Science.gov

Sample records for recovering exhaust heat

  1. Heat Exhaustion, First Aid

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Heat Exhaustion, First Aid A A A Heat exhaustion signs and symptoms ... specific to the other stages of heat illness. First Aid Guide Use a combination of the following measures ...

  2. Engine Would Recover Exhaust Energy More Efficiently

    NASA Technical Reports Server (NTRS)

    Dimpelfeld, Philip M.

    1993-01-01

    Exhaust energy used for supercharging and extra shaft power. Flow of exhaust apportioned by waste gate to meet demand of turbocharger, and portion not fed to turbocharger sent to power-recovery turbine. Expected to increase fuel efficiency.

  3. Exhaust bypass flow control for exhaust heat recovery

    SciTech Connect

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  4. Heat Exhaustion and Heatstroke

    MedlinePlus

    ... SPF) of 15 or more. Drink plenty of water before starting an outdoor activity. Drink extra water all day. Keep in mind that heat-related ... after 6:00 p.m. During an outdoor activity, take frequent breaks. Drink water or other fluids every 15 to 20 minutes, ...

  5. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  6. Recovering waste industrial heat efficiently

    SciTech Connect

    Hnat, J.G.; Bartone, L.M.; Cutting, J.C.; Patten, J.S.

    1983-03-01

    Organic Rankine Cycles (ORC's) are being used in the generation of electrical or mechanical power in situations where little demand exists for process steam. Using organic fluids in Rankine cycles improves the potential for economic recovery of waste heat. The right organic fluid can enhance the conversion efficiency by tailoring the ORC heat recovery cycle to the thermodynamic characteristics of the waste heat stream. The selection of the working fluid is affected by its flammability, toxicity, environmental impact, materials compatibility, and cost. Water, ethanol, 2-methyl Pyridine/H2O, Flourinol, Toluene, Freon R-11, and Freon R-113 are compared. An organic cycle using toluene as the working fluid is schematicized.

  7. Heat pipes and use of heat pipes in furnace exhaust

    SciTech Connect

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  8. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Exhaust heat exchangers. 25.1125 Section...

  9. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Exhaust heat exchangers. 25.1125 Section...

  10. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 25.1125 Section...

  11. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Exhaust heat exchangers. 25.1125 Section...

  12. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Exhaust heat exchangers. 25.1125 Section...

  13. 14 CFR 29.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Exhaust System § 29.1125 Exhaust heat exchangers. For reciprocating engine powered rotorcraft the following apply: (a) Each exhaust heat exchanger... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Exhaust heat exchangers. 29.1125 Section...

  14. 14 CFR 29.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Exhaust System § 29.1125 Exhaust heat exchangers. For reciprocating engine powered rotorcraft the following apply: (a) Each exhaust heat exchanger... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Exhaust heat exchangers. 29.1125 Section...

  15. 14 CFR 29.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Exhaust System § 29.1125 Exhaust heat exchangers. For reciprocating engine powered rotorcraft the following apply: (a) Each exhaust heat exchanger... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 29.1125 Section...

  16. 14 CFR 29.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Exhaust System § 29.1125 Exhaust heat exchangers. For reciprocating engine powered rotorcraft the following apply: (a) Each exhaust heat exchanger... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Exhaust heat exchangers. 29.1125 Section...

  17. 14 CFR 29.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Exhaust System § 29.1125 Exhaust heat exchangers. For reciprocating engine powered rotorcraft the following apply: (a) Each exhaust heat exchanger... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Exhaust heat exchangers. 29.1125 Section...

  18. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a) Each exhaust heat exchanger must be constructed and installed to withstand the vibration, inertia, and... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Exhaust heat exchangers. 23.1125 Section...

  19. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a) Each exhaust heat exchanger must be constructed and installed to withstand the vibration, inertia, and... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Exhaust heat exchangers. 23.1125 Section...

  20. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a) Each exhaust heat exchanger must be constructed and installed to withstand the vibration, inertia, and... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Exhaust heat exchangers. 23.1125 Section...

  1. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a) Each exhaust heat exchanger must be constructed and installed to withstand the vibration, inertia, and... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 23.1125 Section...

  2. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a) Each exhaust heat exchanger must be constructed and installed to withstand the vibration, inertia, and... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Exhaust heat exchangers. 23.1125 Section...

  3. CORE ELECTRON HEATING IN SOLAR WIND RECONNECTION EXHAUSTS

    SciTech Connect

    Pulupa, M. P.; Salem, C.; Phan, T. D.; Bale, S. D.; Gosling, J. T.

    2014-08-10

    We present observational evidence of core electron heating in solar wind reconnection exhausts. We show two example events, one which shows clear heating of the core electrons within the exhaust, and one which demonstrates no heating. The event with heating occurred during a period of high inflow Alfvén speed (V {sub AL}), while the event with no heating had a low V {sub AL}. This agrees with the results of a recent study of magnetopause exhausts, and suggests that similar core electron heating can occur in both symmetric (solar wind) and asymmetric (magnetopause) exhausts.

  4. Short review on heat recovery from exhaust gas

    NASA Astrophysics Data System (ADS)

    Jaber, Hassan; Khaled, Mahmoud; Lemenand, Thierry; Ramadan, Mohamad

    2016-07-01

    The increasing growth of energy demand leads to issues associated with energy demand reduction and propose new energy efficient solutions. Heat recovery consists the most promising solution especially in regions where renewable energy resources are not available. That is why the domain of heat recovery has shown a tremendous improvement during the recent years. On the other hand, few works have been dedicated to heat recovery from exhaust gas. This paper presents a review on heat recovery from exhaust gas. The authors propose to classify exhaust gas heat recovery systems within three different classifications that are exhaust gas temperature, utilized equipment and recovery purposes.

  5. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    NASA Astrophysics Data System (ADS)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  6. Technologies and Materials for Recovering Waste Heat in Harsh Environments

    SciTech Connect

    Nimbalkar, Sachin U.; Thekdi, Arvind; Rogers, Benjamin M.; Kafka, Orion L.; Wenning, Thomas J.

    2014-12-15

    A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hot exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.

  7. Low-pressure-ratio regenerative exhaust-heated gas turbine

    SciTech Connect

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

    1991-01-01

    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  8. Acoustic Optimization of Automotive Exhaust Heat Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Ye, B. Q.; Guo, X.; Hui, P.

    2012-06-01

    The potential for thermoelectric exhaust heat recovery in vehicles has been increasing with recent advances in the efficiency of thermoelectric generators (TEGs). This study analyzes the acoustic attenuation performance of exhaust-based TEGs. The acoustic characteristics of two different thermal designs of exhaust gas heat exchanger in TEGs are discussed in terms of transmission loss and acoustic insertion loss. GT-Power simulations and bench tests on a dynamometer with a high-performance production engine are carried out. Results indicate that the acoustic attenuation of TEGs could be determined and optimized. In addition, the feasibility of integration of exhaust-based TEGs and engine mufflers into the exhaust line is tested, which can help to reduce space and improve vehicle integration.

  9. Low exhaust temperature electrically heated particulate matter filter system

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  10. Thermal Optimization of the Heat Exchanger in an Automotive Exhaust-Based Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Liu, X.; Chen, S.; Tong, N. Q.

    2013-07-01

    Recent advances in thermoelectric technologies have made exhaust-based thermoelectric generators (TEGs) promising to recover waste heat. The thermal performance of the heat exchanger in exhaust-based TEGs is studied in this work. In terms of interface temperature and thermal uniformity, the thermal characteristics of heat exchangers with different internal structures, lengths, and materials are discussed. Following computational fluid dynamics simulations, infrared experiments are carried out on a high-performance production engine with a dynamometer. Simulation and experimental results show that a plate-shaped heat exchanger made of brass with fishbone-shaped internal structure and length of 600 mm achieves a relatively ideal thermal performance, which is practically helpful to enhance the thermal performance of the TEG.

  11. An experimental study on recovering heat from domestic drain water

    NASA Astrophysics Data System (ADS)

    Ramadan, Mohamad; Al Shaer, Ali; Haddad, Ahmad; Khaled, Mahmoud

    2016-07-01

    This paper concerns an experimental study on a system of heat recovery applied to domestic drain water pipes. The concept suggested consists of using the heat still present in the drain water as a preheating/heating source to the cold water supply of the building. To proceed, an appropriate experimental setup is developed and a coil heat exchanger is used as heat transfer device in the recovery system. Several scenarios are simulated and corresponding parameters are recorded and analyzed. It was shown that the suggested recovery concept can considerably preheat the cold water supply and then decrease the energy consumption. Particularly, up to 8.6 kW of heat were recovered when the cold water supply is initially at 3 °C.

  12. Heat pipes to reduce engine exhaust emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F. (Inventor)

    1984-01-01

    A fuel combustor is presented that consists of an elongated casing with an air inlet conduit portion at one end, and having an opposite exit end. An elongated heat pipe is mounted longitudinally in the casing and is offset from and extends alongside the combustion space. The heat pipe is in heat transmitting relationship with the air intake conduit for heating incoming air. A guide conduit structure is provided for conveying the heated air from the intake conduit into the combustion space. A fuel discharge nozzle is provided to inject fuel into the combustion space. A fuel conduit from a fuel supply source has a portion engaged in heat transfer relationship of the heat pipe for preheating the fuel. The downstream end of the heat pipe is in heat transfer relationship with the casing and is located adjacent to the downstream end of the combustion space. The offset position of the heat pipe relative to the combustion space minimizes the quenching effect of the heat pipe on the gaseous products of combustion, as well as reducing coking of the fuel on the heat pipe, thereby improving the efficiency of the combustor.

  13. Heat Pipes Reduce Engine-Exhaust Emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1986-01-01

    Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.

  14. Integrated exhaust and electrically heated particulate filter regeneration systems

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2013-01-08

    A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.

  15. Heat-exchanger needs for recovering waste heat in the glass-making industry. Final report

    SciTech Connect

    Webb, R.L.; Kulkarni, A.K.

    1983-02-01

    The state of the art of waste heat recovery technology in the glass-making industry is assessed. Fouling and corrosion glass furnace regenerators are reviewed. Heat recovery from the exhaust gases leaving the brick checkers regenerator of a soda lime glass furnace is addressed. Research and development needs that will advance the use of secondary heat recovery in the glass industry are identified. (LEW)

  16. Ion heating resulting from pickup in magnetic reconnection exhausts

    NASA Astrophysics Data System (ADS)

    Drake, J. F.; Swisdak, M.; Phan, T. D.; Cassak, P. A.; Shay, M. A.; Lepri, S. T.; Lin, R. P.; Quataert, E.; Zurbuchen, T. H.

    2009-05-01

    The heating of ions downstream of the x-line during magnetic reconnection is explored using full-particle simulations, test particle simulations, and analytic analysis. Large-scale particle simulations reveal that the ion temperature increases sharply across the boundary layer that separates the upstream plasma from the Alfvénic outflow. This boundary layer, however, does not take the form of a classical switch-off shock as discussed in the Petschek reconnection model, so the particle heating cannot be calculated from the magnetohydrodynamic, slow-shock prediction. Test particle trajectories in the fields from the simulations reveal that ions crossing the narrow boundary into the exhaust instead behave like pickup particles: they gain both a directed outflow and an effective thermal speed given by the flow speed v 0 of the exhaust. The detailed dynamics of these particles are explored by taking 1-D cuts of the simulation data across the exhaust, transforming to the deHoffman-Teller frame, and calculating explicitly the increment in the temperature, m i v 0 2/3, with m i , the ion mass. We compare the model predictions with the temperature increment in solar wind exhausts measured by the ACE and Wind spacecraft, confirming that the temperature increment is proportional to the ion mass. The Wind data from 22 high-shear exhaust encounters confirm the scaling of the proton temperature increment with the square of the exhaust velocity. However, the temperature increments are consistently lower than the model prediction. Implications for understanding the production of high-energy ions in flares and the broader universe are discussed.

  17. Method for controlling exhaust gas heat recovery systems in vehicles

    DOEpatents

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  18. Recovery of exhaust waste heat for a hybrid car using steam turbine

    NASA Astrophysics Data System (ADS)

    Ababatin, Yasser

    A number of car engines operate with an efficiency rate of approximately 22% to 25% [1]. The remainder of the energy these engines generate is wasted through heat escape out of the exhaust pipe. There is now an increasing desire to reuse this heat energy, which would improve the overall efficiency of car engines by reducing their consumption of fuel. Another benefit is that such reuse would minimize harmful greenhouse gases that are emitted into the environment. Therefore, the purpose of this project is to examine how the wasted heat energy can be reused and/or recovered by use of a heat recovery system that would store this energy in a hybrid car battery. Green turbines will be analyzed as a possible solution to recycle the lost energy in a way that will also improve the overall automotive energy efficiency.

  19. Enhancement of automotive exhaust heat recovery by thermoelectric devices

    SciTech Connect

    Ibrahim, Essam; Szybist, James P; Parks, II, James E

    2010-01-01

    In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas) and a cold (coolant liquid) side rectangular ducts enclosing the thermoelectric elements has been built. Measurements of thermoelectric voltage output and flow and surface temperatures were acquired and analyzed to investigate the power generation and heat transfer properties of the apparatus. Effects of inserting aluminum wool packing material inside the hot side duct on augmentation of heat transfer from the gas stream to duct walls were studied. Data were collected for both the unpacked and packed cases to allow for detection of packing influence on flow and surface temperatures. Effects of gas and coolant inlet temperatures as well as gas flow rate on the thermoelectric power output were examined. The results indicate that thermoelectric power production is increased at higher gas inlet temperature or flow rate. However, thermoelectric power generation decreases with a higher coolant temperature as a consequence of the reduced hot-cold side temperature differential. For the hot-side duct, a large temperature gradient exists between the gas and solid surface temperature due to poor heat transfer through the gaseous medium. Adding the packing material inside the exhaust duct enhanced heat transfer and hence raised hot-side duct surface temperatures and thermoelectric power compared to the unpacked duct, particularly where the gas-to-surface temperature differential is highest. Therefore it is recommended that packing of exhaust duct becomes common practice in thermoelectric waste energy harvesting applications.

  20. Weight Penalty Incurred in Thermoelectric Recovery of Automobile Exhaust Heat

    NASA Astrophysics Data System (ADS)

    Rowe, D. M.; Smith, J.; Thomas, G.; Min, G.

    2011-05-01

    Thermoelectric recovery of automobile waste exhaust heat has been identified as having potential for reducing fuel consumption and environmentally unfriendly emissions. Around 35% of combustion energy is discharged as heat through the exhaust system, at temperatures which depend upon the engine's operation and range from 800°C to 900°C at the outlet port to less than 50°C at the tail-pipe. Beneficial reduction in fuel consumption of 5% to 10% is widely quoted in the literature. However, comparison between claims is difficult due to nonuniformity of driving conditions. In this paper the available waste exhaust heat energy produced by a 1.5 L family car when undergoing the new European drive cycle was measured and the potential thermoelectric output estimated. The work required to power the vehicle through the drive cycle was also determined and used to evaluate key parameters. This enabled an estimate to be made of the engine efficiency and additional work required by the engine to meet the load of a thermoelectric generating system. It is concluded that incorporating a thermoelectric generator would attract a penalty of around 12 W/kg. Employing thermoelectric modules fabricated from low-density material such as magnesium silicide would considerably reduce the generator weight penalty.

  1. Momentum and Heat Flux Measurements in the Exhaust of VASIMR using Helium Propellant

    NASA Technical Reports Server (NTRS)

    Chavers, D. Gregory; Chang-Diaz, Franklin R.; Irvine, Claude; Squire, Jared P.

    2003-01-01

    Interplanetary travel requires propulsion systems that can provide high specific impulse (Isp), while also having sufficient thrust to rapidly accelerate large payloads. One such propulsion system is the Variable Specific Impulse Magneto-plasma Rocket (VASIMR), which creates, heats, and ejects plasma to provide variable thrust and Isp, designed to optimally meet the mission requirements. The fraction of the total energy invested in creating the plasma, as compared to the plasma's total kinetic energy, is an important factor in determining the overall system efficiency. In VASIMR, this 'frozen flow loss' is appreciable when at high thrust, but negligible at high Isp. The loss applies to other electric thrusters as well. If some of this energy could be recovered through recombination processes, and reinjected as neutral kinetic energy, the efficiency of VASIMR, in its low Isp/high thrust mode may be improved. An experiment is being conducted to investigate the possibility of recovering some of the energy used to create the plasma by studying the flow characteristics of the charged and neutral particles in the exhaust of the thruster. This paper will cover the measurements of momentum flux and heat flux in the exhaust of the VASIMR test facility using helium as the propellant where the heat flux is comprised of both kinetic and plasma recombination energy. The flux measurements also assist in diagnosing and verifying the plasma conditions in the existing experiment.

  2. Effect of Heat Exchanger Material and Fouling on Thermoelectric Exhaust Heat Recovery

    SciTech Connect

    Love, Norman; Szybist, James P; Sluder, Scott

    2011-01-01

    This study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. For this purpose an experimental investigation of thermoelectrics in contact with clean and fouled heat exchangers of different materials is performed. The thermoelectric devices are tested on a bench-scale thermoelectric heat recovery apparatus that simulates automotive exhaust. The thermoelectric apparatus consists of a series of thermoelectric generators contacting a hot-side and a cold-side heat exchanger. The thermoelectric devices are tested with two different hot-side heat exchanger materials, stainless steel and aluminum, and at a range of simulated exhaust gas flowrates (40 to 150 slpm), exhaust gas temperatures (240 C and 280 C), and coolant-side temperatures (40 C and 80 C). It is observed that for higher exhaust gas flowrates, thermoelectric power output increases while overall system efficiency decreases. Degradation of the effectiveness of the EGR-type heat exchangers over a period of driving is also simulated by exposing the heat exchangers to diesel engine exhaust under thermophoretic conditions to form a deposit layer. For the fouled EGR-type heat exchangers, power output and system efficiency is observed to be significantly lower for all conditions tested. The study found, however, that heat exchanger material is the dominant factor in the ability of the system to convert heat to electricity with thermoelectric generators. This finding is thought to be unique to the heat exchangers used for this study, and not a universal trend for all system configurations.

  3. Treatment of exhaust fluorescent lamps to recover yttrium: experimental and process analyses.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Varelli, Ennio Fioravante; Vegliò, Francesco

    2011-12-01

    The paper deals with recovery of yttrium from fluorescent powder coming from dismantling of spent fluorescent tubes. Metals are leached by using different acids (nitric, hydrochloric and sulphuric) and ammonia in different leaching tests. These tests show that ammonia is not suitable to recover yttrium, whereas HNO(3) produces toxic vapours. A full factorial design is carried out with HCl and H(2)SO(4) to evaluate the influence of operating factors. HCl and H(2)SO(4) leaching systems give similar results in terms of yttrium extraction yield, but the last one allows to reduce calcium extraction with subsequent advantage during recovery of yttrium compounds in the downstream. The greatest extraction of yttrium is obtained by 20% w/v S/L ratio, 4N H(2)SO(4) concentration and 90°C. Yttrium and calcium yields are nearly 85% and 5%, respectively. The analysis of variance shows that acid concentration alone and interaction between acid and pulp density have a significant positive effect on yttrium solubilization for both HCl and H(2)SO(4) medium. Two models are empirically developed to estimate yttrium and calcium concentration during leaching. Precipitation tests demonstrate that at least the stoichiometric amount of oxalic acid is necessary to recover yttrium efficiently and a pure yttrium oxalate n-hydrate can be produced (99% grade). The process is economically feasible if other components of the fluorescent lamps (glass, ferrous and non-ferrous scraps) are recovered after the equipment dismantling and valorized, besides the cost that is usually paid to recycling companies for collection, treatment or final disposal of such fluorescent powders. PMID:21840197

  4. Treatment of exhaust fluorescent lamps to recover yttrium: Experimental and process analyses

    SciTech Connect

    De Michelis, Ida; Ferella, Francesco; Varelli, Ennio Fioravante; Veglio, Francesco

    2011-12-15

    Highlights: > Recovery of yttrium from spent fluorescent lamps by sulphuric acid leaching. > The use of sulphuric acid allows to reduce calcium dissolutions. > Main contaminant of fluorescent powder are Si, Pb, Ca and Ba. > Hydrated yttrium oxalate, recovered by selective precipitation, is quite pure (>90%). > We have studied the whole process for the treatment of dangerous waste (plant capability). - Abstract: The paper deals with recovery of yttrium from fluorescent powder coming from dismantling of spent fluorescent tubes. Metals are leached by using different acids (nitric, hydrochloric and sulphuric) and ammonia in different leaching tests. These tests show that ammonia is not suitable to recover yttrium, whereas HNO{sub 3} produces toxic vapours. A full factorial design is carried out with HCl and H{sub 2}SO{sub 4} to evaluate the influence of operating factors. HCl and H{sub 2}SO{sub 4} leaching systems give similar results in terms of yttrium extraction yield, but the last one allows to reduce calcium extraction with subsequent advantage during recovery of yttrium compounds in the downstream. The greatest extraction of yttrium is obtained by 20% w/v S/L ratio, 4 N H{sub 2}SO{sub 4} concentration and 90 deg. C. Yttrium and calcium yields are nearly 85% and 5%, respectively. The analysis of variance shows that acid concentration alone and interaction between acid and pulp density have a significant positive effect on yttrium solubilization for both HCl and H{sub 2}SO{sub 4} medium. Two models are empirically developed to estimate yttrium and calcium concentration during leaching. Precipitation tests demonstrate that at least the stoichiometric amount of oxalic acid is necessary to recover yttrium efficiently and a pure yttrium oxalate n-hydrate can be produced (99% grade). The process is economically feasible if other components of the fluorescent lamps (glass, ferrous and non-ferrous scraps) are recovered after the equipment dismantling and valorized

  5. The American Football Uniform: Uncompensable Heat Stress and Hyperthermic Exhaustion

    PubMed Central

    Armstrong, Lawrence E.; Johnson, Evan C.; Casa, Douglas J.; Ganio, Matthew S.; McDermott, Brendon P.; Yamamoto, Linda M.; Lopez, Rebecca M.; Emmanuel, Holly

    2010-01-01

    Abstract Context: In hot environments, the American football uniform predisposes athletes to exertional heat exhaustion or exercise-induced hyperthermia at the threshold for heat stroke (rectal temperature [Tre] > 39°C). Objective: To evaluate the differential effects of 2 American football uniform configurations on exercise, thermal, cardiovascular, hematologic, and perceptual responses in a hot, humid environment. Design: Randomized controlled trial. Setting: Human Performance Laboratory. Patients or Other Participants: Ten men with more than 3 years of competitive experience as football linemen (age  =  23.8 ± 4.3 years, height  =  183.9 ± 6.3 cm, mass  =  117.41 ± 12.59 kg, body fat  =  30.1% ± 5.5%). Intervention(s): Participants completed 3 controlled exercise protocols consisting of repetitive box lifting (lifting, carrying, and depositing a 20.4-kg box at a rate of 10 lifts per minute for 10 minutes), seated recovery (10 minutes), and up to 60 minutes of treadmill walking. They wore one of the following: a partial uniform (PART) that included the National Football League (NFL) uniform without a helmet and shoulder pads; a full uniform (FULL) that included the full NFL uniform; or control clothing (CON) that included socks, sneakers, and shorts. Exercise, meals, and hydration status were controlled. Main Outcome Measure(s): We assessed sweat rate, Tre, heart rate, blood pressure, treadmill exercise time, perceptual measurements, plasma volume, plasma lactate, plasma glucose, plasma osmolality, body mass, and fat mass. Results: During 19 of 30 experiments, participants halted exercise as a result of volitional exhaustion. Mean sweat rate, Tre, heart rate, and treadmill exercise time during the CON condition were different from those measures during the PART (P range, .04–.001; d range, 0.42–0.92) and FULL (P range, .04–.003; d range, 1.04–1.17) conditions; no differences were detected for perceptual measurements, plasma

  6. A Highly Efficient Six-Stroke Internal Combustion Engine Cycle with Water Injection for In-Cylinder Exhaust Heat Recovery

    SciTech Connect

    Conklin, Jim; Szybist, James P

    2010-01-01

    A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion was used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this

  7. Model of Heat Exchangers for Waste Heat Recovery from Diesel Engine Exhaust for Thermoelectric Power Generation

    NASA Astrophysics Data System (ADS)

    Baker, Chad; Vuppuluri, Prem; Shi, Li; Hall, Matthew

    2012-06-01

    The performance and operating characteristics of a hypothetical thermoelectric generator system designed to extract waste heat from the exhaust of a medium-duty turbocharged diesel engine were modeled. The finite-difference model consisted of two integrated submodels: a heat exchanger model and a thermoelectric device model. The heat exchanger model specified a rectangular cross-sectional geometry with liquid coolant on the cold side, and accounted for the difference between the heat transfer rate from the exhaust and that to the coolant. With the spatial variation of the thermoelectric properties accounted for, the thermoelectric device model calculated the hot-side and cold-side heat flux for the temperature boundary conditions given for the thermoelectric elements, iterating until temperature and heat flux boundary conditions satisfied the convection conditions for both exhaust and coolant, and heat transfer in the thermoelectric device. A downhill simplex method was used to optimize the parameters that affected the electrical power output, including the thermoelectric leg height, thermoelectric n-type to p-type leg area ratio, thermoelectric leg area to void area ratio, load electrical resistance, exhaust duct height, coolant duct height, fin spacing in the exhaust duct, location in the engine exhaust system, and number of flow paths within the constrained package volume. The calculation results showed that the configuration with 32 straight fins was optimal across the 30-cm-wide duct for the case of a single duct with total height of 5.5 cm. In addition, three counterflow parallel ducts or flow paths were found to be an optimum number for the given size constraint of 5.5 cm total height, and parallel ducts with counterflow were a better configuration than serpentine flow. Based on the reported thermoelectric properties of MnSi1.75 and Mg2Si0.5Sn0.5, the maximum net electrical power achieved for the three parallel flow paths in a counterflow arrangement was 1

  8. Cycle Analysis using Exhaust Heat of SOFC and Turbine Combined Cycle by Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Takezawa, Shinya; Wakahara, Kenji; Araki, Takuto; Onda, Kazuo; Nagata, Susumu

    A power generating efficiency of solid oxide fuel cell (SOFC) and gas turbine combined cycle is fairly high. However, the exhaust gas temperature of the combined cycle is still high, about 300°C. So it should be recovered for energy saving, for example, by absorption chiller. The energy demand for refrigeration cooling is recently increasing year by year in Japan. Then, we propose here a cogeneration system by series connection of SOFC, gas turbine and LiBr absorption chiller to convert the exhaust heat to the cooling heat. As a result of cycle analysis of the combined system with 500kW class SOFC, the bottoming single-effect absorption chiller can produce the refrigerating capacity of about 120kW, and the double-effect absorption chiller can produce a little higher refrigerating capacity of about 130kW without any additional fuel. But the double-effect absorption chiller became more expensive and complex than the single-effect chiller.

  9. Momentum and Heat Flux Measurements in the Exhaust of VASIMR Using Helium Propellant

    NASA Technical Reports Server (NTRS)

    Chavers, D. Gregory

    2002-01-01

    Electromagnetic thrusters typically use electric and magnetic fields to accelerate and exhaust plasma through interactions with the charged particles in the plasma. The energy required to create the plasma, i.e. ionization energy, is potential energy between the electron and ion. This potential energy is typically lost since it is not recovered as the plasma is exhausted and is known as frozen flow loss. If the frozen flow energy is a small fraction of the total plasma energy, this frozen flow loss may be negligible. However, if the frozen flow energy is a major fraction of the total plasma energy, this loss can severely reduce the energy efficiency of the thruster. Recovery and utilization of this frozen flow energy can improve the energy efficiency of a thruster during low specific impulse operating regimes when the ionization energy is a large fraction of the total plasma energy. This paper quantifies the recovery of the frozen flow energy, i.e. recombination energy, via the process of surface recombination for helium. To accomplish this task the momentum flux and heat flux of the plasma flow were measured and compared to calculated values from electrostatic probe data. This information was used to deduce the contribution of recombination energy to the total heat flux on a flat plate as well as to characterize the plasma conditions. Helium propellant was investigated initially due to its high ionization potential and hence available recombination energy.

  10. Effect of Thermoelectric Modules' Topological Connection on Automotive Exhaust Heat Recovery System

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Zheng, S. J.; Su, C. Q.; Yuan, X. H.; Yu, C. G.; Wang, Y. P.

    2016-03-01

    In automotive exhaust-based thermoelectric generators (AETEGs), a certain number of thermoelectric modules are connected in series and/or parallel to recover energy from exhaust gas, which provides a way to improve fuel efficiency of the vehicle. Because of the temperature distribution on the surfaces of heat exchanger, several types of modules are planned for use in an AETEG; however, property disparities among modules exist and wire resistance cannot be neglected in practical application, so experiments have been carried out to research effects of the two factors on the maximum output power of series and parallel connection. The performance of series and parallel connections have been characterized, and mathematic models have been built to analyze and predict the performance of each connection. Experiments and theoretical analysis reveal that parallel connection shows a better performance than series connection when large differences of Seebeck coefficient and resistivity exist. However, wire resistance will cause more significant power dissipation in parallel connection. The authors believe the research presented in this paper is the first to carry out an examination of the impact of module property disparity and wire resistance on the output power of an array of thermoelectric modules connected in series and parallel, which provides a reference for choosing module connection in AETEGs.

  11. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  12. Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report

    SciTech Connect

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

    1991-01-01

    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  13. 40 CFR Table 1 to Subpart Ja of... - Molar Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... Inerts 0.85 0 a MEV = molar exhaust volume, dry standard cubic feet per gram-mole (dscf/g-mol)...

  14. 40 CFR Table 1 to Subpart Ja of... - Molar Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... Inerts 0.85 0 a MEV = molar exhaust volume, dry standard cubic feet per gram-mole (dscf/g-mol)...

  15. An Experimental Investigation of an Exhaust-gas-to-air Heat Exchanger for Use on Jet-stack-equipped Engines

    NASA Technical Reports Server (NTRS)

    Stalder, Jackson R; Spies, Ray J , Jr

    1948-01-01

    Tests were made to determine the loss in exhaust-jet thrust and engine power resulting from the insertion of an exhaust-gas-to-air heat exchanger in a jet-type exhaust stack of an aircraft engine. The thermal performance of the heat exchanger was also determined.

  16. Method for recovering and utilizing heat of coke-oven gas

    SciTech Connect

    Kunioka, K.; Nishio, H.; Okuyama, Y.; Shimotsuma, T.

    1981-06-02

    A method is described for recovering and utilizing heat of coke- oven gas is eliminated. Through heat exchange with a high-temperature coke-oven gas generated from a coke oven battery and containing vaporized coal tar, vaporized low boiling point substances and dust. By drying and preheating a blended raw material coal fine to be charged into coking ovens of said coke oven battery, and causing most of said coal tar contained in said coke-oven gas to condense and deposit onto the particle surfaces of said coal fine. During the process of said heat exchange, sensible heat and condensation heat of said coke-oven gas and substances contained therein are recovered and utilized, and at the same time, most of the contained coal tar from said coke-oven gas.

  17. High exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  18. New device architecture of a thermoelectric energy conversion for recovering low-quality heat

    NASA Astrophysics Data System (ADS)

    Kim, Hoon; Park, Sung-Geun; Jung, Buyoung; Hwang, Junphil; Kim, Woochul

    2014-03-01

    Low-quality heat is generally discarded for economic reasons; a low-cost energy conversion device considering price per watt, /W, is required to recover this waste heat. Thin-film based thermoelectric devices could be a superior alternative for this purpose, based on their low material consumption; however, power generated in conventional thermoelectric device architecture is negligible due to the small temperature drop across the thin film. To overcome this challenge, we propose new device architecture, and demonstrate approximately 60 Kelvin temperature differences using a thick polymer nanocomposite. The temperature differences were achieved by separating the thermal path from the electrical path; whereas in conventional device architecture, both electrical charges and thermal energy share same path. We also applied this device to harvest body heat and confirmed its usability as an energy conversion device for recovering low-quality heat.

  19. Effects of Heat Stress on Ocular Blood Flow During Exhaustive Exercise

    PubMed Central

    Ikemura, Tsukasa; Hayashi, Naoyuki

    2014-01-01

    The hypothesis that heat stress reduces the ocular blood flow response to exhaustive exercise was tested by measuring ocular blood flow, blood pressure, and end- tidal carbon dioxide partial pressure (PETCO2) in 12 healthy males while they performed cycle ergometer exercise at 75% of the maximal heart rate at ambient temperatures of 20°C (control condition) and 35°C (heat condition), until exhaustion. The blood flows in the retinal and choroidal vasculature (RCV), the superior temporal retinal arteriole (STRA) and the superior nasal retinal arteriole (SNRA) were recorded at rest and at 6 and 16 min after the start of exercise period and at exhaustion [after 16 ± 2 min (mean ± SE) and 24 ± 3 min of exercise in the heat and control condition, respectively]. The mean arterial pressure at exhaustion was significantly lower in the heat condition than in the control condition at both 16 min and exhaustion. The degree of PETCO2 reduction did not differ significantly between the two thermal conditions at either 16 min or exhaustion. The blood flow velocity in the RCV significantly increased from the resting baseline value at 6 min in both thermal conditions (32 ± 6% and 25 ± 5% at 20°C and 35°C, respectively). However, at 16 min the increase in RCV blood flow velocity had returned to the resting baseline level only in the heat condition. At exhaustion, the blood flows in the STRA and SNRA had decreased significantly from the resting baseline value in the heat condition (STRA: -19 ± 5% and SNRA: -30 ± 6%), and SNRA blood flow was lower than that in the control condition (-14 ± 6% vs -30 ± 6% at 20°C and 35°C, respectively), despite the finding that both thermal conditions induced the same reductions in PETCO2 and vascular conductance. These findings suggested that the heat condition decreases or suppresses ocular blood flow via attenuation of pressor response during exhaustive exercise. Key Points The ocular (retinal and choroidal) blood flow response to

  20. Characteristics of exhaust air facades as solar absorbers for saving of heating energy

    NASA Astrophysics Data System (ADS)

    Voncube, H. L.; Ludwig, E.

    1982-12-01

    The solar radiation exploited by solar exhaust air windows was measured at a building facing four main directions. The windows were not constructed as optimal radiation absorbers and the heat gain stood in a range of 3 to 10% of the heat consumption, depending on time of year. Optimal windows (chiefly clear glass with Venetian blinds) were found by a computer program simulating the process of radiation in an exhaust air-window and heat gains up to 50% can be obtained. Relation to air flow rate and others were found. The calculated results were proved by measurements. With a suitable heating systems in the building (heat transport form south side to north side, heat storage) up to 50% of the annual consumption can be saved.

  1. Energy conservation in fruit dehydrators utilizing recirculation of exhaust air and heat-recovery heat exchangers. Final report

    SciTech Connect

    Groh, J.E.; Thompson, T.L.

    1981-12-01

    Dehydration of fruit in the United States is often done by means of a tunnel dehydrator utilizing large quantities of fossil fuel. Existing dehydrators have been designed to operate with maximum product through-put and with little regard for energy efficiency. By incorporating dampers for air recirculation and thermal energy recovery equipment on the exhaust air, the energy required in dehydration was cut by over 40%, satisfying the original objectives of the program. A commercial dehydrator tunnel was modified by installing a heat recovery heat exchanger and an exhaust air recirculation damper. Another tunnel was equipped with the exhaust air recirculation damper only. A third tunnel was unmodified. These three tunnels of a 24 tunnel facility were equipped with individual natural gas meters to measure energy consumption. The energy consumption of the heat exchanger equipped tunnel normally amounted to approximately 40% of the unmodified tunnel during raisin production.

  2. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    SciTech Connect

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  3. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Huang, C.; Deng, Y. D.; Wang, Y. P.; Chu, P. Q.; Zheng, S. J.

    2016-03-01

    In order to enhance the exhaust waste heat recovery efficiency of the automotive exhaust-based thermoelectric generator (TEG) system, a three-segment heat exchanger with folded-shaped internal structure for the TEG system is investigated in this study. As the major effect factors of the performance for the TEG system, surface temperature, and thermal uniformity of the heat exchanger are analyzed in this research, pressure drop along the heat exchanger is also considered. Based on computational fluid dynamics simulations and temperature distribution, the pressure drop along the heat exchanger is obtained. By considering variable length and thickness of folded plates in each segment of the heat exchanger, response surface methodology and optimization by a multi-objective genetic algorithm is applied for surface temperature, thermal uniformity, and pressure drop for the folded-shaped heat exchanger. An optimum design based on the optimization is proposed to improve the overall performance of the TEG system. The performance of the optimized heat exchanger in different engine conditions is discussed.

  4. Origins of Highly Structured Distribution Functions in Magnetic Reconnection Exhausts: Understanding Electron Acceleration and Heating

    NASA Astrophysics Data System (ADS)

    Shuster, J. R.; Wang, S.; Chen, L. J.; Bessho, N.; Guo, R.; Torbert, R. B.; Daughton, W. S.

    2014-12-01

    Electron velocity distribution functions (VDFs) during reconnection with negligible guide field from particle in cell (PIC) simulations and Cluster observations are studied to further understand electron acceleration and heating. Until recently, electrons in the exhaust of reconnection with negligible guide field were thought to be isotropic. PIC simulation results with zero guide field reveal that near the time of peak reconnection, VDFs become highly structured in magnetic islands and open exhausts. Ring, arc, and counterstreaming populations are generic and lasting constituents of exhaust electron VDFs. Analyses of particle trajectories indicate that a number of mechanisms including Fermi acceleration, the parallel potential, and adiabatic heating contribute to the energization of exhaust electrons. Near the electron diffusion region (EDR), exhaust electrons exhibit large Te⊥ due to ring and arc populations of electrons accelerated in the EDR. Farther away from the EDR, the VDFs show a mixture of electrons from the EDR and those crossing the separatrix from the inflow. Pitch angle scattering is effective near the exhaust midplane, away from the EDR and before reaching the magnetic pileup region, producing isotropic, high-energy electrons, while the low energy exhaust electrons exhibit the anisotropy Te// > Te⊥ characteristic of the inflow. The work done on the electrons by the perpendicular electric field between the end of EDR and the magnetic pileup region is due to Fermi acceleration which leads to a net increase in the electron's parallel velocity. For the net increase of electrons' v⊥ beyond the EDR, pitch angle scattering effectively converts v// gained by acceleration from the parallel potential into v⊥. Electron's v⊥ further increases downstream through adiabatic heating from the increasing magnetic field in addition to less efficient pitch angle scattering. The parallel potential and the magnetic bottle together determine the trapped

  5. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    NASA Astrophysics Data System (ADS)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2016-03-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases, the system design that minimizes cost (e.g., the /W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery TEG with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric (TE) treatment of the exhaust waste heat recovery TEG yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of 1/W it is necessary to achieve heat exchanger costs of 1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but preferred TE design regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously identified low cost design regimes. This work shows that the optimum fill factor F opt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and

  6. Electron heating in the exhaust of magnetic reconnection with negligible guide field

    NASA Astrophysics Data System (ADS)

    Wang, Shan; Chen, Li-Jen; Bessho, Naoki; Kistler, Lynn M.; Shuster, Jason R.; Guo, Ruilong

    2016-03-01

    Electron heating in the magnetic reconnection exhaust is investigated with particle-in-cell simulations, space observations, and theoretical analysis. Spatial variations of the electron temperature (Te) and associated velocity distribution functions (VDFs) are examined and understood in terms of particle energization and randomization processes that vary with exhaust locations. Inside the electron diffusion region (EDR), the electron temperature parallel to the magnetic field (Te∥) exhibits a local minimum and the perpendicular temperature (Te⊥) shows a maximum at the current sheet midplane. In the intermediate exhaust downstream from the EDR and far from the magnetic field pileup region, Te⊥/Te∥ is close to unity and Te is approximately uniform, but the VDFs are structured: close to the midplane, VDFs are quasi-isotropic, whereas farther away from the midplane, VDFs exhibit field-aligned beams directed toward the midplane. In the far exhaust, Te generally increases toward the midplane and the pileup region, and the corresponding VDFs show counter-streaming beams. A distinct population with low v∥ and high v⊥ is prominent in the VDFs around the midplane. Test particle results show that the magnetic curvature near the midplane produces pitch angle scattering to generate quasi-isotropic distributions in the intermediate exhaust. In the far exhaust, electrons with initial high v∥ (v⊥) are accelerated mainly through curvature (gradient-B) drift opposite to the electric field, without significant pitch angle scattering. The VDF structures predicted by simulations are observed in magnetotail reconnection measurements, indicating that the energization mechanisms captured in the reported simulations are applicable to magnetotail reconnection with negligible guide field.

  7. Heat Transfer Analysis of an Engine Exhaust-Based Thermoelectric Evaporation System

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Tan, Gangfeng; Guo, Xuexun; Deng, Yadong; Zhang, Hongguang; Yang, Kai

    2016-03-01

    Engine exhaust can be used by thermoelectric generators for improving thermal efficiency of internal combustion engines. In his paper, the performance of a thermoelectric evaporation system is investigated. First, the thermal characteristics of diesel engines are obtained according to the experiment data. Then, mathematical models are created based on the specified conditions of the coolant cycle and the evaporator geometric parameters. Finally, the heat transfer characteristics and power performance of the thermoelectric evaporation system are estimated, and a comparison with the system in which the heat exchanger operates with all-liquid coolant is investigated. The results show that the overall heat transfer rate of the thermoelectric evaporator system increases with engine power. At the rated condition, the two-phase zone with an area of 0.8689 m2 dominates the evaporator's heat transfer area compared with the preheated zone area of 0.0055 m2, and for the thermoelectric module, the cold-side temperature is stable at 74°C while the hot-side temperature drops from 341.8°C to 304.9°C along the exhaust direction. For certain thermoelectric cells, the temperature difference between the cold side and hot side rises with the engine load, and the temperature difference drops from 266.9°C to 230.6°C along the exhaust direction. For two cold-side systems with the same heat transfer, coolant mass flow rate in the evaporator with two-phase state is much less, and the temperature difference along with equivalent heat transfer length L is significantly larger than in the all-liquid one. At rated power point, power generated by thermoelectric cells in the two-phase evaporation system is 508.4 W, while the other is only 328.8 W.

  8. Experiments and Simulations on a Heat Exchanger of an Automotive Exhaust Thermoelectric Generation System Under Coupling Conditions

    NASA Astrophysics Data System (ADS)

    Liu, X.; Yu, C. G.; Chen, S.; Wang, Y. P.; Su, C. Q.

    2014-06-01

    The present experimental and computational study investigates an exhaust gas waste heat recovery system for vehicles, using thermoelectric modules and a heat exchanger to produce electric power. It proposes a new plane heat exchanger of a thermoelectric generation (TEG) system, producing electricity from a limited hot surface area. To investigate the new plane heat exchanger, we make a coupling condition of heat-flow and flow-solid coupling analysis on it to obtain the temperature, heat, and pressure field of the heat exchanger, and compared it with the old heat exchanger. These fields couple together to solve the multi-field coupling of the flow, solid, and heat, and then the simulation result is compared with the test bench experiment of TEG, providing a theoretical and experimental basis for the present exhaust gas waste heat recovery system.

  9. Fuel Properties Improvement of Jatropha Oil using Exhaust Heat of Diesel Engine

    NASA Astrophysics Data System (ADS)

    Raheman, H.; Pradhan, P.

    2012-12-01

    The aim of the present work is to design a helical coil heat exchanger to extract waste heat from exhaust gas of a diesel engine to improve the fuel properties of high viscous crude Jatropha oil (CJO). A detailed designed procedure of helical coil heat exchanger was reported in this paper. The results showed that the fuel properties like density and viscosity reduced by 2.13 and 48.76 % respectively by gaining temperature from exhaust gas. Finally preheated Jatropha oil (PJO) fueled to the 5.5 kW diesel engine and it operated smoothly with a maximum brake thermal efficiency of 29.15 % as compared to 29.88 and 28.33 % for HSD and CJO, respectively. The brake specific energy consumption of CJO and PJO was found to be only 2.84 and 5.47 % higher than that of HSD, respectively. Efficiency of the heat exchanger was found to be varying between 19 and 26 % with engine load.

  10. Retro Rocket Motor Self-Penetrating Scheme for Heat Shield Exhaust Ports

    NASA Technical Reports Server (NTRS)

    Marrese-Reading, Colleen; St.Vaughn, Josh; Zell, Peter; Hamm, Ken; Corliss, Jim; Gayle, Steve; Pain, Rob; Rooney, Dan; Ramos, Amadi; Lewis, Doug; Shepherd, Joe; Inaba, Kazuaki

    2009-01-01

    A preliminary scheme was developed for base-mounted solid-propellant retro rocket motors to self-penetrate the Orion Crew Module heat shield for configurations with the heat shield retained during landings on Earth. In this system the motors propel impactors into structural push plates, which in turn push through the heat shield ablator material. The push plates are sized such that the remaining port in the ablator material is large enough to provide adequate flow area for the motor exhaust plume. The push plate thickness is sized to assure structural integrity behind the ablative thermal protection material. The concept feasibility was demonstrated and the performance was characterized using a gas gun to launch representative impactors into heat shield targets with push plates. The tests were conducted using targets equipped with Fiberform(R) and PICA as the heat shield ablator material layer. The PICA penetration event times were estimated to be under 30 ms from the start of motor ignition. The mass of the system (not including motors) was estimated to be less than 2.3 kg (5 lbs) per motor. The configuration and demonstrations are discussed.

  11. Thermoelectric Exhaust Heat Recovery with Heat Pipe-Based Thermal Control

    NASA Astrophysics Data System (ADS)

    Brito, F. P.; Martins, Jorge; Hançer, Esra; Antunes, Nuno; Gonçalves, L. M.

    2015-06-01

    Heat pipe (HP)-based heat exchangers can be used for very low resistance heat transfer between a hot and a cold source. Their operating temperature depends solely on the boiling point of their working fluid, so it is possible to control the heat transfer temperature if the pressure of the HP can be adjusted. This is the case of the variable conductance HPs (VCHP). This solution makes VCHPs ideal for the passive control of thermoelectric generator (TEG) temperature levels. The present work assesses, both theoretically and experimentally, the merit of the aforementioned approach. A thermal and electrical model of a TEG with VCHP assist is proposed. Experimental results obtained with a proof of concept prototype attached to a small single-cylinder engine are presented and used to validate the model. It was found that the HP heat exchanger indeed enables the TEG to operate at a constant, optimal temperature in a passive and safe way, and with a minimal overall thermal resistance, under part load, it effectively reduces the active module area without deprecating the temperature level of the active modules.

  12. Improved heat exhaust and the characteristics of the high Tc superconducting terahertz emitter

    NASA Astrophysics Data System (ADS)

    Kashiwagi, T.; Yamamoto, T.; Kitamura, T.; Asanuma, K.; Yasui, T.; Shibano, Y.; Watanabe, C.; Nakade, K.; Saiwai, Y.; Kubo, H.; Sakamoto, K.; Katsuragawa, T.; Tsujimoto, M.; Yoshizaki, R.; Minami, H.; Klemm, R. A.; Kadowaki, K.

    2015-03-01

    In our previous study it is known that THz emitting efficiency improves greatly when the stand-alone type of mesa structure is used for the THz emitting device. The principle reason for that lies in the heat removal from the mesa, in which a gigantic amount of heat is generated while the mesa is in the resistive state. Recently, we developed a new device structure based on the stand-alone type of mesa structure of Bi2212 single crystal in order to make high exhaust of Joule heating. The results show that although the power is comparable and is not significantly increased, very wide the radiation frequencies ranging from 0.3 to 1.6 THz were obtained. We will discuss the details of the radiation characteristics of this one. This study has been supported by CREST-JST. TK is also supported by the Matsuda grant and JST A-STEP. This work is in part performed in collaboration with Dr. Wai Kwok and his group in Argonne National Lab.

  13. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOEpatents

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  14. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect

    Viswanathan, V. V.; Davies, R. W.; Holbery, J.

    2006-04-01

    This report analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities.

  15. Ice Prevention on Aircraft by Means of Engine Exhaust Heat and a Technical Study of Heat Transmission from a Clark Y Airfoil

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Clay, William C

    1933-01-01

    This investigation was conducted to study the practicability of employing heat as a means of preventing the formation of ice on airplane wings. The report relates essentially to technical problems regarding the extraction of heat from the exhaust gases and its proper distribution over the exposed surfaces. In this connection a separate study has been made to determine the variation of the coefficient of heat transmission along the chord of a Clark Y airfoil. Experiments on ice prevention both in the laboratory and in flight show conclusively that it is necessary to heat only the front portion of the wing surface to effect complete prevention. Experiments in flight show that a vapor-heating system which extracts heat from the exhaust and distributes it to the wings is an entirely practical and efficient method for preventing ice formation.

  16. Development of Exhaust Gas Driven Absorption Chiller-Heater

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Waste heat from co-generation systems are usually recovered by hot water or steam, those are used to drive absorption refrigerators at cooling time, and those are used for heating via heat exchangers at heating time. However waste heat from micro gas turbines are discharged in the form of exhaust gas, it is simple that exhaust gas is directly supplied to absorption chiller-heaters. In the first report we studied cooling cycle, and this second paper, we evaluated various absorption heating cycles for exhaust gas driven absorption chiller-heaters, and adopted one of these cycles for the prototype machine. Also, we experimented with the prototype for wide range condition and got the heating characteristics. Based on the experimental data, we developed a simulation model of the static characteristics, and then studied how to increase the output by limited exhaust gas.

  17. Studies on Effective Utilization of SOFC Exhaust Heat Using Thermoelectric Power Generation Technology

    NASA Astrophysics Data System (ADS)

    Terayama, Takeshi; Nagata, Susumu; Tanaka, Yohei; Momma, Akihiko; Kato, Tohru; Kunii, Masaru; Yamamoto, Atsushi

    2013-07-01

    Solid oxide fuel cells (SOFCs) are being researched around the world. In Japan, a compact SOFC system with rated alternative current (AC) power of 700 W has become available on the market, since the base load electricity demand for a standard home is said to be less than 700 W AC. To improve the generating efficiency of SOFC systems in the 700-W class, we focused on thermoelectric generation (TEG) technology, since there are a lot of temperature gradients in the system. Analysis based on simulations indicated the possibility of introducing thermoelectric generation at the air preheater, steam generator, and exhaust outlet. Among these options, incorporating a TEG heat exchanger comprising multiple CoSb3/SiGe-based TEG modules into the air preheater had potential to produce additional output of 37.5 W and an improvement in generating efficiency from 46% to 48.5%. Furthermore, by introducing thermoelectric generation at the other two locations, an increase in maximum output of more than 50 W and generating efficiency of 50% can be anticipated.

  18. Flat-plate, gas-to-gas heat exchanger recovers 1. 5 million Btu/hr from perlite production

    SciTech Connect

    Hench, R.; Hodel, A.E.; Regan, J.T.

    1986-08-01

    Calshake, a mineral shake shingle manufacturer in Irwindale, CA started having problems with a carbon steel, gas-to-gas process heat exchanger when the plant changed their perlite popping process from a three shift to a two shift operation. The first evidence of trouble was a loss of air volume throughput. Then the heat transfer efficiency of the stationary flatplate heat exchanger was reduced. The economy of the operation continued to diminish as fans drawing gases through the exchanger had to work harder. Finally the plant was forced to shut down the processing line. Calshake replaced the single, 20' long carbon steel, flat-plate heat exchanger with two, 10' long, modular, stainless steel units from the same manufacturer. The new exchangers were installed vertically in series to provide basically the same 20' long heat transfer surface. The flow path on the hot side was made continuous. The flow path on the cold side was interrupted by a duct joining the top and bottom units. Counterflow conditions were maintained just as they were in the original unit. The flat-plate, gas-to-gas heat exchanger recovers 1.5 million Btu/hr from perlite production. The new exchanger gives nearly twice the recovery of the system it replaced. Since installation in August 1985 it has required only minor maintenance (total downtime of 9 hours) and has performed above expectations.

  19. Mi-1-Mediated Nematode Resistance in Tomatoes is Broken by Short-Term Heat Stress but Recovers Over Time.

    PubMed

    Marques de Carvalho, Luciana; Benda, Nicole D; Vaughan, Martha M; Cabrera, Ana R; Hung, Kaddie; Cox, Thomas; Abdo, Zaid; Allen, L Hartwell; Teal, Peter E A

    2015-06-01

    Tomato (Solanum lycopersicum L.) is among the most valuable agricultural products, but Meloidogyne spp. (root-knot nematode) infestations result in serious crop losses. In tomato, resistance to root-knot nematodes is controlled by the gene Mi-1, but heat stress interferes with Mi-1-associated resistance. Inconsistent results in published field and greenhouse experiments led us to test the effect of short-term midday heat stress on tomato susceptibility to Meloidogyne incognita race 1. Under controlled day/night temperatures of 25°C/21°C, 'Amelia', which was verified as possessing the Mi-1 gene, was deemed resistant (4.1 ± 0.4 galls/plant) and Rutgers, which does not possess the Mi-1 gene, was susceptible (132 ± 9.9 galls/plant) to M. incognita infection. Exposure to a single 3 hr heat spike of 35°C was sufficient to increase the susceptibility of 'Amelia' but did not affect Rutgers. Despite this change in resistance, Mi-1 gene expression was not affected by heat treatment, or nematode infection. The heat-induced breakdown of Mi-1 resistance in 'Amelia' did recover with time regardless of additional heat exposures and M. incognita infection. These findings would aid in the development of management strategies to protect the tomato crop at times of heightened M. incognita susceptibility. PMID:26170475

  20. Mi-1-Mediated Nematode Resistance in Tomatoes is Broken by Short-Term Heat Stress but Recovers Over Time

    PubMed Central

    Marques de Carvalho, Luciana; Benda, Nicole D.; Vaughan, Martha M.; Cabrera, Ana R.; Hung, Kaddie; Cox, Thomas; Abdo, Zaid; Allen, L. Hartwell; Teal, Peter E. A.

    2015-01-01

    Tomato (Solanum lycopersicum L.) is among the most valuable agricultural products, but Meloidogyne spp. (root-knot nematode) infestations result in serious crop losses. In tomato, resistance to root-knot nematodes is controlled by the gene Mi-1, but heat stress interferes with Mi-1-associated resistance. Inconsistent results in published field and greenhouse experiments led us to test the effect of short-term midday heat stress on tomato susceptibility to Meloidogyne incognita race 1. Under controlled day/night temperatures of 25°C/21°C, ‘Amelia’, which was verified as possessing the Mi-1 gene, was deemed resistant (4.1 ± 0.4 galls/plant) and Rutgers, which does not possess the Mi-1 gene, was susceptible (132 ± 9.9 galls/plant) to M. incognita infection. Exposure to a single 3 hr heat spike of 35°C was sufficient to increase the susceptibility of ‘Amelia’ but did not affect Rutgers. Despite this change in resistance, Mi-1 gene expression was not affected by heat treatment, or nematode infection. The heat-induced breakdown of Mi-1 resistance in ‘Amelia’ did recover with time regardless of additional heat exposures and M. incognita infection. These findings would aid in the development of management strategies to protect the tomato crop at times of heightened M. incognita susceptibility. PMID:26170475

  1. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and

  2. Ion Dynamics and ICRH Heating in the Exhaust Plasma of The VASIMR Engine

    NASA Astrophysics Data System (ADS)

    Bering, E. A., III; Chang-Díaz, F. R.; Squire, J. P.; Jacobson, V.; Ilin, A.; Winter, D. S.; Bengtson, R. D.; Gibson, J. N.; Glober, T. W.; Brukardt, M.; Rodriguez, W.

    2002-01-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power, radio frequency-driven magnetoplasma rocket, capable of Isp/thrust modulation at constant power. The plasma is produced by an integrated helicon discharge. However, the bulk of the plasma energy is added in a separate downstream stage by ion cyclotron resonance heating (ICRH.) Axial momentum is obtained by the adiabatic expansion of the plasma in a magnetic nozzle. Exhaust variation in the VASIMR is primarily achieved by the selective partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. A laboratory simulation of the 25 kW proof of concept VASIMIR engine has been under development and test at NASA-JSC for several years. Experimentally, high density, stable plasma discharges have been generated in Helium, Hydrogen, Deuterium, Argon and Xenon. This paper will review the plasma diagnostic results obtained in 2000-2002 in a continuing series of performance optimization and design development studies. Available plasma diagnostics include a triple probe, a Mach probe, a bolometer, a television monitor, an H- photometer, a spectrometer, neutral gas pressure and flow measurements, several gridded energy analyzers (retarding potential analyzer or RPA), a surface recombination probe system, an emission probe, a directional, steerable RPA and other diagnostics. Reciprocating Langmuir and Mach probes are the primary plasma diagnostics. The Langmuir probe measures electron density and temperature profiles while the Mach probe measures flow profiles. Together this gives total plasma particle flux. An array of thermocouples provides a temperature map of the system. Ion flow velocities are estimated through three techniques: Mach probes, retarding potential analyzer, and spectroscopic measurements. During 2000-2002, we have performed a series of experiments on the VASIMR apparatus with several objectives, to explore the parameter space that

  3. High work output combined with high ambient temperatures caused heat exhaustion in a wildland firefighter despite high fluid intake.

    PubMed

    Cuddy, John S; Ruby, Brent C

    2011-06-01

    The purpose of this case study is to examine the physiological/behavioral factors leading up to heat exhaustion in a male wildland firefighter during wildland fire suppression. The participant (24 years old, 173 cm, 70 kg, and 3 years firefighting experience) experienced heat exhaustion following 7 hours of high ambient temperatures and arduous work on the fire line during the month of August. At the time of the heat-related incident (HRI), core temperature was 40.1 °C (104.2 °F) and skin temperature was 34.4 °C (93.9 °F). His work output averaged 1067 counts·min(-1) (arbitrary units for measuring activity) for the 7 hours prior to the HRI, a very high rate of work over an extended time period during wildfire suppression. In the 2.5 hours leading up to the heat incident, he was exposed to a mean ambient temperature of 44.6 °C (112.3 °F), with a maximum temperature of 59.7 °C (139.5 °F). He consumed an average of 840 mL·h(-1) in the 7 hours leading up to the incident and took an average of 24 ± 11 drinks·h(-1) (total of 170 drinks). The combined effects of a high work rate and high ambient temperatures resulted in an elevated core temperature and a higher volume and frequency of drinking than typically seen in this population, ultimately ending in heat exhaustion and removal from the fire line. The data demonstrate that heat-related incidents can occur even with aggressive fluid intake during wildland fire suppression. PMID:21664560

  4. Temperature, Pressure, and Infrared Image Survey of an Axisymmetric Heated Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Nelson, Edward L.; Mahan, J. Robert; Birckelbaw, Larry D.; Turk, Jeffrey A.; Wardwell, Douglas A.; Hange, Craig E.

    1996-01-01

    The focus of this research is to numerically predict an infrared image of a jet engine exhaust plume, given field variables such as temperature, pressure, and exhaust plume constituents as a function of spatial position within the plume, and to compare this predicted image directly with measured data. This work is motivated by the need to validate computational fluid dynamic (CFD) codes through infrared imaging. The technique of reducing the three-dimensional field variable domain to a two-dimensional infrared image invokes the use of an inverse Monte Carlo ray trace algorithm and an infrared band model for exhaust gases. This report describes an experiment in which the above-mentioned field variables were carefully measured. Results from this experiment, namely tables of measured temperature and pressure data, as well as measured infrared images, are given. The inverse Monte Carlo ray trace technique is described. Finally, experimentally obtained infrared images are directly compared to infrared images predicted from the measured field variables.

  5. Circulating leukocyte heat shock protein 70 (HSP70) and oxidative stress markers in rats after a bout of exhaustive exercise.

    PubMed

    Antunes-Neto, J M F; Toyama, M H; Carneiro, E M; Boschero, A C; Pereira-da-Silva, L; Macedo, D V

    2006-06-01

    A novel method to measure oxidative stress resulting from exhaustive exercise in rats is presented. In this new procedure we evaluated the erythrocyte antioxidant enzymes, catalase (CAT) and glutathione reductase (GR), the plasma oxidative attack markers, reactive carbonyl derivatives (RCD) and thiobarbituric reactive substances (TBARS). Muscular tissue damage was evaluated by monitoring plasma creatine kinase (CK) and plasma taurine (Tau) concentrations. Also, we monitored total sulphydryl groups (TSG) and uric acid (UA), and the level of the 70 kDa heat shock protein (HSP70) in leukocytes as a marker of oxidative stress. In the study we found a correspondence between erythrocyte CAT and GR activities and leukocyte HSP70 levels, principally 3 h after the acute exercise, and this suggested an integrated mechanism of antioxidant defense. The increase in levels of plasma Tau was coincident with the increasing plasma levels of CK and TBARS, principally after two hours of exercise. Thus tissue damage occurred before the expression of any anti-oxidant system markers and the monitoring of Tau, CK or TBARS may be important for the estimation of oxidative stress during exhaustive exercise. Furthermore, the integrated analyses could be of value in a clinical setting to quantify the extent of oxidative stress risk and reduce the need to perform muscle biopsies as a tool of clinical evaluation. PMID:16895834

  6. Evaluation of Energy Saving Characteristics of a High-Efficient Cogeneration System Utilizing Gas Engine Exhaust Heat

    NASA Astrophysics Data System (ADS)

    Pak, Pyong Sik

    A high efficiency cogeneration system (CGS) utilizing high temperature exhaust gas from a gas engine is proposed. In the proposed CGS, saturated steam produced in the gas engine is superheated with a super heater utilizing regenerative burner and used to drive a steam turbine generator. The heat energy is supplied by extracting steam from the steam turbine and turbine outlet low-temperature steam. Both of the energy saving characteristics of the proposed CGS and a CGS constructed by using the original gas engine (GE-CGS) were investigated and compared, by taking a case where energy for office buildings was supplied by the conventional energy systems. It was shown that the proposed CGS has energy saving rate of 24.5%, higher than 1.83 times, compared with that of the original GE-CGS.

  7. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    NASA Technical Reports Server (NTRS)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  8. A Preliminary Study of the Prevention of Ice on Aircraft by the Use of Engine-exhaust Heat

    NASA Technical Reports Server (NTRS)

    Rodert, Lewis A

    1939-01-01

    An investigation was made in the N.A.C.A. ice tunnel at air temperatures from 20 degrees to 28 degrees Fahrenheit and at a velocity of 80 miles per hour to determine whether ice formations on a model wing could be prevented by the use of the heat from the engine-exhaust gas. Various spanwise duct systems were tested in a 6-foot-chord N.A.C.A. 23012 wing model. The formation of ice over the entire wing chord was prevented by the direct heating of the forward 10 percent of the wing by hot air, which was passed through leading-edge ducts. Under dry conditions, enough heat to maintain the temperature of the forward 10 percent of the wing at about 200 degrees Fahrenheit above that of the ambient air was required for the prevention of ice formation. The air temperature in the ducts that was necessary to produce these skin temperatures varied from 360 degrees to 834 degrees Fahrenheit; the corresponding air velocities in the duct were 152 and 45 feet per second. Ice formations at the leading edge were locally prevented by air that passed over the interior of the wing surface at a velocity of 30 feet per second and a temperature of 122 degrees Fahrenheit.

  9. Evaluation of selective direct plating media for their suitability to recover uninjured, heat-injured, and freeze-injured Listeria monocytogenes from foods.

    PubMed

    Golden, D A; Beuchat, L R; Brackett, R E

    1988-06-01

    Six direct plating media were evaluated for their suitability to recover uninjured, heat-injured, and freeze-injured cells of four strains of Listeria monocytogenes from four foods. Cells were inoculated into foods to achieve ca. 10(2) to 10(3), 10(4) to 10(5), or 10(5) to 10(6) viable cells per ml or g (low, medium, and high populations, respectively). No appreciable differences in recovery of the four test strains within a treatment were observed. Generally, recovery on all test media was similar and not markedly affected by freeze treatment. Modified Despierres agar and modified McBride Listeria agar yielded poorer recovery of heat-injured cells than did McBride Listeria agar and gum base-nalidixic acid-tryptone soya agar. Overall, gum base-nalidixic acid-tryptone soya agar was best for recovering L. monocytogenes from pasteurized milk and chocolate ice cream mix. Enumeration was complicated by the growth of background microflora present in Brie cheese and cabbage, especially at the low inoculum. Dominguez Rodriguez isolation agar was superior for recovering L. monocytogenes from Brie cheese, whereas modified Despierres agar was best for recovering the organism from cabbage. Direct plating procedures can successfully be utilized for recovering healthy and injured L. monocytogenes from foods containing low populations of background microflora. PMID:3137864

  10. Prognosis of adult men with heat exhaustion with regard to postural stability and neurobehavioral effects: a 6-month follow-up study.

    PubMed

    Chia, Sin-Eng; Teo, Kwang-Joo

    2003-01-01

    The medical complications of heat disorders, including hematological, cardiovascular and renal damage, have been well documented. However, very little has been written on its neurological complications. In an earlier study, we reported that men with heat exhaustion, studied 2 weeks after the acute episode, had significantly more symptoms of neurasthenia, poorer performance in short-term memory and slower reaction time. The cases (as a group) had significantly poorer postural stability. The objective of this study was to assess the prognosis of men with heat exhaustion with regard to postural stability and neurobehavioral functions 12, 3 and 6 months after the acute episode. The study is prospective in design and spans a 2-year period. All soldiers who were diagnosed to have heat exhaustion (cases) from 1 March 1998 were included in the study. For each case, a healthy soldier (matched for age, ethnicity, years of education and military vocation) was recruited to serve as control. Each subject had a neurobehavioral assessment by using the Swedish Performance Evaluation System (SPES), a computerized test battery. The postural stability of the subjects was assessed using a computerized postural sway system. Each subject took the test 2 weeks after the acute episode and repeated the test 3 and 6 months later for duration of 2 years. We report here the findings of 21 heat exhaustion cases and 18 controls, which completed all the three tests (i.e. done 2 weeks after the acute episode and 3 and 6 months later). Significant differences were only detected in some of the neurobehavioral and neurophysiological parameters between the cases and the control for first two tests but not the third test. The prognosis of adult with heat exhaustion is good. There were no significant differences in neurobehavioral tests and postural stability among the cases and controls 612 months after the episode. PMID:12798967

  11. Power recovery from turbine and gas engine exhausts

    SciTech Connect

    Lawson, G.L.

    1985-02-01

    Due to the energy consciousness of the United States and to the ever increasing cost of engine fuels, power recovery from turbine and gas engine exhausts has come of age. The addition of waste recovery systems to these exhausts increases the thermal efficiencies of typical systems from the range of 21% to 39% up to the range of 28% to 49%. The new ''expander'' type power recovery system includes a waste heat recovery exchanger which will transfer heat from the engine exhaust into any of numerous thermal fluids. The recovered heat energy now in the thermal fluid medium can, in turn, be used to produce power for any desired application (i.e. gas compression, process refrigeration, electrical power generation, etc.). The particular systems put forth in this paper concentrate on the use of expansion fluids (other than steam) driving ''expanders'' as motive devices.

  12. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    NASA Technical Reports Server (NTRS)

    Khalifa, H. E.

    1983-01-01

    An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).

  13. On the Scaling of Small, Heat Simulated Jet Noise Measurements to Moderate Size Exhaust Jets

    NASA Technical Reports Server (NTRS)

    McLaughlin, Dennis K.; Bridges, James; Kuo, Ching-Wen

    2010-01-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions, depending on the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center- in partnership with GE Aviation is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to validate methodology for using data obtained from small and moderate scale experiments to reliably predict the most important components of full scale engine noise. The experimental results presented show reasonable agreement between small scale and moderate scale jet acoustic data, as well as between heated jets and heat-simulated ones. Unresolved issues however are identified that are currently receiving our attention, in particular the effect of the small bypass ratio airflow. Future activities will identify and test promising noise reduction techniques in an effort to predict how well such concepts will work with full scale engines in flight conditions.

  14. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Doyle, Edward F.; DiBella, Francis A.

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  15. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  16. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    SciTech Connect

    Khalifa, H.E.

    1983-12-01

    This report presents an evaluation of Brayton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. It is also shown that, if installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or $170/Bhp. Technical and economic barriers that would hinder the commercial introduction of bottoming systems were identified.

  17. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 25.1123 Section 25.1123... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant and auxiliary power unit installations, the following apply: (a) Exhaust piping must be heat...

  18. Mi-1-mediated nematode resistance in tomatoes is broken by short-term heat stress but recovers over time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In tomato (Solanum lycopersicum Mill.), the only available genomic resource of resistance to root-knot nematodes (RKN; Meloidogyne incognita, M. javanica and M. arenaria), which are considered among the most devastating crop pests worldwide, is a single dominant gene termed Mi-1. Heat stress is thou...

  19. Development of an evaporator for industrial heat pumps capable of recovering heat from contaminated sources. Phase 1. Final report, October 1, 1984-July 31, 1985

    SciTech Connect

    Doyle, E.F.; Balsavich, J.

    1985-08-01

    Industry regularly loses large amounts of potentially recoverable energy by venting or condensing steam that cannot be used in the plant because it is too low in temperature and too contaminated for reuse. A heat pump could raise the temperature of this energy to a usable level if a suitable heat exchanger were available for extracting the heat from the contaminated steam. The objective of this program is to develop a heat exchanger uniquely configured for this purpose. Its availability would greatly increase the number of viable applications for industrial heat pumps. The heat exchanger under development uses falling-film heat transfer on both sides of vertical tubes to generate clean vapor by condensing contaminated steam. This approach provides a self-cleaning action and makes maximum use of the available temperature difference between the condensing contaminated steam and the boiling heat pump fluid. This report describes the work performed under Phase I of the program in which a laboratory prototype heat exchanger was designed, built and tested, and an economic evaluation of the concept was made.

  20. Balanced-line rf electrode system for use in rf ground heating to recover oil from oil shale

    SciTech Connect

    Edelstein, W.A.; Vinegar, H.J.; Chiafu Hsu; Mueller, O.M.

    1993-08-17

    A system is described for extracting oil in-situ from a hydrocarbon bearing layer below a surface layer comprising: (a) a master oscillator for producing a fundamental frequency; (b) a plurality of heating sources, each comprising: radiofrequency (RF) producing means for providing a radiofrequency excitation signal based upon the fundamental frequency, a coaxial line coupled to the RF producing means for passing the radiofrequency signal through said surface layer without substantial loss of power; a conductive electrode located in the hydrocarbon bearing layer having a length related to the radiofrequency signal and adapted for radiating energy into said hydrocarbon bearing layer for causing shade oil to be extracted; a plurality of matching elements, each matching element coupled, respectively, between each respective electrode and a respective coaxial line for maximizing radiation emitted by the electrodes when they receive the radiofrequency signal; and (c) a plurality of producer wells adapted for collecting the extracted shale oil.

  1. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

  2. The exhausted horse syndrome.

    PubMed

    Foreman, J H

    1998-04-01

    Exhaustion occurs in most equestrian sports, but it is more frequent in events that require sustained endurance work such as endurance racing, three-day eventing, trial riding, and hunting. Exhaustion is also more likely when an unfit, unacclimatized, or unsound horse is exercised. Mechanisms that contribute to exhaustion include heat retention, fluid and electrolyte loss, acid-base imbalance, and intramuscular glycogen depletion. Clinical signs include elevated temperature, pulse, and respiratory rate; depression; anorexia; unwillingness to continue to exercise; dehydration; weakness; stiffness; hypovolemic shock; exertional myopathy; synchronous diaphragmatic flutter; atrial fibrillation; diarrhea; colic; and laminitis. Treatment includes stopping exercise; rapid cooling; rapid large volume intravenous or oral fluid administration; and nonsteroidal anti-inflammatory drug administration. PMID:9561696

  3. Hybrid systems for distributed power generation based on pressurisation and heat recovering of an existing 100 kW molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Grillo, Olivia; Magistri, Loredana; Massardo, Aristide F.

    In this paper, different pressurisation and heat recovering techniques for an existing 100 kW molten carbonate fuel cell developed by Ansaldo fuel cells (formerly Ansaldo Ricerche) such as electrically driven compressors for anode (fuel) and cathode side (air), turbocharger, simple cycle gas turbine and regenerated gas turbine are analysed and discussed. The analysis has been carried out using for the FCS-MCFC stack simulation a model developed by the Thermochemical Power Group of the University of Genoa carefully tested with available experimental design point data. The design point hybrid system configurations have been analysed in detail using the code HS-MCFC based on the cited MCFC stack model and developed using Simulink language [Master Thesis, University of Genoa, 2001]. The different hybrid systems design point performance are presented and discussed in great detail, taking into account efficiency, specific power, costs, feasibility, and the need of modification of the existing FC-MCFC systems. Due to the size of the hybrid systems investigated (100-150 kW) they are very interesting for distributed power generation applications.

  4. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect

    DiBella, F.A. )

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  5. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect

    DiBella, F.A.

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  6. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  7. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  8. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  9. Polycyclic aromatic hydrocarbons (PAHs) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil

    NASA Astrophysics Data System (ADS)

    Vojtisek-Lom, Michal; Czerwinski, Jan; Leníček, Jan; Sekyra, Milan; Topinka, Jan

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) of exhaust emissions were studied in four direct-injection turbocharged four-cylinder diesel engines, with power ratings of 90-136 kW. The engines were operated on biodiesel (B-100), a blend of 30% biodiesel in diesel fuel (B-30), and heated rapeseed oil (RO) in two independent laboratories. Diesel particle filters (DPF) and selective catalytic reduction (SCR) systems were used with B-30 and B-100. Concentrations of individual PAHs sampled in different substrates (quartz, borosilicate fiber and fluorocarbon membrane filters, polyurethane foam) were analyzed using different methods. Benzo[a]pyrene toxic equivalents (BaP TEQ) were calculated using different sets of toxic equivalency factors (TEF). Operation on B-100 without aftertreatment devices, compared to diesel fuel, yielded a mean reduction in PAHs of 73%, consistent across engines and among TEF used. A lower PAH reduction was obtained using B-30. The BaP TEQ reductions on DPF were 91-99% using B-100, for one non-catalyzed DPF, and over 99% in all other cases. The BaP TEQ for heated RO were higher than those for B-100 and one half lower to over twice as high as that of diesel fuel. B-100 and RO samples featured, compared to diesel fuel, a relatively high share of higher molecular weight PAH and a relatively low share of lighter PAHs. Using different sets of TEF or different detection methods did not consistently affect the observed effect of fuels on BaP TEQ. The compilation of multiple tests was helpful for discerning emerging patterns. The collection of milligrams of particulate matter per sample was generally needed for quantification of all individual PAHs.

  10. Recovered Energy Generation Using an Organic Rankine Cycle System

    SciTech Connect

    Leslie, Neil; Sweetser, Richard; Zimron, Ohad; Stovall, Therese K

    2009-01-01

    This paper describes the results of a project demonstrating the technical and economic feasibility of capturing thermal energy from a 35,000 hp (27 MW) gas turbine driving a natural gas pipeline compressor with a Recovered Energy Generation (REG) system to produce 5.5 MW of electricity with no additional fuel and near-zero emissions. The REG is based on a modified Organic Rankine Cycle (ORC). Other major system elements include a waste-heat-to-oil heat exchanger with bypass, oil-to-pentane heat exchanger with preheater, recuperator, condenser, pentane turbine, generator and synchronizing breaker and all power and control systems required for the automatic operation of the REG. When operating at design heat input available from the gas turbine exhaust, the REG system consistently delivered 5.5 MW or more output to the grid at up to 15 percent heat conversion efficiency. The REG system improved the overall energy efficiency by 28%, from 32% simple cycle efficiency to 41% for the combined system. Significant lessons learned from this project are discussed as well as measured performance and economic considerations.

  11. Exhaust emission control apparatus

    SciTech Connect

    Eng, J.W.

    1991-09-24

    This patent describes an exhaust control apparatus for muffling noise and treating odors and pollutants, including solid particulate and gases in the exhaust of an internal combustion engine. It comprises an exhaust inlet tube for receiving the exhaust generated by an internal combustion engine; a cyclone barrier concentrically surrounding the exhaust inlet tube, a ring cavity between the cyclone tube and exhaust inlet tube defining a cyclone chamber in which the exhaust is treated; means for directing the exhaust from the exhaust inlet tube into the cyclone chamber; electrode means having small openings through which the exhaust passes to enter the cyclone chamber, the electrode means generating electrostatic forces which charge the solid particulate in the exhaust, ionize air and generate ozone in the cyclone chamber near the electrode; means for injecting air into the cyclone chamber causing centrifugal flow of the air and the exhausted within the cyclone chamber and increasing a dwell time of the exhaust within the cyclone chamber.

  12. Exhaust gas ignition

    SciTech Connect

    1996-04-01

    This article describes a system developed for rapid light-off of underbody catalysts that has shown potential to meet Euro Stage III emissions targets and to be more cost-effective than some alternatives. Future emissions legislation will require SI engine aftertreatment systems to approach full operating efficiency within the first few seconds after starting to reduce the high total-emissions fraction currently contributed by the cold phase of driving. A reduction of cold-start emissions during Phase 1 (Euro) or Bag 1 (FTP), which in many cases can be as much as 80% of the total for the cycle, has been achieved by electrical heating of the catalytic converter. But electrically heated catalyst (EHC) systems require high currents (100--200 A) to heat the metallic substrate to light-off temperatures over the first 15--20 seconds. Other viable approaches to reducing cold-start emissions include use of a fuel-powered burner upstream of the catalyst. However, as with EHC, the complexity of parts and the introduction of raw fuel into the exhaust system make this device unsatisfactory. Still another approach, an exhaust gas ignition (EGI) system, was first demonstrated in 1991. The operation of a system developed by engineers at Ford Motor Co., Ltd., Cambustion Ltd., and Tickford Ltd. is described here.

  13. Non-fouling heat exchanger preheats plant make-up air: saves $13,000 in first year

    SciTech Connect

    Goss, J.

    1980-08-01

    Air exchanges to maintain a comfortable working environment at Gates Rubber Company in Denver, Colorado, involves general exhaust from V-belt vulcanization lines. A ventilation system without heat recovery or make-up air heaters had been in use, but the goal of the company was to install a sytem that could handle normal plant exhaust air without filtration and involve little or no mechanization. A counter-flow, air-to-air heat exchanger having no moving parts has been used successfully to recover heat from many dirty industrial process exhausts. Heat recovery efficiencies range from 50 to 80%. Four heat exchangers, arranged in parallel, were installed in one of the 30,000 scfm exhaust/make-up air systems at the Denver plant and savings amounted to $13,000 the first year.

  14. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  15. Recovering lead from batteries

    NASA Astrophysics Data System (ADS)

    David Prengaman, R.

    1995-01-01

    Over the past 20 years, a significant number of processes have been developed to recover lead from scrap batteries. These processes recover lead via hydrometallurgical processing of the paste component of the battery followed by electrowinning. A number of pilot plant operations have been conducted, but thus far none of the processes have become operational.

  16. Brayton-Cycle Heat Recovery System Characterization Program. Glass-furnace facility test plan

    SciTech Connect

    Not Available

    1980-08-29

    The test plan for development of a system to recover waste heat and produce electricity and preheated combustion air from the exhaust gases of an industrial glass furnace is described. The approach is to use a subatmospheric turbocompressor in a Brayton-cycle system. The operational furnace test requirements, the operational furnace environment, and the facility design approach are discussed. (MCW)

  17. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    NASA Astrophysics Data System (ADS)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  18. Effects of jet exhaust gas properties on exhaust simulation and afterbody drag

    NASA Technical Reports Server (NTRS)

    Compton, W. B., III

    1975-01-01

    The effect of varying the jet exhaust's ratio of specific heats, gas constant, and temperature on airplane afterbody drag was investigated. Jet exhaust simulation parameters were evaluated also. Subsonic and transonic tests were made using a single nacelle model with afterbodies having boattail angles of 10 deg and 20 deg. Besides air, three other jet exhaust gases were investigated. The ratios of specific heats, gas constants, and total temperatures of the four exhaust gases ranged from 1.40 to 1.26, 287 to 376 J/kg-K, and 300 to 1013 K, respectively. For steep boattail angles, and transonic speeds and typical turbojet pressure ratios, the current data indicate that the use of air to simulate a dry turbojet exhaust can result in an overprediction of afterbody drag as high as 17 percent of the dry turbojet value.

  19. Practical demonstration of heat pumps for utilization of animal-generated heat

    NASA Astrophysics Data System (ADS)

    Amberg, H. U.

    1980-09-01

    Airconditioning of pigpens to eliminate effects of temperature extremes is reported. A stall air conditioner was installed as heat pump in a pigpen for final fattening. The heat, recovered from the exhaust air, is supplied to the outside air so that heated fresh air is blown into the stall. The test was accomplished on a farm with intensive pig breeding with 120 preliminary fattening places and 240 final fattening places. The stall air conditioner offers the possibility to attenuate the extreme temperature variations during the year.

  20. Exhaust Gas Energy Recovery Technology Applications

    SciTech Connect

    Wagner, Robert M; Szybist, James P

    2014-01-01

    Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

  1. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  2. Exhaust gas purification system for lean burn engine

    DOEpatents

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  3. Diesel exhaust cleaner with burner vortex chamber

    SciTech Connect

    Riddel, J.W.

    1983-05-17

    A diesel engine exhaust cleaner and burner system includes at least one exhaust cleaner member with a filter positioned therein to effect removal of particulates from a stream of exhaust gas delivered thereto via an inlet manifold. A fuel burner supplied with fuel by a fuel nozzle is operatively associated with the inlet manifold to supply the necessary heat to effect incineration of particulates collected on the filter. A cyclone duct providing a vortex chamber therein is operatively positioned downstream of the fuel nozzle and is supplied with sufficient air so as to effect both the complete combustion of the fuel and the controlled incineration of the particulates by increasing the residence time of the fuel in the reaction region within the vortex chamber and also effecting a more uniform distribution of the heat of combustion across the inlet face of the filter for the uniform heating of the particulates thereon to their combustion temperature.

  4. Exhaust gas purification device

    SciTech Connect

    Fujiwara, H.; Hibi, T.; Sayo, S.; Sugiura, Y.; Ueda, K.

    1980-02-19

    The exhaust gas purification device includes an exhaust manifold , a purification cylinder connected with the exhaust manifold through a first honey-comb shaped catalyst, and a second honeycomb shaped catalyst positioned at the rear portion of the purification cylinder. Each catalyst is supported by steel wool rings including coarse and dense portions of steel wool. The purification device further includes a secondary air supplying arrangement.

  5. Protecting Yourself from Heat Stress

    MedlinePlus

    ... Contact NIOSH NIOSH Fast Facts: Protecting Yourself from Heat Stress Language: English Español (Spanish) Kreyol Haitien (Haitian ... as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body ...

  6. THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK

    SciTech Connect

    Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

    2003-08-24

    A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

  7. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  8. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOEpatents

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  9. Immune Exhaustion and Transplantation.

    PubMed

    Sanchez-Fueyo, A; Markmann, J F

    2016-07-01

    Exhaustion of lymphocyte function through chronic exposure to a high load of foreign antigen is well established for chronic viral infection and antitumor immunity and has been found to be associated with a distinct molecular program and characteristic cell surface phenotype. Although exhaustion has most commonly been studied in the context of CD8 viral responses, recent studies indicate that chronic antigen exposure may affect B cells, NK cells and CD4 T cells in a parallel manner. Limited information is available regarding the extent of lymphocyte exhaustion development in the transplant setting and its impact on anti-graft alloreactivity. By analogy to the persistence of a foreign virus, the large mass of alloantigen presented by an allograft in chronic residence could provide an ideal setting for exhausting donor-reactive T cells. The extent of T cell exhaustion occurring with various allografts, the kinetics of its development, whether exhaustion is influenced positively or negatively by different immunosuppressants, and the impact of exhaustion on graft survival and tolerance development remains a fertile area for investigation. Harnessing or encouraging the natural processes of exhaustion may provide a novel means to promote graft survival and transplantation tolerance. PMID:26729653

  10. Duplex tab exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  11. Diesel engine exhaust oxidizer

    SciTech Connect

    Kammel, R.A.

    1992-06-16

    This patent describes a diesel engine exhaust oxidizing device. It comprises: an enclosure having an inlet for receiving diesel engine exhaust, a main flow path through the enclosure to an outlet of the enclosure, a by-ass through the enclosure, and a microprocessor control means.

  12. Exhaust purification apparatus

    SciTech Connect

    Shinzawa, M.; Ushimura, S.

    1987-05-05

    An exhaust purification apparatus is described for use in an internal combustion engine having an exhaust conduit through which exhaust particles are discharged together with exhaust gas to the atmosphere. Included is an outer shell having an inlet connected to the exhaust conduit and an outlet connected to the atmosphere. The outer shell contains a trap element and a regenerative burner located upstream of the trap element, the regenerative burner comprising: a cylindrical hollow member fixed to the liner and extending within a combustion chamber to define an evaporation chamber, a glow plug for igniting the mixture supplied into the evaporated chamber when actuated; and a control unit responsive to a regeneration requirement for actuating the glow plug and supplying an air-fuel mixture into the evaporation chamber through the mixture conduit.

  13. Exhaust gas clean up process

    SciTech Connect

    Walker, R.J.

    1989-04-11

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/. and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ or nitrogen-sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt.

  14. Diesel exhaust filter-incinerator

    SciTech Connect

    Martyniuk, E.T.

    1981-08-11

    A diesel engine exhaust particulate filter-incinerator comprising an enclosed filter panel having particulate deposition surfaces bordered by electrodes of a high voltage power supply. Periodic incineration is accomplished by the collection on the surfaces of particulates in amounts sufficient to conduct sufficient electric current along paths through the particulates to heat them to incineration temperature. Ignition and burn off of particulates may be automatically accomplished by maintaining a suitable voltage across the electrodes at the edges of the collection surfaces to initiate arc-like current flow before the collected particulates reach a level that would plug the filter. Specific embodiments of exemplary filter constructions are disclosed.

  15. Exhaust gas clean up process

    DOEpatents

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  16. Exhaust gas clean up process

    DOEpatents

    Walker, Richard J.

    1989-01-01

    A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.

  17. Recovering plant biodiversity

    PubMed Central

    2011-01-01

    Studying recovering plant biodiversity on Mount Pinatubo may provide valuable insights that improve our understanding of recovery of other ecosystems following disturbances of all types. Ongoing sheet and rill erosion coupled with mass waste events in the unstable pyroclastic flow deposits persist, effectively re-setting primary succession at micro-landscape scale without affecting habitat level diversity. Spatial factors and micro-habitat diversity may exert more control over continued succession as the riparian systems become more deeply dissected and complex. The number of taxa within functional groups and conservation concerns are botanical issues that deserve further research. PMID:22019638

  18. Apparatus for separating and recovering hydrogen isotopes

    DOEpatents

    Heung, Leung K.

    1994-01-01

    An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

  19. Exhaust energy recovery and generator for use with an engine

    SciTech Connect

    Kawamura, H.

    1987-09-22

    An exhaust energy recovery and generator device for a thermally insulative engine having an exhaust passage and an output shaft is described. The device comprises: (a) a first exhaust turbine disposed in the exhaust passage of the thermally insulative engine and rotatable by the energy of an exhaust gas discharged from the thermally insulative engine. The first exhaust turbine has a wheel and a wheel shaft; (b) a generator having a rotor shaft coupled coaxially with the wheel shaft of the first exhaust turbine; (c) a converter operatively connected to the generator for converting alternating current into direct current; (d) an inverter operatively connected to the converter for converting direct current into alternating current; (e) a motor having a rotatable shaft and drivable by the generator via the converter and the inverter; (f) means connecting the rotatable shaft of the motor to the output shaft of the thermally insulative engine. The energy of the exhaust gas recovered by the first exhaust turbine can be fed back to the output shaft of the thermally insulative engine through the generator, the converter, the inverter and the motor; (g) a body of silicon steel fitted over the rotor shaft of the generator; and (h) a stator coil, having a winding, for passing an armature current which is 90/sup 0/ advanced in phase through the winding to generate a no-load induced electromotive force, the generator thereby serving as a reluctance generator.

  20. UNDERSTANDING THE EFFECT OF DYNAMIC FEED CONDITIONS ON WATER RECOVERY FROM IC ENGINE EXHAUST BY CAPILLARY CONDENSATION WITH INORGANIC MEMBRANES

    SciTech Connect

    DeBusk, Melanie Moses; Bischoff, Brian L; Hunter, James A; Klett, James William; Nafziger, Eric J; Daw, C Stuart

    2014-01-01

    An inorganic membrane water recovery concept is evaluated as a method to recovering water from the exhaust of an internal combustion engine. Integrating the system on-board a vehicle would create a self-sustaining water supply that would make engine water injection technologies consumer transparent . In laboratory experiments, water recovery from humidified air was measured to evaluate how different operating parameters affect the membrane system s efficiency. The observed impact of transmembrane pressure and gas flow rate suggest that gas residence time is more important than water flux through the membrane. Heat transfer modeling suggests that increasing membrane length can be used to improve efficiency and allow greater flow per membrane, an important parameter for practical applications where space is limited. The membrane water recovery concept was also experimentally validated by extracting water from diesel exhaust coming from a stationary generator. The insight afforded by these studies provides a basis for developing improved membrane designs that balance both efficiency and cost.

  1. Exhaust gas afterburner

    SciTech Connect

    Hudson, S.J. Jr.

    1986-12-23

    This patent describes an exhaust gas afterburner device adapted for installation between an exhaust manifold and a corresponding portion of the engine block of an internal combustion engine. The device comprises: a spacer sandwiched between portions of two sheet metal members forming a gasket section of the device, the gasket section surrounding at least one exhaust gas port, a plenum section formed by remaining portions of the members, and wall sections defining passageways extending from the interior of the plenum section to the port and an air supply inlet on the plenum.

  2. 14 CFR 27.1123 - Exhaust piping.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Exhaust piping. 27.1123 Section 27.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be heat and corrosion resistant, and must have provisions to prevent failure due to expansion...

  3. 14 CFR 29.1123 - Exhaust piping.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Exhaust piping. 29.1123 Section 29.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... piping must be heat and corrosion resistant, and must have provisions to prevent failure due to...

  4. 14 CFR 27.1123 - Exhaust piping.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Exhaust piping. 27.1123 Section 27.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be heat and corrosion resistant, and must have provisions to prevent failure due to expansion...

  5. 14 CFR 27.1123 - Exhaust piping.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Exhaust piping. 27.1123 Section 27.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be heat and corrosion resistant, and must have provisions to prevent failure due to expansion...

  6. 14 CFR 27.1123 - Exhaust piping.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Exhaust piping. 27.1123 Section 27.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... must be heat and corrosion resistant, and must have provisions to prevent failure due to expansion...

  7. 14 CFR 29.1123 - Exhaust piping.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Exhaust piping. 29.1123 Section 29.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... piping must be heat and corrosion resistant, and must have provisions to prevent failure due to...

  8. 14 CFR 29.1123 - Exhaust piping.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Exhaust piping. 29.1123 Section 29.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... piping must be heat and corrosion resistant, and must have provisions to prevent failure due to...

  9. 14 CFR 29.1123 - Exhaust piping.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Exhaust piping. 29.1123 Section 29.1123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... piping must be heat and corrosion resistant, and must have provisions to prevent failure due to...

  10. Shielded regeneration heating element for a particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-01-04

    An exhaust system includes a particulate filter (PF) that is disposed downstream from an engine. The PF filters particulates within an exhaust from the engine. A heating element heats particulate matter in the PF. A catalyst substrate or a flow converter is disposed upstream from said heating element. The catalyst substrate oxidizes the exhaust prior to reception by the heating element. The flow converter converts turbulent exhaust flow to laminar exhaust flow prior to reception by the heating element.

  11. Open-cycle vapor compression heat pump

    NASA Astrophysics Data System (ADS)

    Sakhuja, R.; Becker, F. E.

    1981-05-01

    Recovery and upgrading of low-grade steam or waste heat sources offers a great potential of energy conservation. Thermo Electron is developing an open cycle vapor compression steam heat pump to meet this objective. The system utilizes excess low-pressure steam or that produced from an industrial excess heat source with a waste heat boiler and compresses this steam to the desired pressure level for process use. The compressor is driven by a prime mover such as a gas turbine, gas engine, etc. The prime mover exhaust heat also can be recovered to generate additional process steam. The fuel consumption of this system can be as low as 30 to 50 percent in comparison to a direct-fired boiler over the expected range of process conditions. Simple payback periods as low as one year can be achieved.

  12. METHOD OF RECOVERING THORIUM

    DOEpatents

    Fisher, R.W.

    1957-12-10

    A method is described for recovering thorium from impurities found in a slag containing thorium and said impurities, comprising leaching a composition containing thorium with water, removing the water solution, treating the residue with hydrochloric acid, separating the solution from the insoluble residue, adjusting its acidity to 1 to 3 normal, adding oxalic acid, and thereafter separating the precipitated thorium oxalate digesting the residue from the hydrochloric acid treatment with a strong solution of sodium hydroxide at an elevated temperature, removing said solution and treating the insoluble residue with hydrochloric acid, separating the solution from the insoluble residue, adjusting the acidity of this solution to 1 to 3 normal, adding nitric acid to oxidize the iron present, adding oxalic acid and thereafter separating the thorium oxalate thus precipitated.

  13. PROCESS FOR RECOVERING URANIUM

    DOEpatents

    MacWood, G.E.; Wilder, C.D.; Altman, D.

    1959-03-24

    A process is described for recovering uranium from deposits on stainless steel liner surfaces of calutrons. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickels copper, and iron is treated with excess of ammonium hydroxide to precipitatc the uranium, irons and chromium and convert thc nickel and copper to soluble ammonia complexions. The precipitated material is removed, dried, and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/sub 4/, UCl/sub 5/, FeCl/ sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temprrature of about 300 to400 deg C.

  14. Process for recovering uranium

    DOEpatents

    MacWood, G. E.; Wilder, C. D.; Altman, D.

    1959-03-24

    A process useful in recovering uranium from deposits on stainless steel liner surfaces of calutrons is presented. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickel, copper, and iron is treated with an excess of ammonium hydroxide to precipitnte the uranium, iron, and chromium and convert the nickel and copper to soluble ammonio complexions. The precipitated material is removed, dried and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/ sub 4/, UCl/sub 5/, FeCl/sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temperature of about 500 to 400 deg C.

  15. Atmospheric scavenging exhaust

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.; Purcell, R. Y.

    1977-01-01

    Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. The airborne HCl concentration varied from 0.2 to 10.0 ppm and the raindrop sizes tested included 0.55 mm, 1.1 mm, and 3.0 mm. Two chambers were used to conduct the experiments. A large, rigid walled, spherical chamber stored the exhaust constituents while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique employed. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity.

  16. 40 CFR 1065.330 - Exhaust-flow calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Flow-Related Measurements § 1065.330... temperatures by incorporating a heat exchanger between the calibration meter and the exhaust-flow meter. If...

  17. 40 CFR 1065.330 - Exhaust-flow calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Flow-Related Measurements § 1065.330... temperatures by incorporating a heat exchanger between the calibration meter and the exhaust-flow meter. If...

  18. 102. Giullotine type gate (inclosed position to regulate furnace exhaust ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Giullotine type gate (inclosed position to regulate furnace exhaust gases to stoves during heating cycle. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  19. Shape memory alloy actuated adaptive exhaust nozzle for jet engine

    NASA Technical Reports Server (NTRS)

    Song, Gangbing (Inventor); Ma, Ning (Inventor)

    2009-01-01

    The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.

  20. Creep Behavior at 1273 K (1000 °C) in Nb-Bearing Austenitic Heat-Resistant Cast Steels Developed for Exhaust Component Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang

    2016-05-01

    ABSTRACT A series of Nb-bearing austenitic heat-resistant cast steels with variations of N/C ratios were investigated, and the morphological change of Nb(C,N) from faceted blocks, mixed flake-blocks to "Chinese-script" was observed as N/C ratios decreased. The creep behavior of these alloys was studied at 1273 K (1000 °C), and the longest creep life and lowest creep rate occurred in model alloys with script Nb(C,N). Residual δ-ferrites and (Cr,Fe)23C6 were adverse to creep properties. This work indicates that the control of N/C ratio is required for the as-cast microstructural strengthening.

  1. Creep Behavior at 1273 K (1000 °C) in Nb-Bearing Austenitic Heat-Resistant Cast Steels Developed for Exhaust Component Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang

    2016-07-01

    A series of Nb-bearing austenitic heat-resistant cast steels with variations of N/C ratios were investigated, and the morphological change of Nb(C,N) from faceted blocks, mixed flake-blocks to "Chinese-script" was observed as N/C ratios decreased. The creep behavior of these alloys was studied at 1273 K (1000 °C), and the longest creep life and lowest creep rate occurred in model alloys with script Nb(C,N). Residual δ-ferrites and (Cr,Fe)23C6 were adverse to creep properties. This work indicates that the control of N/C ratio is required for the as-cast microstructural strengthening.

  2. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  3. Drying oven with heat reclamation and air pollution control system

    SciTech Connect

    Jamaluddin, A.A.

    1980-12-23

    A system of drying ovens is disclosed with associated means for heat reclamation and air pollution control. The ovens are primarily for drying or baking paint or other coatings on pipes or the like where the emissions are primarily hydrocarbons. In this system of ovens, hydrocarbon fumes are concentrated at the ends of the oven. Solvent laden fumes are, therefore, collected where the concentration is the highest. The exhaust from the oven is located at the central portion and leads to a combustion/incineration chamber where it is exhausted to atmosphere after incineration and a major part of the heat is recovered and recirculated to the oven. In a sequence of ovens, the exhaust from one oven is circulated to the next at a high linear velocity, but low volume (At 25% lel) and heated to a high temperature (1400/sup 0/F.) by in-line incineration of the fumes. The low volume, high velocity, high temperature gasses are mixed with a high volume, low velocity, low temperature exhaust collected from the end of that oven. This incineration and mixing and recirculation of gasses is repeated in each succeeding oven and no gasses are exhausted to atmosphere until the last oven. In the last oven, in sequence, a burner is provided to incinerate fumes recirculated at one end of the oven and the exhaust goes to atmosphere through an incinerator/heat exchanger where the reclaimed heat is supplied to outside air being fed to support combustion in the incinerator at one end of the last oven.

  4. Thermodynamic and heat transfer analysis of heat recovery from engine test cell by Organic Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Shokati, Naser; Mohammadkhani, Farzad; Farrokhi, Navid; Ranjbar, Faramarz

    2014-12-01

    During manufacture of engines, evaluation of engine performance is essential. This is accomplished in test cells. During the test, a significant portion of heat energy released by the fuel is wasted. In this study, in order to recover these heat losses, Organic Rankine Cycle (ORC) is recommended. The study has been conducted assuming the diesel oil to be composed of a single hydrocarbon such as C12H26. The composition of exhaust gases (products of combustion) have been computed (and not determined experimentally) from the stoichiometric equation representing the combustion reaction. The test cell heat losses are recovered in three separate heat exchangers (preheater, evaporator and superheater). These heat exchangers are separately designed, and the whole system is analyzed from energy and exergy viewpoints. Finally, a parametric study is performed to investigate the effect of different variables on the system performance characteristics such as the ORC net power, heat exchangers effectiveness, the first law efficiency, exergy destruction and heat transfer surfaces. The results of the study show that by utilizing ORC, heat recovery equivalent to 8.85 % of the engine power is possible. The evaporator has the highest exergy destruction rate, while the pump has the lowest among the system components. Heat transfer surfaces are calculated to be 173.6, 58.7, and 11.87 m2 for the preheater, evaporator and superheater, respectively.

  5. Method of controlling temperature of a thermoelectric generator in an exhaust system

    DOEpatents

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  6. Hyperventilation and exhaustion syndrome.

    PubMed

    Ristiniemi, Heli; Perski, Aleksander; Lyskov, Eugene; Emtner, Margareta

    2014-12-01

    Chronic stress is among the most common diagnoses in Sweden, most commonly in the form of exhaustion syndrome (ICD-10 classification - F43.8). The majority of patients with this syndrome also have disturbed breathing (hyperventilation). The aim of this study was to investigate the association between hyperventilation and exhaustion syndrome. Thirty patients with exhaustion syndrome and 14 healthy subjects were evaluated with the Nijmegen Symptom Questionnaire (NQ). The participants completed questionnaires about exhaustion, mental state, sleep disturbance, pain and quality of life. The evaluation was repeated 4 weeks later, after half of the patients and healthy subjects had engaged in a therapy method called 'Grounding', a physical exercise inspired by African dance. The patients reported significantly higher levels of hyperventilation as compared to the healthy subjects. All patients' average score on NQ was 26.57 ± 10.98, while that of the healthy subjects was 15.14 ± 7.89 (t = -3.48, df = 42, p < 0.001). The NQ scores correlated strongly with two measures of exhaustion (Karolinska Exhaustion Scale KES r = 0.772, p < 0.01; Shirom Melamed Burnout Measure SMBM r = 0.565, p < 0.01), mental status [Hospital Anxiety and Depression Score (HADS) depression r = 0.414, p < 0.01; HADS anxiety r = 0.627, p < 0.01], sleep disturbances (r = -0.514, p < 0.01), pain (r = -.370, p < 0.05) and poor well-being (Medical Outcomes Survey Short Form 36 questionnaire- SR Health r = -0.529, p < 0.05). In the logistic regression analysis, the variance in the scores from NQ were explained to a high degree (R(2) = 0.752) by scores in KES and HADS. The brief Grounding training contributed to a near significant reduction in hyperventilation (F = 2.521, p < 0.124) and to significant reductions in exhaustion scores and scores of depression and anxiety. The conclusion is that hyperventilation is common in exhaustion syndrome patients and that it can be reduced by systematic physical therapy

  7. Waste heat recovery system

    SciTech Connect

    Smith, E.M.; Cornelison, R.C.

    1989-10-24

    This patent describes a waste heat recovery system. It comprises a conduit for conveying an exhaust gas stream; a boiler assembly connected to the conduit including a heat recovery steam generator through which the exhaust gas if flowed, and characterized by a high temperature stream tube heat exchanger and, at a downstream location relative thereto, a water-tube boiler; an ammonia gas injector for injecting ammonia gas into the exhaust gas stream and located upstream of the water-tube boiler in juxtaposition to the exhaust gas source; and a low temperature selective catalytic reduction unit located downstream of the water-tube boiler.

  8. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  9. Diesel engine exhaust

    Integrated Risk Information System (IRIS)

    Diesel engine exhaust ; CASRN N.A . Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  10. Hybrid Exhaust Component

    NASA Technical Reports Server (NTRS)

    Pelletier, Gerard D. (Inventor); Logan, Charles P. (Inventor); McEnerney, Bryan William (Inventor); Haynes, Jeffrey D. (Inventor)

    2015-01-01

    An exhaust includes a wall that has a first composite material having a first coefficient of thermal expansion and a second composite material having a second coefficient of the thermal expansion that is less than the first coefficient of thermal expansion.

  11. Method for recovering materials from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  12. Method for recovering metals from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1998-12-01

    A method is described for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800 C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000--1,550 C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification. 2 figs.

  13. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    2000-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  14. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1998-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300.degree.-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000.degree.-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  15. Thermoelectric Technology for Automotive Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory

    2011-03-01

    Essential to the long term success of advanced thermoelectric (TE) technology for practical waste heat recovery is fundamental physics and materials research aimed at discovering and understanding new high performance TE materials. Applications of such new materials require their development into efficient and robust TE modules for incorporation into real devices such as a TE generator (TEG) for automotive exhaust gas waste heat recovery. Our work at GM Global R&D includes a continuing investigation of Skutterudite-based material systems and new classes of compounds that have potential for TE applications. To assess and demonstrate the viability of a TEG using state-of-the-art materials and modules, we have designed, fabricated, installed, and integrated a working prototype TEG to recover exhaust gas waste heat from a production test vehicle. Preliminary results provide important data for the operation and validation of the mechanical, thermal, and electrical systems of the TEG in combination with the various vehicle systems (e.g., exhaust bypass valve and controls, thermocouples, gas and coolant flow and pressure sensors, TE voltage and output power). Recent results from our materials research work and our functioning automotive TEG will be presented. This work is supported by US DOE Grant # DE-FC26-04NT 42278.

  16. Apparatus to recover tritium from tritiated molecules

    DOEpatents

    Swansiger, William A.

    1988-01-01

    An apparatus for recovering tritium from tritiated compounds is provided, including a preheater for heating tritiated water and other co-injected tritiated compounds to temperatures of about 600.degree. C. and a reactor charged with a mixture of uranium and uranium dioxide for receiving the preheated mixture. The reactor vessel is preferably stainless steel of sufficient mass so as to function as a heat sink preventing the reactor side walls from approaching high temperatures. A disposable copper liner extends between the reaction chamber and stainless steel outer vessel to prevent alloying of the uranium with the outer vessel. The uranium dioxide functions as an insulating material and heat sink preventing the reactor side walls from attaining reaction temperatures to thereby minimize tritium permeation rates. The uranium dioxide also functions as a diluent to allow for volumetric expansion of the uranium as it is converted to uranium dioxide.

  17. Partially integrated exhaust manifold

    DOEpatents

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  18. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... as small as practical in order to minimize heat loss from the probe. (2) The probe must have a... sample of the exhaust. (d) Sample transfer line. (1) The maximum inside diameter of the sample line may... the different analyzers. (2) Heat the sample transport system from the engine exhaust pipe to the...

  19. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... as small as practical in order to minimize heat loss from the probe. (2) The probe must have a... sample of the exhaust. (d) Sample transfer line. (1) The maximum inside diameter of the sample line may... the different analyzers. (2) Heat the sample transport system from the engine exhaust pipe to the...

  20. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as small as practical in order to minimize heat loss from the probe. (2) The probe must have a... sample of the exhaust. (d) Sample transfer line. (1) The maximum inside diameter of the sample line may... the different analyzers. (2) Heat the sample transport system from the engine exhaust pipe to the...

  1. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the different analyzers. (2) Heat the sample transport system from the engine exhaust pipe to the HC... as small as practical in order to minimize heat loss from the probe. (2) The probe must have a... which yields a well mixed, homogenous sample of the engine exhaust. The probe must extend...

  2. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  3. Waste-heat research, development, demonstration and commercialization plan: Rankine-cycle bottoming systems. Executive summary

    SciTech Connect

    Not Available

    1980-01-01

    Organic and binary Rankine cycle (ORC) technology as potentially broad applications in recovering and converting waste heat to the useful energy form of electricity. ORC systems are particularly suited for recovering medium-grade exhaust heat (200 to 1000/sup 0/F), a form of waste energy released primarily in the generation of electricity and in industrial processes. Therefore, a Waste Heat Research, Development, Demonstration and Commercialization Plan (RDD and C Plan) has been formulated. The objective of the plan is to achieve significant market penetration of ORC technology by 1985. To accomplish this commercialization objective, the plan is structured around three key strategic elements: demonstration of technically and economically attractive ORC systems that meet the specific needs of commercial waste heat markets; stimulation of the demand for ORC products in these markets; and promotion of the development of a competitive industry to serve ORC markets efficiently. The development of this plan and ERDA's role in its implementation are discussed.

  4. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    DOEpatents

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  5. Removal of sulfur compounds from combustion product exhaust

    DOEpatents

    Cheng, Dah Y.

    1982-01-01

    A method and device are disclosed for removing sulfur containing contaminents from a combustion product exhaust. The removal process is carried out in two stages wherein the combustion product exhaust is dissolved in water, the water being then heated to drive off the sulfur containing contaminents. The sulfur containing gases are then resolublized in a cold water trap to form a concentrated solution which can then be used as a commercial product.

  6. Recirculated and Energy Recovered Linacs

    SciTech Connect

    Geoffrey Krafft

    2003-05-01

    Linacs that are recirculated share many characteristics with ordinary linacs, including the ability to accelerate electron beams from an injector to high energy with relatively little (normalized) emittance growth and the ability to deliver ultrashort bunch duration pulses to users. When such linacs are energy recovered, the additional possibility of accelerating very high average beam current arises. Because this combination of beam properties is not possible from either a conventional linac, or from storage rings where emittance and pulse length are set by the equilibrium between radiation damping and quantum excitation of oscillations about the closed orbit, energy recovered linacs are being considered for an increasing variety of applications. These possibilities extend from high power free-electron lasers and recirculated linac light sources, to electron coolers for high energy colliders or actual electron-ion colliding- beam machines based on an energy recovered linac for the electrons.

  7. Integrated exhaust gas recirculation and charge cooling system

    SciTech Connect

    Wu, Ko-Jen

    2013-12-10

    An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

  8. New industrial heat pump applications to textile production

    SciTech Connect

    1990-12-01

    Application of pinch technology to the US industries in an early screening study has identified potential for heat pumps in several standard processes such as distillation and drying processes. Due to lack process information, the previous study was not able to draw any definite conclusion concerning the heat pump application potential in textile process. However, the commonly encountered drying process in the finishing section of textile plant has been shown to create opportunities for heat pump placement. The site selected for this study is a textile plant in North Carolina and the participating utility is Duke Power Company. The objective of this study is to further identify the energy savings potential through advanced heat pumps and other energy conservation methods developed in the context of pinch technology. The key findings of this study are as follows. The previously unrecoverable waste heat from the exhaust air can now be reclaimed through a spray type air washer and heat pump system. The recommended heat pump system recovers heat from the looper exhaust and use it to preheat the air in the gas tenter. A reduction of 50% of the gas consumption in the tenter can be achieved. The removal of lint from the exhaust air reduced the potential of air pollution. The collected lint can be burned in the boiler as a supplemental fuel source to reduce the fuel consumption in the plant. With fuel price predicted to go up and electricity price remain relatively stable in the future, the heat pump system can payback in less than three years. 15 figs., 4 tabs.

  9. Veterinary Forensic Pathology: Drowning and Bodies Recovered From Water.

    PubMed

    McEwen, B J; Gerdin, J

    2016-09-01

    Determining the cause of death in animals recovered from bodies of water, swimming pools, or other water-containing vessels is challenging. Animals recovered from water may or may not have drowned. The diagnosis of drowning is usually one of exclusion, requiring information from the crime scene, recovery scene, the medical history or reliable witness accounts. While there are characteristic macroscopic and microscopic lesions of drowning, none are specific and are dependent on the volume and tonicity of the drowning medium. Beyond interpreting the postmortem findings, the court may ask pathologists to comment on the behavioral and welfare implications of drowning. This requires an understanding of the drowning process, which is a complex series of sequential, concurrent, and overlapping cardiorespiratory reflexes, electrolyte and blood gas abnormalities, aspiration, physical exhaustion, and breathlessness eventually culminating in death. This review addresses the mechanisms, lesions, and diagnostic issues associated with drowning in nonaquatic companion animals. PMID:26926081

  10. A Method for Reducing the Temperature of Exhaust Manifolds

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1931-01-01

    This report describes tests conducted at the Langley Memorial Aeronautical Laboratory on an "air-inducting" exhaust manifold for aircraft engines. The exhaust gases from each cylinder port are discharged into the throat of an exhaust pipe which has a frontal bellmouth. Cooling air is drawn into the pipe, where it surrounds and mixes with the exhaust gases. Temperatures of the manifold shell and of the exhaust gases were obtained in flight for both a conventional manifold and the air-inducting manifold. The air-inducting manifold was installed on an engine which was placed on a test stand. Different fuels were sprayed on and into the manifold to determine whether the use of this manifold reduced the fire hazard. The flight tests showed reductions in manifold temperatures of several hundred degrees, to values below the ignition point of aviation gasoline. On the test stand when the engine was run at idling speeds fuels sprayed into the manifold ignited. It is believed that at low engine speeds the fuel remained in the manifold long enough to become thoroughly heated, and was then ignited by the exhaust gas which had not mixed with cooling air. The use of the air-inducting exhaust manifold must reduce the fire hazard by virtue of its lower operating temperature, but it is not a completely satisfactory solution of the problem.

  11. Recovering Zinc From Discarded Tires

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Zinc sulfate monohydrate sold at profit. Shredded tire material steeped in three sulfuric acid baths to extract zinc. Final product removed by evaporating part of solution until product crystallizes out. Recovered as zinc sulfate monohydrate and sold as fertilizer or for general use.

  12. Low-grade heat recuperation by the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Verneau, A.

    1980-11-01

    The use of an organic Rankine cycle engine in the conversion of low-grade industrial waste heat into mechanical energy is examined. The principles of a Rankine system using a vapor as the working fluid at operating temperatures from 100 to 500 C are presented, and the advantages of using organic vapors rather than water in the Rankine cycle are pointed out. Attention is then given to the Rankine cycle itself, the organic fluids employed, the multistage low-power turbines and the evaporator, which acts as a countercurrent heat exchanger. Economic aspects of the use of Rankine cycle systems for industrial waste heat recovery are then considered, and examples are presented of the calculation of power recovered and investment costs for the examples of heat recovery from diesel exhaust and from low-pressure steam.

  13. Variable area exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Johnston, E. A. (Inventor)

    1979-01-01

    An exhaust nozzle for a gas turbine engine comprises a number of arcuate flaps pivotally connected to the trailing edge of a cylindrical casing which houses the engine. Seals disposed within the flaps are spring biased and extensible beyond the side edges of the flaps. The seals of adjacent flaps are maintained in sealing engagement with each other when the flaps are adjusted between positions defining minimum nozzle flow area and the cruise position. Extensible, spring biased seals are also disposed within the flaps adjacent to a supporting pylon to thereby engage the pylon in a sealing arrangement. The flaps are hinged to the casing at the central portion of the flaps' leading edges and are connected to actuators at opposed outer portions of the leading edges to thereby maximize the mechanical advantage in the actuation of the flaps.

  14. Aircraft exhaust sulfur emissions

    NASA Astrophysics Data System (ADS)

    Brown, R. C.; Anderson, M. R.; Miake-Lye, R. C.; Kolb, C. E.; Sorokin, A. A.; Buriko, Y. Y.

    The conversion of fuel sulfur to S(VI) (SO3 + H2SO4) in supersonic and subsonic aircraft engines is estimated numerically. Model results indicate between 2% and 10% of the fuel sulfur is emitted as S(VI). It is also shown that, for a high sulfur mass loading, conversion in the turbine is kinetically limited by the level of atomic oxygen. This results in a higher oxidation efficiency at lower sulfur loadings. SO3 is the primary S(VI) oxidation product and calculated H2SO4 emission levels were less than 1% of the total fuel sulfur. This source of S(VI) can exceed the S(VI) source due to gas phase oxidation in the exhaust wake.

  15. Validation of scramjet exhaust simulation technique at Mach 6

    NASA Technical Reports Server (NTRS)

    Hopkins, H. B.; Konopka, W.; Leng, J.

    1979-01-01

    Current design philosophy for hydrogen-fueled, scramjet-powered hypersonic aircraft results in configurations with strong couplings between the engine plume and vehicle aerodynamics. The experimental verification of the scramjet exhaust simulation is described. The scramjet exhaust was reproduced for the Mach 6 flight condition by the detonation tube simulator. The exhaust flow pressure profiles, and to a large extent the heat transfer rate profiles, were then duplicated by cool gas mixtures of Argon and Freon 13B1 or Freon 12. The results of these experiments indicate that a cool gas simulation of the hot scramjet exhaust is a viable simulation technique except for phenomena which are dependent on the wall temperature relative to flow temperature.

  16. Intensification of microalgae drying and oil extraction process by vapor recompression and heat integration.

    PubMed

    Song, Chunfeng; Liu, Qingling; Ji, Na; Deng, Shuai; Zhao, Jun; Kitamura, Yutaka

    2016-05-01

    Reducing energy penalty caused by drying and oil extraction is the most critical challenge in microalgae biodiesel production. In this study, vapor recompression and heat integration are utilized to optimize the performance of wet microalgae drying and oil extraction. In the microalgae drying stage, the hot exhaust stream is recompressed and coupled with wet microalgae to recover the condensate heat. In the oil extraction stage, the exergy rate of recovered solvent is also elevated by compressor and then exchanged heat with feed and bottom stream in the distillation column. Energy and mass balance of the intensified process is investigated and compared with the conventional microalgae drying-extraction process. The simulation results indicated that the total energy consumption of the intensified process can be saved by 52.4% of the conventional route. PMID:26871956

  17. 14 CFR 27.1123 - Exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 27.1123 Section 27.1123... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Exhaust System § 27.1123 Exhaust piping. (a) Exhaust piping... operating temperatures. (b) Exhaust piping must be supported to withstand any vibration and inertia loads...

  18. 14 CFR 29.1123 - Exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 29.1123 Section 29.1123... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Exhaust System § 29.1123 Exhaust piping. (a) Exhaust... by operating temperatures. (b) Exhaust piping must be supported to withstand any vibration...

  19. Treatment of power utilities exhaust

    DOEpatents

    Koermer, Gerald

    2012-05-15

    Provided is a process for treating nitrogen oxide-containing exhaust produced by a stationary combustion source by the catalytic reduction of nitrogen oxide in the presence of a reductant comprising hydrogen, followed by ammonia selective catalytic reduction to further reduce the nitrogen oxide level in the exhaust.

  20. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  1. Statistical study of reconnection exhausts in the solar wind

    SciTech Connect

    Enžl, J.; Přech, L.; Šafránková, J.; Němeček, Z.

    2014-11-20

    Magnetic reconnection is a fundamental process that changes magnetic field configuration and converts a magnetic energy to flow energy and plasma heating. This paper presents a survey of the plasma and magnetic field parameters inside 418 reconnection exhausts identified in the WIND data from 1995-2012. The statistical analysis is oriented on the re-distribution of the magnetic energy released due to reconnection between a plasma acceleration and its heating. The results show that both the portion of the energy deposited into heat as well as the energy spent on the acceleration of the exhaust plasma rise with the magnetic shear angle in accord with the increase of the magnetic flux available for reconnection. The decrease of the normalized exhaust speed with the increasing magnetic shear suggests a decreasing efficiency of the acceleration and/or the increasing efficiency of heating in high-shear events. However, we have found that the already suggested relation between the exhaust speed and temperature enhancement would be rather considered as an upper limit of the plasma heating during reconnection regardless of the shear angle.

  2. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  3. Recovering entanglement by local operations

    SciTech Connect

    D’Arrigo, A.; Lo Franco, R.; Benenti, G.; Paladino, E.; Falci, G.

    2014-11-15

    We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system state by introducing the concept of “hidden” entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We also discuss how hidden entanglement may provide new insights about entanglement revivals in non-Markovian dynamics.

  4. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  5. Recover and purify hydrogen economically

    SciTech Connect

    Mehra, Y.R.

    1987-01-01

    With continued processing of crudes having higher sulfur content and higher carbon-to-hydrogen ratio and stricter environmental regulations requiring lower sulfur content of products such as diesel fuel, the hydrogen demand is expected to grow. Even though a substantial portion of this increased demand will be met by steam reforming of light hydrocarbons and partial oxidation of heavy hydrocarbons, upgrading existing refinery off-gas streams is a viable alternative. Several processes are available for recovering hydrogen from off-gas streams. These processes include cryogenic separation, catalytic purification, pressure swing adsorption and membrane separation. The process selection depends upon many factors, including the desired hydrogen product purity, hydrogen recovery levels, the available pressure drop, pretreatment requirements, the off-gas composition, the impact of impurities remaining in hydrogen product and turndown capability of such a facility. A new selective solvent process which recovers hydrogen from refinery and petrochemical off-gas streams is the subject of this paper. This technology, known as the Mehra Process, was originally developed for recovering hydrocarbons from natural gas streams. However, this technology also offers another alternative to refiners for the recovery of high purity hydrogen from off-gas streams.

  6. Electrically heated DPF start-up strategy

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2012-04-10

    An exhaust system that processes exhaust generated by an engine has a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates in the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates. Heat generated by combustion of particulates in the heater induces combustion of particulates within the DPF. A control module selectively enables current flow to the electrical heater for an initial period of a DPF regeneration cycle, and limits exhaust flow while the electrical heater is heating to a predetermined soot combustion temperature.

  7. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, Steven A.; Creech, Edward T.; Northcutt, Walter G.

    1983-01-01

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  8. Process for recovering niobium from uranium-niobium alloys

    DOEpatents

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1982-09-27

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and form a precipitate of niobium stannide, then separating the precipitate from the acid.

  9. Process for recovering niobium from uranium-niobium alloys

    SciTech Connect

    Wallace, S.A.; Creech, E.T.; Northcutt, W.G.

    1983-11-01

    Niobium is recovered from scrap uranium-niobium alloy by melting the scrap with tin, solidifying the billet thus formed, heating the billet to combine niobium with tin therein, placing the billet in hydrochloric acid to dissolve the uranium and leave an insoluble residue of niobium stannide, then separating the niobium stannide from the acid.

  10. Development of Exhaust Gas Driven Absorption Chiller-Heater

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Micro gas turbines are expected as engines for the distributed co-generation systems, performing power generation and heat recovery. Waste heat from micro gas turbines are discharged in the form of exhaust gas, and it is simple that exhaust gas is directly supplied to an absorption refrigerator. In this paper, we evaluated various single-double effect absorption cycles for exhaust gas driven absorption refrigerators, and clarified that the difference of performance among these cycles are little. We adopted one of these cycles for the prototype machine, and experimented with it to get the partial load characteristics and the effect of cooling water temperature on the performance. Based on the experimental data, we developed as imulation model of the static characteristics, and studied the direction of improvement.

  11. Combined solar and internal load effects on selection of heat reclaim-economizer HVAC systems

    SciTech Connect

    Sauer, H.J. Jr.; Howell, R.H.; Wang, Z. . Dept. of Mechanical Engineering)

    1990-05-01

    The concern for energy conservation has led to the development and use of heat recovery systems which reclaim the building internal heat before it is discarded in the exhaust air. On the other hand, economizer cycles have been widely used for many years in a variety of types of HVAC systems. Economizer cycles are widely accepted as a means to reduce operating time for chilling equipment when cool outside air is available. It has been suggested that heat reclaim systems should not be used in conjunction with an HVAC system which incorporates an economizer cycle because the economizer operation would result in heat being exhausted which might have been recovered. Others suggest that the economizer cycle can be used economically in a heat recovery system if properly controlled to maintain an overall building heat balance. This study looks at potential energy savings of such combined systems with particular emphasis on the effects of the solar load (amount of glass) and the internal load level (lights, people, appliances, etc.). For systems without thermal storage, annual energy savings of up to 60 percent are predicted with the use of heat reclaim systems in conjunction with economizers when the heat reclaim has priority. These results demonstrate the necessity of complete engineering evaluations if proper selection and operation of combined heat recovery and economizer cycles are to be obtained. This paper includes the basic methodology for making such evaluations.

  12. 40 CFR 86.111-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 CFR 1065.275 for the determination of N2O. A heated flame ionization detector (HFID) is used for... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. (B) Copies may be inspected at U.S. EPA, OAR...) Major component description. The exhaust gas analytical system, Figure B94-7, consists of a...

  13. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system for HC, CO and CO2, Figure F90-3, consists of a flame ionization detector (FID) (heated (235°±15... analytical system for methanol consists of a gas chromatograph (GC) equipped with a flame ionization detector...-dinitrophenylhydrazine (DNPH) derivatives using ultraviolet (UV) detection. The exhaust gas analytical system...

  14. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system for HC, CO and CO2, Figure F90-3, consists of a flame ionization detector (FID) (heated (235°±15... analytical system for methanol consists of a gas chromatograph (GC) equipped with a flame ionization detector...-dinitrophenylhydrazine (DNPH) derivatives using ultraviolet (UV) detection. The exhaust gas analytical system...

  15. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system for HC, CO and CO2, Figure F90-3, consists of a flame ionization detector (FID) (heated (235°±15... analytical system for methanol consists of a gas chromatograph (GC) equipped with a flame ionization detector...-dinitrophenylhydrazine (DNPH) derivatives using ultraviolet (UV) detection. The exhaust gas analytical system...

  16. 40 CFR 86.111-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... description. The exhaust gas analytical system for HC, CO, CO2, and NOX, Figure B90-7, consists of a flame.... A heated flame ionization detector (HFID) is used for the continuous determination of hydrocarbons... with a flame ionization detector. The analysis for formaldehyde is performed using high pressure...

  17. 40 CFR 86.111-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 CFR 1065.275 for the determination of N2O. A heated flame ionization detector (HFID) is used for...) Major component description. The exhaust gas analytical system, Figure B94-7, consists of a flame... consists of a gas chromatograph (GC) equipped with a flame ionization detector. The analysis...

  18. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system for HC, CO and CO2, Figure F90-3, consists of a flame ionization detector (FID) (heated (235°±15... analytical system for methanol consists of a gas chromatograph (GC) equipped with a flame ionization detector...-dinitrophenylhydrazine (DNPH) derivatives using ultraviolet (UV) detection. The exhaust gas analytical system...

  19. 40 CFR 86.111-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... description. The exhaust gas analytical system for HC, CO, CO2, and NOX, Figure B90-7, consists of a flame.... A heated flame ionization detector (HFID) is used for the continuous determination of hydrocarbons... with a flame ionization detector. The analysis for formaldehyde is performed using high pressure...

  20. 40 CFR 86.111-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... description. The exhaust gas analytical system for HC, CO, CO2, and NOX, Figure B90-7, consists of a flame.... A heated flame ionization detector (HFID) is used for the continuous determination of hydrocarbons... with a flame ionization detector. The analysis for formaldehyde is performed using high pressure...

  1. 40 CFR 86.111-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... description. The exhaust gas analytical system for HC, CO, CO2, and NOX, Figure B90-7, consists of a flame.... A heated flame ionization detector (HFID) is used for the continuous determination of hydrocarbons... with a flame ionization detector. The analysis for formaldehyde is performed using high pressure...

  2. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system for HC, CO and CO2, Figure F90-3, consists of a flame ionization detector (FID) (heated (235°±15... analytical system for methanol consists of a gas chromatograph (GC) equipped with a flame ionization detector...-dinitrophenylhydrazine (DNPH) derivatives using ultraviolet (UV) detection. The exhaust gas analytical system...

  3. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  4. Fact Program - distributed exhaust nozzle

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Futuristic Airframe Concepts & Technology (FACT): Distributed exhaust nozzle mounted in the Low Speed Aeroacoustic Wind Tunnel. Angle is zero degrees with respect to microphones. Photographed in the Low Speed Aeroacoustic Wind Tunnel, Jet Noise Lab, building 1221-A.

  5. Analysis, Verification, and Application of Equations and Procedures for Design of Exhaust-pipe Shrouds

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H.; Wcislo, Chester R.; Dexter, Howard E.

    1947-01-01

    Investigations were made to develop a simplified method for designing exhaust-pipe shrouds to provide desired or maximum cooling of exhaust installations. Analysis of heat exchange and pressure drop of an adequate exhaust-pipe shroud system requires equations for predicting design temperatures and pressure drop on cooling air side of system. Present experiments derive such equations for usual straight annular exhaust-pipe shroud systems for both parallel flow and counter flow. Equations and methods presented are believed to be applicable under certain conditions to the design of shrouds for tail pipes of jet engines.

  6. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect

    Briggs, Thomas E; Wagner, Robert M; Edwards, Kevin Dean; Curran, Scott; Nafziger, Eric J

    2010-01-01

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  7. Thermodynamic analysis of a new combined cooling, heat and power system driven by solid oxide fuel cell based on ammonia-water mixture

    NASA Astrophysics Data System (ADS)

    Ma, Shaolin; Wang, Jiangfeng; Yan, Zhequan; Dai, Yiping; Lu, Bingheng

    2011-10-01

    Although a solid oxide fuel cell combined with a gas turbine (SOFC-GT) has good performance, the temperature of exhaust from gas turbine is still relatively high. In order to recover the waste heat of exhaust from the SOFC-GT to enhance energy conversion efficiency as well as to reduce the emissions of greenhouse gases and pollutants, in this study a new combined cooling, heat and power (CCHP) system driven by the SOFC is proposed to perform the trigeneration by using ammonia-water mixture to recover the waste heat of exhaust from the SOFC-GT. The CCHP system, whose main fuel is methane, can generate electricity, cooling effect and heat effect simultaneously. The overall system performance has been evaluated by mathematical models and thermodynamic laws. A parametric analysis is also conducted to examine the effects of some key thermodynamic parameters on the system performance. Results indicate that the overall energy conversion efficiency exceeds 80% under the given conditions, and it is also found that the increasing the fuel flow rate can improve overall energy conversion efficiency, even though both the SOFC efficiency and electricity efficiency decrease. Moreover, with an increased compressor pressure ratio, the SOFC efficiency, electricity efficiency and overall energy conversion efficiency all increase. Ammonia concentration and pressure entering ammonia-water turbine can also affect the CCHP system performance.

  8. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust system. 23.1123 Section 23.1123... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means...

  9. Process for recovering actinide values

    DOEpatents

    Horwitz, E. Philip; Mason, George W.

    1980-01-01

    A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.

  10. Nonazeotropic Heat Pump

    NASA Technical Reports Server (NTRS)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  11. Electrically heated particulate filter enhanced ignition strategy

    DOEpatents

    Gonze, Eugene V; Paratore, Jr., Michael J

    2012-10-23

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

  12. Recovering Radioactive Materials with OSRP team

    ScienceCinema

    None

    2010-01-08

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered

  13. Recovering Radioactive Materials with OSRP team

    SciTech Connect

    2008-04-30

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered

  14. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  15. Recovering obliterated laser engraved serial numbers in firearms.

    PubMed

    da Silva, Ladário; dos Santos, Paulo Acioly Marques

    2008-08-01

    An easy procedure for recovering obliterated firearms serial numbers, which are laser engraved is presented in this case report. For these serial numbers, the traditional recovering method using acid etching generally fails, once marking the serial number does not necessarily imply a deep permanent deformation of the crystalline array. The standard required mirror-like finish of the surface commonly can destroy any evidence of the original serial number, i.e., can destroy the heat affected zone (HAZ) of only few micra, if it is still present. It is shown in this report that relief polishing and reflected light stereomicroscopy can, in certain cases, successfully reveal obliterated serial numbers, originally marked by laser. The use of this procedure for recovering this type of obliterated serial number is illustrated and discussed with an example we have dealt with. PMID:18662602

  16. Diesel engine exhaust trap particulate distribution and incineration balancing system

    SciTech Connect

    Mann, G. S.; Parker, W. J.; Tendulkar, D. V.

    1981-09-22

    A diesel particulate trapping and incineration system is disclosed that includes a porous wall monolithic ceramic filter element having dual openended inlet passages separated from adjacent exhaust passages by particulate filtering porous walls. A balancing system for the distribution and incineration of particulates is provided including dual inlet ducts feeding exhaust gases to both ends of the inlet passages and valve means for controlling the amount of inlet gas flow entering the open opposite ends of the inlet ducts. In this way control is obtained of distribution of particulates over the length of the inlet duct walls as well as of the incineration of particulates upon heating of the exhaust gases to incineration temperature.

  17. Diesel particulate filter regeneration via resistive surface heating

    DOEpatents

    Gonze, Eugene V; Ament, Frank

    2013-10-08

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  18. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  19. Automotive Thermoelectric Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  20. An experimental and numerical investigation of air side heat transfer and flow characteristics on finned plate configuration

    NASA Astrophysics Data System (ADS)

    Gu, Lihao; Ling, Xiang; Peng, Hao

    2012-10-01

    In this paper, a new type of finned plate heat exchanger (FPHE) is presented to recover the waste heat from exhaust flue gases. A finned plate configuration causes low pressure drop and it is especially appropriate for heat transfer at the flue gas side. Meanwhile, this paper presents a detailed experimental and numerical study of convection heat transfer and pressure drop of the new structure. Three-dimensional numerical simulation results using the CFD code FLUENT6.3 were compared with experimental data to select the best model. The heat transfer and pressure drop with different geometry pattern was then studied numerically using the selected model. And the velocity field and temperature distribution of air flow in the finned plate channel are presented with different geometry patterns. These results provide insight into improved designs of FPHEs.

  1. Analysis of the ability of water resources to reduce the urban heat island in the Tokyo megalopolis.

    PubMed

    Nakayama, Tadanobu; Hashimoto, Shizuka

    2011-01-01

    Simulation procedure integrated with multi-scale in horizontally regional-urban-point levels and in vertically atmosphere-surface-unsaturated-saturated layers, was newly developed in order to predict the effect of urban geometry and anthropogenic exhaustion on the hydrothermal changes in the atmospheric/land and the interfacial areas of the Japanese megalopolis. The simulated results suggested that the latent heat flux in new water-holding pavement (consisting of porous asphalt and water-holding filler made of steel by-products based on silica compound) has a strong impact on hydrologic cycle and cooling temperature in comparison with the observed heat budget. We evaluated the relationship between the effect of groundwater use as a heat sink to tackle the heat island and the effect of infiltration on the water cycle in the urban area. The result indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle there. PMID:21147508

  2. Performance of Blowdown Turbine Driven by Exhaust Gas of Nine-Cylinder Radial Engine

    NASA Technical Reports Server (NTRS)

    Turner, L Richard; Desmon, Leland G

    1944-01-01

    An investigation was made of an exhaust-gas turbine having four separate nozzle boxes each covering a 90 degree arc of the nozzle diaphragm and each connected to a pair of adjacent cylinders of a nine-cylinder radial engine. This type of turbine has been called a "blowdown" turbine because it recovers the kinetic energy developed in the exhaust stacks during the blowdown period, that is the first part of the exhaust process when the piston of the reciprocating engine is nearly stationary. The purpose of the investigation was to determine whether the blow turbine could develop appreciable power without imposing any large loss in engine power arising from restriction of the engine exhaust by the turbine.

  3. Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings

    DOEpatents

    Williamson, Weldon S.; Gonze, Eugene V.

    2008-12-30

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is integrally formed in an upstream end of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  4. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    PubMed

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. PMID:22561182

  5. BIOMARKERS OF DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    The objective of this project is to examine the detectability of some chemical components of diesel exhaust particles (DEP) in human urine following controlled human diesel exposures (IRB-approved). Ultimately, and upon validation, we propose to apply these components as biomarke...

  6. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide mechanics with an understanding of the construction, operation, malfunction, diagnosis, maintenance, and repair of the fuel and exhaust systems used in automobiles. The course contains five study units covering fundamentals of gasoline engine fuel…

  7. Air admixture to exhaust jets

    NASA Technical Reports Server (NTRS)

    Sanger, Eugen

    1953-01-01

    The problem of thrust increase by air admixture to exhaust jets of rockets, turbojet, ram- and pulse-jet engines is investigated theoretically. The optimum ratio of mixing chamber pressure to ambient pressure and speed range for thrust increase due to air admixture is determined for each type of jet engine.

  8. Use of gas-turbine exhaust for the direct drying of food products. Final report

    SciTech Connect

    Not Available

    1988-06-01

    This report describes an investigation of the use of gas-turbine exhaust as a substitute for conventional burners in the direct drying of food products. Four different equipment configurations were examined, including: diluting exhaust gases with air to achieve suitable temperatures; directing exhaust through a heat exchanger; moving the exhaust through a heat recovery boiler and then a drying system; and utilizing a conventional gas turbine cogeneration system. The study determined that diluting exhaust with air and the heat recovery boiler/drying system were economically attractive. The concern with direct drying using gas turbine exhaust is that the presence of elevated nitrogen oxides in the gas may be found in the food products or cause the formation of nitrosamines (a potent carcinogen) in these products. The study concluded that for direct drying using turbine exhaust to be commercialized for food products, either methods for reducing nitrogren oxides levels must be developed for the turbines of pilot tests combined with food-product analysis have to be performed.

  9. 49 CFR 325.91 - Exhaust systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the visual exhaust system inspection requirements, 40 CFR 202.22, of the Interstate Motor Carrier... or deterioration of muffler elements, (small traces of soot on flexible exhaust pipe sections...

  10. 49 CFR 325.91 - Exhaust systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the visual exhaust system inspection requirements, 40 CFR 202.22, of the Interstate Motor Carrier... or deterioration of muffler elements, (small traces of soot on flexible exhaust pipe sections...