern scientific analysis. In recent years, nonlinear versions of Kalman filtering have been developed, in addition to methods that estimate model parameters in parallel with the system state. We propose a substantial extension of these tools to deal with the specific case of unmodeled variables, when training data from the variable is avaiable. The method uses a stack of several, nonidentical copies of a physical model to jointly reconstruct the variable in question. We demonstrate the ability of this technique to accurately recover an unmodeled experimental quantity, such as an ion concentration, from a single voltage trace after the training period is completed. The method is applied to reconstruct the potassium concentration in a neural culture from multielectrode array voltage measurements.

  1. Reconstruction of Covalent Organic Frameworks by Dynamic Equilibrium.

    PubMed

    Gao, Qiang; Bai, Linyi; Zeng, Yongfei; Wang, Peng; Zhang, Xiaojing; Zou, Ruqiang; Zhao, Yanli

    2015-11-16

    Covalent organic frameworks (COFs) are periodic two- or three-dimensional polymeric networks with high surface areas, low density, and designed structures. Because COFs are normally prepared based on reversible formation of covalent bonds with relatively weak stability, their structures can be easily broken or damaged due to changes in the surrounding environment. Thus, developing strategies to realize the reconstruction of COFs in order to extend their usage lifetime is crucial for practical applications. In addition, exploring the kinetics of COF growth under varied reaction conditions is important for better understanding the nucleation and growth processes of COFs. In this work, the reformation mechanism of an imine-based COF using an ex situ characterization method was investigated, disclosing an interesting COF reconstruction progress from disorder to order. The present study shows the regeneration ability of COFs, and the developed method could be generalized for broader use in the field. PMID:26450522

  2. Force Generation, Polymerization Dynamics and Nucleation of Actin Filaments

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe

    We study force generation and actin filament dynamics using stochastic and deterministic methods. First, we treat force generation of bundled actin filaments by polymerization via molecular-level stochastic simulations. In the widely-used Brownian Ratchet model, actin filaments grow freely whenever the tip-obstacle gap created by thermal fluctuation exceeds the monomer size. We name this model the Perfect Brownian Ratchet (PBR) model. In the PBR model, actin monomer diffusion is treated implicitly. We perform a series of simulations based on the PBR, in which obstacle motion is treated explicitly; in most previous studies, obstacle motion has been treated implicitly. We find that the cooperativity of filaments is generally weak in the PBR model, meaning that more filaments would grow more slowly given the same force per filament. Closed-form formulas are also developed, which match the simulation results. These portable and accurate formulas provide guidance for experiments and upper and lower bounds for theoretical analyses. We also studied a variation of the PBR, called the Diffusing Brownian Ratchet (DBR) model, in which both actin monomer and obstacle diffusion are treated explicitly. We find that the growth rate of multiple filaments is even lower, compared with that in PBR. This finding challenges the widely-accepted PBR assumption and suggests that pushing the study of actin dynamics down to the sub-nanometer level yields new insights. We subsequently used a rate equation approach to model the effect of local depletion of actin monomers on the nucleation of actin filaments on biomimetic beads, and how the effect is regulated by capping protein (CP). We find that near the bead surface, a higher CP concentration increases local actin concentration, which leads to an enhanced activities of actin filaments' nucleation. Our model analysis matches the experimental results and lends support to an important but undervalued hypothesis proposed by Carlier and

  3. Dynamic medial patellofemoral ligament reconstruction in recurrent patellar instability: A surgical technique

    PubMed Central

    Kiran, Kopuri Ravi; Srikanth, I Muni; Chinnusamy, Lenin; Deepti, K

    2015-01-01

    The medial patellofemoral ligament (MPFL) is the primary stabilizer of the patellofemoral joint; its reconstruction has been recommended in adults over the past decade after recurrent patellar instability. However, there has been no standardized technique for reconstruction, therefore, ideal graft and technique for reconstruction are yet undetermined. However, dynamic MPFL reconstruction studies claim to be superior to other procedures as it is more anatomical. This preliminary study aims at assessing the outcomes of MPFL reconstruction in a dynamic pattern using hamstring graft. We performed this procedure in four consecutive patients with chronic patellar instability following trauma. MPFL reconstruction was done with hamstring tendons detached distally and secured to patellar periosteum after being passed through a bony tunnel in the patella without an implant and using the medial collateral ligament as a pulley. In all 4 knees, the MPFL reconstruction was isolated and was not associated with any other realignment procedures. No recurrent episodes of dislocation or subluxation were reported at 24 months followup. PMID:26806970

  4. Interacting trophic forcing and the population dynamics of herring.

    PubMed

    Lindegren, Martin; Ostman, Orjan; Gårdmark, Anna

    2011-07-01

    Small pelagic fish occupy a central position in marine ecosystems worldwide, largely by determining the energy transfer from lower trophic levels to predators at the top of the food web, including humans. Population dynamics of small pelagic fish may therefore be regulated neither strictly bottom-up nor top-down, but rather through multiple external and internal drivers. While in many studies single drivers have been identified, potential synergies of multiple factors, as well as their relative importance in regulating population dynamics of small pelagic fish, is a largely unresolved issue. Using a statistical, age-structured modeling approach, we demonstrate the relative importance and influence of bottom-up (e.g., climate, zooplankton availability) and top-down (i.e., fishing and predation) factors on the population dynamics of Bothnian Sea herring (Clupea harengus) throughout its life cycle. Our results indicate significant bottom-up effects of zooplankton and interspecific competition from sprat (Sprattus sprattus), particularly on younger age classes of herring. Although top-down forcing through fishing and predation by grey seals (Halichoerus grypus) and Atlantic cod (Gadus morhua) also was evident, these factors were less important than resource availability and interspecific competition. Understanding key ecological processes and interactions is fundamental to ecosystem-based management practices necessary to promote sustainable exploitation of small pelagic fish. PMID:21870614

  5. The Effect of Graft Strength on Knee Laxity and Graft In-Situ Forces after Posterior Cruciate Ligament Reconstruction

    PubMed Central

    Lai, Yu-Shu; Chen, Wen-Chuan; Huang, Chang-Hung; Cheng, Cheng-Kung; Chan, Kam-Kong; Chang, Ting-Kuo

    2015-01-01

    Surgical reconstruction is generally recommended for posterior cruciate ligament (PCL) injuries; however, the use of grafts is still a controversial problem. In this study, a three-dimensional finite element model of the human tibiofemoral joint with articular cartilage layers, menisci, and four main ligaments was constructed to investigate the effects of graft strengths on knee kinematics and in-situ forces of PCL grafts. Nine different graft strengths with stiffness ranging from 0% (PCL rupture) to 200%, in increments of 25%, of an intact PCL’s strength were used to simulate the PCL reconstruction. A 100 N posterior tibial drawer load was applied to the knee joint at full extension. Results revealed that the maximum posterior translation of the PCL rupture model (0% stiffness) was 6.77 mm in the medial compartment, which resulted in tibial internal rotation of about 3.01°. After PCL reconstruction with any graft strength, the laxity of the medial tibial compartment was noticeably improved. Tibial translation and rotation were similar to the intact knee after PCL reconstruction with graft strengths ranging from 75% to 125% of an intact PCL. When the graft’s strength surpassed 150%, the medial tibia moved forward and external tibial rotation greatly increased. The in-situ forces generated in the PCL grafts ranged from 13.15 N to 75.82 N, depending on the stiffness. In conclusion, the strength of PCL grafts have has a noticeable effect on anterior-posterior translation of the medial tibial compartment and its in-situ force. Similar kinematic response may happen in the models when the PCL graft’s strength lies between 75% and 125% of an intact PCL. PMID:26001045

  6. A Minimum Fuel Based Estimator for Maneuver and Natrual Dynamics Reconstruction

    NASA Astrophysics Data System (ADS)

    Lubey, D.; Scheeres, D.

    2013-09-01

    The vast and growing population of objects in Earth orbit (active and defunct spacecraft, orbital debris, etc.) offers many unique challenges when it comes to tracking these objects and associating the resulting observations. Complicating these challenges are the inaccurate natural dynamical models of these objects, the active maneuvers of spacecraft that deviate them from their ballistic trajectories, and the fact that spacecraft are tracked and operated by separate agencies. Maneuver detection and reconstruction algorithms can help with each of these issues by estimating mismodeled and unmodeled dynamics through indirect observation of spacecraft. It also helps to verify the associations made by an object correlation algorithm or aid in making those associations, which is essential when tracking objects in orbit. The algorithm developed in this study applies an Optimal Control Problem (OCP) Distance Metric approach to the problems of Maneuver Reconstruction and Dynamics Estimation. This was first developed by Holzinger, Scheeres, and Alfriend (2011), with a subsequent study by Singh, Horwood, and Poore (2012). This method estimates the minimum fuel control policy rather than the state as a typical Kalman Filter would. This difference ensures that the states are connected through a given dynamical model and allows for automatic covariance manipulation, which can help to prevent filter saturation. Using a string of measurements (either verified or hypothesized to correlate with one another), the algorithm outputs a corresponding string of adjoint and state estimates with associated noise. Post-processing techniques are implemented, which when applied to the adjoint estimates can remove noise and expose unmodeled maneuvers and mismodeled natural dynamics. Specifically, the estimated controls are used to determine spacecraft dependent accelerations (atmospheric drag and solar radiation pressure) using an adapted form of the Optimal Control based natural dynamics

  7. Reconstruction of evolved dynamic networks from degree correlations

    NASA Astrophysics Data System (ADS)

    Karalus, Steffen; Krug, Joachim

    2016-06-01

    We study the importance of local structural properties in networks which have been evolved for a power-law scaling in their Laplacian spectrum. To this end, the degree distribution, two-point degree correlations, and degree-dependent clustering are extracted from the evolved networks and used to construct random networks with the prescribed distributions. In the analysis of these reconstructed networks it turns out that the degree distribution alone is not sufficient to generate the spectral scaling and the degree-dependent clustering has only an indirect influence. The two-point correlations are found to be the dominant characteristic for the power-law scaling over a broader eigenvalue range.

  8. Modelled vs. reconstructed past fire dynamics - how can we compare?

    NASA Astrophysics Data System (ADS)

    Brücher, Tim; Brovkin, Victor; Kloster, Silvia; Marlon, Jennifer R.; Power, Mitch J.

    2015-04-01

    Fire is an important process that affects climate through changes in CO2 emissions, albedo, and aerosols (Ward et al. 2012). Fire-history reconstructions from charcoal accumulations in sediment indicate that biomass burning has increased since the Last Glacial Maximum (Power et al. 2008; Marlon et al. 2013). Recent comparisons with transient climate model output suggest that this increase in global ?re activity is linked primarily to variations in temperature and secondarily to variations in precipitation (Daniau et al. 2012). In this study, we discuss the best way to compare global ?re model output with charcoal records. Fire models generate quantitative output for burned area and fire-related emissions of CO2, whereas charcoal data indicate relative changes in biomass burning for specific regions and time periods only. However, models can be used to relate trends in charcoal data to trends in quantitative changes in burned area or fire carbon emissions. Charcoal records are often reported as Z-scores (Power et al. 2008). Since Z-scores are non-linear power transformations of charcoal influxes, we must evaluate if, for example, a two-fold increase in the standardized charcoal reconstruction corresponds to a 2- or 200-fold increase in the area burned. In our study we apply the Z-score metric to the model output. This allows us to test how well the model can quantitatively reproduce the charcoal-based reconstructions and how Z-score metrics affect the statistics of model output. The Global Charcoal Database (GCD version 2.5; www.gpwg.org/gpwgdb.html) is used to determine regional and global paleofire trends from 218 sedimentary charcoal records covering part or all of the last 8 ka BP. To retrieve regional and global composites of changes in fire activity over the Holocene the time series of Z-scores are linearly averaged to achieve regional composites. A coupled climate-carbon cycle model, CLIMBA (Brücher et al. 2014), is used for this study. It consists of the

  9. Automated Reconstruction of Three-Dimensional Fish Motion, Forces, and Torques

    PubMed Central

    Voesenek, Cees J.; Pieters, Remco P. M.; van Leeuwen, Johan L.

    2016-01-01

    Fish can move freely through the water column and make complex three-dimensional motions to explore their environment, escape or feed. Nevertheless, the majority of swimming studies is currently limited to two-dimensional analyses. Accurate experimental quantification of changes in body shape, position and orientation (swimming kinematics) in three dimensions is therefore essential to advance biomechanical research of fish swimming. Here, we present a validated method that automatically tracks a swimming fish in three dimensions from multi-camera high-speed video. We use an optimisation procedure to fit a parameterised, morphology-based fish model to each set of video images. This results in a time sequence of position, orientation and body curvature. We post-process this data to derive additional kinematic parameters (e.g. velocities, accelerations) and propose an inverse-dynamics method to compute the resultant forces and torques during swimming. The presented method for quantifying 3D fish motion paves the way for future analyses of swimming biomechanics. PMID:26752597

  10. Reconstruction of dark energy and expansion dynamics using Gaussian processes

    SciTech Connect

    Seikel, Marina; Clarkson, Chris; Smith, Mathew E-mail: chris.clarkson@uct.ac.za

    2012-06-01

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space, as the errors found depend strongly on the parametrisation considered. We present a new non-parametric approach to reconstructing the history of the expansion rate and dark energy using Gaussian Processes, which is a fully Bayesian approach for smoothing data. We present a pedagogical introduction to Gaussian Processes, and discuss how it can be used to robustly differentiate data in a suitable way. Using this method we show that the Dark Energy Survey - Supernova Survey (DES) can accurately recover a slowly evolving equation of state to σ{sub w} = ±0.05 (95% CL) at z = 0 and ±0.25 at z = 0.7, with a minimum error of ±0.025 at the sweet-spot at z ∼ 0.16, provided the other parameters of the model are known. Errors on the expansion history are an order of magnitude smaller, yet make no assumptions about dark energy whatsoever. A code for calculating functions and their first three derivatives using Gaussian processes has been developed and is available for download.

  11. Molecular dynamics simulations of methane hydrate using polarizable force fields

    SciTech Connect

    Jiang, H.N.; Jordan, K.D.; Taylor, C.E.

    2007-03-01

    Molecular dynamics simulations of methane hydrate have been carried out using the AMOEBA and COS/G2 polarizable force fields. Properties examined include the temperature dependence of the lattice constant, the OC and OO radial distribution functions and the vibrational spectra. Both the AMOEBA and COS/G2 models are found to successfully account for the available experimental data, with overall slightly better agreement with experiment being found for the AMOEBA model. Several properties calculated using the AMOEBA and COS/G2 models differ appreciable from the corresponding results obtained previously using the polarizable TIP4P-FQ model. This appears to be due to the inadequacy of the treatment of polarization, especially, the restriction of polarization to in-plane only, in the TIP4P-FQ model.

  12. Laser Actuation of Cantilevers for Picometre Amplitude Dynamic Force Microscopy

    PubMed Central

    Evans, Drew R.; Tayati, Ponlawat; An, Hongjie; Lam, Ping Koy; Craig, Vincent S. J.; Senden, Tim J.

    2014-01-01

    As nanoscale and molecular devices become reality, the ability to probe materials on these scales is increasing in importance. To address this, we have developed a dynamic force microscopy technique where the flexure of the microcantilever is excited using an intensity modulated laser beam to achieve modulation on the picoscale. The flexure arises from thermally induced bending through differential expansion and the conservation of momentum when the photons are reflected and absorbed by the cantilever. In this study, we investigated the photothermal and photon pressure responses of monolithic and layered cantilevers using a modulated laser in air and immersed in water. The developed photon actuation technique is applied to the stretching of single polymer chains. PMID:24993548

  13. Laser actuation of cantilevers for picometre amplitude dynamic force microscopy.

    PubMed

    Evans, Drew R; Tayati, Ponlawat; An, Hongjie; Lam, Ping Koy; Craig, Vincent S J; Senden, Tim J

    2014-01-01

    As nanoscale and molecular devices become reality, the ability to probe materials on these scales is increasing in importance. To address this, we have developed a dynamic force microscopy technique where the flexure of the microcantilever is excited using an intensity modulated laser beam to achieve modulation on the picoscale. The flexure arises from thermally induced bending through differential expansion and the conservation of momentum when the photons are reflected and absorbed by the cantilever. In this study, we investigated the photothermal and photon pressure responses of monolithic and layered cantilevers using a modulated laser in air and immersed in water. The developed photon actuation technique is applied to the stretching of single polymer chains. PMID:24993548

  14. Charge-state dynamics in electrostatic force spectroscopy.

    PubMed

    Ondráček, Martin; Hapala, Prokop; Jelínek, Pavel

    2016-07-01

    We present a numerical model that allows us to study the response of an oscillating probe in electrostatic force spectroscopy to charge switching in quantum dots at various time scales. The model provides more insight into the behavior of frequency shift and dissipated energy under different scanning conditions when measuring a temporarily charged quantum dot on a surface. Namely, we analyze the dependence of the frequency shift, the dissipated energy, and their fluctuations on the resonance frequency of the tip and on the electron tunneling rates across the tip-quantum dot and quantum dot-sample junctions. We discuss two complementary approaches to simulating the charge dynamics, a stochastic and a deterministic one. In addition, we derive analytic formulas valid for small amplitudes, describing relations between the frequency shift, dissipated energy, and the characteristic rates driving the charging and discharging processes. PMID:27242270

  15. Charge-state dynamics in electrostatic force spectroscopy

    NASA Astrophysics Data System (ADS)

    Ondráček, Martin; Hapala, Prokop; Jelínek, Pavel

    2016-07-01

    We present a numerical model that allows us to study the response of an oscillating probe in electrostatic force spectroscopy to charge switching in quantum dots at various time scales. The model provides more insight into the behavior of frequency shift and dissipated energy under different scanning conditions when measuring a temporarily charged quantum dot on a surface. Namely, we analyze the dependence of the frequency shift, the dissipated energy, and their fluctuations on the resonance frequency of the tip and on the electron tunneling rates across the tip–quantum dot and quantum dot–sample junctions. We discuss two complementary approaches to simulating the charge dynamics, a stochastic and a deterministic one. In addition, we derive analytic formulas valid for small amplitudes, describing relations between the frequency shift, dissipated energy, and the characteristic rates driving the charging and discharging processes.

  16. Dynamic piezoresponse force microscopy: Spatially resolved probing of polarization dynamics in time and voltage domains

    SciTech Connect

    Kumar, Amit; Ehara, Y; Wada, A.; Funakubo, Hiroshi; Griggio, Flavio; Trolier-McKinstry, Susan; Jesse, Stephen; Kalinin, Sergei V

    2012-01-01

    An approach for probing dynamic phenomena during hysteresis loop measurements in piezoresponse force microscopy (PFM) is developed. Dynamic PFM (D-PFM) necessitates development of 5-dimensional (5D) data acquisition protocols and associated methods for analysis and visualization of multidimensional data. Using a combination of multivariate statistical analysis and phenomenological fitting, we explore dynamic behavior during polarization switching in model ferroelectric films with dense ferroelastic domain structures and in ferroelectric capacitors. In polydomain films, multivariate analysis of the switching data suggests that ferroelectric and ferroelastic components can be decoupled and time dynamics can be explored. In capacitors, a strong correlation between polarization dynamics and microstructure is observed. The future potential of D-PFM for probing time-dependent hysteretic phenomena in ferroelectrics and ionic systems is discussed.

  17. Force regulated dynamics of RPA on a DNA fork

    PubMed Central

    Kemmerich, Felix E.; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf

    2016-01-01

    Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg2+ concentrations, such that human RPA can melt DNA in absence of force. PMID:27016742

  18. Current Status of Protein Force Fields for Molecular Dynamics

    PubMed Central

    Lopes, Pedro E.M.; Guvench, Olgun

    2015-01-01

    Summary The current status of classical force fields for proteins is reviewed. These include additive force fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. Parametrization strategies developed specifically for the Drude force field are described and compared with the additive CHARMM36 force field. Results from molecular simulations of proteins and small peptides are summarized to illustrate the performance of the Drude and AMOEBA force fields. PMID:25330958

  19. Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures

    PubMed Central

    Chen, Yong; Cai, Jiye; Zhao, Tao; Wang, Chenxi; Dong, Shuo; Luo, Shuqian; Chen, Zheng W.

    2010-01-01

    The thin sectioning has been widely applied in electron microscopy (EM), and successfully used for an in situ observation of inner ultrastructure of cells. This powerful technique has recently been extended to the research field of atomic force microscopy (AFM). However, there have been no reports describing AFM imaging of serial thin sections and three-dimensional (3-D) reconstruction of cells and their inner structures. In the present study, we used AFM to scan serial thin sections approximately 60nm thick of a mouse embryonic stem (ES) cell, and to observe the in situ inner ultrastructure including cell membrane, cytoplasm, mitochondria, nucleus membrane, and linear chromatin. The high-magnification AFM imaging of single mitochondria clearly demonstrated the outer membrane, inner boundary membrane and cristal membrane of mitochondria in the cellular compartment. Importantly, AFM imaging on six serial thin sections of a single mouse ES cell showed that mitochondria underwent sequential changes in the number, morphology and distribution. These nanoscale images allowed us to perform 3-D surface reconstruction of interested interior structures in cells. Based on the serial in situ images, 3-D models of morphological characteristics, numbers and distributions of interior structures of the single ES cells were validated and reconstructed. Our results suggest that the combined AFM and serial-thin-section technique is useful for the nanoscale imaging and 3-D reconstruction of single cells and their inner structures. This technique may facilitate studies of proliferating and differentiating stages of stem cells or somatic cells at a nanoscale. PMID:15850704

  20. HYPR: constrained reconstruction for enhanced SNR in dynamic medical imaging

    NASA Astrophysics Data System (ADS)

    Mistretta, C.; Wieben, O.; Velikina, J.; Wu, Y.; Johnson, K.; Korosec, F.; Unal, O.; Chen, G.; Fain, S.; Christian, B.; Nalcioglu, O.; Kruger, R. A.; Block, W.; Samsonov, A.; Speidel, M.; Van Lysel, M.; Rowley, H.; Supanich, M.; Turski, P.; Wu, Yan; Holmes, J.; Kecskemeti, S.; Moran, C.; O'Halloran, R.; Keith, L.; Alexander, A.; Brodsky, E.; Lee, J. E.; Hall, T.; Zagzebski, J.

    2008-03-01

    During the last eight years our group has developed radial acquisitions with angular undersampling factors of several hundred that accelerate MRI in selected applications. As with all previous acceleration techniques, SNR typically falls as least as fast as the inverse square root of the undersampling factor. This limits the SNR available to support the small voxels that these methods can image over short time intervals in applications like time-resolved contrast-enhanced MR angiography (CE-MRA). Instead of processing each time interval independently, we have developed constrained reconstruction methods that exploit the significant correlation between temporal sampling points. A broad class of methods, termed HighlY Constrained Back PRojection (HYPR), generalizes this concept to other modalities and sampling dimensions.

  1. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Sugiyama, G; Kosovic, B; Hanley, W; Johannesson, G; Larsen, S; Loosmore, G; Lundquist, J; Mirin, A; Nitao, J; Serban, R; Dyer, K

    2004-10-13

    For atmospheric releases, event reconstruction answers the critical questions - How much material was released? When? Where? and What are the potential consequences? Inaccurate estimation of the source term can lead to gross errors, time delays during a crisis, and even fatalities. We are developing a capability that seamlessly integrates observational data streams with predictive models in order to provide the best possible estimates of unknown source term parameters, as well as optimal and timely situation analyses consistent with both models and data. Our approach utilizes Bayesian inference and stochastic sampling methods (Markov Chain and Sequential Monte Carlo) to reformulate the inverse problem into a solution based on efficient sampling of an ensemble of predictive simulations, guided by statistical comparisons with data.

  2. Reconstruction of food conditions for Northeast Atlantic bivalve species based on Dynamic Energy Budgets

    NASA Astrophysics Data System (ADS)

    Freitas, Vânia; Cardoso, Joana F. M. F.; Santos, Sílvia; Campos, Joana; Drent, Jan; Saraiva, Sofia; Witte, Johannes IJ.; Kooijman, Sebastiaan A. L. M.; Van der Veer, Henk W.

    2009-08-01

    Required assimilated energy to support observed growth was reconstructed for four common bivalve species ( Mya arenaria, Cerastoderma edule, Mytilus edulis and Macoma balthica) from various Northeast Atlantic coastal areas, along the species distributional range. The approach applied was based on the Dynamic Energy Budget (DEB) theory whereby observed growth patterns in the field, in combination with prevailing temperatures, were used to reconstruct the average food intake experienced in the field scaled to the maximum possible. For all species, results suggest food limitation over the range of locations. In general, reconstructed food intake indicated better conditions for C. edule compared to the other species, while M. edulis presented the lowest food conditions in all the areas. Despite the indications for a latitudinal trend in primary production, no clear pattern or relationship between reconstructed food conditions and latitude was observed suggesting that any trend may be overruled by local conditions.

  3. A New Forced Oscillation Capability for the Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Cleckner, Craig S.

    2002-01-01

    A new forced oscillation system has been installed and tested at NASA Langley Research Center's Transonic Dynamics Tunnel (TDT). The system is known as the Oscillating Turntable (OTT) and has been designed for the purpose of oscillating, large semispan models in pitch at frequencies up to 40 Hz to acquire high-quality unsteady pressure and loads data. Precisely controlled motions of a wind-tunnel model on the OTT can yield unsteady aerodynamic phenomena associated with flutter, limit cycle oscillations, shock dynamics, and non-linear aerodynamic effects on many vehicle configurations. This paper will discuss general design and components of the OTT and will present test data from performance testing and from research tests on two rigid semispan wind-tunnel models. The research tests were designed to challenge the OTT over a wide range of operating conditions while acquiring unsteady pressure data on a small rectangular supercritical wing and a large supersonic transport wing. These results will be presented to illustrate the performance capabilities, consistency of oscillations, and usefulness of the OTT as a research tool.

  4. Regularized Fully 5D Reconstruction of Cardiac Gated Dynamic SPECT Images.

    PubMed

    Niu, Xiaofeng; Yang, Yongyi; Jin, Mingwu; Wernick, Miles N; King, Michael A

    2010-01-01

    In our recent work, we proposed an image reconstruction procedure aimed to unify gated imaging and dynamic imaging in nuclear cardiac imaging. With this procedure the goal is to obtain an image sequence from a single acquisition which shows simultaneously both cardiac motion and tracer distribution change over the course of imaging. In this work, we further develop and demonstrate this procedure for fully 5D (3D space plus time plus gate) reconstruction in gated, dynamic cardiac SPECT imaging, where the challenge is even greater without the use of multiple fast camera rotations. For 5D reconstruction, we develop and compare two iterative algorithms: one is based on the modified block sequential regularized EM (BSREM-II) algorithm, and the other is based on the one-step late (OSL) algorithm. In our experiments, we simulated gated cardiac imaging with the NURBS-based cardiac-torso (NCAT) phantom and Tc99m-Teboroxime as the imaging agent, where acquisition with the equivalent of only three full camera rotations was used during the course of a 12-minute postinjection period. We conducted a thorough evaluation of the reconstruction results using a number of quantitative measures. Our results demonstrate that the 5D reconstruction procedure can yield gated dynamic images which show quantitative information for both perfusion defect detection and cardiac motion. PMID:24049191

  5. Bayer patterned high dynamic range image reconstruction using adaptive weighting function

    NASA Astrophysics Data System (ADS)

    Kang, Hee; Lee, Suk Ho; Song, Ki Sun; Kang, Moon Gi

    2014-12-01

    It is not easy to acquire a desired high dynamic range (HDR) image directly from a camera due to the limited dynamic range of most image sensors. Therefore, generally, a post-process called HDR image reconstruction is used, which reconstructs an HDR image from a set of differently exposed images to overcome the limited dynamic range. However, conventional HDR image reconstruction methods suffer from noise factors and ghost artifacts. This is due to the fact that the input images taken with a short exposure time contain much noise in the dark regions, which contributes to increased noise in the corresponding dark regions of the reconstructed HDR image. Furthermore, since input images are acquired at different times, the images contain different motion information, which results in ghost artifacts. In this paper, we propose an HDR image reconstruction method which reduces the impact of the noise factors and prevents ghost artifacts. To reduce the influence of the noise factors, the weighting function, which determines the contribution of a certain input image to the reconstructed HDR image, is designed to adapt to the exposure time and local motions. Furthermore, the weighting function is designed to exclude ghosting regions by considering the differences of the luminance and the chrominance values between several input images. Unlike conventional methods, which generally work on a color image processed by the image processing module (IPM), the proposed method works directly on the Bayer raw image. This allows for a linear camera response function and also improves the efficiency in hardware implementation. Experimental results show that the proposed method can reconstruct high-quality Bayer patterned HDR images while being robust against ghost artifacts and noise factors.

  6. Lacustrine 87Sr/86Sr as a tracer to reconstruct Milankovitch forcing of the Eocene hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Baddouh, M'bark; Meyers, Stephen R.; Carroll, Alan R.; Beard, Brian L.; Johnson, Clark M.

    2016-08-01

    The Green River Formation (GRF) provides one of the premier paleoclimate archives of the Early Eocene Climatic Optimum (∼50 Ma), representing the apex of the early Cenozoic greenhouse climate. Rhythmic lake-level variability expressed in the GRF has inspired numerous hypotheses for the behavior of the Eocene hydrologic cycle, including its linkage to astronomical forcing, solar variability, and the El Niño Southern Oscillation (ENSO). However, the lack of sufficient proxy data to document atmospheric water-mass transport and the geographic pattern of evaporation/precipitation/runoff has made it difficult to discriminate between different models for astronomical forcing. Variable 87Sr/86Sr ratios of bedrock that encompass the GRF provide an opportunity to reconstruct the spatial expression of the Eocene hydrologic cycle and its linkage to lake level. Here Sr isotope data from the Wilkins Peak Member, a rhythmic succession that has been demonstrated to record Milankovitch forcing of lake levels, indicate that high lake levels reflect an increased proportion of runoff from less radiogenic rocks west of the basin, eliminating a number of the existing astronomical-forcing hypotheses. The 87Sr/86Sr variability is consistent with a change in mean ENSO state, which is predicted by climate models to be linked to orbital-insolation. Thus, the 87Sr/86Sr data reveal a coupling of high frequency (ENSO) and low frequency (astronomical) climate variability, and also predict the existence of sizable astronomically-forced alpine snowpack during the last greenhouse climate. More broadly, this study demonstrates the utility of 87Sr/86Sr as a powerful tool for reconstructing the deep-time hydrologic cycle.

  7. Adaptive pulsed laser line extraction for terrain reconstruction using a dynamic vision sensor

    PubMed Central

    Brandli, Christian; Mantel, Thomas A.; Hutter, Marco; Höpflinger, Markus A.; Berner, Raphael; Siegwart, Roland; Delbruck, Tobi

    2014-01-01

    Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor (DVS) with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor's ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500 Hz were achieved using a line laser of 3 mW at a distance of 45 cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2 mm. PMID:24478619

  8. Adaptive pulsed laser line extraction for terrain reconstruction using a dynamic vision sensor.

    PubMed

    Brandli, Christian; Mantel, Thomas A; Hutter, Marco; Höpflinger, Markus A; Berner, Raphael; Siegwart, Roland; Delbruck, Tobi

    2013-01-01

    Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor (DVS) with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor's ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500 Hz were achieved using a line laser of 3 mW at a distance of 45 cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2 mm. PMID:24478619

  9. Comparison study of temporal regularization methods for fully 5D reconstruction of cardiac gated dynamic SPECT.

    PubMed

    Niu, Xiaofeng; Yang, Yongyi; King, Michael A

    2012-09-01

    Temporal regularization plays a critical role in cardiac gated dynamic SPECT reconstruction, of which the goal is to obtain an image sequence from a single acquisition which simultaneously shows both cardiac motion and tracer distribution change over the course of imaging (termed 5D). In our recent work, we explored two different approaches for temporal regularization of the dynamic activities in gated dynamic reconstruction without the use of fast camera rotation: one is the dynamic EM (dEM) approach which is imposed on the temporal trend of the time activity of each voxel, and the other is a B-spline modeling approach in which the time activity is regulated by a set of B-spline basis functions. In this work, we extend the B-spline approach to fully 5D reconstruction and conduct a thorough quantitative comparison with the dEM approach. In the evaluation of the reconstruction results, we apply a number of quantitative measures on two major aspects of the reconstructed dynamic images: (1) the accuracy of the reconstructed activity distribution in the myocardium and (2) the ability of the reconstructed dynamic activities to differentiate perfusion defects from normal myocardial wall uptake. These measures include the mean square error (MSE), bias-variance analysis, accuracy of time-activity curves (TAC), contrast-to-noise ratio of a defect, composite kinetic map of the left ventricle wall and perfusion defect detectability with channelized Hotelling observer. In experiments, we simulated cardiac gated imaging with the NURBS-based cardiac-torso phantom and Tc99m-Teboroxime as the imaging agent, where acquisition with the equivalent of only three full camera rotations was used during the imaging period. The results show that both dEM and B-spline 5D could achieve similar overall accuracy in the myocardium in terms of MSE. However, compared to dEM 5D, the B-spline approach could achieve a more accurate reconstruction of the voxel TACs; in particular, B-spline 5D could

  10. Force and Moment Approach for Achievable Dynamics Using Nonlinear Dynamic Inversion

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Bacon, Barton J.

    1999-01-01

    This paper describes a general form of nonlinear dynamic inversion control for use in a generic nonlinear simulation to evaluate candidate augmented aircraft dynamics. The implementation is specifically tailored to the task of quickly assessing an aircraft's control power requirements and defining the achievable dynamic set. The achievable set is evaluated while undergoing complex mission maneuvers, and perfect tracking will be accomplished when the desired dynamics are achievable. Variables are extracted directly from the simulation model each iteration, so robustness is not an issue. Included in this paper is a description of the implementation of the forces and moments from simulation variables, the calculation of control effectiveness coefficients, methods for implementing different types of aerodynamic and thrust vectoring controls, adjustments for control effector failures, and the allocation approach used. A few examples illustrate the perfect tracking results obtained.

  11. The Effects of Balance Training on Static and Dynamic Postural Stability Indices After Acute ACL Reconstruction

    PubMed Central

    Akbari, Asghar; Ghiasi, Fateme; Mir, Mohsen; Hosseinifar, Mohammad

    2016-01-01

    Background: Proprioception and postural stability play an important role in knee movements. However, there are controversies about the overall recovery time of proprioception following knee surgery and onset of balance and neuromuscular training after ACL reconstruction. Therefore, it is necessary to evaluate the effect of balance training in early stage of knee rehabilitation after anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to evaluate the effect of balance exercises on postural stability indices in subjects with anterior cruciate ligament (ACL) reconstruction. Methods: The study was a controlled randomized trial study. Twenty four patients who had ACL reconstructed (balance training group) and twenty four healthy adults without any knee injury (control group) were recruited in the study. The balance exercises group performed balance exercises for 2 weeks. Before and after the interventions, overall, anteroposterior, and mediolateral stability indices were measured with a Biodex Balance System in bilateral and unilateral stance positions with the eyes open and closed. T-tests were used for statistical analysis (p<0.05). Results: Results showed that amount of static stability indices did not change after training and there were not significant differences in static stability indices before and after balance training (p>0.05). Although amount of dynamic stability indices decreased, there were not significant differences in dynamic stability indices before and after balance training (p>0.05). Amount of dynamic stability indices were decreased in balance training group, however, there were not significant differences between groups (p>0.05). Conclusion: These results support that balance exercise could partially improved dynamic stability indices in early stage of ACL reconstruction rehabilitation. The results of this study suggest that balance exercises should be part of the rehabilitation program following ACL reconstruction. PMID

  12. Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.

    PubMed

    Zhao, Li; Fielden, Samuel W; Feng, Xue; Wintermark, Max; Mugler, John P; Meyer, Craig H

    2015-11-01

    Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness. PMID:26169322

  13. Conjugated Polymer Nanoparticle Hybrids: Structure, Dynamics and Forces

    NASA Astrophysics Data System (ADS)

    Perahia, Dvora

    2011-03-01

    While nanoparticles (NPs) have unique tunable elctro-optical properties and exceptional mechanical strength, it remains a challenge to integrate them into devices while retaining the advantages of the nanoscale. Tethering polymeric materials to the NPs surfaces has the potential to stabilize single NPs and direct their assembly. The polymers may serve in several capacities from a simple tether to a matrix to directed assembly tool taking advantage of the inherent structure of the polymers and as an active component in a complex material. However confining a large molecule to a highly curved surface affects the inherent configuration of the polymer. These effects are of particular interests in conjugated polymer-nanoparticle hybrids, where the conformation of the polymers affects not only the assembly of the nanoparticles but also the optical and electronic communication between the NPs. Using molecular dynamic simulations we have studied the structure of a single hybrid of para dialkyl phenylene ethynelyne (PPE) grafted nanoparticles. PPEs are polymers whose conformation determines their degree of conjugation and therefore their electro-optical response. Using simulations coupled with neutron scattering studies we have shown that PPE is a rigid polymer that is fully extended in dilute solutions in good and theta solvents but can be forced into a collapsed configuration in a poor a solvent. When confined to a nanoparticle surface, the PPE chains are fully extended but cluster as the solvent quality is reduced. Results for the conformation of grafted PPE molecules on a single nanoparticle and the forces between two nanoparticles as a function of chain length and solvent quality will be presented. These simulations provide insight to the interactions that result in formation of tunable hybrids. This work has been done in collaboration with Gary S. Grest.

  14. Forcing of stratospheric chemistry and dynamics during the Dalton Minimum

    NASA Astrophysics Data System (ADS)

    Anet, J. G.; Muthers, S.; Rozanov, E.; Raible, C. C.; Peter, T.; Stenke, A.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Schmutz, W.

    2013-11-01

    when all forcing factors are applied during the Dalton Minimum (DM) - this effect is especially well visible for NOx/NOy. Thus, this study also shows the non-linear behaviour of the coupled chemistry-climate system. Finally, we conclude that especially UV and volcanic eruptions dominate the changes in the ozone, temperature and dynamics while the NOx field is dominated by the energetic particle precipitation. Visible radiation changes have only very minor effects on both stratospheric dynamics and chemistry.

  15. New SSI and TSI reconstruction suggests large value of the radiative solar forcing

    NASA Astrophysics Data System (ADS)

    Shapiro, A.; Schmutz, W. K.; Thuillier, G.; Rozanov, E.; Haberreiter, M.; Schoell, M.; Shapiro, A.; Nyeki, S.

    2010-12-01

    We have developed and published the COde for Solar Irradiance (COSI) which allows us to calculate the entire solar spectrum. COSI reproduces the spectral irradiance measured by SOLSTICE (up to 320 nm) and SIM (from 320 nm onward) onboard the SORCE satellite during the 2008 solar minimum as well as SOLSPEC during the ATLAS 3 mission in 1994 with high accuracy. COSI is also used as a tool for modeling the variability of the solar irradiance. In our new reconstruction we represent the quiet Sun as a combination of two components. The first corresponds to the least active areas of the Sun as presently observed, while the second component is responsible for the magnetic activity of the quiet Sun. The time-dependent filling factors of these components are calculated based on the solar activity as derived from cosmogenic isotope concentrations in natural archieves. This allows us to obtain a time-dependent reconstructed solar spectrum from 7000 BC to the present with a temporal resolution of 22 years. From 1610 onward we have additional information from sunspot numbers, which allows the reconstruction of the spectral solar irradiance with a yearly resolution. These basic assumptions lead to a total and spectral solar irradiance that was substantially lower during the Maunder minimum than observed today. The difference is remarkably larger than other estimations published in the recent literature. Using our reconstruction as an input to a chemistry-climate model we show that the enhanced UV variability results in significant variations of stratospheric ozone and temperature.

  16. A preliminary investigation of the dynamic force-calibration of a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The aerodynamic forces and moments acting upon a magnetically suspended wind tunnel model are derived from calibrations of suspension electro magnet currents against known forces. As an alternative to the conventional calibration method of applying steady forces to the model, early experiences with dynamic calibration are outlined, that is a calibration obtained by oscillating a model in suspension and deriving a force/current relationship from its inertia force and the unsteady components of currents. Advantages of dynamic calibration are speed and simplicity. The two methods of calibration applied to one force component show good agreement.

  17. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence

    SciTech Connect

    Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.

    2015-04-21

    Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that

  18. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    SciTech Connect

    Mirin, A; Serban, R; Kosovic, B

    2005-03-14

    This is a collaborative LDRD Exploratory Research project involving four directorates--Energy & Environment, Engineering, NAI and Computation. The project seeks to answer the following critical questions regarding atmospheric releases--''How much material was released? When? Where? and What are the potential consequences?'' Inaccurate estimation of the source term can lead to gross errors, time delays during a crisis, and even fatalities. We are developing a capability that seamlessly integrates observational data streams with predictive models in order to provide the best possible estimates of unknown source term parameters, as well as optimal and timely situation analyses consistent with both models and data. Our approach utilizes Bayesian inference and stochastic sampling methods (Markov Chain and Sequential Monte Carlo) to reformulate the inverse problem into a solution based on efficient sampling of an ensemble of predictive simulations, guided by statistical comparisons with data. We are developing a flexible and adaptable data-driven event-reconstruction capability for atmospheric releases that provides (1) quantitative probabilistic estimates of the principal source-term parameters (e.g., the time-varying release rate and location); (2) predictions of increasing fidelity as an event progresses and additional data become available; and (3) analysis tools for sensor network design and uncertainty studies. Our computational framework incorporates multiple stochastic algorithms, operates with a range and variety of atmospheric models, and runs on multiple computer platforms, from workstations to large-scale computing resources. Our final goal is a multi-resolution capability for both real-time operational response and high fidelity multi-scale applications.

  19. Traction force dynamics predict gap formation in activated endothelium.

    PubMed

    Valent, Erik T; van Nieuw Amerongen, Geerten P; van Hinsbergh, Victor W M; Hordijk, Peter L

    2016-09-10

    In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. PMID:27498166

  20. Reconstructing ancient river dynamics from the stratigraphic record: can lessons from the past inform our future?

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Chamberlin, E.; Baisden, T.

    2014-12-01

    The richness of the deep-time record and its potential for revealing important characteristics of ancient fluvial landscapes has been demonstrated time and again, including compelling examples of rivers altering their behavior in response to changes in vegetation patterns or abrupt shifts in water and sediment discharge. At present, reconstructions of ancient river and floodplain dynamics are commonly qualitative, and when quantitative metrics are used, it is often for comparison among ancient deposits. Without being able to reconstruct, more comprehensively, important aspects of ancient river and floodplains dynamics, this information has only anecdotal relevance for evaluating and managing present-day landscapes. While methods for reconstructing hydrodynamic and morphodynamic aspects of ancient rivers and floodplains are useful, uncertainties associated with these snapshots complicate the ability to translate observations from geologic to engineering scales, thereby limiting the utility of insight from Earth's past in decision-making and development of sustainable landscape-management practices for modern fluvial landscapes. Here, we explore the degree to which paleomorphodynamic reconstructions from ancient channel and floodplain deposits can be used to make specific, quantitative inferences about ancient river dynamics. We compare a suite of paleoenvironmental measurements from a variety of ancient fluvial deposits (including reconstructions of paleoflow depth, paleoslope, paleo-channel mobility, the caliber of paleo-sediment load, and paleo-floodplain heterogeneity) in an effort to evaluate sampling and empirical uncertainties associated with these methods and identify promising avenues for developing more detailed landscape reconstructions. This work is aimed at helping to develop strategies for extracting practicable information from the stratigraphic record that is relevant for sustainably managing and predicting changes in today's environments.

  1. Efficient estimation of dynamic cardiac SPECT kinetic parameters using singular value decomposition reconstruction

    SciTech Connect

    Gulberg, G.T.; Huesman, R.H.; Zeng, G.L. |

    1994-05-01

    Error estimates of time activity curves are necessary to obtain efficient estimates of dynamic of dynamic cardiac SPECT kinetic parameters which are determined using weighted least squares fitting that incorporates these error estimates. In cardiac SPECT, iterative algorithms are used to obtain attenuation corrected reconstructions, and the use of an iterative algorithm makes it difficult to estimate the errors of the estimated reconstruction. An alternate approach is to estimate the reconstruction by solving the system of normal equations using singular value decomposition. This method was applied to dynamic data acquired from a canine study. A canine was injected with 25 mCi of Tc-99m-teboroxime and was imaged using a three-detector SPECT system (Picker PRISM 3000). Sequential 5 sec tomographic acquisitions were acquired for 15 min, allowing both the wash-in and wash-out of teboroxime to be measured. The projection data were reconstructed into 64x64 transaxial slices for each 5 sec acquisition using singular value decomposition to calculate the reconstructed estimate, the variance of the estimate, and the covariance between tissue and blood regions-of-interest. One 4096x4096 singular value decomposition was obtained in 71 hours using a 40 mHz Supper SPARC processor. Tissue and blood time-activity curves were generated from the attenuation corrected transaxial reconstructions. The blood activity curve was generated from a region drawn inside the left ventricle. A two-compartment model was fit to the blood and tissue activity curves to give weighted least squares estimates of blood volume fraction and wash-in and wash-out rate constants specifying teboroxime kinetics for regions of the left ventricular myocardium. As expected the weighted least squares estimates of the kinetic parameters had smaller variances than the unweighted estimates, thus demonstrating more efficient parameter estimation.

  2. Experimental investigation of resonance curves in dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Polesel-Maris, Jérôme; Piednoir, Agnès; Zambelli, Tomaso; Bouju, Xavier; Gauthier, Sébastien

    2003-09-01

    A precise experimental investigation of the amplitude and phase resonance curves of a driven dynamic force microscope (DFM) cantilever interacting with an Al2O3(0001) surface in ultra-high vacuum is reported. The large amplitude (a few tens of nanometres), high cantilever stiffness (25 N m-1) and high quality factor (a few 104) characterizing these experiments are typical of the frequency modulation (FM) mode of DFM. The whole range of tip-substrate distances where a stationary oscillation of the cantilever can be maintained is explored. It covers two different regimes: a large distance regime where only long range conservative van der Waals interactions contribute and a small distance regime where short range interactions play a significant role. A comparison is made with frequency shift and excitation amplitude curves as a function of the distance acquired in the FM mode. It is also shown that approach-retract amplitude and phase curves usually obtained in the amplitude modulation mode can be extracted from these data. These experimental results are compared with analytical predictions reported in the literature. An excellent agreement is found in the van der Waals domain, allowing us to evaluate the Hamaker constant for the alumina-vacuum-silicon system.

  3. Blending geological observations and convection models to reconstruct mantle dynamics

    NASA Astrophysics Data System (ADS)

    Coltice, Nicolas; Bocher, Marie; Fournier, Alexandre; Tackley, Paul

    2015-04-01

    Knowledge of the state of the Earth mantle and its temporal evolution is fundamental to a variety of disciplines in Earth Sciences, from the internal dynamics to its many expressions in the geological record (postglacial rebound, sea level change, ore deposit, tectonics or geomagnetic reversals). Mantle convection theory is the centerpiece to unravel the present and past state of the mantle. For the past 40 years considerable efforts have been made to improve the quality of numerical models of mantle convection. However, they are still sparsely used to estimate the convective history of the solid Earth, in comparison to ocean or atmospheric models for weather and climate prediction. The main shortcoming is their inability to successfully produce Earth-like seafloor spreading and continental drift self-consistently. Recent convection models have begun to successfully predict these processes. Such breakthrough opens the opportunity to retrieve the recent dynamics of the Earth's mantle by blending convection models together with advanced geological datasets. A proof of concept will be presented, consisting in a synthetic test based on a sequential data assimilation methodology.

  4. Solar forcing and atmospheric control of paleoflood dynamics in the Bernese Alps, Switzerland

    NASA Astrophysics Data System (ADS)

    Schulte, Lothar; Peña, Juan Carlos; Burjachs, Francesc; Carvalho, Filipe; Llorca, Jaime; Julià, Ramon; Lomax, Johanna; Schmidt, Thomas; Rubio, Patricio; Losada, Justino; Veit, Heinz

    2014-05-01

    A multidisciplinary approach provides data from natural, historical, and instrumental time series, for the study of potential effects of climatic changes on alpine floods outside the known range of extreme events. The research focuses on the densely populated Bernese Alps, which are a true "hot spot" of hydrological risk. For the reconstruction of climate variability and floods, interdecadal-resolution alluvial delta plain records were examined. The multi-proxy approach affords insight into alpine flood dynamics of mid-scale catchments during the last three millennia. Spectral analysis of the geochemical and pollen time series records and climate proxies (δ14C, δ18O isotopes from the Greenland ice, NAO) evidence similar periodicities of 60, 85, 105 and 200 yrs. Thus, the mechanisms of the flood processes are strongly influenced by the North Atlantic dynamics and solar activity. The proxies indicate that cooler climate pulses and transitions from cool to warm climate pulses were an important external driving force of floods. This hypothesis is supported by the reconstructed floods of the Aare and Lütschine rivers from local documentary sources during the last 500 yrs. Flood periods inferred from sedimentary archives (flood layers, geochemical proxies and shifts of river channel) were calibrated by local documentary flood records and compared with the pattern of settlement on flood prone landforms. The generated data series shows also a good correlation with climate proxies, such as the annual temperatures of Europe (Luterbacher et al., 2004), tree ring based summer temperatures of Central Europe (Büntgen et al., 2011) and total solar irradiance according to the model of Steinhilber et al. (2009). With regard to the last two centuries flood magnitude and frequencies (exact dating) as well as driving mechanisms were reconstructed with more precision. Furthermore, a summer flood index of Switzerland (INU) based on damages recorded from 1800 to 2008 AD was performed

  5. Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Duckhoe; Sahin, Ozgur

    2015-03-01

    Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.

  6. (2n × 1) Reconstructions of TiO2(011) Revealed by Noncontact Atomic Force Microscopy and Scanning Tunneling Microscopy

    PubMed Central

    2014-01-01

    We have used noncontact atomic force microscopy (NC-AFM) and scanning tunneling microscopy (STM) to study the rutile TiO2(011) surface. A series of (2n × 1) reconstructions were observed, including two types of (4 × 1) reconstruction. High-resolution NC-AFM and STM images indicate that the (4 × 1)-α phase has the same structural elements as the more widely reported (2 × 1) reconstruction. An array of analogous higher-order (2n × 1) reconstructions were also observed where n = 3–5. On the other hand, the (4 × 1)-β reconstruction seems to be a unique structure without higher-order analogues. A model is proposed for this structure that is also based on the (2 × 1) reconstruction but with additional microfacets of {111} character. PMID:25309642

  7. Reconstructing Source-Sink Dynamics in a Population with a Pelagic Dispersal Phase

    PubMed Central

    Chen, Kun; Ciannelli, Lorenzo; Decker, Mary Beth; Ladd, Carol; Cheng, Wei; Zhou, Ziqian; Chan, Kung-Sik

    2014-01-01

    For many organisms, the reconstruction of source-sink dynamics is hampered by limited knowledge of the spatial assemblage of either the source or sink components or lack of information on the strength of the linkage for any source-sink pair. In the case of marine species with a pelagic dispersal phase, these problems may be mitigated through the use of particle drift simulations based on an ocean circulation model. However, when simulated particle trajectories do not intersect sampling sites, the corroboration of model drift simulations with field data is hampered. Here, we apply a new statistical approach for reconstructing source-sink dynamics that overcomes the aforementioned problems. Our research is motivated by the need for understanding observed changes in jellyfish distributions in the eastern Bering Sea since 1990. By contrasting the source-sink dynamics reconstructed with data from the pre-1990 period with that from the post-1990 period, it appears that changes in jellyfish distribution resulted from the combined effects of higher jellyfish productivity and longer dispersal of jellyfish resulting from a shift in the ocean circulation starting in 1991. A sensitivity analysis suggests that the source-sink reconstruction is robust to typical systematic and random errors in the ocean circulation model driving the particle drift simulations. The jellyfish analysis illustrates that new insights can be gained by studying structural changes in source-sink dynamics. The proposed approach is applicable for the spatial source-sink reconstruction of other species and even abiotic processes, such as sediment transport. PMID:24835251

  8. Half-precessional climate forcing of Indian Ocean monsoon dynamics on the East African equator

    NASA Astrophysics Data System (ADS)

    Verschuren, D.; Sinninghe Damste, J. S.; Moernaut, J.; Kristen, I.; Fagot, M.; Blaauw, M.; Haug, G. H.; Project Members, C.

    2008-12-01

    The EuroCLIMATE project CHALLACEA produced a detailed multi-proxy reconstruction of the climate history of equatorial East Africa, based on the sediment record of Lake Challa, a 4.2 km2, 92-m deep crater lake on the lower East slope of Mt. Kilimanjaro (Kenya/Tanzania). Relatively stable sedimentation dynamics over the past 25,000 years resulted in a unique combination of high temporal resolution, excellent radiometric (210Pb, 14C) age control, and confidence that recording parameters of the climatic proxy signals extracted from the sediment have remained constant through time. The equatorial (3 deg. S) location of our study site in East Africa, where seasonal migration of convective activity spans the widest latitude range worldwide, produced unique information on how varying rainfall contributions from the northeasterly and southeasterly Indian Ocean monsoons shaped regional climate history. The Challa proxy records for temperature (TEX86) and moisture balance (reflection-seismic stratigraphy and the BIT index of soil bacterial input) uniquely weave together tropical climate variability at orbital and shorter time scales. The temporal pattern of reconstructed moisture balance bears the clear signature of half- precessional insolation forcing of Indian Ocean monsoon dynamics, modified by northern-latitude influence on moisture-balance variation at millennial and century time scales. During peak glacial time (but not immediately before) and the Younger Dryas, NH ice sheet influences overrode local insolation influence on monsoon intensity. After the NH ice sheets had melted and a relatively stable interglacial temperature regime developed, precession-driven summer insolation became the dominant determinant of regional moisture balance, with anti-phased patterns of Holocene hydrological change in the northern and southern (sub)tropics, and a uniquely hybrid pattern on the East African equator. In the last 2-3000 years a series of multi-century droughts with links to

  9. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  10. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments.

    PubMed

    Guzman, Horacio V; Garcia, Pablo D; Garcia, Ricardo

    2015-01-01

    We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever-tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip-surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years. PMID:25821676

  11. Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments

    PubMed Central

    Guzman, Horacio V; Garcia, Pablo D

    2015-01-01

    Summary We present a simulation environment, dForce, which can be used for a better understanding of dynamic force microscopy experiments. The simulator presents the cantilever–tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the instantaneous deflection and tip–surface force, velocity, virial, dissipated energy, sample deformation and peak force as a function of time or distance. The simulator includes a variety of interactions and contact mechanics models to describe AFM experiments including: van der Waals, Hertz, DMT, JKR, bottom effect cone correction, linear viscoelastic forces or the standard linear solid viscoelastic model. We have compared two numerical integration methods to select the one that offers optimal accuracy and speed. The graphical user interface has been designed to facilitate the navigation of non-experts in simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years. PMID:25821676

  12. Dynamic-Feature Extraction, Attribution and Reconstruction (DEAR) Method for Power System Model Reduction

    SciTech Connect

    Wang, Shaobu; Lu, Shuai; Zhou, Ning; Lin, Guang; Elizondo, Marcelo A.; Pai, M. A.

    2014-09-04

    In interconnected power systems, dynamic model reduction can be applied on generators outside the area of interest to mitigate the computational cost with transient stability studies. This paper presents an approach of deriving the reduced dynamic model of the external area based on dynamic response measurements, which comprises of three steps, dynamic-feature extraction, attribution and reconstruction (DEAR). In the DEAR approach, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highest similarity, forming a suboptimal ‘basis’ of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original external system. Network model is un-changed in the DEAR method. Tests on several IEEE standard systems show that the proposed method gets better reduction ratio and response errors than the traditional coherency aggregation methods.

  13. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis.

    PubMed

    Kobayashi, Kazuya; Liang, Yunfeng; Amano, Ken-Ichi; Murata, Sumihiko; Matsuoka, Toshifumi; Takahashi, Satoru; Nishi, Naoya; Sakka, Tetsuo

    2016-04-19

    With the development of atomic force microscopy (AFM), it is now possible to detect the buried liquid-solid interfacial structure in three dimensions at the atomic scale. One of the model surfaces used for AFM is the muscovite surface because it is atomically flat after cleavage along the basal plane. Although it is considered that force profiles obtained by AFM reflect the interfacial structures (e.g., muscovite surface and water structure), the force profiles are not straightforward because of the lack of a quantitative relationship between the force and the interfacial structure. In the present study, molecular dynamics simulations were performed to investigate the relationship between the muscovite-water interfacial structure and the measured AFM force using a capped carbon nanotube (CNT) AFM tip. We provide divided force profiles, where the force contributions from each water layer at the interface are shown. They reveal that the first hydration layer is dominant in the total force from water even after destruction of the layer. Moreover, the lateral structure of the first hydration layer transcribes the muscovite surface structure. It resembles the experimentally resolved surface structure of muscovite in previous AFM studies. The local density profile of water between the tip and the surface provides further insight into the relationship between the water structure and the detected force structure. The detected force structure reflects the basic features of the atomic structure for the local hydration layers. However, details including the peak-peak distance in the force profile (force-distance curve) differ from those in the density profile (density-distance curve) because of disturbance by the tip. PMID:27018633

  14. Reconstructing three-dimensional reentrant cardiac electrical wave dynamics using data assimilation.

    PubMed

    Hoffman, M J; LaVigne, N S; Scorse, S T; Fenton, F H; Cherry, E M

    2016-01-01

    For many years, reentrant scroll waves have been predicted and studied as an underlying mechanism for cardiac arrhythmias using numerical techniques, and high-resolution mapping studies using fluorescence recordings from the surfaces of cardiac tissue preparations have confirmed the presence of visible spiral waves. However, assessing the three-dimensional dynamics of these reentrant waves using experimental techniques has been limited to verifying stable scroll-wave dynamics in relatively thin preparations. We propose a different approach to recovering the three-dimensional dynamics of reentrant waves in the heart. By applying techniques commonly used in weather forecasting, we combine dual-surface observations from a particular experiment with predictions from a numerical model to reconstruct the full three-dimensional time series of the experiment. Here, we use model-generated surrogate observations from a numerical experiment to evaluate the performance of the ensemble Kalman filter in reconstructing such time series for a discordant alternans state in one spatial dimension and for scroll waves in three dimensions. We show that our approach is able to recover time series of both observed and unobserved variables matching the truth. Where nearby observations are available, the error is reduced below the synthetic observation error, with a smaller reduction with increased distance from observations. Our findings demonstrate that state reconstruction for spatiotemporally complex cardiac electrical dynamics is possible and will lead naturally to applications using real experimental data. PMID:26826859

  15. Reconstructing three-dimensional reentrant cardiac electrical wave dynamics using data assimilation

    NASA Astrophysics Data System (ADS)

    Hoffman, M. J.; LaVigne, N. S.; Scorse, S. T.; Fenton, F. H.; Cherry, E. M.

    2016-01-01

    For many years, reentrant scroll waves have been predicted and studied as an underlying mechanism for cardiac arrhythmias using numerical techniques, and high-resolution mapping studies using fluorescence recordings from the surfaces of cardiac tissue preparations have confirmed the presence of visible spiral waves. However, assessing the three-dimensional dynamics of these reentrant waves using experimental techniques has been limited to verifying stable scroll-wave dynamics in relatively thin preparations. We propose a different approach to recovering the three-dimensional dynamics of reentrant waves in the heart. By applying techniques commonly used in weather forecasting, we combine dual-surface observations from a particular experiment with predictions from a numerical model to reconstruct the full three-dimensional time series of the experiment. Here, we use model-generated surrogate observations from a numerical experiment to evaluate the performance of the ensemble Kalman filter in reconstructing such time series for a discordant alternans state in one spatial dimension and for scroll waves in three dimensions. We show that our approach is able to recover time series of both observed and unobserved variables matching the truth. Where nearby observations are available, the error is reduced below the synthetic observation error, with a smaller reduction with increased distance from observations. Our findings demonstrate that state reconstruction for spatiotemporally complex cardiac electrical dynamics is possible and will lead naturally to applications using real experimental data.

  16. Forcing of stratospheric chemistry and dynamics during the Dalton Minimum

    NASA Astrophysics Data System (ADS)

    Anet, J. G.; Muthers, S.; Rozanov, E.; Raible, C. C.; Peter, T.; Stenke, A.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Schmutz, W.

    2013-06-01

    The response of atmospheric chemistry and climate to volcanic eruptions and a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere-ocean-chemistry general circulation model SOCOL-MPIOM covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric climate in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15% causes global ozone decrease below the stratopause reaching 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the midstratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere allowing more water vapor to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation when all forcing factors are applied during the DM - this effect is especially well visible for NOx/NOy. Thus, this study highlights the non-linear behavior of the coupled chemistry-climate system. Finally, we conclude that

  17. Dynamics modeling for parallel haptic interfaces with force sensing and control.

    PubMed

    Bernstein, Nicholas; Lawrence, Dale; Pao, Lucy

    2013-01-01

    Closed-loop force control can be used on haptic interfaces (HIs) to mitigate the effects of mechanism dynamics. A single multidimensional force-torque sensor is often employed to measure the interaction force between the haptic device and the user's hand. The parallel haptic interface at the University of Colorado (CU) instead employs smaller 1D force sensors oriented along each of the five actuating rods to build up a 5D force vector. This paper shows that a particular manipulandum/hand partition in the system dynamics is induced by the placement and type of force sensing, and discusses the implications on force and impedance control for parallel haptic interfaces. The details of a "squaring down" process are also discussed, showing how to obtain reduced degree-of-freedom models from the general six degree-of-freedom dynamics formulation. PMID:24808395

  18. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    PubMed

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed. PMID:26964007

  19. Dynamics and stability of mechanical systems with follower forces

    NASA Technical Reports Server (NTRS)

    Herrmann, G.

    1971-01-01

    A monograph on problems of stability of equilibrium of mechanical systems with follower forces is presented. Concepts of stability and criteria of stability are reviewed briefly, together with means of analytical specification of follower forces. Nondissipative systems with two degrees of freedom are discussed, and destabilizing effects due to various types of dissipative forces both in discrete and continuous systems, are treated. The analyses are accompanied by some quantative experiments and observations on demonstrational laboratory models.

  20. Drivers of drift sand dynamics; a reconstruction for the Wekeromse Zand, the Netherlands

    NASA Astrophysics Data System (ADS)

    Hendriks, Chantal; Sonneveld, Marthijn; Wallinga, Jakob

    2013-04-01

    Inland active drift sand landscapes are regarded as unique ecosystems of great historical and geomorphological value. Recent studies have highlighted the role of multiple factors in the initiation and stabilization of drift sand landscapes. To unravel the importance of different forcings (e.g. agricultural practices, climate) and their interplay, insight in the chronology of drift sand dynamics is essential. In this study, we aimed to reconstruct the dynamics of the drift sand landscape of the Wekeromse Zand (central Netherlands) and to develop a conceptual model to understand the processes involved. The Wekeromse Zand study area (370 ha) is located on the border of a central push moraine and is characterised by open active drift sands (14 ha) and vegetated hills and valleys. The surroundings are dominated by modern agricultural practices, and remnants from ancient iron age Celtic Field systems showing that the area has been in agricultural use since at least the Iron Age. For the study area we: i) analysed historical maps going back to the early 19th century, ii) performed a field survey to map the palaeolandscape (before drift sand activation) and iii) employed optically stimulated luminescence (OSL) dating of drift sand deposits on 11 samples from two locations to determine the timing of drift sand deposition. Analysis of the available topographic maps showed no substantial aeolean activity of the area outside its morphological boundaries. OSL dating revealed that two drift sand layers were deposited between 1373 and 1462 AD and between 1680 and 1780 AD. A layer with a higher organic matter content was found at one of the sites. This suggests that the Wekeromse Zand has known three relatively stable periods: i) a period between the start of the Holocene to the Late Medieval Period, ii) in between the Medieval climatic optimum and the climatic Maunder minimum, and iii) current situation. Despite the fact that agricultural activities occurred in this area from the

  1. Force modulating dynamic disorder: a physical model of catch-slip bond transitions in receptor-ligand forced dissociation experiments.

    PubMed

    Liu, Fei; Ou-Yang, Zhong-can

    2006-11-01

    Recent experiments found that some adhesive receptor-ligand complexes have counterintuitive catch-slip transition behaviors: the mean lifetimes of these complexes first increase (catch) with initial application of a small external force, and then decrease (slip) when the force is beyond some threshold. In this work we suggest that the forced dissociation of these complexes might be a typical rate process with dynamic disorder. The one-dimensional force modulating Agmon-Hopfield model is used to describe the transitions in the single-bond P-selectin glycoprotein ligand 1-P-selectin forced dissociation experiments, which were respectively performed in the constant force [Marshall, Nature (Landon) 423, 190 (2003)] and the ramping force [Evans, Proc. Natl. Acad. Sci. U.S.A 98, 11281 (2004)] modes. We find that, an external force can not only accelerate the bond dissociation, but also modulate the complex from the lower-energy barrier to the higher one; the catch-slip bond transition can arise from a particular energy barrier shape. The agreement between our calculation and the experimental data is satisfactory. PMID:17279936

  2. Force feedback coupling with dynamics for physical simulation of product assembly and operation performance

    NASA Astrophysics Data System (ADS)

    Liu, Zhenyu; Tan, Jianrong; Duan, Guifang; Fu, Yun

    2015-01-01

    Most existing force feedback methods are still difficult to meet the requirements of real-time force calculation in virtual assembly and operation with complex objects. In addition, there is often an assumption that the controlled objects are completely free and the target object is only completely fixed or free, thus, the dynamics of the kinematic chain where the controlled objects are located are neglected during the physical simulation of the product manipulation with force feedback interaction. This paper proposes a physical simulation method of product assembly and operation manipulation based on statistically learned contact force prediction model and the coupling of force feedback and dynamics. In the proposed method, based on hidden Markov model (HMM) and local weighting learning (LWL), contact force prediction model is constructed, which can estimate the contact force in real time during interaction. Based on computational load balance model, the computing resources are dynamically assigned and the dynamics integral step is optimized. In addition, smoothing process is performed to the force feedback on the synchronization points. Consequently, we can solve the coupling and synchronization problems of high-frequency feedback force servo, low-frequency dynamics solver servo and scene rendering servo, and realize highly stable and accurate force feedback in the physical simulation of product assembly and operation manipulation. This research proposes a physical simulation method of product assembly and operation manipulation.

  3. Reconstruction of Energy Surfaces from Friction Force Microscopy Measurements with the Jarzynski Equality

    NASA Astrophysics Data System (ADS)

    Berkovich, Ronen; Klafter, Joseph; Urbakh, Michael

    Free energy is one of the most fundamental thermodynamic functions, determining relative phase stability and serving as a generating function for other thermodynamic quantities. The calculation of free energies is a challenging enterprise. In equilibrium statistical mechanics, the free energy is related to the canonical partition function. The partition function itself involves integrations over all degrees of freedom in the system and, in most cases, cannot be easily calculated directly. In 1997, Jarzynski proved a remarkable equality that allows computing the equilibrium free-energy difference between two states from the probability distribution of the nonequilibrium work done on the system to switch between the two states. The Jarzynski equality provides a powerful free-energy difference estimator from a set of irreversible experiments. This method is closely related to free-energy perturbation approach, which is also a computational technique for estimating free-energy differences. The ability to map potential profiles and topologies is of major significance to areas as diverse as biological recognition and nanoscale friction. This capability has been demonstrated for frictional studies where a force between the tip of the scanning force microscope and the surface is probed. The surface free-energy corrugation produces a detectable friction forces. Thus, friction force microscopy (FFM) should be able to discriminate between energetically different areas on the probed surface. Here, we apply the Jarzynski equality for the analysis of FFM measurements and thus obtain a variation of the free energy along a surface.

  4. Reconstruction of the Tambora forcing with global aerosol models : Challenges and limitations

    NASA Astrophysics Data System (ADS)

    Khodri, Myriam; Zanchettin, Davide; Timmreck, Claudia

    2016-04-01

    It is now generally recognised that volcanic eruptions have an important effect on climate variability from inter-annual to decadal timescales. For the largest tropical volcanic eruptions of the last millennium, simulated volcanic surface cooling derived from climate models often disagrees with the cooling seen in tree-ring-based proxies. Furthermore, cooling estimates from simulations show large uncertainties. Such disagreement can be related to several sources, including inconsistency of the currently available volcanic forcing datasets, unrealistic modelled volcanic forcing, insufficient representation of relevant climate processes, and different background climate states simulated at the time of the eruption. In particular, for eruptions that occurred before the observational period forcing characteristics related to the eruption magnitude and stratospheric aerosol properties are deduced from indirect evidences. So, while climatically relevant forcing properties for recent volcanic eruptions are relatively well constrained by direct observations, large uncertainties remain regarding processes of aerosol formation and evolution in the stratosphere after large tropical eruptions of the remote past. Several coordinated modelling assessments have been defined to frame future modeling activities and constrain the above-mentioned uncertainties. Among these, the sixth phase of the Coupled Model Intercomparison Project (CMIP6) has endorsed a multi-model assessment focused on the climatic response to strong volcanic eruptions (VolMIP). VolMIP defines a protocol for idealized volcanic-perturbation experiments to improve comparability among climate model results. Identification of a consensual volcanic forcing dataset for the 1815 Tambora eruption is a key step of VolMIP, as it is the largest-magnitude volcanic eruption of the past five centuries and reference for the VolMIP core experiments. Therefore, as a first key step, five current/state-of-the-art global aerosol

  5. Towards myocardial contraction force image reconstruction for heart disease assessment and intervention planning

    NASA Astrophysics Data System (ADS)

    Haddad, Seyyed M. H.; Drangova, Maria; White, James A.; Samani, Abbas

    2015-03-01

    It is clinically vital to devise a technique to evaluate regional functionality of the myocardium in order to determine the extent and intensity of local damage to the cardiac tissue caused by ischemic injuries. Such a technique can potentially enable cardiologists to discriminate between reversible and irreversible ischemic injuries and to devise appropriate revascularization therapy in case of reversible lesions. The technique is founded on the premise that sufficient contraction force generated by the cardiac tissue can be regarded as a direct and reliable criterion for regional analysis of tissue healthy functionality. To this end, a number of imaging techniques have been developed and, to our knowledge, none of them assess regional cardiac functionality based on a straightforward mechanical measure such as local cardiac contraction forces. . As such, a novel imaging technique is being developed on the basis of quantification and visualisation of local myocardial contraction forces. In this technique, cardiac contraction force distribution is attained through solving an inverse problem within an optimization framework which uses iterative forward mechanical modelling of the myocardium. Hence, a forward mechanical model of the myocardium which is computationally efficient, robust, and adaptable to diverse pathophysiological conditions is necessary for this development. As such, this paper is geared towards developing a novel mechanical model of the healthy and pathological myocardium which considers all aspects of the myocardial mechanics including hyperelasticity, anisotropy, and active contraction force. In this investigation, two major parts, including background tissue and reinforcement bars (fibers) have been considered for modelling the myocardium. The model was implemented using finite element (FE) approach and demonstrated very good performance in simulating normal and infarcted left ventricle (LV) contractile function.

  6. Dendrochronological Modeling and Reconstruction of Large-Scale Climate Variability in Recent Centuries and its Relation to Atmospheric Forcing Functions.

    NASA Astrophysics Data System (ADS)

    D'Arrigo, Rosanne Dorothy

    Tree-ring chronologies from boreal treeline and other sites have been used to reconstruct patterns of climate variability, their relationship to known forcing functions, and climate as modeled using these forcings. Northern Hemisphere temperatures reconstructed for the past three hundred years agree with other proxy data and with temperature derived from a radiative-convective model incorporating volcanic, solar and CO_2 forcings. Superposed epoch analysis shows the effects of volcanism on tree growth and spectral analysis indicated periodicities which might be related to solar or other cycles. Comparison of the reconstructed temperatures with recent instrumental records reveals that the temperature departures within the past decade of elevated atmospheric trace gases levels exceed the "natural" variations in the tree-ring data in past centuries. A CO_2 fertilization effect is not detected in this data through 1973. This issue is further investigated for a high-elevation lodgepole pine site from California. Climate response models indicate that a recent growth increase cannot be completely explained by past climate-growth relationships. The contribution of atmosphere-biosphere CO_2 exchange of boreal forests to Pt. Barrow, Alaska CO_2 amplitudes is found to be significant using a 3 -D tracer model which employs an exchange function based on remote sensing photosynthetic indices. Positive correlations between variations in these amplitudes and tree-ring data suggest that tree-rings may be used as indicators of CO _2 uptake and remote sensing estimates of photosynthetic activity. The northern chronologies show patterns of variation which have climatic implications. Their coefficient of variation reveals periods of agreement/disagreement among the sites which in turn indicate varying periods of spatial coherence in atmospheric circulation patterns. Included among the years of highest variation is 1816, one year following the Tambora eruption. The tree growth anomalies

  7. Effects of ACL Reconstruction on In-Vivo, Dynamic Knee Function

    PubMed Central

    Tashman, Scott; Araki, Daisuke

    2012-01-01

    Synopsis The purposes of this article are to discuss key factors for assessing joint function, to present some recent findings and to address the future directions for evaluating the function of the ACL-injured/reconstructed knees. Well-designed studies, using state-of-the art tools to assess knee kinematics under in vivo, dynamic, high-loading conditions, are necessary to evaluate the relative performance of different procedures for restoring normal joint motion. PMID:23177461

  8. Sharpening our Understanding but Blurring the Boundaries: Dynamic Observations of Surface Reconstruction

    SciTech Connect

    Baer, Donald R.

    2003-08-20

    Every now and then, reading a specific paper stimulates--in my mind at least--a variety of associations and connections that highlight advances that have been made and suggests links between areas that I may not have previously connected. The recent series of papers by McCarty and Bartelt (and co-workers) using low energy electron microscopy (LEEM) to study the dynamics of surface reconstruction of TiO2 , and NiAl sent my thinking in a variety loosely connected directions. Paraphrasing the response of one of my colleagues - the work causes us to think dynamically where we have often thought statically about what happens when surfaces reconstruct. The measurements also highlight the importance of newer techniques to help us visualize and understand phenomena that may have puzzled us for years. The dynamic interactions between surface structure and both the defect structure (and history) of the substrate and the nature of the environment of the specimen highlight an aspect of phenomena that drive surface reconstruction not normally considered and suggests additional and delightful challenges we face in understanding the bulk stability and surface structures of nano-sized objects. Since the physical arrangement of the atoms controls every aspect of the physics and chemistry of a surface or interface, the atomic geometry is a fundamental defining characteristic of a surface. , Details of the structure of a surface, including altered atomic positions, the presence of steps and various types of defects can significantly change the chemistry of a surface and impact processes ranging from the formation of interfaces in electronic components to the efficiency of a catalyst. Because of its importance there has been considerable effort devoted to understanding and predicting surface structures. However, dynamical aspects of surface reconstruction and the significance of material defects in the process have not been part of the standard picture.

  9. Reconstructing local population dynamics in noisy metapopulations--the role of random catastrophes and Allee effects.

    PubMed

    Hart, Edmund M; Avilés, Leticia

    2014-01-01

    Reconstructing the dynamics of populations is complicated by the different types of stochasticity experienced by populations, in particular if some forms of stochasticity introduce bias in parameter estimation in addition to error. Identification of systematic biases is critical when determining whether the intrinsic dynamics of populations are stable or unstable and whether or not populations exhibit an Allee effect, i.e., a minimum size below which deterministic extinction should follow. Using a simulation model that allows for Allee effects and a range of intrinsic dynamics, we investigated how three types of stochasticity--demographic, environmental, and random catastrophes--affect our ability to reconstruct the intrinsic dynamics of populations. Demographic stochasticity aside, which is only problematic in small populations, we find that environmental stochasticity--positive and negative environmental fluctuations--caused increased error in parameter estimation, but bias was rarely problematic, except at the highest levels of noise. Random catastrophes, events causing large-scale mortality and likely to be more common than usually recognized, caused immediate bias in parameter estimates, in particular when Allee effects were large. In the latter case, population stability was predicted when endogenous dynamics were actually unstable and the minimum viable population size was overestimated in populations with small or non-existent Allee effects. Catastrophes also generally increased extinction risk, in particular when endogenous Allee effects were large. We propose a method for identifying data points likely resulting from catastrophic events when such events have not been recorded. Using social spider colonies (Anelosimus spp.) as models for populations, we show that after known or suspected catastrophes are accounted for, reconstructed growth parameters are consistent with intrinsic dynamical instability and substantial Allee effects. Our results are

  10. Reconstructing Local Population Dynamics in Noisy Metapopulations—The Role of Random Catastrophes and Allee Effects

    PubMed Central

    Hart, Edmund M.; Avilés, Leticia

    2014-01-01

    Reconstructing the dynamics of populations is complicated by the different types of stochasticity experienced by populations, in particular if some forms of stochasticity introduce bias in parameter estimation in addition to error. Identification of systematic biases is critical when determining whether the intrinsic dynamics of populations are stable or unstable and whether or not populations exhibit an Allee effect, i.e., a minimum size below which deterministic extinction should follow. Using a simulation model that allows for Allee effects and a range of intrinsic dynamics, we investigated how three types of stochasticity—demographic, environmental, and random catastrophes— affect our ability to reconstruct the intrinsic dynamics of populations. Demographic stochasticity aside, which is only problematic in small populations, we find that environmental stochasticity—positive and negative environmental fluctuations—caused increased error in parameter estimation, but bias was rarely problematic, except at the highest levels of noise. Random catastrophes, events causing large-scale mortality and likely to be more common than usually recognized, caused immediate bias in parameter estimates, in particular when Allee effects were large. In the latter case, population stability was predicted when endogenous dynamics were actually unstable and the minimum viable population size was overestimated in populations with small or non-existent Allee effects. Catastrophes also generally increased extinction risk, in particular when endogenous Allee effects were large. We propose a method for identifying data points likely resulting from catastrophic events when such events have not been recorded. Using social spider colonies (Anelosimus spp.) as models for populations, we show that after known or suspected catastrophes are accounted for, reconstructed growth parameters are consistent with intrinsic dynamical instability and substantial Allee effects. Our results are

  11. Forced orthodontic extrusion and use of CAD/CAM for reconstruction of grossly destructed crown: A multidisciplinary approach.

    PubMed

    Kumar, Rahul; Patil, Suvarna

    2012-04-01

    The aim of this study is to present a report of a case where forced orthodontic extrusion and computer-aided design and computer-aided manufacturing (CAD/CAM) technique was used for reconstruction of right maxillary central incisor with grossly destructed crown. Aesthetic rehabilitation of a fractured maxillary right central incisor was performed employing a multidisciplinary approach i.e. conventional endodontic treatment followed by orthodontic extrusion and final restoration using CAD-CAM and one piece milled zirconia post and core with full coverage zirconia crown. After the procedure being completed, periapical radiographs taken at 3 month follow up period demonstrated that the post and core remained well adapted to post space and there was a complete healing of periapical lesion. This technique can provide a complete aesthetic rehabilitation of a grossly destructed tooth without hampering the biological width and thus has a better prognosis. PMID:22557823

  12. Forced orthodontic extrusion and use of CAD/CAM for reconstruction of grossly destructed crown: A multidisciplinary approach

    PubMed Central

    Kumar, Rahul; Patil, Suvarna

    2012-01-01

    The aim of this study is to present a report of a case where forced orthodontic extrusion and computer-aided design and computer-aided manufacturing (CAD/CAM) technique was used for reconstruction of right maxillary central incisor with grossly destructed crown. Aesthetic rehabilitation of a fractured maxillary right central incisor was performed employing a multidisciplinary approach i.e. conventional endodontic treatment followed by orthodontic extrusion and final restoration using CAD-CAM and one piece milled zirconia post and core with full coverage zirconia crown. After the procedure being completed, periapical radiographs taken at 3 month follow up period demonstrated that the post and core remained well adapted to post space and there was a complete healing of periapical lesion. This technique can provide a complete aesthetic rehabilitation of a grossly destructed tooth without hampering the biological width and thus has a better prognosis. PMID:22557823

  13. Cohesive suction-cup force in cell separation dynamics

    NASA Astrophysics Data System (ADS)

    Vasseur, H.

    2010-07-01

    When an external pulling force is applied onto a cell stuck to its substrate, a reacting "suction-cup" force, due to the slow penetration of the surrounding fluid between the cell and the substrate, opposes to the separation. It can overcome other known adhesive forces when the process is sufficiently violent (typically 105 N/m2). The physical origin of this effect may be compared with that leaning a suction-cup against a bathroom wall. We address the consequences of this effect on i) the separation energy, ii) the fluid motion surrounding the cell, and iii) the inhibition of cell motion.

  14. Synchronous monitoring of muscle dynamics and muscle force for maximum isometric tetanus

    NASA Astrophysics Data System (ADS)

    Zakir Hossain, M.; Grill, Wolfgang

    2010-03-01

    Skeletal muscle is a classic example of a biological soft matter . At both macro and microscopic levels, skeletal muscle is exquisitely oriented for force generation and movement. In addition to the dynamics of contracting and relaxing muscle which can be monitored with ultrasound, variations in the muscle force are also expected to be monitored. To observe such force and sideways expansion variations synchronously for the skeletal muscle a novel detection scheme has been developed. As already introduced for the detection of sideways expansion variations of the muscle, ultrasonic transducers are mounted sideways on opposing positions of the monitored muscle. To detect variations of the muscle force, angle of pull of the monitored muscle has been restricted by the mechanical pull of the sonic force sensor. Under this condition, any variation in the time-of-flight (TOF) of the transmitted ultrasonic signals can be introduced by the variation of the path length between the transducers. The observed variations of the TOF are compared to the signals obtained by ultrasound monitoring for the muscle dynamics. The general behavior of the muscle dynamics and muscle force shows almost an identical concept. Since muscle force also relates the psychological boosting-up effects, the influence of boosting-up on muscle force and muscle dynamics can also be quantified form this study. Length-tension or force-length and force-velocity relationship can also be derived quantitatively with such monitoring.

  15. Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data

    NASA Astrophysics Data System (ADS)

    Raach, Steffen; Schlipf, David; Haizmann, Florian; Cheng, Po Wen

    2014-06-01

    Using the inflowing horizontal and vertical wind shears for individual pitch controller is a promising method if blade bending measurements are not available. Due to the limited information provided by a lidar system the reconstruction of shears in real-time is a challenging task especially for the horizontal shear in the presence of changing wind direction. The internal model principle has shown to be a promising approach to estimate the shears and directions in 10 minutes averages with real measurement data. The static model based wind vector field reconstruction is extended in this work taking into account a dynamic reconstruction model based on Taylor's Frozen Turbulence Hypothesis. The presented method provides time series over several seconds of the wind speed, shears and direction, which can be directly used in advanced optimal preview control. Therefore, this work is an important step towards the application of preview individual blade pitch control under realistic wind conditions. The method is tested using a turbulent wind field and a detailed lidar simulator. For the simulation, the turbulent wind field structure is flowing towards the lidar system and is continuously misaligned with respect to the horizontal axis of the wind turbine. Taylor's Frozen Turbulence Hypothesis is taken into account to model the wind evolution. For the reconstruction, the structure is discretized into several stages where each stage is reduced to an effective wind speed, superposed with a linear horizontal and vertical wind shear. Previous lidar measurements are shifted using again Taylor's Hypothesis. The wind field reconstruction problem is then formulated as a nonlinear optimization problem, which minimizes the residual between the assumed wind model and the lidar measurements to obtain the misalignment angle and the effective wind speed and the wind shears for each stage. This method shows good results in reconstructing the wind characteristics of a three dimensional

  16. Rank-sparsity constrained, spectro-temporal reconstruction for retrospectively gated, dynamic CT

    NASA Astrophysics Data System (ADS)

    Clark, D. P.; Lee, C. L.; Kirsch, D. G.; Badea, C. T.

    2015-03-01

    Relative to prospective projection gating, retrospective projection gating for dynamic CT applications allows fast imaging times, minimizing the potential for physiological and anatomic variability. Preclinically, fast imaging is attractive due to the rapid clearance of low molecular weight contrast agents and the rapid heart rate of rodents. Clinically, retrospective gating is relevant for intraoperative C-arm CT. More generally, retrospective sampling provides an opportunity for significant reduction in x-ray dose within the framework of compressive sensing theory and sparsity-constrained iterative reconstruction. Even so, CT reconstruction from projections with random temporal sampling is a very poorly conditioned inverse problem, requiring high fidelity regularization to minimize variability in the reconstructed results. Here, we introduce a highly novel data acquisition and regularization strategy for spectro-temporal (5D) CT reconstruction from retrospectively gated projections. We show that by taking advantage of the rank-sparse structure and separability of the temporal and spectral reconstruction sub-problems, being able to solve each sub-problem independently effectively guarantees that we can solve both problems together. In this paper, we show 4D simulation results (2D + 2 energies + time) using the proposed technique and compare them with two competing techniques— spatio-temporal total variation minimization and prior image constrained compressed sensing. We also show in vivo, 5D (3D + 2 energies + time) myocardial injury data acquired in a mouse, reconstructing 20 data sets (10 phases, 2 energies) and performing material decomposition from data acquired over a single rotation (360°, dose: ~60 mGy).

  17. Modeling Multibody Stage Separation Dynamics Using Constraint Force Equation Methodology

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Roithmayr, Carlos M.; Toniolo, Matthew D.; Karlgaard, Christopher D.; Pamadi, Bandu N.

    2011-01-01

    This paper discusses the application of the constraint force equation methodology and its implementation for multibody separation problems using three specially designed test cases. The first test case involves two rigid bodies connected by a fixed joint, the second case involves two rigid bodies connected with a universal joint, and the third test case is that of Mach 7 separation of the X-43A vehicle. For the first two cases, the solutions obtained using the constraint force equation method compare well with those obtained using industry- standard benchmark codes. For the X-43A case, the constraint force equation solutions show reasonable agreement with the flight-test data. Use of the constraint force equation method facilitates the analysis of stage separation in end-to-end simulations of launch vehicle trajectories

  18. Source coding for transmission of reconstructed dynamic geometry: a rate-distortion-complexity analysis of different approaches

    NASA Astrophysics Data System (ADS)

    Mekuria, Rufael N.; Cesar, Pablo; Bulterman, Dick C. A.

    2014-09-01

    Live 3D reconstruction of a human as a 3D mesh with commodity electronics is becoming a reality. Immersive applications (i.e. cloud gaming, tele-presence) benefit from effective transmission of such content over a bandwidth limited link. In this paper we outline different approaches for compressing live reconstructed mesh geometry based on distributing mesh reconstruction functions between sender and receiver. We evaluate rate-performance-complexity of different configurations. First, we investigate 3D mesh compression methods (i.e. dynamic/static) from MPEG-4. Second, we evaluate the option of using octree based point cloud compression and receiver side surface reconstruction.

  19. Dynamic Self-Regulation: The Driving Force behind Academic Achievement.

    ERIC Educational Resources Information Center

    Schapiro, Susan R.; Livingston, Jennifer

    2000-01-01

    College freshmen and sophomores (n=342) in an elective class designed to teach active learning strategies and critical thinking completed the Dynamic and Active Learning Inventory. Results supported the theory that self-regulated learning requires not only active, deliberate learning strategies, but also includes a natural dynamic component that…

  20. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  1. Improved dynamic MRI reconstruction by exploiting sparsity and rank-deficiency.

    PubMed

    Majumdar, Angshul

    2013-06-01

    In this paper we address the problem of dynamic MRI reconstruction from partially sampled K-space data. Our work is motivated by previous studies in this area that proposed exploiting the spatiotemporal correlation of the dynamic MRI sequence by posing the reconstruction problem as a least squares minimization regularized by sparsity and low-rank penalties. Ideally the sparsity and low-rank penalties should be represented by the l(0)-norm and the rank of a matrix; however both are NP hard penalties. The previous studies used the convex l(1)-norm as a surrogate for the l(0)-norm and the non-convex Schatten-q norm (0reconstruct the dynamic MRI sequence by solving a least squares minimization problem regularized by l(p)-norm as the sparsity penalty and Schatten-q norm as the low-rank penalty. There are no efficient algorithms to solve the said problems. In this paper, we derive efficient algorithms to solve them. The experiments have been carried out on Dynamic Contrast Enhanced (DCE) MRI datasets. Both quantitative and qualitative analysis indicates the superiority of our proposed improvement over the existing methods. PMID:23218793

  2. Holographic forced fluid dynamics in non-relativistic limit

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Li, Li; Nie, Zhang-Yu; Zhang, Yun-Long

    2012-11-01

    We study the thermodynamics and non-relativistic hydrodynamics of the holographic fluid on a finite cutoff surface in the Gauss-Bonnet gravity. It is shown that the isentropic flow of the fluid is equivalent to a radial component of gravitational field equations. We use the non-relativistic fluid expansion method to study the Einstein-Maxwell-dilaton system with a negative cosmological constant, and obtain the holographic incompressible forced Navier-Stokes equations of the dual fluid at AdS boundary and at a finite cutoff surface, respectively. The concrete forms of external forces are given.

  3. Force models for particle-dynamics simulations of granular materials

    SciTech Connect

    Walton, O.R.

    1994-12-01

    Engineering-mechanics contact models are utilized to describe the inelastic, frictional interparticle forces acting in dry granular systems. Simple analyses based on one-dimensional chains are utilized to illustrate wave propagation phenomena in dense and dilute discrete particulates. The variation of restitution coefficient with impact velocity is illustrated for a variety of viscous and hysteretic normal force models. The effects of interparticle friction on material strength in discrete-particle simulations are much closer to measured values than are theories that do not allow article rotations.

  4. A study of the effect of forcing function characteristics on human operator dynamics in manual control

    NASA Technical Reports Server (NTRS)

    Washizu, K.; Tanaka, K.; Osawa, T.

    1978-01-01

    The effect of the spectrum of the forcing function on the human pilot dynamics in manual control was investigated. A simple compensatory tracking experiment was conducted, where the controlled element was of a second-order dynamics and the forcing function was a random noise having a dominant frequency. The dominant frequency and the power of the forcing function were two variable parameters during the experiment. The results show that the human pilot describing functions are dependent not only on the dynamics of the controlled element, but also on the characteristics of the forcing function. This suggests that the human pilot behavior should be expressed by the transfer function taking into consideration his ability to sense and predict the forcing function.

  5. Superadiabatic forces in the dynamics of the one-dimensional Gaussian core model

    NASA Astrophysics Data System (ADS)

    Bernreuther, Elias; Schmidt, Matthias

    2016-08-01

    Using Brownian dynamics computer simulations we investigate the dynamics of the one-body density and one-body current in a one-dimensional system of particles that interact with a repulsive Gaussian pair potential. We systematically split the internal force distribution into an adiabatic part, which originates from the equilibrium free energy, and a superadiabatic contribution, which is neglected in dynamical density functional theory. We find a strong dependence of the magnitude and phase of the superadiabatic force distribution on the initial state of the system. While the magnitude of the superadiabatic force is small if the system evolves from an equilibrium state inside of a parabolic external potential, it is large for particles with equidistant initial separations at high temperature. We analyze these findings in the light of the known mean-field behavior of Gaussian core particles and discuss a multi-occupancy mechanism which generates superadiabatic forces that are out of phase with respect to the adiabatic force.

  6. Theoretical reconstruction of realistic dynamics of highly coarse-grained cis-1,4-polybutadiene melts

    NASA Astrophysics Data System (ADS)

    Lyubimov, I. Y.; Guenza, M. G.

    2013-03-01

    The theory to reconstruct the atomistic-level chain diffusion from the accelerated dynamics that is measured in mesoscale simulations of the coarse-grained system, is applied here to the dynamics of cis-1,4-polybutadiene melts where each chain is described as a soft interacting colloidal particle. The rescaling formalism accounts for the corrections in the dynamics due to the change in entropy and the change in friction that are a consequence of the coarse-graining procedure. By including these two corrections the dynamics is rescaled to reproduce the realistic dynamics of the system described at the atomistic level. The rescaled diffusion coefficient obtained from mesoscale simulations of coarse-grained cis-1,4-polybutadiene melts shows good agreement with data from united atom simulations performed by Tsolou et al. [Macromolecules 38, 1478 (2005)], 10.1021/ma0491210. The derived monomer friction coefficient is used as an input to the theory for cooperative dynamics that describes the internal dynamics of a polymer moving in a transient regions of slow cooperative motion in a liquid of macromolecules. Theoretically predicted time correlation functions show good agreement with simulations in the whole range of length and time scales in which data are available.

  7. Time resolved lateral dynamic force microscopy for exploring nanoscopic water bridge

    NASA Astrophysics Data System (ADS)

    Kim, Jongwoo; Chang, Sungjin; Sung, Baekman; Kwon, Soyoung; Jhe, Wonho

    2010-03-01

    Lateral dynamic force microscopy based on time-resolved scheme is employed for a good understanding of dynamics of nanoscopic water bridge connecting a sharp tip with a flat sample. In its formation and stepped compression at which the tip and the sample in a true non-contact, the nanoscopic water bridge under oscillatory shear stress shows a transient response behavior for a long time ( >=10^2 ms). This observation obviously demonstrates that an inadequate fast measurement in dynamic force microscopy can lead a misunderstanding of dynamic physical properties of the nanoscopic water.

  8. A method of evaluating the dynamic response of materials to forced oscillation

    NASA Astrophysics Data System (ADS)

    Fujii, Yusaku

    2006-07-01

    An optical method of evaluating the dynamic response of materials to forced oscillation is proposed. The force acting on the material being tested is measured as the inertial force of the mass levitated with sufficiently small friction using an aerostatic linear bearing. The material is sandwiched between the mass and a linear actuator, which generates the oscillating force. During the oscillation measurement, the Doppler shift frequency of the laser beam reflected by the mass is measured with high accuracy using an optical interferometer. Then, the velocity, the position, the acceleration and the inertial force of the mass are calculated from the frequency. The velocity and position of the linear actuator are also measured using the optical interferometer. The dynamic response of a gel block to an oscillating force is determined by means of the proposed method.

  9. Dynamical Casimir–Polder force on a partially dressed atom in a cavity comprising a dielectric

    SciTech Connect

    Yang, H.; Zheng, T.Y. Zhang, X.; Shao, X.Q.; Pan, S.M.

    2014-05-15

    We put a two-level atom into a cavity comprising a dielectric with output coupling. An analytical expression of the dynamical Casimir–Polder force in such a system is obtained when the system starts from a partially dressed state. And the effects of several relevant parameters of the system on the time-dependent force are also discussed. -- Highlights: •We get the dynamical CP force on a partially dressed atom in a dielectric cavity. •The force in this cavity is larger than that in infinite dielectric space. •The force is not symmetric with respect to the center of the cavity. •The oscillating time of the force increases with the cavity size.

  10. Molecular dynamics simulations data of the twenty encoded amino acids in different force fields.

    PubMed

    Vitalini, F; Noé, F; Keller, B G

    2016-06-01

    We present extensive all-atom Molecular Dynamics (MD) simulation data of the twenty encoded amino acids in explicit water, simulated with different force fields. The termini of the amino acids have been capped to ensure that the dynamics of the Φ and ψ torsion angles are analogues to the dynamics within a peptide chain. We use representatives of each of the four major force field families: AMBER ff-99SBILDN [1], AMBER ff-03 [2], OPLS-AA/L [3], CHARMM27 [4] and GROMOS43a1 [5], [6]. Our data represents a library and test bed for method development for MD simulations and for force fields development. Part of the data set has been previously used for comparison of the dynamic properties of force fields (Vitalini et al., 2015) [7] and for the construction of peptide basis functions for the variational approach to molecular kinetics [8]. PMID:27054161

  11. Sliding mode-based lateral vehicle dynamics control using tyre force measurements

    NASA Astrophysics Data System (ADS)

    Kunnappillil Madhusudhanan, Anil; Corno, Matteo; Holweg, Edward

    2015-11-01

    In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.

  12. WearDY: Wearable dynamics. A prototype for human whole-body force and motion estimation

    NASA Astrophysics Data System (ADS)

    Latella, Claudia; Kuppuswamy, Naveen; Nori, Francesco

    2016-06-01

    Motion capture is a powerful tool used in a large range of applications towards human movement analysis. Although it is a well-established technique, its main limitation is the lack of dynamic information such as forces and torques during the motion capture. In this paper, we present a novel approach for human wearable dynamic (WearDY) motion capture for the simultaneous estimation of whole-body forces along with the motion. Our conceptual framework encompasses traditional passive markers based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational framework for estimating dynamic quantities originally proposed in the domain of humanoid robot control. We present preliminary experimental analysis of our framework on subjects performing a two Degrees-of-Freedom bowing task and we estimate the motion and dynamic quantities. We discuss the implication of our proposal towards the design of a novel wearable force and motion capture suit and its applications.

  13. Free-energy calculation via mean-force dynamics using a logarithmic energy landscape.

    PubMed

    Morishita, Tetsuya; Itoh, Satoru G; Okumura, Hisashi; Mikami, Masuhiro

    2012-06-01

    A method for free-energy calculation based on mean-force dynamics (fictitious dynamics on a potential of mean force) is presented. The method utilizes a logarithmic form of free energy to enhance crossing barriers on a free-energy landscape, which results in efficient sampling of "rare" events. Invoking a conserved quantity in mean-force dynamics, free energy can be estimated on-the-fly without postprocessing. This means that an estimate of the free-energy profile can be locally made in contrast to the other methods based on mean-force dynamics such as metadynamics. The method is benchmarked against conventional methods and its high efficiency is demonstrated in the free-energy calculation for a glycine dipeptide molecule. PMID:23005238

  14. Molecular dynamics simulations data of the twenty encoded amino acids in different force fields

    PubMed Central

    Vitalini, F.; Noé, F.; Keller, B.G.

    2016-01-01

    We present extensive all-atom Molecular Dynamics (MD) simulation data of the twenty encoded amino acids in explicit water, simulated with different force fields. The termini of the amino acids have been capped to ensure that the dynamics of the Φ and ψ torsion angles are analogues to the dynamics within a peptide chain. We use representatives of each of the four major force field families: AMBER ff-99SBILDN [1], AMBER ff-03 [2], OPLS-AA/L [3], CHARMM27 [4] and GROMOS43a1 [5], [6]. Our data represents a library and test bed for method development for MD simulations and for force fields development. Part of the data set has been previously used for comparison of the dynamic properties of force fields (Vitalini et al., 2015) [7] and for the construction of peptide basis functions for the variational approach to molecular kinetics [8]. PMID:27054161

  15. Three-Dimensional FRET Reconstruction Microscopy for Analysis of Dynamic Molecular Interactions in Live Cells

    PubMed Central

    Hoppe, Adam D.; Shorte, Spencer L.; Swanson, Joel A.; Heintzmann, Rainer

    2008-01-01

    Analysis of cellular pathways requires concentration measurements of dynamically interacting molecules within the three-dimensional (3D) space of single living cells. Förster resonance energy transfer (FRET) microscopy from widefield, from confocal, and potentially from superresolution microscopes can access this information; however, these measurements are distorted by the inherent 3D blurring of optical imaging, spectral overlap of fluorophores, and detection noise. We propose a mathematical model of these processes and demonstrate, through simulation, how these distortions limit the dynamic range and sensitivity of conventional FRET microscopy. Using this model, we devise and validate a new approach (called 3D-FRET stoichiometry reconstruction, 3DFSR) for reconstructing 3D distributions of bound and free fluorescent molecules. Previous attempts to reconstruct 3D-FRET data relied on sequential spectral unmixing and deconvolution, a process that corrupts the detection statistics. We demonstrate that 3DFSR is superior to these approaches since it simultaneously models spectral mixing, optical blurring, and detection noise. To achieve the full potential of this technique, we developed an instrument capable of acquiring 3D-FRET data rapidly and sensitively from single living cells. Compared with conventional FRET microscopy, our 3D-FRET reconstruction technique and new instrumentation provides orders of magnitude gains in both sensitivity and accuracy wherein sustained high-resolution four-dimensional (x,y,z,t) imaging of molecular interactions inside living cells was achieved. These results verify previous observations that Cdc42 signaling is localized to the advancing margins of forming phagosomes in macrophages. PMID:18339754

  16. Dynamic SPECT reconstruction from few projections: a sparsity enforced matrix factorization approach

    NASA Astrophysics Data System (ADS)

    Ding, Qiaoqiao; Zan, Yunlong; Huang, Qiu; Zhang, Xiaoqun

    2015-02-01

    The reconstruction of dynamic images from few projection data is a challenging problem, especially when noise is present and when the dynamic images are vary fast. In this paper, we propose a variational model, sparsity enforced matrix factorization (SEMF), based on low rank matrix factorization of unknown images and enforced sparsity constraints for representing both coefficients and bases. The proposed model is solved via an alternating iterative scheme for which each subproblem is convex and involves the efficient alternating direction method of multipliers (ADMM). The convergence of the overall alternating scheme for the nonconvex problem relies upon the Kurdyka-Łojasiewicz property, recently studied by Attouch et al (2010 Math. Oper. Res. 35 438) and Attouch et al (2013 Math. Program. 137 91). Finally our proof-of-concept simulation on 2D dynamic images shows the advantage of the proposed method compared to conventional methods.

  17. Computerized X-ray reconstruction tomography in stereometric analysis of cardiovascular dynamics

    NASA Technical Reports Server (NTRS)

    Robb, R. A.; Harris, L. D.; Ritman, E. L.

    1977-01-01

    A computerized technique is proposed for obtaining cross-sectional images of the dynamic spatial distribution of X-ray attenuation covering the entire anatomic extent of the thorax and its contents in living dogs with a resolution of 1 mm and at time intervals of 1/60 sec. Use is made of an X-ray imaging chain which is a new high-performance video-fluoroscopic system, unique in its design and construction and called SSDSR for single source dynamic spatial reconstructor. This dynamic spatial reconstruction system is shown to provide the temporally and spatially coherent multiple cross sections required to obtain the full three-dimensional anatomic and simultaneous hemodynamic information necessary for detailed quantitative analyses of regional cardiopulmonary and vascular functions in both basic investigations of animals and clinical diagnostic applications to patients. Numerous photographs supplement the text.

  18. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    SciTech Connect

    Tao, Yinghua; Chen, Guang-Hong; Hacker, Timothy A.; Raval, Amish N.; Van Lysel, Michael S.; Speidel, Michael A.

    2014-07-15

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  19. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    PubMed Central

    Tao, Yinghua; Chen, Guang-Hong; Hacker, Timothy A.; Raval, Amish N.; Van Lysel, Michael S.; Speidel, Michael A.

    2014-01-01

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan was performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937

  20. New jacking system resolves dynamic forces in 400-ft jack up

    SciTech Connect

    Chevallier, J.; Turner, L.

    1984-08-27

    This article describes the design and operation of Trident IX a successfully applied jack up system. A summary of Trident IX's two years of operation in the Arabian Gulf and offshore West Africa is presented. The system is compared to conventional jacking systems in terms of design, operation, costs and safety. Dynamic forces at 400 ft. water depths are summarized, and design of the legs to withstand these dynamic forces and accomodate the new system are explained. Features are listed.

  1. Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy

    PubMed Central

    Filenko, Nina A.; Palets, Dmytro B.; Lyubchenko, Yuri L.

    2012-01-01

    Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their population was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed. PMID:22312477

  2. Structure and dynamics of dinucleosomes assessed by atomic force microscopy.

    PubMed

    Filenko, Nina A; Palets, Dmytro B; Lyubchenko, Yuri L

    2012-01-01

    Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their population was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed. PMID:22312477

  3. Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy

    DOE PAGESBeta

    Filenko, Nina A.; Palets, Dmytro B.; Lyubchenko, Yuri L.

    2012-01-01

    Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their populationmore » was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed.« less

  4. Dynamic Image Forces Near a Metal Surface and the Point-Charge Motion

    ERIC Educational Resources Information Center

    Gabovich, A. M.; Voitenko, A. I.

    2012-01-01

    The problem of charge motion governed by image force attraction near a plane metal surface is considered and solved self-consistently. The temporal dispersion of metal dielectric permittivity makes the image forces dynamic and, hence, finite, contrary to the results of the conventional approach. Therefore, the maximal attainable velocity turns out…

  5. Reconstruction of Auto-Tissue-Engineered Lamellar Cornea by Dynamic Culture for Transplantation: A Rabbit Model

    PubMed Central

    Duan, Haoyun; Wang, Xiaoran; Xiao, Jianhui; Duan, Hucheng; Li, Naiyang; Li, Chaoyang; Wan, Pengxia; Liu, Ying; Song, Yiyue; Zhou, Chenjing; Huang, Zheqian; Wang, Zhichong

    2014-01-01

    To construct an auto-tissue-engineered lamellar cornea (ATELC) for transplantation, based on acellular porcine corneal stroma and autologous corneal limbal explants, a dynamic culture process, which composed of a submersion culture, a perfusion culture and a dynamic air-liquid interface culture, was performed using appropriate parameters. The results showed that the ATELC-Dynamic possessed histological structure and DNA content that were similar to native lamellar cornea (NLC, p>0.05). Compared to NLC, the protein contents of zonula occludens-1, desmocollin-2 and integrin β4 in ATELC-Dynamic reached 93%, 89% and 73%, respectively. The basal cells of ATELC-Dynamic showed a better differentiation phenotype (K3−, P63+, ABCG2+) compared with that of ATELC in static air-lift culture (ATELC-Static, K3+, P63−, ABCG2−). Accordingly, the cell-cloning efficiency of ATELC-Dynamic (9.72±3.5%) was significantly higher than that of ATELC-Static (2.13±1.46%, p<0.05). The levels of trans-epithelial electrical resistance, light transmittance and areal modulus variation in ATELC-Dynamic all reached those of NLC (p>0.05). Rabbit lamellar keratoplasty showed that the barrier function of ATELC-Dynamic was intact, and there were no signs of epithelial shedding or neovascularization. Furthermore, the ATELC-Dynamic group had similar optical properties and wound healing processes compared with the NLC group. Thus, the sequential dynamic culture process that was designed according to corneal physiological characteristics could successfully reconstruct an auto-lamellar cornea with favorable morphological characteristics and satisfactory physiological function. PMID:24705327

  6. Reconstruction of auto-tissue-engineered lamellar cornea by dynamic culture for transplantation: a rabbit model.

    PubMed

    Wu, Zheng; Zhou, Qiang; Duan, Haoyun; Wang, Xiaoran; Xiao, Jianhui; Duan, Hucheng; Li, Naiyang; Li, Chaoyang; Wan, Pengxia; Liu, Ying; Song, Yiyue; Zhou, Chenjing; Huang, Zheqian; Wang, Zhichong

    2014-01-01

    To construct an auto-tissue-engineered lamellar cornea (ATELC) for transplantation, based on acellular porcine corneal stroma and autologous corneal limbal explants, a dynamic culture process, which composed of a submersion culture, a perfusion culture and a dynamic air-liquid interface culture, was performed using appropriate parameters. The results showed that the ATELC-Dynamic possessed histological structure and DNA content that were similar to native lamellar cornea (NLC, p>0.05). Compared to NLC, the protein contents of zonula occludens-1, desmocollin-2 and integrin β4 in ATELC-Dynamic reached 93%, 89% and 73%, respectively. The basal cells of ATELC-Dynamic showed a better differentiation phenotype (K3-, P63+, ABCG2+) compared with that of ATELC in static air-lift culture (ATELC-Static, K3+, P63-, ABCG2-). Accordingly, the cell-cloning efficiency of ATELC-Dynamic (9.72±3.5%) was significantly higher than that of ATELC-Static (2.13±1.46%, p<0.05). The levels of trans-epithelial electrical resistance, light transmittance and areal modulus variation in ATELC-Dynamic all reached those of NLC (p>0.05). Rabbit lamellar keratoplasty showed that the barrier function of ATELC-Dynamic was intact, and there were no signs of epithelial shedding or neovascularization. Furthermore, the ATELC-Dynamic group had similar optical properties and wound healing processes compared with the NLC group. Thus, the sequential dynamic culture process that was designed according to corneal physiological characteristics could successfully reconstruct an auto-lamellar cornea with favorable morphological characteristics and satisfactory physiological function. PMID:24705327

  7. Koopman decompositions of periodically forced Hopf bifurcation flows and application to dynamic stall

    NASA Astrophysics Data System (ADS)

    Glaz, Bryan; Loire, Sophie; Fonoberova, Maria; Mezic, Igor

    2015-11-01

    Periodically forced Hopf bifurcation flows, such as oscillating cylinders, can exhibit rich spectral content. Though lock-on dynamics of systems forced near resonances are well understood, the underlying chaotic or quasi-periodic dynamics when forcing away from a natural frequency are not. This behavior can be critical for systems of practical significance, such as oscillating airfoils under dynamic stall. In this study, normal form theory and spectral decompositions based on Koopman operators will be used to reveal transitions from limit cycle attractors to chaotic/quasi-periodic dynamics in the cylinder Hopf bifurcation flow. Koopman operator methods are used since each mode is associated with a single frequency which allows one to observe the evolution to more continuous spectral behavior with forcing, while approaches such as proper orthogonal decomposition may obfuscate this transition. It will be shown that projecting onto a low order subspace of Koopman modes can capture features supported by normal forms. Using this, we show a mechanism that leads to regimes in which the system seems to exhibit shear-induced chaos. The new framework is applied to dynamic stall studies to establish periodically forced Hopf bifurcation dynamics as an underlying feature. Support for M. Fonoberova, S. Loire, and I. Mezic under U.S. Army Research Office project W911NF-14-C-0102, and U.S. Air Force Office of Scientific Research project FA9550-12- 1-0230 are acknowledged.

  8. Humans robustly adhere to dynamic walking principles by harnessing motor abundance to control forces

    PubMed Central

    Toney, Megan E.

    2013-01-01

    Human walking dynamics are typically framed in the context of mechanics and energetics rather than in the context of neuromuscular control. Dynamic walking principles describe one helpful theoretical approach to characterize efficient human walking mechanics over many steps. These principles do not, however, address how such walking is controlled step-by-step despite small perturbations from natural variability. Our purpose was to identify neuromechanical control strategies used to achieve consistent and robust locomotion despite natural step-to-step force variability. We used the uncontrolled manifold concept to test whether human walkers select combinations of leading and trailing leg-forces that generate equivalent net-force trajectories during step-to-step transitions. Subjects selected leading and trailing leg-force combinations that generated consistent vertical net-force during step-to-step transitions. We conclude that vertical net-force is an implicit neuromechanical goal of human walking whose trajectory is stabilized for consistent step-to-step transitions, which agrees with the principles of dynamic walking. In contrast, inter-leg-force combinations modulated anterior–posterior net-force trajectories with each step to maintain constant walking speed, indicating that a consistent anterior–posterior net-force trajectory is not an implicit goal of walking. For a more complete picture of hierarchical locomotor control, we also tested whether each individual leg-force trajectory was stabilized through the selection of leg-force equivalent joint-torque combinations. The observed consistent vertical net-force trajectory was achieved primarily through the selection of joint-torque combinations that modulated trailing leg-force during step-to-step transitions. We conclude that humans achieve robust walking by harnessing inherent motor abundance of the joints and legs to maintain consistent step-by-step walking performance. PMID:24081680

  9. Integrating Plate Tectonic Reconstruction and Mantle Dynamics: A valuable Aid in Frontier Exploration

    NASA Astrophysics Data System (ADS)

    Hafkenscheid, Edith; Warners-Ruckstuhl, Karin; van Oosterhout, Cees; Bergman, Steve; Davies, J. Huw; Govers, Rob; Hochard, Cyril; Kennan, Lorcan; Ross, Malcolm; Stampfli, Gérard M.; Vérard, Christan; Webb, Peter; Wortel, Rinus

    2013-04-01

    Effective hydrocarbon exploration in frontier regions requires an understanding of the tectonic and thermal evolution of basins, among other parameters or conditions. This is especially challenging when high-resolution local data are lacking, requiring reasonable interpolation and extrapolation of more regional knowledge. Some of the key first-order parameters influencing the presence and preservation of an economic petroleum system are the basin's vertical motion history and its thermal and stress evolution. To quantify these parameters in a physically consistent manner over several hundred million years, an integrated lithosphere-mantle dynamics modeling approach is needed. To this purpose, we embarked on developing a 3D dynamic model for the whole earth that links surface phenomena to mantle convection and lithosphere dynamics. The project involved a close collaboration between Shell and three universities, and integration of many disciplines and techniques. University of Lausanne developed 600-0 Ma global plate reconstructions with consistently evolving plate boundaries. The 300-0 Ma period was then adapted to be used as surface boundary condition for forward mantle convection modeling by Cardiff University, producing global predictions of base lithosphere temperatures, heat flow and mantle induced vertical surface motion through time. As a last step, Utrecht University developed a method to predict the lithospheric stress field through time based on integration of these mantle modeling results with the plate reconstruction model. This approach offers predictive scenarios and grids relevant to petroleum exploration that can be validated with local geological and geophysical data.

  10. Rapid dynamic radial MRI via reference image enforced histogram constrained reconstruction

    NASA Astrophysics Data System (ADS)

    Gaass, Thomas; Bauman, Grzegorz; Potdevin, Guillaume; Noël, Peter B.; Haase, Axel

    2014-03-01

    Exploiting spatio-temporal redundancies in sub-Nyquist sampled dynamic MRI for the suppression of undersampling artifacts was shown to be of great success. However, temporally averaged and blurred structures in image space composite data poses the risk of false information in the reconstruction. Within this work we assess the possibility of employing the composite image histogram as a measure of undersampling artifacts and as basis of their suppression. The proposed algorithm utilizes a histogram, computed from a composite image within a dynamically acquired interleaved radial MRI measurement as reference to compensate for the impact of undersampling in temporally resolved data without the incorporation of temporal averaging. In addition an image space regularization utilizing a single frame low-resolution reconstruction is implemented to enforce overall contrast fidelity. The performance of the approach was evaluated on a simulated radial dynamic MRI acquisition and on two functional in vivo radial cardiac acquisitions. Results demonstrate that the algorithm maintained contrast properties, details and temporal resolution in the images, while effectively suppressing undersampling artifacts.

  11. Rapid dynamic radial MRI via reference image enforced histogram constrained reconstruction.

    PubMed

    Gaass, Thomas; Bauman, Grzegorz; Potdevin, Guillaume; Noël, Peter B; Haase, Axel

    2014-03-01

    Exploiting spatio-temporal redundancies in sub-Nyquist sampled dynamic MRI for the suppression of undersampling artifacts was shown to be of great success. However, temporally averaged and blurred structures in image space composite data poses the risk of false information in the reconstruction. Within this work we assess the possibility of employing the composite image histogram as a measure of undersampling artifacts and as basis of their suppression. The proposed algorithm utilizes a histogram, computed from a composite image within a dynamically acquired interleaved radial MRI measurement as reference to compensate for the impact of undersampling in temporally resolved data without the incorporation of temporal averaging. In addition an image space regularization utilizing a single frame low-resolution reconstruction is implemented to enforce overall contrast fidelity. The performance of the approach was evaluated on a simulated radial dynamic MRI acquisition and on two functional in vivo radial cardiac acquisitions. Results demonstrate that the algorithm maintained contrast properties, details and temporal resolution in the images, while effectively suppressing undersampling artifacts. PMID:24486719

  12. Vertical and lateral force mapping on the Si(111)-(7×7) surface by dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yoshiaki; Namikawa, Takashi; Miki, Koutaro; Abe, Masayuki; Morita, Seizo

    2008-05-01

    The topographic image of dynamic force microscopy (DFM) keeping the frequency shift (Δfz) constant at tiny cantilever oscillation amplitudes corresponds to the constant-vertical force (Fz) gradient surface, while the interpretation becomes complicated at larger oscillation amplitudes. We discuss how Fz and the potential energy (U) act on the tip during DFM topographic scan at various cantilever oscillation amplitudes by measuring the Δfz map on the Si(111)-(7×7) surface at room temperature. The Δfz map is numerically converted into Fz and U maps. DFM topographic curves at various cantilever oscillation amplitudes are numerically derived by using the experimentally obtained Fz map. In addition, we discuss how the lateral force (Fx) acts on the tip at various tip-surface distances on various surface sites by an Fx map converted from a U map. The positions at which Fx becomes zero are identified as U minimum sites, such as the top of adatom sites, and U maximum sites (equilibrium positions of Fx ), such as the center positions among three center adatoms. The tip deviated from these sites is then laterally attracted toward the U minimum sites. It is also demonstrated that lateral force microscopy performed at 1Å cantilever oscillation enables direct measurement of the lateral force gradient by numerically deriving the frequency shift (Δfx) caused by Fx .

  13. Forces and Motion: Dynamics of the Tethered Satellite

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In this 'Lift off to Learning' series, Loren Shriver, commander of STS 46, and the other members of the mission (Claude Nicollier, Marsha Ivins, Andrew Allen, Jeffrey Hoffman, Franklin Chiang-Diaz, and Franco Maerba) use computer graphics, and physical experiments to explain how the tethered satellite to be deployed during their mission will be raised, how it works, the influence of the Shuttle on the satellite and the satellite's influence on the Shuttle's orbit, the gravitational effects, and other effects concerning the Theoretical Physics used to plan this mission (gravity gradient force, center of mass, angular momentum, centrifugal force, and coriolis effect). This video ends with a discussion of the technology transfer and utilization of this tethered satellite concept and design.

  14. The Role of Forcing and Internal Dynamics in explaining the 'Medieval Climate Anomaly'

    NASA Technical Reports Server (NTRS)

    Goossee, Hugues; Crespin, Elisabeth; Dubinkina, Svetlana; Loutre, Marie-France; Mann, Michael E.; Renssen, Hans; Shindell, Drew

    2012-01-01

    Proxy reconstructions suggest that peak global temperature during the past warm interval known as the Medieval Climate Anomaly (MCA, roughly 950-1250 AD) has been exceeded only during the most recent decades. To better understand the origin of this warm period, we use model simulations constrained by data assimilation establishing the spatial pattern of temperature changes that is most consistent with forcing estimates, model physics and the empirical information contained in paleoclimate proxy records. These numerical experiments demonstrate that the reconstructed spatial temperature pattern of the MCA can be explained by a simple thermodynamical response of the climate system to relatively weak changes in radiative forcing combined with a modification of the atmospheric circulation, displaying some similarities with the positive phase of the so-called Arctic Oscillation, and with northward shifts in the position of the Gulf Stream and Kuroshio currents. The mechanisms underlying the MCA are thus quite different from anthropogenic mechanisms responsible for modern global warming.

  15. Force-controlled dynamic wear testing of total ankle replacements.

    PubMed

    Reinders, Jörn; von Stillfried, Falko; Altan, Emel; Sonntag, Robert; Heitzmann, Daniel W W; Kretzer, Jan Philippe

    2015-01-01

    Currently, our knowledge of wear performance in total ankle replacements is limited. The aim of this study is to develop a scenario for force-controlled testing and wear testing of total ankle replacements. A force-controlled wear test was developed: based on cadaver measurements, the passive stabilization (ligaments and soft tissue) of the ankle joint was characterized and a restraint model for ankle stabilization was developed. Kinematics and kinetics acting at the replaced ankle joint were defined based on literature data and gait analysis. Afterwards, force-controlled wear testing was carried out on a mobile, three-component, total ankle replacement design. Wear was assessed gravimetrically and wear particles were analyzed. Wear testing resulted in a mean wear rate of 18.2±1.4mm(3)/10(6) cycles. Wear particles showed a mean size of 0.23μm with an aspect ratio of 1.61±0.96 and a roundness of 0.62±0.14. Wear testing of total ankle replacement shows that a relevant wear mass is generated with wear particles in a biologically relevant size range. The developed wear test provides a basis for future wear testing of total ankle replacements. PMID:25448342

  16. Dynamic adhesive force measurements under vertical and horizontal motions of interacting rough surfaces.

    PubMed

    Yeo, Chang-Dong; Lee, Sung-Chang; Polycarpou, Andreas A

    2008-01-01

    An instrument to measure dynamic adhesive forces between interacting rough surfaces has been developed. It consists of four parts, namely, main instrument body, vertical positioning system with both micrometer and nanometer positioning accuracies, horizontal positioning system with nanometer positioning accuracy, and custom-built high-resolution, and high dynamic bandwidth capacitive force transducer. The vertical piezoelectric actuator (PZT) controls the vertical (approaching and retracting) motion of the upper specimen, while the horizontal PZT controls the horizontal (reciprocal) motion of the lower specimen. The force transducer is placed in line with the upper specimen and vertical PZT, and directly measures the adhesive forces with a root-mean-square load resolution of 1.7 microN and a dynamic bandwidth of 1.7 kHz. The newly developed instrument enables reliable measurements of near-contact and contact adhesive forces for microscale devices under different dynamic conditions. Using the developed instrument, dynamic pull-in and pull-off force measurements were performed between an aluminum-titanium-carbide sphere and a 10 nm thick carbon film disk sample. Three different levels of contact force were investigated; where for each contact force level the vertical velocity of the upper sample was varied from 0.074 to 5.922 microms, while the lower sample was stationary. It was found that slower approaching and retracting velocities result in higher pull-in and pull-off forces. The noncontact attractive force was also measured during horizontal movement of the lower sample, and it was found that the periodic movements of the lower disk sample also affect the noncontact surface interactions. PMID:18248070

  17. Exploring the Contribution of Collective Motions to the Dynamics of Forced-Unfolding in Tubulin

    PubMed Central

    Joshi, Harshad; Momin, Farhana; Haines, Kelly E.; Dima, Ruxandra I.

    2010-01-01

    Abstract Decomposition of the intrinsic dynamics of proteins into collective motions among distant regions of the protein structure provides a physically appealing approach that couples the dynamics of the system with its functional role. The cellular functions of microtubules (an essential component of the cytoskeleton in all eukaryotic cells) depend on their dynamic instability, which is altered by various factors among which applied forces are central. To shed light on the coupling between forces and the dynamic instability of microtubules, we focus on the investigation of the response of the microtubule subunits (tubulin) to applied forces. We address this point by adapting an approach designed to survey correlations for the equilibrium dynamics of proteins to the case of correlations for proteins forced-dynamics. The resulting collective motions in tubulin have a number of functional implications, such as the identification of long-range couplings with a role in blocking the dynamic instability of microtubules. A fundamental implication of our study for the life of a cell is that, to increase the likelihood of unraveling of large cytoskeletal filaments under physiological forces, molecular motors must use a combination of pulling and torsion rather than just pulling. PMID:20159162

  18. DynamicRoots: A Software Platform for the Reconstruction and Analysis of Growing Plant Roots

    PubMed Central

    Symonova, Olga; Topp, Christopher N.; Edelsbrunner, Herbert

    2015-01-01

    We present a software platform for reconstructing and analyzing the growth of a plant root system from a time-series of 3D voxelized shapes. It aligns the shapes with each other, constructs a geometric graph representation together with the function that records the time of growth, and organizes the branches into a hierarchy that reflects the order of creation. The software includes the automatic computation of structural and dynamic traits for each root in the system enabling the quantification of growth on fine-scale. These are important advances in plant phenotyping with applications to the study of genetic and environmental influences on growth. PMID:26030757

  19. Femtosecond Transfer Dynamics of Photogenerated Electrons at a Surface Resonance of Reconstructed InP(100)

    NASA Astrophysics Data System (ADS)

    Töben, L.; Gundlach, L.; Ernstorfer, R.; Eichberger, R.; Hannappel, T.; Willig, F.; Zeiser, A.; Förstner, J.; Knorr, A.; Hahn, P. H.; Schmidt, W. G.

    2005-02-01

    Time-dependent two-photon photoemission spectra are used to resolve the femtosecond dynamics of hot electrons at the energetically lowest surface resonance of reconstructed InP(100). Two different cases are studied, where electrons either are lifted into the surface resonance via a direct optical transition or are captured from bulk states. These data are the first of this kind recorded with a time resolution below 70 fs. The microscopic analysis shows that electron-phonon scattering is a major mechanism for electron transfer between surface and bulk states.

  20. Dynamic measurement and modeling of the Casimir force at the nanometer scale

    SciTech Connect

    Kohoutek, John; Wan, Ivy Yoke Leng; Mohseni, Hooman

    2010-02-08

    We present a dynamic method for measurement of the Casimir force with an atomic force microscope (AFM) with a conventional AFM tip. With this method, originally based on the phase of vibration of the AFM tip, we are able to verify the Casimir force at distances of nearly 6 nm with an AFM tip that has a radius of curvature of nearly 100 nm. Until now dynamic methods have been done using large metal spheres at greater distances. Also presented is a theoretical model based on the harmonic oscillator, including nonidealities. This model accurately predicts the experimental data.

  1. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    PubMed

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump. PMID:19894088

  2. Calculation of structural dynamic forces and stresses using mode acceleration

    NASA Technical Reports Server (NTRS)

    Blelloch, Paul

    1989-01-01

    While the standard mode acceleration formulation in structural dynamics has often been interpreted to suggest that the reason for improved convergence obtainable is that the dynamic correction factor is divided by the modal frequencies-squared, an alternative formulation is presented which clearly indicates that the only difference between mode acceleration and mode displacement data recovery is the addition of a static correction term. Attention is given to the advantages in numerical implementation associated with this alternative, as well as to an illustrative example.

  3. Optimized molecular reconstruction procedure combining hybrid reverse Monte Carlo and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bousige, Colin; BoÅ£an, Alexandru; Ulm, Franz-Josef; Pellenq, Roland J.-M.; Coasne, Benoît

    2015-03-01

    We report an efficient atom-scale reconstruction method that consists of combining the Hybrid Reverse Monte Carlo algorithm (HRMC) with Molecular Dynamics (MD) in the framework of a simulated annealing technique. In the spirit of the experimentally constrained molecular relaxation technique [Biswas et al., Phys. Rev. B 69, 195207 (2004)], this modified procedure offers a refined strategy in the field of reconstruction techniques, with special interest for heterogeneous and disordered solids such as amorphous porous materials. While the HRMC method generates physical structures, thanks to the use of energy penalties, the combination with MD makes the method at least one order of magnitude faster than HRMC simulations to obtain structures of similar quality. Furthermore, in order to ensure the transferability of this technique, we provide rational arguments to select the various input parameters such as the relative weight ω of the energy penalty with respect to the structure optimization. By applying the method to disordered porous carbons, we show that adsorption properties provide data to test the global texture of the reconstructed sample but are only weakly sensitive to the presence of defects. In contrast, the vibrational properties such as the phonon density of states are found to be very sensitive to the local structure of the sample.

  4. Optimized molecular reconstruction procedure combining hybrid reverse Monte Carlo and molecular dynamics

    SciTech Connect

    Bousige, Colin; Boţan, Alexandru; Coasne, Benoît; Ulm, Franz-Josef; Pellenq, Roland J.-M.

    2015-03-21

    We report an efficient atom-scale reconstruction method that consists of combining the Hybrid Reverse Monte Carlo algorithm (HRMC) with Molecular Dynamics (MD) in the framework of a simulated annealing technique. In the spirit of the experimentally constrained molecular relaxation technique [Biswas et al., Phys. Rev. B 69, 195207 (2004)], this modified procedure offers a refined strategy in the field of reconstruction techniques, with special interest for heterogeneous and disordered solids such as amorphous porous materials. While the HRMC method generates physical structures, thanks to the use of energy penalties, the combination with MD makes the method at least one order of magnitude faster than HRMC simulations to obtain structures of similar quality. Furthermore, in order to ensure the transferability of this technique, we provide rational arguments to select the various input parameters such as the relative weight ω of the energy penalty with respect to the structure optimization. By applying the method to disordered porous carbons, we show that adsorption properties provide data to test the global texture of the reconstructed sample but are only weakly sensitive to the presence of defects. In contrast, the vibrational properties such as the phonon density of states are found to be very sensitive to the local structure of the sample.

  5. Low-rank + sparse (L+S) reconstruction for accelerated dynamic MRI with seperation of background and dynamic components

    NASA Astrophysics Data System (ADS)

    Otazo, Ricardo; Sodickson, Daniel K.; Candès, Emmanuel J.

    2013-09-01

    L+S matrix decomposition finds the low-rank (L) and sparse (S) components of a matrix M by solving the following convex optimization problem: min‖L‖*L+S matrix decomposition finds the low-rank (L) and sparse (S) components of a matrix M by solving the following convex optimization problem: ‖L ‖* + λ‖S‖1, subject to M=L+S, where ‖L‖* is the nuclear-norm or sum of singular values of L and ‖S‖1 is the 11-norm| or sum of absolute values of S. This work presents the application of the L+S decomposition to reconstruct incoherently undersampled dynamic MRI data as a superposition of a slowly or coherently changing background and sparse innovations. Feasibility of the method was tested in several accelerated dynamic MRI experiments including cardiac perfusion, time-resolved peripheral angiography and liver perfusion using Cartesian and radial sampling. The high acceleration and background separation enabled by L+S reconstruction promises to enhance spatial and temporal resolution and to enable background suppression without the need of subtraction or modeling.

  6. Reconstructing monsoon dynamics on the Tibetan Plateau using ostracod shell chemistry

    NASA Astrophysics Data System (ADS)

    Boerner, N.; De Baere, B.; Yang, Q.; Francois, R. H. G. M.; Jochum, K. P.; Frenzel, P.; Schwalb, A.

    2014-12-01

    Ostracod shells have widely been used as source material for geochemical analysis of stable isotope and trace element composition in paleolimnological reconstruction of lake hydrochemistry and climate as they provide insight into past water balance and solute evolution of lakes. During five fieldtrips to the Tibetan Plateau, taking place between 2008 and 2012, we collected live and sub-recent ostracods from 333 sites. Hydrochemical parameters, such as temperature, electrical conductivity, pH as well as major and minor ion concentrations were measured at each site and show high variability between sites. Adult intact individuals from the most common ostracod taxa were selected and their shell chemistry analyzed. The trace elemental data for the living ostracods compared to the hydrological data provides a calibration dataset for further hydrological and thus climatological reconstruction. Mg/Ca, Sr/Ca and Ba/Ca ratios in ostracod shells provide information about past water temperature and salinity resulting from changes in precipitation vs. evaporation ratios and monsoon activity. Furthermore, Mn/Ca, Fe/Ca and U/Ca ratios are being explored as redox indicators to reconstruct oxygenation cycles. To reconstruct the monsoon dynamics on the Tibetan Plateau, sediment cores from different lakes on an east-west transect were taken: two long sediment cores from lakes Nam Co and Tangra Yumco, covering the past 20,000 years, and a short core from Lake Taro Co. The lakes feature an alkaline environment but show significant differences in their electrical conductivity ranging from 0.99 mS/cm (Taro Co) and 1.8 mS/cm (Nam Co) to 12 mS/cm (Tangra Yumco). The chemical composition of valves of the most common ostracod species in these lakes, Leucocytherella sinensis, was analyzed using laser ablation ICP-MS. The reconstruction provides a more extensive insight in past precipitation - evaporation balance and lake level change and provides clues about the interaction between the

  7. A method of dose reconstruction for moving targets compatible with dynamic treatments

    PubMed Central

    Poulsen, Per Rugaard; Schmidt, Mai Lykkegaard; Keall, Paul; Worm, Esben Schjødt; Fledelius, Walther; Hoffmann, Lone

    2012-01-01

    Purpose: To develop a method that allows a commercial treatment planning system (TPS) to perform accurate dose reconstruction for rigidly moving targets and to validate the method in phantom measurements for a range of treatments including intensity modulated radiation therapy (IMRT), volumetric arc therapy (VMAT), and dynamic multileaf collimator (DMLC) tracking. Methods: An in-house computer program was developed to manipulate Dicom treatment plans exported from a TPS (Eclipse, Varian Medical Systems) such that target motion during treatment delivery was incorporated into the plans. For each treatment, a motion including plan was generated by dividing the intratreatment target motion into 1 mm position bins and construct sub-beams that represented the parts of the treatment that were delivered, while the target was located within each position bin. For each sub-beam, the target shift was modeled by a corresponding isocenter shift. The motion incorporating Dicom plans were reimported into the TPS, where dose calculation resulted in motion including target dose distributions. For experimental validation of the dose reconstruction a thorax phantom with a moveable lung equivalent rod with a tumor insert of solid water was first CT scanned. The tumor insert was delineated as a gross tumor volume (GTV), and a planning target volume (PTV) was formed by adding margins. A conformal plan, two IMRT plans (step-and-shoot and sliding windows), and a VMAT plan were generated giving minimum target doses of 95% (GTV) and 67% (PTV) of the prescription dose (3 Gy). Two conformal fields with MLC leaves perpendicular and parallel to the tumor motion, respectively, were generated for DMLC tracking. All treatment plans were delivered to the thorax phantom without tumor motion and with a sinusoidal tumor motion. The two conformal fields were delivered with and without portal image guided DMLC tracking based on an embedded gold marker. The target dose distribution was measured with a

  8. Reconstructing the Dynamics of HIV Evolution within Hosts from Serial Deep Sequence Data

    PubMed Central

    Poon, Art F. Y.; Swenson, Luke C.; Bunnik, Evelien M.; Edo-Matas, Diana; Schuitemaker, Hanneke; van 't Wout, Angélique B.; Harrigan, P. Richard

    2012-01-01

    At the early stage of infection, human immunodeficiency virus (HIV)-1 predominantly uses the CCR5 coreceptor for host cell entry. The subsequent emergence of HIV variants that use the CXCR4 coreceptor in roughly half of all infections is associated with an accelerated decline of CD4+ T-cells and rate of progression to AIDS. The presence of a ‘fitness valley’ separating CCR5- and CXCR4-using genotypes is postulated to be a biological determinant of whether the HIV coreceptor switch occurs. Using phylogenetic methods to reconstruct the evolutionary dynamics of HIV within hosts enables us to discriminate between competing models of this process. We have developed a phylogenetic pipeline for the molecular clock analysis, ancestral reconstruction, and visualization of deep sequence data. These data were generated by next-generation sequencing of HIV RNA extracted from longitudinal serum samples (median 7 time points) from 8 untreated subjects with chronic HIV infections (Amsterdam Cohort Studies on HIV-1 infection and AIDS). We used the known dates of sampling to directly estimate rates of evolution and to map ancestral mutations to a reconstructed timeline in units of days. HIV coreceptor usage was predicted from reconstructed ancestral sequences using the geno2pheno algorithm. We determined that the first mutations contributing to CXCR4 use emerged about 16 (per subject range 4 to 30) months before the earliest predicted CXCR4-using ancestor, which preceded the first positive cell-based assay of CXCR4 usage by 10 (range 5 to 25) months. CXCR4 usage arose in multiple lineages within 5 of 8 subjects, and ancestral lineages following alternate mutational pathways before going extinct were common. We observed highly patient-specific distributions and time-scales of mutation accumulation, implying that the role of a fitness valley is contingent on the genotype of the transmitted variant. PMID:23133358

  9. A twentieth-century reanalysis forced ocean model to reconstruct the North Atlantic climate variation during the 1920s

    NASA Astrophysics Data System (ADS)

    Müller, W. A.; Matei, D.; Bersch, M.; Jungclaus, J. H.; Haak, H.; Lohmann, K.; Compo, G. P.; Sardeshmukh, P. D.; Marotzke, J.

    2015-04-01

    The observed North Atlantic multi-decadal variability for the period 1872-2009 is reconstructed with the Max Planck Institute ocean model, which is forced with an ensemble of the atmospheric twentieth century reanalysis. Special emphasis is put on the early part of the experiments, which includes a prominent climate variation during the 1920s. The experiments are in agreement with selected hydrographic records, indicating a transition from cold and fresh North Atlantic water properties, prior to the 1920 climate variation, towards warm and saline waters afterwards. Examining the variation reveals that sea level pressure (SLP) anomalies prior to the 1900s resemble a negative phase of North Atlantic Oscillation and associated weak winds result in a weak North Atlantic Current (NAC) and sub-polar gyre (SPG). This leads to a reduced transport of warm and saline waters into the higher latitudes. Simultaneously, Arctic freshwater release results in the accumulation of cold and fresh water properties, which cover the upper layers in the Labrador Sea and subsequently suppress convection. From the 1910s, the Arctic freshwater export is reduced, and, NAC and SPG are strengthened as a result of an increased SLP gradient over the North Atlantic. Concurrently, Labrador Sea convection and Atlantic meridional overturning circulation (AMOC) increase. The intensified NAC, SPG, and AMOC redistribute sub-tropical water into the North Atlantic and Nordic Seas, thereby increasing observed and modelled temperature and salinity during the 1920s.

  10. The distributed diagonal force decomposition method for parallelizing molecular dynamics simulations.

    PubMed

    Borštnik, Urban; Miller, Benjamin T; Brooks, Bernard R; Janežič, Dušanka

    2011-11-15

    Parallelization is an effective way to reduce the computational time needed for molecular dynamics simulations. We describe a new parallelization method, the distributed-diagonal force decomposition method, with which we extend and improve the existing force decomposition methods. Our new method requires less data communication during molecular dynamics simulations than replicated data and current force decomposition methods, increasing the parallel efficiency. It also dynamically load-balances the processors' computational load throughout the simulation. The method is readily implemented in existing molecular dynamics codes and it has been incorporated into the CHARMM program, allowing its immediate use in conjunction with the many molecular dynamics simulation techniques that are already present in the program. We also present the design of the Force Decomposition Machine, a cluster of personal computers and networks that is tailored to running molecular dynamics simulations using the distributed diagonal force decomposition method. The design is expandable and provides various degrees of fault resilience. This approach is easily adaptable to computers with Graphics Processing Units because it is independent of the processor type being used. PMID:21793007

  11. Reconstruction of correlation-driven electron-hole dynamics by high-harmonic-generation spectroscopy

    NASA Astrophysics Data System (ADS)

    Leeuwenburgh, Jonathan; Cooper, Bridgette; Averbukh, Vitali; Marangos, Jonathan P.; Ivanov, Misha

    2014-09-01

    We present detailed analysis of the recently proposed technique of high-order-harmonic generation spectroscopy of correlation-driven electron hole dynamics in atoms and molecules. This novel technique resolves Auger-type processes with attosecond-scale resolution by clocking the decay process with high-harmonic generation. The harmonic generation is driven by an attosecond, XUV pump pulse and a long-duration, infrared pulse. We present the strong-field-approximation-based theory of such an XUV-initiated high-order-harmonic generation process. We detail different ways of recovering the hole survival probability by altering experimental parameters to change the time-energy mapping of the harmonics. The various reconstruction methods are then simulated for M4,5NN Auger decay in krypton and molecular-orbital breakdown dynamics in trans-butadiene and propanal.

  12. Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Melcher, John; Hu, Shuiqing; Raman, Arvind

    2008-06-01

    We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.

  13. Prediction of atomic force microscope probe dynamics through the receptance coupling method

    SciTech Connect

    Mehrpouya, M.; Park, S. S.

    2011-12-15

    The increased growth in the use of tip-based sensing, manipulations, and fabrication of devices in atomic force microscopy (AFM) necessitates the accurate prediction of the dynamic behavior of the AFM probe. The chip holder, to which the micro-sensing device is attached, and the rest of the AFM system can affect the overall dynamics of the probe. In order to consider these boundary effects, we propose a novel receptance coupling method to mathematically combine the dynamics of the AFM setup and probe, based on the equilibrium and compatibility conditions at the joint. Once the frequency response functions of displacement over force at the tool tip are obtained, the dynamic interaction forces between the tip and the sample in nanoscale can be determined by measuring the probe tip displacement.

  14. Reconstruction of an input function from a dynamic PET water image using multiple tissue curves.

    PubMed

    Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro

    2016-08-01

    Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. When CBF is assessed using PET with [Formula: see text] (15)O or C(15)O2, its calculation requires an arterial input function, which generally requires invasive arterial blood sampling. The aim of the present study was to develop a new technique to reconstruct an image derived input function (IDIF) from a dynamic [Formula: see text] (15)O PET image as a completely non-invasive approach. Our technique consisted of using a formula to express the input using tissue curve with rate constant parameter. For multiple tissue curves extracted from the dynamic image, the rate constants were estimated so as to minimize the sum of the differences of the reproduced inputs expressed by the extracted tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects (n  =  29) and was compared to the blood sampling method. Simulation studies were performed to examine the magnitude of potential biases in CBF and to optimize the number of multiple tissue curves used for the input reconstruction. In the PET study, the estimated IDIFs were well reproduced against the measured ones. The difference between the calculated CBF values obtained using the two methods was small as around  <8% and the calculated CBF values showed a tight correlation (r  =  0.97). The simulation showed that errors associated with the assumed parameters were  <10%, and that the optimal number of tissue curves to be used was around 500. Our results demonstrate that IDIF can be reconstructed directly from tissue curves obtained through [Formula: see text] (15)O PET imaging. This suggests the possibility of using a completely non-invasive technique to assess CBF in patho-physiological studies. PMID:27401833

  15. Reconstruction of an input function from a dynamic PET water image using multiple tissue curves

    NASA Astrophysics Data System (ADS)

    Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro

    2016-08-01

    Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. When CBF is assessed using PET with {{\\text{H}}2} 15O or C15O2, its calculation requires an arterial input function, which generally requires invasive arterial blood sampling. The aim of the present study was to develop a new technique to reconstruct an image derived input function (IDIF) from a dynamic {{\\text{H}}2} 15O PET image as a completely non-invasive approach. Our technique consisted of using a formula to express the input using tissue curve with rate constant parameter. For multiple tissue curves extracted from the dynamic image, the rate constants were estimated so as to minimize the sum of the differences of the reproduced inputs expressed by the extracted tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects (n  =  29) and was compared to the blood sampling method. Simulation studies were performed to examine the magnitude of potential biases in CBF and to optimize the number of multiple tissue curves used for the input reconstruction. In the PET study, the estimated IDIFs were well reproduced against the measured ones. The difference between the calculated CBF values obtained using the two methods was small as around  <8% and the calculated CBF values showed a tight correlation (r  =  0.97). The simulation showed that errors associated with the assumed parameters were  <10%, and that the optimal number of tissue curves to be used was around 500. Our results demonstrate that IDIF can be reconstructed directly from tissue curves obtained through {{\\text{H}}2} 15O PET imaging. This suggests the possibility of using a completely non-invasive technique to assess CBF in patho-physiological studies.

  16. On the optimal reconstruction and control of adaptive optical systems with mirror dynamics.

    PubMed

    Correia, Carlos; Raynaud, Henri-François; Kulcsár, Caroline; Conan, Jean-Marc

    2010-02-01

    In adaptive optics (AO) the deformable mirror (DM) dynamics are usually neglected because, in general, the DM can be considered infinitely fast. Such assumption may no longer apply for the upcoming Extremely Large Telescopes (ELTs) with DM that are several meters in diameter with slow and/or resonant responses. For such systems an important challenge is to design an optimal regulator minimizing the variance of the residual phase. In this contribution, the general optimal minimum-variance (MV) solution to the full dynamical reconstruction and control problem of AO systems (AOSs) is established. It can be looked upon as the parent solution from which simpler (used hitherto) suboptimal solutions can be derived as special cases. These include either partial DM-dynamics-free solutions or solutions derived from the static minimum-variance reconstruction (where both atmospheric disturbance and DM dynamics are neglected altogether). Based on a continuous stochastic model of the disturbance, a state-space approach is developed that yields a fully optimal MV solution in the form of a discrete-time linear-quadratic-Gaussian (LQG) regulator design. From this LQG standpoint, the control-oriented state-space model allows one to (1) derive the optimal state-feedback linear regulator and (2) evaluate the performance of both the optimal and the sub-optimal solutions. Performance results are given for weakly damped second-order oscillatory DMs with large-amplitude resonant responses, in conditions representative of an ELT AO system. The highly energetic optical disturbance caused on the tip/tilt (TT) modes by the wind buffeting is considered. Results show that resonant responses are correctly handled with the MV regulator developed here. The use of sub-optimal regulators results in prohibitive performance losses in terms of residual variance; in addition, the closed-loop system may become unstable for resonant frequencies in the range of interest. PMID:20126246

  17. Mechanical manifestations of rare atomic jumps in dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Hoffmann, R.; Baratoff, A.; Hug, H. J.; Hidber, H. R.; Löhneysen, H. v.; Güntherodt, H.-J.

    2007-10-01

    The resonance frequency and the excitation amplitude of a silicon cantilever have been measured as a function of distance to a cleaved KBr(001) surface with a low-temperature scanning force microscope (SFM) in ultrahigh vacuum. We identify two regimes of tip-sample distances. Above a site-dependent critical tip-sample distance reproducible data with low noise and no interaction-induced energy dissipation are measured. In this regime reproducible SFM images can be recorded. At closer tip-sample distances, above two distinct atomic sites, the frequency values jump between two limiting curves on a timescale of tens of milliseconds. Furthermore, additional energy dissipation occurs wherever jumps are observed. We attribute both phenomena to rarely occurring changes in the tip apex configuration which are affected by short-range interactions with the sample. Their respective magnitudes are related to each other. A specific candidate two-level system is also proposed.

  18. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.

    PubMed

    Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R

    2015-10-01

    Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. PMID:26303510

  19. Integrated dynamic and static tactile sensor: focus on static force sensing

    NASA Astrophysics Data System (ADS)

    Wettels, Nicholas; Pletner, Baruch

    2012-04-01

    Object grasping by robotic hands in unstructured environments demands a sensor that is durable, compliant, and responsive to static and dynamic force conditions. In order for a tactile sensor to be useful for grasp control in these, it should have the following properties: tri-axial force sensing (two shear plus normal component), dynamic event sensing across slip frequencies, compliant surface for grip, wide dynamic range (depending on application), insensitivity to environmental conditions, ability to withstand abuse and good sensing behavior (e.g. low hysteresis, high repeatability). These features can be combined in a novel multimodal tactile sensor. This sensor combines commercial-off-the-shelf MEMS technology with two proprietary force sensors: a high bandwidth device based on PZT technology and low bandwidth device based on elastomers and optics. In this study, we focus on the latter transduction mechanism and the proposed architecture of the completed device. In this study, an embedded LED was utilized to produce a constant light source throughout a layer of silicon rubber which covered a plastic mandrel containing a set of sensitive phototransistors. Features about the contacted object such as center of pressure and force vectors can be extracted from the information in the changing patterns of light. The voltage versus force relationship obtained with this molded humanlike finger had a wide dynamic range that coincided with forces relevant for most human grip tasks.

  20. Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals

    PubMed Central

    Cheng, Ju-Chieh (Kevin); Shoghi, Kooresh; Laforest, Richard

    2012-01-01

    Purpose: Iterative reconstruction algorithms are becoming more commonly employed in positron emission tomography (PET) imaging; however, the quantitative accuracy of the reconstructed images still requires validation for various levels of contrast and counting statistics. Methods: The authors present an evaluation of the quantitative accuracy of the 3D maximum a posteriori (3D-MAP) image reconstruction algorithm for dynamic PET imaging with comparisons to two of the most widely used reconstruction algorithms: the 2D filtered-backprojection (2D-FBP) and 2D-ordered subsets expectation maximization (2D-OSEM) on the Siemens microPET scanners. The study was performed for various levels of count density encountered in typical dynamic scanning as well as the imaging of cardiac activity concentration in small animal studies on the Focus 120. Specially designed phantoms were used for evaluation of the spatial resolution, image quality, and quantitative accuracy. A normal mouse was employed to evaluate the accuracy of the blood time activity concentration extracted from left ventricle regions of interest (ROIs) within the images as compared to the actual blood activity concentration measured from arterial blood sampling. Results: For MAP reconstructions, the spatial resolution and contrast have been found to reach a stable value after 20 iterations independent of the β values (i.e., hyper parameter which controls the weight of the penalty term) and count density within the frame. The spatial resolution obtained with 3D-MAP reaches values of ∼1.0 mm with a β of 0.01 while the 2D-FBP has value of 1.8 mm and 2D-OSEM has a value of 1.6 mm. It has been observed that the lower the hyper parameter β used in MAP, more iterations are needed to reach the stable noise level (i.e., image roughness). The spatial resolution is improved by using a lower β value at the expense of higher image noise. However, with similar noise level the spatial resolution achieved by 3D-MAP was

  1. Vegetation and soil dynamics under climatic to anthropogenic forcing through the Holocene in Eastern France

    NASA Astrophysics Data System (ADS)

    Doyen, Elise; Vannière, Boris; Gauthier, Emilie; Bichet, Vincent; Berger, Jean-François; Arnaud, Fabien

    2010-05-01

    Small lakes with little catchment areas, and high resolution Holocene sediment infilling, offer the interest to record mainly local perturbation and to study the switch from climatic to anthropogenic forcing. Two cores were extracted from Lake Antre in the Jura Mountains (Eastern France, 798 m a.s.l) and Lake Moras located on a low-elevated plateau from the upper Rhone valley (Eastern France, 304 m a.s.l). Cores taken from the deep zone of the lakes present continuous sedimentary series from the Late-glacial (15 000 cal. BP) for Lake Moras and from the Atlantic chronozone (6000 cal. BP) for Lake Antre. Several archaeological excavations and investigations around Lakes Antre and Moras give evidence of major human occupation during Gallo-roman period, while former settlements are indicating by Pre- and Protohistoric archaeological artifacts. Multi-proxy reconstructions with high temporal resolution were undertaken: vegetation dynamics by pollen analysis, fire history by the quantification of microscopic charcoal and soil erosion by magnetic susceptibility measurements. Before the anthropogenic forcing, during the mid-Holocene environment of both lakes are constituted mainly by a dense mixed oak forest. The first palaeoecological signs of anthropogenic impact on the two sites appear to have been discontinuous and limited. They appear at the early Neolithic (ca 6000 cal .BP) for Lake Moras and during the Bronze Age (4000 to 3000 cal .BP) for Lake Antre. For the both sites, all the proxies indicate an acceleration of human impact around 3000 to 2700 cal. BP i.e. at the transition between the Bronze Age and the beginning of the Iron Age. The dense forest and the Alnus dominated vegetation on borders of lakes are affected by several clearances. The influx of micro-charcoal increases due to the use of the fire for clearing and manage settlements. The development of Poaceae and Anthropogenic Pollen Indicators (API) suggest an expansion of pastures, whereas the farming

  2. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome

    PubMed Central

    Bazellières, Elsa; Conte, Vito; Elosegui-Artola, Alberto; Serra-Picamal, Xavier; Bintanel-Morcillo, María; Roca-Cusachs, Pere; Muñoz, José J; Sales-Pardo, Marta; Guimerà, Roger; Trepat, Xavier

    2015-01-01

    Dynamics of epithelial tissues determines key processes in development, tissue healing, and cancer invasion. These processes are critically influenced by cell-cell adhesion forces. However, the identity of the proteins that resist and transmit forces at cell-cell junctions remains unclear, and how these proteins control tissue dynamics is largely unknown. Here we provide a systematic study of the interplay between cell-cell adhesion proteins, intercellular forces, and epithelial tissue dynamics. We show that collective cellular responses to selective perturbations of the intercellular adhesome conform to three mechanical phenotypes. These phenotypes are controlled by different molecular modules and characterized by distinct relationships between cellular kinematics and intercellular forces. We show that these forces and their rates can be predicted by the concentrations of cadherins and catenins. Unexpectedly, we identified different mechanical roles for P-cadherin and E-cadherin; while P-cadherin predicts levels of intercellular force, E-cadherin predicts the rate at which intercellular force builds up. PMID:25812522

  3. Impact of External Forcing on Glacier Dynamics at Jakobshavn Isbræ during 1840-2012

    NASA Astrophysics Data System (ADS)

    Muresan, I. S.; Khan, S. A.; Aschwanden, A.; Khroulev, C.; Bjork, A. A.; Box, J. E.

    2014-12-01

    Greenland's main outlet glaciers have more than doubled their contribution to global sea-level rise over the past decade through acceleration of ice discharge. One of the triggering mechanisms is a reduction in resistance (buttressing) at the marine based glacier front (i.e. through reduced thickness or retreat of the floating tongue of a glacier) caused by enhanced calving or a longer-term thinning due to a mass deficit of the ice sheet. Recent findings indicate the reduced buttressing at the marine terminus is responsible for the recent dynamic changes observed in Greenland, but the controlling processes and triggering mechanisms are still unclear. Furthermore, our current understanding is almost entirely based on observations from a short-term record spanning only from a year to a decade, and is characterized by short-term fluctuations and therefore not representative for longer-term trends of several decade time scales. Here, we study the mechanisms controlling dynamic changes at the terminus of Jakobshavn Isbræ over a period of 172 years. The recent glacier acceleration began in late 1990s but there is evidence for glacier retreat of comparable magnitude in 1930s, when a similarly warm period occurred. To control the acceleration and retreat based on observed front positions during 1840-2012, we use an ocean model modifier that implements forcing at the ocean boundary using melange back pressure offsets. The mean temperature anomaly in west Greenland, the North Atlantic oscillation (NAO) winter index and the Atlantic multidecadal oscillation (AMO) index anomalies for the period 1900-2012 sustain our modelling results. The modelled surface elevation changes near the front are considered and compared with observed surface elevation changes for the period 1880-2012. Furthermore, the modelled mass loss signal between 1997-2012 is validated based on ice mass change observations which we estimate using altimeter surveys from NASA's ATM flights during 1997

  4. Revisit on dynamic radiation forces induced by pulsed Gaussian beams.

    PubMed

    Wang, Li-Gang; Chai, Hai-Shui

    2011-07-18

    Motivated by the recent optical trapping experiments using ultra-short pulsed lasers [Opt. Express 18, 7554 (2010); Appl. Opt. 48, G33 (2009)], in this paper we have re-investigated the trapping effects of the pulsed radiation force (PRF), which is induced by a pulsed Gaussian beam acting on a Rayleigh dielectric sphere. Based on our previous model [Opt. Express 15, 10615 (2007)], we have considered the effects arisen from both the transverse and axial PRFs, which lead to the different behaviors of both velocities and displacements of a Rayleigh particle within a pulse duration. Our analysis shows that, for the small-sized Rayleigh particles, when the pulse has the large pulse duration, it might provide the three-dimensional optical trapping; and when the pulse has the short pulse duration, it only provides the two-dimensional optical trapping with the axial movement along the pulse propagation. When the particle is in the vacuum or in the situation with the very weak Brownian motion, the particle can always be trapped stably due to the particle's cumulative momentum transferred from the pulse, and only in this case the trapping effect is independent of pulse duration. Finally, we have predicted that for the large-sized Rayleigh particles, the pulse beam can only provide the two-dimensional optical trap (optical guiding). Our results provide the important information about the trapping mechanism of pulsed tweezers. PMID:21934801

  5. Climate Forced Alpine Tundra Ecosystem Dynamics: A Model Approach

    NASA Astrophysics Data System (ADS)

    Jarosch, A. H.; Clarke, G. K.; Danby, R. K.; Hik, D. S.

    2007-12-01

    Insights concerning the future evolution of alpine ecosystems depend on understanding and simulating their response to climate change. Comprehensive studies of these regions require novel spatio-temporal computational models of climate-forced landscape/ecosystem interactions. As part of the International Polar Year (IPY) we are examining alpine tundra landscapes and ecosystems in the Kluane region of southwest Yukon, Canada. Based on the combination of long-term geophysical and ecological field studies and driven by different climate change scenarios, such a model is being used to explore the range of possible future scenarios for the region. As the first step in building such a complex model, we present a simplified, grid-based model to demonstrate potential changes in plant community distribution driven by key climate variables such as temperature and precipitation. A linear orographic precipitation model is used to downscale climate data which, in combination with a digital elevation model, forms the geophysical input for the model. Simplified ecological rules describing the potential state transition of different plant communities and land cover types are incorporated in the model in a cellular automation fashion. The response of the ecosystem to several different climate scenarios will be presented, including a set of North American Regional Reanalysis climate data. This simplified model is used to demonstrate the potential of such interdisciplinary simulations to gain deeper understanding of ecosystem evolution with climate change.

  6. GravitoMagnetic force in modified Newtonian dynamics

    SciTech Connect

    Exirifard, Qasem

    2013-08-01

    We introduce the Gauge Vector-Tensor (GVT) theory by extending the AQUAL's approach to the GravitoElectroMagnetism (GEM) approximation of gravity. GVT is a generally covariant theory of gravity composed of a pseudo Riemannian metric and two U(1) gauge connections that reproduces MOND in the limit of very weak gravitational fields while remains consistent with the Einstein-Hilbert gravity in the limit of strong and Newtonian gravitational fields. GVT also provides a simple framework to study the GEM approximation to gravity. We illustrate that the gravitomagnetic force at the edge of a galaxy can be in accord with either GVT or ΛCDM but not both. We also study the physics of the GVT theory around the gravitational saddle point of the Sun and Jupiter system. We notice that the conclusive refusal of the GVT theory demands measuring either both of the gravitoelectric and gravitomagnetic fields inside the Sun-Jupiter MOND window, or the gravitoelectric field inside two different solar GVT MOND windows. The GVT theory, however, will be favored by observing an anomaly in the gravitoelectric field inside a single MOND window.

  7. Large dynamic range Atomic Force Microscope for overlay improvements

    NASA Astrophysics Data System (ADS)

    Kuiper, Stefan; Fritz, Erik; Crowcombe, Will; Liebig, Thomas; Kramer, Geerten; Witvoet, Gert; Duivenvoorde, Tom; Overtoom, Ton; Rijnbeek, Ramon; van Zwet, Erwin; van Dijsseldonk, Anton; den Boef, Arie; Beems, Marcel; Levasier, Leon

    2016-03-01

    Nowadays most overlay metrology tools assess the overlay performance based on marker features which are deposited next to the functional device features within each layer of the semiconductor device. However, correct overlay of the relatively coarse marker features does not directly guarantee correct overlay of the much smaller device features. This paper presents the development of a tool that allows to measure the relative distance between the marker and device features within each layer of the semiconductor device, which can be used to improve the overlay at device feature level. In order to be effective, the marker to device feature distance should be measured with sub-nanometer measurement uncertainty over several millimeters range. Furthermore, the tool should be capable of profiling the marker features to allows prediction of the location interpretation of the optical diffraction based alignment sensors, which are sensitive for potential asymmetry of the marker features. To enable this, a highly stable Atomic Force Microscope system is being developed. The probe is positioned relative to the wafer with a 6DOF controlled hexapod stage, which has a relatively large positioning range of 8x8mm. The position and orientation of this stage is measured relative to the wafer using 6 interferometers via a highly stable metrology frame. A tilted probe concept is utilized to allow profiling of the high aspect ratio marker and device features. Current activities are aimed at demonstrating the measurement capabilities of the developed AFM system.

  8. Nonparametric and data-driven data assimilation for the reconstruction of complex geophysical dynamics

    NASA Astrophysics Data System (ADS)

    Tandeo, Pierre; Ailliot, Pierre; Ruiz, Juan; Hannart, Alexis; Chapron, Bertrand; Cuzol, Anne; Monbet, Valérie; Le Goff, Clément; Lguensat, Redouane; Fablet, Ronan

    2015-04-01

    Nowadays, ocean, atmosphere and climate sciences face a deluge of data pouring from space, in situ monitoring as well as numerical simulations. The availability of these different data sources offer new opportunities, still largely underexploited, to improve the understanding, modeling and reconstruction of geophysical dynamics. The classical way to reconstruct the space-time dynamics of a geophysical system from observation series relies on data assimilation methods, which perform multiple runs of the known dynamical model. This classical framework may have severe limitations including its computational cost, the lack of consistency of the model with respect to the observed data, modeling uncertainties. Here, we explore an alternative approach and develop a fully data-driven framework. We assume that a representative catalog of examples of the space-time dynamics of the geophysical system of interest is available. Depending on the case-study, such a catalog may be issued from observations as well as numerical simulations. Based on this catalog, we combine machine learning and statistical sampling to address data assimilation as follows. The key idea is to design a nonparametric sampler of the dynamics of the considered geophysical system from the available catalog. We focus in this work on analog (also referred to as nearest-neighbor) methods. They provide us the mean for sampling forecast members with no online evaluation of the physical model. The combination of these members with the observations resorts to the classical stochastic filtering techniques, such as ensemble Kalman or particle filters and smoothers. As a proof concept, we demonstrate the relevance of the proposed data assimilation method for Lorenz-63 and Lorenz-96 chaotic dynamics. We compare different nonparametric sampling schemes as well as stochastic filters and evaluate how the size of the catalog and the dimensionality of the system affect assimilation performance. We show that our

  9. Dynamics of colloidal aggregation in microgravity by critical Casimir forces

    NASA Astrophysics Data System (ADS)

    Potenza, M. A. C.; Manca, A.; Veen, S. J.; Weber, B.; Mazzoni, S.; Schall, P.; Wegdam, G. H.

    2014-06-01

    By combining static and dynamic structure factor measurements under microgravity conditions, we obtain for the first time direct insight into the internal structure of colloidal aggregates formed over a wide range of particle attractions under ideal diffusion-limited conditions. By means of near-field scattering we measure the time-dependent density-density correlation function as the aggregation process evolves, and we determine the ratio of the hydrodynamic and gyration radius to elucidate the aggregate's internal structure as a function of its fractal dimension. Surprisingly, we find that despite the large variation of particle interactions, the mass is always evenly distributed in all objects with fractal dimension ranging from 2.55 for shallow potentials to 1.78 for deep ones.

  10. Numerical, analytical, experimental study of fluid dynamic forces in seals

    NASA Astrophysics Data System (ADS)

    Shapiro, William; Artiles, Antonio; Aggarwal, Bharat; Walowit, Jed; Athavale, Mahesh M.; Preskwas, Andrzej J.

    1992-04-01

    NASA/Lewis Research Center is sponsoring a program for providing computer codes for analyzing and designing turbomachinery seals for future aerospace and engine systems. The program is made up of three principal components: (1) the development of advanced three dimensional (3-D) computational fluid dynamics codes, (2) the production of simpler two dimensional (2-D) industrial codes, and (3) the development of a knowledge based system (KBS) that contains an expert system to assist in seal selection and design. The first task has been to concentrate on cylindrical geometries with straight, tapered, and stepped bores. Improvements have been made by adoption of a colocated grid formulation, incorporation of higher order, time accurate schemes for transient analysis and high order discretization schemes for spatial derivatives. This report describes the mathematical formulations and presents a variety of 2-D results, including labyrinth and brush seal flows. Extensions of 3-D are presently in progress.

  11. Numerical, analytical, experimental study of fluid dynamic forces in seals

    NASA Technical Reports Server (NTRS)

    Shapiro, William; Artiles, Antonio; Aggarwal, Bharat; Walowit, Jed; Athavale, Mahesh M.; Preskwas, Andrzej J.

    1992-01-01

    NASA/Lewis Research Center is sponsoring a program for providing computer codes for analyzing and designing turbomachinery seals for future aerospace and engine systems. The program is made up of three principal components: (1) the development of advanced three dimensional (3-D) computational fluid dynamics codes, (2) the production of simpler two dimensional (2-D) industrial codes, and (3) the development of a knowledge based system (KBS) that contains an expert system to assist in seal selection and design. The first task has been to concentrate on cylindrical geometries with straight, tapered, and stepped bores. Improvements have been made by adoption of a colocated grid formulation, incorporation of higher order, time accurate schemes for transient analysis and high order discretization schemes for spatial derivatives. This report describes the mathematical formulations and presents a variety of 2-D results, including labyrinth and brush seal flows. Extensions of 3-D are presently in progress.

  12. DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-series expression data

    PubMed Central

    2012-01-01

    Background Modeling dynamic regulatory networks is a major challenge since much of the protein-DNA interaction data available is static. The Dynamic Regulatory Events Miner (DREM) uses a Hidden Markov Model-based approach to integrate this static interaction data with time series gene expression leading to models that can determine when transcription factors (TFs) activate genes and what genes they regulate. DREM has been used successfully in diverse areas of biological research. However, several issues were not addressed by the original version. Results DREM 2.0 is a comprehensive software for reconstructing dynamic regulatory networks that supports interactive graphical or batch mode. With version 2.0 a set of new features that are unique in comparison with other softwares are introduced. First, we provide static interaction data for additional species. Second, DREM 2.0 now accepts continuous binding values and we added a new method to utilize TF expression levels when searching for dynamic models. Third, we added support for discriminative motif discovery, which is particularly powerful for species with limited experimental interaction data. Finally, we improved the visualization to support the new features. Combined, these changes improve the ability of DREM 2.0 to accurately recover dynamic regulatory networks and make it much easier to use it for analyzing such networks in several species with varying degrees of interaction information. Conclusions DREM 2.0 provides a unique framework for constructing and visualizing dynamic regulatory networks. DREM 2.0 can be downloaded from: www.sb.cs.cmu.edu/drem. PMID:22897824

  13. Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing

    NASA Astrophysics Data System (ADS)

    Ding, Bohua; Tian, Yongmei; Pan, Yangang; Shan, Yuping; Cai, Mingjun; Xu, Haijiao; Sun, Yingchun; Wang, Hongda

    2015-04-01

    We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly.We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly. Electronic supplementary information (ESI) available: Details of the experimental procedures and the results of the control experiments. See DOI: 10.1039/c5nr01020a

  14. Reciprocity-based experimental determination of dynamic forces and moments: A feasibility study

    NASA Technical Reports Server (NTRS)

    Ver, Istvan L.; Howe, Michael S.

    1994-01-01

    BBN Systems and Technologies has been tasked by the Georgia Tech Research Center to carry Task Assignment No. 7 for the NASA Langley Research Center to explore the feasibility of 'In-Situ Experimental Evaluation of the Source Strength of Complex Vibration Sources Utilizing Reciprocity.' The task was carried out under NASA Contract No. NAS1-19061. In flight it is not feasible to connect the vibration sources to their mounting points on the fuselage through force gauges to measure dynamic forces and moments directly. However, it is possible to measure the interior sound field or vibration response caused by these structureborne sound sources at many locations and invoke principle of reciprocity to predict the dynamic forces and moments. The work carried out in the framework of Task 7 was directed to explore the feasibility of reciprocity-based measurements of vibration forces and moments.

  15. Using the minimum description length principle for global reconstruction of dynamic systems from noisy time series

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Fidelin, G. A.; Loskutov, E. M.; Molkov, Ya. I.; Mukhin, D. N.

    2009-04-01

    We propose a new approach to determining embedding dimension when reconstructing dynamic systems from noisy time series. The available methods of the reconstructing typically include two main steps: (1) reconstruction of the system's phase variables and (2) construction of a model reproducing behavior of the system in the corresponding region of phase space. Reconstruction of phase variables is accomplished, for example, by the method of delay coordinates [1] in the space of dimension referred to as embedding dimension. The embedding dimension should preferably be chosen to be minimum possible. In the absence of additional information about the system, the principal technique for determining embedding dimension is the false nearest neighbor method [2] that is easily realized. Unfortunately, this method is inefficient when the observed time series contains a pronounced noise component [3], thus making it inapplicable for reconstruction of natural systems. The basic feature of the second step - construction of a model from noisy time series - is its incorrectness. Namely, there always exist an infinite number of solutions approximating the observed data with preset accuracy. It is intuitively clear that for the great majority of applications the model will be the better the simpler it is. The authors of [4] proposed to use description length as a measure of such simplicity. The principle of minimum description length implies that the model corresponding to the least description length is the best. As was demonstrated in [5], this provides an effective tool for choosing technical parameters of the model, including the optimal number of such parameters. In the current work we use the principle of minimum description length (MDL) for determining embedding dimension. For this we take the universal model in the form of an artificial neural network that includes embedding dimension as a parameter. The specific feature of using neural networks is the need to introduce

  16. Dynamic Analysis With Stress Mode Animation by the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1997-01-01

    Dynamic animation of stresses and displacements, which complement each other, can be a useful tool in the analysis and design of structural components. At the present time only displacement-mode animation is available through the popular stiffness formulation. This paper attempts to complete this valuable visualization tool by augmenting the existing art with stress mode animation. The reformulated method of forces, which in the literature is known as the integrated force method (IFM), became the analyzer of choice for the development of stress mode animation because stresses are the primary unknowns of its dynamic analysis. Animation of stresses and displacements, which have been developed successfully through the IFM analyzers, is illustrated in several examples along with a brief introduction to IFM dynamic analysis. The usefulness of animation in design optimization is illustrated considering the spacer structure component of the International Space Station as an example. An overview of the integrated force method analysis code (IFM/ANALYZERS) is provided in the appendix.

  17. Conformational dynamics of two natively unfolded fragment peptides: Comparison of the AMBER and CHARMM force fields

    PubMed Central

    Chen, Wei; Shi, Chuanyin; MacKerell, Alexander D.; Shen, Jana

    2015-01-01

    Physics-based force fields are the backbone of molecular dynamics simulations. In recent years, significant progress has been made in the assessment and improvement of commonly-used force fields for describing conformational dynamics of folded proteins. However, the accuracy for the unfolded states remains unclear. The latter is however important for detailed studies of protein folding pathways, conformational transitions involving unfolded states and dynamics of intrinsically disordered proteins. In this work we compare the three commonly-used force fields, AMBER ff99SB-ILDN, CHARMM22/CMAP and CHARMM36, for modeling the natively unfolded fragment peptides, NTL9(1-22) and NTL9(6-17), using explicit-solvent replica-exchange molecular dynamics simulations. All three simulations show that NTL9(6-17) is completely unstructured, while NTL9(1-22) transiently samples various β-hairpin states, reminiscent of the first β-hairpin in the structure of the intact NT9 protein. The radius of gyration of the two peptides is force field independent but likely underestimated due to the current deficiency of additive force fields. Compared to the CHARMM force fields, ff99SB-ILDN gives slightly higher β-sheet propensity and more native-like residual structures for NTL9(1-22), which may be attributed to its known β preference. Surprisingly, only two sequence-local pairs of charged residues make appreciable ionic contacts in the simulations of NTL9(1-22), which are sampled slightly more by the CHARMM force fields. Taken together, these data suggest that the current CHARMM and AMBER force fields are globally in agreement in modeling the unfolded states corresponding to β-sheet in the folded structure, while differing in details such as the native-likeness of the residual structures and interactions. PMID:26020564

  18. Conformational Dynamics of Two Natively Unfolded Fragment Peptides: Comparison of the AMBER and CHARMM Force Fields.

    PubMed

    Chen, Wei; Shi, Chuanyin; MacKerell, Alexander D; Shen, Jana

    2015-06-25

    Physics-based force fields are the backbone of molecular dynamics simulations. In recent years, significant progress has been made in the assessment and improvement of commonly used force fields for describing conformational dynamics of folded proteins. However, the accuracy for the unfolded states remains unclear. The latter is however important for detailed studies of protein folding pathways, conformational transitions involving unfolded states, and dynamics of intrinsically disordered proteins. In this work, we compare the three commonly used force fields, AMBER ff99SB-ILDN, CHARMM22/CMAP, and CHARMM36, for modeling the natively unfolded fragment peptides, NTL9(1-22) and NTL9(6-17), using explicit-solvent replica-exchange molecular dynamics simulations. All three simulations show that NTL9(6-17) is completely unstructured, while NTL9(1-22) transiently samples various β-hairpin states, reminiscent of the first β-hairpin in the structure of the intact NTL9 protein. The radius of gyration of the two peptides is force field independent but likely underestimated due to the current deficiency of additive force fields. Compared to the CHARMM force fields, ff99SB-ILDN gives slightly higher β-sheet propensity and more native-like residual structures for NTL9(1-22), which may be attributed to its known β preference. Surprisingly, only two sequence-local pairs of charged residues make appreciable ionic contacts in the simulations of NTL9(1-22), which are sampled slightly more by the CHARMM force fields. Taken together, these data suggest that the current CHARMM and AMBER force fields are globally in agreement in modeling the unfolded states corresponding to β-sheet in the folded structure, while differing in details such as the native-likeness of the residual structures and interactions. PMID:26020564

  19. Numerical stability in multifluid gas dynamics with implicit drag forces

    NASA Astrophysics Data System (ADS)

    Ramshaw, J. D.; Chang, C. H.

    2015-10-01

    The numerical stability of a conventional explicit numerical scheme for solving the inviscid multifluid dynamical equations describing a multicomponent gas mixture is investigated both analytically and computationally. Although these equations do not explicitly contain diffusion terms, it is well known that they reduce to a single-fluid diffusional description when the drag coefficients in the species momentum equations are large. The question then arises as to whether their numerical solution is subject to a diffusional stability restriction on the time step in addition to the usual Courant sound-speed stability condition. An analytical stability analysis is performed for the special case of a quiescent binary gas mixture with equal sound speeds and temperatures. It is found that the Courant condition is always sufficient to ensure stability, so that no additional diffusional stability restriction arises for any value of the drag coefficient, however large. This result is confirmed by one-dimensional computational results for binary and ternary mixtures with unequal sound speeds, which remain stable even when the time step exceeds the usual diffusional limit by factors of order 100.

  20. Dynamics of the coiled-coil unfolding transition of myosin rod probed by dissipation force spectrum.

    PubMed

    Taniguchi, Yukinori; Khatri, Bhavin S; Brockwell, David J; Paci, Emanuele; Kawakami, Masaru

    2010-07-01

    The motor protein myosin II plays a crucial role in muscle contraction. The mechanical properties of its coiled-coil region, the myosin rod, are important for effective force transduction during muscle function. Previous studies have investigated the static elastic response of the myosin rod. However, analogous to the study of macroscopic complex fluids, how myosin will respond to physiological time-dependent loads can only be understood from its viscoelastic response. Here, we apply atomic force microscopy using a magnetically driven oscillating cantilever to measure the dissipative properties of single myosin rods that provide unique dynamical information about the coiled-coil structure as a function of force. We find that the friction constant of the single myosin rod has a highly nontrivial variation with force; in particular, the single-molecule friction constant is reduced dramatically and increases again as it passes through the coiled-uncoiled transition. This is a direct indication of a large free-energy barrier to uncoiling, which may be related to a fine-tuned dynamic mechanosignaling response to large and unexpected physiological loads. Further, from the critical force at which the minimum in friction occurs we determine the asymmetry of the bistable landscape that controls uncoiling of the coiled coil. This work highlights the sensitivity of the dissipative signal in force unfolding to dynamic molecular structure that is hidden to the elastic signal. PMID:20655854

  1. Haptic perception of force magnitude and its relation to postural arm dynamics in 3D

    PubMed Central

    van Beek, Femke E.; Bergmann Tiest, Wouter M.; Mugge, Winfred; Kappers, Astrid M. L.

    2015-01-01

    In a previous study, we found the perception of force magnitude to be anisotropic in the horizontal plane. In the current study, we investigated this anisotropy in three dimensional space. In addition, we tested our previous hypothesis that the perceptual anisotropy was directly related to anisotropies in arm dynamics. In experiment 1, static force magnitude perception was studied using a free magnitude estimation paradigm. This experiment revealed a significant and consistent anisotropy in force magnitude perception, with forces exerted perpendicular to the line between hand and shoulder being perceived as 50% larger than forces exerted along this line. In experiment 2, postural arm dynamics were measured using stochastic position perturbations exerted by a haptic device and quantified through system identification. By fitting a mass-damper-spring model to the data, the stiffness, damping and inertia parameters could be characterized in all the directions in which perception was also measured. These results show that none of the arm dynamics parameters were oriented either exactly perpendicular or parallel to the perceptual anisotropy. This means that endpoint stiffness, damping or inertia alone cannot explain the consistent anisotropy in force magnitude perception. PMID:26643041

  2. On reconstruction of dynamic permeability and tortuosity from data at distinct frequencies

    NASA Astrophysics Data System (ADS)

    Ou, Miao-Jung Yvonne

    2014-09-01

    This article focuses on the mathematical problem of reconstructing the dynamic permeability K(\\omega ) and dynamic tortuosity of poroelastic composites from permeability data at different frequencies, utilizing the analytic structure of the Stieltjes function representation of K(\\omega ) derived by Avellaneda and Tortquato (1991 Phys. Fluids A 3 2529), which is valid for all pore space geometry. The integral representation formula (IRF) for dynamic tortuosity is derived and its analytic structure exploited for reconstructing the function from a finite data set. All information of pore-space microstructure is contained in the measure of the IRF. The theory of multipoint Padé approximates for Stieltjes functions guarantees the existence of relaxation kernels that can approximate the dynamic permeability function and the dynamic tortuosity function with high accuracy. In this paper, a numerical algorithm is proposed for computing the relaxation time and the corresponding strength for each element in the relaxation kernels. In the frequency domain, this approximation can be regarded as approximating the Stieltjes function by rational functions with simple poles and positive residues. The main difference between this approach and the curve fitting approach is that the relaxation times and the strengths are computed from the partial fraction decomposition of the multipoint Padé approximates, which is the main subject of the proposed approximation scheme. With the idea from dehomogenization, we also established the exact relations between the moments of the positive measures in the IRFs of permeability and tortuosity with two important parameters in the theory of poroelasticity: the infinite-frequency tortuosity {{\\alpha }_{\\infty }} for the general case and the weighted volume-to-surface ratio Λ for the JKD model, which is regarded as a special case of the general model. From these relations, we suggest a new way for evaluating these two microstructure

  3. Dynamic forces on agglomerated particles caused by high-intensity ultrasound.

    PubMed

    Knoop, Claas; Fritsching, Udo

    2014-03-01

    In this paper the acoustic forces on particles and agglomerates caused by high-intensity ultrasound in gaseous atmosphere are derived by means of computational fluid dynamics (CFD). Sound induced forces cause an oscillating stress scenario where the primary particles of an agglomerate are alternatingly pressed together and torn apart with the frequency of the applied wave. A comparison of the calculated acoustic forces with respect to the inter particle adhesion forces from Van-der-Waals and liquid bridge interactions reveals that the separation forces may reach the same order of magnitude for 80 μm sized SiO2-particles. Hence, with finite probability acoustically agitated gases may de-agglomerate/disperse solid agglomerate structures. This effect is confirmed by dispersion experiments in an acoustic particle levitation setup. PMID:24152872

  4. Quantitative reconstruction of thermal and dynamic characteristics of lava flow from surface thermal measurements

    NASA Astrophysics Data System (ADS)

    Korotkii, Alexander; Kovtunov, Dmitry; Ismail-Zadeh, Alik; Tsepelev, Igor; Melnik, Oleg

    2016-04-01

    We study a model of lava flow to determine its thermal and dynamic characteristics from thermal measurements of the lava at its surface. Mathematically this problem is reduced to solving an inverse boundary problem. Namely, using known conditions at one part of the model boundary we determine the missing condition at the remaining part of the boundary. We develop a numerical approach to the mathematical problem in the case of steady-state flow. Assuming that the temperature and the heat flow are prescribed at the upper surface of the model domain, we determine the flow characteristics in the entire model domain using a variational (adjoint) method. We have performed computations of model examples and showed that in the case of smooth input data the lava temperature and the flow velocity can be reconstructed with a high accuracy. As expected, a noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level. Also we analyse the influence of optimization methods on the solution convergence rate. The proposed method for reconstruction of physical parameters of lava flows can also be applied to other problems in geophysical fluid flows.

  5. Population genetic dynamics of an invasion reconstructed from the sediment egg bank.

    PubMed

    Möst, Markus; Oexle, Sarah; Marková, Silvia; Aidukaite, Dalia; Baumgartner, Livia; Stich, Hans-Bernd; Wessels, Martin; Martin-Creuzburg, Dominik; Spaak, Piet

    2015-08-01

    Biological invasions are a global issue with far-reaching consequences for single species, communities and whole ecosystems. Our understanding of modes and mechanisms of biological invasions requires knowledge of the genetic processes associated with successful invasions. In many instances, this information is particularly difficult to obtain as the initial phases of the invasion process often pass unnoticed and we rely on inferences from contemporary population genetic data. Here, we combined historic information with the genetic analysis of resting eggs to reconstruct the invasion of Daphnia pulicaria into Lower Lake Constance (LLC) in the 1970s from the resting egg bank in the sediments. We identified the invader as 'European D. pulicaria' originating from meso- and eutrophic lowland lakes and ponds in Central Europe. The founding population was characterized by extremely low genetic variation in the resting egg bank that increased considerably over time. Furthermore, strong evidence for selfing and/or biparental inbreeding was found during the initial phase of the invasion, followed by a drop of selfing rate to low levels in subsequent decades. Moreover, the increase in genetic variation was most pronounced during early stages of the invasion, suggesting additional introductions during this period. Our study highlights that genetic data covering the entire invasion process from its beginning can be crucial to accurately reconstruct the invasion history of a species. We show that propagule banks can preserve such information enabling the study of population genetic dynamics and sources of genetic variation in successful invasive populations. PMID:26122166

  6. Inpainting for videos with dynamic objects using texture and structure reconstruction

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Marchuk, V. I.; Gapon, N. V.; Zhuravlev, A. V.; Maslennikov, S.; Stradanchenko, S.

    2015-05-01

    This paper describes a novel inpainting approach for removing marked dynamic objects from videos captured with a camera, so long as the objects occlude parts of the scene with a static background. Proposed approach allow to remove objects or restore missing or tainted regions present in a video sequence by utilizing spatial and temporal information from neighboring scenes. The algorithm iteratively performs following operations: achieve frame; update the scene model; update positions of moving objects; replace parts of the frame occupied by the objects marked for remove with use of a background model. In this paper, we extend an image inpainting algorithm based texture and structure reconstruction by incorporating an improved strategy for video. An image inpainting approach based on the construction of a composite curve for the restoration of the edges of objects in a frame using the concepts of parametric and geometric continuity is presented. It is shown that this approach allows to restore the curved edges and provide more flexibility for curve design in damaged frame by interpolating the boundaries of objects by cubic splines. After edge restoration stage, a texture reconstruction using patch-based method is carried out. We demonstrate the performance of a new approach via several examples, showing the effectiveness of our algorithm and compared with state-of-the-art video inpainting methods.

  7. Quantitative reconstruction of thermal and dynamic characteristics of lava flow from surface thermal measurements

    NASA Astrophysics Data System (ADS)

    Korotkii, Alexander; Kovtunov, Dmitry; Ismail-Zadeh, Alik; Tsepelev, Igor; Melnik, Oleg

    2016-06-01

    We study a model of lava flow to determine its thermal and dynamic characteristics from thermal measurements of the lava at its surface. Mathematically this problem is reduced to solving an inverse boundary problem. Namely, using known conditions at one part of the model boundary we determine the missing condition at the remaining part of the boundary. We develop a numerical approach to the mathematical problem in the case of steady-state flow. Assuming that the temperature and the heat flow are prescribed at the upper surface of the model domain, we determine the flow characteristics in the entire model domain using a variational (adjoint) method. We have performed computations of model examples and showed that in the case of smooth input data the lava temperature and the flow velocity can be reconstructed with a high accuracy. As expected, a noise imposed on the smooth input data results in a less accurate solution, but still acceptable below some noise level. Also we analyse the influence of optimization methods on the solution convergence rate. The proposed method for reconstruction of physical parameters of lava flows can also be applied to other problems in geophysical fluid flows.

  8. Influence of materials' optical response on actuation dynamics by Casimir forces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Broer, W. H.; Van der Veeke, S.; Svetovoy, V. B.; Palasantzas, G.

    2015-06-01

    The dependence of the Casimir force on the frequency-dependent dielectric functions of interacting materials makes it possible to tailor the actuation dynamics of microactuators. The Casimir force is largest for metallic interacting systems due to the high absorption of conduction electrons in the far-infrared range. For less conductive systems, such as phase change materials or conductive silicon carbide, the reduced force offers the advantage of increased stable operation of MEMS devices against pull-in instabilities that lead to unwanted stiction. Bifurcation analysis with phase portraits has been used to compare the sensitivity of a model actuator when the optical properties are altered.

  9. High velocity properties of the dynamic frictional force between ductile metals

    SciTech Connect

    Hammerberg, James Edward; Hollan, Brad L; Germann, Timothy C; Ravelo, Ramon J

    2010-01-01

    The high velocity properties of the tangential frictional force between ductile metal interfaces seen in large-scale NonEquilibrium Molecular Dynamics (NEMD) simulations are characterized by interesting scaling behavior. In many cases a power law decrease in the frictional force with increasing velocity is observed at high velocities. We discuss the velocity dependence of the high velocity branch of the tangential force in terms of structural transformation and ultimate transition, at the highest velocities, to confined fluid behavior characterized by a critical strain rate. The particular case of an Al/Al interface is discussed.

  10. Pathogens trigger top-down climate forcing on ecosystem dynamics.

    PubMed

    Edeline, Eric; Groth, Andreas; Cazelles, Bernard; Claessen, David; Winfield, Ian J; Ohlberger, Jan; Asbjørn Vøllestad, L; Stenseth, Nils C; Ghil, Michael

    2016-06-01

    Evaluating the effects of climate variation on ecosystems is of paramount importance for our ability to forecast and mitigate the consequences of global change. However, the ways in which complex food webs respond to climate variations remain poorly understood. Here, we use long-term time series to investigate the effects of temperature variation on the intraguild-predation (IGP) system of Windermere (UK), a lake where pike (Esox lucius, top predator) feed on small-sized perch (Perca fluviatilis) but compete with large-sized perch for the same food sources. Spectral analyses of time series reveal that pike recruitment dynamics are temperature controlled. In 1976, expansion of a size-truncating perch pathogen into the lake severely impacted large perch and favoured pike as the IGP-dominant species. This pathogen-induced regime shift to a pike-dominated IGP apparently triggered a temperature-controlled trophic cascade passing through pike down to dissolved nutrients. In simple food chains, warming is predicted to strengthen top-down control by accelerating metabolic rates in ectothermic consumers, while pathogens of top consumers are predicted to dampen this top-down control. In contrast, the local IGP structure in Windermere made warming and pathogens synergistic in their top-down effects on ecosystem functioning. More generally, our results point to top predators as major mediators of community response to global change, and show that size-selective agents (e.g. pathogens, fishers or hunters) may change the topological architecture of food webs and alter whole ecosystem sensitivity to climate variation. PMID:26910776

  11. Real-space mapping of dynamic phenomena during hysteresis loop measurements: Dynamic Switching Spectroscopy Piezoresponse Force Microscopy

    SciTech Connect

    Kumar, Amit; Ovchinnikov, Oleg S; Jesse, Stephen; Kalinin, Sergei V

    2011-01-01

    Dynamic switching spectroscopy piezoresponse force microscopy is developed to separate thermodynamic and kinetic effects in local bias-induced phase transitions. The approaches for visualization and analysis of 5D data are discussed. The spatial and voltage variability of relaxation behavior of the a-c domain lead zirconate-titanate surface suggest the interpretation in terms of surface charge dynamics. This approach is applicable to local studies of dynamic behavior in any system with reversible bias-induced phase transitions ranging from ferroelectrics and multiferroics to ionic systems such as Li-ion and oxygen-ion conductors in batteries, fuel cells, and electroresistive systems.

  12. A parallel alignment device with dynamic force compensation for nanoimprint lithography.

    PubMed

    Chen, Weihai; Du, Chong; Wu, Yunjie; Chen, Wenjie; Yuan, Mei

    2014-03-01

    Nanoimprint lithography is a nano/micro patterning technology to fabricate functional devices by pressing a template with predefined structures on a substrate. Uniformity of the force distribution between the contacting surfaces should be ensured to produce features with high fidelity. In this paper, a parallel alignment device with the abilities of dynamic force distribution control is developed. By adopting a spherical air bearing held with a 5-degree-of-freedom flexure-based stage, wedge errors between the template and the substrate can be eliminated passively without friction when an imprint force is applied. Since the vertical imprint force is mainly supported by the spherical air bearing, the device is very suitable for high force applications, without causing damage to the delicate compliant stage or precision degradation. Besides, the force distribution of the imprint process is measured, based on which dynamic force compensation is performed by actuating the compliant stage actively. Five-hundred-nm-period grating structures are transferred successfully with the device and proofs effectiveness of the device. PMID:24689620

  13. A parallel alignment device with dynamic force compensation for nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Chen, Weihai; Du, Chong; Wu, Yunjie; Chen, Wenjie; Yuan, Mei

    2014-03-01

    Nanoimprint lithography is a nano/micro patterning technology to fabricate functional devices by pressing a template with predefined structures on a substrate. Uniformity of the force distribution between the contacting surfaces should be ensured to produce features with high fidelity. In this paper, a parallel alignment device with the abilities of dynamic force distribution control is developed. By adopting a spherical air bearing held with a 5-degree-of-freedom flexure-based stage, wedge errors between the template and the substrate can be eliminated passively without friction when an imprint force is applied. Since the vertical imprint force is mainly supported by the spherical air bearing, the device is very suitable for high force applications, without causing damage to the delicate compliant stage or precision degradation. Besides, the force distribution of the imprint process is measured, based on which dynamic force compensation is performed by actuating the compliant stage actively. Five-hundred-nm-period grating structures are transferred successfully with the device and proofs effectiveness of the device.

  14. Blob population dynamics during immiscible two-phase flows in reconstructed porous media

    NASA Astrophysics Data System (ADS)

    Yiotis, A. G.; Talon, L.; Salin, D.

    2013-03-01

    We study the dynamics of nonwetting liquid blobs during immiscible two-phase flows in stochastically reconstructed porous domains predominantly saturated by a wetting fluid. The flow problem is solved explicitly using a Lattice-Boltzmann model that captures both the bulk phase and interfacial dynamics of the process. We show that the nonwetting blobs undergo a continuous life cycle of dynamic breaking up and coalescence producing two populations of blobs, a mobile and a stranded one, that exchange continuously mass between them. The process reaches a “steady state” when the rates of coalescence and breaking up become equal, and the macroscopic flow variables remain practically constant with time. At steady state, mass partitioning between mobile and immobile populations depends strongly on the applied Bond number Bo and the initial nonwetting phase distributions. Three flow regimes are identified: a single-phase flow Darcy-type regime at low Bo numbers, a non-Darcy two-phase flow regime at intermediate values of Bo, where the capillary number scales as Ca∝Bo2, and a Darcy-type two-phase flow regime at higher values of Bo. Our numerical results are found to be in good agreement with recent experimental and theoretical works.

  15. De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation

    PubMed Central

    Maffeo, Christopher; Yoo, Jejoong; Aksimentiev, Aleksei

    2016-01-01

    The DNA origami method has brought nanometer-precision fabrication to molecular biology labs, offering myriads of potential applications in the fields of synthetic biology, medicine, molecular computation, etc. Advancing the method further requires controlling self-assembly down to the atomic scale. Here we demonstrate a computational method that allows the equilibrium structure of a large, complex DNA origami object to be determined to atomic resolution. Through direct comparison with the results of cryo-electron microscopy, we demonstrate de novo reconstruction of a 4.7 megadalton pointer structure by means of fully atomistic molecular dynamics simulations. Furthermore, we show that elastic network-guided simulations performed without solvent can yield similar accuracy at a fraction of the computational cost, making this method an attractive approach for prototyping and validation of self-assembled DNA nanostructures. PMID:26980283

  16. Partial-profilogram reconstruction method to measure the geometric parameters of wheels in dynamic condition

    NASA Astrophysics Data System (ADS)

    Bernal, E. J.; Martinod, R. M.; Betancur, G. R.; Castañeda, L. F.

    2016-05-01

    The present work poses a method for the measurement of geometric parameters of rail wheels in a dynamic condition, by reconstructing the profilogram from a portion of the wheel surface wear with artificial vision. The suggested procedure can work with a two-dimensional laser displacement transducer or by processing a sole image from a single camera with a structured light source. These two procedures require fewer devices and simpler implementation processes and allow the use of mathematical algorithms that demand less information processing, thus generating more accurate results. Railway operators may implement this method to perform predictive maintenance to their rolling stock at a fraction of the regular cost; thus achieving better precision, availability, maintenance performance and improving safety. Results were compared to those given by commercial equipment, showing similar precision but a better cost-benefit relation.

  17. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations

    PubMed Central

    Buch, Ignasi; Giorgino, Toni; De Fabritiis, Gianni

    2011-01-01

    The understanding of protein–ligand binding is of critical importance for biomedical research, yet the process itself has been very difficult to study because of its intrinsically dynamic character. Here, we have been able to quantitatively reconstruct the complete binding process of the enzyme-inhibitor complex trypsin-benzamidine by performing 495 molecular dynamics simulations of free ligand binding of 100 ns each, 187 of which produced binding events with an rmsd less than 2 Å compared to the crystal structure. The binding paths obtained are able to capture the kinetic pathway of the inhibitor diffusing from solvent (S0) to the bound (S4) state passing through two metastable intermediate states S2 and S3. Rather than directly entering the binding pocket the inhibitor appears to roll on the surface of the protein in its transition between S3 and the final binding pocket, whereas the transition between S2 and the bound pose requires rediffusion to S3. An estimation of the standard free energy of binding gives ΔG° = -5.2 ± 0.4 kcal/mol (cf. the experimental value -6.2 kcal/mol), and a two-states kinetic model kon = (1.5 ± 0.2) × 108 M-1 s-1 and koff = (9.5 ± 3.3) × 104 s-1 for unbound to bound transitions. The ability to reconstruct by simple diffusion the binding pathway of an enzyme-inhibitor binding process demonstrates the predictive power of unconventional high-throughput molecular simulations. Moreover, the methodology is directly applicable to other molecular systems and thus of general interest in biomedical and pharmaceutical research. PMID:21646537

  18. 3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings.

    PubMed

    Semmler, Marion; Kniesburges, Stefan; Birk, Veronika; Ziethe, Anke; Patel, Rita; Dollinger, Michael

    2016-07-01

    Standard laryngoscopic imaging techniques provide only limited two-dimensional insights into the vocal fold vibrations not taking the vertical component into account. However, previous experiments have shown a significant vertical component in the vibration of the vocal folds. We present a 3D reconstruction of the entire superior vocal fold surface from 2D high-speed videoendoscopy via stereo triangulation. In a typical camera-laser set-up the structured laser light pattern is projected on the vocal folds and captured at 4000 fps. The measuring device is suitable for in vivo application since the external dimensions of the miniaturized set-up barely exceed the size of a standard rigid laryngoscope. We provide a conservative estimate on the resulting resolution based on the hardware components and point out the possibilities and limitations of the miniaturized camera-laser set-up. In addition to the 3D vocal fold surface, we extended previous approaches with a G2-continuous model of the vocal fold edge. The clinical applicability was successfully established by the reconstruction of visual data acquired from 2D in vivo high-speed recordings of a female and a male subject. We present extracted dynamic parameters like maximum amplitude and velocity in the vertical direction. The additional vertical component reveals deeper insights into the vibratory dynamics of the vocal folds by means of a non-invasive method. The successful miniaturization allows for in vivo application giving access to the most realistic model available and hence enables a comprehensive understanding of the human phonation process. PMID:26829782

  19. Molecular force modulation spectroscopy revealing the dynamic response of single bacteriorhodopsins.

    PubMed

    Janovjak, Harald; Müller, Daniel J; Humphris, Andrew D L

    2005-02-01

    Recent advances in atomic force microscopy allowed globular and membrane proteins to be mechanically unfolded on a single-molecule level. Presented is an extension to the existing force spectroscopy experiments. While unfolding single bacteriorhodopsins from native purple membranes, small oscillation amplitudes (6-9 nm) were supplied to the vertical displacement of the cantilever at a frequency of 3 kHz. The phase and amplitude response of the cantilever-protein system was converted to reveal the elastic (conservative) and viscous (dissipative) contributions to the unfolding process. The elastic response (stiffness) of the extended parts of the protein were in the range of a few tens pN/nm and could be well described by the derivative of the wormlike chain model. Discrete events in the viscous response coincided with the unfolding of single secondary structure elements and were in the range of 1 microNs/m. In addition, these force modulation spectroscopy experiments revealed novel mechanical unfolding intermediates of bacteriorhodopsin. We found that kinks result in a loss of unfolding cooperativity in transmembrane helices. Reconstructing force-distance spectra by the integration of amplitude-distance spectra verified their position, offering a novel approach to detect intermediates during the forced unfolding of single proteins. PMID:15574708

  20. Improving synthesis and analysis prior blind compressed sensing with low-rank constraints for dynamic MRI reconstruction.

    PubMed

    Majumdar, Angshul

    2015-01-01

    In blind compressed sensing (BCS), both the sparsifying dictionary and the sparse coefficients are estimated simultaneously during signal recovery. A recent study adopted the BCS framework for recovering dynamic MRI sequences from under-sampled K-space measurements; the results were promising. Previous works in dynamic MRI reconstruction showed that, recovery accuracy can be improved by incorporating low-rank penalties into the standard compressed sensing (CS) optimization framework. Our work is motivated by these studies, and we improve upon the basic BCS framework by incorporating low-rank penalties into the optimization problem. The resulting optimization problem has not been solved before; hence we derive a Split Bregman type technique to solve the same. Experiments were carried out on real dynamic contrast enhanced MRI sequences. Results show that, with our proposed improvement, the reconstruction accuracy is better than BCS and other state-of-the-art dynamic MRI recovery algorithms. PMID:25179137

  1. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  2. Dynamical systems analysis of electrostatic and aerodynamic forced vibrations of a thin flexible electrode

    NASA Astrophysics Data System (ADS)

    Madanu, Sushma Bala

    Transverse vibrations of an electrostatically actuated thin flexible cantilever perturbed by low-speed air flow is studied using both experiments and numerical modeling. In the experiments the dynamic characteristics of the cantilever are studied by supplying a DC voltage with an AC component for electrostatic forcing and a constant uniform air flow around the cantilever system for aerodynamic forcing. The maximum voltage applied varies from 1 - 9 kV and air flow speeds range from 0.224 - 3.58 m/s (0.5 - 8 mile/hr). The Reynolds numbers for these speeds lie in the range of 1000 - 20000. A range of control parameters leading to stable vibrations are established using the Strouhal number as the operating parameter whose inverse values change from 100 - 2500. The Numerical results are validated with experimental results. Assuming the amplitude of vibrations are small, then a non-linear dynamic Euler-Bernoulli beam equation with viscous damping and gravitational effects is used to model the vibrations of the dynamical system. Aerodynamic forcing is modeled as a temporally sinusoidal and uniform force acting perpendicular to the beam length. The forcing amplitude is found to be proportional to square of air flow velocity by obtaining relationship between the experimental amplitude of vibrations and air flow velocity. Numerical results strongly agree with those of experiments predicting accurate vibration amplitudes, displacement frequency and quasi-periodic displacements of the cantilever tip.

  3. Superadiabatic forces in the dynamics of the one-dimensional Gaussian core model.

    PubMed

    Bernreuther, Elias; Schmidt, Matthias

    2016-08-01

    Using Brownian dynamics computer simulations we investigate the dynamics of the one-body density and one-body current in a one-dimensional system of particles that interact with a repulsive Gaussian pair potential. We systematically split the internal force distribution into an adiabatic part, which originates from the equilibrium free energy, and a superadiabatic contribution, which is neglected in dynamical density functional theory. We find a strong dependence of the magnitude and phase of the superadiabatic force distribution on the initial state of the system. While the magnitude of the superadiabatic force is small if the system evolves from an equilibrium state inside of a parabolic external potential, it is large for particles with equidistant initial separations at high temperature. We analyze these findings in the light of the known mean-field behavior of Gaussian core particles and discuss a multi-occupancy mechanism which generates superadiabatic forces that are out of phase with respect to the adiabatic force. PMID:27627244

  4. Reconstruction of the Dynamics of Mammoth Tundra-Steppe Ecosystem Productivity

    NASA Astrophysics Data System (ADS)

    Zimov, S. A.; Chapin, F. S.

    2001-12-01

    During periods of glaciation, the mammoth tundra-steppe (MTS) ecosystem was the largest biome.The productivity of this ecosystem is under discussion. During the Pleistocene, a thick layer of frozen loess accumulated on the lowlands of northern Siberia. As loess deposited on the surface, the bottom of the soil profile was incorporated into permafrost. Present-day frozen loess soils of Siberia are cryo-preserved soils of the MTS. These soils have little humus but contain large quantities of grass roots and live Pleistocene microorganisms. As the soil melts, they start to respire actively. Analysis of vertical distribution of respiration in different types of modern soil and permafrost showed that respiration potential of cryo-preserved soil is similar to respiration of low soil horizons. On the basis of the correlation of photosynthesis to respiration, we calculated productivity of the MTS ecosystem and reconstructed its dynamics. Dynamics of MTS productivity was evaluated through the dynamics of the relative quantities of herbivorous animals. We analyzed the distribution of about 600 14C dates of mammoths, bison, and rhinoceroses. An estimate of the absolute density of mammoths in the north of Siberia was calculated on the basis of data collected on the density of skeletons buried in the permafrost. Our investigations showed that vegetation productivity and density of herbivorous animals in the MTS ecosystem varied within a wide range depending on climate. Dynamics of these parameters correlate with data of temperature and atmospheric CH4 obtained from Greenland cores. During periods of climate warming the quantity of mammoths in the north of Siberia was comparable to the quantity of elephants in present-day undisturbed African savanna.

  5. Dynamical role of phosphorylation on serine/threonine-proline Pin1 substrates from constant force molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Velazquez, Hector A.; Hamelberg, Donald

    2015-02-01

    Cis-trans isomerization of peptidyl-prolyl bonds of the protein backbone plays an important role in numerous biological processes. Cis-trans isomerization can be the rate-limiting step due its extremely slow dynamics, compared to the millisecond time scale of many processes, and is catalyzed by a widely studied family of peptidyl-prolyl cis-trans isomerase enzymes. Also, mechanical forces along the peptide chain can speed up the rate of isomerization, resulting in "mechanical catalysis," and have been used to study peptidyl-prolyl cis-trans isomerization and other mechanical properties of proteins. Here, we use constant force molecular dynamics simulations to study the dynamical effects of phosphorylation on serine/threonine-proline protein motifs that are involved in the function of many proteins and have been implicated in many aberrant biological processes. We show that the rate of cis-trans isomerization is slowed down by phosphorylation, in excellent agreement with experiments. We use a well-grounded theory to describe the force dependent rate of isomerization. The calculated rates at zero force are also in excellent agreement with experimentally measured rates, providing additional validation of the models and force field parameters. Our results suggest that the slowdown in the rate upon phosphorylation is mainly due to an increase in the friction along the peptidyl-prolyl bond angle during isomerization. Our results provide a microscopic description of the dynamical effects of post-translational phosphorylation on cis-trans isomerization and insights into the properties of proteins under tension.

  6. WE-G-18C-08: Real Time Tumor Imaging Using a Novel Dynamic Keyhole MRI Reconstruction Technique

    SciTech Connect

    Lee, D; Pollock, S; Whelan, B; Keall, P; Greer, P; Kim, T

    2014-06-15

    Purpose: To test the hypothesis that the novel Dynamic Keyhole MRI reconstruction technique can accelerate image acquisition whilst maintaining high image quality for lung cancer patients. Methods: 18 MRI datasets from 5 lung cancer patients were acquired using a 3T MRI scanner. These datasets were retrospectively reconstructed using (A) The novel Dynamic Keyhole technique, (B) The conventional keyhole technique and (C) the conventional zero filling technique. The dynamic keyhole technique in MRI refers to techniques in which previously acquired k-space data is used to supplement under sampled data obtained in real time. The novel Dynamic Keyhole technique utilizes a previously acquired a library of kspace datasets in conjunction with central k-space datasets acquired in realtime. A simultaneously acquired respiratory signal is utilized to sort, match and combine the two k-space streams with respect to respiratory displacement. Reconstruction performance was quantified by (1) comparing the keyhole size (which corresponds to imaging speed) required to achieve the same image quality, and (2) maintaining a constant keyhole size across the three reconstruction methods to compare the resulting image quality to the ground truth image. Results: (1) The dynamic keyhole method required a mean keyhole size which was 48% smaller than the conventional keyhole technique and 60% smaller than the zero filling technique to achieve the same image quality. This directly corresponds to faster imaging. (2) When a constant keyhole size was utilized, the Dynamic Keyhole technique resulted in the smallest difference of the tumor region compared to the ground truth. Conclusion: The dynamic keyhole is a simple and adaptable technique for clinical applications requiring real-time imaging and tumor monitoring such as MRI guided radiotherapy. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by a factor of five compared with full k

  7. Force Field Development and Molecular Dynamics of [NiFe] Hydrogenase

    SciTech Connect

    Smith, Dayle MA; Xiong, Yijia; Straatsma, TP; Rosso, Kevin M.; Squier, Thomas C.

    2012-05-09

    Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexible in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of C{alpha} and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H{sub 2}-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.

  8. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  9. A method of improving the dynamic response of 3D force/torque sensors

    NASA Astrophysics Data System (ADS)

    Osypiuk, Rafał; Piskorowski, Jacek; Kubus, Daniel

    2016-02-01

    In the paper attention is drawn to adverse dynamic properties of filters implemented in commercial measurement systems, force/torque sensors, which are increasingly used in industrial robotics. To remedy the problem, it has been proposed to employ a time-variant filter with appropriately modulated parameters, owing to which it is possible to suppress the amplitude of the transient response and, at the same time, to increase the pulsation of damped oscillations; this results in the improvement of dynamic properties in terms of reducing the duration of transients. This property plays a key role in force control and in the fundamental problem of the robot establishing contact with rigid environment. The parametric filters have been verified experimentally and compared with filters available for force/torque sensors manufactured by JR3. The obtained results clearly indicate the advantages of the proposed solution, which may be an interesting alternative to the classic methods of filtration.

  10. Finite element modeling of atomic force microscopy cantilever dynamics during video rate imaging

    SciTech Connect

    Howard-Knight, J. P.; Hobbs, J. K.

    2011-04-01

    A dynamic finite element model has been constructed to simulate the behavior of low spring constant atomic force microscope (AFM) cantilevers used for imaging at high speed without active feedback as in VideoAFM. The model is tested against experimental data collected at 20 frame/s and good agreement is found. The complex dynamics of the cantilever, consisting of traveling waves coming from the tip sample interaction, reflecting off the cantilever-substrate junction, and interfering with new waves created at the tip, are revealed. The construction of the image from this resulting nonequilibrium cantilever deflection is also examined. Transient tip-sample forces are found to reach values up to 260 nN on a calibration grid sample, and the maximum forces do not always correspond to the position of steepest features as a result of energy stored in the cantilever.

  11. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    NASA Astrophysics Data System (ADS)

    Wang, R.; Williams, C. C.

    2015-09-01

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  12. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    SciTech Connect

    Wang, R.; Williams, C. C.

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  13. Structural dynamic modeling and stability of a rotating blade under gravitational force

    NASA Astrophysics Data System (ADS)

    Kwon, Seungmin; Chung, Jintai; Hee Yoo, Hong

    2013-05-01

    Turbine blade lengths have been increasing in recent wind energy system designs in order to enhance power generation capacity. A longer blade length makes the structural system more flexible and often results in an undesirable, large dynamic response, which should be avoided in the design of the system. In the present study, the equations of motion of a rotating wind turbine blade undergoing gravitational force are derived, while considering tilt and pitch angles. Since the gravitational force acting on the rotating blade creates an oscillating axial force, this results in oscillating stiffness terms in the governing equations. The validity of the derived rotating blade model is evaluated by comparing its transient responses to those obtained by using a commercial finite element code. Effects of rotating speed, tilt angle, and pitch angle of the wind turbine blade on its dynamic stability characteristics are investigated.

  14. Atomic Force Microscopy in Dynamic Mode with Displacement Current Detection in Double Cantilever Devices

    NASA Astrophysics Data System (ADS)

    Müller, Falk; Müller, Anne‑Dorothea; Hietschold, Michael; Gessner, Thomas

    2006-03-01

    A cantilever array for dynamic mode atomic force microscopy (AFM) is presented, the vertical displacement of which is analyzed by the detection of displacement currents in the electrodes. Each cantilever in the array consists of an actuation part that allows an independent vertical movement, and a sensor part. The lateral distance between the tips of the different cantilevers is fixed to 10 μm. When operated as an actuator, a voltage is applied between the silicon membrane and the underlaying electrode. Due to the resulting coulomb forces, the vertical position of the tip is controllable. The reaction time in this mode is shorter than the response time of a piezostack. The sensor part, on the other hand, allows the device to work in dynamic mode without a laser deflection system. The vertical resolution achieved is below 1 nm. The dependence of force distance curves on the excitation amplitude is shown.

  15. Dynamics of chemically powered nanodimer motors subject to an external force.

    PubMed

    Tao, Yu-Guo; Kapral, Raymond

    2009-07-14

    The chemically powered self-propelled directed motions of nanodimer motors confined in a rectangular channel and subject to an applied external conservative force are investigated using hybrid molecular dynamics/multiparticle collision dynamics. The influence of factors, such as dimer sizes, chemical reaction type, and the nature of the interaction potentials between dimer monomers and solvent molecules, on the propulsion force and friction constant are examined. The stall force, for which the nanodimer has zero net velocity, and the thermodynamic efficiency of the motor are calculated. Both irreversible and reversible chemical reactions are considered. The simulation results are compared to theoretical predictions which are able to capture the major features of the self-propelled motion. PMID:19603976

  16. Image reconstruction

    SciTech Connect

    Defrise, Michel; Gullberg, Grant T.

    2006-04-05

    We give an overview of the role of Physics in Medicine andBiology in development of tomographic reconstruction algorithms. We focuson imaging modalities involving ionizing radiation, CT, PET and SPECT,and cover a wide spectrum of reconstruction problems, starting withclassical 2D tomogra tomography in the 1970s up to 4D and 5D problemsinvolving dynamic imaging of moving organs.

  17. Time-resolved reconstruction of dynamical pulse trains using multiheterodyne detection

    NASA Astrophysics Data System (ADS)

    Butler, T.; Tykalewicz, B.; Goulding, D.; Kelleher, B.; Huyet, Guillaume; Hegarty, S. P.

    2014-05-01

    A technique has been developed for the measurement of pulse trains demonstrating a dynamical behaviour (i.e. not ideally periodic). Existing techniques in this area (e.g. FROG, SPIDER or other heterodyne methods) require very stable pulse trains, or large averaging times, and so are limited when applied to even slowly varying pulse trains. The technique presented involves mixing the comb under test (CUT) with a reference optical frequency comb (OFC) which has a known spectral intensity profile. Mixing these signals on a photodiode results in a series of radio frequency (RF) beat tones. The phase properties of these beat tones can be used to measure the spectral phase between adjacent modes in the CUT, allowing the full complex spectrum of the CUT to be measured simultaneously with one single real time oscilloscope acquisition. With the spectral properties of the comb known, the pulse train can be reconstructed in the temporal domain. By applying this technique to very small sections of the beating signal ( tens of nanoseconds), a time resolved picture of the pulse train behaviour can be obtained. Dynamic signals generated in a LiNbO3 modulator driven by a modulated RF signal have been measured. This technique is well suited to studying the combs produced by mode-locked semiconductor lasers. Quantum dot mode-locked laser combs can be characterised, and pulse train instabilities measured.

  18. Dynamic analysis of heartbeat rate signals of epileptics using multidimensional phase space reconstruction approach

    NASA Astrophysics Data System (ADS)

    Su, Zhi-Yuan; Wu, Tzuyin; Yang, Po-Hua; Wang, Yeng-Tseng

    2008-04-01

    The heartbeat rate signal provides an invaluable means of assessing the sympathetic-parasympathetic balance of the human autonomic nervous system and thus represents an ideal diagnostic mechanism for detecting a variety of disorders such as epilepsy, cardiac disease and so forth. The current study analyses the dynamics of the heartbeat rate signal of known epilepsy sufferers in order to obtain a detailed understanding of the heart rate pattern during a seizure event. In the proposed approach, the ECG signals are converted into heartbeat rate signals and the embedology theorem is then used to construct the corresponding multidimensional phase space. The dynamics of the heartbeat rate signal are then analyzed before, during and after an epileptic seizure by examining the maximum Lyapunov exponent and the correlation dimension of the attractors in the reconstructed phase space. In general, the results reveal that the heartbeat rate signal transits from an aperiodic, highly-complex behaviour before an epileptic seizure to a low dimensional chaotic motion during the seizure event. Following the seizure, the signal trajectories return to a highly-complex state, and the complex signal patterns associated with normal physiological conditions reappear.

  19. Dynamic Regulatory Network Reconstruction for Alzheimer's Disease Based on Matrix Decomposition Techniques

    PubMed Central

    Mou, Xiaoyang; Zhi, Xing; Zhang, Xin; Yang, Yang

    2014-01-01

    Alzheimer's disease (AD) is the most common form of dementia and leads to irreversible neurodegenerative damage of the brain. Finding the dynamic responses of genes, signaling proteins, transcription factor (TF) activities, and regulatory networks of the progressively deteriorative progress of AD would represent a significant advance in discovering the pathogenesis of AD. However, the high throughput technologies of measuring TF activities are not yet available on a genome-wide scale. In this study, based on DNA microarray gene expression data and a priori information of TFs, network component analysis (NCA) algorithm is applied to determining the TF activities and regulatory influences on TGs of incipient, moderate, and severe AD. Based on that, the dynamical gene regulatory networks of the deteriorative courses of AD were reconstructed. To select significant genes which are differentially expressed in different courses of AD, independent component analysis (ICA), which is better than the traditional clustering methods and can successfully group one gene in different meaningful biological processes, was used. The molecular biological analysis showed that the changes of TF activities and interactions of signaling proteins in mitosis, cell cycle, immune response, and inflammation play an important role in the deterioration of AD. PMID:25024739

  20. Temperature-resolution anomalies in the reconstruction of time dynamics from energy-loss experiments

    NASA Astrophysics Data System (ADS)

    Kogar, Anshul; Vig, Sean; Gan, Yu; Abbamonte, Peter

    2014-06-01

    Inelastic scattering techniques provide a powerful approach to studying electron and nuclear dynamics, via reconstruction of a propagator that quantifies the time evolution of a system. There is now growing interest in applying such methods to very low energy excitations, such as lattice vibrations, but in this limit the cross section is no longer proportional to a propagator. Significant deviations occur due to the finite temperature Bose statistics of the excitations. Here we consider this issue in the context of high-resolution electron energy-loss experiments on the copper-oxide superconductor Bi2Sr2CaCu2O8. We find that simple division of a Bose factor yields an accurate propagator on energy scales greater than the resolution width. However, at low energy scales, the effects of resolution and finite temperature conspire to create anomalies in the dynamics at long times. We compare two practical ways for dealing with such anomalies, and discuss the range of validity of the technique in light of this comparison.

  1. Complexity of the tensegrity structure for dynamic energy and force distribution of cytoskeleton during cell spreading.

    PubMed

    Chen, Ting-Jung; Wu, Chia-Ching; Tang, Ming-Jer; Huang, Jong-Shin; Su, Fong-Chin

    2010-01-01

    Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs). Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT) and cuboctahedron tensegrity (COT). The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area), cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then declined as

  2. Flexible Piezoelectric Tactile Sensor Array for Dynamic Three-Axis Force Measurement

    PubMed Central

    Yu, Ping; Liu, Weiting; Gu, Chunxin; Cheng, Xiaoying; Fu, Xin

    2016-01-01

    A new flexible piezoelectric tactile sensor array based on polyvinylidene fluoride (PVDF) film is proposed for measuring three-axis dynamic contact force distribution. The array consists of six tactile units arranged as a 3 × 2 matrix with spacing 8 mm between neighbor units. In each unit, a PVDF film is sandwiched between four square-shaped upper electrodes and one square-shaped lower electrode, forming four piezoelectric capacitors. A truncated pyramid bump is located above the four piezoelectric capacitors to improve force transmission. A three-axis contact force transmitted from the top of the bump will lead to the four piezoelectric capacitors underneath undergoing different charge changes, from which the normal and shear components of the force can be calculated. A series of dynamic tests have been carried out by exerting sinusoidal forces with amplitudes ranging from 0 to 0.5 N in the x-axis, 0 to 0.5 N in the y-axis, and 0 to 1.5 N in the z-axis, separately. The tactile units show good sensitivities with 14.93, 14.92, and 6.62 pC/N in the x-, y-, and z-axes, respectively. They can work with good linearity, relatively low coupling effect, high repeatability, and acceptable frequency response in the range of 5–400 Hz to both normal and shear load. In addition, dynamic three-axis force measurement has been conducted for all of the tactile units. The average errors between the applied and calculated forces are 10.68% ± 6.84%. Furthermore, the sensor array can be easily integrated onto a curved surface, such as robotic and prosthetic hands, due to its excellent flexibility. PMID:27271631

  3. Flexible Piezoelectric Tactile Sensor Array for Dynamic Three-Axis Force Measurement.

    PubMed

    Yu, Ping; Liu, Weiting; Gu, Chunxin; Cheng, Xiaoying; Fu, Xin

    2016-01-01

    A new flexible piezoelectric tactile sensor array based on polyvinylidene fluoride (PVDF) film is proposed for measuring three-axis dynamic contact force distribution. The array consists of six tactile units arranged as a 3 × 2 matrix with spacing 8 mm between neighbor units. In each unit, a PVDF film is sandwiched between four square-shaped upper electrodes and one square-shaped lower electrode, forming four piezoelectric capacitors. A truncated pyramid bump is located above the four piezoelectric capacitors to improve force transmission. A three-axis contact force transmitted from the top of the bump will lead to the four piezoelectric capacitors underneath undergoing different charge changes, from which the normal and shear components of the force can be calculated. A series of dynamic tests have been carried out by exerting sinusoidal forces with amplitudes ranging from 0 to 0.5 N in the x-axis, 0 to 0.5 N in the y-axis, and 0 to 1.5 N in the z-axis, separately. The tactile units show good sensitivities with 14.93, 14.92, and 6.62 pC/N in the x-, y-, and z-axes, respectively. They can work with good linearity, relatively low coupling effect, high repeatability, and acceptable frequency response in the range of 5-400 Hz to both normal and shear load. In addition, dynamic three-axis force measurement has been conducted for all of the tactile units. The average errors between the applied and calculated forces are 10.68% ± 6.84%. Furthermore, the sensor array can be easily integrated onto a curved surface, such as robotic and prosthetic hands, due to its excellent flexibility. PMID:27271631

  4. The validation of a human force model to predict dynamic forces resulting from multi-joint motions

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash K.; Maida, James C.; Aldridge, Ann M.; Hasson, Scott M.; Woolford, Barbara J.

    1992-01-01

    The development and validation is examined of a dynamic strength model for humans. This model is based on empirical data. The shoulder, elbow, and wrist joints were characterized in terms of maximum isolated torque, or position and velocity, in all rotational planes. This data was reduced by a least squares regression technique into a table of single variable second degree polynomial equations determining torque as a function of position and velocity. The isolated joint torque equations were then used to compute forces resulting from a composite motion, in this case, a ratchet wrench push and pull operation. A comparison of the predicted results of the model with the actual measured values for the composite motion indicates that forces derived from a composite motion of joints (ratcheting) can be predicted from isolated joint measures. Calculated T values comparing model versus measured values for 14 subjects were well within the statistically acceptable limits and regression analysis revealed coefficient of variation between actual and measured to be within 0.72 and 0.80.

  5. The Role of Molecular Dynamics Potential of Mean Force Calculations in the Investigation of Enzyme Catalysis.

    PubMed

    Yang, Y; Pan, L; Lightstone, F C; Merz, K M

    2016-01-01

    The potential of mean force simulations, widely applied in Monte Carlo or molecular dynamics simulations, are useful tools to examine the free energy variation as a function of one or more specific reaction coordinate(s) for a given system. Implementation of the potential of mean force in the simulations of biological processes, such as enzyme catalysis, can help overcome the difficulties of sampling specific regions on the energy landscape and provide useful insights to understand the catalytic mechanism. The potential of mean force simulations usually require many, possibly parallelizable, short simulations instead of a few extremely long simulations and, therefore, are fairly manageable for most research facilities. In this chapter, we provide detailed protocols for applying the potential of mean force simulations to investigate enzymatic mechanisms for several different enzyme systems. PMID:27498632

  6. Dynamic force spectroscopy of the Helicobacter pylori BabA-Lewis b binding.

    PubMed

    Björnham, Oscar; Bugaytsova, Jeanna; Borén, Thomas; Schedin, Staffan

    2009-07-01

    The binding strength of the Helicobacter pylori adhesin-receptor complex BabA-ABO/Lewis b has been analyzed by means of dynamic force spectroscopy. High-resolution measurements of rupture forces were performed in situ on single bacterial cells, expressing the high-affinity binding BabA adhesin, by the use of force measuring optical tweezers. The resulting force spectra revealed the mechanical properties of a single BabA-Leb bond. It was found that the bond is dominated by one single energy barrier and that it is a slip-bond. The bond length and thermal off-rate were assessed to be 0.86+/-0.07 nm and 0.015+/-0.006 s(-1), respectively. PMID:19344994

  7. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices

    PubMed Central

    Gjorevski, Nikolce; S. Piotrowski, Alexandra; Varner, Victor D.; Nelson, Celeste M.

    2015-01-01

    Collective cell migration drives tissue remodeling during development, wound repair, and metastatic invasion. The physical mechanisms by which cells move cohesively through dense three-dimensional (3D) extracellular matrix (ECM) remain incompletely understood. Here, we show directly that migration of multicellular cohorts through collagenous matrices occurs via a dynamic pulling mechanism, the nature of which had only been inferred previously in 3D. Tensile forces increase at the invasive front of cohorts, serving a physical, propelling role as well as a regulatory one by conditioning the cells and matrix for further extension. These forces elicit mechanosensitive signaling within the leading edge and align the ECM, creating microtracks conducive to further migration. Moreover, cell movements are highly correlated and in phase with ECM deformations. Migrating cohorts use spatially localized, long-range forces and consequent matrix alignment to navigate through the ECM. These results suggest biophysical forces are critical for 3D collective migration. PMID:26165921

  8. Viking Mars lander 1975 dynamic test model/orbiter developmental test model forced vibration test

    NASA Technical Reports Server (NTRS)

    Fortenberry, J.; Brownlee, G. R.

    1974-01-01

    The Viking Mars Lander 1975 dynamic test model and orbiter developmental test model were subjected to forced vibration sine tests. Flight acceptance (FA) and type approval (TA) test levels were applied to the spacecraft structure in a longitudinal test configuration using a 133,440-N (30,000-lb) force shaker. Testing in the two lateral axes (X, Y) was performed at lower levels using four 667-N (150-lb) force shakers. Forced vibration qualification (TA) test levels were successfully imposed on the spacecraft at frequencies down to 10 Hz. Measured responses showed the same character as analytical predictions, and correlation was reasonably good. Because of control system test tolerances, orbiter primary structure generally did not reach the design load limits attained in earlier static testing. A post-test examination of critical orbiter structure disclosed no apparent damage to the structure as a result of the test environment.

  9. The influence of electrostatic forces on the structure and dynamics of molecular ionic liquids

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Steinhauser, O.

    2008-06-01

    The vast majority of molecular dynamics simulations are based on nonpolarizable force fields with fixed partial charges for all atoms. The traditional way to obtain these charges are quantum-mechanical calculations performed prior to simulation. Unfortunately, the set of the partial charges heavily relies on the method and the basis set used. Therefore, investigations of the influence of charge variation on simulation data are necessary in order to validate various charge sets. This paper elucidates the consequences of different charge sets on the structure and dynamics of the ionic liquid: 1-ethyl-3-methyl-imidazolium dicyanoamide. The structural features seem to be more or less independent of the partial charge set pointing to a dominance of shape force as modeled by Lennard-Jones parameters. This can be seen in the radial distribution and orientational correlation functions. The role of electrostatic forces comes in when studying dynamical properties. Here, significant deviations between different charge sets can be observed. Overall, dynamics seems to be governed by viscosity. In fact, all dynamical parameters presented in this work can be converted from one charge set to another by viscosity scaling.

  10. Inferring the Forces Controlling Metaphase Kinetochore Oscillations by Reverse Engineering System Dynamics.

    PubMed

    Armond, Jonathan W; Harry, Edward F; McAinsh, Andrew D; Burroughs, Nigel J

    2015-11-01

    Kinetochores are multi-protein complexes that mediate the physical coupling of sister chromatids to spindle microtubule bundles (called kinetochore (K)-fibres) from respective poles. These kinetochore-attached K-fibres generate pushing and pulling forces, which combine with polar ejection forces (PEF) and elastic inter-sister chromatin to govern chromosome movements. Classic experiments in meiotic cells using calibrated micro-needles measured an approximate stall force for a chromosome, but methods that allow the systematic determination of forces acting on a kinetochore in living cells are lacking. Here we report the development of mathematical models that can be fitted (reverse engineered) to high-resolution kinetochore tracking data, thereby estimating the model parameters and allowing us to indirectly compute the (relative) force components (K-fibre, spring force and PEF) acting on individual sister kinetochores in vivo. We applied our methodology to thousands of human kinetochore pair trajectories and report distinct signatures in temporal force profiles during directional switches. We found the K-fibre force to be the dominant force throughout oscillations, and the centromeric spring the smallest although it has the strongest directional switching signature. There is also structure throughout the metaphase plate, with a steeper PEF potential well towards the periphery and a concomitant reduction in plate thickness and oscillation amplitude. This data driven reverse engineering approach is sufficiently flexible to allow fitting of more complex mechanistic models; mathematical models of kinetochore dynamics can therefore be thoroughly tested on experimental data for the first time. Future work will now be able to map out how individual proteins contribute to kinetochore-based force generation and sensing. PMID:26618929

  11. Inferring the Forces Controlling Metaphase Kinetochore Oscillations by Reverse Engineering System Dynamics

    PubMed Central

    McAinsh, Andrew D.; Burroughs, Nigel J.

    2015-01-01

    Kinetochores are multi-protein complexes that mediate the physical coupling of sister chromatids to spindle microtubule bundles (called kinetochore (K)-fibres) from respective poles. These kinetochore-attached K-fibres generate pushing and pulling forces, which combine with polar ejection forces (PEF) and elastic inter-sister chromatin to govern chromosome movements. Classic experiments in meiotic cells using calibrated micro-needles measured an approximate stall force for a chromosome, but methods that allow the systematic determination of forces acting on a kinetochore in living cells are lacking. Here we report the development of mathematical models that can be fitted (reverse engineered) to high-resolution kinetochore tracking data, thereby estimating the model parameters and allowing us to indirectly compute the (relative) force components (K-fibre, spring force and PEF) acting on individual sister kinetochores in vivo. We applied our methodology to thousands of human kinetochore pair trajectories and report distinct signatures in temporal force profiles during directional switches. We found the K-fibre force to be the dominant force throughout oscillations, and the centromeric spring the smallest although it has the strongest directional switching signature. There is also structure throughout the metaphase plate, with a steeper PEF potential well towards the periphery and a concomitant reduction in plate thickness and oscillation amplitude. This data driven reverse engineering approach is sufficiently flexible to allow fitting of more complex mechanistic models; mathematical models of kinetochore dynamics can therefore be thoroughly tested on experimental data for the first time. Future work will now be able to map out how individual proteins contribute to kinetochore-based force generation and sensing. PMID:26618929

  12. Nonlinear dynamics of confined liquid systems with interfaces subject to forced vibrations.

    PubMed

    Higuera, María; Porter, Jeff; Varas, Fernando; Vega, José M

    2014-04-01

    A review is presented of the dynamic behavior of confined fluid systems with interfaces under monochromatic mechanical forcing, emphasizing the associated spatio-temporal structure of the fluid response. At low viscosity, vibrations significantly affect dynamics and always produce viscous mean flows, which are coupled to the primary oscillating flow and evolve on a very slow timescale. Thus, unlike the primary oscillating flow, mean flows may easily interact with the surface rheology, which generates dynamics that usually exhibit a much slower timescale than that of typical gravity-capillary waves. The review is made with an eye to the typical experimental devices used to measure surface properties, which usually consist of periodically forced, symmetric fluid systems with interfaces. The current theoretical description of these systems ignores the fluid mechanics, which could play a larger role than presently assumed. PMID:24315015

  13. Equilibrium and nonequilibrium molecular-dynamics simulations of the central force model of water

    NASA Astrophysics Data System (ADS)

    Bresme, Fernando

    2001-10-01

    Equilibrium and nonequilibrium molecular-dynamics simulations of the central force model of water (CFM) [Lemberg and Stillinger, J. Chem. Phys. 62, 1677 (1975)] are presented. We consider a model based on a functional form introduced in theoretical studies of associating systems employing integral equations [F. Bresme, J. Chem. Phys. 108, 4505 (1998)]. Results on thermodynamic, dynamic, dielectric, and coexistence properties are presented. The central force model shows satisfactory agreement with the experimental results in all these cases. In addition, nonequilibrium molecular-dynamics simulations show that the CFM predicts a decrease of the thermal conductivity with temperature, as observed in the experiment, but this dependence is reproduced qualitatively at temperatures characteristic of supercooled states. These results emphasize the need for further studies of the heat conduction and properties of water in these conditions. Overall the present potential should provide a basis for further theoretical and simulation studies of complex systems where water is present.

  14. Performance limitations of bilateral force reflection imposed by operator dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.

    1989-01-01

    A linearized, single-axis model is presented for bilateral force reflection which facilitates investigation into the effects of manipulator, operator, and task dynamics, as well as time delay and gain scaling. Structural similarities are noted between this model and impedance control. Stability results based upon this model impose requirements upon operator dynamic characteristics as functions of system time delay and environmental stiffness. An experimental characterization reveals the limited capabilities of the human operator to meet these requirements. A procedure is presented for determining the force reflection gain scaling required to provide stability and acceptable operator workload. This procedure is applied to a system with dynamics typical of a space manipulator, and the required gain scaling is presented as a function of environmental stiffness.

  15. The Dynamics of Voluntary Force Production in Afferented Muscle Influence Involuntary Tremor.

    PubMed

    Laine, Christopher M; Nagamori, Akira; Valero-Cuevas, Francisco J

    2016-01-01

    Voluntary control of force is always marked by some degree of error and unsteadiness. Both neural and mechanical factors contribute to these fluctuations, but how they interact to produce them is poorly understood. In this study, we identify and characterize a previously undescribed neuromechanical interaction where the dynamics of voluntary force production suffice to generate involuntary tremor. Specifically, participants were asked to produce isometric force with the index finger and use visual feedback to track a sinusoidal target spanning 5-9% of each individual's maximal voluntary force level. Force fluctuations and EMG activity over the flexor digitorum superficialis (FDS) muscle were recorded and their frequency content was analyzed as a function of target phase. Force variability in either the 1-5 or 6-15 Hz frequency ranges tended to be largest at the peaks and valleys of the target sinusoid. In those same periods, FDS EMG activity was synchronized with force fluctuations. We then constructed a physiologically-realistic computer simulation in which a muscle-tendon complex was set inside of a feedback-driven control loop. Surprisingly, the model sufficed to produce phase-dependent modulation of tremor similar to that observed in humans. Further, the gain of afferent feedback from muscle spindles was critical for appropriately amplifying and shaping this tremor. We suggest that the experimentally-induced tremor may represent the response of a viscoelastic muscle-tendon system to dynamic drive, and therefore does not fall into known categories of tremor generation, such as tremorogenic descending drive, stretch-reflex loop oscillations, motor unit behavior, or mechanical resonance. Our findings motivate future efforts to understand tremor from a perspective that considers neuromechanical coupling within the context of closed-loop control. The strategy of combining experimental recordings with physiologically-sound simulations will enable thorough exploration

  16. The dynamics of two-dimensional turbulence excited at two scales using electromagnetic forces

    NASA Astrophysics Data System (ADS)

    Habchi, Charbel; Antar, Ghassan

    2016-05-01

    Several forcing scales can co-exist in nature leading and affecting turbulent flows. This is not critical in three-dimensional systems where only a direct cascade of energy exists, but it is a concern in two dimensions where the direct and inverse cascades lead to different statistical properties of turbulence. The effect of forcing at two different scales on turbulence is studied here using numerical simulation inspired by a recent experiment [L. M. Moubarak and G. Y. Antar, "Dynamics of a two-dimensional flow subject to steady electromagnetic forces," Exp. Fluids 53, 1627-1636 (2012)] where a thin layer of electrolyte is stirred using electromagnetic forces. The small scale eddies are generated by the Lorentz force near the domain edge while the large scale motion is produced by the magnetic field gradient. We compare the case of one to two forcing scales for steady state turbulence to show that the addition of two forcing scales leads to the onset of turbulence at low Reynolds numbers due to the co-existence and thus the interaction of small and large structures. By determining the k-spectra as well as the energy transfer function, it is established that the dynamics of turbulence change from being dominated by an inverse cascade process, with one forcing scale, to one dominated by a direct cascade process when two scales are present. We believe that these results are important in understanding two- and quasi-two-dimensional turbulence phenomena occurring in nature where several excitation scales co-exist.

  17. The Dynamics of Voluntary Force Production in Afferented Muscle Influence Involuntary Tremor

    PubMed Central

    Laine, Christopher M.; Nagamori, Akira; Valero-Cuevas, Francisco J.

    2016-01-01

    Voluntary control of force is always marked by some degree of error and unsteadiness. Both neural and mechanical factors contribute to these fluctuations, but how they interact to produce them is poorly understood. In this study, we identify and characterize a previously undescribed neuromechanical interaction where the dynamics of voluntary force production suffice to generate involuntary tremor. Specifically, participants were asked to produce isometric force with the index finger and use visual feedback to track a sinusoidal target spanning 5–9% of each individual's maximal voluntary force level. Force fluctuations and EMG activity over the flexor digitorum superficialis (FDS) muscle were recorded and their frequency content was analyzed as a function of target phase. Force variability in either the 1–5 or 6–15 Hz frequency ranges tended to be largest at the peaks and valleys of the target sinusoid. In those same periods, FDS EMG activity was synchronized with force fluctuations. We then constructed a physiologically-realistic computer simulation in which a muscle-tendon complex was set inside of a feedback-driven control loop. Surprisingly, the model sufficed to produce phase-dependent modulation of tremor similar to that observed in humans. Further, the gain of afferent feedback from muscle spindles was critical for appropriately amplifying and shaping this tremor. We suggest that the experimentally-induced tremor may represent the response of a viscoelastic muscle-tendon system to dynamic drive, and therefore does not fall into known categories of tremor generation, such as tremorogenic descending drive, stretch-reflex loop oscillations, motor unit behavior, or mechanical resonance. Our findings motivate future efforts to understand tremor from a perspective that considers neuromechanical coupling within the context of closed-loop control. The strategy of combining experimental recordings with physiologically-sound simulations will enable thorough

  18. Dynamic peripheral traction forces balance stable neurite tension in regenerating Aplysia bag cell neurons

    PubMed Central

    Hyland, Callen; Mertz, Aaron F.; Forscher, Paul; Dufresne, Eric

    2014-01-01

    Growth cones of elongating neurites exert force against the external environment, but little is known about the role of force in outgrowth or its relationship to the mechanical organization of neurons. We used traction force microscopy to examine patterns of force in growth cones of regenerating Aplysia bag cell neurons. We find that traction is highest in the peripheral actin-rich domain and internal stress reaches a plateau near the transition between peripheral and central microtubule-rich domains. Integrating stress over the area of the growth cone reveals that total scalar force increases with area but net tension on the neurite does not. Tensions fall within a limited range while a substantial fraction of the total force can be balanced locally within the growth cone. Although traction continuously redistributes during extension and retraction of the peripheral domain, tension is stable over time, suggesting that tension is a tightly regulated property of the neurite independent of growth cone dynamics. We observe that redistribution of traction in the peripheral domain can reorient the end of the neurite shaft. This suggests a role for off-axis force in growth cone turning and neuronal guidance. PMID:24825441

  19. Dynamic peripheral traction forces balance stable neurite tension in regenerating Aplysia bag cell neurons.

    PubMed

    Hyland, Callen; Mertz, Aaron F; Forscher, Paul; Dufresne, Eric

    2014-01-01

    Growth cones of elongating neurites exert force against the external environment, but little is known about the role of force in outgrowth or its relationship to the mechanical organization of neurons. We used traction force microscopy to examine patterns of force in growth cones of regenerating Aplysia bag cell neurons. We find that traction is highest in the peripheral actin-rich domain and internal stress reaches a plateau near the transition between peripheral and central microtubule-rich domains. Integrating stress over the area of the growth cone reveals that total scalar force increases with area but net tension on the neurite does not. Tensions fall within a limited range while a substantial fraction of the total force can be balanced locally within the growth cone. Although traction continuously redistributes during extension and retraction of the peripheral domain, tension is stable over time, suggesting that tension is a tightly regulated property of the neurite independent of growth cone dynamics. We observe that redistribution of traction in the peripheral domain can reorient the end of the neurite shaft. This suggests a role for off-axis force in growth cone turning and neuronal guidance. PMID:24825441

  20. Computational Intelligence Based Data Fusion Algorithm for Dynamic sEMG and Skeletal Muscle Force Modelling

    SciTech Connect

    Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen; D. Subbaram Naidu

    2013-08-01

    In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.

  1. The Effects of a Constant Bias Force on the Dynamics of a Periodically Forced Spherical Particle in a Newtonian Fluid at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Madhukar, K.; Ramamohan, T. R.; Shivakumara, I. S.

    2010-09-01

    of both periodic force and the constant bias force. As the Reynolds numbers increases the drift of the particle reduces, which indicates the effects of inertia. We present a preliminary analysis of the dynamics in this paper.

  2. Complementary frame reconstruction: a low-biased dynamic PET technique for low count density data in projection space

    NASA Astrophysics Data System (ADS)

    Hong, Inki; Cho, Sanghee; Michel, Christian J.; Casey, Michael E.; Schaefferkoetter, Joshua D.

    2014-09-01

    A new data handling method is presented for improving the image noise distribution and reducing bias when reconstructing very short frames from low count dynamic PET acquisition. The new method termed ‘Complementary Frame Reconstruction’ (CFR) involves the indirect formation of a count-limited emission image in a short frame through subtraction of two frames with longer acquisition time, where the short time frame data is excluded from the second long frame data before the reconstruction. This approach can be regarded as an alternative to the AML algorithm recently proposed by Nuyts et al, as a method to reduce the bias for the maximum likelihood expectation maximization (MLEM) reconstruction of count limited data. CFR uses long scan emission data to stabilize the reconstruction and avoids modification of algorithms such as MLEM. The subtraction between two long frame images, naturally allows negative voxel values and significantly reduces bias introduced in the final image. Simulations based on phantom and clinical data were used to evaluate the accuracy of the reconstructed images to represent the true activity distribution. Applicability to determine the arterial input function in human and small animal studies is also explored. In situations with limited count rate, e.g. pediatric applications, gated abdominal, cardiac studies, etc., or when using limited doses of short-lived isotopes such as 15O-water, the proposed method will likely be preferred over independent frame reconstruction to address bias and noise issues.

  3. VolRoverN: Enhancing surface and volumetric reconstruction for realistic dynamical simulation of cellular and subcellular function

    PubMed Central

    Edwards, John; Daniel, Eric; Kinney, Justin; Bartol, Tom; Sejnowski, Terrence; Johnston, Daniel; Harris, Kristen; Bajaj, Chandrajit

    2014-01-01

    Establishing meaningful relationships between cellular structure and function requires accurate morphological reconstructions. In particular, there is an unmet need for high quality surface reconstructions to model subcellular and synaptic interactions among neurons at nanometer resolution. We address this need with VolRoverN, a software package that produces accurate, efficient, and automated 3D surface reconstructions from stacked 2D contour tracings. While many techniques and tools have been developed in the past for 3D visualization of cellular structure, the reconstructions from VolRoverN meet specific quality criteria that are important for dynamical simulations. These criteria include manifoldness, water-tightness, lack of self- and object-object-intersections, and geometric accuracy. These enhanced surface reconstructions are readily extensible to any cell type (including glia) and are used here on complex spiny dendrites and axons from mature rat hippocampal area CA1. Both spatially realistic surface reconstructions and reduced skeletonizations are produced and formatted by VolRoverN for easy input into analysis software packages for neurophysiological simulations at multiple spatial and temporal scales ranging from ion electro-diffusion to electrical cable models. PMID:24100964

  4. Dynamics of confined water reconstructed from inelastic x-ray scattering measurements of bulk response functions

    NASA Astrophysics Data System (ADS)

    Coridan, Robert H.; Schmidt, Nathan W.; Lai, Ghee Hwee; Abbamonte, Peter; Wong, Gerard C. L.

    2012-03-01

    Nanoconfined water and surface-structured water impacts a broad range of fields. For water confined between hydrophilic surfaces, measurements and simulations have shown conflicting results ranging from “liquidlike” to “solidlike” behavior, from bulklike water viscosity to viscosity orders of magnitude higher. Here, we investigate how a homogeneous fluid behaves under nanoconfinement using its bulk response function: The Green's function of water extracted from a library of S(q,ω) inelastic x-ray scattering data is used to make femtosecond movies of nanoconfined water. Between two confining surfaces, the structure undergoes drastic changes as a function of surface separation. For surface separations of ≈9 Å, although the surface-associated hydration layers are highly deformed, they are separated by a layer of bulklike water. For separations of ≈6 Å, the two surface-associated hydration layers are forced to reconstruct into a single layer that modulates between localized “frozen’ and delocalized “melted” structures due to interference of density fields. These results potentially reconcile recent conflicting experiments. Importantly, we find a different delocalized wetting regime for nanoconfined water between surfaces with high spatial frequency charge densities, where water is organized into delocalized hydration layers instead of localized hydration shells, and are strongly resistant to `freezing' down to molecular distances (<6 Å).

  5. Reconstructing dynamic mental models of facial expressions in prosopagnosia reveals distinct representations for identity and expression.

    PubMed

    Richoz, Anne-Raphaëlle; Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G; Caldara, Roberto

    2015-04-01

    The human face transmits a wealth of signals that readily provide crucial information for social interactions, such as facial identity and emotional expression. Yet, a fundamental question remains unresolved: does the face information for identity and emotional expression categorization tap into common or distinct representational systems? To address this question we tested PS, a pure case of acquired prosopagnosia with bilateral occipitotemporal lesions anatomically sparing the regions that are assumed to contribute to facial expression (de)coding (i.e., the amygdala, the insula and the posterior superior temporal sulcus--pSTS). We previously demonstrated that PS does not use information from the eye region to identify faces, but relies on the suboptimal mouth region. PS's abnormal information use for identity, coupled with her neural dissociation, provides a unique opportunity to probe the existence of a dichotomy in the face representational system. To reconstruct the mental models of the six basic facial expressions of emotion in PS and age-matched healthy observers, we used a novel reverse correlation technique tracking information use on dynamic faces. PS was comparable to controls, using all facial features to (de)code facial expressions with the exception of fear. PS's normal (de)coding of dynamic facial expressions suggests that the face system relies either on distinct representational systems for identity and expression, or dissociable cortical pathways to access them. Interestingly, PS showed a selective impairment for categorizing many static facial expressions, which could be accounted for by her lesion in the right inferior occipital gyrus. PS's advantage for dynamic facial expressions might instead relate to a functionally distinct and sufficient cortical pathway directly connecting the early visual cortex to the spared pSTS. Altogether, our data provide critical insights on the healthy and impaired face systems, question evidence of deficits

  6. Pressure Gradient Error of Spectral Element Dynamical Core associated with Topographic Forcing: Comparison with the Spherical Harmonics Dynamical Core

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin; Jeong, Han-Byeol; Kim, Won-Ho

    2015-04-01

    Response characteristics of the spectral element hydrostatic dynamical core on the cubed sphere to the global topographic forcing are investigated in terms of pressure gradient error, and it is compared with the spherical harmonics hydrostatic dynamical core. The vertical hybrid-pressure coordinate and finite difference method are introduced to both dynamical cores, and explicit and implicit hyper-diffusion schemes are applied to spectral element dynamical core and spherical harmonics dynamical core, respectively. The model atmosphere at initial time is set to the quiescent environment so that the term affecting on the time tendency of the momentum equation at the first time step is the pressure gradient term only which is influenced by the observed surface topography. During 6 days of time integration, the spurious flow is generated due to inaccurate numerical approximations of pressure gradient term for each dynamical core. High zonal wind speed which can be regarded as numerical error is occurred commonly in two dynamical cores around steep topography (e.g., the Tibetan Plateau, the Rocky Mountains, and the Andes Mountains), but the maximum zonal wind speed at day 6 of spectral element dynamical core is 8-9 times larger than that of spherical harmonics dynamical core. The vertically averaged kinetic energy spectrum at day 6 shows very different trend between two dynamical cores. By performing the experiments with the scale-separated topography, it turns out that these kinetic energy spectrum trends are mainly caused by the small-scale topography. A simple change of pressure gradient term into log-pressure form is found to significantly reduce numerical error (up to 63% of maximum wind speed in case of spectral element dynamical core) and noise-like small-scale phenomena.

  7. Force spectroscopy with a large dynamic range using small cantilevers and an array detector

    NASA Astrophysics Data System (ADS)

    Schäffer, Tilman E.

    2002-04-01

    The important characteristics of a detector for force spectroscopy measurements are sensitivity, linearity and dynamic range. The commonly used two-segment detector that measures the position of a light beam reflected from the force-sensing cantilever in an atomic force microscope becomes nonlinear when the beam shifts significantly onto one of the segments. For a detection setup optimized for high sensitivity, such as needed for the use with small cantilevers, it is shown both experimentally and theoretically that the dynamic range extends to an upper detection limit of only about 115 nm in cantilever deflection if <10% nonlinearity is required. A detector is presented that circumvents that limitation. This detector is based on a linear arrangement of multiple photodiode segments that are read out individually. With such an array detector, the irradiance distribution of the reflected beam is measured. The reflected beam not only shifts in position but also deforms when the cantilever deflects because the bent cantilever acts as a curved mirror. The mean of the distribution, however, is a linear function of cantilever deflection in both theory and experiment. An array detector is consequently well suited for force measurements for which both high sensitivity and a large dynamic range are required.

  8. Solvation structure and dynamics of Ni2+(aq) from a polarizable force field

    NASA Astrophysics Data System (ADS)

    Mareš, Jiří; Vaara, Juha

    2014-10-01

    An aqueous solution of Ni2+ has often been used as a prototypic transition-metal system for experimental and theoretical studies in nuclear and electron-spin magnetic resonance (NMR and ESR). Molecular dynamics (MD) simulation of Ni2+(aq) has been a part of many of these studies. As a transition metal complex, its MD simulation is particularly difficult using common force fields. In this work, we parameterize the Ni2+ ion for a simulation of the aqueous solution within the modern polarizable force field AMOEBA. We show that a successful parameterization is possible for this specific case when releasing the physical interpretation of the electrostatic and polarization parameters of the force field. In doing so, particularly the Thole damping parameter and also the ion charge and polarizability were used as fitting parameters. The resulting parameterizations give in a MD simulation good structural and dynamical properties of the [Ni(H2O)6 ] 2 + complex, along with the expected excellent performance of AMOEBA for the water solvent. The presented parameterization is appropriate for high-accuracy simulations of both structural and dynamic properties of Ni2+(aq). This work documents possible approaches of parameterization of a transition metal within the AMOEBA force field.

  9. Molecular dynamics simulations of a new branched antimicrobial peptide: A comparison of force fields

    NASA Astrophysics Data System (ADS)

    Li, Jianguo; Lakshminarayanan, Rajamani; Bai, Yang; Liu, Shouping; Zhou, Lei; Pervushin, Konstantin; Verma, Chandra; Beuerman, Roger W.

    2012-12-01

    Branched antimicrobial peptides are promising as a new class of antibiotics displaying high activity and low toxicity and appear to work through a unique mechanism of action. We explore the structural dynamics of a covalently branched 18 amino acid peptide (referred to as B2088) in aqueous and membrane mimicking environments through molecular dynamics (MD) simulations. Towards this, we carry out conventional MD simulations and supplement these with replica exchange simulations. The simulations are carried out using four different force fields that are commonly employed for simulating biomolecular systems. These force fields are GROMOS53a6, CHARMM27 with cMAP, CHARMM27 without cMAP and AMBER99sb. The force fields are benchmarked against experimental data available from circular dichroism and nuclear magnetic resonance spectroscopies, and show that CHARMM27 without cMAP correction is the most successful in reproducing the structural dynamics of B2088 both in water and in the presence of micelles. Although the four force fields predict different structures of B2088, they all show that B2088 stabilizes against the head group of the lipid through hydrogen bonding of its Lys and Arg side chains. This leads us to hypothesize that B2088 is unlikely to penetrate into the hydrophobic region of the membrane owing to the high free energy costs of transfer from water, and possibly acts by carpeting and thus disrupting the membrane.

  10. Cooperative dynamics of microtubule ensembles: Polymerization forces and rescue-induced oscillations

    NASA Astrophysics Data System (ADS)

    Zelinski, Björn; Kierfeld, Jan

    2013-01-01

    We investigate the cooperative dynamics of an ensemble of N microtubules growing against an elastic barrier. Microtubules undergo so-called catastrophes, which are abrupt stochastic transitions from a growing to a shrinking state, and rescues, which are transitions back to the growing state. Microtubules can exert pushing or polymerization forces on an obstacle, such as an elastic barrier, if the growing end is in contact with the obstacle. We use dynamical mean-field theory and stochastic simulations to analyze a model where each microtubule undergoes catastrophes and rescues and where microtubules interact by force sharing. For zero rescue rate, cooperative growth terminates in a collective catastrophe. The maximal polymerization force before catastrophes grows linearly with N for small N or a stiff elastic barrier, in agreement with available experimental results, whereas it crosses over to a logarithmic dependence for larger N or a soft elastic barrier. For a nonzero rescue rate and a soft elastic barrier, the dynamics becomes oscillatory with both collective catastrophe and rescue events, which are part of a robust limit cycle. Both the average and maximal polymerization forces then grow linearly with N, and we investigate their dependence on tubulin on-rates and rescue rates, which can be involved in cellular regulation mechanisms. We further investigate the robustness of the collective catastrophe and rescue oscillations with respect to different catastrophe models.

  11. Extracting intrinsic dynamic parameters of biomolecular folding from single-molecule force spectroscopy experiments.

    PubMed

    Nam, Gi-Moon; Makarov, Dmitrii E

    2016-01-01

    Single-molecule studies in which a mechanical force is transmitted to the molecule of interest and the molecular extension or position is monitored as a function of time are versatile tools for probing the dynamics of protein folding, stepping of molecular motors, and other biomolecular processes involving activated barrier crossing. One complication in interpreting such studies, however, is the fact that the typical size of a force probe (e.g., a dielectric bead in optical tweezers or the atomic force microscope tip/cantilever assembly) is much larger than the molecule itself, and so the observed molecular motion is affected by the hydrodynamic drag on the probe. This presents the experimenter with a nontrivial task of deconvolving the intrinsic molecular parameters, such as the intrinsic free energy barrier and the effective diffusion coefficient exhibited while crossing the barrier from the experimental signal. Here we focus on the dynamical aspect of this task and show how the intrinsic diffusion coefficient along the molecular reaction coordinate can be inferred from single-molecule measurements of the rates of biomolecular folding and unfolding. We show that the feasibility of accomplishing this task is strongly dependent on the relationship between the intrinsic molecular elasticity and that of the linker connecting the molecule to the force probe and identify the optimal range of instrumental parameters allowing determination of instrument-free molecular dynamics. PMID:26088347

  12. Nonlinear Decomposition of Climate Data: a New Method for Reconstruction of Dynamical Modes

    NASA Astrophysics Data System (ADS)

    Mukhin, D.; Gavrilov, A.; Loskutov, E. M.; Feigin, A. M.

    2014-12-01

    Modeling of multivariate time-series produced by complex systems requires efficient tools for compact data representation. In this report we consider this problem, relating to empirical modeling of climate, which implies an analysis of spatial-distributed time-series. The main goal is to establish the number of principal modes which have key contribution to data and actually governs the observed variability. Currently, the number of widely used methods based on PCA and factor analysis exists, which yield different data decompositions taking into consideration spatial/spatio-temporal correlations in observed dynamics: spatial empirical orthogonal functions, M-SSA, varimax rotation, empirical orthogonal teleconnections, and so on. However, the question about possibility of improving the decomposition by taking into account nonlinear couplings between variables often remains untouched. In the report the method for construction of principal dynamic modes on the basis of low-dimensional nonlinear parametric representation of observed multivariate time-series is suggested. It is aimed to extracting the set of latent modes that both explains an essential part of variability, and obeys the simplest evolution law. Thus, this approach can be used for optimal reconstruction of the phase space for empirical prognostic modeling of observed dynamics. Criterion of evidence of the nonlinearity, which allows estimating optimal parameters of data representation (including the number of parameters in mode definition and the number of principal modes) is proposed. The effectiveness of suggested method is firstly demonstrated on toy model example: two-dimensional strongly nonlinear problem of unknown dynamic mode retrieval from noisy data is considered. Next, the evidence of nonlinear couplings in SST space-distributed data covering the Globe is investigated by the proposed approach. It is demonstrated that the obtained principal modes capture more part of SST variability than

  13. Dynamic structure and cluster formation in confined nanofluids under the action of an external force field

    NASA Astrophysics Data System (ADS)

    Ben-Abdallah, Philippe

    2006-10-01

    The dynamic structure and the formation of clusters in nanoparticle colloidal solutions (nanofluids) confined between two parallel walls and submitted to the action of an external force field is studied by extensive Brownian-dynamics simulations. The self-correlation of individual particles and the time correlation between distinct particles are analyzed by calculating the density-density time correlation (van Hove) function. It is shown that the self-diffusion is reduced by the external force field while the lifetime of collective modes of nanoparticles (i.e., natural phonons) is significantly enhanced by this force. We demonstrate that this result is related to disorder-order transitions in the nanoparticle spatial distribution under perturbation. Interestingly, we highlight that the interaction forces mediated by the walls act like repulsive interparticle forces. They tend to increase the structural disorder and to lower the lifetime of collective modes. Our results suggest that the heat transport properties of nanofluids could be actively controlled in nanometer-size systems.

  14. Mapping the dynamics of force transduction at cell–cell junctions of epithelial clusters

    PubMed Central

    Ng, Mei Rosa; Besser, Achim; Brugge, Joan S; Danuser, Gaudenz

    2014-01-01

    Force transduction at cell-cell adhesions regulates tissue development, maintenance and adaptation. We developed computational and experimental approaches to quantify, with both sub-cellular and multi-cellular resolution, the dynamics of force transmission in cell clusters. Applying this technology to spontaneously-forming adherent epithelial cell clusters, we found that basal force fluctuations were coupled to E-cadherin localization at the level of individual cell-cell junctions. At the multi-cellular scale, cell-cell force exchange depended on the cell position within a cluster, and was adaptive to reconfigurations due to cell divisions or positional rearrangements. Importantly, force transmission through a cell required coordinated modulation of cell-matrix adhesion and actomyosin contractility in the cell and its neighbors. These data provide insights into mechanisms that could control mechanical stress homeostasis in dynamic epithelial tissues, and highlight our methods as a resource for the study of mechanotransduction in cell-cell adhesions. DOI: http://dx.doi.org/10.7554/eLife.03282.001 PMID:25479385

  15. Fully Atomistic Simulations of Protein Unfolding in Low Speed Atomic Force Microscope and Force Clamp Experiments with the Help of Boxed Molecular Dynamics.

    PubMed

    Booth, Jonathan J; Shalashilin, Dmitrii V

    2016-02-01

    The results of boxed dynamics (BXD) fully atomistic simulations of protein unfolding by atomic force microscopy (AFM) in both force clamp (FC) and velocity clamp (VC) modes are reported. In AFM experiments the unfolding occurs on a time scale which is too long for standard atomistic molecular dynamics (MD) simulations, which are usually performed with the addition of forces which exceed those of experiment by many orders of magnitude. BXD can reach the time scale of slow unfolding and sample the very high free energy unfolding pathway, reproducing the experimental dependence of pulling force against extension and extension against time. Calculations show the presence of the pulling force "humps" previously observed in the VC AFM experiments and allow the identification of intermediate protein conformations responsible for them. Fully atomistic BXD simulations can estimate the rate of unfolding in the FC experiments up to the time scale of seconds. PMID:26760898

  16. Characterization of Probe Dynamic Behaviors in Critical Dimension Atomic Force Microscopy.

    PubMed

    Feng, Shaw C; Joung, Che Bong; Vorburger, Theodore V

    2009-01-01

    This paper describes a detailed computational model of the interaction between an atomic force microscope probe tip and a sample surface. The model provides analyses of dynamic behaviors of the tip to estimate the probe deflections due to surface intermittent contact and the resulting dimensional biases and uncertainties. Probe tip and cantilever beam responses to intermittent contact between the probe tip and sample surface are computed using the finite element method. Intermittent contacts with a wall and a horizontal surface are computed and modeled, respectively. Using a 75 nm Critical Dimension (CD) tip as an example, the responses of the probe to interaction forces between the sample surface and the probe tip are shown in both time and frequency domains. In particular, interaction forces between the tip and both a vertical wall and a horizontal surface of a silicon sample are modeled using Lennard-Jones theory. The Snap-in and Snap-out of the probe tip in surface scanning are calculated and shown in the time domain. Based on the given tip-sample interaction force model, the calculation includes the compliance of the probe and dynamic forces generated by an excitation. Cantilever and probe tip deflections versus interaction forces in the time domain can be derived for both vertical contact with a plateau and horizontal contact with a side wall. Dynamic analysis using the finite element method and Lennard-Jones model provide a unique means to analyze the interaction of the probe and sample, including calculation of the deflection and the gap between the probe tip and the measured sample surface. PMID:27504222

  17. Characterization of Probe Dynamic Behaviors in Critical Dimension Atomic Force Microscopy

    PubMed Central

    Feng, Shaw C.; Joung, Che Bong; Vorburger, Theodore V.

    2009-01-01

    This paper describes a detailed computational model of the interaction between an atomic force microscope probe tip and a sample surface. The model provides analyses of dynamic behaviors of the tip to estimate the probe deflections due to surface intermittent contact and the resulting dimensional biases and uncertainties. Probe tip and cantilever beam responses to intermittent contact between the probe tip and sample surface are computed using the finite element method. Intermittent contacts with a wall and a horizontal surface are computed and modeled, respectively. Using a 75 nm Critical Dimension (CD) tip as an example, the responses of the probe to interaction forces between the sample surface and the probe tip are shown in both time and frequency domains. In particular, interaction forces between the tip and both a vertical wall and a horizontal surface of a silicon sample are modeled using Lennard-Jones theory. The Snap-in and Snap-out of the probe tip in surface scanning are calculated and shown in the time domain. Based on the given tip-sample interaction force model, the calculation includes the compliance of the probe and dynamic forces generated by an excitation. Cantilever and probe tip deflections versus interaction forces in the time domain can be derived for both vertical contact with a plateau and horizontal contact with a side wall. Dynamic analysis using the finite element method and Lennard-Jones model provide a unique means to analyze the interaction of the probe and sample, including calculation of the deflection and the gap between the probe tip and the measured sample surface. PMID:27504222

  18. An Assessment of Molecular Dynamic Force Fields for Silica for Use in Simulating Laser Damage Mitigation

    SciTech Connect

    Soules, T F; Gilmer, G H; Matthews, M J; Stolken, J S; Feit, M D

    2010-10-21

    We compare force fields (FF's) that have been used in molecular dynamic (MD) simulations of silica in order to assess their applicability for use in simulating IR-laser damage mitigation. Although pairwise FF?s obtained by fitting quantum mechanical calculations such as the BKS and CHIK potentials have been shown to reproduce many of the properties of silica including the stability of silica polymorphs and the densification of the liquid, we show that melting temperatures and fictive temperatures are much too high. Softer empirical force fields give liquid and glass properties at experimental temperatures but may not predict all properties important to laser mitigation experiments.

  19. Dynamic nanoimpedance characterization of the atomic force microscope tip-surface contact.

    PubMed

    Tobiszewski, Mateusz Tomasz; Zieliński, Artur; Darowicki, Kazimierz

    2014-02-01

    Nanoimpedance measurements, using the dynamic impedance spectroscopy technique, were carried out during loading and unloading force of a probe on three kinds of materials of different resistivity. These materials were: gold, boron-doped diamond, and AISI 304 stainless steel. Changes of impedance spectra versus applied force were registered and differences in the tip-to-sample contact character on each material were revealed. To enable comparison between materials and phases, a new standardization method is proposed, which simulates conditions of initial contact. PMID:24331246

  20. Dynamic topology multi force particle swarm optimization algorithm and its application

    NASA Astrophysics Data System (ADS)

    Chen, Dongning; Zhang, Ruixing; Yao, Chengyu; Zhao, Zheyu

    2016-01-01

    Particle swarm optimization (PSO) algorithm is an effective bio-inspired algorithm but it has shortage of premature convergence. Researchers have made some improvements especially in force rules and population topologies. However, the current algorithms only consider a single kind of force rules and lack consideration of comprehensive improvement in both multi force rules and population topologies. In this paper, a dynamic topology multi force particle swarm optimization (DTMFPSO) algorithm is proposed in order to get better search performance. First of all, the principle of the presented multi force particle swarm optimization (MFPSO) algorithm is that different force rules are used in different search stages, which can balance the ability of global and local search. Secondly, a fitness-driven edge-changing (FE) topology based on the probability selection mechanism of roulette method is designed to cut and add edges between the particles, and the DTMFPSO algorithm is proposed by combining the FE topology with the MFPSO algorithm through concurrent evolution of both algorithm and structure in order to further improve the search accuracy. Thirdly, Benchmark functions are employed to evaluate the performance of the DTMFPSO algorithm, and test results show that the proposed algorithm is better than the well-known PSO algorithms, such as µPSO, MPSO, and EPSO algorithms. Finally, the proposed algorithm is applied to optimize the process parameters for ultrasonic vibration cutting on SiC wafer, and the surface quality of the SiC wafer is improved by 12.8% compared with the PSO algorithm in Ref. [25]. This research proposes a DTMFPSO algorithm with multi force rules and dynamic population topologies evolved simultaneously, and it has better search performance.

  1. Dynamic force response of spherical hydrostatic journal bearing for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis

    1994-01-01

    Hydrostatic Journal Bearings (HJB's) are reliable and resilient fluid film rotor support elements ideal to replace roller bearings in cryogenic turbomachinery. HJB' will be used for primary space-power applications due to their long lifetime, low friction and wear, large load capacity, large direct stiffness, and damping force coefficients. An analysis for the performance characteristics of turbulent flow, orifice compensated, spherical hydrostatic journal bearings (HJB's) is presented. Spherical bearings allow tolerance for shaft misalignment without force performance degradation and have also the ability to support axial loads. The spherical HJB combines these advantages to provide a bearing design which could be used efficiently on high performance turbomachinery. The motion of a barotropic liquid on the thin film bearing lands is described by bulk-flow mass and momentum equations. These equations are solved numerically using an efficient CFD method. Numerical predictions of load capacity and force coefficients for a 6 recess, spherical HJB in a LO2 environment are presented. Fluid film axial forces and force coefficients of a magnitude about 20% of the radial load capacity are predicted for the case analyzed. Fluid inertia effects, advective and centrifugal, are found to affect greatly the static and dynamic force performance of the bearing studied.

  2. A dynamic force balance model for colloidal expansion and its DLVO-based application.

    PubMed

    Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2009-01-20

    A force balance model that describes the dynamic expansion of colloidal bentonite gels/sols is presented. The colloidal particles are assumed to consist of one or several thin sheets with the other dimensions much larger than their thickness. The forces considered include van der Waals force, diffuse double layer force, thermal force giving rise to Brownian motion, gravity, as well as friction force. The model results in an expression resembling the instationary diffusion equation but with an immensely variable diffusivity. This diffusivity is strongly influenced by the concentration of counterions as well as by the particle concentration in the colloid gel/sol. The properties of the model are explored and discussed, exemplified by the upward expansion of an originally highly compacted bentonite tablet in a test tube. Examples are presented for a number of cases with ionic concentrations varying between very dilute waters up to several molar of counterions. The volume fraction of particles ranges from 40% to very dilute sols. PMID:19105788

  3. Mechanical dynamics in live cells and fluorescence-based force/tension sensors

    PubMed Central

    Yang, Chao; Zhang, Xiaohan; Guo, Yichen; Meng, Fanjie; Sachs, Frederick; Guo, Jun

    2016-01-01

    Three signaling systems play the fundamental roles in modulating cell activities: chemical, electrical, and mechanical. While the former two are well studied, the mechanical signaling system is still elusive because of the lack of methods to measure structural forces in real time at cellular and subcellular levels. Indeed, almost all biological processes are responsive to modulation by mechanical forces that trigger dispersive downstream electrical and biochemical pathways. Communication among the three systems is essential to make cells and tissues receptive to environmental changes. Cells have evolved many sophisticated mechanisms for the generation, perception and transduction of mechanical forces, including motor proteins and mechanosensors. In this review, we introduce some background information about mechanical dynamics in live cells, including the ubiquitous mechanical activity, various types of mechanical stimuli exerted on cells and the different mechanosensors. We also summarize recent results obtained using genetically encoded FRET (fluorescence resonance energy transfer)-based force/tension sensors; a new technique used to measure mechanical forces in structural proteins. The sensors have been incorporated into many specific structural proteins and have measured the force gradients in real time within live cells, tissues, and animals. PMID:25958335

  4. Investigations of the intermolecular forces between RDX and polyethylene by force-distance spectroscopy and molecular dynamics simulations.

    PubMed

    Taylor, D E; Strawhecker, K E; Shanholtz, E R; Sorescu, D C; Sausa, R C

    2014-07-10

    The development of novel nanoenergetic materials with enhanced bulk properties requires an understanding of the intermolecular interactions occurring between molecular components. We investigate the surface interactions between 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and polyethylene (PE) crystals on the basis of combined use of molecular dynamics (MD) simulations and force-distance spectroscopy, in conjunction with Lifshitz macroscopic theory of van der Waals forces between continuous materials. The binding energy in the RDX-PE system depends both on the degree of PE crystallinity and on the RDX crystal face. Our MD simulations yield binding energies of approximately 132 and 120 mJ/m(2) for 100% amorphous and 100% crystalline PE on RDX (210), respectively. The average value is about 36% greater than our experimental value of 81 ± 15 mJ/m(2) for PE (∼48% amorphous) on RDX (210). By comparison, Liftshitz theory predicts a value of about 79 mJ/m(2) for PE interacting with RDX. Our MD simulations also predict larger binding energies for both amorphous and crystalline PE on RDX (210) compared to the RDX (001) surface. Analysis of the interaction potential indicates that about 60% of the binding energy in the PE-RDX system is due to attractive interactions between HPE-ORDX and CPE-NRDX pairs of atoms. Further, amorphous PE shows a much longer interaction distance than crystalline PE with the (210) and (001) RDX surfaces due to the possibility of larger polymer elongations in the case of amorphous PE as strain is applied. Also, we report estimates of the binding energies of energetic materials RDX and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) with PE, propylene, polystyrene, and several fluorine-containing polymers using Lifshitz theory and compare these with reported MD calculations. PMID:24922563

  5. Hydrographical and dynamical reconstruction of the Warm Core Cyprus Eddy from gliders data

    NASA Astrophysics Data System (ADS)

    Bosse, Anthony; Testor, Pierre; Hayes, Dan; Ruiz, Simon; Mauri, Elena; Charantonis, Anastase; d'Ortenzio, Fabrizio; Mortier, Laurent

    2016-04-01

    In the 80s, the POEM (Physical Oceanography of the Eastern Mediterranean) cruises in the Levantine Basin first revealed the presence of a very pronounced dynamical structure off Cyprus: The Cyprus Warm Core Eddy. Since then, a large amount of data have been collected thanks to the use of autonomous oceanic gliders (+8000 profiles since 2009). Part of those profiles were carried out in the upper layers down to 200 m, and we take benefit of a novel approach named ITCOMP SOM that uses a statistical approach to extend them down to 1000 m (see [1] for more details). This dataset have a particularly good spatio-temporal coverage in 2009 for about a month, thanks to simultaneous deployments of several gliders (up to 6). In this study, we present a set of 3D reconstruction of the dynamical and hydrographical characteristics of the Warm Core Cyprus Eddy between 2009 and 2015. Moreover, chlorophyll-a fluorescence data measured by the gliders give evidence to strong vertical velocities at the edge of the eddy. We discuss possible mechanisms (frontogenesis, symmetric instability) that could generate such signals and provide an assessment of the role of this peculiar circulation feature on the circulation and biogeochemistry of the Levantine basin. Reference: [1] Charantonis, A., P. Testor, L. Mortier, F. D'Ortenzio, S. Thiria (2015): Completion of a sparse GLIDER database using multi-iterative Self-Organizing Maps (ITCOMP SOM), Procedia Computer Science, 51(1):2198-2206. DOI: 10.1016/j.procs.2015.05.496

  6. Reconstruction of stand dynamics over the last 2500 years from spruce remains in a treeline peatland

    SciTech Connect

    Arseneault, D.; Payette, S.

    1995-06-01

    Stem remains of black spruce Picea mariana (Mill. BSP.) buried in a permafrost treeless peatland were used for the reconstruction of the long-term forest dynamics at treeline in northeastern Canada. Because most spruce remains were well preserved, forest development was assessed from stem morphology (growth form) and tree ring patterns. The peatland border was colonized by a spruce forest from at least 500 BC (2500 BP) to 1568 AD. Most spruce individuals showed an erect, monopodial bole with only minor stem damage at the snow-air interface. The forest successfully regenerated after two fire events around 350 BC and 10 AD. The number of damaged stems at the snow-air interface increased after another fire around 700 AD, although faster ring growth occurred between 860 and 1000 AD (Medieval period). The forest shifted to an open krummholz after the last fire in 1568 AD because of reduced postfire regeneration and site opening. Reforestation of the site would necessitate sustained warmer conditions than those presently prevailing there.

  7. Dynamic Shape Reconstruction of Three-Dimensional Frame Structures Using the Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander

    2011-01-01

    A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.

  8. THREE-DIMENSIONAL RECONSTRUCTION OF AN ERUPTING FILAMENT WITH SOLAR DYNAMICS OBSERVATORY AND STEREO OBSERVATIONS

    SciTech Connect

    Li Ting; Zhang Jun; Zhang Yuzong; Yang Shuhong E-mail: zjun@nao.cas.cn

    2011-09-20

    On 2010 August 1, a global solar event was launched involving almost the entire Earth-facing side of the Sun. This event mainly consisted of a C3.2 flare, a polar crown filament eruption, and two Earth-directed coronal mass ejections. The observations from the Solar Dynamics Observatory (SDO) and STEREO showed that all the activities were coupled together, suggesting a global character of the magnetic eruption. We reconstruct the three-dimensional geometry of the polar crown filament using observations from three different viewpoints (STEREO A, STEREO B, and SDO) for the first time. The filament undergoes two eruption processes. First, the main body of the filament rises up, while it also moves toward the low-latitude region with a change in inclination by {approx}48{sup 0} and expands only in the altitudinal and latitudinal direction in the field of view of the Atmospheric Imaging Assembly. We investigate the true velocities and accelerations of different locations along the filament and find that the highest location always has the largest acceleration during this eruption process. During the late phase of the first eruption, part of the filament material separates from the eastern leg. This material displays a projectile motion and moves toward the west at a constant velocity of 141.8 km s{sup -1}. This may imply that the polar crown filament consists of at least two groups of magnetic systems.

  9. A dynamic approach for reconstructing missing longitudinal data using the linear increments model.

    PubMed

    Aalen, Odd O; Gunnes, Nina

    2010-07-01

    Missing observations are commonplace in longitudinal data. We discuss how to model and analyze such data in a dynamic framework, that is, taking into consideration the time structure of the process and the influence of the past on the present and future responses. An autoregressive model is used as a special case of the linear increments model defined by Farewell (2006. Linear models for censored data, [PhD Thesis]. Lancaster University) and Diggle and others (2007. Analysis of longitudinal data with drop-out: objectives, assumptions and a proposal. Journal of the Royal Statistical Society, Series C (Applied Statistics, 56, 499-550). We wish to reconstruct responses for missing data and discuss the required assumptions needed for both monotone and nonmonotone missingness. The computational procedures suggested are very simple and easily applicable. They can also be used to estimate causal effects in the presence of time-dependent confounding. There are also connections to methods from survival analysis: The Aalen-Johansen estimator for the transition matrix of a Markov chain turns out to be a special case. Analysis of quality of life data from a cancer clinical trial is analyzed and presented. Some simulations are given in the supplementary material available at Biostatistics online. PMID:20388914

  10. A Comparison of Dynamic Postural Stability Between Asymptomatic Controls and Male Patients One Year After ACL Reconstruction (Pilot Study)

    PubMed Central

    Ataoglu, Muhammed Baybars; Hazar, Zeynep; Kafa, Nihan; Özer, Mustafa; Citaker, Seyit

    2014-01-01

    Objectives: The purpose of this study was to determine if dynamic postural stability gained one year after ACL reconstruction in patients who received rehabilitation. Methods: Seven male patients (mean age=32,66 ±6,47) who had previously undergone ACL reconstruction (ACL-R) and 7 sex-and general physical activity matched uninjured controls included to study. Mean time since original injury was 13±3,31 months. Dynamic postural control was assessed with 20° knee flexion with Star Excursion Balance test. Each participant performed 3 trials of the anterior, posterior-medial, and posterior-lateral directional components of the SEBT. Reach distances for each directional component were compared with non-injured leg and healthy controls’. Results: There was no significant difference in all directions of Star Excursion Balance test between neither the operated and uninjured knees of patients nor between patients and healthy controls (p>0,05). Conclusion: No deficits in dynamic postural stability were present average one year after ACL reconstruction in patients who received rehabilitation. It can be said that rehabilitation is effective in the recovery of dynamic postural stability.

  11. Dissolution study of active pharmaceutical ingredients using molecular dynamics simulations with classical force fields

    NASA Astrophysics Data System (ADS)

    Greiner, Maximilian; Elts, Ekaterina; Schneider, Julian; Reuter, Karsten; Briesen, Heiko

    2014-11-01

    The CHARMM, general Amber and OPLS force fields are evaluated for their suitability in simulating the molecular dynamics of the dissolution of the hydrophobic, small-molecule active pharmaceutical ingredients aspirin, ibuprofen, and paracetamol in aqueous media. The force fields are evaluated by comparison with quantum chemical simulations or experimental references on the basis of the following capabilities: accurately representing intra- and intermolecular interactions, appropriately reproducing crystal lattice parameters, adequately describing thermodynamic properties, and the qualitative description of the dissolution behavior. To make this approach easily accessible for evaluating the dissolution properties of novel drug candidates in the early stage of drug development, the force field parameter files are generated using online resources such as the SWISS PARAM servers, and the software packages ACPYPE and Maestro. All force fields are found to reproduce the intermolecular interactions with a reasonable degree of accuracy, with the general Amber and CHARMM force fields showing the best agreement with quantum mechanical calculations. A stable crystal bulk structure is obtained for all model substances, except for ibuprofen, where the reproductions of the lattice parameters and observed crystal stability are considerably poor for all force fields. The heat of solution used to evaluate the solid-to-solution phase transitions is found to be in qualitative agreement with the experimental data for all combinations tested, with the results being quantitatively optimum for the general Amber and CHARMM force fields. For aspirin and paracetamol, stable crystal-water interfaces were obtained. The (100), (110), (011) and (001) interfaces of aspirin or paracetamol and water were simulated for each force field for 30 ns. Although generally expected as a rare event, in some of the simulations, dissolution is observed at 310 K and ambient pressure conditions.

  12. Resolving sub-cellular force dynamics using arrays of magnetic microposts

    NASA Astrophysics Data System (ADS)

    Reich, Daniel

    2010-03-01

    The biological response of cells to mechanical forces is integral to both normal cell function and the progression of many diseases, such as hypertensive vascular wall thickening. This likely results from the fact that mechanical stresses can directly affect many cellular processes, including signal transduction, gene expression, growth, differentiation, and survival. The need to understand the relationship between applied forces and the mechanical response of cells as a critical step towards understanding mechanotransduction calls for tools that can apply forces to cells while measuring their contractile response. This talk will describe an approach that simultaneously allows local mechanical stimulation of the adherent surface of a cell and spatially resolved measurement of the local force fields generated throughout the cell in response to this stimulation. Cells are cultured on the top surfaces of arrays of micrometer-scale posts made from a flexible elastomer (PDMS), and the contractile forces generated by an adherent cell bend the posts. Measurements of the displacement of each post allow the contractile force field of the cell to be mapped out with sub-cellular precision. To apply forces to cells, rod- shaped magnetic nanoparticles are embedded in some of the posts so that externally applied magnetic fields selectively deform these ``magnetic posts,'' thereby exerting tunable local, mechanical stresses to the adherent surface of attached cells. Alternatively, magnetic particles bound to or internalized by the cell may be employed to apply forces and torques to the cell. With either approach, measuring the deflection of the surrounding non-magnetic posts probes the full mechanical response of the cell to these stresses. Results that illustrate the temporal dynamics and spatial distribution of the non-local response of fibroblasts and smooth muscle cells to local stresses will be discussed.

  13. Contact stiffness and damping of liquid films in dynamic atomic force microscope.

    PubMed

    Xu, Rong-Guang; Leng, Yongsheng

    2016-04-21

    The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayer distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film. PMID:27389229

  14. Contact stiffness and damping of liquid films in dynamic atomic force microscope

    NASA Astrophysics Data System (ADS)

    Xu, Rong-Guang; Leng, Yongsheng

    2016-04-01

    The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayer distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.

  15. A review of dynamic stability of repulsive-force maglev suspension systems

    SciTech Connect

    Cai, Y.; Rote, D.M.

    1998-07-01

    Vehicle dynamics and the need to satisfy ride quality requirements have long been recognized as crucial to the commercial success of passenger-carrying transportation systems. Design concepts for maglev systems are no exception. Early maglev investigators and designers were well aware of the importance of ride quality and took care to ensure that their designs would meet acceptable ride quality standards. In contrast, the dynamic stability of electrodynamic suspension (EDS) systems, which has obvious implications for system safety and cost as well as for ride quality, has not received nearly as much attention. Because of the well-known under-damped nature of EDS suspension systems and the observation of instabilities in laboratory-scale model systems, it is prudent to develop a better understanding of vehicle stability characteristics. The work reported in this was undertaken with the intention of summarizing information that has been accumulated worldwide and that is relevant to dynamic stability of repulsive-force maglev suspension systems, assimilating that information, and gaining an understanding of the factors that influence that stability. Included in the paper is a discussion and comparison of results acquired from some representative tests of large-scale vehicles on linear test tracks, together with analytical and laboratory-scale investigations of stability and dynamics of EDS systems. This paper will also summarize the R and D activities at Argonne National Laboratory (ANL) since 1991 to study the nature of the forces that are operative in an EDS system and the dynamic stability of such systems.

  16. Ab initio based force field and molecular dynamics simulations of crystalline TATB.

    PubMed

    Gee, Richard H; Roszak, Szczepan; Balasubramanian, Krishnan; Fried, Laurence E

    2004-04-15

    An all-atom force field for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is presented. The classical intermolecular interaction potential for TATB is based on single-point energies determined from high-level ab initio calculations of TATB dimers. The newly developed potential function is used to examine bulk crystalline TATB via molecular dynamics simulations. The isobaric thermal expansion and isothermal compression under hydrostatic pressures obtained from the molecular dynamics simulations are in good agreement with experiment. The calculated volume-temperature expansion is almost one dimensional along the c crystallographic axis, whereas under compression, all three unit cell axes participate, albeit unequally. PMID:15267608

  17. Nonlinear dynamics of a rack-pinion-rack device powered by the Casimir force.

    PubMed

    Miri, MirFaez; Nekouie, Vahid; Golestanian, Ramin

    2010-01-01

    Using the lateral Casimir force-a manifestation of the quantum fluctuations of the electromagnetic field between objects with corrugated surfaces-as the main force transduction mechanism, a nanomechanical device with rich dynamical behaviors is proposed. The device is made of two parallel racks that are moving in the same direction and a pinion in the middle that couples with both racks via the noncontact lateral Casimir force. The built-in frustration in the device causes it to be very sensitive and react dramatically to minute changes in the geometrical parameters and initial conditions of the system. The noncontact nature of the proposed device could help with the ubiquitous wear problem in nanoscale mechanical systems. PMID:20365429

  18. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.

  19. Applications of sweep frequency rotating force perturbation methodology in rotating machinery for dynamic stiffness identification

    NASA Astrophysics Data System (ADS)

    Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Grant, John W.; Goldman, Paul

    1992-06-01

    This paper outlines the sweep frequency rotating force perturbation method for identifying the dynamic stiffness characteristics of rotor/bearing/seal systems. Emphasis is placed on nonsynchronous perturbation of rotating shafts in a sequence of constant rotative speeds. In particular, results of the identification of flexible rotor multi-mode parameters and identification of fluid forces in seals and bearings are given. These results, presented in the direct and quadrature dynamic stiffness formats, permit the separation of components for easy identification. Another example of the perturbation method application is the identification of the lateral-torsional coupling due to shaft anisotropy. Results of laboratory rig experiments, the identification algorithm, and data processing techniques are discussed.

  20. Non-Synchronous Whirling Due to Fluid-Dynamic Forces in Axial Turbo-Machinery Rotors

    NASA Technical Reports Server (NTRS)

    Shen, S. F.; Mengle, V. G.

    1980-01-01

    The role of fluid forces acting on the blades of an axial turborotor with regards to whirling was analyzed. The dynamic equations were formulated for the coning mode of an overhung rotor. The exciting forces due to the motion were defined through a set of rotor stability derivatives, and analytical expressions of the aerodynamic contributions were found for the case of small mean stream deflection, high solidity and equivalent flat plate cascade. For a typical case, only backward whirl was indicated when the phase shifting of the rotor wake effect was ignored. A parametric study of the dynamic stability boundary reveals that a reduction in blade stagger angle, mass flow rate, fluid density and an increase in stiffness and external damping are all inductive for improved stability.

  1. Drill-string horizontal dynamics with uncertainty on the frictional force

    NASA Astrophysics Data System (ADS)

    Ritto, T. G.; Escalante, M. R.; Sampaio, Rubens; Rosales, M. B.

    2013-01-01

    This paper analyzes the dynamics of a horizontal drill-string. In this dynamics, the frictional forces between the column and the borehole are relevant and uncertain. A stochastic model is proposed for the frictional coefficient: a random field with exponential autocorrelation function. In the numerical analysis, the drill-string is modeled using the bar model (tension/compression), and is discretized by means of the finite element method. An oscillatory force (due to mud motor) is imposed on the system and there is a bit-rock interaction as the column moves forward. We propose a new way to measure the efficiency of the process: an output/input power ratio. The resultant random ratio is analyzed, and it turns out that it presents a bimodal characteristic, an unexpected result.

  2. Dynamical relations for left ventricular ejection - Flow rate, momentum, force and impulse

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Selzer, R. H.; Gordon, D. G.; Ledbetter, D. C.; Crawford, D. W.

    1984-01-01

    An investigation was carried out to quantitatively evaluate left ventricular volume flow rate, momentum, force and impulse derived from application of conservation principles for mass and momentum of blood within the ventricle during the ejection phase. An automated digital image processing system was developed and applied to left ventricular angiograms which are computer processed and analyzed frame by frame to determine the dynamical relations by numerical methods. The initial experience with force and impulse has indicated that neither quantity seemed to be a sensitive indicator of coronary artery disease as evaluated by qualitative angiography for the particular patient group studied. Utilization of the dynamical relations in evaluating human left ventricular performance requires improved means of measurement and interpretation of clinical studies.

  3. Equilibrium Atmospheric Boundary-Layer Flow: Computational Fluid Dynamics Simulation with Balanced Forces

    NASA Astrophysics Data System (ADS)

    Cai, Xuhui; Huo, Qing; Kang, Ling; Song, Yu

    2014-09-01

    Forcing relationships in steady, neutrally stratified atmospheric boundary-layer (ABL) flow are thoroughly analyzed. The ABL flow can be viewed as balanced between a forcing and a drag term. The drag term results from turbulent stress divergence, and above the ABL, both the drag and the forcing terms vanish. In computational wind engineering applications, the ABL flow is simulated not by directly specifying a forcing term in the ABL but by specifying boundary conditions for the simulation domain. Usually, these include the inflow boundary and the top boundary conditions. This `boundary-driven' ABL flow is dynamically different from its real counterpart, and this is the major reason that the simulated boundary-driven ABL flow does not maintain horizontal homogeneity. Here, first a dynamical approach is proposed to develop a neutrally stratified equilibrium ABL flow. Computational fluid dynamics (CFD) software (Fluent 6.3) with the standard - turbulence model is employed, and by applying a driving force profile, steady equilibrium ABL flows are simulated by the model. Profiles of wind speed and turbulent kinetic energy (TKE) derived using this approach are reasonable in comparison with the conventional logarithmic law and with observational data respectively. Secondly, the equilibrium ABL profiles apply as inflow conditions to simulate the boundary-driven ABL flow. Simulated properties between the inlet and the outlet sections across a fetch of 10 km are compared. Although profiles of wind speed, TKE, and its dissipation rate are consistently satisfactory under higher wind conditions, a deviation of TKE and its dissipation rate between the inlet and outlet are apparent (7-8 %) under lower wind-speed conditions (2 m s at 10 m). Furthermore, the simulated surface stress systematically decreases in the downwind direction. A redistribution of the pressure field is also found in the simulation domain, which provides a different driving pattern from the realistic case in

  4. Quantitative measurement of sliding friction dynamics at mesoscopic scales: The lateral force apparatus

    NASA Astrophysics Data System (ADS)

    Hendriks, C. P.; Vellinga, W. P.

    2000-06-01

    We describe an apparatus designed to quantitatively measure friction dynamics at the mesoscopic scale. This lateral force apparatus, LFA, uses double parallel leaf springs in leaf-spring units as force transducers and two focus error detection optical heads, optical heads, to measure deflections. The design of the leaf-spring units is new. Normal spring constants are in the range of 20-4000 N/m, and lateral spring constants are 7-1000 N/m. The optical heads combine a 10 nm sensitivity with a useful range of about 100 μm. The proven range of normal forces is 400 nN-150 mN. The leaf-spring units transduce friction and normal forces independently. Absolute values of normal and friction forces are calibrated. Typical errors are less than 10%. The calibration is partly in situ, for the sensitivity of the optical heads, and partly ex situ for the normal and lateral spring constants of the leaf-spring units. There is minimal coupling between the deflection measurements in the lateral and normal directions. This coupling is also calibrated in situ. It is typically 1% and can be as low as 0.25%. This means that the displacements of the tip can be measured accurately in the sliding direction and normal to the surface. Together, these characteristics make the LFA, well suited for quantitative study of friction dynamics at mesoscopic scales. Furthermore the design of the leaf-spring unit allows exchange of tips which may be fabricated (e.g., etched) from wire material (d≈0.4 mm) and can have customized shapes, e.g., polished flat squares. The ability of the LFA to study friction dynamics is briefly illustrated by results of stick-slip measurements on soft polymer surfaces.

  5. Lipid Bilayers: The Effect of Force Field on Ordering and Dynamics.

    PubMed

    Poger, David; Mark, Alan E

    2012-11-13

    The sensitivity of the structure and dynamics of a fully hydrated pure bilayer of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in molecular dynamics simulations to changes in force-field and simulation parameters has been assessed. Three related force fields (the Gromos 54A7 force field, a Gromos 53A6-derived parameter set and a variant of the Berger parameters) in combination with either particle-mesh Ewald (PME) or a reaction field (RF) were compared. Structural properties such as the area per lipid, carbon-deuterium order parameters, electron density profile and bilayer thicknesses, are reproduced by all the parameter sets within the uncertainty of the available experimental data. However, there are clear differences in the ordering of the glycerol backbone and choline headgroup, and the orientation of the headgroup dipole. In some cases, the degree of ordering was reminiscent of a liquid-ordered phase. It is also shown that, although the lateral diffusion of the lipids in the plane of the bilayer is often used to validate lipid force fields, because of the uncertainty in the experimental measurements and the fact that the lateral diffusion is dependent on the choice of the simulation conditions, it should not be employed as a measure of quality. Finally, the simulations show that the effect of small changes in force-field parameters on the structure and dynamics of a bilayer is more significant than the treatment of the long-range electrostatic interactions using RF or PME. Overall, the Gromos 54A7 best reproduced the range of experimental data examined. PMID:26605633

  6. Modeling economic costs of disasters and recovery involving positive effects of reconstruction: analysis using a dynamic CGE model

    NASA Astrophysics Data System (ADS)

    Xie, W.; Li, N.; Wu, J.-D.; Hao, X.-L.

    2013-11-01

    Disaster damages have negative effects on economy, whereas reconstruction investments have positive effects. The aim of this study is to model economic causes of disasters and recovery involving positive effects of reconstruction activities. Computable general equilibrium (CGE) model is a promising approach because it can incorporate these two kinds of shocks into a unified framework and further avoid double-counting problem. In order to factor both shocks in CGE model, direct loss is set as the amount of capital stock reduced on supply side of economy; A portion of investments restore the capital stock in existing period; An investment-driven dynamic model is formulated due to available reconstruction data, and the rest of a given country's saving is set as an endogenous variable. The 2008 Wenchuan Earthquake is selected as a case study to illustrate the model, and three scenarios are constructed: S0 (no disaster occurs), S1 (disaster occurs with reconstruction investment) and S2 (disaster occurs without reconstruction investment). S0 is taken as business as usual, and the differences between S1 and S0 and that between S2 and S0 can be interpreted as economic losses including reconstruction and excluding reconstruction respectively. The study showed that output from S1 is found to be closer to real data than that from S2. S2 overestimates economic loss by roughly two times that under S1. The gap in economic aggregate between S1 and S0 is reduced to 3% in 2011, a level that should take another four years to achieve under S2.

  7. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration

    DOE PAGESBeta

    Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-10-09

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variationmore » of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.« less

  8. Image Reconstruction in Higher Dimensions: Myocardial Perfusion Imaging of Tracer Dynamics with Cardiac Motion Due to Deformation and Respiration

    PubMed Central

    Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-01-01

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases due to redistribution of the counts over the cardiac-respiratory gates. However, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images. PMID:26450115

  9. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration

    SciTech Connect

    Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-10-09

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.

  10. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration

    NASA Astrophysics Data System (ADS)

    Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-11-01

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.

  11. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration.

    PubMed

    Shrestha, Uttam M; Seo, Youngho; Botvinick, Elias H; Gullberg, Grant T

    2015-11-01

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images. PMID:26450115

  12. Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review

    PubMed Central

    Kalfon-Cohen, Estelle

    2013-01-01

    Summary Viscoelasticity is a complex yet important phenomenon that drives material response at different scales of time and space. Burgeoning interest in nanoscale dynamic material mechanics has driven, and been driven by two key techniques: instrumented nanoindentation and atomic force microscopy. This review provides an overview of fundamental principles in nanoindentation, and compares and contrasts these two techniques as they are used for characterization of viscoelastic processes at the nanoscale. PMID:24367751

  13. Comment on 'Temperature dependence of the energy dissipation in dynamic force microscopy'.

    PubMed

    Burke, S A; Grütter, P

    2008-10-01

    A recent article in this journal by Roll et al (2008 Nanotechnology 19 045703) presents experimental results of the temperature dependence of dissipation in dynamic force microscopy which they use to elucidate the mechanisms of such a dissipation signal in the PTCDA on KBr system. We argue here that dissipation results are often highly dependent upon the tip structure, and urge caution in the interpretation of single sets of experimental data. PMID:21832607

  14. Unraveling the Architecture and Structural Dynamics of Pathogens by High-Resolution in vitro Atomic Force Microscopy

    SciTech Connect

    Malkin, A J; Plomp, M; Leighton, T J; McPherson, A; Wheeler, K E

    2005-04-12

    Progress in structural biology very much depends upon the development of new high-resolution techniques and tools. Despite decades of study of viruses, bacteria and bacterial spores and their pressing importance in human medicine and biodefense, many of their structural properties are poorly understood. Thus, characterization and understanding of the architecture of protein surface and internal structures of pathogens is critical to elucidating mechanisms of disease, immune response, physicochemical properties, environmental resistance and development of countermeasures against bioterrorist agents. Furthermore, even though complete genome sequences are available for various pathogens, the structure-function relationships are not understood. Because of their lack of symmetry and heterogeneity, large human pathogens are often refractory to X-ray crystallographic analysis or reconstruction by cryo-electron microscopy (cryo-EM). An alternative high-resolution method to examine native structure of pathogens is atomic force microscopy (AFM), which allows direct visualization of macromolecular assemblies at near-molecular resolution. The capability to image single pathogen surfaces at nanometer scale in vitro would profoundly impact mechanistic and structural studies of pathogenesis, immunobiology, specific cellular processes, environmental dynamics and biotransformation.

  15. Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units

    PubMed Central

    2013-01-01

    The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination with the AMOEBA polarizable force field (AMOEBA-aMD), allowing the simulation of long time-scale events with a polarizable force field. Benchmarks are provided to show that the AMOEBA-aMD method is efficiently implemented and produces accurate results in its standard parametrization. For the BPTI protein, we demonstrate that the protein structure described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use of a polarizable force field and enhanced sampling. PMID:24634618

  16. Improved dynamic compensation for accurate cutting force measurements in milling applications

    NASA Astrophysics Data System (ADS)

    Scippa, A.; Sallese, L.; Grossi, N.; Campatelli, G.

    2015-03-01

    Accurate cutting-force measurements appear to be the key information in most of the machining related studies as they are fundamental in understanding the cutting processes, optimizing the cutting operations and evaluating the presence of instabilities that could affect the effectiveness of cutting processes. A variety of specifically designed transducers are commercially available nowadays and many different approaches in measuring cutting forces are presented in literature. The available transducers, though, express some limitations since they are conditioned by the vibration of the surrounding system and by the transducer's natural frequency. These parameters can drastically affect the measurement accuracy in some cases; hence an effective and accurate tool is required to compensate those dynamically induced errors in cutting force measurements. This work is aimed at developing and testing a compensation technique based on Kalman filter estimator. Two different approaches named "band-fitting" and "parallel elaboration" methods, have been developed to extend applications of this compensation technique, especially for milling purpose. The compensation filter has been designed upon the experimentally identified system's dynamic and its accuracy and effectiveness has been evaluated by numerical and experimental tests. Finally its specific application in cutting force measurements compensation is described.

  17. Force and torque on spherical particles in micro-channel flows using computational fluid dynamics.

    PubMed

    Suo, Jin; Edwards, Erin E; Anilkumar, Ananyaveena; Sulchek, Todd; Giddens, Don P; Thomas, Susan N

    2016-07-01

    To delineate the influence of hemodynamic force on cell adhesion processes, model in vitro fluidic assays that mimic physiological conditions are commonly employed. Herein, we offer a framework for solution of the three-dimensional Navier-Stokes equations using computational fluid dynamics (CFD) to estimate the forces resulting from fluid flow near a plane acting on a sphere that is either stationary or in free flow, and we compare these results to a widely used theoretical model that assumes Stokes flow with a constant shear rate. We find that while the full three-dimensional solutions using a parabolic velocity profile in CFD simulations yield similar translational velocities to those predicted by the theoretical method, the CFD approach results in approximately 50% larger rotational velocities over the wall shear stress range of 0.1-5.0 dynes cm(-2). This leads to an approximately 25% difference in force and torque calculations between the two methods. When compared with experimental measurements of translational and rotational velocities of microspheres or cells perfused in microfluidic channels, the CFD simulations yield significantly less error. We propose that CFD modelling can provide better estimations of hemodynamic force levels acting on perfused microspheres and cells in flow fields through microfluidic devices used for cell adhesion dynamics analysis. PMID:27493783

  18. Force and torque on spherical particles in micro-channel flows using computational fluid dynamics

    PubMed Central

    Suo, Jin; Edwards, Erin E.; Anilkumar, Ananyaveena; Sulchek, Todd; Giddens, Don P.

    2016-01-01

    To delineate the influence of hemodynamic force on cell adhesion processes, model in vitro fluidic assays that mimic physiological conditions are commonly employed. Herein, we offer a framework for solution of the three-dimensional Navier–Stokes equations using computational fluid dynamics (CFD) to estimate the forces resulting from fluid flow near a plane acting on a sphere that is either stationary or in free flow, and we compare these results to a widely used theoretical model that assumes Stokes flow with a constant shear rate. We find that while the full three-dimensional solutions using a parabolic velocity profile in CFD simulations yield similar translational velocities to those predicted by the theoretical method, the CFD approach results in approximately 50% larger rotational velocities over the wall shear stress range of 0.1–5.0 dynes cm−2. This leads to an approximately 25% difference in force and torque calculations between the two methods. When compared with experimental measurements of translational and rotational velocities of microspheres or cells perfused in microfluidic channels, the CFD simulations yield significantly less error. We propose that CFD modelling can provide better estimations of hemodynamic force levels acting on perfused microspheres and cells in flow fields through microfluidic devices used for cell adhesion dynamics analysis. PMID:27493783

  19. Dynamics of Cell Shape and Forces on Micropatterned Substrates Predicted by a Cellular Potts Model

    PubMed Central

    Albert, Philipp J.; Schwarz, Ulrich S.

    2014-01-01

    Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model. The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes and forces for micropatterns that have not yet been experimentally studied. PMID:24896113

  20. Role of radiation reaction forces in the dynamics of centrifugally accelerated particles

    SciTech Connect

    Dalakishvili, G. T.; Rogava, A. D.; Berezhiani, V. I.

    2007-08-15

    In this paper we study the influence of radiation reaction (RR) forces on the dynamics of centrifugally accelerated particles. It is assumed that the particles move along magnetic field lines anchored in the rotating central object. The common 'bead-on-the-wire' approximation is used. The solutions are found and analyzed for cases when the form of the prescribed trajectory (rigidly rotating field line) is approximated by: (a) straight line, and (b) Archimedes spiral. Dynamics of neutral and charged particles are compared with the emphasis on the role of RR forces in the latter case. It is shown that for charged particles there exist locations of stable equilibrium. It is demonstrated that for particular initial conditions RR forces cause centripetal motion of the particles: their 'falling' on the central rotating object. It is found that in the case of Archimedes spiral both neutral and charged particles can reach infinity where their motion has asymptotically force-free character. The possible importance of these processes for the acceleration of relativistic, charged particles by rotating magnetospheres in the context of the generation of nonthermal, high-energy emission of AGN and pulsars is discussed.

  1. Role of radiation reaction forces in the dynamics of centrifugally accelerated particles

    NASA Astrophysics Data System (ADS)

    Dalakishvili, G. T.; Rogava, A. D.; Berezhiani, V. I.

    2007-08-01

    In this paper we study the influence of radiation reaction (RR) forces on the dynamics of centrifugally accelerated particles. It is assumed that the particles move along magnetic field lines anchored in the rotating central object. The common “bead-on-the-wire” approximation is used. The solutions are found and analyzed for cases when the form of the prescribed trajectory (rigidly rotating field line) is approximated by: (a) straight line, and (b) Archimedes spiral. Dynamics of neutral and charged particles are compared with the emphasis on the role of RR forces in the latter case. It is shown that for charged particles there exist locations of stable equilibrium. It is demonstrated that for particular initial conditions RR forces cause centripetal motion of the particles: their “falling” on the central rotating object. It is found that in the case of Archimedes spiral both neutral and charged particles can reach infinity where their motion has asymptotically force-free character. The possible importance of these processes for the acceleration of relativistic, charged particles by rotating magnetospheres in the context of the generation of nonthermal, high-energy emission of AGN and pulsars is discussed.

  2. Dynamic behavior of tuning fork shear-force structures in a SNOM system.

    PubMed

    Gao, Fengli; Li, Xide; Wang, Jia; Fu, Yu

    2014-07-01

    Piezoelectric tuning fork shear-force structures are widely used as a distance control unit in a scanning near-field optical microscopy. However, the complex dynamic behavior among the micro-tuning forks (TFs), optical fiber probes, and the probe-surface interactions is still a crucial issue to achieve high-resolution imaging or near-field interaction inspections. Based on nonlinear beam tension-bending vibration theory, vibration equations in both longitudinal and lateral directions have been established when the TF structure and the optical fiber are treated as deformable structures. The relationship of the probe-surface interaction induced by Van der Waals force has been analyzed and the corresponding numerical results used to describe the vibrational behavior of the probe approaching the sample surface are obtained. Meanwhile, the viscous resistance of the liquid film on the sample surface has also been investigated using linear beam-bending vibration theory. Experiments testing the interaction between the probe and the water film on a single crystal silicon wafer have been carried out and the viscous resistance of the water film was estimated using the established equations. Finally, to use the TF-probe structure as a force sensor, the relation between the dynamic response of the TF-probe system and an external force on the probe tip was obtained. PMID:24815548

  3. Binaries Traveling through a Gaseous Medium: Dynamical Drag Forces and Internal Torques

    NASA Astrophysics Data System (ADS)

    Sánchez-Salcedo, F. J.; Chametla, Raul O.

    2014-10-01

    Using time-dependent linear theory, we investigate the morphology of the gravitational wake induced by a binary, whose center of mass moves at velocity {\\boldsymbol {V}}_cm against a uniform background of gas. For simplicity, we assume that the components of the binary are on circular orbits about their common center of mass. The consequences of dynamical friction is twofold. First, gas dynamical friction may drag the center of mass of the binary and cause the binary to migrate. Second, drag forces also induce a braking torque, which causes the orbits of the components of the binary to shrink. We compute the drag forces acting on one component of the binary due to the gravitational interaction with its own wake. We show that the dynamical friction force responsible for decelerating the center of mass of the binary is smaller than it is in the point-mass case because of the loss of gravitational focusing. We show that the braking internal torque depends on the Mach numbers of each binary component about their center of mass, and also on the Mach number of the center of mass of the binary. In general, the internal torque decreases with increasing the velocity of the binary relative to the ambient gas cloud. However, this is not always the case. We also mention the relevance of our results to the period distribution of binaries.

  4. Dynamics of regenerative chatter and internal resonance in milling process with structural and cutting force nonlinearities

    NASA Astrophysics Data System (ADS)

    Moradi, Hamed; Movahhedy, Mohammad R.; Vossoughi, Gholamreza

    2012-07-01

    In this paper, internal resonance and nonlinear dynamics of regenerative chatter in milling process is investigated. An extended dynamic model of the peripheral milling process including both structural and cutting force nonlinearities is presented. Closed form expressions for the nonlinear cutting forces are derived through their Fourier series components. In the presence of the large vibration amplitudes, the loss of contact effect is included in this model. Using the multiple-scales approach, analytical approximate response of the delayed nonlinear system is obtained. Considering the internal resonance dynamics (i.e. mode coupling), the energy transfer between the coupled x-y modes is studied. The results show that during regenerative chatter under specific cutting conditions, one mode can decay. Furthermore, it is possible to adjust the rate at which the x-mode (or y-mode) decays by implementation of the internal resonance. Therefore, under both internal resonance and regenerative chatter conditions, it is possible to suppress the undesirable vibration of one mode (direction) in which accurate surface finish is required. Under the steady-state motion, jump phenomenon is investigated for the process with regenerative chatter under various cutting conditions. Moreover, the effects of structural and cutting force nonlinearities on the stability lobes diagram of the process are investigated.

  5. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations.

    PubMed

    Kukic, Predrag; Kannan, Arvind; Dijkstra, Maurits J J; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-10-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a 'tube model' approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the 'CamTube' force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost. PMID:26505754

  6. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations

    PubMed Central

    Dijkstra, Maurits J. J.; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-01-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a ‘tube model’ approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the ‘CamTube’ force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost. PMID:26505754

  7. Comparison of Brownian-dynamics-based estimates of polymer tension with direct force measurements

    PubMed Central

    Arsenault, Mark E.; Purohit, Prashant K.; Goldman, Yale E.; Shuman, Henry; Bau, Haim H.

    2013-01-01

    With the aid of Brownian dynamics models, it is possible to estimate polymer tension by monitoring polymers’ transverse thermal fluctuations. To assess the precision of the approach, Brownian dynamics-based tension estimates were compared with the force applied to rhodamine-phalloidin labeled actin filaments bound to polymer beads and suspended between two optical traps. The transverse thermal fluctuations of each filament were monitored with a CCD camera, and the images were analyzed to obtain the filament’s transverse displacement variance as a function of position along the filament, the filament’s tension, and the camera’s exposure time. A linear Brownian dynamics model was used to estimate the filament’s tension. The estimated force was compared and agreed within 30% (when the tension <0.1 pN) and 70% (when the tension <1 pN) with the applied trap force. In addition, the paper presents concise asymptotic expressions for the mechanical compliance of a system consisting of a filament attached tangentially to bead handles (dumbbell system). The techniques described here can be used for noncontact estimates of polymers’ and fibers’ tension. PMID:21230516

  8. Binaries traveling through a gaseous medium: dynamical drag forces and internal torques

    SciTech Connect

    Sánchez-Salcedo, F. J.; Chametla, Raul O.

    2014-10-20

    Using time-dependent linear theory, we investigate the morphology of the gravitational wake induced by a binary, whose center of mass moves at velocity V{sub cm} against a uniform background of gas. For simplicity, we assume that the components of the binary are on circular orbits about their common center of mass. The consequences of dynamical friction is twofold. First, gas dynamical friction may drag the center of mass of the binary and cause the binary to migrate. Second, drag forces also induce a braking torque, which causes the orbits of the components of the binary to shrink. We compute the drag forces acting on one component of the binary due to the gravitational interaction with its own wake. We show that the dynamical friction force responsible for decelerating the center of mass of the binary is smaller than it is in the point-mass case because of the loss of gravitational focusing. We show that the braking internal torque depends on the Mach numbers of each binary component about their center of mass, and also on the Mach number of the center of mass of the binary. In general, the internal torque decreases with increasing the velocity of the binary relative to the ambient gas cloud. However, this is not always the case. We also mention the relevance of our results to the period distribution of binaries.

  9. Reconstruction of dynamical perturbations in optical systems by opto-mechanical simulation methods

    NASA Astrophysics Data System (ADS)

    Gilbergs, H.; Wengert, N.; Frenner, K.; Eberhard, P.; Osten, W.

    2012-03-01

    High-performance objectives pose very strict limitations on errors present in the system. External mechanical influences can induce structural vibrations in such a system, leading to small deviations of the position and tilt of the optical components inside the objective from the undisturbed system. This can have an impact on the imaging performance, causing blurred images or broadened structures in lithography processes. A concept to detect the motion of the components of an optical system is presented and demonstrated on a simulated system. The method is based on a combination of optical simulation together with mechanical simulation and inverse problem theory. On the optical side raytracing is used for the generation of wavefront data of the system in its current state. A Shack-Hartmann sensor is implemented as a model to gather this data. The sensor can capture wavefront data with high repetition rates to resolve the periodic motion of the vibrating parts. The mechanical side of the system is simulated using multibody dynamics. The system is modeled as a set of rigid bodies (lenses, mounts, barrel), represented by rigid masses connected by springs that represent the coupling between the individual parts. External excitations cause the objective to vibrate. The vibration can be characterized by the eigenmodes and eigenfrequencies of the system. Every state of the movement during the vibration can be expressed as a linear combination of the eigenmodes. The reconstruction of the system geometry from the wavefront data is an inverse problem. Therefore, Tikhonov regularization is used in the process in order to achieve more accurate reconstruction results. This method relies on a certain amount of a-priori information on the system. The mechanical properties of the system are a great source of such information. It is taken into account by performing the calculation in the coordinate system spanned by the eigenmodes of the objective and using information on the

  10. Reconstructing the dynamics of the Greenland ice sheet during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Keisling, Benjamin; DeConto, Robert

    2016-04-01

    Today, some outlet glaciers of the Greenland ice sheet (GrIS) are rapidly retreating and may mobilize large volumes of interior ice in the coming centuries. The last period that saw such dramatic, sustained retreat of the GrIS was the last deglaciation, when the ice sheet retreated from its Last Glacial Maximum (LGM) extent. Previous studies have used relative sea level observations to constrain changes in ice thickness and retreat timing during the deglaciation (e.g. Fleming and Lambert 2004, Simpson et al. 2009, Lecavalier et al. 2014). Here we build on these studies by isolating the drivers of ice-sheet retreat, and their spatial and temporal dynamics, during this period. Inclusion of ice-cliff failure and hydrofracturing parameterizations in our model has resulted in a better fit to paleodata for the Antarctic ice sheet, but this modeling approach has not been applied to the GrIS. Here we use a three-dimensional hybrid SSA/SIA ice-sheet model (Pollard et al. 2015) at 10km resolution over Greenland to simulate the last deglaciation. Boundary conditions for the last glacial maximum produce an LGM ice sheet with 3.81 meters sea level equivalent (m s.l.e.) of additional ice. The LGM ice sheet advances to the shelf-break in west, south, and east Greenland with an expansive ice shelf extending across Davis Strait. Applying modern atmospheric and oceanic forcing to the LGM ice sheet yields 1.25 and 1.09 m s.l.e. of melt, respectively, and 1.72 m s.l.e. for both. Ocean warming initially results in a higher rate and magnitude of retreat, but increased surface evaporation over open water results in additional accumulation that offsets losses in 10 kyr simulations. Here, we test the sensitivity of the magnitude of deglacial ice-sheet retreat to uncertainty in bedrock elevation and basal slding coefficients, the applied climate forcing, and the mass balance scheme (positive degree-day or energy balance). We also implement a deglacial climate forcing based on recently

  11. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †

    PubMed Central

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  12. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing.

    PubMed

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  13. Paramfit: automated optimization of force field parameters for molecular dynamics simulations.

    PubMed

    Betz, Robin M; Walker, Ross C

    2015-01-15

    The generation of bond, angle, and torsion parameters for classical molecular dynamics force fields typically requires fitting parameters such that classical properties such as energies and gradients match precalculated quantum data for structures that scan the value of interest. We present a program, Paramfit, distributed as part of the AmberTools software package that automates and extends this fitting process, allowing for simplified parameter generation for applications ranging from single molecules to entire force fields. Paramfit implements a novel combination of a genetic and simplex algorithm to find the optimal set of parameters that replicate either quantum energy or force data. The program allows for the derivation of multiple parameters simultaneously using significantly fewer quantum calculations than previous methods, and can also fit parameters across multiple molecules with applications to force field development. Paramfit has been applied successfully to systems with a sparse number of structures, and has already proven crucial in the development of the Assisted Model Building with Energy Refinement Lipid14 force field. PMID:25413259

  14. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    SciTech Connect

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.

  15. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGESBeta

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; Liu, Hui; Kravchenko, Ivan I.; Chan, Ho Bun; Chan, C. T.; Tong, Penger

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  16. Free-Standing Kinked Silicon Nanowires for Probing Inter- and Intracellular Force Dynamics.

    PubMed

    Zimmerman, John F; Murray, Graeme F; Wang, Yucai; Jumper, John M; Austin, Jotham R; Tian, Bozhi

    2015-08-12

    Silicon nanowires (SiNWs) have emerged as a new class of materials with important applications in biology and medicine with current efforts having focused primarily on using substrate bound SiNW devices. However, developing devices capable of free-standing inter- and intracellular operation is an important next step in designing new synthetic cellular materials and tools for biophysical characterization. To demonstrate this, here we show that label free SiNWs can be internalized in multiple cell lines, forming robust cytoskeletal interfaces, and when kinked can serve as free-standing inter- and intracellular force probes capable of continuous extended (>1 h) force monitoring. Our results show that intercellular interactions exhibit ratcheting like behavior with force peaks of ∼69.6 pN/SiNW, while intracellular force peaks of ∼116.9 pN/SiNW were recorded during smooth muscle contraction. To accomplish this, we have introduced a simple single-capture dark-field/phase contrast optical imaging modality, scatter enhanced phase contrast (SEPC), which enables the simultaneous visualization of both cellular components and inorganic nanostructures. This approach demonstrates that rationally designed devices capable of substrate-independent operation are achievable, providing a simple and scalable method for continuous inter- and intracellular force dynamics studies. PMID:26192816

  17. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM.

    PubMed

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I I; Chan, C T; Chan, H B; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  18. Dynamics of cross-bridge cycling, ATP hydrolysis, force generation, and deformation in cardiac muscle.

    PubMed

    Tewari, Shivendra G; Bugenhagen, Scott M; Palmer, Bradley M; Beard, Daniel A

    2016-07-01

    Despite extensive study over the past six decades the coupling of chemical reaction and mechanical processes in muscle dynamics is not well understood. We lack a theoretical description of how chemical processes (metabolite binding, ATP hydrolysis) influence and are influenced by mechanical processes (deformation and force generation). To address this need, a mathematical model of the muscle cross-bridge (XB) cycle based on Huxley's sliding filament theory is developed that explicitly accounts for the chemical transformation events and the influence of strain on state transitions. The model is identified based on elastic and viscous moduli data from mouse and rat myocardial strips over a range of perturbation frequencies, and MgATP and inorganic phosphate (Pi) concentrations. Simulations of the identified model reproduce the observed effects of MgATP and MgADP on the rate of force development. Furthermore, simulations reveal that the rate of force re-development measured in slack-restretch experiments is not directly proportional to the rate of XB cycling. For these experiments, the model predicts that the observed increase in the rate of force generation with increased Pi concentration is due to inhibition of cycle turnover by Pi. Finally, the model captures the observed phenomena of force yielding suggesting that it is a result of rapid detachment of stretched attached myosin heads. PMID:25681584

  19. Experimental dynamic modelling of peripheral milling with process damping, structural and cutting force nonlinearities

    NASA Astrophysics Data System (ADS)

    Moradi, Hamed; Vossoughi, Gholamreza; Movahhedy, Mohammad R.

    2013-09-01

    In this paper, an extended dynamic model of peripheral milling process including process damping, structural and cutting force nonlinearities is presented. Cutting forces are described through a third-order polynomial function of chip thickness while a cubic nonlinear function is considered for the structural stiffness. Under stable and regenerative chatter conditions and using Fourier series components, closed form expressions for the nonlinear cutting forces are derived. Parameters of the proposed model are identified through a set of experiments. For this purpose, modal experiments and measurement of cutting forces (at various feed rates) are performed to determine the modal parameters and the coefficients of nonlinear cutting force model. In addition, coefficients of the structural stiffness and process damping are identified through the analysis of experimental and simulated stability lobes diagrams. Simulated stability lobes diagram is constructed based on two approaches: a trial and error (TE) based algorithm and semi-discretization method (SDM). The presented experimental method for model identification can be implemented on any industrial milling process.

  20. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  1. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    NASA Astrophysics Data System (ADS)

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-11-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.

  2. Stable force identification in structural dynamics using Kalman filtering and dummy-measurements

    NASA Astrophysics Data System (ADS)

    Naets, F.; Cuadrado, J.; Desmet, W.

    2015-01-01

    Many engineering applications require the knowledge of input forces to mechanical systems. However, in practice, it is quite difficult to measure these forces directly. In order to obtain an estimate of the input forces to structural systems, Kalman filtering based techniques have recently been introduced. These state-estimation techniques allow estimating the forces concurrent with the states of a system, based on a limited number of measurements. In practice, acceleration measurements are most convenient to use in structural dynamics applications. This paper proposes an analytical analysis of the stability of the Kalman based force estimation techniques and shows that only using acceleration measurements inherently leads to unreliable results. In order to circumvent this issue, the addition of dummy-measurements on a position level is proposed. These fictitious measurements dictate the estimator to return to an undeformed state and lead to a stable estimation approach. The proposed method is validated through both a numerical and a practical experiment. Both experiments show the inadequacy of the augmented Kalman filter based on only acceleration measurements to provide stable results. The estimator with dummy measurements on the other hand provides good results in the case of an unbiased external load.

  3. A feasibility study for experimentally determining dynamic force distribution in a lap joint.

    SciTech Connect

    Mayes, Randall Lee

    2013-11-01

    Developing constitutive models of the physics in mechanical joints is currently stymied by inability to measure forces and displacements within the joint. The current state of the art estimates whole joint stiffness and energy loss per cycle from external measured force input and one or two acceleration responses. To validate constitutive models beyond this state requires a measurement of the distributed forces and displacements at the joint interface. Unfortunately, introducing measurement devices at the interface completely disrupts the desired physics. A feasibility study is presented for a non-intrusive method of solving for the interface dynamic forces from an inverse problem using full field measured responses. The responses come from the viewable surface of a beam. The noise levels associated with digital image correlation and continuous scanning laser Doppler velocimetry are evaluated from typical beam experiments. Two inverse problems are simulated. One utilizes the extended Sum of Weighted Accelerations Technique (SWAT). The second is a new approach dubbed the method of truncated orthogonal forces. These methods are much more robust if the contact patch geometry is well identified. Various approaches to identifying the contact patch are investigated, including ion marker tracking, Prussian blue and ultrasonic measurements. A typical experiment is conceived for a beam which has a lap joint at one end with a single bolt connecting it to another identical beam. In a virtual test using the beam finite element analysis, it appears that the SWAT inverse method requires evaluation of too many coefficients to adequately identify the force distribution to be viable. However, the method of truncated orthogonal forces appears viable with current digital image correlation (and probably other) imaging techniques.

  4. Capillary and van der Waals interactions on CaF2 crystals from amplitude modulation AFM force reconstruction profiles under ambient conditions

    PubMed Central

    Calò, Annalisa; Robles, Oriol Vidal; Santos, Sergio

    2015-01-01

    Summary There has been much interest in the past two decades to produce experimental force profiles characteristic of the interaction between nanoscale objects or a nanoscale object and a plane. Arguably, the advent of the atomic force microscope AFM was instrumental in driving such efforts because, in principle, force profiles could be recovered directly. Nevertheless, it has taken years before techniques have developed enough as to recover the attractive part of the force with relatively low noise and without missing information on critical ranges, particularly under ambient conditions where capillary interactions are believed to dominate. Thus a systematic study of the different profiles that may arise in such situations is still lacking. Here we employ the surfaces of CaF2, on which nanoscale water films form, to report on the range and force profiles that might originate by dynamic capillary interactions occurring between an AFM tip and nanoscale water patches. Three types of force profiles were observed under ambient conditions. One in which the force decay resembles the well-known inverse-square law typical of van der Waals interactions during the first 0.5–1 nm of decay, a second one in which the force decays almost linearly, in relatively good agreement with capillary force predicted by the constant chemical potential approximation, and a third one in which the attractive force is almost constant, i.e., forms a plateau, up to 3–4 nm above the surface when the formation of a capillary neck dominates the tip–sample interaction. PMID:25977852

  5. Rapid Evolutionary Dynamics of Structural Disorder as a Potential Driving Force for Biological Divergence in Flaviviruses

    PubMed Central

    Ortiz, Juan F.; MacDonald, Madolyn L.; Masterson, Patrick; Uversky, Vladimir N.; Siltberg-Liberles, Jessica

    2013-01-01

    Protein structure is commonly regarded to be conserved and to dictate function. Most proteins rely on conformational flexibility to some degree. Are regions that convey conformational flexibility conserved over evolutionary time? Can changes in conformational flexibility alter protein function? Here, the evolutionary dynamics of structurally ordered and disordered (flexible) regions are investigated genome-wide in flaviviruses, revealing that the amount and location of structural disorder fluctuates highly among related proteins. Some regions are prone to shift between structured and flexible states. Increased evolutionary dynamics of structural disorder is observed for some lineages but not in others. Lineage-specific transitions of this kind could alter the conformational ensemble accessible to the same protein in different species, causing a functional change, even if the predominant function remains conserved. Thus, rapid evolutionary dynamics of structural disorder is a potential driving force for phenotypic divergence among flaviviruses. PMID:23418179

  6. Alpha-actinin binding kinetics modulate cellular dynamics and force generation

    PubMed Central

    Ehrlicher, Allen J.; Krishnan, Ramaswamy; Guo, Ming; Bidan, Cécile M.; Weitz, David A.; Pollak, Martin R.

    2015-01-01

    The actin cytoskeleton is a key element of cell structure and movement whose properties are determined by a host of accessory proteins. Actin cross-linking proteins create a connected network from individual actin filaments, and though the mechanical effects of cross-linker binding affinity on actin networks have been investigated in reconstituted systems, their impact on cellular forces is unknown. Here we show that the binding affinity of the actin cross-linker α-actinin 4 (ACTN4) in cells modulates cytoplasmic mobility, cellular movement, and traction forces. Using fluorescence recovery after photobleaching, we show that an ACTN4 mutation that causes human kidney disease roughly triples the wild-type binding affinity of ACTN4 to F-actin in cells, increasing the dissociation time from 29 ± 13 to 86 ± 29 s. This increased affinity creates a less dynamic cytoplasm, as demonstrated by reduced intracellular microsphere movement, and an approximate halving of cell speed. Surprisingly, these less motile cells generate larger forces. Using traction force microscopy, we show that increased binding affinity of ACTN4 increases the average contractile stress (from 1.8 ± 0.7 to 4.7 ± 0.5 kPa), and the average strain energy (0.4 ± 0.2 to 2.1 ± 0.4 pJ). We speculate that these changes may be explained by an increased solid-like nature of the cytoskeleton, where myosin activity is more partitioned into tension and less is dissipated through filament sliding. These findings demonstrate the impact of cross-linker point mutations on cell dynamics and forces, and suggest mechanisms by which such physical defects lead to human disease. PMID:25918384

  7. Strength by atomic force microscopy (AFM): Molecular dynamics of water layer squeezing on magnesium oxide

    NASA Astrophysics Data System (ADS)

    Kendall, K.; Dhir, Aman; Yong, Chin W.

    2010-11-01

    Localised strength testing of materials is often carried out in an atomic force microscope (AFM), as foreseen by Kelly in his book Strong Solids (Clarendon Press, Oxford, 1966). During AFM indentation experiments, contamination can strongly influence the observed strength and theoretical interpretation of the results is a major problem. Here, we use molecular dynamics computer modelling to describe the contact of NaCl and MgO crystal probes onto surfaces, comparable to an AFM experiment. Clean NaCl gave elastic, brittle behaviour in contact simulations at 300 K, whereas MgO was more plastic, leading to increased toughness. This paper also considers the strength of an oxide substrate contaminated by water molecules and tested by indentation with a pyramidal probe of oxide crystal. Recent theory on the effect of liquid contaminant layers on surface strength has been mainly focussed on Lennard Jones (LJ) molecules with some studies on alcohols and water, described by molecular dynamics, which allows the molecules to be squeezed out as the crystal lattice is deformed. In this work, we have focused on water by studying the forces between a magnesium oxide (MgO) atomic force microscope (AFM) probe and an MgO slab. Force versus separation has been plotted as the AFM probe was moved towards and away from the substrate. Simulation results showed that the water layers could be removed in steps, giving up to four force peaks. The last monolayer of water could not be squeezed out, even at pressures where MgO deformed plastically. Interestingly, with water present, strength was reduced, but more in tensile than compressive measurements. In conclusion, water contaminating the oxide surface in AFM strength testing is structured. Water layer squeezing removal can be predicted by molecular modelling, which may be verified by AFM experiments to show that water can influence the strength of perfect crystals at the nanometre scale.

  8. Molecular dynamics simulations of lipid membranes with lateral force: rupture and dynamic properties.

    PubMed

    Xie, Jun Yu; Ding, Guang Hong; Karttunen, Mikko

    2014-03-01

    Membranes' response to lateral tension, and eventual rupture, remains poorly understood. In this study, pure dipalmitoylphosphatidylcholine (DPPC) lipid bilayers, under tension/pressure, were studied using molecular dynamics (MD) simulations. The irreversible membrane breakdown is demonstrated to depend on the amplitude of lateral tension, loading rate, and the size of the bilayer. In all of our simulations, -200bar lateral pressure was found to be enough to rupture lipid membrane regardless of the loading rate or the membrane size. Loading rate and membrane size had a significant impact on rupture. A variety of dynamic properties of lipid molecules, probability distribution of area per lipid particularly, have been determined, and found to be fundamental for describing membrane behavior in detail, thus providing the quantitative description for the requirement of membrane rupture. PMID:24374317

  9. Molecular dynamics force-field refinement against quasi-elastic neutron scattering data

    DOE PAGESBeta

    Borreguero Calvo, Jose M.; Lynch, Vickie E.

    2015-11-23

    Quasi-elastic neutron scattering (QENS) is one of the experimental techniques of choice for probing the dynamics at length and time scales that are also in the realm of full-atom molecular dynamics (MD) simulations. This overlap enables extension of current fitting methods that use time-independent equilibrium measurements to new methods fitting against dynamics data. We present an algorithm that fits simulation-derived incoherent dynamical structure factors against QENS data probing the diffusive dynamics of the system. We showcase the difficulties inherent to this type of fitting problem, namely, the disparity between simulation and experiment environment, as well as limitations in the simulationmore » due to incomplete sampling of phase space. We discuss a methodology to overcome these difficulties and apply it to a set of full-atom MD simulations for the purpose of refining the force-field parameter governing the activation energy of methyl rotation in the octa-methyl polyhedral oligomeric silsesquioxane molecule. Our optimal simulated activation energy agrees with the experimentally derived value up to a 5% difference, well within experimental error. We believe the method will find applicability to other types of diffusive motions and other representation of the systems such as coarse-grain models where empirical fitting is essential. In addition, the refinement method can be extended to the coherent dynamic structure factor with no additional effort.« less

  10. Molecular dynamics force-field refinement against quasi-elastic neutron scattering data

    SciTech Connect

    Borreguero Calvo, Jose M.; Lynch, Vickie E.

    2015-11-23

    Quasi-elastic neutron scattering (QENS) is one of the experimental techniques of choice for probing the dynamics at length and time scales that are also in the realm of full-atom molecular dynamics (MD) simulations. This overlap enables extension of current fitting methods that use time-independent equilibrium measurements to new methods fitting against dynamics data. We present an algorithm that fits simulation-derived incoherent dynamical structure factors against QENS data probing the diffusive dynamics of the system. We showcase the difficulties inherent to this type of fitting problem, namely, the disparity between simulation and experiment environment, as well as limitations in the simulation due to incomplete sampling of phase space. We discuss a methodology to overcome these difficulties and apply it to a set of full-atom MD simulations for the purpose of refining the force-field parameter governing the activation energy of methyl rotation in the octa-methyl polyhedral oligomeric silsesquioxane molecule. Our optimal simulated activation energy agrees with the experimentally derived value up to a 5% difference, well within experimental error. We believe the method will find applicability to other types of diffusive motions and other representation of the systems such as coarse-grain models where empirical fitting is essential. In addition, the refinement method can be extended to the coherent dynamic structure factor with no additional effort.

  11. Fluid dynamic simulation of rat brain vessels, geometrically reconstructed from MR-angiography and validated using phase contrast angiography.

    PubMed

    Lehmpfuhl, Monika Carola; Hess, Andreas; Gaudnek, M André; Sibila, Michael

    2011-07-01

    The exact knowledge of the blood vessel geometry plays an important role, not only in clinical applications (stroke diagnosis, detection of stenosis), but also for deeper analysis of hemodynamic functional data, such as fMRI. Such vessel geometries can be obtained by different MR angiographic measurements. It is shown that simulations using computational fluid dynamics (CFD) can be used to validate the vessel geometry, automatically reconstructed from time of flight (TOF) angiograms or phase contrast angiography (PC-MRA) data. CFD simulations are based on PC-MRA data, since these data contain additionally rheological information (phases) besides merely amplitudes as is the case for TOF measurements. Parts of the rat brain vessel system are carefully modeled consisting of a main tube and second order branches. By analyzing velocity changes up and downstream of bifurcations, it is shown that CFD can be used to help detecting missing vessels in the TOF based reconstruction. It is demonstrated by artificially deleting a branch from the reconstruction and compared the flow in both resulting CFD simulations. Finally the simulations help to understand the effects of secondary branches on the flow in the main tube. The aim of this study is to compare the measured (PCA) flow data with the CFD simulation results, based on the vessel geometry gained from the PCA image using an in house reconstruction algorithm. If a more accurate simulation method is found and if in principal the simulation matches the PCA data, it might be possible to deduct that in cases where the measured data varies from the CFD simulation, the reconstruction is not complete, i.e. branches are missing or wrong branches were reconstructed. PMID:20696607

  12. Long-term patterns of solar irradiance forcing in model experiments and proxy based surface temperature reconstructions

    NASA Astrophysics Data System (ADS)

    Waple, A. M.; Mann, M. E.; Bradley, R. S.

    2002-02-01

    Comparisons are made of long-term empirical and model-estimated patterns of solar irradiance forcing during a 200-year period (1650-1850), which precedes any apparent anthropogenic influence on climate. This interval encompasses a considerable range (approximately 4 W/m2) of estimated variation in solar output, including the "Maunder" and "Dalton" Minima of solar irradiance, and an intervening interval of relatively high values of irradiance, but does not encroach into the industrial era wherein it is difficult to separate solar and anthropogenic influences. Particular emphasis is placed on comparing empirical and modeled patterns of forced surface temperature variation. The empirical patterns bear a greater similarity to the pattern of forced response of a coupled ocean-atmosphere general circulation model (AOGCM) than with an independent model simulation result using an ocean with specified heat transport, both in terms of the spatial pattern of response and implied global mean sensitivity to forcing. Heightened sensitivity in the western Pacific warm pool apparent in the empirical response pattern, is not observed in the forced response of the coupled model. It is possible that this pattern is the result of feedback processes not currently reproduced in course-resolution coupled models. The greatest empirical response is found at the multidecadal-to-century (> 40 year period) time scale, for which the forcing is dominated by the roughly 90-year Gleissberg Cycle of irradiance. This indicates a global-mean sensitivity (approximately 0.3 K/W/m2), which is close to the coupled model result (approximately 0.4 K/W/m2). At decadal time scales (8-25 year period), for which the forcing is dominated by the 11-year and 22-year period solar cycles), the temperature sensitivity is moderately reduced, and its spatial pattern of response is dominated by an apparent resonance with known decadal modes of climate variability.

  13. The Study of Biomolecule-Substrate Interactions by Single Molecule Force Spectroscopy and Brownian Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Cook, Sara Iliafar

    T, respectively). In addition to the binding strength of ssDNA nucleotide to surfaces, it is equally as important to understand the dynamics of these interactions. The force response of a simple chain-like polymeric molecule (representative of single stranded DNA) was studied using Brownian dynamics to shed light on these dynamics and the features that may be masked in SMFS experiments. Through simulations at slow peeling rates, our Brownian dynamics model confirmed the predictions of an equilibrium statistical thermodynamic model. Faster removal rates resulted in deviations from equilibrium which were dominated by a combination of Stokes (viscous) drag and a finite desorption rate of the monomeric units. Furthermore, the force probe's thermal fluctuations were shown to be affected by the spring constant of the contact mode AFM cantilever Consequently, this effect provided evidence on the source of disappearance for certain key features such as force spikes, associated with the desorption of individual links and predicted by the statistical thermodynamic model under displacement control, from SMFS experiments. In studying the elastic response of a freely jointed chain stretched in 2D and 3D, we obtained analytical expressions for two modes of stretching: i) when force is applied only to one end of the chain, and ii) when the applied force is distributed uniformly throughout the chain. By comparing, we confirmed that these expressions correctly predict the results obtained from our Brownian dynamics simulations as well as experimental results from the literature.

  14. Accumulation and marine forcing of ice dynamics in the western Ross Sea during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Hall, Brenda L.; Denton, George H.; Heath, Stephanie L.; Jackson, Margaret S.; Koffman, Tobias N. B.

    2015-08-01

    The grounding line of the ice sheet in the Ross Sea, Antarctica, retreated between the Last Glacial Maximum and the present. However, the timing of the retreat and the interplay of factors controlling ice stability in this region remain uncertain. Here we use 180 radiocarbon dates to reconstruct the chronology of moraine construction on the headlands adjacent to western McMurdo Sound. On the basis of these dates we then assess the timing of ice expansion and retreat in the Ross drainage system that is fed from both the East and West Antarctic ice sheets. We find that grounded ice in the western Ross Sea achieved its greatest thickness and extent during the last termination, between 12,800 and 18,700 years ago. Maximum ice thickness at our site coincides with a period of high accumulation as recorded by the West Antarctic Ice Sheet Divide ice core. Recession of the ice sheet from the headland moraines began about 12,800 years ago, despite continued high accumulation and the expansion of land-based glaciers at this time. We therefore suggest that the grounding-line retreat reflects an increased marine influence as sea levels rose and the ocean warmed. We suggest that future instability in the ice sheet grounding line may occur whenever the ocean forcing is stronger than forcing from accumulation.

  15. Mechanism of Titin Unfolding by Force: Insight from Quasi-Equilibrium Molecular Dynamics Calculations

    PubMed Central

    Pabón, Germán; Amzel, L. Mario

    2006-01-01

    We have studied the unfolding by force of one of the immunoglobulin domains of the muscle protein titin using molecular dynamics simulations at 300 K. Previous studies, done at constant pulling rates, showed that under the effect of the force two strands connected to each other by six backbone H-bonds are pulled apart. No details about the mechanism of H-bond breaking were provided. Our simulation protocol “pull and wait” was designed to correspond to very slow pulling, more similar to the rates used in experiments than are the protocols used in previous computational studies. Under these conditions interstrand backbone H-bonds are not “ripped apart” by the application of the force. Instead, small elongations produced by the force weaken specific backbone H-bonds with respect to water-backbone H-bonds. These weakened bonds allow a single water molecule to make H-bonds to the CO and the NH of the same backbone H-bond while they are still bound to each other. The backbone H-bond then breaks (distance >3.6 Å), but its donor and acceptor atoms remain bound to the same water molecule. Further separation of the chains takes place when a second water molecule makes an H-bond with either the protein backbone donor or acceptor atom. Thus, the force does not directly break the main chain H-bonds: it destabilizes them in such a way that they are replaced by H-bonds to water. With this mechanism, the force necessary to break all the H-bonds required to separate the two strands will be strongly dependent on the pulling speed. Further simulations carried out at low forces but long waiting times (≥ 500 ps, ≤ 10 ns) show that, given enough time, even a very small pulling force (<400 pN) is sufficient to destabilize the interstrand H-bonds and allow them to be replaced by H-bonds to two water molecules. As expected, increasing the temperature to 350 K allows the interstrand H-bonds to break at lower forces than those required at 300 K. PMID:16632514

  16. Moisture dynamics in the cloudy and polluted tropical atmosphere: The Cloud Aerosol Radiative Forcing Dynamics Experiment (CARDEX)

    NASA Astrophysics Data System (ADS)

    Wilcox, E. M.; Thomas, R. M.; Praveen, P. S.; Pistone, K.; Bender, F.; Feng, Y.; Ramanathan, V.

    2012-12-01

    Aerosols are well known to modify the microphysical properties of clouds. This modification is expected to yield brighter clouds that cover a greater area. However, observations from satellites show little inter-hemispheric difference in cloud optical thickness and liquid water path in spite of the clear inter-hemispheric difference in aerosol optical thickness. Furthermore, comparisons of observations with global atmospheric models suggest that models that parameterize the mechanisms of aerosol nucleation of cloud drops but do not resolve cloud-scale dynamics may be overestimating the magnitude of aerosol effects on cloud radiative forcing. Resolving these discrepancies requires a deeper understanding of the factors determining the transport of moisture to the cloud layer and the effects of aerosols on that transport. Towards this goal, we have conducted a new field experiment to study the moisture dynamics in the boundary layer and lower troposphere of the polluted and cloudy tropical atmosphere. The Cloud Aerosol Radiative Forcing Dynamics Experiment (CARDEX) was conducted during the winter of 2012 at the Maldives Climate Observatory - Hanimaadhoo in the tropical northern Indian Ocean during the period of extensive outflow of the South Asian pollution. Pollution in the CARDEX region has been well documented to both modify the microphysical properties of low clouds and strongly absorb solar radiation with significant consequences for the lower atmosphere and surface radiative energy budgets. Three unmanned aerial vehicles (UAVs) flew nearly 60 research flights instrumented to measure turbulent latent and sensible heat fluxes, aerosol concentrations, and cloud microphysical properties. Airborne measurements were enhanced with continuous surface monitoring of surface turbulent heat fluxes, aerosol concentrations and physical properties, surface remote sensing of cloud water amount and aerosol profiles, and model analyses of aerosols and dynamics with WRFchem. This

  17. Both contractile axial and lateral traction force dynamics drive amoeboid cell motility

    PubMed Central

    Bastounis, Effie; Meili, Ruedi; Álvarez-González, Begoña; Francois, Joshua; del Álamo, Juan C.; Lasheras, Juan C.

    2014-01-01

    Chemotaxing Dictyostelium discoideum cells adapt their morphology and migration speed in response to intrinsic and extrinsic cues. Using Fourier traction force microscopy, we measured the spatiotemporal evolution of shape and traction stresses and constructed traction tension kymographs to analyze cell motility as a function of the dynamics of the cell’s mechanically active traction adhesions. We show that wild-type cells migrate in a step-wise fashion, mainly forming stationary traction adhesions along their anterior–posterior axes and exerting strong contractile axial forces. We demonstrate that lateral forces are also important for motility, especially for migration on highly adhesive substrates. Analysis of two mutant strains lacking distinct actin cross-linkers (mhcA− and abp120− cells) on normal and highly adhesive substrates supports a key role for lateral contractions in amoeboid cell motility, whereas the differences in their traction adhesion dynamics suggest that these two strains use distinct mechanisms to achieve migration. Finally, we provide evidence that the above patterns of migration may be conserved in mammalian amoeboid cells. PMID:24637328

  18. A new force field for molecular dynamics studies of Li + and Na +-nafion

    NASA Astrophysics Data System (ADS)

    Soolo, Endel; Liivat, Anti; Kasemägi, Heiki; Tamm, Tarmo; Brandell, Daniel; Aabloo, Alvo

    2008-03-01

    Nafion is widely known as one of the most popular membrane materials for low temperature fuel cell applications. However, the particular exchange membrane material properties make it also valuable for other applications. One of the electroactive polymer (EAP) subclasses, ionic polymer metal composites (IPMC) commonly exploits Nafion as the ion exchange polymer membrane. The ion conducting properties of Nafion are extremely important for IPMCs. Although, ion conductivity depends strongly on the structural properties of the polymer matrix, there has been very little insight at the atomistic level. Molecular dynamics simulations are one of the possibilities to study the ion conduction mechanism at atomistic level. So far, the simulation results have been rather contradictory and very much dependent from the force fields and polymer matrix setup used. In the present work, new force field parameters for Li + and Na + - nafion based on DFT calculations are presented. The developed potentials and the force field were tested by molecular dynamics simulations. It can be concluded that Li + and Na + ions are coordinated to different Nafion side-chain terminal group (SO 3 -) oxygens and to very few water molecules. One cation is coordinated to three different side-chains. Oxygens of SO 3 groups and cations form complicated multi-header systems. In the equilibrium state, no cations dissociated from side chains were found.

  19. A hemidesmosomal protein regulates actin dynamics and traction forces in motile keratinocytes.

    PubMed

    Hiroyasu, Sho; Colburn, Zachary T; Jones, Jonathan C R

    2016-06-01

    During wound healing of the skin, keratinocytes disassemble hemidesmosomes and reorganize their actin cytoskeletons in order to exert traction forces on and move directionally over the dermis. Nonetheless, the transmembrane hemidesmosome component collagen XVII (ColXVII) is found in actin-rich lamella, situated behind the lamellipodium. A set of actin bundles, along which ColXVII colocalizes with actinin4, is present at each lamella. Knockdown of either ColXVII or actinin4 not only inhibits directed migration of keratinocytes but also relieves constraints on actin bundle retrograde movement at the site of lamella, such that actin bundle movement is enhanced more than 5-fold. Moreover, whereas control keratinocytes move in a stepwise fashion over a substrate by generating alternating traction forces, of up to 1.4 kPa, at each flank of the lamellipodium, ColXVII knockdown keratinocytes fail to do so. In summary, our data indicate that ColXVII-actinin4 complexes at the lamella of a moving keratinocyte regulate actin dynamics, thereby determining the direction of cell movement.-Hiroyasu, S., Colburn, Z. T., Jones, J. C. R. A hemidesmosomal protein regulates actin dynamics and traction forces in motile keratinocytes. PMID:26936359

  20. Force-Induced Dynamical Properties of Multiple Cytoskeletal Filaments Are Distinct from that of Single Filaments

    PubMed Central

    Das, Dipjyoti; Das, Dibyendu; Padinhateeri, Ranjith

    2014-01-01

    How cytoskeletal filaments collectively undergo growth and shrinkage is an intriguing question. Collective properties of multiple bio-filaments (actin or microtubules) undergoing hydrolysis have not been studied extensively earlier within simple theoretical frameworks. In this paper, we study the collective dynamical properties of multiple filaments under force, and demonstrate the distinct properties of a multi-filament system in comparison to a single filament. Comparing stochastic simulation results with recent experimental data, we show that multi-filament collective catastrophes are slower than catastrophes of single filaments. Our study also shows further distinctions as follows: (i) force-dependence of the cap-size distribution of multiple filaments are quantitatively different from that of single filaments, (ii) the diffusion constant associated with the system length fluctuations is distinct for multiple filaments, and (iii) switching dynamics of multiple filaments between capped and uncapped states and the fluctuations therein are also distinct. We build a unified picture by establishing interconnections among all these collective phenomena. Additionally, we show that the collapse times during catastrophes can be sharp indicators of collective stall forces exceeding the additive contributions of single filaments. PMID:25531397

  1. Effects of a multichannel dynamic functional electrical stimulation system on hemiplegic gait and muscle forces

    PubMed Central

    Qian, Jing-guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning

    2015-01-01

    [Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern. PMID:26696734

  2. Dynamics of Protein Folding and Cofactor Binding Monitored by Single-Molecule Force Spectroscopy

    PubMed Central

    Cao, Yi; Li, Hongbin

    2011-01-01

    Many proteins in living cells require cofactors to carry out their biological functions. To reach their functional states, these proteins need to fold into their unique three-dimensional structures in the presence of their cofactors. Two processes, folding of the protein and binding of cofactors, intermingle with each other, making the direct elucidation of the folding mechanism of proteins in the presence of cofactors challenging. Here we use single-molecule atomic force microscopy to directly monitor the folding and cofactor binding dynamics of an engineered metal-binding protein G6-53 at the single-molecule level. Using the mechanical stability of different conformers of G6-53 as sensitive probes, we directly identified different G6-53 conformers (unfolded, apo- and Ni2+-bound) populated along the folding pathway of G6-53 in the presence of its cofactor Ni2+. By carrying out single-molecule atomic force microscopy refolding experiments, we monitored kinetic evolution processes of these different conformers. Our results suggested that the majority of G6-53 folds through a binding-after-folding mechanism, whereas a small fraction follows a binding-before-folding pathway. Our study opens an avenue to utilizing force spectroscopy techniques to probe the folding dynamics of proteins in the presence of cofactors at the single-molecule level, and we anticipated that this method can be used to study a wide variety of proteins requiring cofactors for their function. PMID:22004755

  3. Corticospinal excitability during imagined and observed dynamic force production tasks: effortfulness matters.

    PubMed

    Helm, F; Marinovic, W; Krüger, B; Munzert, J; Riek, S

    2015-04-01

    Research on motor imagery and action observation has become increasingly important in recent years particularly because of its potential benefits for movement rehabilitation and the optimization of athletic performance (Munzert et al., 2009). Motor execution, motor imagery, and action observation have been shown to rely largely on a similar neural network in motor and motor-related cortical areas (Jeannerod, 2001). Given that motor imagery is a covert stage of an action and its characteristics, it has been assumed that modifying the motor task in terms of, for example, effort will impact neural activity. With this background, the present study examined how different force requirements influence corticospinal excitability (CSE) and intracortical facilitation during motor imagery and action observation of a repetitive movement (dynamic force production). Participants were instructed to kinesthetically imagine or observe an abduction/adduction movement of the right index finger that differed in terms of force requirements. Trials were carried out with single- or paired-pulse transcranial magnetic stimulation. Surface electromyography was recorded from the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM). As expected, results showed a significant main effect on mean peak-to-peak motor-evoked potential (MEP) amplitudes in FDI but no differences in MEP amplitudes in ADM muscle. Participants' mean peak-to-peak MEPs increased when the force requirements (movement effort) of the imagined or observed action were increased. This reveals an impact of the imagined and observed force requirements of repetitive movements on CSE. It is concluded that this effect might be due to stronger motor neuron recruitment for motor imagery and action observation with an additional load. That would imply that the modification of motor parameters in movements such as force requirements modulates CSE. PMID:25639231

  4. Vehicle Dynamics Control of In-wheel Electric Motor Drive Vehicles Based on Averaging of Tire Force Usage

    NASA Astrophysics Data System (ADS)

    Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao

    For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.

  5. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem G. M.; Bakke, Jostein; Vasskog, Kristian; D'Andrea, William J.; Bradley, Raymond S.; Ólafsdóttir, Sædis

    2015-10-01

    The Arctic is warming faster than anywhere else on Earth. Holocene proxy time-series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. However, available datasets are scarce, unevenly distributed and often of coarse resolution. Glaciers are sensitive recorders of climate shifts and variations in rock-flour production transfer this signal to the lacustrine sediment archives of downstream lakes. Here, we present the first full Holocene