Science.gov

Sample records for recovery heat production

  1. Cascade heat recovery with coproduct gas production

    DOEpatents

    Brown, William R.; Cassano, Anthony A.; Dunbobbin, Brian R.; Rao, Pradip; Erickson, Donald C.

    1986-01-01

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  2. Cascade heat recovery with coproduct gas production

    DOEpatents

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  3. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    SciTech Connect

    Swenson, Allen; Darlow, Rick; Sanchez, Angel; Pierce, Michael; Sellers, Blake

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  4. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    PubMed

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. PMID:26133477

  5. Heat Recovery in Building Envelopes

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2001-01-01

    Infiltration has traditionally been assumed to contribute to the energy load of a building by an amount equal to the product of the infiltration flow rate and the enthalpy difference between inside and outside. Application of such a simple formula may produce an unreasonably high contribution because of heat recovery within the building envelope. Previous laboratory and simulation research has indicated that such heat transfer between the infiltrating air and walls may be substantial. In this study, Computational Fluid Dynamics was used to simulate sensible heat transfer in typical envelope constructions. The results show that the traditional method may over-predict the infiltration energy load by up to 95 percent at low leakage rates. A simplified physical model has been developed and used to predict the infiltration heat recovery based on the Peclet number of the flow and the fraction of the building envelope active in infiltration heat recovery.

  6. Waste heat recovery system

    SciTech Connect

    Smith, E.M.; Cornelison, R.C.

    1989-10-24

    This patent describes a waste heat recovery system. It comprises a conduit for conveying an exhaust gas stream; a boiler assembly connected to the conduit including a heat recovery steam generator through which the exhaust gas if flowed, and characterized by a high temperature stream tube heat exchanger and, at a downstream location relative thereto, a water-tube boiler; an ammonia gas injector for injecting ammonia gas into the exhaust gas stream and located upstream of the water-tube boiler in juxtaposition to the exhaust gas source; and a low temperature selective catalytic reduction unit located downstream of the water-tube boiler.

  7. Heat recovery apparatus

    SciTech Connect

    McFarland, I.

    1987-01-01

    Heat transfer is a living science and technical advances are constantly being made. However, in many cases, progress is limited by the equipment that is available on the market, rather than by knowledge of the heat transfer process. A case in point is the design of economizers: in such equipment a small quantity of water (with a relatively good heat transfer coefficient) is heated by a large quantity of low-pressure gas (with an inherently low heat transfer coefficient). As a first step in design finned tubing is used to lessen the discrepancy in coefficients. From this point, it becomes apparent that the equipment consists of a small number of tubes (to maintain good velocity on the water side) of considerable length (to provide sufficient area). In the process industries the base pressure, though low, may be in the region of 0.5 bar, and there is no convenient flue in which to place the heat recovery coil. It is therefore contained in a flat-sided enclosure, which is ill-fitted to pressure containment and is therefore reinforced with a plethora of structural sections. Such inelegant construction is quite common in North America; in Europe, cylindrical containments of vast size have been supplied for the same purposes. The real shortcoming is a successful marriage of different disciplines to produce reliable and efficient heat transfer equipment suitably contained.

  8. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  9. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  10. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect

    2011-12-19

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  11. Heating apparatus comprising a heat recovery apparatus

    SciTech Connect

    Pibernat, T.

    1983-08-09

    A heating apparatus includes at least one combustion air inlet, a reverse-draft hearth having a grill positioned within a hearth plate, an ash receptacle for recovering combustion wastes, a fume outlet combustion chamber positoned under the reverse-draft hearth, and a heat recovery device. A heat transport and exchange fluid is adapted to be fed through the heat recovery device, and it circulates through the device in order to recover heat generated in the hearth. The heat recovery device also includes at least one casing positioned beneath the hearth, over the ash receptacle, and which is spaced from the walls of the heating apparatus. The rear portion of the casing is connected to the hearth plate so as to block combustion gases so that the combustion gases will pass over and thereafter under the casing prior to leaving the apparatus via the fume outlet.

  12. Heat recovery method

    SciTech Connect

    Richarts, F.

    1985-04-16

    Heat is recovered by combining a heat transfer system including heat exchangers interconnected in a circulatory system, with a heat pump system. The heat pump system is preferably operated in accordance with the Lorenz-Principle. It is not necessary to divide the heat carrier circuit of the heat pump into two or three separate circulatory circuits. The heat carrier circuit of the heat pump can thus continue to operate unchanged even if the heat pump is switched off. For this purpose the warm heat carrier coming from a discharge fluid cooler, is heated further in a condenser of the heat pump and the cold heat carrier coming from a preheater or cooler group, is cooled further in an evaporator of the heat pump.

  13. Automotive Thermoelectric Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  14. Thermodynamic and heat transfer analysis of LNG energy recovery for power production

    NASA Astrophysics Data System (ADS)

    Franco, A.; Casarosa, C.

    2014-11-01

    An important option to transport the gas is to convert it into liquid natural gas (LNG) and convey it using insulated LNG tankers. At receiving terminals, the LNG is offloaded into storage tanks and then pumped at the required pressure and vaporized for final transmission to the pipeline. The LNG production process consumes a considerable amount of energy, while the cold availability, as also known as cold energy, has been stored in LNG. At a receiving terminal, LNG needs to be evaporated into gas at environmental temperature before fed into the gas distribution system. Seawater is commonly used for the regasification process of the LNG. In the present paper, after a general analysis of the perspectives of the various thermodynamic schemes proposed for power production from the regasification, a detailed analysis of enhanced direct expansion system is carried out in order to identify the upper level of the energy that can be recovered. The analysis outlines that power production typical of optimized ORC plant configurations (120 kJ/kg) can be obtained with direct expansion solutions.

  15. Gas engine heat recovery unit

    NASA Astrophysics Data System (ADS)

    Kubasco, A. J.

    1991-07-01

    The objective of Gas Engine Heat Recovery Unit was to design, fabricate, and test an efficient, compact, and corrosion resistant heat recovery unit (HRU) for use on exhaust of natural gas-fired reciprocating engine-generator sets in the 50-500 kW range. The HRU would be a core component of a factory pre-packaged cogeneration system designed around component optimization, reliability, and efficiency. The HRU uses finned high alloy, stainless steel tubing wound into a compact helical coil heat exchanger. The corrosion resistance of the tubing allows more heat to be taken from the exhaust gas without fear of the effects of acid condensation. One HRU is currently installed in a cogeneration system at the Henry Ford Hospital Complex in Dearborn, Michigan. A second unit underwent successful endurance testing for 850 hours. The plan was to commercialize the HRU through its incorporation into a Caterpillar pre-packaged cogeneration system. Caterpillar is not proceeding with the concept at this time because of a downturn in the small size cogeneration market.

  16. Heat recovery reduces process energy losses

    SciTech Connect

    Anon

    1981-09-01

    After evaluation of process and plant operation losses, a pharmaceutical plant found heat recovery a viable means of reducing energy losses. One of the first applications of air-to-air heat recovery was in a recirculation/dehumidification process. Heat exchangers were used to recover heat from the air used to generate or dry the dehumidification material.

  17. Ceramic heat recuperators for industrial heat recovery

    NASA Astrophysics Data System (ADS)

    Cleveland, J. J.; Gonzalez, J. M.; Kohnken, K. H.; Rebello, W. J.

    1980-08-01

    A cordierite (magnesium aluminum silicate) recuperator was designed for relatively small furnaces with firing rates of 0.3 MM to 0.6 MM Btu/h and with exhaust gas temperatures of 1500 F to 2600 F. Five demonstration programs were performed to determine the heat transfer performance of the device, establish the energy savings by recovery, demonstrate the durability of the ceramic core, determine the operating requirements of the burners and controls with recuperation, and establish the overall system costs and payback period. The recuperator is described and results of tests and measurements, system economics, and cost performance analyses are presented. The methodology is developed and techniques for impact analysis are described. Industrial applications are implied and a process flow diagram for smelting and refining primary copper is shown.

  18. Polymer Materials for the Heat Recovery

    NASA Astrophysics Data System (ADS)

    Kolasińska, E.; Kolasiński, P.; Mazurek, B.

    2016-02-01

    Many of the processes in the industry, agriculture and microscale systems are associated with the waste heat generation, which often may be a menace or lower the efficiency of the processes. The thermoelectric cooling is becoming increasingly popular and gives the possibility to convert waste heat into electricity. The current thermoelectric cooling solutions are based on alloy materials. However, the new technologies pay attention to the environment burden, moreover the regulations of the production and recycling are becoming more and more restrictive. Conducting polymers are thermoelectrically active at low temperatures, cheap and environmentally safe. In this paper authors discuss the possibility of the application of conducting polymers for the heat recovery. Due to the operating temperature range and different nature of the waste heat sources, polymers might be an interesting solution and a complement for alloy-based thermoelectric materials. The character and nature of the formation of waste heat sources and conventional technologies of its recovery are also described in this paper. Moreover the advantages of thermoelectric cooling with the use of polymers are presented and two materials based on polyaniline are proposed.

  19. Validation and recovery rates of an indirect calorimetry headbox system used to measure heat production of cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A headbox system was constructed at the University of Nebraska-Lincoln to determine heat production from dairy cattle using indirect calorimetry. The system was designed for use in a tie-stall barn to allow the animal to be comfortable and was mounted on wheels to transport between animals between s...

  20. ASHRAE's new Chiller Heat Recovery Application Guide

    SciTech Connect

    Dorgan, C.B.; Dorgan, C.E.

    2000-07-01

    The new Chiller Heat Recovery Application Guide, published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE), provides a comprehensive reference manual on the options available for chiller heat recovery. The information in the guide will assist engineers, owners, and system operators in evaluating the potential of integrating chiller heat recovery into their cooling and heating systems. The primary focus is on new construction and applications where a chiller is being replaced due to inefficiency, high operating and maintenance (O and M) costs, or elimination of refrigerants containing ozone-depleting chemicals known as CFC/HCFCs. While chiller systems for commercial buildings are the primary focus of the guide, the information and procedures also apply to industrial heat pumps. The function of this paper is to highlight key information contained in the guide, including the major benefits of chiller heat recovery, primary candidates, and application procedures. A description of the guide's general format and contents is also provided.

  1. Thermoelectric Technology for Automotive Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory

    2011-03-01

    Essential to the long term success of advanced thermoelectric (TE) technology for practical waste heat recovery is fundamental physics and materials research aimed at discovering and understanding new high performance TE materials. Applications of such new materials require their development into efficient and robust TE modules for incorporation into real devices such as a TE generator (TEG) for automotive exhaust gas waste heat recovery. Our work at GM Global R&D includes a continuing investigation of Skutterudite-based material systems and new classes of compounds that have potential for TE applications. To assess and demonstrate the viability of a TEG using state-of-the-art materials and modules, we have designed, fabricated, installed, and integrated a working prototype TEG to recover exhaust gas waste heat from a production test vehicle. Preliminary results provide important data for the operation and validation of the mechanical, thermal, and electrical systems of the TEG in combination with the various vehicle systems (e.g., exhaust bypass valve and controls, thermocouples, gas and coolant flow and pressure sensors, TE voltage and output power). Recent results from our materials research work and our functioning automotive TEG will be presented. This work is supported by US DOE Grant # DE-FC26-04NT 42278.

  2. Advanced regenerative heat recovery system

    NASA Astrophysics Data System (ADS)

    Whitbeck, R. G.

    1984-08-01

    A new concept heat wheel regenerator was developed to recover heat from a wide range of industrial heating processes. The heat wheel design separates the heat transfer matrix from the areas to be sealed so that better sealing performance can be expected and ceramic heat transfer matrix materials can be used. The design is expected to make it possible to expand the usage of heat wheel regenerators to high temperature (2000F and higher), high flow industrial processes. Two proof of concept heat wheels were installed and laboratory tested.

  3. Low cost process heat recovery. Interim report

    SciTech Connect

    Theisen, P.; McCray, J.

    1980-01-01

    The objectives of this project are to analyze waste heat recovery potential, economic analysis, heat exchanger and system design, and computer analysis programs. The heating demand and heat recovery potential at a Madison neighborhood bakery was conducted. The building has steam heat and natural gas is used in the hot water heater, the cooking stoves, and in the baking oven. Heat recovery potential was analyzed based upon fuel consumption in the baking oven, flue gas temperature, mass flow rate, and hours of oven operation. The feasibility of waste heat recovery systems is analyzed using life cycle cost and life cycle savings. For a first approximation, hand calculations were performed for air-to-air flat plate, fin-plate, and liquid-to-air tube type heat exchangers using the temperature and mass flow data from a pizza restaurant in Madison. Then a heat exchanger analysis program was written in interactive BASIC. The analysis indicates that heat recovery using the flat-plate and fin-plate exchanger designs is technically feasible and yields high effectiveness. (MCW)

  4. Heat pipes for industrial waste heat recovery

    NASA Astrophysics Data System (ADS)

    Merrigan, M. A.

    1981-01-01

    Development work on the high temperature ceramic recuperator at Los Alamos National Laboratory is described and involved material investigations, fabrication methods development, compatibility tests, heat pipe operation, and the modeling of application conditions based on current industrial usage. Solid ceramic heat pipes, ceramic coated refractory pipes, and high-temperature oxide protected metallic pipes are investigated. Economic studies of the use of heat pipe based recuperators in industrial furnaces are conducted and payback periods determined as a function of material, fabrication, and installation cost.

  5. Evaluation of the low temperature heat exchanger fouling problem. Results of studies on soot production and condensing system fouling. [Recovery of latent heat of vaporization of moisture

    SciTech Connect

    Butcher, T.; Celebi, Y.; Piraino, M.

    1984-06-01

    The development of condensing heat exchangers for oil-fired heating equipment would yield a significant improvement in thermal efficiency. Soot production by oil burners, however, could lead to serious fouling problems in these systems. The objectives of this study were to investigate the causes of fouling in oil-fired condensing systems and to evaluate the need for the development of advanced oil burners. Tests were done to evaluate the effect of operating conditions on start-up and shutdown smoke production in both noncondensing and condensing furnaces. Modern retention head burners which are commonly used in the US were included as well as one European burner with some different design features. These features included the head design, a fuel shut-off in the nozzle tip, and nozzle heating. This burner was found to produce less smoke on start-up and shutdown than the common US burner. Fouling studies were done on both types of burners under cyclic conditions with relatively low excess air (10% CO/sub 2/) and continuous induced draft. Soot deposition did not cause any change in system thermal performance although soot deposition was heavier than would be expected with a noncondensing system. Tests were also done on the effects of fuel quality on soot production. Measurement techniques for soot included the common Bacharach smoke spot test, optical opacity, and filtration (EPA method 5). 27 refs., 69 figs., 18 tabs.

  6. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  7. Applications guide for waste heat recovery

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.

    1983-01-01

    The state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey is assessed. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed: also included is a description of anticipated future trends in organic Rankine cycle R&D.

  8. Advanced heat pump for the recovery of volatile organic compounds

    SciTech Connect

    Not Available

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The Toxic-Release Inventory'' of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  9. High-performance heat pipes for heat recovery applications

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Methods to improve the performance of reflux heat pipes for heat recovery applications were examined both analytically and experimentally. Various models for the estimation of reflux heat pipe transport capacity were surveyed in the literature and compared with experimental data. A high transport capacity reflux heat pipe was developed that provides up to a factor of 10 capacity improvement over conventional open tube designs; analytical models were developed for this device and incorporated into a computer program HPIPE. Good agreement of the model predictions with data for R-11 and benzene reflux heat pipes was obtained.

  10. Rankine cycle waste heat recovery system

    SciTech Connect

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  11. Automatic flue gas heat recovery system

    SciTech Connect

    Whalen, D.A.

    1983-02-22

    An automatic flue gas heat recovery system for supplementing or replacing a conventional, separate hot water system. In the example described, the heat recovery system is applied to a pizza restaurant where large quantities of heat energy are normally wasted up an oven chimney stack, and large quantities of hot water also are required for restaurant operations. An electric motor driven pump circulates water in a closed loop between a storage tank and a heat exchanger tube located in the oven chimney stack. A thermostat control automatically starts the pump when the oven heats the chimney stack to an effective water heating temperature. When temperature in the storage tank reaches a predetermined maximum, the thermostat control stops the pump, opens a drain valve, and dumps water quickly and completely from the heat exchanger tube. Three different embodiments are shown and described illustrating systems with one or more storage tanks and one or more pumps. In the plural storage tank embodiments, an existing hot water heating tank may be converted for use to augment a main tank supplied with the present system.

  12. Rankine cycle waste heat recovery system

    SciTech Connect

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  13. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  14. Plant Utility Improvements Increase Profits and Productivity at a Clothing Manufacturing Complex (MJ Soffee's Wastewater Heat Recovery System)

    SciTech Connect

    2000-11-01

    In response to increased marketplace competition and the need for expanded production capacity, MJ Soffee's manufacturing facility in Fayetteville, North Carolina implemented several energy improvement projects,

  15. Short review on heat recovery from exhaust gas

    NASA Astrophysics Data System (ADS)

    Jaber, Hassan; Khaled, Mahmoud; Lemenand, Thierry; Ramadan, Mohamad

    2016-07-01

    The increasing growth of energy demand leads to issues associated with energy demand reduction and propose new energy efficient solutions. Heat recovery consists the most promising solution especially in regions where renewable energy resources are not available. That is why the domain of heat recovery has shown a tremendous improvement during the recent years. On the other hand, few works have been dedicated to heat recovery from exhaust gas. This paper presents a review on heat recovery from exhaust gas. The authors propose to classify exhaust gas heat recovery systems within three different classifications that are exhaust gas temperature, utilized equipment and recovery purposes.

  16. Pinch technology improves olefin heat recovery

    SciTech Connect

    Barton, J.

    1989-02-01

    Pyrolysis of naphthas or gas oils to provide ethylene and propylene for polymers is gaining in popularity in many countries. Pyrolysis takes place at the comparatively high temperatures of 800 to 850/sup 0/C. The very common solution of pyrolysis gas heat recovery in an ethylene unit is shown. Pinch technology allows finding the temperature point (the pinch) that divides the temperature scale in a process into two parts. If there is a pinch in a process (not every process has a pinch), heat from external sources must be supplied to the process at temperatures above the pinch, and must be taken from the system by cooling media at temperatures below the pinch only. If minimum consumption of energy for heating and cooling from external sources is desired, matching process streams across the pinch and adding heat to the system from external sources below the pinch temperature is not allowed.

  17. Process for the recovery of coke oven waste heat

    SciTech Connect

    Flockenhaus, C.; Meckel, J.F.; Wagener, D.

    1981-01-20

    This invention is directed to a process for making coke and recovering the heat therefrom for preheating the firing gas to the coke oven. The process involves the use of the coke oven firing gas to extract the sensible heat from the hot coke from the coking oven to both preheat the firing gas for the coke oven and cool the hot coke. Significant economies are achieved in the two-fold function of coke production and heat recovery in accordance with the method disclosed.

  18. Cogeneration from glass furnace waste heat recovery

    SciTech Connect

    Hnat, J.G.; Cutting, J.C.; Patten, J.S.

    1982-06-01

    In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

  19. Wastewater heat recovery method and apparatus

    DOEpatents

    Kronberg, J.W.

    1991-01-01

    This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  20. Waste heat recovery method and apparatus

    SciTech Connect

    Farnia, Kh.

    1984-05-01

    An apparatus and method are disclosed for the recovery of sensible heat from a hot tar-free gas produced in a coal gasification process and in combined-cycle power generation. The recovered heat is utilized to generate a flow of superheated steam which may be used in the gasification plant. The apparatus includes a first boiler and a superheater fabricated from materials susceptible to damage from thermal shock when a flow of the tar-free gas having a temperature in excess of a predetermined safety temperature is introduced to the superheater when it is dry. The first boiler, filled with a flow of saturated water, initially receives the flow of gas. Within the first boiler, the gas indirectly heats the water converting it to a flow of saturated steam and reducing the gas temperature below the safety temperature. The reduced temperature gas is passed to the superheater and the saturated steam is passed to the superheater. The gas heats the saturated steam in the superheater to convert it to superheated steam and the temperature of the gas is further reduced. The gas flows to a second boiler for converting a flow of saturated water to saturated steam and further reducing the gas temperature. The saturated steam from the second boiler is passed to the superheater and the gas flows to an economizer for converting a flow of unsaturated water to saturated water for the boilers and reducing the temperature of the gas to a final temperature.

  1. Water recovery using waste heat from coal fired power plants.

    SciTech Connect

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  2. Heat Recovery and Energy Conservation in Petroleum Refining.

    NASA Astrophysics Data System (ADS)

    Larsen, William Gale

    1990-01-01

    The focus of the analysis presented here is improved recovery (and use) of waste heat at existing petroleum refineries. The major energy-conservation opportunities associated with waste heat are systematically examined both physically and in terms of cost. The opportunities at the Study Refinery are systematically examined in detail. The presentation begins with an overview of the processes carried out in contemporary petroleum refineries including discussion of typical energy use. There follows a brief thermodynamic description of refinery energy flows with an emphasis on heat and on energy-efficiency analysis. The heart of the thesis is Chapters 3-5 describing heat recovery opportunities involving, respectively: extraction and use of heat from combustion gases being discharged through stacks, the exchange of heat between product streams, and uses for low-temperature waste heat. In Chapter 6, a unifying economic concept is introduced (with details in the Appendix): a "supply curve" for saved energy. This describes the potential rate of energy savings in barrels of oil-equivalent per year (in analogy with production capacity of oil or gas fields), as a function of the cost of saved energy in dollars per barrel (in analogy with the production cost of energy). The nature of the distribution is, of course, for the cost of saved energy to increase with increasing energy savings. In this chapter, estimates are presented for the energy conservation opportunities other than waste heat at the Study Refinery. All the opportunities are then summarized in a single supply curve. The extraordinary result in a cost-effective opportunity to reduce refinery energy use by some 26% at 1984 prices. This translates into roughly a 1 energy-cost reduction per 42-gallon barrel of petroleum input. Of course, investments are required; the net benefit would be about 1.5 cents per gallon of product. This would be a major benefit in relation to typical refinery earnings. The concluding

  3. Waste water heat recovery appliance. Final report

    SciTech Connect

    Chapin, H.D.; Armstrong, P.R.; Chapin, F.A.W.

    1983-11-21

    An efficient convective waste heat recovery heat exchanger was designed and tested. The prototype appliance was designed for use in laundromats and other small commercial operations which use large amounts of hot water. Information on general characteristics of the coin-op laundry business, energy use in laundromats, energy saving resources already in use, and the potential market for energy saving devices in laundromats was collected through a literature search and interviews with local laundromat operators in Fort Collins, Colorado. A brief survey of time-use patterns in two local laundromats was conducted. The results were used, with additional information from interviews with owners, as the basis for the statistical model developed. Mathematical models for the advanced and conventional types were developed and the resulting computer program listed. Computer simulations were made using a variety of parameters; for example, different load profiles, hold-up volumes, wall resistances, and wall areas. The computer simulation results are discussed with regard to the overall conclusions. Various materials were explored for use in fabricating the appliance. Resistance to corrosion, workability, and overall suitability for laundromat installations were considered for each material.

  4. Combined heat recovery and make-up water heating system

    SciTech Connect

    Kim, S.Y.

    1988-05-24

    A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

  5. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  6. Analysis of Water Recovery Rate from the Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and

  7. Study of fuel cell powerplant with heat recovery

    NASA Technical Reports Server (NTRS)

    King, J. M.; Grasso, A. P.; Clausi, J. V.

    1975-01-01

    It was shown that heat can be recovered from fuel cell power plants by replacing the air-cooled heat exchangers in present designs with units which transfer the heat to the integrated utility system. Energy availability for a 40-kW power plant was studied and showed that the total usable energy at rated power represents 84 percent of the fuel lower heating value. The effects of design variables on heat availability proved to be small. Design requirements were established for the heat recovery heat exchangers, including measurement of the characteristics of two candidate fuel cell coolants after exposure to fuel cell operating conditions. A heat exchanger test program was defined to assess fouling and other characteristics of fuel cell heat exchangers needed to confirm heat exchanger designs for heat recovery.

  8. Thermodynamic and heat transfer analysis of heat recovery from engine test cell by Organic Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Shokati, Naser; Mohammadkhani, Farzad; Farrokhi, Navid; Ranjbar, Faramarz

    2014-12-01

    During manufacture of engines, evaluation of engine performance is essential. This is accomplished in test cells. During the test, a significant portion of heat energy released by the fuel is wasted. In this study, in order to recover these heat losses, Organic Rankine Cycle (ORC) is recommended. The study has been conducted assuming the diesel oil to be composed of a single hydrocarbon such as C12H26. The composition of exhaust gases (products of combustion) have been computed (and not determined experimentally) from the stoichiometric equation representing the combustion reaction. The test cell heat losses are recovered in three separate heat exchangers (preheater, evaporator and superheater). These heat exchangers are separately designed, and the whole system is analyzed from energy and exergy viewpoints. Finally, a parametric study is performed to investigate the effect of different variables on the system performance characteristics such as the ORC net power, heat exchangers effectiveness, the first law efficiency, exergy destruction and heat transfer surfaces. The results of the study show that by utilizing ORC, heat recovery equivalent to 8.85 % of the engine power is possible. The evaporator has the highest exergy destruction rate, while the pump has the lowest among the system components. Heat transfer surfaces are calculated to be 173.6, 58.7, and 11.87 m2 for the preheater, evaporator and superheater, respectively.

  9. Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System

    SciTech Connect

    2010-01-01

    Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10°C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GM’s shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

  10. 36. VIEW EAST OF WASTE HEAT RECOVERY SYSTEM IN BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. VIEW EAST OF WASTE HEAT RECOVERY SYSTEM IN BUILDING 43A; THIS WAS PART OF A SYSTEM WHICH PROVIDED HOT WATER FOR OFFICE AND FACTORY BUILDING HEATING IN THE WEST PLANT; NOTE FACTORY WHISTLE TIMER ON TOP OF HEAT EXCHANGER - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT

  11. Open-loop heat-recovery dryer

    SciTech Connect

    TeGrotenhuis, Ward Evan

    2013-11-05

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  12. Minewater heat recovery project. Final Technical report

    SciTech Connect

    1992-04-01

    This report consists of three sections: (1) Design, experimental testing and performance analysis of the 20-ft long DBHE (Downhole Bundle Heat Exchanger); (2) Modified design of mine water heat exchanger; and (3) Performance tests on mine water heat exchanger. Appendices summarize design calculations, discuss the scope of the work tasks, and present a diary of the progress throughout the research and development project.

  13. Identification of existing waste heat recovery and process improvement technologies

    SciTech Connect

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  14. Waste heat recovery with ultra high-speed turbomachinery

    SciTech Connect

    Vakkilainen, E.; Larjola, J.; Lindgren, O.

    1984-08-01

    A new ORC heat recovery system which converts waste heat to electricity has been developed in Lappeenranta University of Technology with support from Department of Energy in Finnish Ministry of Trade and Industry. Use of ultra high-speed turbomachinery (10 000 rpm - 200 000 rpm) promises lower unit costs, higher efficiencies and fast amortization rate, 2,4 - 3,0 years.

  15. Energy Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect

    Sy, Amy; Krafft, Geoffrey A.; Johnson, Rolland; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  16. Exhaust bypass flow control for exhaust heat recovery

    SciTech Connect

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  17. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect

    Anthony R. Kovscek

    2002-07-01

    This technical progress report describes work performed from April 1 through June 30, 2002, for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' We investigate a broad spectrum of topics related to thermal and heavy-oil recovery. Significant results were obtained in the areas of multiphase flow and rock properties, hot-fluid injection, improved primary heavy oil recovery, and reservoir definition. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. Briefly, experiments were conducted to image at the pore level matrix-to-fracture production of oil from a fractured porous medium. This project is ongoing. A simulation studied was completed in the area of recovery processes during steam injection into fractured porous media. We continued to study experimentally heavy-oil production mechanisms from relatively low permeability rocks under conditions of high pressure and high temperature. High temperature significantly increased oil recovery rate and decreased residual oil saturation. Also in the area of imaging production processes in laboratory-scale cores, we use CT to study the process of gas-phase formation during solution gas drive in viscous oils. Results from recent experiments are reported here. Finally, a project was completed that uses the producing water-oil ratio to define reservoir heterogeneity and integrate production history into a reservoir model using streamline properties.

  18. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    SciTech Connect

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R; Storey, John Morse

    2014-01-01

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  19. Use of photovoltaics for waste heat recovery

    SciTech Connect

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  20. Enhancement of automotive exhaust heat recovery by thermoelectric devices

    SciTech Connect

    Ibrahim, Essam; Szybist, James P; Parks, II, James E

    2010-01-01

    In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas) and a cold (coolant liquid) side rectangular ducts enclosing the thermoelectric elements has been built. Measurements of thermoelectric voltage output and flow and surface temperatures were acquired and analyzed to investigate the power generation and heat transfer properties of the apparatus. Effects of inserting aluminum wool packing material inside the hot side duct on augmentation of heat transfer from the gas stream to duct walls were studied. Data were collected for both the unpacked and packed cases to allow for detection of packing influence on flow and surface temperatures. Effects of gas and coolant inlet temperatures as well as gas flow rate on the thermoelectric power output were examined. The results indicate that thermoelectric power production is increased at higher gas inlet temperature or flow rate. However, thermoelectric power generation decreases with a higher coolant temperature as a consequence of the reduced hot-cold side temperature differential. For the hot-side duct, a large temperature gradient exists between the gas and solid surface temperature due to poor heat transfer through the gaseous medium. Adding the packing material inside the exhaust duct enhanced heat transfer and hence raised hot-side duct surface temperatures and thermoelectric power compared to the unpacked duct, particularly where the gas-to-surface temperature differential is highest. Therefore it is recommended that packing of exhaust duct becomes common practice in thermoelectric waste energy harvesting applications.

  1. Lithium: Sources, Production, Uses, and Recovery Outlook

    NASA Astrophysics Data System (ADS)

    Talens Peiró, Laura; Villalba Méndez, Gara; Ayres, Robert U.

    2013-08-01

    The demand for lithium has increased significantly during the last decade as it has become key for the development of industrial products, especially batteries for electronic devices and electric vehicles. This article reviews sources, extraction and production, uses, and recovery and recycling, all of which are important aspects when evaluating lithium as a key resource. First, it describes the estimated reserves and lithium production from brine and pegmatites, including the material and energy requirements. Then, it continues with a description about the current uses of lithium focusing on its application in batteries and concludes with a description of the opportunities for recovery and recycling and the future demand forecast. The article concludes that the demand of lithium for electronic vehicles will increase from 30% to almost 60% by 2020. Thus, in the next years, the recovery and recycling of lithium from batteries is decisive to ensure the long-term viability of the metal.

  2. Consolidated processes for product recovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, fermentation industries are structured on individual unit operations for production of biofuels such as ethanol, butanol, and 2,3-butanediol which result in increased capital and operational costs. Such increased costs result in low profitability and increased consumer price. With the d...

  3. WASTE HEAT RECOVERY POTENTIAL IN SELECTED INDUSTRIES

    EPA Science Inventory

    The research project was initiated with the overall objective of identifying the points, qualities, and quantities, of waste heat discharged to the environment by energy intensive industries and emerging technologies for energy development. These data may then be utilized to eval...

  4. Distributed Generation with Heat Recovery and Storage

    SciTech Connect

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  5. 75 FR 16575 - Railroad Cost Recovery Procedures-Productivity Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... Surface Transportation Board Railroad Cost Recovery Procedures--Productivity Adjustment AGENCY: Surface Transportation Board. ACTION: Adoption of a railroad cost recovery procedures productivity adjustment. SUMMARY... productivity adjustment, as measured by the average change in railroad productivity for the years 2004...

  6. Experience with organic Rankine cycles in heat recovery power plants

    SciTech Connect

    Bronicki, L.Y.; Elovic, A.; Rettger, P.

    1996-11-01

    Over the last 30 years, organic Rankine cycles (ORC) have been increasingly employed to produce power from various heat sources when other alternatives were either technically not feasible or economical. These power plants have logged a total of over 100 million turbine hours of experience demonstrating the maturity and field proven technology of the ORC cycle. The cycle is well adapted to low to moderate temperature heat sources such as waste heat from industrial plants and is widely used to recover energy from geothermal resources. The above cycle technology is well established and applicable to heat recovery of medium size gas turbines and offers significant advantages over conventional steam bottoming cycles.

  7. Choose the best heat-recovery method for thermal oxidizers

    SciTech Connect

    Klobucar, J.M.

    1995-04-01

    Thermal oxidation is current the most economically favorable add-on method of controlling hydrocarbon air emissions of moderate to low concentration (below 10,000 ppm). This concentration range covers emissions from a wide variety of chemical process industries (CPI) sources, including dryers, reactor vents, tank vents, and coaters. Thermal oxidizer systems consist of three basic sub-systems--burner, combustion chamber, and primary heat recovery. Selecting the type of primary heat recovery is probably the most important decision in the design of a thermal oxidizer, and requires consideration of a wide range of factors. The two most widely used types of primary heat recovery--recuperative and regenerative--each have distinct advantages and disadvantages. In general, recuperative oxidizers are simpler and less costly to purchase, whereas regenerative oxidizers offer substantially lower operating costs. Selecting between recuperative and regenerative heat recovery requires balancing a number of factors, such as capital and operating costs, exhaust gas composition and temperature, and secondary heat demand. This article provides guidance on when, where, and how to use each.

  8. Waste Heat Recovery from Blast Furnace Slag by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Qin, Yuelin; Lv, Xuewei; Bai, Chenguang; Qiu, Guibao; Chen, Pan

    2012-08-01

    Blast furnace (BF) slag, which is the main byproduct in the ironmaking process, contains large amounts of sensible heat. To recover the heat, a new waste heat-recovery system—granulating molten BF slag by rotary multinozzles cup atomizer and pyrolyzing printed circuited board with obtained hot BF slag particle—was proposed in this study. The feasibility of the waste heat-recovery system was verified by dry granulation and pyrolyzation experiments. The energy of hot BF slag could be converted to chemical energy through the pyrolysis reaction, and a large amount of combustible gas like CO, H2, C m H n , and CH4 can be generated during the process.

  9. Effect of thymol in heating and recovery media on the isothermal and non-isothermal heat resistance of Bacillus spores.

    PubMed

    Esteban, Maria-Dolores; Conesa, Raquel; Huertas, Juan-Pablo; Palop, Alfredo

    2015-06-01

    Members of the genus Bacillus include important food-borne pathogen and spoilage microorganisms for food industry. Essential oils are natural products extracted from herbs and spices, which can be used as natural preservatives in many foods because of their antibacterial, antifungal, antioxidant and anti-carcinogenic properties. The aim of this research was to explore the effect of the addition of different concentrations of thymol to the heating and recovery media on the thermal resistance of spores of Bacillus cereus, Bacillus licheniformis and Bacillus subtilis at different temperatures. While the heat resistance was hardly reduced when thymol was present in the heating medium, the effect in the recovery medium was greater, reducing the D100 °C values down to one third for B. subtilis and B. cereus when 0.5 mM thymol was added. This effect was dose dependent and was also observed at other heating temperatures. PMID:25790989

  10. Method for controlling exhaust gas heat recovery systems in vehicles

    DOEpatents

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  11. Energy conservation in fruit dehydrators utilizing recirculation of exhaust air and heat-recovery heat exchangers. Final report

    SciTech Connect

    Groh, J.E.; Thompson, T.L.

    1981-12-01

    Dehydration of fruit in the United States is often done by means of a tunnel dehydrator utilizing large quantities of fossil fuel. Existing dehydrators have been designed to operate with maximum product through-put and with little regard for energy efficiency. By incorporating dampers for air recirculation and thermal energy recovery equipment on the exhaust air, the energy required in dehydration was cut by over 40%, satisfying the original objectives of the program. A commercial dehydrator tunnel was modified by installing a heat recovery heat exchanger and an exhaust air recirculation damper. Another tunnel was equipped with the exhaust air recirculation damper only. A third tunnel was unmodified. These three tunnels of a 24 tunnel facility were equipped with individual natural gas meters to measure energy consumption. The energy consumption of the heat exchanger equipped tunnel normally amounted to approximately 40% of the unmodified tunnel during raisin production.

  12. Heat Energy Recovery from Domestic Output Fluids (HERDOF)

    NASA Astrophysics Data System (ADS)

    Russell, F. M.

    A device incorporating energy storage is described which permits recovery of part of the available heat energy in domestic output fluids. Preliminary estimates of the potential savings indicate the device should be examined in depth and practical tests conducted. The attitude of industry to the proposed device was considered and positive recommendations were made in that area.

  13. Heat recovery and seed recovery development project: preliminary design report (PDR)

    SciTech Connect

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  14. Natural analogs for enhanced heat recovery from geothermal systems

    SciTech Connect

    Nielson, Dennis L.

    1996-01-24

    well as others that develop methods for the mining of heat past the stage of primary production, will be termed Enhanced Heat Recovery (EHR). Examples of the evolution of natural systems suggest the methods by which deep geothermal systems can be exploited. The key to the exploitation of deep geothermal systems is successful injection of water into rocks above the brittle-ductile transition, producing steam, cooling the rocks and driving the brittle-ductile transition to deeper levels. Under this scenario, injection wells may be more expensive and require more thoughtful planning than production wells.

  15. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    SciTech Connect

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31

    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel

  16. Atmosphere recovery and regeneration in heat treating operations: NICE3 Project fact sheet

    SciTech Connect

    NREL

    2000-04-10

    This report is a fact sheet written for the NICE3 Program on a new atmosphere gas recovery system for furnaces used in heat treating operations. The National Industrial Competitiveness through Energy, Environment, and Economics program (NICE3) promotes energy efficiency, clean production, and economic competitiveness in industry.

  17. 78 FR 10262 - Railroad Cost Recovery Procedures-Productivity Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... Surface Transportation Board Railroad Cost Recovery Procedures--Productivity Adjustment AGENCY: Surface Transportation Board, DOT. ACTION: Proposed railroad cost recovery procedures productivity adjustment. SUMMARY... of average change in railroad productivity for the 2007-2011 (5-year) averaging period....

  18. Air pollution control and heat recovery system for industrial ovens

    SciTech Connect

    Jamaluddin, A.A.

    1980-12-30

    A system of air pollution control and heat recovery is provided for an arrangement of industrial ovens, especially for drum manufacture. A plurality of paint bake ovens of various capacities, lengths and heat input are provided for multi-stage processing in the manufacture of drums and lids therefor. A supply of high temperature water is provided for multi-stage cleaning and rinsing in the manufacturing operation. The combined exhaust from the oven is preheated in a heat exchanger and then all of the combustible components are burnt off by passing through the flames of an incinerator grid burner. The effluent from the burner first passes through the heat exchanger to preheat said oven exhaust gases and then through hot water coils to provide all of the necessary hot water for the system. High pressure hot water (275/sup 0/) is provided in this heat exchange operation. The hot gasses from the last heat exchanger, completely free of combustible contaminates, are mixed with fresh air to supply hot air for the dryers used in the process. There is a substantially complete recovery of heat and the gasses discharged to atmosphere meet air quality standards.

  19. Thermochemical recovery of heat contained in flue gases by means of bioethanol conversion

    NASA Astrophysics Data System (ADS)

    Pashchenko, D. I.

    2013-06-01

    In the present paper consideration is being given to the use of bioethanol in the schemes of thermochemical recovery of heat contained in exit flue gases. Schematic diagrams illustrate the realization of thermochemical heat recovery by implementing ethanol steam conversion and conversion of ethanol by means of products of its complete combustion. The feasibility of attaining a high degree of recovery of heat contained in flue gases at the moderate temperature (up to 450°C) of combustion components is demonstrated in the example of the energy balance of the system for thermochemical heat recovery. The simplified thermodynamic analysis of the process of ethanol steam conversion was carried out in order to determine possible ranges of variation of process variables (temperature, pressure, composition) of a reaction mixture providing the efficient heat utilization. It was found that at the temperature above 600 K the degree of ethanol conversion is near unity. The equilibrium composition of products of reaction of ethanol steam conversion has been identified for different temperatures at which the process occurs at the ratio H2O/EtOH = 1 and at the pressure of 0.1 MPa. The obtained results of calculation agree well with the experimental data.

  20. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  1. Modelling the viability of heat recovery from combined sewers.

    PubMed

    Abdel-Aal, M; Smits, R; Mohamed, M; De Gussem, K; Schellart, A; Tait, S

    2014-01-01

    Modelling of wastewater temperatures along a sewer pipe using energy balance equations and assuming steady-state conditions was achieved. Modelling error was calculated, by comparing the predicted temperature drop to measured ones in three combined sewers, and was found to have an overall root mean squared error of 0.37 K. Downstream measured wastewater temperature was plotted against modelled values; their line gradients were found to be within the range of 0.9995-1.0012. The ultimate aim of the modelling is to assess the viability of recovering heat from sewer pipes. This is done by evaluating an appropriate location for a heat exchanger within a sewer network that can recover heat without impacting negatively on the downstream wastewater treatment plant (WWTP). Long sewers may prove to be more viable for heat recovery, as heat lost can be reclaimed before wastewater reaching the WWTP. PMID:25051477

  2. Proposal of bypass in heat recovery system with sucking air

    NASA Astrophysics Data System (ADS)

    Siažik, Ján; Malcho, Milan; Rezničák, Štefan

    2016-06-01

    Waste heat is utilized in a wide variety of technologies for a number of reasons. But the significant one such reason is use of the energy contained for example in waste water or waste heat that would otherwise left unused. Other considerable reason it is also reduces primary costs to operate the technology. The article deals with the arrangement section of the unit in heat recovery systems where the entry of waste gases into defluorinastion device. The technologies re-use heat often use the bypass. Bypass fulfill their duty in equipment failures, for example heat exchanger where it is not possible to stop the operationimmediately and the hot combustion gases can flow bypass without interrupting operation.

  3. Cost-Effective Fabrication Routes for the Production of Quantum Well Structures and Recovery of Waste Heat from Heavy Duty Trucks

    SciTech Connect

    Willigan, Rhonda

    2009-09-30

    The primary objectives of Phase I were: (a) carry out cost, performance and system level models, (b) quantify the cost benefits of cathodic arc and heterogeneous nanocomposites over sputtered material, (c) evaluate the expected power output of the proposed thermoelectric materials and predict the efficiency and power output of an integrated TE module, (d) define market acceptance criteria by engaging Caterpillar's truck OEMs, potential customers and dealers and identify high-level criteria for a waste heat thermoelectric generator (TEG), (e) identify potential TEG concepts, and (f) establish cost/kWatt targets as well as a breakdown of subsystem component cost targets for the commercially viable TEG.

  4. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  5. Induction heating plant for heat treatment of spherical metal products

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, V. N.; Titov, S. S.

    2015-12-01

    A control system for an induction heating plant is developed and studied to perform symmetric high-rate surface induction heating of spherical metal products with given technological parameters for heat treatment.

  6. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect

    Anthony R. Kovscek

    2003-04-01

    This technical progress report describes work performed from January 1 through March 31, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history matching techniques. During this period, previous analysis of experimental data regarding multidimensional imbibition to obtain shape factors appropriate for dual-porosity simulation was verified by comparison among analytic, dual-porosity simulation, and fine-grid simulation. We continued to study the mechanisms by which oil is produced from fractured porous media at high pressure and high temperature. Temperature has a beneficial effect on recovery and reduces residual oil saturation. A new experiment was conducted on diatomite core. Significantly, we show that elevated temperature induces fines release in sandstone cores and this behavior may be linked to wettability. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.

  7. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect

    Anthony R. Kovscek; Louis M. Castanier

    2004-03-01

    This technical progress report describes work performed from July 1 through September, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, work focused on completing project tasks in the area of multiphase flow and rock properties. The area of interest is the production mechanisms of oil from porous media at high temperature. Temperature has a beneficial effect on oil recovery and reduces residual oil saturation. Work continued to delineate how the wettability of reservoir rock shifts from mixed and intermediate wet conditions to more water-wet conditions as temperature increases. One mechanism for the shift toward water-wet conditions is the release of fines coated with oil-wet material from pore walls. New experiments and theory illustrate the role of temperature on fines release.

  8. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Technical Reports Server (NTRS)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  9. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    SciTech Connect

    Johnson, Ilona; Choate, William T.; Davidson, Amber

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  10. Waste heat recovery systems in the sugar industry: An Indian perspective

    SciTech Connect

    Madnaik, S.D.; Jadhav, M.G.

    1996-04-01

    This article identifies the key role of the sugar industry in the rural development of developing countries. The Indian sugar industry, already second largest among the country`s processing industries, shows even greater potential, according to the Plan Documents (shown in a table). The potential of waste heat in sugar processing plants, which produce white crystal sugar using the double sulphitation clarification process, is estimated at 5757.9 KJ/kg of sugar. Efficient waste heat recovery (WHR) systems could help arrest the trend of increasing production costs. This would help the sugar industry not only in India, but in many other countries as well. The innovative methods suggested and discussed briefly in this article include dehydration of prepared cane, bagasse drying, and juice heating using waste heat. These methods can reduce the cost of energy in sugar production by at least 10% and improve efficiency and productivity.

  11. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    SciTech Connect

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own

  12. Thermoelectric waste heat recovery from an M1 Abrams tank

    NASA Astrophysics Data System (ADS)

    Stokes, C. David; Thomas, Peter M.; Baldasaro, Nicholas G.; Mantini, Michael J.; Venkatasubramanian, Rama; Barton, Michael D.; Cardine, Christopher V.; Walker, Grayson W.

    2012-06-01

    The addition of advanced sensors, targeting systems and electronic countermeasures to military vehicles has created a strategic need for additional electric power. By incorporating a thermoelectric (TE) waste heat recovery system to convert available exhaust heat to electricity, increased electric power needs can be met without reducing the energy efficiency of the vehicle. This approach allows existing vehicles to be upgraded without requiring a complete re-design of the engine and powertrain to support the integration of advanced electronic sensors and systems that keep the performance at the state of the art level. RTI has partnered with General Dynamics Land Systems and Creare, Inc. under an Army Research Lab program to develop a thermoelectric exhaust waste heat recovery system for the M1 Abrams tank. We have designed a reduced-scale system that was retrofitted to the tank and generated 80W of electric power on the vehicle operating on a test track by capturing a portion of the exhaust heat from the Honeywell/Lycoming AGT-1500 gas turbine engine.

  13. Recovery Temperature, Transition, and Heat Transfer Measurements at Mach 5

    NASA Technical Reports Server (NTRS)

    Brinich, Paul F.

    1961-01-01

    Schlieren, recovery temperature, and heat-transfer measurements were made on a hollow cylinder and a cone with axes alined parallel to the stream. Both the cone and cylinder were equipped with various bluntnesses, and the tests covered a Reynolds number range up to 20 x 10(exp 6) at a free-stream Mach number of 4.95 and wall to free-stream temperature ratios from 1.8 to 5.2 (adiabatic). A substantial transition delay due to bluntness was found for both the cylinder and the cone. For the present tests (Mach 4.95), transition was delayed by a factor of 3 on the cylinder and about 2 on the cone, these delays being somewhat larger than those observed in earlier tests at Mach 3.1. Heat-transfer tests on the cylinder showed only slight effects of wall temperature level on transition location; this is to be contrasted to the large transition delays observed on conical-type bodies at low surface temperatures at Mach 3.1. The schlieren and the peak-recovery-temperature methods of detecting transition were compared with the heat-transfer results. The comparison showed that the first two methods identified a transition point which occurred just beyond the end of the laminar run as seen in the heat-transfer data.

  14. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect

    Anthony R. Kovscek; Louis M. Castanier

    2002-09-30

    The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

  15. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect

    Anthony R. Kovscek

    2003-01-01

    This technical progress report describes work performed from October 1 through December 31, 2002 , for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, experimental data regarding multidimensional imbibition was analyzed to obtain shape factors appropriate for dual-porosity simulation. It is shown that the usual assumption of constant, time-independent shape factors is incorrect. In other work, we continued to study the mechanisms by which oil is produced from fractured media at high pressure and high temperature. High temperature significantly increased the apparent wettability and affected water relative permeability of cores used in previous experiments. A phenomenological and mechanistic cause for this behavior is sought. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.

  16. Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources

    NASA Astrophysics Data System (ADS)

    Wajs, Jan; Mikielewicz, Dariusz; Fornalik-Wajs, Elżbieta; Bajor, Michał

    2015-12-01

    A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.

  17. Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Huang, Shouyuan; Xu, Xianfan

    2016-06-01

    This paper presents a methodology for design optimization of thermoelectric-based waste heat recovery systems called thermoelectric generators (TEGs). The aim is to maximize the power output from thermoelectrics which are used as add-on modules to an existing gas-phase heat exchanger, without negative impacts, e.g., maintaining a minimum heat dissipation rate from the hot side. A numerical model is proposed for TEG coupled heat transfer and electrical power output. This finite-volume-based model simulates different types of heat exchangers, i.e., counter-flow and cross-flow, for TEGs. Multiple-filled skutterudites and bismuth-telluride-based thermoelectric modules (TEMs) are applied, respectively, in higher and lower temperature regions. The response surface methodology is implemented to determine the optimized TEG size along and across the flow direction and the height of thermoelectric couple legs, and to analyze their covariance and relative sensitivity. A genetic algorithm is employed to verify the globality of the optimum. The presented method will be generally useful for optimizing heat-exchanger-based TEG performance.

  18. New industrial heat pump applications to phosphate fertilizer production

    SciTech Connect

    Not Available

    1990-06-01

    In this study Process Integration techniques based on Pinch Technology have been applied to Chevron's fertilizer complex in Rock Springs, Wyoming. The objectives of the study were to: identify heat pump opportunities and to determine the cost effectiveness of heat pumping compared to other process improvements. Significance of this Work Chevron's fertilizer complex is an example of an exothermic process. The sulfuric acid plant produces more heat than is needed for the rest of the site. The complex has, therefore, no need for a heating utility. The heat created in the sulfuric acid plant is used to produce high pressure steam, which is let down through a turbo generator satisfying most of the site's electrical needs. This type of process would normally not be considered for heat pumping because there is no heating utility load to reduce. However, reducing the requirements for extraction steam will liberate more steam for power generation. Heat recovery and heat pumping, therefore, have the unusual effect of an increase in electricity production, resulting in a reduction in electricity import, rather than a reduction in fuel consumption. Heat recovery opportunities show promise at both the sulfuric acid and phosphoric acid plants. No economically attractive opportunities were found for heat pumps in the process units when they were considered individually; however, the study identified that significant energy savings can be achieved by heat integration between the sulfuric acid plant and the phosphoric acid plant. 16 figs.

  19. Heat recovery and pollutant cleanup from low grade fuels

    SciTech Connect

    Ellison, W.; Butcher, T.A.; Carbonara, J.C.; Heaphy, J.P.

    1994-06-01

    Technical development efforts and field testing have pointed to outstanding economy and environmental benefits contemplated in revamping of fueling for reduced cost of power generation. Flue gas cleaning technologies detailed herein are expected to vitally support this objective and strongly contribute to long-term efforts for regional ozone compliance within the favorable economic framework made possible by avoidance of clean, high-cost, steam boiler fuels otherwise necessary in meeting environmental goals. With adequate control of emissions, abundance and attractive price of high-sulfur residium or coal provides the realistic basis for cost-effective power generation in decades ahead. A key element is the design of by-product yielding, wet flue gas desulfurization processes. The choice is among those using lime, ammonia, or sodium alkali reagents, or limestone in highly oxygen-inhibited process operation, with SO{sub 2} removal efficiency of 98+% as a result of dissolved sulfite alkalinity. Integrated use of condensing heat exchangers provides low-level heat recovery and water-condensing-mode scrubbing. SO{sub 3} gas & PM-10 particulates including trace metals are effectively removed in conjunction with optimal, ultra-efficient, simultaneous multi-pollutant reduction. DeNO{sub x} may be accomplished by combining advantageous recirculation of highly-cooled, low-humidity, clean flue gas to burner windboxes with conventional selective non-catalytic reduction. Stack NO{sub x} at 18 to 30 ppM, (60% O{sub 2} basis), i.e. 0.03 to 0.05 lb NO{sub 2}-equivalent/MM Btu, may be achieved by injection of methanol in dilute solution or highly air-diluted, into the rear boiler cavity upstream of the economizer, converting flue-gas NO to NO{sub 2}, thereafter efficiently absorbed and chemically reduced to N{sub 2} by the dissolved-sulfite scrubbing agent to gain colorless discharge with NO{sub 2} concentration less than 15 ppM, i.e. 0.025 lb/MM Btu.

  20. Direct waste heat recovery via thermoelectric materials - chosen issues of the thermodynamic description

    NASA Astrophysics Data System (ADS)

    Kolasiński, Piotr; Kolasińska, Ewa

    2016-02-01

    The effective waste heat recovery is one of the present-day challenges in the industry and power engineering. The energy systems dedicated for waste heat conversion into electricity are usually characterized by low efficiency and are complicated in the design. The possibility of waste heat recovery via thermoelectric materials may be an interesting alternative to the currently used technologies. In particular, due to their material characteristics, conducting polymers may be competitive when compared with the power machinery and equipment. These materials can be used in a wide range of the geometries e.g. the bulk products, thin films, pristine form or composites and the others. In this article, the authors present selected issues related to the mathematical and thermodynamic description of the heat transfer processes in the thermoelectric materials dedicated for the waste heat recovery. The link of these models with electrical properties of the material and a material solution based on a conducting polymer have also been presented in this paper.

  1. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery

    NASA Astrophysics Data System (ADS)

    Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.

    2010-09-01

    Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.

  2. Development of multiapplication low-level heat recovery technology

    SciTech Connect

    Not Available

    1985-03-29

    This report summarizes work conducted to develop and demonstrate technologies for recovery of industrial waste heat. The first portion of the work, done under ERDA contract, was performed from 1976 to 1980. A system was developed for generating electric power from exhaust discharged from diesel engine generator sets used in municipal power plants. This work was of an exploratory nature and combined the technology of a low-pressure steam system with that of an organic Rankine-cycle (ORC) system in a single binary cycle system.

  3. Recovery and use of fission product noble metals

    SciTech Connect

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)

  4. The heat recovery with heat transfer methods from solar photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Özakın, A. N.; Karsli, S.; Kaya, F.; Güllüce, H.

    2016-04-01

    Although there are many fluctuations in energy prices, they seems like rising day by day. Thus energy recovery systems have increasingly trend. Photovoltaic systems converts solar radiation directly into electrical energy thanks to semiconductors. But due to the nature of semiconductors, whole of solar energy cannot turn into electrical energy and the remaining energy turns into waste heat. The aim of this research is evaluate this waste heat energy by air cooling system. So, the energy efficiency of the system will be increased using appropriate heat transfer technologies such as fin, turbulator etc.

  5. Effect of Heat Exchanger Material and Fouling on Thermoelectric Exhaust Heat Recovery

    SciTech Connect

    Love, Norman; Szybist, James P; Sluder, Scott

    2011-01-01

    This study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. For this purpose an experimental investigation of thermoelectrics in contact with clean and fouled heat exchangers of different materials is performed. The thermoelectric devices are tested on a bench-scale thermoelectric heat recovery apparatus that simulates automotive exhaust. The thermoelectric apparatus consists of a series of thermoelectric generators contacting a hot-side and a cold-side heat exchanger. The thermoelectric devices are tested with two different hot-side heat exchanger materials, stainless steel and aluminum, and at a range of simulated exhaust gas flowrates (40 to 150 slpm), exhaust gas temperatures (240 C and 280 C), and coolant-side temperatures (40 C and 80 C). It is observed that for higher exhaust gas flowrates, thermoelectric power output increases while overall system efficiency decreases. Degradation of the effectiveness of the EGR-type heat exchangers over a period of driving is also simulated by exposing the heat exchangers to diesel engine exhaust under thermophoretic conditions to form a deposit layer. For the fouled EGR-type heat exchangers, power output and system efficiency is observed to be significantly lower for all conditions tested. The study found, however, that heat exchanger material is the dominant factor in the ability of the system to convert heat to electricity with thermoelectric generators. This finding is thought to be unique to the heat exchangers used for this study, and not a universal trend for all system configurations.

  6. Advanced heat pump for the recovery of volatile organic compounds. Phase 1, Conceptual design of an advanced Brayton cycle heat pump for the recovery of volatile organic compounds: Final report

    SciTech Connect

    Not Available

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The ``Toxic-Release Inventory`` of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy`s (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M`s work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  7. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  8. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    SciTech Connect

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  9. Fabrication of Wire Mesh Heat Exchangers for Waste Heat Recovery Using Wire-Arc Spraying

    NASA Astrophysics Data System (ADS)

    Rezaey, R.; Salavati, S.; Pershin, L.; Coyle, T.; Chandra, S.; Mostaghimi, J.

    2014-04-01

    Waste heat can be recovered from hot combustion gases using water-cooled heat exchangers. Adding fins to the external surfaces of the water pipes inserted into the hot gases increases their surface area and enhances heat transfer, increasing the efficiency of heat recovery. A method of increasing the heat transfer surface area has been developed using a twin wire-arc thermal spray system to generate a dense, high-strength coating that bonds wire mesh to the outside surfaces of stainless steel pipes through which water passes. At the optimum spray distance of 150 mm, the oxide content, coating porosity, and the adhesion strength of the coating were measured to be 7%, 2%, and 24 MPa, respectively. Experiments were done in which heat exchangers were placed inside a high-temperature oven with temperature varying from 300 to 900 °C. Several different heat exchanger designs were tested to estimate the total heat transfer in each case. The efficiency of heat transfer was found to depend strongly on the quality of the bond between the wire meshes and pipes and the size of openings in the wire mesh.

  10. Analysis of IECC2003 Chiller Heat Recovery for Service Water Heating Requirement for New York State

    SciTech Connect

    Winiarski, David W.

    2004-08-15

    The state of New York asked the U.S. Department of Energy to evaluate the cost-effectiveness of the requirement for Heat Recovery for Service Water Heating that exists in the 2003 International Energy Conservation Code to determine whether this requirement should be adopted into the New York State Energy Code. A typical hotel application that would trigger this requirement was examined using whole building simulation software to generate baseline annual chiller and service hot water loads, and a spreadsheet was used to examine the energy savings potential for heat recovery using hourly load files from the simulation. An example application meeting the code requirement was developed, and the energy savings, energy cost savings, and first costs for the heat recovery installation were developed. The calculated payback for this application was 6.3 years using 2002 New York state average energy costs. This payback met the minimum requirements for cost effectiveness established for the state of New York for updating the commercial energy conservation code.

  11. 77 FR 7237 - Railroad Cost Recovery Procedures-Productivity Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... Surface Transportation Board Railroad Cost Recovery Procedures--Productivity Adjustment AGENCY: Surface Transportation Board. ACTION: Proposed railroad cost recovery procedures productivity adjustment. SUMMARY: In a... change in railroad productivity for the 2006-2010 (5-year) averaging period. This represents a...

  12. 75 FR 5170 - Railroad Cost Recovery Procedures-Productivity Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... Surface Transportation Board Railroad Cost Recovery Procedures--Productivity Adjustment AGENCY: Surface Transportation Board, DOT. ACTION: Proposed Railroad Cost Recovery Procedures Productivity Adjustment. SUMMARY... of average change in railroad productivity for the 2004-2008 (5-year) averaging period. This is...

  13. Weight Penalty Incurred in Thermoelectric Recovery of Automobile Exhaust Heat

    NASA Astrophysics Data System (ADS)

    Rowe, D. M.; Smith, J.; Thomas, G.; Min, G.

    2011-05-01

    Thermoelectric recovery of automobile waste exhaust heat has been identified as having potential for reducing fuel consumption and environmentally unfriendly emissions. Around 35% of combustion energy is discharged as heat through the exhaust system, at temperatures which depend upon the engine's operation and range from 800°C to 900°C at the outlet port to less than 50°C at the tail-pipe. Beneficial reduction in fuel consumption of 5% to 10% is widely quoted in the literature. However, comparison between claims is difficult due to nonuniformity of driving conditions. In this paper the available waste exhaust heat energy produced by a 1.5 L family car when undergoing the new European drive cycle was measured and the potential thermoelectric output estimated. The work required to power the vehicle through the drive cycle was also determined and used to evaluate key parameters. This enabled an estimate to be made of the engine efficiency and additional work required by the engine to meet the load of a thermoelectric generating system. It is concluded that incorporating a thermoelectric generator would attract a penalty of around 12 W/kg. Employing thermoelectric modules fabricated from low-density material such as magnesium silicide would considerably reduce the generator weight penalty.

  14. Depressurization and electrical heating of hydrate sediment for gas production

    NASA Astrophysics Data System (ADS)

    Minagawa, H.

    2015-12-01

    As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on electrical heating of the hydrate core combined with depressurization for gas production. In-situ dissociation of natural gas hydrate is necessary for commercial recovery of natural gas from natural gas hydrate sediment. Thermal stimulation is an effective dissociation method, along with depressurization.To simulate methane gas production from methane hydrate layer, we investigated electrical heating of methane hydrate sediment. A decrease in core temperature due to the endothermic reaction of methane hydrate dissociation was suppressed and the core temperature increased between 1oC and 4oC above the control temperature with electric heating. A current density of 10A/m2 with depressurization would effectively dissociate hydrate. Therefore, depressurization and additional electrode heating of hydrate sediment saturated with electrolyte solution was confirmed to enable higher gas production from sediment with less electric power.

  15. The Potential of Thermophotovoltaic Heat Recovery for the Glass Industry

    NASA Astrophysics Data System (ADS)

    Bauer, T.; Forbes, I.; Penlington, R.; Pearsall, N.

    2003-01-01

    This paper aims to provide an overview of heat recovery by thermophotovoltaics (TPV) from industrial high-temperature processes and uses the glass industry in the UK as an example. The work is part of a study of potential industrial applications of TPV in the UK being carried out by the Northumbria Photovoltaics Applications Centre. The paper reviews the relevant facts about TPV technology and the glass industry and identifies locations of use for TPV. These are assessed in terms of glass sector, furnace type, process temperature, impact on the existing process, power scale and development effort of TPV. Knowledge of these factors should contribute to the design of an optimum TPV system. The paper estimates possible energy savings and reductions of CO2 emissions using TPV in the glass industry.

  16. Acute recovery of oral word production following stroke: Patterns of performance as predictors of recovery

    PubMed Central

    Cloutman, Lauren; Newhart, Melissa; Davis, Cameron; Heidler-Gary, Jennifer; Hillis, Argye E.

    2010-01-01

    Background Impairments in oral word production are common at the onset of stroke. The identification of factors that predict early recovery has important implications for identifying those at greater risk of continued impaired functioning, and the management of the patient’s care following discharge. Aims To identify patterns of performance that are predictors of acute recovery of oral word production abilities following stroke; to identify any association between early and more chronic recovery. Method and procedures Acute stroke patients were administered oral word production tasks within 1–2 days of hospital admission, with repeat testing by 7 days; a subset of patients had repeat testing between three weeks to one year later. Performance was examined for error rate and type to identify potential predictors of early recovery. Outcome and results The proportion of circumlocution and no response errors at initial testing were associated with the magnitude of recovery of language functioning within the first week following stroke. Patient characteristics of age and gender were found to have no influence on the degree of early recovery observed. None of the examined factors predicted late recovery. The degree of early recovery was not associated with the degree of later recovery. Conclusions The current study identified patterns of task performance that increase our understanding of how oral word production recovers following acute stroke. The finding that the degree of early recovery does not predict the degree of later recovery is consistent with the hypothesis that early and late recovery are due to different mechanisms (restored blood flow in acute stroke, and reorganization in later recovery). PMID:19996511

  17. Waste heat recovery: Textile industry. (Latest citations from World Textile Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning descriptions and evaluations of waste heat recovery operations used in the textile industry. Heat recovery and utilization from wastewater streams, flue gas, finishing processes, dyeing operations, and air jet systems are presented. The use of waste heat for space heating and process preheating is considered. (Contains a minimum of 162 citations and includes a subject term index and title list.)

  18. Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications

    SciTech Connect

    Jalalzadeh-Azar, A. A.

    2004-01-01

    Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

  19. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    SciTech Connect

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  20. Assessment and development of an advanced heat pump for recovery of volatile organic compounds. Final report

    SciTech Connect

    Not Available

    1992-06-01

    This report documents Phase 1 of a project conducted by Mechanical Technology Incorporated (MTI) for the assessment and development of an advanced heat pump for recovery of VOC solvents from process gas streams. In Phase 1, MTI has evaluated solvent recovery applications within New York State (NYS), identified host sites willing to implement their application, and conducted a preliminary design of the equipment required. The design and applications were evaluated for technical and economic feasibility. The solvent recovery heat pump system concept resulting from the Phase 1 work is one of a mobile unit that would service multiple stationary adsorbers. A large percentage of solvent recovery applications within the state can be serviced by on-site carbon bed adsorbers that are desorbed at frequencies ranging from once per to once per month. In this way, many users can effectively ``share`` the substantial capital investment associated with the system`s reverse Brayton hardware, providing it can be packaged as a mobile unit. In a typical operating scenario, a carbon adsorption module will be located permanently at the industrial site. The SLA will be ducted through the adsorber and the solvents removed, thus eliminating an air emission problem. Prior to VOC breakthrough, by schedule or by request, the mobile unit would arrive at the site to recover the concentrated solvent. An engine driven, natural gas fueled system, the mobile unit utilizes conditioned engine exhaust gases as the inert gas for desorption. Hot inert gas is directed through the carbon bed, heating it and volatilizing the adsorbed solvent. Using a revere Brayton-cycle refrigeration system to create low temperatures, the solvent vapors are condensed and collected from the inert gas stream. The solvent can then be recycled to the production process or sold for other uses and the adsorber returned to service.

  1. Assessment and development of an advanced heat pump for recovery of volatile organic compounds

    SciTech Connect

    Not Available

    1992-06-01

    This report documents Phase 1 of a project conducted by Mechanical Technology Incorporated (MTI) for the assessment and development of an advanced heat pump for recovery of VOC solvents from process gas streams. In Phase 1, MTI has evaluated solvent recovery applications within New York State (NYS), identified host sites willing to implement their application, and conducted a preliminary design of the equipment required. The design and applications were evaluated for technical and economic feasibility. The solvent recovery heat pump system concept resulting from the Phase 1 work is one of a mobile unit that would service multiple stationary adsorbers. A large percentage of solvent recovery applications within the state can be serviced by on-site carbon bed adsorbers that are desorbed at frequencies ranging from once per to once per month. In this way, many users can effectively share'' the substantial capital investment associated with the system's reverse Brayton hardware, providing it can be packaged as a mobile unit. In a typical operating scenario, a carbon adsorption module will be located permanently at the industrial site. The SLA will be ducted through the adsorber and the solvents removed, thus eliminating an air emission problem. Prior to VOC breakthrough, by schedule or by request, the mobile unit would arrive at the site to recover the concentrated solvent. An engine driven, natural gas fueled system, the mobile unit utilizes conditioned engine exhaust gases as the inert gas for desorption. Hot inert gas is directed through the carbon bed, heating it and volatilizing the adsorbed solvent. Using a revere Brayton-cycle refrigeration system to create low temperatures, the solvent vapors are condensed and collected from the inert gas stream. The solvent can then be recycled to the production process or sold for other uses and the adsorber returned to service.

  2. Heat production due to intracellular killing activity.

    PubMed

    Hayatsu, H; Masuda, S; Miyamae, T; Yamamura, M

    1990-09-01

    Using Saccharomyces ceravisiae, Candida albicans and Stapylococcus aureus, heat production during phagocytosis was measured in U937 cells which are capable of differentiating to monocytic phagocytes. No increase in heat production of non-differentiated U937 was observed since they were not phagocytic cells. However after differentiation to monocytic phagocytes by lymphokine, U937 cells produced a remarkable amount of heat during phagocytosis. Although Ehrlich ascites tumor cells sensitized with antibody were capable of engulfing S. aureus, no increase in heat nor in superoxide anion production during phagocytosis was detected. It was also found that no heat increase occurred in neutrophils from a patient with chronic granulomatous disease (CGD). It can thus be concluded that the heat production during phagocytosis is due to the intercellular killing process of phagocytic cells. PMID:2131646

  3. Heat Index in Migrant Farmworker Housing: Implications for Rest and Recovery From Work-Related Heat Stress

    PubMed Central

    Wiggins, Melinda F.; Chen, Haiying; Bischoff, Werner E.; Arcury, Thomas A.

    2013-01-01

    Although the health risk to farmworkers of working in hot conditions is recognized, potential for excessive heat exposure in housing affecting rest and recovery has been ignored. We assessed heat index in common and sleeping rooms in 170 North Carolina farmworker camps across a summer and examined associations with time of summer and air conditioning use. We recorded dangerous heat indexes in most rooms, regardless of time or air conditioning. Policies to reduce heat indexes in farmworker housing should be developed. PMID:23763392

  4. Thermodynamic and economic analysis of heat pumps for energy recovery in industrial processes

    NASA Astrophysics Data System (ADS)

    Urdaneta-B, A. H.; Schmidt, P. S.

    1980-09-01

    A computer code has been developed for analyzing the thermodynamic performance, cost and economic return for heat pump applications in industrial heat recovery. Starting with basic defining characteristics of the waste heat stream and the desired heat sink, the algorithm first evaluates the potential for conventional heat recovery with heat exchangers, and if applicable, sizes the exchanger. A heat pump system is then designed to process the residual heating and cooling requirements of the streams. In configuring the heat pump, the program searches a number of parameters, including condenser temperature, evaporator temperature, and condenser and evaporator approaches. All system components are sized for each set of parameters, and economic return is estimated and compared with system economics for conventional processing of the heated and cooled streams (i.e., with process heaters and coolers). Two case studies are evaluated, one in a food processing application and the other in an oil refinery unit.

  5. Innovative use of membrane contactor as condenser for heat recovery in carbon capture.

    PubMed

    Yan, Shuiping; Zhao, Shuaifei; Wardhaugh, Leigh; Feron, Paul H M

    2015-02-17

    The gas-liquid membrane contactor generally used as a nonselective gas absorption enhancement device is innovatively proposed as a condenser for heat recovery in liquid-absorbent-based carbon capture. The membrane condenser is used as a heat exchanger to recover the latent heat of the exiting vapor from the desorber, and it can help achieve significant energy savings when proper membranes with high heat-transfer coefficients are used. Theoretical thermodynamic analysis of mass and heat transfer in the membrane condensation system shows that heat recovery increases dramatically as inlet gas temperature rises and outlet gas temperature falls. The optimal split mass flow rate is determined by the inlet gas temperature and the overall heat-transfer coefficient in the condensation system. The required membrane area is also strongly dependent on the overall heat-transfer coefficient, particularly at higher inlet gas temperatures. Mass transfer across the membrane has an insignificant effect on heat transfer and heat recovery, suggesting that membrane wetting may not be an issue when a membrane condenser is used for heat recovery. Our analysis provides important insights into the energy recovery performance of the membrane condensation system as well as selection of operational parameters, such as split mass flow rate and membrane area, thickness, and thermal conductivity. PMID:25590169

  6. Effects of heat recovery for district heating on waste incineration health impact: a simulation study in Northern Italy.

    PubMed

    Cordioli, Michele; Vincenzi, Simone; De Leo, Giulio A

    2013-02-01

    The construction of waste incinerators in populated areas always causes substantial public concern. Since the heat from waste combustion can be recovered to power district heating networks and allows for the switch-off of domestic boilers in urbanized areas, predictive models for health assessment should also take into account the potential benefits of abating an important source of diffuse emission. In this work, we simulated the dispersion of atmospheric pollutants from a waste incinerator under construction in Parma (Italy) into different environmental compartments and estimated the potential health effect of both criteria- (PM(10)) and micro-pollutants (PCDD/F, PAH, Cd, Hg). We analyzed two emission scenarios, one considering only the new incinerator, and the other accounting for the potential decrease in pollutant concentrations due to the activation of a district heating network. We estimated the effect of uncertainty in parameter estimation on health risk through Monte Carlo simulations. In addition, we analyzed the robustness of health risk to alternative assumptions on: a) the geographical origins of the potentially contaminated food, and b) the dietary habits of the exposed population. Our analysis showed that under the specific set of assumptions and emission scenarios explored in the present work: (i) the proposed waste incinerator plant appears to cause negligible harm to the resident population; (ii) despite the net increase in PM(10) mass balance, ground-level concentration of fine particulate matter may be curbed by the activation of an extensive district heating system powered through waste combustion heat recovery and the concurrent switch-off of domestic/industrial heating boilers. In addition, our study showed that the health risk caused by waste incineration emissions is sensitive to assumptions about the typical diet of the resident population, and the geographical origins of food production. PMID:23280295

  7. Heating production fluids in a wellbore

    DOEpatents

    Orrego, Yamila; Jankowski, Todd A.

    2016-07-12

    A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.

  8. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  9. Heat recovery/thermal energy storage for energy conservation in food processing

    SciTech Connect

    Combes, R.S.; Boykin, W.B.

    1981-01-01

    Based on energy consumption data compiled for 1974, 59% of the total energy consumed in the US food processing industry was thermal energy. The energy-consuming processes which utilize this thermal energy reject significant quantities of waste heat, usually to the atmosphere or to the wastewater discharged from the plant. Design considerations for waste heat recovery systems in the food processing industry are discussed. A systematic analysis of the waste heat source, in terms of quantity and quality is explored. Other aspects of the waste heat source, such as contamination, are addressed as potential impediments to practical heat recovery. The characteristics of the recipient process which will utilize the recovered waste heat are discussed. Thermal energy storage, which can be used as a means of allowing the waste eat recovery process to operate independent of the subsequent utilization of the recovered energy, is discussed. The project included the design, installation and monitoring of two heat recovery systems in a Gold Kist broiler processing plant. These systems recover waste heat from a poultry scalder overflow (heated wastewater) and from a refrigeration condenser utilizing ammonia as the refrigerant. The performance and economic viability of the heat recovery systems are presented.

  10. Alterations in heat loss and heat production mechanisms in rat exposed to hypergravic fields

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Horwitz, B. A.; Oyama, J.

    1982-01-01

    A review of studies investigating the thermal response of rats exposed to hypergravic fields well below maximum tolerance levels is presented. It is concluded that several lines of evidence indicate that the neural switching network for temperature regulation and cardiovascular channeling of blood flow is transiently affected during the first hour a rat is exposed to hypergravity. Moreover, even after one hour of exposure, when the core temperature has fallen several degrees, shivering and nonshivering thermogenesis are not fully activated. Only after prolonged exposure to hypergravic fields do heat production mechanisms recover sufficiently to bring the core temperature back to a normal level. Thus, the data indicate a more rapid recovery of effector mechanisms for heat loss than for heat production.

  11. Time course of recovery and heat acclimation ability of prior exertional heatstroke patients.

    PubMed

    Armstrong, L E; De Luca, J P; Hubbard, R W

    1990-02-01

    Our understanding of the time course of recovery from exertional heatstroke (EH) and the heat acclimation ability of prior EH patients is limited. This manuscript reviews previous findings regarding recovery from EH and presents original research involving the heat acclimation ability of 10 prior EH patients (PH) and 5 control subjects. Heat acclimation, by definition, distinguishes heat-intolerant from heat-tolerant prior heatstroke patients. Nine PH exhibited normal heat acclimation adaptations (40.1 degrees C, 7 d, 90 min.d-1), thermoregulation, sweat gland function, whole-body sodium and potassium balance, and blood values at 61 +/- 7 d after EH. One PH (subject A) did not adapt to exercise in the heat, was defined heat intolerant, but subsequently was declared heat tolerant (11.5 months post-EH). Three PH exhibited large, unexpected increases in serum CPK levels, which resolved upon subsequent testing, and were probably related to their detrained state and the exercise which they performed. It was concluded that: 1) sleep loss and generalized fatigue were the most common predisposing factors for PH; 2) recovery from EH was idiosyncratic and may require up to 1 year in severe cases; 3) PH were not hereditarily heat intolerant, prior to EH; 4) no measured variable predicted recovery from EH, or heat acclimation responses; 5) heat intolerance occurs in a small percentage of prior heatstroke patients, and may be transient or persistent. PMID:2406545

  12. Heat and moisture production of modern swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heat and moisture production (HP and MP) values that are currently published in the American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) standards are from data collected in either the 1970’s (nursery piglets) or the 1950’s (growing-finishing pigs). This series of ...

  13. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOEpatents

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  14. Recovery of waste heat from industrial slags via modified float glass process

    SciTech Connect

    Serth, R.W.; Ctvrtnicek, T.E.; McCormick, R.J.; Zanders, D.L.

    1981-01-01

    A novel process for recovering waste heat from molten slags produced as by-products in the steel, copper, and elemental phosphorus industries is investigated. The process is based on technology developed in the glass industry for the commercial production of flat glass. In this process, energy is recovered from molten slag as it cools and solidifies on the surface of a pool of molten tin. In order to determine the technical and economic feasibility of the process, an energy recovery facility designed to handle the slag from a large elemental phosphorus plant is studied. Results indicate that the process is marginally economical at current energy price levels. A number of technical uncertainties in the process design are also identified. 9 refs.

  15. Michigan Basin. Secondary recovery in reef trends yields more production

    SciTech Connect

    Not Available

    1982-07-01

    Secondary recovery practices in reef trends in Michigan are described. Waterflooding in the Chester 18 Unit began in 1978; it currently has 6 injection wells and 11 production wells. The production wells use a submersible pumping unit, and current production levels are estimated at 3800 bopd. The present level of injection is ca. 17,000 bpd of water. The company operating the field has concluded that more barrels can be produced from a reef if a waterflood is started early. There are 55 to 60 such reefs with potential for supplemental recovery.

  16. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.

    PubMed

    Hu, H W; Tang, G H; Niu, D

    2016-01-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed. PMID:27270997

  17. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    PubMed Central

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-01-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed. PMID:27270997

  18. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    NASA Astrophysics Data System (ADS)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  19. Arkoma exploration heats production builds

    SciTech Connect

    Petzet, G.A.

    1991-01-21

    This paper reports that exploratory drilling continues with fervor to Cambro-Ordovician Arbuckle targets, especially in Arkansas. Pennsylvanian zones continue to yield significant gas discoveries. Gas production from Arkoma basin counties in both states has been rising and stands to climb even further with startup of several new pipelines, assuming gas prices and takes hold up.

  20. Heat recovery and the economizer for HVAC systems

    SciTech Connect

    Anantapantula, V.S. . Alco Controls Div.); Sauer, H.J. Jr. )

    1994-11-01

    This articles examines why a combined heat reclaim/economizer system with priority to heat reclaim operation is most likely to result in the least annual total HVAC energy. PC-based, hour-by-hour simulation programs evaluate annual HVAC energy requirements when using combined operation of heat reclaim and economizer cycle, while giving priority to operation of either one. These simulation programs also enable the design engineer to select the most viable heat reclaim and/or economizer system for any given type of HVAC system serving the building internal load level, building geographical location and other building/system variables.

  1. Heat recovery at Ore-Ida is more than small potatoes

    SciTech Connect

    Not Available

    1986-02-01

    By retrofitting three boilers with plate-type, gas-to-air condensing heat exchangers, the Ore-Ida potato processing plant at Plover, WI, reduced its monthly fuel needs by 4% for a total annual savings of 28 billion BTUs. Installation required only minimal downtime. The heat recovery system is described.

  2. 40 CFR 1036.615 - Engines with Rankine cycle waste heat recovery and hybrid powertrains.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Engines with Rankine cycle waste heat... HIGHWAY ENGINES Special Compliance Provisions § 1036.615 Engines with Rankine cycle waste heat recovery... vehicle wheels. These powertrains are tested using the hybrid engine test procedures of 40 CFR part...

  3. 40 CFR 1036.615 - Engines with Rankine cycle waste heat recovery and hybrid powertrains.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Engines with Rankine cycle waste heat... HIGHWAY ENGINES Special Compliance Provisions § 1036.615 Engines with Rankine cycle waste heat recovery... powertrains with the hybrid engine test procedures of 40 CFR part 1065 or with the post-transmission...

  4. 40 CFR 1036.615 - Engines with Rankine cycle waste heat recovery and hybrid powertrains.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Engines with Rankine cycle waste heat... HIGHWAY ENGINES Special Compliance Provisions § 1036.615 Engines with Rankine cycle waste heat recovery... vehicle wheels. These powertrains are tested using the hybrid engine test procedures of 40 CFR part...

  5. Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles

    SciTech Connect

    Smith, K.; Thornton, M.

    2009-04-01

    Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

  6. Integrated bioprocessing and simultaneous product recovery for butanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes process integration for butanol fermentation and simultaneous recovery. In the control non-integrated butanol fermentation, the concentration of this biofuel in excess to 30 g/L is rarely achieved due to its toxic nature. Such a low butanol concentration results in low react...

  7. A membrane stirrer for product recovery and substrate feeding.

    PubMed

    Femmer, T; Carstensen, F; Wessling, M

    2015-02-01

    During fermentation processes, in situ product recovery (ISPR) using submerged membranes allows a continuous operation mode with effective product removal. Continuous recovery reduces product inhibition and organisms in the reactor are not exposed to changing reaction conditions. For an effective in situ product removal, submerged membrane systems should have a sufficient large membrane area and an anti-fouling concept integrated in a compact device for the limited space in a lab-scale bioreactor. We present a new membrane stirrer with integrated filtration membranes on the impeller blades as well as an integrated gassing concept in an all-in-one device. The stirrer is fabricated by rapid prototyping and is equipped with a commercial micromesh membrane. Filtration performance is tested using a yeast cell suspension with different stirring speeds and aeration fluxes. We reduce membrane fouling by backflushing through the membrane with the product stream. PMID:25212847

  8. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    SciTech Connect

    Thekdi, Arvind; Nimbalkar, Sachin U.

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  9. Applications guide for waste heat recovery. Final Report, May-Dec. 1982

    SciTech Connect

    Moynihan, P.I.

    1983-01-01

    The state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey is assessed. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed: also included is a description of anticipated future trends in organic Rankine cycle R D.

  10. Heat shock protein hsp70 accelerates the recovery of heat-shocked mammalian cells through its modulation of heat shock transcription factor HSF1.

    PubMed Central

    Kim, D; Ouyang, H; Li, G C

    1995-01-01

    The role of mammalian 70-kDa heat shock protein (hsp70) in regulating cellular response to heat shock was examined by using three closely related rat cells: control Rat-1 cells, thermotolerant Rat-1 (TT Rat-1) cells, and heat-resistant M21 cells, a derivative of Rat-1 cells that constitutively overexpress human hsp70. In all these cells, after a prescribed heat shock, the level of the phosphorylated form of heat shock transcription factor HSF1 and that of HSF1 capable of binding to its cognitive DNA sequence heat shock element (HSE) exhibit similar time dependence. The amount of a constitutive HSE-binding activity (CHBA), on the other hand, inversely correlates with those of the two aforementioned forms of HSF1. The recovery kinetics from heat shock are different for the three cell lines, with the thermal-resistant TT Rat-1 and M21 cells showing faster recovery in terms of the state of phosphorylation of HSF1 and its ability to bind HSE or in terms of the reappearance of CHBA. Treatment with okadaic acid, a serine/threonine phosphatase inhibitor, delays the recovery kinetics of Rat-1 cells but not that of thermal-resistant M21 cells. These results are interpreted in terms of a role for hsp70 in the recovery of heat-shocked mammalian cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7892235

  11. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  12. Thermally Activated Desiccant Technology for Heat Recovery and Comfort

    SciTech Connect

    Jalalzadeh, A. A.

    2005-11-01

    Desiccant cooling is an important part of the diverse portfolio of Thermally Activated Technologies (TAT) designed for conversion of heat for the purpose of indoor air quality control. Thermally activated desiccant cooling incorporates a desiccant material that undergoes a cyclic process involving direct dehumidification of moist air and thermal regeneration. Desiccants fall into two categories: liquid and solid desiccants. Regardless of the type, solid or liquid, the governing principles of desiccant dehumidification systems are the same. In the dehumidification process, the vapor pressure of the moist air is higher than that of the desiccant, leading to transfer of moisture from the air to the desiccant material. By heating the desiccant, the vapor pressure differential is reversed in the regeneration process that drives the moisture from the desiccant. Figure 1 illustrates a rotary solid-desiccant dehumidifier. A burner or a thermally compatible source of waste heat can provide the required heat for regeneration.

  13. ENVIRONMENTAL ASSESSMENT OF COKE BY-PRODUCT RECOVERY PLANTS

    EPA Science Inventory

    The report gives results of an initial screening study, initiating a multimedia environmental assessment of coke by-product recovery plants in the U.S. The study included both the gathering and analysis of existing data and sampling and analysis at one plant based on EPA's Indust...

  14. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating...

  15. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Are duct burners and waste heat... Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered...

  16. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Are duct burners and waste heat... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating...

  17. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect

    Briggs, Thomas E; Wagner, Robert M; Edwards, Kevin Dean; Curran, Scott; Nafziger, Eric J

    2010-01-01

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  18. Biomass recycling heat technology and energy products

    NASA Astrophysics Data System (ADS)

    Tabakaev, R. B.; Gergelizhiu, P. S.; Kazakov, A. V.; Zavorin, A. S.

    2014-10-01

    Relevance is determined by necessity of utilizing of local low-grade fuels by energy equpment. Most widespread Tomsk oblast (Russian Federation region) low-grade fuels are described and listed. Capability of utilizing is analysed. Mass balances of heat-technology conversion materials and derived products are described. As a result, recycling capability of low-grade fuels in briquette fuel is appraised.

  19. District heating. Section 2: Products and services

    SciTech Connect

    Not Available

    1991-12-01

    This is a directory of companies providing products and services in the area of district heating. The subheadings of the directory include developers and owner operators, equipment manufacturers, measuring instruments and controls, consulting services, engineering and construction, operation and maintenance, project management, repair, and financial and legal services.

  20. Heat production of nursery and growing piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat and moisture production (HMP) values are used to size ventilation fans in animal housing. The HMP values that are currently published in the ASABE standards were from data published in 1975. This study is one of a series of studies being conducted to update the HMP values for the ASABE and ASHR...

  1. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  2. Firefighters muscular recovery after a heavy work bout in the heat.

    PubMed

    Oksa, Juha; Rintamäki, Hannu; Takatalo, Kaisa; Mäkinen, Tero; Lusa, Sirpa; Lindholm, Harri; Rissanen, Sirkka

    2013-03-01

    Occasionally firefighters need to perform very heavy bouts of work, such as smoke diving or clearing an accident site, which induce significant muscle fatigue. The time span for muscular recovery from such heavy work is not known. The purpose of this study was to evaluate firefighters' force-, neural-, metabolic-, and structural-related recovery after task-specific heavy work in the heat. Fifteen healthy firefighters (14 males and 1 female) performed a 20-min heavy work bout that simulated smoke diving and the clearance of an accident site at 35 °C. After the work, muscular recovery was evaluated by wrist flexion maximal voluntary contraction (MVC), average electromyography during MVC and during 10%MVC, rate of force production, motor response and stretch reflex responses, muscle oxygen consumption and oxygenation level, and wrist flexor muscle pennation angle. Recovery was followed for 4 h. Each of the 12 measured parameters changed significantly (p < 0.05) from those at baseline during the follow-up. Muscle oxygen consumption and the wrist flexor pennation angle remained elevated throughout the follow-up (oxygen consumption baseline, 12.9 ± 1.7 mL O2·min(-1)·(100 g)(-1); 4-h value, 17.5 ± 1.6 mL O2·min(-1)·(100 g)(-1); p < 0.05 and pennation angle baseline, 15.7 ± 0.8°; 4-h value, 17.8 ± 0.8°; p < 0.05). Muscle reoxygenation rate was elevated for up to 2 h (baseline, 2.3 ± 0.4 μmol·L(-1)·min(-1); 2-h value, 3.4 ± 0.4 μmol·L(-1)·min(-1); p < 0.05). The other 9 parameters recovered (were no longer significantly different from baseline) after 20 to 60 min. We concluded that the recovery order in main components of muscle function from fastest to slowest was force, neural, metabolic, and structural. PMID:23537021

  3. Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment.

    PubMed

    Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G

    2016-05-15

    Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated. PMID:27017195

  4. Effect of pH on Thermoanaerobacterium thermosaccharolyticum DSM 571 growth, spore heat resistance and recovery.

    PubMed

    Mtimet, Narjes; Guégan, Stéphanie; Durand, Lucile; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2016-05-01

    Thermophilic spore-forming bacteria are potential contaminants in several industrial sectors involving high temperatures (40-65 °C) in the manufacturing process. Among those thermophilic spore-forming bacteria, Thermoanaerobacterium thermosaccharolyticum, called "the swelling canned food spoiler", has generated interest over the last decade in the food sector. The aim of this study was to investigate and to model pH effect on growth, heat resistance and recovery abilities after a heat-treatment of T. thermosaccharolyticum DSM 571. Growth and sporulation were conducted on reinforced clostridium media and liver broth respectively. The highest spore heat resistances and the greatest recovery ability after a heat-treatment were obtained at pH condition allowing maximal growth rate. Growth and sporulation boundaries were estimated, then models using growth limits as main parameters were extended to describe and quantify the effect of pH on recovery of injured spores after a heat-treatment. So, cardinal values were used as a single set of parameters to describe growth, sporulation and recovery abilities. Besides, this work suggests that T. thermosaccharolyticum preserve its ability for germination and outgrowth after a heat-treatment at a low pH where other high resistant spore-forming bacteria like Geobacillus stearothermophilus are unable to grow. PMID:26742617

  5. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    NASA Astrophysics Data System (ADS)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2016-03-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases, the system design that minimizes cost (e.g., the /W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery TEG with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric (TE) treatment of the exhaust waste heat recovery TEG yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of 1/W it is necessary to achieve heat exchanger costs of 1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but preferred TE design regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously identified low cost design regimes. This work shows that the optimum fill factor F opt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and

  6. Pumped Fluid Loop Heat Rejection and Recovery Systems for Thermal Control of the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael

    2006-01-01

    This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.

  7. Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, February 1-July 31, 1982

    SciTech Connect

    Cole, W. E.; DeSaro, R.; Griffith, J.; Joshi, C.

    1982-08-01

    The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

  8. An Overview of Opportunities for Waste Heat Recovery and Thermal Integration in the Primary Aluminum Industry

    NASA Astrophysics Data System (ADS)

    Nowicki, Cassandre; Gosselin, Louis

    2012-08-01

    Efficient smelters currently consume roughly 13 MWh of electricity per ton of aluminum, while roughly half of that energy is lost as thermal waste. Although waste heat is abundant, current thermal integration in primary aluminum facilities remains limited. This is due to both the low quality of waste heat available and the shortage of potential uses within reasonable distance of identified waste heat sources. In this article, we present a mapping of both heat dissipation processes and heat demands around a sample facility (Alcoa Deschambault Quebec smelter). Our primary aim is to report opportunities for heat recovery and integration in the primary aluminum industry. We consider potential heat-to-sink pairings individually and assess their thermodynamic potential for producing energy savings.

  9. Experiments on the Recovery of Waste Heat in Cooling Ducts, Special Report

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe

    1939-01-01

    Tests have been conducted in the N.A.C.A. full-scale wind tunnel to investigate the partial recovery of the heat energy which is apparently wasted in the cooling of aircraft engines. The results indicate that if the radiator is located in an expanded duct, a part of the energy lost in cooling is recovered; however, the energy recovery is not of practical importance up to airplane speeds of 400 miles per hour. Throttling of the duct flow occurs with heated radiators and must be considered in designing the duct outlets from data obtained with cold radiators in the ducts.

  10. Georgia Pacific: Crossett Mill Identifies Heat Recovery Projects and Operational Improvements

    SciTech Connect

    2003-10-01

    An assessment team conducted a mill-wide energy survey at Georgia-Pacific's Crossett, Arkansas mill to update a previous pinch analysis. Three heat recovery projects were identified that could reduce annual costs by $4.8 million and reduce natural gas use by 1,845,000 x 106 Btu. The overall payback period for the heat recovery projects would be less than 1 year. Furthermore, by implementing operational improvements, the mill could save $4.8 million more annually and 1,500,000 x 106 Btu in natural gas.

  11. Counter flow cooling drier with integrated heat recovery

    DOEpatents

    Shivvers, Steve D.

    2009-08-18

    A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.

  12. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    SciTech Connect

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  13. Recovery of Heated Clostridium perfringens Type A Spores on Selective Media1

    PubMed Central

    Barach, J. T.; Adams, D. M.; Speck, M. L.

    1974-01-01

    The enumeration of Clostridium perfringens spores on sulfite-polymyxin-sulfadiazine agar (SPS), tryptone-sulfite-neomycin agar (TSN), Shahidi-Ferguson-perfringens agar (SFP), tryptone-sulfite-cycloserine agar (TSC), and TSN lacking antibiotics (BASE) was studied. The spores were heated at 105 to 120 C by the capillary-tube method. The media were about equally efficient for the enumeration of heat-activated spores. Efficiency of the media for the recovery of spores surviving heat treatments at ultrahigh temperatures varied as follows: TSC ≥ SFP > BASE > SPS > TSN. Greater recovery when survivors were enumerated on TSC or SFP was attributed to germination of injured spores by the lysozyme present in the egg yolk emulsion used in these media. Low recovery of survivors on TSN and SPS was due to both the absence of lysozyme and inhibition of injured spores by the selective agents of these media. Recovery of heated spores was reduced greatly by polymyxin, neomycin, and kanamycin, and slightly by sulfadiazine and D-cycloserine. The addition of lysozyme to SPS or TSN did not improve the percentage of heat-injured spores recovered because the selective agents of these media interfered with the action of lysozyme. The suitability of the selective media for the enumeration of survivors was greatly affected by the presence of certain foods. PMID:4374120

  14. Assessment of the potential for heat recovery and load leveling on refrigeration systems, volume 1, summary

    NASA Astrophysics Data System (ADS)

    Merriam, R. L.; Lee, W. D.; Carr, J. E.; Boyce, S. E.; Bierenbaum, H. S.

    1980-03-01

    The potential energy savings from refrigerant heat recovery in the residential, commercial and industrial sectors and its impact on electric utilities were assessed. It was concluded that the technology for heat recovery is well established in all sectors and in comparison with solar water heating equivalent energy savings can be achieved at a fraction of the cost. In the absence of barriers, the potential market for heat recovery could be substantial, with an annual energy savings of 0.25 x 10 to the 15th power Btu in 1990. The economic impacts on summer peaking electric utilities were found to be favorable in all regions in central air conditioner applications. Annual net cost savings to the utility were estimated to be $10 to $50 per residential application. In the commercial sector and food processing segment of the industry sector, refrigerant heat recovery could reduce total energy consumption by about 0.28 x 10 to the 15th power Btu, with the major savings from applications in existing buildings.

  15. The Role of Capital Productivity in British Airways' Financial Recovery

    NASA Technical Reports Server (NTRS)

    Morrell, Peter

    1999-01-01

    British Airways (BA) was privatized in 1987, but its financial recovery occurred a number of years earlier, This recovery was sustained throughout the early 1990s economic recession, a period when few major airlines were operating profitably. This paper examines the role of productivity developments at British Airways from the early 1980s through 1996. The emphasis is on capital productivity and investment, but changes in capital intensity and labour productivity are also evaluated. Various measures are considered for both capital and labour productivity: outputs are measured in available tonne-kms (ATKs) and revenue tonne-kms (RTKs), with the former preferred over the latter two measures, after adjustment for work performed by BA for others. Capital inputs are measured in equivalent lease costs adjusted to constant prices with a different treatment of flight and ground equipment or assets. Labour inputs are derived from total payroll costs deflated by a UK wage price index. The airline made considerable capital investments over the period and at the same time went through two major processes of labour restructuring. This resulted in a gradual increase in capital intensity, relative high labour productivity growth, but poor capital productivity performance, However, capital investment played an important role in the airline's sustained labour and total factor productivity over the whole period.

  16. The Role of Capital Productivity in British Airways' Financial Recovery

    NASA Technical Reports Server (NTRS)

    Morrell, Peter

    1999-01-01

    British Airways (BA) was privatised in 1987, but its financial recovery occurred a number of years earlier. This recovery was sustained throughout the early 1990s economic recession, a period when few major airlines were operating profitably. This paper examines the role of productivity developments at British Airways from the early 1980s through 1996. The emphasis is on capital productivity and investment, but changes in capital intensity and labour productivity are also evaluated. Various measures are considered for both capital and labour productivity: outputs are measured in available tonne-kms (ATKS) and revenue tonne-kms (RTKs), with the former preferred over the latter two measures, after adjustment for work performed by BA for others. Capital inputs are measured in equivalent lease costs adjusted to constant prices with a different treatment of flight and ground equipment or assets. Labour inputs are derived from total payroll costs deflated by a UK wage price index. The airline made considerable capital investments over the period and at the same time went through two major processes of labour restructuring. This resulted in a gradual increase in capital intensity, relative high labour productivity growth, but poor capital productivity performance. However, capital investment played an important role in the airline's sustained labour and total factor productivity over the whole period.

  17. Extremely low-frequency magnetic fields can impair spermatogenesis recovery after reversible testicular damage induced by heat.

    PubMed

    Tenorio, Bruno Mendes; Ferreira Filho, Moisés Bonifacio Alves; Jimenez, George Chaves; de Morais, Rosana Nogueira; Peixoto, Christina Alves; Nogueira, Romildo de Albuquerque; da Silva Junior, Valdemiro Amaro

    2014-06-01

    Male infertility is often related to reproductive age couples experiencing fertility-related issues. Men may have fertility problems associated with reversible testicular damage. Considering that men have been increasingly exposed to extremely low-frequency magnetic fields generated by the production, distribution and use of electricity, this study analyzed whether 60 Hz and 1 mT magnetic field exposure may impair spermatogenesis recovery after reversible testicular damage induced by heat shock using rats as an experimental model. Adult male rats were subjected to a single testicular heat shock (HS, 43 °C for 12 min) and then exposed to the magnetic field for 15, 30 and 60 d after HS. Magnetic field exposure during the spermatogenesis recovery induced changes in testis components volume, cell ultrastructure and histomorphometrical parameters. Control animals had a reestablished and active spermatogenesis at 60 d after heat shock, while animals exposed to magnetic field still showed extensive testicular degeneration. Magnetic field exposure did not change the plasma testosterone. In conclusion, extremely low-frequency magnetic field may be harmful to fertility recovery in males affected by reversible testicular damage. PMID:23781997

  18. Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery

    SciTech Connect

    Jun, Y.D.; Lee, K.B.; Islam, S.Z.; Ko, S.B.

    2008-07-01

    In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulate and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.

  19. Optimization of Thermoelectric Components for Automobile Waste Heat Recovery Systems

    NASA Astrophysics Data System (ADS)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.

    2015-10-01

    For a typical spark ignition engine approximately 40% of available thermal energy is lost as hot exhaust gas. To improve fuel economy, researchers are currently evaluating technology which exploits exhaust stream thermal power by use of thermoelectric generators (TEGs) that operate on the basis of the Seebeck effect. A 5% improvement in fuel economy, achieved by use of TEG output power, is a stated objective for light-duty trucks and personal automobiles. System modeling of thermoelectric (TE) components requires solution of coupled thermal and electric fluxes through the n and p-type semiconductor legs, given appropriate thermal boundary conditions at the junctions. Such applications have large thermal gradients along the semiconductor legs, and material properties are highly dependent on spatially varying temperature profiles. In this work, one-dimensional heat flux and temperature variations across thermoelectric legs were solved by using an iterative numerical approach to optimize both TE module and TEG designs. Design traits were investigated by assuming use of skutterudite as a thermoelectric material with potential for automotive applications in which exhaust gas and heat exchanger temperatures typically vary from 100°C to over 600°C. Dependence of leg efficiency, thermal fluxes and electric power generation on leg geometry, fill fractions, electric current, thermal boundary conditions, etc., were studied in detail. Optimum leg geometries were computed for a variety of automotive exhaust conditions.

  20. Application of matrix heat exchangers to thermomechanical exergy recovery from liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Ahuja, Vikas; Green, Roger

    This paper reports the outcome of a project aimed at exploring thermomechanical exergy recovery from liquid hydrogen. The basis of this project was the conceptual design, development and testing of a new process for CO 2 removal from air for use in alkaline fuel cells operating with hydrogen stored as a liquid, addressing simultaneously: thermomechanical exergy recovery from liquid hydrogen, and its application to CO 2 removal from atmospheric air. This project was an attempt to address these issues by using the cooling available from the vaporisation of liquid hydrogen and/or boil-off vapour, to remove CO 2 from the alkaline fuel cell feed air by refrigeration purification, ie. by freezing the CO 2 out of the air. A schematic description of the process and an energy balance for refrigeration purification for the CO 2 removal are presented, showing that the process relies on high effectiveness heat exchangers and water re-vaporisation. The high effectiveness heat transfer is achieved using perforated plate matrix heat exchangers. Implicit in this work were: The development of a new sizing procedure for matrix heat exchangers based on an approximate analytical solution for their performance, published recently in this journal. The development of a new method for construction of perforated plate matrix heat exchangers. Experimental testing of matrix heat exchanger performance. The application of matrix heat exchangers to mass transfer, and their use as reversing heat exchangers. Certain questions relating to the recent analysis published in this journal are raised and modifications suggested. Experimental results of heat exchanger effectiveness tests and CO 2 removal tests showed that heat exchangers of the requisite effectiveness were designed and manufactured, and that the proposed process was successful in exergy recovery and CO 2 removal

  1. Recovery Act: Hybrid Geothermal Heat Pump Systems Research

    SciTech Connect

    Scott Paul Hackel; Amanda Pertzborn

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or “geothermal”) systems is the hybrid GSHP (HyGSHP) system. A HyGSHP system can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. We monitored and analyzed three buildings employing HyGSHP systems (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. The buildings were monitored for a year and the measured data was used to validate models of each system. Additionally, we used the models to analyze further improvements to the hybrid approach and established that it has positive impacts, both economically and environmentally. We also documented the lessons learned by those who design and operate the three systems, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, we described the measured data sets and models from this work and have made them freely available for further study of hybrid systems.

  2. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    SciTech Connect

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  3. Economical Recovery of By-products in the Mining Industry

    SciTech Connect

    Berry, J.B.

    2001-12-05

    The U.S. Department of Energy (DOE) Office of Industrial Technologies, Mining Industry of the Future Program, works with the mining industry to further the industry's advances toward environmental and economic goals. Two of these goals are (1) responsible emission and by-product management and (2) low-cost and efficient production (DOE 1998). DOE formed an alliance with the National Mining Association (NMA) to strengthen the basis for research projects conducted to benefit the mining industry. NMA and industry representatives actively participate in this alliance by evaluating project proposals and by recommending research project selection to DOE. Similarly, the National Research Council (NRC) has recently and independently recommended research and technology development opportunities in the mining industry (NRC 2001). The Oak Ridge National Laboratory (ORNL) and Colorado School of Mines engineers conducted one such project for DOE regarding by -product recovery from mining process residue. The results of this project include this report on mining industry process residue and waste with opportunity for by-product recovery. The U.S. mineral processing industry produces over 30,000,000 metric tons per year of process residue and waste that may contain hazardous species as well as valuable by-products. This study evaluates the copper, lead, and zinc commodity sectors which generate between 23,300,000 and 24,000,000 metric tons per year. The distribution of residual elements in process residues and wastes varies over wide ranges* because of variations in the original ore content as it is extracted from the earth's crust. In the earth's crust, the elements of interest to mining fall into two general geochemical classifications, lithophiles and chalcophiles** (Cox 1997). Groups of elements are almost always present together in a given geochemical classification, but the relative amounts of each element are unique to a particular ore body. This paper generally describes

  4. Natural analogs for enhanced heat recovery from geothermal systems

    SciTech Connect

    Nielson, D.L.

    1996-12-31

    High-temperature hydrothermal systems are physically and chemically zoned with depth. The energy input is from a magmatic zone, intruded by igneous bodies, that may also contribute variable amounts of magmatic fluid to the system. The heat source is directly overlain by a section of rocks, that due to their elevated temperature, respond to stress in a ductile fashion. The ductile zone is, in turn, overlain by a section of rocks that respond to stress in a brittle fashion, where water is able to circulate through fractures (the geothermal reservoir) and will be termed the hydrothermal circulation zone. Ancient and modern high-temperature geothermal systems show a predictable sequence of evolutionary events affecting these stratified zones. Metamorphic core complexes are uplifts, formed in highly extended terrains, that expose fossil brittle-ductile transition zones. Formerly ductile rocks have had brittle fractures superimposed on them, and meteoric hydrothermal systems are associated with the brittle fracturing. Porphyry copper deposits typically evolve from magmatic to meteoric hydrothermal systems. At the Larderello geothermal system, the brittle-ductile transition has been mapped using reflection seismology, and the zone has been penetrated by the San Pompeo 2 well where temperatures >420{degrees}C were encountered. Although neo-granitic dikes have been penetrated by drilling in the Larderello area, the brittle-ductile transition is largely above the inferred plutonic heat source. In the Geysers system, in contrast, the present steam system has been superimposed on young plutonic rocks and the inferred brittle-ductile transition is present at a depth of about 4.7 km within the plutonic rocks. As hydrothermal reservoirs are depleted, or surface facilities are restricted by environmental considerations, interest will turn to the deeper portions of known systems. Japan already has an aggressive program to develop Deep-Seated and Magma-Ambient resources.

  5. A mathematical model to predict the effect of heat recovery on the wastewater temperature in sewers.

    PubMed

    Dürrenmatt, David J; Wanner, Oskar

    2014-01-01

    Raw wastewater contains considerable amounts of energy that can be recovered by means of a heat pump and a heat exchanger installed in the sewer. The technique is well established, and there are approximately 50 facilities in Switzerland, many of which have been successfully using this technique for years. The planning of new facilities requires predictions of the effect of heat recovery on the wastewater temperature in the sewer because altered wastewater temperatures may cause problems for the biological processes used in wastewater treatment plants and receiving waters. A mathematical model is presented that calculates the discharge in a sewer conduit and the spatial profiles and dynamics of the temperature in the wastewater, sewer headspace, pipe, and surrounding soil. The model was implemented in the simulation program TEMPEST and was used to evaluate measured time series of discharge and temperatures. It was found that the model adequately reproduces the measured data and that the temperature and thermal conductivity of the soil and the distance between the sewer pipe and undisturbed soil are the most sensitive model parameters. The temporary storage of heat in the pipe wall and the exchange of heat between wastewater and the pipe wall are the most important processes for heat transfer. The model can be used as a tool to determine the optimal site for heat recovery and the maximal amount of extractable heat. PMID:24216228

  6. Co-product recovery from biomass during ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conversion of biomass to ethanol represents a sustainable alternative liquid fuel technology that does not need to compete with the supply of commodity crops such as corn and soybeans. Maintaining agricultural production of edible crops for the food supply and using agricultural waste or low inp...

  7. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    ERIC Educational Resources Information Center

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…

  8. Comparison of working fluids used in ORC waste heat recovery systems

    SciTech Connect

    Krazinski, J.L.; Buyco, E.H.; Bushby, H.M.

    1981-01-01

    The performance and cost of Organic Rankine Cycle (ORC) heat recovery systems are examined. The properties of seven working fluids are compared and their impact on system design investigated. A computer code was developed for conducting the necessary analysis. 12 refs.

  9. Evaluation of TA10 Broth for Recovery of Heat- and Freeze-Injured Salmonella from Beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Bacteriological Analytical Manual (BAM) Salmonella pre-enrichment broth (lactose [LAC] broth), buffered peptone water (BPW), and universal preenrichment (UP) broth were compared with TA10 broth, developed in our laboratory, for recovery of heat- and freeze-injured Salmonella (55ºC for 2-20 min a...

  10. Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery

    SciTech Connect

    Banerjee, A; Chandran, RB; Davidson, JH

    2015-01-22

    The present study presents an experimental study of a prototype counter-flow heat exchanger designed to recover sensible heat from inert and reactive gases flowing through a high temperature solar reactor for splitting CO2. The tube-in-tube heat exchanger is comprised of two concentric alumina tubes, each filled with reticulated porous alumina with a nominal porosity of 80% and pore density of 5 pores per inch (ppi). The RPC provides high heat transfer surface area per unit volume (917 m(-1)) with low pressure drop. Measurements include the permeability, inertial coefficient, overall heat transfer coefficient, effectiveness and pressure drop. For laminar flow and an inlet gas temperature of 1240 K, the overall heat transfer coefficients are 36-41 W m(-2) K-1. The measured performance is in good agreement with a prior CFD model of the heat exchanger. (C) 2014 Elsevier Ltd. All rights reserved.

  11. Waste heat recovery options in a large gas-turbine combined power plant

    NASA Astrophysics Data System (ADS)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  12. Water Recovery with the Heat Melt Compactor in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Goo, Jonathan; Fisher, John

    2015-01-01

    The Heat Melt Compactor is a proposed utility that will compact astronaut trash, extract the water for eventual re-use, and form dry square tiles that can be used as additional ionizing radiation shields for future human deep space missions. The Heat Melt Compactor has been under development by a consortium of NASA centers. The downstream portion of the device is planned to recover a small amount of water while in a microgravity environment. Drop tower low gravity testing was performed to assess the effect of small particles on a capillary-based water/air separation device proposed for the water recovery portion of the Heat Melt Compactor.

  13. Survey of literature on convective heat transfer coefficients and recovery factors for high atmosphere thermometry

    NASA Technical Reports Server (NTRS)

    Chung, S.

    1973-01-01

    Heat transfer phenomena of rarefied gas flows is discussed based on a literature survey of analytical and experimental rarefied gas dynamics. Subsonic flows are emphasized for the purposes of meteorological thermometry in the high atmosphere. The heat transfer coefficients for three basic geometries are given in the regimes of free molecular flow, transition flow, slip flow, and continuum flow. Different types of heat phenomena, and the analysis of theoretical and experimental data are presented. The uncertainties calculated from the interpolation rule compared with the available experimental data are discussed. The recovery factor for each geometry in subsonic rarefied flows is also given.

  14. Effects of solutes on damage production and recovery in zirconium

    SciTech Connect

    Zee, R.H.; Birtcher, R.C.; MacEwen, S.R.; Abromeit, C.

    1986-04-01

    Dilute zirconium-based alloys and pure zirconium were irradiated at 10 K with spallation neutrons at IPNS. Four types of alloys - Zr-Ti, Zr-Sn, Zr-Dy and Zr-Au - each with three concentration levels, were used. Low-temperature resistivity damage rates are enhanced by the presence of any of the four solutes. The greatest enhancement was produced by Au while the least by Dy. Within each alloy group, damage production also increased but at a decreasing rate, with increasing concentration. Post-irradiation annealing experiments, up to 400 K, showed that all four solutes suppress recovery due to interstitial migration, indicative of interstitial trapping by the solutes. Vacancy recovery is also suppressed by the presence of Sn, Dy or Au. The effect of Ti is to shift this stage to lower temperature. No clear correlation between the results with solute size was detected.

  15. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  16. Simulation of a waste incineration process with flue-gas cleaning and heat recovery sections using Aspen Plus.

    PubMed

    Cimini, Silvano; Prisciandaro, Marina; Barba, Diego

    2005-01-01

    In the present paper, the modeling of a dual-purpose plant for the production of electrical and thermal energy from the heat treatment of solid wastes is presented. Particularly, the process has been modeled by using the Aspen Plus Shell, with the aim of performing a study about the applicability of this software in the simulation of a solid waste incineration process, which involves complex gas-solid reactions where the solids are referred to as "non-conventional". The model is developed to analyze and quantify the expected benefits associated with refuse derived fuel (RDF) thermal utilization; thus attention is focused on the performance of the energy recovery section. PMID:15737714

  17. Heat and Products Induced by Plasma Electrolysis

    SciTech Connect

    Tadahiko Mizuno; Tadayoshi Ohmori; Tadashi Akimoto; Akito Takahashi

    2000-11-12

    Plasma is formed on an electrode surface when a metal cathode is polarized in high-voltage electrolysis in a liquid electrolyte. When a liquid electrolyte is polarized at high voltage (70 to 500 V), it gives rise to an electric discharge and a plasma state. We measured the output heat and input electric power in real time by a method that combined open cell isoperibolic calorimetry and flow calorimetry. Takahashi et al. hypothesize a nuclear reaction induced by photon activation on the cathode element. We have attempted to explain the experimental results by a mechanism that produces no radioactive materials or weak radioactive emission. We applied the Takahashi theory developed for Pd and Au electrodes to the case of a W electrode. We have first reported that the distribution for their reaction product showed clearly one or two peaks that consisted of the mass number around 52 for the case of Pd and 64 and 120 for Au. This paper mainly pertains to the metal electrode. With a tungsten electrode, one peak in the anomalous elements is for the major elements from 40 to 65, and the other is from 100 to 120. The total mass of elements generated during excess heat evolution was on the order of 1 mg. Based on this mass, according to conventional laws of fission and fusion, 'commensurate' heat would have been on the order of 10{sup 6} to 10{sup 7} J. The actual excess heat was typically estimated at 10{sup 5}-several orders of magnitude less than the expected value. It is still difficult to calculate the actual weight loss of the reactive material before and after the reaction. However, we can say that the total energy generated was much less than the value calculated from the produced weight. We conclude that the photofission mechanism explains the amount of excess heat and the distribution of the element generation during the electrochemical treatment.

  18. Test and evaluation of the heat recovery incinerator system at Naval Station, Mayport, Florida

    NASA Astrophysics Data System (ADS)

    1981-05-01

    This report describes test and evaluation of the two-ton/hr heat recovery incinerator (HRI) facility located at Mayport Naval Station, Fla., carried out during November and December 1980. The tests included: (1) Solid Waste: characterization, heating value, and ultimate analysis, (2) Ash: moisture, combustibles, and heating values of both bottom and cyclone ashes; Extraction Procedure toxicity tests on leachates from both bottom and cyclone ashes; trace metals in cyclone particulates, (3) Stack Emissions: particulates (quantity and size distribution), chlorides, oxygen, carbon dioxide, carbon monoxide, and trace elements, and (4) Heat and Mass Balance: all measurements required to carry out complete heat and mass balance calculations over the test period. The overall thermal efficiency of the HRI facility while operating at approximately 1.0 ton/hr was found to be 49% when the primary Btu equivalent of the electrical energy consumed during the test program was included.

  19. Non-Heat Treatable Alloy Sheet Products

    SciTech Connect

    Hayden, H.W.; Barthold, G.W.; Das, S.K.

    1999-08-01

    ALCAR is an innovative approach for conducting multi-company, pre-competitive research and development programs. ALCAR has been formed to crate a partnership of aluminum producers, the American Society of Mechanical Engineers Center for Research and Technology Development (ASME/CRTD), the United States Department of Energy (USDOE), three USDOE National Laboratories, and a Technical Advisory Committee for conducting cooperative, pre-competitive research on the development of flower-cost, non-heat treated (NHT) aluminum alloys for automotive sheet applications with strength, formability and surface appearance similar to current heat treated (HT) aluminum alloys under consideration. The effort has been supported by the USDOE, Office of Transportation Technology (OTT) through a three-year program with 50/50 cost share at a total program cost of $3 million. The program has led to the development of new and modified 5000 series aluminum ally compositions. Pilot production-size ingots have bee n melted, cast, hot rolled and cold rolled. Stamping trials on samples of rolled product for demonstrating production of typical automotive components have been successful.

  20. Energy recovery from solid waste. [production engineering model

    NASA Technical Reports Server (NTRS)

    Dalton, C.; Huang, C. J.

    1974-01-01

    A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.

  1. A high performance cocurrent-flow heat pipe for heat recovery applications

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hartl, J. C.

    1980-01-01

    By the introduction of a plate-and-tube separator assembly into a heat pipe vapor core, it has been demonstrated that axial transport capacity in reflux mode can be improved by up to a factor of 10. This improvement is largely the result of eliminating the countercurrent shear that commonly limits reflux heat pipe axial capacity. With benzene, axial heat fluxes up to 1800 W/sq cm were obtained in the temperature range 40 to 80 C, while heat flux densities up to 3000 W/sq cm were obtained with R-11 over the temperature range 40 to 80 C. These very high axial capacities compare favorably with liquid metal limits; the sonic limit for liquid sodium, for example, is 3000 W/sq cm at 657 C. Computational models developed for these cocurrent flow heat pipes agreed with experimental data within + or - 25%.

  2. Optimal recovery of the solution of the heat equation from inaccurate data

    SciTech Connect

    Magaril-Il'yaev, G G; Osipenko, Konstantin Yu

    2009-06-30

    The problem of optimal recovery of the solution of the heat equation in the entire space at a fixed instant of time from inaccurate observations of this solution at some other instants of time is investigated. Explicit expressions for an optimal recovery method and its error are given. The solution of a similar problem with a priori information about the temperature distribution at some instants of time is also given. In all cases the optimal method uses information about at most two observations. Bibliography: 22 titles.

  3. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    NASA Astrophysics Data System (ADS)

    Myat, Aung; Thu, Kyaw; Kim, Young-Deuk; Choon, Ng Kim

    2012-06-01

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

  4. Heating of domestic water by waste heat recovery from household refrigerating equipment

    NASA Astrophysics Data System (ADS)

    Reil, J.; Kaster, B.; Wegner, M.

    1982-09-01

    Heat from a 370 l deep freeze was used to heat water in a 250 l boiler. Both units were made from mass produced components. Tests show that the functions of cooling and deep freezing units can be effectively combined with one warm water boiler. The necessary expenditure for the appliance is, however, only economical with deep freezing units because with normal domestic refrigerators the amount of waste heat is too small. The economy of the unit could be considerably increased by the development of a mass produced motor compressor with a sufficiently large oil cooler to accomplish an optimum thermal insulation of the motor compressor surface area.

  5. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    SciTech Connect

    Tomlinson, John J; Christian, Jeff; Gehl, Anthony C

    2012-09-01

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the

  6. Characterization of Heat Melt Compactor (HMC) Product Water

    NASA Technical Reports Server (NTRS)

    Harris, Linden; Wignarajah, Kanapathipi; Alba, Richard Gilbert; Pace, Gregory S.; Fisher, John W.

    2013-01-01

    The Heat Melt Compactor (HMC) is designed to sterilize and process wastes produced during space missions. Benefits of the HMC include reduction of biohazards to the crew, reduction in volume of wastes that would otherwise require storage, production of radiation shielding tiles, and recovery of water and other resources. Water reuse is critical onboard spacecrafts; it reduces the need for resupply missions and saves valuable storage space. The main sources of water in HMC batches are food, beverages, shampoo, disinfecting wipes, toothpaste, and diapers. Water reclaimed by the HMC was analyzed for concentrations of Na+, NH4+, K+, Mg2+, Ca2+, Cl-­-, NO2-­-, Br-­-, NO3-­-, PO43-­-, SO42-­-, total organic carbon (TOC), total inorganic carbon (TIC), % total solids, and pH. The data are discussed in relation to the current water input characteristics established for the International Space Station Water Processor Assembly system. Batches with higher than average amounts of food produced HMC product water with higher sulfate content, and batches with higher proportions of disinfectant wipes and food yielded HMC product water with higher ammonium concentration. We also compared theoretical chemical composition of HMC product water based on food labels and literature values to experimental results.

  7. Recovery of exhaust waste heat for a hybrid car using steam turbine

    NASA Astrophysics Data System (ADS)

    Ababatin, Yasser

    A number of car engines operate with an efficiency rate of approximately 22% to 25% [1]. The remainder of the energy these engines generate is wasted through heat escape out of the exhaust pipe. There is now an increasing desire to reuse this heat energy, which would improve the overall efficiency of car engines by reducing their consumption of fuel. Another benefit is that such reuse would minimize harmful greenhouse gases that are emitted into the environment. Therefore, the purpose of this project is to examine how the wasted heat energy can be reused and/or recovered by use of a heat recovery system that would store this energy in a hybrid car battery. Green turbines will be analyzed as a possible solution to recycle the lost energy in a way that will also improve the overall automotive energy efficiency.

  8. Preliminary market assessment of fluidized-bed waste-heat recovery technology

    SciTech Connect

    Campos, F.T.; Fey, C.L.; Grogan, P.J.; Klein, N.P.

    1980-06-01

    A preliminary assessment of fluidized-bed waste-heat recovery (FBWHR) system market potential is presented with emphasis on the factors influencing industrial acceptability. Preliminary market potential areas are identified based on the availability of waste heat. Trends in energy use are examined to see the effect they might have on these market potential areas in the future. Focus groups interviews are used to explore important factors in the industrial decision-making process. These important factors are explored quantitatively in a survey of industrial plant engineers. The survey deals with the waste-heat boiler configuration of the FBWHR system. Results indicate market acceptance of the fluidized-bed waste-heat boiler could be quite low.

  9. Predicting the performance and cost of ORC waste-heat-recovery systems

    SciTech Connect

    Krazinski, J.L.; Bushby, H.M.; Buyco, E.H.

    1981-01-01

    Organic Rankine Cycle (ORC) systems have been designed and tested for the recovery of waste heat from low-temperature sources. These systems use organic working fluids, rather than steam, in the cycle. A computer code was developed to predict the power outputs and costs of these systems. Six organic fluids and steam are considered in this paper. The thermophysical properties of the seven fluids are compared and their impact upon the system design is discussed. System costs are presented for exhaust-gas heat sources with maximum temperatures of 500 to 1000F. The power outputs in these cases range from approximately 500 kW to 2500 kW. Certain organic fluids are restricted to the lower-heat-source temperatures because of thermal-stability limitations. For the heat-source temperatures at which the various fluids were used, however, similar system costs and power-output levels were obtained for the six organic fluids.

  10. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    SciTech Connect

    Donna Post Guillen

    2012-11-01

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  11. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  12. Method for recovery of viscous hydrocarbons by electromagnetic heating in situ

    SciTech Connect

    Sresty, G.C.; Bridges, J.E.; Dev, H.; Snow, R.H.

    1984-12-04

    A method of electromagnetic heating in situ recovers liquid hydrocarbons from an earth formation containing viscous hydrocarbonaceous liquid and water in an inorganic matrix where the formation is substantially impermeable to fluids under native conditions. A block of earth formation is substantially uniformly heated with electromagnetic power to a temperature at which the viscous hydrocarbonaceous liquid is relatively fluid and a portion of the water vaporizes to water vapor at a pressure sufficient to overcome the capillary pressure of the liquid in the matrix. Water vapor thereupon escaping from the block under such pressure is recovered with hydrocarbonaceous liquid driven thereby. The magnitude of the electromagnetic power is controlled to limit the current recovery ratio of water vapor to hydrocarboneous liquid below a predetermined limit assuring substantial recovery of the hydrocarbonaceous liquid prior to the driving off of substantially all the water.

  13. Analysis of possibilities of waste heat recovery in off-road vehicles

    NASA Astrophysics Data System (ADS)

    Wojciechowski, K. T.; Zybala, R.; Leszczynski, J.; Nieroda, P.; Schmidt, M.; Merkisz, J.; Lijewski, P.; Fuc, P.

    2012-06-01

    The paper presents the preliminary results of the waste heat recovery investigations for an agricultural tractor engine (7.4 dm3) and excavator engine (7.2 dm3) in real operating conditions. The temperature of exhaust gases and exhaust mass flow rate has been measured by precise portable exhaust emissions analyzer SEMTECH DS (SENSORS Inc.). The analysis shows that engines of tested vehicles operate approximately at constant speed and load. The average temperature of exhaust gases is in the range from 300 to 400 °C for maximum gas mass flows of 1100 kg/h and 1400 kg/h for tractor and excavator engine respectively. Preliminary tests show that application of TEGs in tested off-road vehicles offers much more beneficial conditions for waste heat recovery than in case of automotive engines.

  14. 75 FR 33379 - Railroad Cost Recovery Procedures-Productivity Adjustment; Quarterly Rail Cost Adjustment Factor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... Surface Transportation Board Railroad Cost Recovery Procedures--Productivity Adjustment; Quarterly Rail... Railroads that the Board restate the previously published productivity adjustment for the 2003-2007 averaging period (2007 productivity adjustment) so that it tracks the 2007 productivity adjustment...

  15. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    SciTech Connect

    Hendricks, Terry; Choate, William T.

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  16. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation and Topological Studies

    NASA Astrophysics Data System (ADS)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-06-01

    A comprehensive numerical model has been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details of the model and results from the analysis of General Motors' prototype TEG were described in part I of the study. In part II of this study, parametric evaluations are considered to assess the influence of heat exchanger, geometry, and thermoelectric module configurations to achieve optimization of the baseline model. The computational tool is also adapted to model other topologies such as transverse and circular configurations (hexagonal and cylindrical) maintaining the same volume as the baseline TEG. Performance analysis of these different topologies and parameters is presented and compared with the baseline design.

  17. Comparison of working fluids used in ORC waste-heat-recovery systems

    SciTech Connect

    Krazinski, J.L.; Buyco, E.H.; Bushby, H.M.

    1981-01-01

    The performance and cost of Organic Rankine cycle (ORC) heat-recovery systems are examined in the present paper. The properties of seven working fluids are compared and their impact on system design investigated. A computer code was developed for conducting the necessary analysis. Modeling of the major hardware components and the approach taken in calculating their costs are discussed. The paper describes the methodology used in the thermodynamic and economic analysis. Predicted system costs are given for several heat-source temperatures. Trade-offs which must be considered when evaluating the working fluids are also discussed.

  18. Application of fuel cells with heat recovery for integrated utility systems

    NASA Technical Reports Server (NTRS)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  19. Electromagnetic Induction Heat Generation of Nano-ferrofluid and Other Stimulants for Heavy Oil Recovery

    NASA Astrophysics Data System (ADS)

    Pramana, A. A.; Abdassah, D.; Rachmat, S.; Mikrajuddin, A.

    2010-10-01

    Nano-ferrofluid and graphite-fluid are proposed to be used as stimulants for heavy oil recovery processes using electromagnetic induction. The heat generation in the stimulants will be used for reducing the viscosity of heavy oil. The temperature increase of the stimulants are observed with the presence of electromagnetic induction. These increments are better compared to those of the varying concentration of salt water (brine) usually exist in the oil reservoir.

  20. Thermoelectric Exhaust Heat Recovery with Heat Pipe-Based Thermal Control

    NASA Astrophysics Data System (ADS)

    Brito, F. P.; Martins, Jorge; Hançer, Esra; Antunes, Nuno; Gonçalves, L. M.

    2015-06-01

    Heat pipe (HP)-based heat exchangers can be used for very low resistance heat transfer between a hot and a cold source. Their operating temperature depends solely on the boiling point of their working fluid, so it is possible to control the heat transfer temperature if the pressure of the HP can be adjusted. This is the case of the variable conductance HPs (VCHP). This solution makes VCHPs ideal for the passive control of thermoelectric generator (TEG) temperature levels. The present work assesses, both theoretically and experimentally, the merit of the aforementioned approach. A thermal and electrical model of a TEG with VCHP assist is proposed. Experimental results obtained with a proof of concept prototype attached to a small single-cylinder engine are presented and used to validate the model. It was found that the HP heat exchanger indeed enables the TEG to operate at a constant, optimal temperature in a passive and safe way, and with a minimal overall thermal resistance, under part load, it effectively reduces the active module area without deprecating the temperature level of the active modules.

  1. Heat recovery steam generator outlet temperature control system for a combined cycle power plant

    SciTech Connect

    Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

    1986-04-01

    This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

  2. MHD heat and seed recovery technology project. Eighth quarterly report, October-December 1979

    SciTech Connect

    Petrick, M.; Johnson, T. R.

    1980-08-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The work is being done in close cooperation with the Heat Recovery-Seed Recovery facilities, which will be 20-MW prototypes of the MHD steam bottoming system. The primary effort of the HSR Technology Project is directed toward experimental investigations of critical issues, such as (1) NO/sub x/ behavior in the radiant boiler and secondary combustor; (2) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed-slag separation; (3) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; (4) formation, growth, and deposition of the seed-slag particles; (5) character of the combustion gas effluents; and (6) the corrosion and erosion of ceramic and metallic materials of construction. These investigations are performed primarily in a 2-MW test facility, Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system. Activities are reported.

  3. Kinetics of recovery and recystallization of the large heat of V-4Cr-4Ti

    SciTech Connect

    Gubbi, A N; Rowcliffe, A F; Eatherly, W S; Gibson, L T

    1996-04-01

    A series of slow cycle and rapid cycle anneals was carried out in the large heat of V-4Cr-4Ti alloy (heat 832665). Also, a differential scanning calorimetry (DSC) study was initiated on the samples of the same alloy. The recovery and recrystallization phenomena of V-4Cr-4Ti in slow cycle annealing were quite different from that observed in rapid cycle annealing. The large driving force for recrystallization due to rapid heating resulted in the first nuclei appearing after only 1 minute of 1000{degrees}C. There was a two-stage hardness reduction; the first stage involved recovery due to cell formation and annihilation of dislocation, and second stage was associated with the growth of recrystallization nuclei. This is consistent with results obtained from the DSC in which there was a broad exothermic peak from {approx}200 to 800{degrees}C due to recovery followed by a sharp exotherm associated with recrystallization. The activation energy for recrystallization for V-4Cr-4Ti, which was determined at 576 {+-} 75, kJ/mole is significantly higher than that for pure V, and is thought to be related to Ti and Cr in solid solution.

  4. Combined effect of ohmic heating and enzyme assisted aqueous extraction process on soy oil recovery.

    PubMed

    Pare, Akash; Nema, Anurag; Singh, V K; Mandhyan, B L

    2014-08-01

    This research describes a new technological process for soybean oil extraction. The process deals with the combined effect of ohmic heating and enzyme assisted aqueous oil extraction process (EAEP) on enhancement of oil recovery from soybean seed. The experimental process consisted of following basic steps, namely, dehulling, wet grinding, enzymatic treatment, ohmic heating, aqueous extraction and centrifugation. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on aqueous oil extraction process were investigated. Three levels of electric field strength (i.e. OH600V, OH750V and OH900V), 3 levels of end point temperature (i.e. 70, 80 and 90 °C) and 3 levels of holding time (i.e. 0, 5 and 10 min.) were taken as independent variables using full factorial design. Percentage oil recovery from soybean by EAEP alone and EAEP coupled with ohmic heating were 53.12 % and 56.86 % to 73 % respectively. The maximum oil recovery (73 %) was obtained when the sample was heated and maintained at 90 °C using electric field strength of OH600V for a holding time of 10 min. The free fatty acid (FFA) of the extracted oil (i.e. in range of 0.97 to 1.29 %) was within the acceptable limit of 3 % (oleic acid) and 0.5-3 % prescribed respectively by PFA and BIS. PMID:25114355

  5. Thermodynamic Analysis of Blast Furnace Slag Waste Heat-Recovery System Integrated with Coal Gasification

    NASA Astrophysics Data System (ADS)

    Duan, W. J.; Li, P.; Lei, W.; Chen, W.; Yu, Q. B.; Wang, K.; Qin, Q.

    2015-05-01

    The blast furnace (BF) slag waste heat was recovered by an integrated system stage by stage, which combined a physical and chemical method. The water and coal gasification reactions were used to recover the heat in the system. Based on the first and second law of thermodynamics, the thermodynamic analysis of the system was carried out by the enthalpy-exergy diagram. The results showed that the concept of the "recovery-temperature countercurrent, energy cascade utilization" was realized by this system to recover and use the high-quality BF slag waste heat. In this system, the high-temperature waste heat was recovered by coal gasification and the relatively low-temperature waste heat was used to produce steam. The system's exergy and thermal recycling efficiency were 52.6% and 75.4%, respectively. The exergy loss of the integrated system was only 620.0 MJ/tslag. Compared with the traditional physical recycling method producing steam, the exergy and thermal efficiencies of the integrated system were improved significantly. Meanwhile, approximately 182.0 m3/tslag syngas was produced by coal gasification. The BF slag waste heat will be used integrally and efficiently by the integrated system. The results provide the theoretical reference for recycling and using the BF slag waste heat.

  6. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  7. Model of Heat Exchangers for Waste Heat Recovery from Diesel Engine Exhaust for Thermoelectric Power Generation

    NASA Astrophysics Data System (ADS)

    Baker, Chad; Vuppuluri, Prem; Shi, Li; Hall, Matthew

    2012-06-01

    The performance and operating characteristics of a hypothetical thermoelectric generator system designed to extract waste heat from the exhaust of a medium-duty turbocharged diesel engine were modeled. The finite-difference model consisted of two integrated submodels: a heat exchanger model and a thermoelectric device model. The heat exchanger model specified a rectangular cross-sectional geometry with liquid coolant on the cold side, and accounted for the difference between the heat transfer rate from the exhaust and that to the coolant. With the spatial variation of the thermoelectric properties accounted for, the thermoelectric device model calculated the hot-side and cold-side heat flux for the temperature boundary conditions given for the thermoelectric elements, iterating until temperature and heat flux boundary conditions satisfied the convection conditions for both exhaust and coolant, and heat transfer in the thermoelectric device. A downhill simplex method was used to optimize the parameters that affected the electrical power output, including the thermoelectric leg height, thermoelectric n-type to p-type leg area ratio, thermoelectric leg area to void area ratio, load electrical resistance, exhaust duct height, coolant duct height, fin spacing in the exhaust duct, location in the engine exhaust system, and number of flow paths within the constrained package volume. The calculation results showed that the configuration with 32 straight fins was optimal across the 30-cm-wide duct for the case of a single duct with total height of 5.5 cm. In addition, three counterflow parallel ducts or flow paths were found to be an optimum number for the given size constraint of 5.5 cm total height, and parallel ducts with counterflow were a better configuration than serpentine flow. Based on the reported thermoelectric properties of MnSi1.75 and Mg2Si0.5Sn0.5, the maximum net electrical power achieved for the three parallel flow paths in a counterflow arrangement was 1

  8. Turbulent boundary layer heat transfer experiments: Convex curvature effects including introduction and recovery

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1982-01-01

    Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.

  9. Characteristics of MSW and heat energy recovery between residential and commercial areas in Seoul.

    PubMed

    Yi, Sora; Yoo, Kee-Young; Hanaki, Keisuke

    2011-03-01

    This paper analyzes the amount and characteristics of municipal solid waste (MSW) according to the inhabitant density of population and the business concentration in 25 districts in Seoul. Further, the heat energy recovery and avoided CO(2) emissions of four incineration plants located in residential and commercial areas in Seoul are examined. The amount of residential waste per capita tended to increase as the density of inhabitants decreased. The amount of commercial waste per capita tended to increase as the business concentration increased. The examination of the heat energy recovery characteristics indicated that the four incineration plants produced heat energy that depended on residential or commercial areas based on population and business. The most important result regarding avoided CO(2) emissions was that commercial areas with many office-type businesses had the most effective CO(2) emission savings by combusting 1 kg of waste. Assuming the full-scale operation of the four incineration plants, the amount of saved CO(2) emissions per year was 444 Gg CO(2) and 57,006 households in Seoul can be provided with heat energy equivalent to 542,711 Nm(3) of LNG. PMID:20933381

  10. Electrocaloric cooling: The importance of electric-energy recovery and heat regeneration

    NASA Astrophysics Data System (ADS)

    Plaznik, U.; Vrabelj, M.; Kutnjak, Z.; Malič, B.; Poredoš, A.; Kitanovski, A.

    2015-09-01

    Here we explore the effect of electric-energy recovery and heat regeneration on the energy efficiency of an electrocaloric-cooling system. Furthermore, the influence of the polarization-electric field hysteresis on the energy efficiency of the system is analysed. For the purposes of the analysis, the properties of (1 - x)Pb(Mg1/3Nb2/3)O3-x PbTiO3 (PMN-100xPT) with x = 0, x=0.1 , and x=0.35 are characterized. We show that if no heat is regenerated, even small irreversibilities in the electric circuit used to recover the electric energy can cause a significant drop in the achievable energy efficiency. On the other hand, when a heat regeneration process is considered and a realistic value for the degree of electric-energy recovery equal to 80% is assumed, the limit for the energy efficiency of a system employing PMN ceramics is estimated to be equal to 81% of the efficiency of a Carnot heat pump.

  11. Energy recovery by production of fuel from citrus wastes

    SciTech Connect

    Wesley Clark, C.

    1982-05-01

    A study to determine how much energy can be recovered from a Florida citrus processing plant was conducted. The production of ethyl alcohol in particular was examined as it is thought to represent the greatest potential for immediate energy recovery. Three-fourths of the energy expended to produce, harvest, process and market a box of fruit was recoverable using existing technology, i.e. 78,500 Btu/ box of fruit recoverable from a total energy expenditure of 107,800 Btu/ box of fruit. Aside from the actual cost benefits of recovering energy in the form of ethanol, the food processor is also helping to reduce the foreign-oil imports by the blending of ethyl alcohol with unleaded gasoline to form gasohol.

  12. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  13. Use of a turboexpander in steam power units for heat energy recovery in heat supply systems

    NASA Astrophysics Data System (ADS)

    Sadykov, R. A.; Daminov, A. Z.; Solomin, I. N.; Futin, V. A.

    2016-05-01

    A method for raising the efficiency of a boiler plant by installing a unit operating by the organic Rankine cycle is presented. Such units allow one to generate electricity to cover the auxiliaries of a heat source at a heat-transfer fluid temperature of no more than 130°C. The results of commissioning tests of boilers revealed that their efficiency is maximized under a load that is close or corresponds to the nominal one. If this load is maintained constantly, excess heat energy is produced. This excess may be used to generate electric energy in a steam power unit with a turboexpander. A way to insert this unit into the flow diagram of a boiler plant is proposed. The results of analysis of turbine types (turboexpanders included) with various capacities are presented, and the optimum type for the proposed flow diagram is chosen. The methodology for the design of turboexpanders and compressors used in the oil and gas industry and their operational data were applied in the analysis of a turboexpander. The results of the thermogasdynamic analysis of a turboexpander and the engineered shape of an axial-radial impeller are presented. Halocarbon R245fa is chosen as the working medium based on its calorimetric properties.

  14. Considerations concerning the physical heat-recovery of raw coke-oven gas in an industrial pilot-station

    SciTech Connect

    Paunescu, L.; Gaba, A.

    1998-12-31

    The paper presents the conception and realization obtained by the research team at the Metallurgical Researches Institute in an industrial pilot-station on the field of the physical heat-recovery of raw coke-oven gas.

  15. Recovery of Heat Treated Bacillus cereus Spores Is Affected by Matrix Composition and Factors with Putative Functions in Damage Repair

    PubMed Central

    Warda, Alicja K.; Tempelaars, Marcel H.; Abee, Tjakko; Nierop Groot, Masja N.

    2016-01-01

    The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth. Data show that not only media composition but also its liquid or solid state affect the recovery of heat treated spores. To determine the impact of factors with putative roles in recovery of heat treated spores, specific genes previously shown to be highly expressed in outgrowing heat-treated spores were selected for mutant construction. Spores of nine B. cereus ATCC 14579 deletion mutants were obtained and their recovery from wet heat treatment was evaluated using BHI and rice broth and agar plates. Deletion mutant spores showed different capacity to recover from heat treatment compared to wild type with the most pronounced effect for a mutant lacking BC5242, a gene encoding a membrane protein with C2C2 zinc finger which resulted in over 95% reduction in recovery compared to the wild type in BHI broth. Notably, similar relative performance of wild type and mutants was observed using the other recovery conditions. We obtained insights on the impact of matrix composition and state on recovery of individually sorted heat treated spores and identified cellular factors with putative roles in this process. These results may provide leads for future developments in design of more efficient combined preservation treatments. PMID:27486443

  16. Recovery of Heat Treated Bacillus cereus Spores Is Affected by Matrix Composition and Factors with Putative Functions in Damage Repair.

    PubMed

    Warda, Alicja K; Tempelaars, Marcel H; Abee, Tjakko; Nierop Groot, Masja N

    2016-01-01

    The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth. Data show that not only media composition but also its liquid or solid state affect the recovery of heat treated spores. To determine the impact of factors with putative roles in recovery of heat treated spores, specific genes previously shown to be highly expressed in outgrowing heat-treated spores were selected for mutant construction. Spores of nine B. cereus ATCC 14579 deletion mutants were obtained and their recovery from wet heat treatment was evaluated using BHI and rice broth and agar plates. Deletion mutant spores showed different capacity to recover from heat treatment compared to wild type with the most pronounced effect for a mutant lacking BC5242, a gene encoding a membrane protein with C2C2 zinc finger which resulted in over 95% reduction in recovery compared to the wild type in BHI broth. Notably, similar relative performance of wild type and mutants was observed using the other recovery conditions. We obtained insights on the impact of matrix composition and state on recovery of individually sorted heat treated spores and identified cellular factors with putative roles in this process. These results may provide leads for future developments in design of more efficient combined preservation treatments. PMID:27486443

  17. Prior Heat Stress Effects Fatigue Recovery of the Elbow Flexor Muscles

    PubMed Central

    Iguchi, Masaki; Shields, Richard K.

    2011-01-01

    Introduction Long-lasting alterations in hormones, neurotransmitters and stress proteins after hyperthermia may be responsible for the impairment in motor performance during muscle fatigue. Methods Subjects (n = 25) performed a maximal intermittent fatigue task of elbow flexion after sitting in either 73 or 26 deg C to examine the effects of prior heat stress on fatigue mechanisms. Results The heat stress increased the tympanic and rectal temperatures by 2.3 and 0.82 deg C, respectively, but there was full recovery prior to the fatigue task. While prior heat stress had no effects on fatigue-related changes in volitional torque, EMG activity, torque relaxation rate, MEP size and SP duration, prior heat stress acutely increased the pre-fatigue relaxation rate and chronically prevented long-duration fatigue (p < 0.05). Discussion These findings indicate that prior passive heat stress alone does not alter voluntary activation during fatigue, but prior heat stress and exercise produce longer-term protection against long-duration fatigue. PMID:21674526

  18. Exergy analysis of the Szewalski cycle with a waste heat recovery system

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Tomasz; Ziółkowski, Paweł; Badur, Janusz

    2015-09-01

    The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90 °C, for a supercritical power block of 900 MWel fuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid - organic working fluid - as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.

  19. Studies on the effect of ohmic heating on oil recovery and quality of sesame seeds.

    PubMed

    Kumari, Kirti; Mudgal, V D; Viswasrao, Gajanan; Srivastava, Himani

    2016-04-01

    This research describes a new technological process for sesame oil extraction. The process deals with the effect of ohmic heating on enhancement of oil recovery and quality of cleaned and graded sesame seed. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on oil extraction process were investigated. Three levels of electric field strength (600, 750 and 900 V/m), end point temperature (65, 75 and 85 °C) and holding time (5, 10 and 15 min.) were taken as independent variables using full factorial design. Percentage oil recovered from sesame seed through mechanical extracted oil by application of ohmic heating varies from 39.98 to 43.15 %. The maximum oil recovery 43.15 % was obtained when the sample was heated and maintained at 85 °C using EFS of 900 V/m for a holding time of 10 min as against 34.14 % in control sample. The free fatty acid (FFA) of the extracted oil was within the acceptable limit (1.52 to 2.26 % oleic acid) of 0.5 to 3 % as prescribed respectively by Prevention of Food Adulteration (PFA) and Bureau of Indian Standards (BIS). The peroxide value of extracted oil was also found within the acceptable limit (0.78 to 1.01 meq/kg). The optimum value for maximum oil recovery, minimum residual oil content, free fatty acid (FFA) and peroxide value were 41.24 %, 8.61 %, 1.74 % oleic acid and 0.86 meq/kg, respectively at 722.52 V/m EFS at EPT 65 °C for 5 min. holding time which was obtained by response surface methodology. PMID:27413228

  20. Brain mapping after prolonged cycling and during recovery in the heat

    PubMed Central

    De Pauw, Kevin; Roelands, Bart; Marušič, Uroš; Tellez, Helio Fernandez; Knaepen, Kristel

    2013-01-01

    The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min−1·kg−1) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing. PMID:23990240

  1. Brain mapping after prolonged cycling and during recovery in the heat.

    PubMed

    De Pauw, Kevin; Roelands, Bart; Marusic, Uros; Tellez, Helio Fernandez; Knaepen, Kristel; Meeusen, Romain

    2013-11-01

    The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min(-1)·kg(-1)) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing. PMID:23990240

  2. Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D.; Morgan, P.; Kelley, S. A.; Percival, J. A.

    1987-01-01

    Concentrations of heat producing elements (Th, U, and K) in 58 samples representative of the main lithologies in a 100-km transect of the Superior Province of the Canadian Shield have been obtained. The relatively large variation in heat production found among the silicic plutonic rocks is shown to correlate with modal abundances of accessory minerals, and these variations are interpreted as premetamorphic. The present data suggest fundamental differences in crustal radioactivity distributions between granitic and more mafic terrains, and indicate that a previously determined apparently linear heat flow-heat production relationship for the Kapuskasing area does not relate to the distribution of heat production with depth.

  3. Induction heat treatment as a means of increasing production

    SciTech Connect

    Golovin, G.F.; Shamov, A.N.

    1988-01-01

    The economic effectiveness of induction heat treatment was determined by a number of factors, including: saving energy and resources by substituting surface hardening for bulk or casehardening, improving labor productivity by process automation and including induction heat treatment equipment in the production line. Induction heating was found to be quick, does not require protection from oxidation, makes it possible to mechanize and automate the production process, and improves stabilization properties after annealing.

  4. Recovery

    NASA Video Gallery

    This video discusses the recovery events that occur in high-power rocketry and the various devices used in safely recovering the rocket. The video includes a discussion of black powder and ejection...

  5. 7 CFR 301.75-16 - Payments for the recovery of lost production income.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Payments for the recovery of lost production income... Canker Notice of Quarantine and Regulations § 301.75-16 Payments for the recovery of lost production... production that was lost as the result of the removal of commercial citrus trees to control citrus canker....

  6. [Recovery].

    PubMed

    Estingoy, Pierrette; Gilliot, Élodie; Parisot, Clément

    2015-01-01

    The historical fatalism of the impossibility of recovering from psychosis eased from the 1970s with the shaping of the idea of a possible recovery. Recovery is today the objective for the patient and caregivers. The key to achieving this lies in the encounter with Others. A collective approach, on the level of the institution, must be established. The aim is to create opportunities for the patient to express their doubts and feelings. PMID:26363659

  7. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    SciTech Connect

    Gregory Meisner

    2011-08-31

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem

  8. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect

    Swindeman, R.W.; Ren, W.

    1996-06-01

    The objective of the research is to provide databases and design criteria to assist in the selection of optimum alloys for construction of components needed to contain process streams in advanced heat recovery and hot-gas cleanup systems. Typical components include: steam line piping and superheater tubing for low emission boilers (600 to 700{degrees}C), heat exchanger tubing for advanced steam cycles and topping cycle systems (650 to 800{degrees}C), foil materials for recuperators, on advanced turbine systems (700 to 750{degrees}C), and tubesheets for barrier filters, liners for piping, cyclones, and blowback system tubing for hot-gas cleanup systems (850 to 1000{degrees}C). The materials being examined fall into several classes, depending on which of the advanced heat recovery concepts is of concern. These classes include martensitic steels for service to 650{degrees}C, lean stainless steels and modified 25Cr-30Ni steels for service to 700{degrees}C, modified 25Cr-20Ni steels for service to 900{degrees}C, and high Ni-Cr-Fe or Ni-Cr-Co-Fe alloys for service to 1000{degrees}C.

  9. Disposal of High-Temperature Slags: A Review of Integration of Heat Recovery and Material Recycling

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Zhang, Zuotai

    2016-05-01

    Nowadays with the continuous urbanization in China, the carbon emission and resource shortage have been serious issues, for which the disposal of blast furnace slags (BFS) and steel slags (SS) discharged from the metallurgical industry make up a significant strategy. The output of crude steel reached 823 Mt in China in 2014 and the thermal heat in these slags was equivalent to ~18 Mt of standard coal. Herein, the recent advances were systemically reviewed and analyzed, mainly from two respects, i.e., integration of heat recovery and material recycling and crystallization control of the slags. It was first found that for the heat recovery from BFS, the most intensively investigated physical method and chemical method were centrifugal granulation and gasification reaction, respectively. Furthermore, a two-step approach could contribute to a promising strategy for the treatment of slags, i.e., the liquid slags were first granulated into small particles, and then other further treatment was performed such as gasification reaction. With regard to SS, the effective disposal could be achieved using a selective crystallization and phase separation (SCPS) method, and moreover, the solid solution of 2CaO·SiO2 and the target phases could act as a promising enriched phase to extract the valuable elements.

  10. Temperature and energy deficit in the ground during operation and recovery phases of closed-loop ground source heat pump system: Effect of the groundwater flow

    NASA Astrophysics Data System (ADS)

    Erol, Selcuk; Francois, Bertrand

    2016-04-01

    The advection/dispersion mechanism of the groundwater flow in the ground has a significant effect on a borehole heat exchanger (BHE) to enhance its thermal performance. However, the amount of energy extracted from the ground never disappears and only shifts with the magnitude of the effective thermal velocity in the infinite domain. In this work, we focus on the temperature and the energy balance of the ground in an advection/dispersion dominated heat transfer system during the operation period of a BHE and the subsequent recovery phase when the system is idle. The problem is treated with single BHE and multi-BHEs systems, for different representative geology and different groundwater flow velocity. In order to assess the thermal energy deficit due to heat extraction from the ground, we used the finite line source analytical model, developed recently (Erol et al., 2015) that provides the temperature distributions around the boreholes for discontinuous heat extraction. The model is developed based on the Green's function, which is the solution of heat conduction/advection/dispersion equation in porous media, for discontinuous heat extraction by analytically convoluting rectangular function or pulses in time domain. The results demonstrate the significant positive impact of the groundwater flow for the recovery in terms of temperature deficit at the location of the borehole. However, the total thermal energy deficit is not affected by the groundwater movement. The energy balance of the ground is the same no matter the prevailing heat transfer system, which can be only conduction or advection/dispersion. In addition, the energy balance of the ground is not based on either the duration of the production period operation or of the recovery phase, but depends on the total amount of heat that is extracted and on the bulk volumetric heat capacity of the ground.

  11. Technologies for Production of Heat and Electricity

    SciTech Connect

    Jacob J. Jacobson; Kara G. Cafferty

    2014-04-01

    Biomass is a desirable source of energy because it is renewable, sustainable, widely available throughout the world, and amenable to conversion. Biomass is composed of cellulose, hemicellulose, and lignin components. Cellulose is generally the dominant fraction, representing about 40 to 50% of the material by weight, with hemicellulose representing 20 to 50% of the material, and lignin making up the remaining portion [4,5,6]. Although the outward appearance of the various forms of cellulosic biomass, such as wood, grass, municipal solid waste (MSW), or agricultural residues, is different, all of these materials have a similar cellulosic composition. Elementally, however, biomass varies considerably, thereby presenting technical challenges at virtually every phase of its conversion to useful energy forms and products. Despite the variances among cellulosic sources, there are a variety of technologies for converting biomass into energy. These technologies are generally divided into two groups: biochemical (biological-based) and thermochemical (heat-based) conversion processes. This chapter reviews the specific technologies that can be used to convert biomass to energy. Each technology review includes the description of the process, and the positive and negative aspects.

  12. Fluidized-bed waste-heat recovery system development: Final report

    SciTech Connect

    Patch, K.D.; Cole, W.E.

    1988-06-01

    A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy, which is applicable to all processes, is to preheat the combustion air for the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) system is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, recirculating alumina particles are heated by the flue gas in a raining bed. The hot particles are then removed from the bed and placed in a fluidized bed where they are fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled particles are then returned to the raining bed. Initial development of this concept is for the aluminum smelting industry. In this final report, the design, development, fabrication, and installation of a full-scale FBWHR system is detailed.

  13. Adapting poultry production to solar heat

    SciTech Connect

    Not Available

    1982-12-15

    During 1982 a floor heating system has been installed in a 40 ft. x 300 ft. chicken house (15,000 birds). The floor heating system consists of EPDM synthetic rubber tubing buried in a 4-inch concrete slab. Hot water is supplied to the tubing from a 4000 gallon storage tank which is insulated and buried outside the chicken house. The storage tank is heated by 24 solar collectors which are ground mounted on the south side of the chicken house. A propane fired boiler is in line between the storage tank and the floor. The boiler adds heat to the water entering the floor if the water is not hot enough.

  14. Technology for industrial waste heat recovery by organic Rankine cycle systems

    NASA Astrophysics Data System (ADS)

    Cain, W. G.; Drake, R. L.; Prisco, C. J.

    1984-10-01

    The recovery of industrial waste heat and the conversion thereof to useful electric power by use of Rankine cycle systems is studied. Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  15. Development of a System for Thermoelectric Heat Recovery from Stationary Industrial Processes

    NASA Astrophysics Data System (ADS)

    Ebling, D. G.; Krumm, A.; Pfeiffelmann, B.; Gottschald, J.; Bruchmann, J.; Benim, A. C.; Adam, M.; Labs, R.; Herbertz, R. R.; Stunz, A.

    2016-05-01

    The hot forming process of steel requires temperatures of up to 1300°C. Usually, the invested energy is lost to the environment by the subsequent cooling of the forged parts to room temperature. Thermoelectric systems are able to recover this wasted heat by converting the heat into electrical energy and feeding it into the power grid. The proposed thermoelectric system covers an absorption surface of half a square meter, and it is equipped with 50 Bismuth-Telluride based thermoelectric generators, five cold plates, and five inverters. Measurements were performed under production conditions of the industrial environment of the forging process. The heat distribution and temperature profiles are measured and modeled based on the prevailing production conditions and geometric boundary conditions. Under quasi-stationary conditions, the thermoelectric system absorbs a heat radiation of 14.8 kW and feeds electrical power of 388 W into the power grid. The discussed model predicts the measured values with slight deviations.

  16. Development of a System for Thermoelectric Heat Recovery from Stationary Industrial Processes

    NASA Astrophysics Data System (ADS)

    Ebling, D. G.; Krumm, A.; Pfeiffelmann, B.; Gottschald, J.; Bruchmann, J.; Benim, A. C.; Adam, M.; Labs, R.; Herbertz, R. R.; Stunz, A.

    2016-07-01

    The hot forming process of steel requires temperatures of up to 1300°C. Usually, the invested energy is lost to the environment by the subsequent cooling of the forged parts to room temperature. Thermoelectric systems are able to recover this wasted heat by converting the heat into electrical energy and feeding it into the power grid. The proposed thermoelectric system covers an absorption surface of half a square meter, and it is equipped with 50 Bismuth-Telluride based thermoelectric generators, five cold plates, and five inverters. Measurements were performed under production conditions of the industrial environment of the forging process. The heat distribution and temperature profiles are measured and modeled based on the prevailing production conditions and geometric boundary conditions. Under quasi-stationary conditions, the thermoelectric system absorbs a heat radiation of 14.8 kW and feeds electrical power of 388 W into the power grid. The discussed model predicts the measured values with slight deviations.

  17. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  18. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  19. High temperature fluid-bed heat recovery for aluminum melting furnace

    SciTech Connect

    1982-12-01

    The objective of the study was to establish whether technical problems would be encountered in increasing the inlet temperature of the fluid bed heat exchanger unit at Alcoa above the 1100/sup 0/F target of the current contract. Specifically, the temperature range of up to, and potentially above, 1600/sup 0/F were investigated to establish the benefits of higher temperature, trade offs required, and plans to achieve that technology goal. The benefits are tabulated and are very significant, particularly at the temperature range of 1600 to 1800/sup 0/F. Relative to 1100/sup 0/F the heat recovery is increased by 24 to 29% at 1600 and 1800/sup 0/F respectively.

  20. Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption

    PubMed Central

    2014-01-01

    Background Clostridium acetobutylicum can propagate on fibrous matrices and form biofilms that have improved butanol tolerance and a high fermentation rate and can be repeatedly used. Previously, a novel macroporous resin, KA-I, was synthesized in our laboratory and was demonstrated to be a good adsorbent with high selectivity and capacity for butanol recovery from a model solution. Based on these results, we aimed to develop a process integrating a biofilm reactor with simultaneous product recovery using the KA-I resin to maximize the production efficiency of biobutanol. Results KA-I showed great affinity for butanol and butyrate and could selectively enhance acetoin production at the expense of acetone during the fermentation. The biofilm reactor exhibited high productivity with considerably low broth turbidity during repeated batch fermentations. By maintaining the butanol level above 6.5 g/L in the biofilm reactor, butyrate adsorption by the KA-I resin was effectively reduced. Co-adsorption of acetone by the resin improved the fermentation performance. By redox modulation with methyl viologen (MV), the butanol-acetone ratio and the total product yield increased. An equivalent solvent titer of 96.5 to 130.7 g/L was achieved with a productivity of 1.0 to 1.5 g · L-1 · h-1. The solvent concentration and productivity increased by 4 to 6-fold and 3 to 5-fold, respectively, compared to traditional batch fermentation using planktonic culture. Conclusions Compared to the conventional process, the integrated process dramatically improved the productivity and reduced the energy consumption as well as water usage in biobutanol production. While genetic engineering focuses on strain improvement to enhance butanol production, process development can fully exploit the productivity of a strain and maximize the production efficiency. PMID:24401161

  1. Hypertension is associated with greater heat exchange during exercise recovery in a hot environment

    PubMed Central

    Fonseca, S. F.; Teles, M. C.; Ribeiro, V. G. C.; Magalhães, F. C.; Mendonça, V. A.; Peixoto, M. F. D.; Leite, L. H. R.; Coimbra, C. C.; Lacerda, A. C. R.

    2015-01-01

    Individuals with systemic arterial hypertension have a higher risk of heat-related complications. Thus, the aim of this study was to examine the thermoregulatory responses of hypertensive subjects during recovery from moderate-intensity exercise performed in the heat. A total of eight essential hypertensive (H) and eight normotensive (N) male subjects (age=46.5±1.3 and 45.6±1.4 years, body mass index=25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure=98.0±2.8 and 86.0±2.3 mmHg, respectively) rested for 30 min, performed 1 h of treadmill exercise at 50% of maximal oxygen consumption, and rested for 1 h after exercise in an environmental chamber at 38°C and 60% relative humidity. Skin and core temperatures were measured to calculate heat exchange parameters. Mean arterial pressure was higher in the hypertensive than in the normotensive subjects throughout the experiment (P<0.05, unpaired t-test). The hypertensive subjects stored less heat (H=-24.23±3.99 W·m−2 vs N=-13.63±2.24 W·m−2, P=0.03, unpaired t-test), experienced greater variations in body temperature (H=-0.62±0.05°C vsN=-0.35±0.12°C, P=0.03, unpaired t-test), and had more evaporated sweat (H=-106.1±4.59 W·m−2 vs N=-91.15±3.24 W·m−2, P=0.01, unpaired t-test) than the normotensive subjects during the period of recovery from exercise. In conclusion, essential hypertensive subjects showed greater sweat evaporation and increased heat dissipation and body cooling relative to normotensive subjects during recovery from moderate-intensity exercise performed in hot conditions. PMID:26517335

  2. Methane production and recovery using potato waste solubles and solids

    SciTech Connect

    Jackson, M.L.

    1982-01-01

    The production and recovery of methane gas utilizing various potato conversion wastes in either soluble or solid form is discussed in this chapter. Such wastes may occur at temperatures ranging from 25 C to as high as 55 C. The form and concentration of the waste and the temperature may dictate the choice of one of several possible treatment processes which are variously designated as conventional (holding tanks), contact (recycle of cell solids), and filter (packed bed) reactors. To this may be added a recent concept of an expanded bed reactor. A first design approach was employed to approximate capital and operating costs with an evaluation of the internal rates of return on investment and payout times. The fraction of the energy required by a processing plant which could be provided by the gas produced was of interest as a potential supplemental source of energy in the event that natural gas supplies are reduced or that prices of this fuel continue to escalate rapidly.

  3. Geothermal waste heat utilization from in situ thermal bitumen recovery operations.

    PubMed

    Nakevska, Nevenka; Schincariol, Robert A; Dehkordi, S Emad; Cheadle, Burns A

    2015-01-01

    In situ thermal methods for bitumen extraction introduce a tremendous amount of energy into the reservoirs raising ambient temperatures of 13 °C to as high as 200 °C at the steam chamber edge and 50 °C along the reservoir edge. In essence these operations have unintentionally acted as underground thermal energy storage systems which can be recovered after completion of bitumen extraction activities. Groundwater flow and heat transport models of the Cold Lake, Alberta, reservoir, coupled with a borehole heat exchanger (BHE) model, allowed for investigating the use of closed-loop geothermal systems for energy recovery. Three types of BHEs (single U-tube, double U-tube, coaxial) were tested and analyzed by comparing outlet temperatures and corresponding heat extraction rates. Initial one year continuous operation simulations show that the double U-tube configuration had the best performance producing an average temperature difference of 5.7 °C, and an average heat extraction of 41 W/m. Given the top of the reservoir is at a depth of 400 m, polyethylene piping provided for larger extraction gains over more thermally conductive steel piping. Thirty year operation simulations illustrate that allowing 6 month cyclic recovery periods only increases the loop temperature gain by a factor of 1.2 over continuous operation. Due to the wide spacing of existing boreholes and reservoir depth, only a small fraction of the energy is efficiently recovered. Drilling additional boreholes between existing wells would increase energy extraction. In areas with shallower bitumen deposits such as the Athabasca region, i.e. 65 to 115 m deep, BHE efficiencies should be larger. PMID:24825605

  4. Application guide for waste heat recovery with organic Rankine cycle equipment. Final report May-Dec 82

    SciTech Connect

    Moynihan, P.I.

    1983-01-15

    This report assesses the state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed; also included is a description of anticipated future trends in organic Rankine cycle RandD.

  5. Hall cell energy recovery and anode pre-heating, gauging the opportunity

    NASA Astrophysics Data System (ADS)

    Fortini, Otavio

    2011-08-01

    Anode pre-heating was proposed as an alternative for recycling waste heat from smelting operations, which currently consume substantially more energy than the theoretical minimum required. Aside from direct electricity savings, anode pre-heating can provide extra metal production and reduce carbon dioxide emissions. Public data on energy and aluminum production is analyzed to examine the value of these three potential components and define a research development path. It is concluded that indirect process gains show the most potential value with economies on the order of 3 TWh per year in electricity, an avoidance of about 1.8 million metric tons of CO2 emissions, and an increase in production capacity of about 200,000 metric tons of aluminum per year without any expansion of installed capacity.

  6. Heat Production as a Tool in Geothermal Exploration

    NASA Astrophysics Data System (ADS)

    Rhodes, J. M.; Koteas, C.; Mabee, S. B.; Thomas, M.; Gagnon, T.

    2012-12-01

    Heat flow data (together with knowledge, or assumptions, of stratigraphy, thermal conductivity and heat production) provide the prime parameter for estimating the potential of geothermal resources. Unfortunately this information is expensive to obtain as it requires deep boreholes. Consequently it is sparse or lacking in areas not traditionally considered as having geothermal potential. New England (and most of the northeastern U.S.A.) is one such area. However, in the absence of volcano-derived hydrothermal activity with its attendant high heat flow, granitic plutons provide an alternative geothermal resource. Compared with other crustal rocks, granites contain higher concentrations of heat-producing elements (K, U, Th). Additionally, they are relatively homogeneous, compared to surrounding country rock, allowing for stimulation through hydro-fracking of large (>1 km3) geothermal reservoirs. Consequently we have adopted a different approach, obtaining heat production data rather then relying on the very sparse heat flow data. Birch and colleagues long since recognized the relationship between heat flow and heat production as an integral part of their concept of Heat Flow Provinces. Heat production is readily determined in the laboratory by measuring the density of a sample and the concentrations of its heat-producing elements potassium, uranium and thorium. We have determined the heat production for 570 samples from most of the major granitic and gneissic bodies in Massachusetts and Connecticut. We have also measured these parameters for 70 sedimentary rocks that cover granites and gneiss in the Connecticut and Narragansett Basins. This data is being used to calculate inferred heat flow data for these localities. Comparison of these inferred heat flow values with the sparse number of those measured directly in boreholes in the two States is encouraging, indicating that this approach has merit. We have also measured thermal conductivity on all of these samples

  7. RECOVERY OF BY-PRODUCTS FROM ANIMAL WASTES: A LITERATURE REVIEW

    EPA Science Inventory

    The primary purpose of this report was to identify and summarize by-product-from-animal-wastes-recovery processes from the current literature. By-product recovery processes are distinguishable from wastes reuse and recycle processes by the formation of a chemically or physically ...

  8. Full-scale design of a fluidized-bed waste-heat recovery system: Topical report

    SciTech Connect

    Patch, K.D.; Cole, W.E.; Shimko, M.A.

    1987-01-30

    A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy is to preheat the combustion air for the process heater. Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system recirculating alumina particles are heated by the flue gas in a raining bed. The hot particles are then removed from the bed and placed in a fluidized bed where they are fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled particles are then returned to the raining bed. Initial development of this concept is for the aluminium smelting industry. In this report, the design of a full-scale FBWHR system is detailed. Specific work consisted of characterizing the host site aluminum smelting furnace chosen to receive the system; completing the system mechanical design; and integrating the system process control and instrumentation.

  9. Demonstration of a 30-kW Microturbine with Heat Recovery in a 500-Soldier Barracks

    SciTech Connect

    Friedrich, Michele; Armstrong, Peter R.; Smith, David L.; Rowley, Steven

    2005-12-31

    A combined heat and power-configured microturbine system was evaluated as an alternative to grid-supplied electric power. While off-grid, the system provides auxiliary power for gas-fired boilers and a portion of the domestic hot water for a 500-man barracks and kitchen. One-time tests were made of sound levels, stack emissions and power quality. Steady-state generating capacity dropped faster than the ratings as the inlet air temperature approached 15°C, while generating efficiency, based on fuel higher heating value, did not drop as rapidly and was still almost 21% at 33°C. The microturbine must boost the fuel (natural gas) delivery pressure to 55 psig. During the one year of operation, four fuel compressors failed and there were repeated failures of the microturbine and heat recovery heat exchanger controls. Energy savings based on the measured performance and CY2003 utility rates were $2670 per year. This paper, which will be presented at the ASHRAE Annual Meeting in Orlando, Florida, Feb. 5-9, describes the results of this evaluation.

  10. Turbulent boundary layer heat transfer experiments: Convex curvature effects, including introduction and recovery

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1980-01-01

    Heat transfer rates were measured through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20-50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15-20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: (1) the effect of initial boundary layer thickness; (2) the effect of freestream velocity; (3) the effect of freestream acceleration; (4) the effect of unheated starting length; and (5) the effect of the maturity of the boundary layer. Regardless of the initial state, curvature eventually forced the boundary layer into an asymptotic curved condition. The slope, minus one, is believed to be significant.

  11. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    NASA Technical Reports Server (NTRS)

    Khalifa, H. E.

    1983-01-01

    An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).

  12. Applications of thermal energy storage to process heat and waste heat recovery in the iron and steel industry

    NASA Technical Reports Server (NTRS)

    Katter, L. B.; Peterson, D. J.

    1978-01-01

    The system identified operates from the primary arc furnace evacuation system as a heat source. Energy from the fume stream is stored as sensible energy in a solid medium (packed bed). A steam-driven turbine is arranged to generate power for peak shaving. A parametric design approach is presented since the overall system design, at optimum payback is strongly dependent upon the nature of the electric pricing structure. The scope of the project was limited to consideration of available technology so that industry-wide application could be achieved by 1985. A search of the literature, coupled with interviews with representatives of major steel producers, served as the means whereby the techniques and technologies indicated for the specific site are extrapolated to the industry as a whole and to the 1985 time frame. The conclusion of the study is that by 1985, a national yearly savings of 1.9 million barrels of oil could be realized through recovery of waste heat from primary arc furnace fume gases on an industry-wide basis. Economic studies indicate that the proposed system has a plant payback time of approximately 5 years.

  13. New industrial heat pump applications to cheese production

    SciTech Connect

    Not Available

    1990-04-01

    A energy cost reduction of the Sorrento Cheese Co. Inc. cheese/whey powder process has been completed. Of Particular interest were the opportunities for utilizing heat pumps for energy cost reduction or other profit improving uses. Pinch Technology was used to identify heat recovery, heat pumping, process modification and congeneration options. Pinch Technology provides a thermodynamically consistent base from which the relative merits of competing cost reduction options can be assessed. The study identified heat recovery opportunities which could save $198,000/yr at an over all payback of 26 months. Individual project paybacks range from 18 to 36 months. The use of heat pumps in the form of MVR and TVR evaporators is well established in the dairy industry. For this process, which already incorporates a TVR evaporator, no additional cost effective opportunities for utilizing heat pumps were identified. It is felt that the results obtained in this study are applicable to other cheese/whey powder manufacturing sits. This study, and others, indicate that reductions in thermal energy consumption of 10--15% can be expected. Also the use of MVR and TVR evaporators is appropriate. 10 figs., 1 tab.

  14. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.

    PubMed

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R

    2015-08-01

    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures. PMID:25845935

  15. Diagnostic instrumentation development program for the heat recovery/seed recovery system of the open-cycle, coal-fired magnetohydrodynamic power plant

    SciTech Connect

    Murphree, D.L.; Cook, R.L.; Bauman, L.E.

    1981-01-01

    Highly efficient and environmentally acceptable, the coal-fired MHD power plant is an attractive facility for producing electricity. The design of its downstream system, however, presents technological risks which must be corrected if such a plant is to be commercially viable before the end of the century. The heat recovery/seed recovery system (HRSR) at its present stage is vulnerable to corrosion on the gas side of the radiant furnace, the secondary superheater, and the intermediate temperature air heater. Slagging and fouling of the heat transfer surface have yet to be eliminated. Gas chemistry, radiant heat transfer, and particulate removal are other problematic areas which are being researched in a DOE development program whose test activities at three facilities are contributing to an MHD/HRSR data base. In addition, a 20 MWt system to study HRSR design, is being now assembled in Tennessee.

  16. Effect of Recovery Interventions on Cycling Performance and Pacing Strategy in the Heat.

    PubMed

    De Pauw, Kevin; Roelands, Bart; Vanparijs, Jef; Meeusen, Romain

    2013-05-22

    PURPOSE: To determine the effect of active recovery (AR), passive rest (PR) and cold water immersion (CWI) after 90 min intensive cycling on a subsequent 12 min time-trial (TT2) and the applied pacing strategy in TT2. METHODS: After a max test and familiarization trial, 9 trained male subjects (age: 22 ± 3 years; VO2max: 62.1 ± 5.3 ml·min-1·kg-1) performed 3 experimental trials in the heat (30°C). Each trial consisted of two exercise tasks separated by 1h. The first was a 60min constant load trial at 55% of the maximal power output (Wmax) followed by a 30 min time trial (TT1). The second comprised a 12 min simulated time trial (TT2). After TT1 AR, PR or CWI was applied for 15min. RESULTS: No significant TT2 performance differences were observed, but a one sample t test (within each condition) revealed different pacing strategies during TT2. CWI resulted in an even pacing strategy, while AR and PR resulted in a gradual decline of power output after the onset of TT2 (p≤0.046). During recovery AR and CWI showed a trend towards faster blood lactate ([BLa]) removal, but during TT2 significantly higher [BLa] were only observed after CWI compared to PR (p=0.011). CONCLUSION: The pacing strategy during subsequent cycling performance in the heat is influenced by the application of different post-exercise recovery interventions. Although power was not significantly altered between groups, CWI enabled a different shaped power profile, likely due to decreased thermal strain. PMID:23751814

  17. Experimental and numerical analyses on a plate heat exchanger with phase change for waste heat recovery at off-design conditions

    NASA Astrophysics Data System (ADS)

    Cipollone, Roberto; Bianchi, Giuseppe; Di Battista, Davide; Fatigati, Fabio

    2015-11-01

    This paper analyzes the performances of an evaporator for small scale waste heat recovery applications based on bottoming Organic Rankine Cycles with net output power in the range 2-5 kW. The heat recovery steam generator is a plate heat exchanger with oil as hot stream and an organic fluid on the cold side. An experimental characterization of the heat exchanger was carried out at different operating points measuring temperatures, pressures and flow rates on both sides. The measurement data further allowed to validate a numerical model of the evaporator whereas heat transfer coefficients were evaluated comparing several literature correlations, especially for the phase-change of the organic fluid. With reference to a waste heat recovery application in industrial compressed air systems, multiple off-design conditions were simulated considering the effects of oil mass flow rate and temperature on the superheating of the organic fluid, a key parameter to ensure a proper operation of the expansion machine, thus of the energy recovery process.

  18. Solid fossil-fuel recovery by electrical induction heating in situ - A proposal

    NASA Astrophysics Data System (ADS)

    Fisher, S.

    1980-04-01

    A technique, termed electrical induction heating, is proposed for in situ processes of energy production from solid fossil fuels, such as bitumen production from underground distillation of oil sand; oil by underground distillation of oil shale; petroleum from heavy oil by underground mobilization of heavy oil, from either residues of conventional liquid petroleum deposits or new deposits of viscous oil; methane and coal tar from lignite and coal deposits by underground distillation of coal; and generation of electricity by surface combustion of low calorific-value gas from underground coke gasification by combustion of the organic residue left from the underground distillation of coal by induction heating. A method of surface distillation of mined coking coal by induction heating to produce coke, methane, and coal tar is also proposed.

  19. Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery

    PubMed Central

    2014-01-01

    Background High temperature is a major environmental factor limiting grape yield and affecting berry quality. Thermotolerance includes the direct response to heat stress and the ability to recover from heat stress. To better understand the mechanism of the thermotolerance of Vitis, we combined a physiological analysis with iTRAQ-based proteomics of Vitis vinifera cv Cabernet Sauvignon, subjected to 43°C for 6 h, and then followed by recovery at 25/18°C. Results High temperature increased the concentrations of TBARS and inhibited electronic transport in photosynthesis apparatus, indicating that grape leaves were damaged by heat stress. However, these physiological changes rapidly returned to control levels during the subsequent recovery phase from heat stress. One hundred and seventy-four proteins were differentially expressed under heat stress and/or during the recovery phase, in comparison to unstressed controls, respectively. Stress and recovery conditions shared 42 proteins, while 113 and 103 proteins were respectively identified under heat stress and recovery conditions alone. Based on MapMan ontology, functional categories for these dysregulated proteins included mainly photosynthesis (about 20%), proteins (13%), and stress (8%). The subcellular localization using TargetP showed most proteins were located in the chloroplasts (34%), secretory pathways (8%) and mitochondrion (3%). Conclusion On the basis of these findings, we proposed that some proteins related to electron transport chain of photosynthesis, antioxidant enzymes, HSPs and other stress response proteins, and glycolysis may play key roles in enhancing grapevine adaptation to and recovery capacity from heat stress. These results provide a better understanding of the proteins involved in, and mechanisms of thermotolerance in grapevines. PMID:24774513

  20. Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report

    SciTech Connect

    Chattopadhyay, A.

    1995-01-01

    The report describes the results of combustion testing work, and analysis of heat recovery and use at the Monroe County Frank E. Van Lare wastwater treatment plant (WWTP). The three multiple-hearth furnaces at the plant process an average of 65 dry tons of dewatered sludge per day. The furnaces use about 12.5 million Btus of natural gas per dry ton of sludge incinerated, or about 300 billion Btus per year. Center shaft and rabble arm cooling air is recirculated to the furnaces as pre-heated combustion air. No other heat from the combustion process is recovered for use in the plant. The project had four objectives: to record and analyze sludge management operations data and sludge incinerator combustion data; to ascertain instrumentation and control needs; to calculate heat balances for the incineration system; and to determine the feasibility of full waste-heat recovery and utilization, at the Frank E. Van Lare wastewater treatment plant.

  1. Heat production by single fibres of frog muscle.

    PubMed

    Curtin, N A; Howarth, J V; Woledge, R C

    1983-04-01

    The heat produced during contractions of preparations consisting of one or a few muscle fibres was measured for the first time. Fibres were dissected from the anterior tibialis muscles of the frog, Rana temporaria. Measurements were made with thermopiles of a design based on that described by Howarth et al. (1975). Although the fibre preparations were small, measurable signals could be recorded because the heat capacity of the thermopiles was also small. The output of the thermopile was amplified by a galvanometer circuit. In all the experiments the ends of the preparation were held in a fixed position during stimulation ("isometric'). Observations were made of heat production during twitches and tetanic contractions. The heat produced in a twitch of a single fibre depended on the stimulus strength in an all-or-nothing way. The results show that the amount of heat produced in individual twitches is fairly constant at different temperatures in the range 3-15 degrees C. In contrast, the heat produced in tetanic contractions is considerably greater at higher temperatures. The time course of heat production in a tetanus was influenced by temperature such that the early rapid phase of heat production was less obvious at the higher temperature. The quantities of heat produced by fibre preparations were in reasonable agreement with those produced by whole muscles when the comparison was made on the basis of heat produced per g wet weight of tissue. PMID:6602811

  2. Heat flow-heat production relationship not found: what drives heat flow variability of the Western Canadian foreland basin?

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek A.

    2016-06-01

    Heat flow high -80 ± 10 mW/m2 in the northern western parts of the Western Canadian foreland basin is in large contrast to low heat flow to the south and east (50 ± 7 mW/m2) of the same basin with the same old 2E09 year's Precambrian basement and some 200-km-thick lithosphere. Over-thrusted and flat-laying sedimentary units are heated from below by heat flow from the old craton' crust and low 15 ± 5 mW/m2 mantle contribution. The heat flow vs. radiogenic heat production statistical relationship is not found for this area. To account for this large heat flow contrast and to have 200-km-thick lithosphere, we would need to assume that high heat production layer of the upper crust varies in thickness as much as factor of 2 and/or that the measured heat production at top of Precambrian basement is not representative for deeper rocks. The other explanation proposed before that heat in the basin is redistributed by the regional fluid flow systems driven from high hydraulic head areas close to the foothills of the Rocky Mountains toward low elevation areas to the east and north cannot be explained by observed low Darcy fluid velocities and the geometry of the basin.

  3. A laboratory-scale test of anaerobic digestion and methane production after phosphorus recovery from waste activated sludge.

    PubMed

    Takiguchi, Noboru; Kishino, Machiko; Kuroda, Akio; Kato, Junichi; Ohtake, Hisao

    2004-01-01

    In enhanced biological phosphorus removal (EBPR) processes, activated sludge microorganisms accumulate large quantities of polyphosphate (polyP) intracellularly. We previously discovered that nearly all of polyP could be released from waste activated sludge simply by heating it at 70 degrees C for about 1 h. We also demonstrated that this simple method was applicable to phosphorus (P) recovery from waste activated sludge in a pilot plant-scale EBPR process. In the present study, we evaluated the effect of this sludge processing (heat treatment followed by calcium phosphate precipitation) on anaerobic digestion in laboratory-scale experiments. The results suggested that the sludge processing for P recovery could improve digestive efficiency and methane productivity at both mesophilic (37 degrees C) and thermophilic (53 degrees C) temperatures. In addition, heat-treated waste sludge released far less P into the digested sludge liquor than did untreated waste sludge. It is likely that the P recovery step prior to anaerobic digestion has a potential advantage for controlling struvite (magnesium ammonium phosphate) deposit problems in sludge handling processes. PMID:16233643

  4. RF heating for fusion product studies

    SciTech Connect

    Hellsten, T. Johnson, T.; Sharapov, S. E.; Kiptily, V.; Rimini, F.; Eriksson, J.; Mantsinen, M.; Schneider, M.; Tsalas, M.

    2015-12-10

    Third harmonic cyclotron heating is an effective tool for accelerating deuterium (D) beams to the MeV energy range, suitable for studying ITER relevant fast particle physics in plasmas without significant tritium content. Such experiments were recently conducted in JET with an ITER like wall in D plasmas with {sup 3}He concentrations up to 30% in order to boost the fusion reactivity by D-{sup 3}He reactions. The harmonic cyclotron heating produces high-energy tails in the MeV range of D ions by on-axis heating and of {sup 3}He ions by tangential off-axis heating. The discharges are characterized by long sawtooth free periods and a rich spectrum of MHD modes excited by the fast D and {sup 3}He ions. The partitions of the power, which depend on the distribution function of D, vary strongly over several slowing down times. Self-consistent modelling of the distribution function with the SELFO-light code are presented and compared with experimental data from fast particle diagnostics.

  5. RF heating for fusion product studies

    NASA Astrophysics Data System (ADS)

    Hellsten, T.; Johnson, T.; Sharapov, S. E.; Kiptily, V.; Eriksson, J.; Mantsinen, M.; Schneider, M.; Rimini, F.; Tsalas, M.

    2015-12-01

    Third harmonic cyclotron heating is an effective tool for accelerating deuterium (D) beams to the MeV energy range, suitable for studying ITER relevant fast particle physics in plasmas without significant tritium content. Such experiments were recently conducted in JET with an ITER like wall in D plasmas with 3He concentrations up to 30% in order to boost the fusion reactivity by D-3He reactions. The harmonic cyclotron heating produces high-energy tails in the MeV range of D ions by on-axis heating and of 3He ions by tangential off-axis heating. The discharges are characterized by long sawtooth free periods and a rich spectrum of MHD modes excited by the fast D and 3He ions. The partitions of the power, which depend on the distribution function of D, vary strongly over several slowing down times. Self-consistent modelling of the distribution function with the SELFO-light code are presented and compared with experimental data from fast particle diagnostics.

  6. Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1982-31 January 1983

    SciTech Connect

    Cole, W.E.; DeSaro, R.; Joshi, C.

    1983-02-01

    The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

  7. Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1981-31 January 1982

    SciTech Connect

    Cole, W. E.; DeSaro, R.; Joshi, C.

    1982-02-01

    The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

  8. Investigation of Strength Recovery in Welds of NUCu-140 Steel Through Multipass Welding and Isothermal Post-Weld Heat Treatments

    NASA Astrophysics Data System (ADS)

    Bono, Jason T.; DuPont, John N.; Jain, Divya; Baik, Sung-Il; Seidman, David N.

    2015-11-01

    NUCu-140 is a ferritic copper precipitation-strengthened steel that is a candidate material for use in many naval and structural applications. Previous work has shown that the heat-affected zone (HAZ) and fusion zone (FZ) of NUCu-140 exhibit softening that is due to dissolution of the copper-rich precipitates. This study aims to recover the FZ and HAZ strength by re-precipitation of the copper-rich precipitates through either multiple weld passes or an isothermal post-weld heat treatment (PWHT). The potential use of multiple thermal cycles was investigated with HAZ simulations using a Gleeble thermo-mechanical simulator. The HAZ simulations represented two weld thermal cycles with different combinations of peak temperatures during the initial and secondary weld passes. To investigate the potential for a PWHT for strength recovery, gas tungsten arc weld samples were isothermally heated for various times and temperatures. Microhardness measurements revealed no strength recovery in the multipass HAZ samples. The time-dependent precipitate characteristics were modeled under the HAZ thermal cycle conditions, and the results showed that the lack of strength recovery could be attributed to insufficient time for re-precipitation during the secondary weld pass. Conversely, full strength recovery in the HAZ was observed in the isothermally heat treated samples. Atom probe tomography analysis correlated this strength recovery to re-precipitation of the copper-rich precipitates during the isothermal PWHT.

  9. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect

    Swindeman, R.W.; Ren, W.

    1996-08-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, modified alloy 800, and two sulfidation resistant alloys: HR160 and HR120. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700{degrees}C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925{degrees}C with good weldability and ductility.

  10. Organic-Rankine-cycle systems for waste-heat recovery in refineries and chemical process plants

    SciTech Connect

    Meacher, J.S.

    1981-09-01

    The use of organic Rankine cycles (ORC) for the recovery and conversion of low-temperature waste heat has received considerable attention during recent years. The number of demonstration systems developed and put into service is small, and only a fraction of the possible energy-conserving benefits of the concept have been realized to date. This situation is due partly to the fact that energy costs have only recently risen to the point where such units provide acceptable return on investment. A second contributing factor may be that the design of ORC equipment has not yet responded to the special needs of the dominant market for ORC systems. 2 references, 12 figures, 5 tables.

  11. Modeling of reciprocating internal combustion engines for power generation and heat recovery

    SciTech Connect

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2013-02-01

    This paper presents a power generation and heat recovery model for reciprocating internal combustion engines (ICEs). The purpose of the proposed model is to provide realistic estimates of performance/efficiency maps for both electrical power output and useful thermal output for various capacities of engines for use in a preliminary CHP design/simulation process. The proposed model will serve as an alternative to constant engine efficiencies or empirical efficiency curves commonly used in the current literature for simulations of CHP systems. The engine performance/efficiency calculation algorithm has been coded to a publicly distributed FORTRAN Dynamic Link Library (DLL), and a user friendly tool has been developed using Visual Basic programming. Simulation results using the proposed model are validated against manufacturer’s technical data.

  12. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect

    Swindeman, R.W.; Ren, W.

    1995-08-01

    Alloys for design and construction of structural components needed to contain process streams and provide internal structures in advanced heat recovery and hot gas cleanup systems were examined. Emphasis was placed on high-strength, corrosion-resistant alloys for service at temperatures above 1000 {degrees}F (540{degrees}C). Data were collected that related to fabrication, joining, corrosion protection, and failure criteria. Alloys systems include modified type 310 and 20Cr-25Ni-Nb steels and sulfidation-resistance alloys HR120 and HR160. Types of testing include creep, stress-rupture, creep crack growth, fatigue, and post-exposure short-time tensile. Because of the interest in relatively inexpensive alloys for high temperature service, a modified type 310 stainless steel was developed with a target strength of twice that for standard type 310 stainless steel.

  13. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    SciTech Connect

    Swindeman, R.W.

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  14. Rubisco activase and wheat productivity under heat stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperature (heat stress). We hypothesized that endogenous levels of RCA could serve as an important determinant of plant productivity under heat stress conditions. In this study, we investigated the possible relation...

  15. GREENHOUSE PRODUCTION OF BEDDING AND FOLIAGE PLANTS WITH INDUSTRIAL HEAT

    EPA Science Inventory

    The report gives results of an evaluation of potentially beneficial uses of industrial waste heat for production of bedding and foliage plants, using conventionally and warm-water heated greenhouses in Fort Valley, GA. Each greenhouse was a plastic covered, 30 x 72-ft quonset. Th...

  16. Economizer recirculation for low-load stability in heat recovery steam generator

    SciTech Connect

    Cuscino, R.T.; Shade, R.L. Jr.

    1986-04-15

    An economizer system is described for heating feedwater in a heat recovery steam generator which consists of: at least first and second economizer tube planes; each of the economizer tube planes including a plurality of generally parallel tubes; the tubes being generally vertically disposed; each of the economizer tube planes including a top header and a bottom header; all of the plurality of tubes in each economizer tube plane being connected in parallel to their top and bottom headers whereby parallel feedwater flow through the plurality of tubes between the top and bottom headers is enabled; one of the top and bottom headers being an inlet header; a second of the top and bottom headers being an outlet header; a boiler feed pump; the boiler feed pump being effective for applying a flow of feedwater to the inlet header; means for serially interconnecting the economizer tube planes; the means for serially interconnecting including means for flowing the feedwater upward and downward in tubes of alternating ones of the economizer tube planes between the inlet header and the outlet header; means for conveying heated feedwater from the outlet header to a using process; means for recirculating at least a portion of the heated feedwater from the outlet header to an inlet of the boiler feed pump; and the means for recirculating including means for relating the portion to a steam load in the using process whereby an increased flow is produced through all of the economizer tube planes at values of the steam load below a predetermined value and a condition permitting initiation of reverse flow in any of the tubes is substantially reduced.

  17. Intensified recovery of valuable products from whey by use of ultrasound in processing steps - A review.

    PubMed

    Gajendragadkar, Chinmay N; Gogate, Parag R

    2016-09-01

    The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications. PMID:27150751

  18. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    SciTech Connect

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  19. Heat Pipe Solar Receiver for Oxygen Production of Lunar Regolith

    NASA Astrophysics Data System (ADS)

    Hartenstine, John R.; Anderson, William G.; Walker, Kara L.; Ellis, Michael C.

    2009-03-01

    A heat pipe solar receiver operating in the 1050° C range is proposed for use in the hydrogen reduction process for the extraction of oxygen from the lunar soil. The heat pipe solar receiver is designed to accept, isothermalize and transfer solar thermal energy to reactors for oxygen production. This increases the available area for heat transfer, and increases throughput and efficiency. The heat pipe uses sodium as the working fluid, and Haynes 230 as the heat pipe envelope material. Initial design requirements have been established for the heat pipe solar receiver design based on information from the NASA In-Situ Resource Utilization (ISRU) program. Multiple heat pipe solar receiver designs were evaluated based on thermal performance, temperature uniformity, and integration with the solar concentrator and the regolith reactor(s). Two designs were selected based on these criteria: an annular heat pipe contained within the regolith reactor and an annular heat pipe with a remote location for the reactor. Additional design concepts have been developed that would use a single concentrator with a single solar receiver to supply and regulate power to multiple reactors. These designs use variable conductance or pressure controlled heat pipes for passive power distribution management between reactors. Following the design study, a demonstration heat pipe solar receiver was fabricated and tested. Test results demonstrated near uniform temperature on the outer surface of the pipe, which will ultimately be in contact with the regolith reactor.

  20. Method of heat treating a formed powder product material

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Waters, W. J.; Ashbrook, R. L. (Inventor)

    1973-01-01

    Heat treating a product material of prealloyed powders after shaping by superplastic deformation restores the ability of the material to resist deformation at high temperatures. Heat treating is accomplished by heating to a temperature between the solidus and liquidus with the application of isostatic pressure to close any voids. This pressure may be simultaneously applied while the material is at the heat treating temperature. The pressure may also be applied when the material cools to a temperature between that at which it is shaped and the solidus.

  1. WASTE HEAT RECOVERY USING THERMOELECTRIC DEVICES IN THE LIGHT METALS INDUSTRY

    SciTech Connect

    Choate, William T.; Hendricks, Terry J.; Majumdar, Rajita

    2007-05-01

    Recently discovered thermoelectric materials and associated manufacturing techniques (nanostructures, thin-film super lattice, quantum wells...) have been characterized with thermal to electric energy conversion efficiencies of 12-25+%. These advances allow the manufacture of small-area, high-energy flux (350 W/cm2 input) thermoelectric generating (TEG) devices that operate at high temperatures (~750°C). TEG technology offers the potential for large-scale conversion of waste heat from the exhaust gases of electrolytic cells (e.g., Hall-Hèroult cells) and from aluminum, magnesium, metal and glass melting furnaces. This paper provides an analysis of the potential energy recovery and of the engineering issues that are expected when integrating TEG systems into existing manufacturing processes. The TEG module must be engineered for low-cost, easy insertion and simple operation in order to be incorporated into existing manufacturing operations. Heat transfer on both the hot and cold-side of these devices will require new materials, surface treatments and design concepts for their efficient operation.

  2. MHD heat and seed recovery technology project. Ninth quarterly report, January-March 1980

    SciTech Connect

    Petrick, Michael; Johnson, Terry R.

    1980-05-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The primary effort of the HSR Technology Project at Argonne is directed toward experimental investigations of critical problem areas, such as (1) NO/sub x/ behavior in the radiant boiler and secondary combustor; (2) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed-slag separation; (3) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; (4) formation, growth, and deposition of seed-slag particles; and (5) character of the combustion gas effluents. These investigations are performed primarily in a 2-MW test facility, Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system, identification of ceramic and metallic materials for service in the MHD-steam plant, and evaluation of seed regeneration processes. Progress is described.

  3. PERVAPORATION MEMBRANE SYSTEMS FOR VOLATILE FERMENTATION PRODUCT RECOVERY AND DEHYDRATION

    EPA Science Inventory

    The economics of fermentative production of fuels and commodity chemicals can be a strong function of the efficiency with which the fermentation products are removed from the biological media. Due to growth inhibition by some fermentation products, including ethanol, concentrati...

  4. Low Cost Advanced Thermoelectric (TE) Technology for Automotive Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, G. P.

    2014-03-01

    Low cost, fully integrated TE generators (TEGs) to recover waste heat from vehicle exhaust will reduce transportation sector energy consumption and emissions. TEGs will be the first application of high-temperature TE materials for high-volume use and establish new industrial sectors with scaled up production capability of TEG materials and components. We will create a potential supply chain for practical automotive TEGs and identify manufacturing and assembly processes for large scale production of TEG materials and components. Our work focusses on several innovative R&D paths: (1) enhanced TE material performance by doping and compositional tuning, (2) optimized TE material fabrication and processing to reduce thermal conductivity and improve fracture strength, (3) high volume production for successful skutterudite commercialization, (4) new material, nanostructure, and nanoscale approaches to reduce thermal interface and electrical contact resistances, (5) innovative heat exchangers for high efficiency heat flows and optimum temperature profiles despite highly variable exhaust gas operating conditions, (6) new modeling and simulation tools, and (7) inexpensive materials for thermal insulation and coatings for TE encapsulation. Recent results will be presented. Supported by the U.S. DOE Vehicle Technology Program.

  5. A REVIEW OF PERVAPORATION FOR PRODUCT RECOVERY FROM BIOMASS FERMENTATION PROCESSES

    EPA Science Inventory

    Although several separation technologies are technically capable of removing volatile products from fermentation broths, distillation remains the dominant technology. This is especially true for the recovery of biofuels such as ethanol. In this paper, the status of an emerging m...

  6. Final Scientific/Technical Report [Recovery Act: Districtwide Geothermal Heating Conversion

    SciTech Connect

    Chatterton, Mike

    2014-02-12

    The Recovery Act: Districtwide Geothermal Heating Conversion project performed by the Blaine County School District was part of a larger effort by the District to reduce operating costs, address deferred maintenance items, and to improve the learning environment of the students. This project evaluated three options for the ground source which were Open-Loop Extraction/Re-injection wells, Closed-Loop Vertical Boreholes, and Closed-Loop Horizontal Slinky approaches. In the end the Closed-Loop Horizontal Slinky approach had the lowest total cost of ownership but the majority of the sites associated with this project did not have enough available ground area to install the system so the second lowest option was used (Open-Loop). In addition to the ground source, this project looked at ways to retrofit existing HVAC systems with new high efficiency systems. The end result was the installation of distributed waterto- air heat pumps with water-to-water heat pumps installed to act as boilers/chillers for areas with a high ventilation demand such as they gymnasiums. A number of options were evaluated and the lowest total cost of ownership approach was implemented in the majority of the facilities. The facilities where the lowest total cost of ownership approaches was not selected were done to maintain consistency of the systems from facility to facility. This project had a number of other benefits to the Blaine County public. The project utilizes guaranteed energy savings to justify the levy funds expended. The project also developed an educational dashboard that can be used in the classrooms and to educate the community on the project and its performance. In addition, the majority of the installation work was performed by contractors local to Blaine County which acted as an economic stimulus to the area during a period of recession.

  7. Analytical expressions to estimate the free product recovery in oil-contaminated aquifers

    NASA Astrophysics Data System (ADS)

    Corapcioglu, M. Yavuz; Tuncay, Kagan; Lingarn, Rajasekhar; Kambham, Kiran K. R.

    1994-12-01

    Petroleum products, such as gasoline, leaked from an underground storage tank can be recovered successfully by two-pump operations. The success of the recovery effort depends on the accurate placement of the recovery well at the spill site. An effective recovery operation can minimize the remaining contamination mass in the subsurface. Therefore, a careful evaluation and determination has to be made as to where to locate the recovery well. The location of the well can be decided based on an estimation of the extent and thickness of free product on the water table. Such an estimation should be based on analysis of governing mechanisms. In this study we present analytical solutions to estimate the recovery of oil from an established oil lens. These solutions are obtained by applying the Laplace transformation to averaged linear partial differential equations governing the phenomenon. The governing equation for the free product thickness is derived by averaging the oil phase mass balance equation along the free product thickness and substituting the boundary conditions at the oil/water interface and oil surface. The analytical solutions estimate the temporal and spatial distribution of free product thickness on the water table for a number of recovery scenarios. Results are presented for the temporal and spatial variation of the free product thickness, temporal variation of the free product volume recovered, and recovery efficiency based on the readings at the monitoring wells. Since they can be utilized without a great deal of data, analytical solutions are quite attractive as screening tools in two-pump free product recovery operations.

  8. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Are duct burners and waste heat recovery units covered by subpart YYYY? 63.6092 Section 63.6092 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  9. 40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Are duct burners and waste heat recovery units covered by subpart YYYY? 63.6092 Section 63.6092 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  10. ON-SITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery: atmospheric batch distillation, vacuum heat-pump distillation, and low-emission vapor degreasing. The atmospheric and vacuum ...

  11. Low-power nuclear engineering for heat production

    NASA Astrophysics Data System (ADS)

    Kursky, A. S.; Kalygin, V. V.; Semidotsky, I. I.

    2012-05-01

    The paper shows the expediency and importance of the development of low-power nuclear engineering as well as feasibility indices of an up-to-date nuclear power plant intended for regional energy production. A high reliability of the vessel-type boiling reactor with a natural coolant circulation is shown under various operating conditions of a nuclear heat production plant.

  12. Use Feedwater Economizers for Waste Heat Recovery: Office of Industrial Technologies (OIT) Steam Energy Tips No.3

    SciTech Connect

    Not Available

    2002-03-01

    A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to incoming feedwater. Boiler flue gases are often rejected to the stack at temperatures more than 100 F to 150 F higher than the temperature of the generated steam. Generally, boiler efficiency can be increased by 1% for every 40 F reduction in flue gas temperature. By recovering waste heat, an economizer can often reduce fuel requirements by 5% to 10% and pay for itself in less than 2 years. The table provides examples of the potential for heat recovery.

  13. Heat stress causes substantial labour productivity loss in Australia

    NASA Astrophysics Data System (ADS)

    Zander, Kerstin K.; Botzen, Wouter J. W.; Oppermann, Elspeth; Kjellstrom, Tord; Garnett, Stephen T.

    2015-07-01

    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot regions such as Asia and the Caribbean, and globally by up to 20% in hot months by 2050. Using an approach derived from health economics, we describe self-reported estimates of work absenteeism and reductions in work performance caused by heat in Australia during 2013/2014. We found that the annual costs were US$655 per person across a representative sample of 1,726 employed Australians. This represents an annual economic burden of around US$6.2 billion (95% CI: 5.2-7.3 billion) for the Australian workforce. This amounts to 0.33 to 0.47% of Australia’s GDP. Although this was a period when many Australians experienced what is at present considered exceptional heat, our results suggest that adaptation measures to reduce heat effects should be adopted widely if severe economic impacts from labour productivity loss are to be avoided if heat waves become as frequent as predicted.

  14. Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption.

    PubMed

    Xue, Chuang; Liu, Fangfang; Xu, Mengmeng; Tang, I-Ching; Zhao, Jingbo; Bai, Fengwu; Yang, Shang-Tian

    2016-11-01

    Activated carbon Norit ROW 0.8, zeolite CBV901, and polymeric resins Dowex Optipore L-493 and SD-2 with high specific loadings and partition coefficients were studied for n-butanol adsorption. Adsorption isotherms were found to follow Langmuir model, which can be used to estimate the amount of butanol adsorbed in acetone-butanol-ethanol (ABE) fermentation. In serum-bottle fermentation with in situ adsorption, activated carbon showed the best performance with 21.9g/L of butanol production. When operated in a fermentor, free- and immobilized-cell fermentations with adsorption produced 31.6g/L and 54.6g/L butanol with productivities of 0.30g/L·h and 0.45g/L·h, respectively. Thermal desorption produced a condensate containing ∼167g/L butanol, which resulted in a highly concentrated butanol solution of ∼640g/L after spontaneous phase separation. This in situ product recovery process with activated carbon is energy efficient and can be easily integrated with ABE fermentation for n-butanol production. PMID:27484672

  15. Recovery and purification process development for monoclonal antibody production

    PubMed Central

    Ma, Junfen; Winter, Charles; Bayer, Robert

    2010-01-01

    Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs. PMID:20647768

  16. Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report

    SciTech Connect

    1995-01-01

    The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

  17. Interfacing primary heat sources and cycles for thermochemical hydrogen production

    SciTech Connect

    Bowman, M.G.

    1980-01-01

    Advantages cited for hydrogen production from water by coupling thermochemical cycles with primary heat include the possibility of high efficiencies. These can be realized only if the cycle approximates the criteria required to match the characteristics of the heat source. Different types of cycles may be necessary for fission reactors, for fusion reactors or for solar furnaces. Very high temperature processes based on decomposition of gaseous H/sub 2/O or CO/sub 2/ appear impractical even for projected solar technology. Cycles based on CdO decomposition are potentially quite efficient and require isothermal heat at temperatures that may be available from solar furnaces of fusion reactors. Sulfuric acid and solid sulfate cycles are potentially useful at temperatures available from each heat source. Solid sulfate cycles offer advantages for isothermal heat sources. All cycles under development include concentration and drying steps. Novel methods for improving such operations would be beneficial.

  18. Test and evaluation of the heat recovery incinerator system at Naval Station, Mayport, Florida. Final report, June 1980-April 1981

    SciTech Connect

    Not Available

    1981-05-01

    This report describes test and evaluation of the two-ton/hr heat recovery incinerator (HRI) facility located at Mayport Naval Station, FL, carried out during November and December 1980. The tests included: (1) Solid Waste: characterization, heating value, and ultimate analysis, (2) Ash: moisture, combustibles, and heating values of both bottom and cyclone ashes; Extraction Procedure toxicity tests on leachates from both bottom and cyclone ashes; trace metals in cyclone particulates, (3) Stack Emissions: particulates (quantity and size distribution), chlorides, oxygen, carbon dioxide, carbon monoxide, and trace elements, and (4) Heat and Mass Balance: all measurements required to carry out complete heat and mass balance calculations over the test period. The overall thermal efficiency of the HRI facility while operating at approximately 1.0 ton/hr was found to be 49% when the primary Btu equivalent of the electrical energy consumed during the test program was included.

  19. Heat production during contraction in skeletal muscle of hypothyroid mice

    SciTech Connect

    Leijendekker, W.J.; van Hardeveld, C.; Elzinga, G. )

    1987-08-01

    The effect of hypothyroidism on tension-independent and -dependent heat produced during a twitch and a tetanic contraction of extensor digitorum longus (EDL) and soleus muscle of mice was examined. The amount of heat produced during a twitch and the rate of heat development during a tetanus of EDL and soleus were measured at and above optimal length. The effect of hypothyroidism on force production was <30%. Straight lines were used to fit the relation between heat production and force. Hypothyroidism significantly decreases tension-independent heat during contraction of EDL and soleus muscle. Because the tension-independent heat is considered to be related to the Ca{sup 2+} cycling, these findings suggest that ATP splitting due to the Ca{sup 2+} cycling is reduced in hypothyroid mice. This conclusion was strengthened by the observation that the oxalate-supported {sup 45}Ca{sup 2+}-uptake activity and {sup 45}Ca{sup 2+}-loading capacity of muscle homogenates from hypothyroid mice were reduced, respectively, to 51 and to 65% in soleus and to 63 and 73% in EDL muscle as compared with euthyroid mice. The tension-dependent rate of heat development during a tetanus was also decreased in soleus muscle of hypothyroid mice. This suggests a lower rate of ATP hydrolysis related to cross-bridge cycling in this muscle due to the hypothyroid state.

  20. Recovery of solvent and by-products from organosolv black liquor

    SciTech Connect

    Botello, J.I.; Gilarranz, M.A.; Rodriguez, F.; Oliet, M.

    1999-09-01

    The recovery of alcohol and by-products from ethanol-water and methanol-water pulping liquors was studied. The recovery system proposed consists of three stages: black liquor flashing, lignin precipitation, and precipitation distillation of mother liquor. At the flash stage, 47 and 51% of the alcohol in the black liquor are recovered for ethanol and methanol processes, respectively. The lignin recovery yield at the precipitation stage is 67% for ethanol black liquor and 73% for methanol black liquor. The distillation of precipitation mother liquors enables recovery of 98% ethanol and 96% methanol from this stream as distillate, whereas the distillation residue contains significant amounts of sugars, furfural, and acetic acid that can be recovered. The study concludes with the overall mass balance for the recovery system proposed.

  1. Ohmic heated sheet for the Ca ion beam production

    SciTech Connect

    Efremov, A.; Bogomolov, S.; Kazarinov, N.; Kochagov, O.; Loginov, V.

    2008-02-15

    The production of intense accelerated {sup 48}Ca ion beams is the key problem in the experiments on the synthesis of new superheavy nuclei. For this purpose in the FLNR (JINR), an electron cyclotron resonance ion source is used at the U-400 cyclotron. The combination of a micro oven with a hot tantalum sheet inside the discharge chamber allowed the production of the intense {sup 48}Ca{sup 5+} ion beam at the {sup 48}Ca consumption of about 0.5 mg/h. In this case, the tantalum sheet is heated by microwaves and plasma electrons. The microwave power of up to 500 W is required to heat the sheet to the temperature of about 500 deg. C. To decrease the required microwave power, a new sheet with a direct Ohmic heating was designed. The present paper describes the method, technique, and preliminary experimental results on the production of the Ca ion beam.

  2. Ohmic heated sheet for the Ca ion beam production.

    PubMed

    Efremov, A; Bogomolov, S; Kazarinov, N; Kochagov, O; Loginov, V

    2008-02-01

    The production of intense accelerated (48)Ca ion beams is the key problem in the experiments on the synthesis of new superheavy nuclei. For this purpose in the FLNR (JINR), an electron cyclotron resonance ion source is used at the U-400 cyclotron. The combination of a micro oven with a hot tantalum sheet inside the discharge chamber allowed the production of the intense (48)Ca(5+) ion beam at the (48)Ca consumption of about 0.5 mg/h. In this case, the tantalum sheet is heated by microwaves and plasma electrons. The microwave power of up to 500 W is required to heat the sheet to the temperature of about 500 degrees C. To decrease the required microwave power, a new sheet with a direct Ohmic heating was designed. The present paper describes the method, technique, and preliminary experimental results on the production of the Ca ion beam. PMID:18315097

  3. Shock Recovery and Heating Experiments on Baddeleyite: Implications for U-Pb Isotopic Systematics of Martian Meteorites

    NASA Astrophysics Data System (ADS)

    Misawa, K.; Niihara, T.; Kaiden, H.; Sekine, T.; Mikouchi, T.

    2009-12-01

    Introduction: Radiometric ages of Martian meteorites, shergottites are generally young (i.e., ~165-475 Ma), and are in the late Amazonian chronostratigraphic unit [1]. Bouvier et al. [2-4] reported ~4.1-4.3 Ga old Pb-Pb ages for shergottites, and suggested that young Rb-Sr, Sm-Nd, and Lu-Hf ages so far obtained were affected by alteration of phosphates, interaction with Martian subsurface fluids, or intense shock metamorphism. Baddeleyite (ZrO2) with apparently primary igneous morphology is an important phase in shergottites for U-Pb age determination. In order to investigate shock effects on U-Pb isotopic systematics of baddeleyite, we undertook shock recovery and heating experiments on baddeleyite. Experimental: We used coarse-grained baddeleyite from Phalaborwa for a starting material. The baddeleyite was mixed with a coarse-grained terrestrial basalt with a weight ratio of 1:2. Shock-recovery experiments were performed using a propellant gun at NIMS [5]. The run products were placed in a vertical gas-mixing furnace and heated for 1-3 h at 1000-1300oC under log fO2 of IW+2.5 at 105 Pa. Textures were observed by a scanning electron microprobe and Raman spectra of shocked baddeleyite were obtained. In situ U-Th-Pb isotopic analysis was carried out with the SHRIMP II at NIPR [6]. Results and Discussion: We observed Raman peak shifts of 2-4 cm-1 in the 34-57 GPa samples. Lead loss from baddeleyite was not observed for the experimentally shocked samples. In addition, the U-Pb and Pb-Pb ages of shocked and heated baddeleyites are indistinguishable from those of unshocked baddeleyite within errors except minor lead loss from the baddeleyite shocked at 57 GPa and heated for 1 h at 1300oC. Although duration of peak shock-pressure and grain size of baddeleyite are different from the nature of basaltic shergottites, our experimental results suggest that it is hard to completely reset U-Pb isotopic systematics of baddeleyite in Martian meteorite by shock events below ~60

  4. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    SciTech Connect

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N.; Hullette, J.N.

    2009-09-01

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  5. Combined heating and chemical treatment for oil recovery from aging crude oil.

    PubMed

    Hou, Chunjuan; Jiang, Qingzhe; Song, Zhaozheng; Tan, Guorong; Shi, Zhan

    2016-07-01

    With increasing use of chemical oil displacement agents in tertiary recovery and the application of various demulsifiers for crude oil dehydration, a large amount of aging crude oil containing a high ratio of water is produced, and it is very difficult for processing and utilisation. In this article, we chose aging crude oil samples from a union station in an oilfield in China. Sample composition was analysed to demonstrate that the key of aging crude oil dehydration is the removal of solid impurities. Thus, an efficient method of combining heating and chemical treatments was developed to treat aging crude oil. It includes two steps: The first step is washing of aging crude oil with hot water with sodium dodecylbenzene sulfonate; the second step is chemical demulsification of the above mixture with hydrochloric acid and sodium chloride solution. The result showed that 2.9% of solid impurities and 29.2% of water were removed in the first step; 27.2% of oil, 24.3% of water, and 3.47% of solid impurities in the aging crude oil were recycled in the second step. A total 87.07% of aging crude oil could be solved with this method. The present two-step treatment method can ensure that the dehydration process runs normally and efficiently in the union station, making it a promising method in the recycling of aging crude oil. PMID:27236165

  6. Risk analysis of heat recovery steam generator with semi quantitative risk based inspection API 581

    NASA Astrophysics Data System (ADS)

    Prayogo, Galang Sandy; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is a major problem that most often occurs in the power plant. Heat recovery steam generator (HRSG) is an equipment that has a high risk to the power plant. The impact of corrosion damage causing HRSG power plant stops operating. Furthermore, it could be threaten the safety of employees. The Risk Based Inspection (RBI) guidelines by the American Petroleum Institute (API) 58 has been used to risk analysis in the HRSG 1. By using this methodology, the risk that caused by unexpected failure as a function of the probability and consequence of failure can be estimated. This paper presented a case study relating to the risk analysis in the HRSG, starting with a summary of the basic principles and procedures of risk assessment and applying corrosion RBI for process industries. The risk level of each HRSG equipment were analyzed: HP superheater has a medium high risk (4C), HP evaporator has a medium-high risk (4C), and the HP economizer has a medium risk (3C). The results of the risk assessment using semi-quantitative method of standard API 581 based on the existing equipment at medium risk. In the fact, there is no critical problem in the equipment components. Damage mechanisms were prominent throughout the equipment is thinning mechanism. The evaluation of the risk approach was done with the aim of reducing risk by optimizing the risk assessment activities.

  7. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    SciTech Connect

    Khalifa, H.E.

    1983-12-01

    This report presents an evaluation of Brayton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. It is also shown that, if installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or $170/Bhp. Technical and economic barriers that would hinder the commercial introduction of bottoming systems were identified.

  8. Heat acclimation provides sustained improvement in functional recovery and attenuates apoptosis after traumatic brain injury.

    PubMed

    Umscheif, Gali; Umschwief, Gali; Shein, Na'ama A; Alexandrovich, Alexander G; Trembovler, Victoria; Horowitz, Michal; Shohami, Esther

    2010-03-01

    Heat acclimation (HA) offers functional neuroprotection in mice after traumatic brain injury (TBI). This study further characterizes endogenous neuroprotection acquired by HA (34+/-1 degrees C, 30 d) after TBI. We establish here the ability of HA to induce sustained functional benefits and to reduce activation of apoptotic pathways. Neurobehavioral recovery, assessed by the Neurological Severity Score, was greater in HA mice up to 8 days after injury as compared with normothermic controls (P<0.05) and lesion volume was also smaller in the HA group (P<0.05). Reduced apoptotic cell death in HA mice was confirmed using caspase-3 activity measurements and immunohistochemistry. To investigate the underlying molecular pathways, expression levels of intrinsic apoptotic pathway-related proteins were examined. HA mice displayed higher mitochondrial levels of antiapoptotic Bcl-xL, accompanied by lower proapoptotic Bad levels and decreased cytochrome c release, suggesting a higher apoptotic threshold. Taken together with our previous reports, indicating increased Akt phosphorylation and antioxidative capacity, alongside with reduced tumor necrosis alpha levels after TBI in HA animals, the current results support the involvement of an antiapoptotic effect in HA-induced neuroprotection. Current results warrant further study as TBI-induced apoptosis may persist over weeks after injury, possibly providing a target for belated therapeutic intervention. PMID:19904288

  9. Membrane recovery of phenolic acid co-products from biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The technology to convert lignocellulosic biomass to biofuels is progressing with parallel efforts to develop processes to recover valuable natural products and generate additional revenue from these associated co-products. The lignified components of plant tissues contain phenolic acid structures s...

  10. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-01-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

  11. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    SciTech Connect

    Jarrell, Mark

    2013-09-30

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  12. Heavy and Thermal Oil Recovery Production Mechanisms, SUPRI TR-127

    SciTech Connect

    Kovscek, Anthony R.; Brigham, William E.; Castanier, Louis M.

    2001-09-07

    The program spans a spectrum of topics and is divided into five categories: (i) multiphase flow and rock properties, (ii) hot fluid injection, (iii) primary heavy-oil production, (iv) reservoir definition, and (v) in-situ combustion.

  13. Antioxidants in heat-processed koji and the production mechanisms.

    PubMed

    Okutsu, Kayu; Yoshizaki, Yumiko; Ikeda, Natsumi; Kusano, Tatsuro; Hashimoto, Fumio; Takamine, Kazunori

    2015-11-15

    We previously developed antioxidative heat-processed (HP)-koji via two-step heating (55 °C/2days → 75 °C/3 days) of white-koji. In this study, we isolated antioxidants in HP-koji and investigated their formation mechanisms. The antioxidants were identified to be 5-hydroxymethyl furfural (HMF) and 5-(α-D-glucopyranosyloxymethyl)-2-furfural (GMF) based on nuclear magnetic resonance spectral analysis. HMF and GMF were not present in intact koji, but were formed by heating at 75 °C. As production of these antioxidants was more effective by two-step heating than by constant heating at 55 °C or 75 °C, we presumed that the antioxidant precursors are derived enzymatically at 55°C and that the antioxidants are formed subsequently by thermal reaction at 75 °C. The heating assay of saccharide solutions revealed glucose and isomaltose as HMF and GMF precursors, respectively, and thus the novel finding of GMF formation from isomaltose. Finally, HMF and GMF were effectively formed by two-step heating from glucose and isomaltose present in koji. PMID:25977038

  14. Magnonics: Selective heat production in nanocomposites with different magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Kornev, Konstantin G.

    2016-03-01

    We theoretically study Ferromagnetic Resonance (FMR) in nanocomposites focusing on the analysis of heat production. It is demonstrated that at the FMR frequency, the temperature of nanoparticles can be raised at the rate of a few degrees per second at the electromagnetic (EM) irradiation power equivalent to the sunlight power. Thus, using FMR, one can initiate either surface or bulk reaction in the vicinity of a particular magnetic inclusion by purposely delivering heat to the nanoscale at a sufficiently fast rate. We examined the FMR features in (a) the film with a mixture of nanoparticles made of different materials; (b) the laminated films where each layer is filled with a particular type of magnetic nanoparticles. It is shown that different nanoparticles can be selectively heated at the different bands of EM spectrum. This effect opens up new exciting opportunities to control the microwave assisted chemical reactions depending on the heating rate.

  15. Work, heat and entropy production in bipartite quantum systems

    NASA Astrophysics Data System (ADS)

    Hossein-Nejad, Hoda; O'Reilly, Edward J.; Olaya-Castro, Alexandra

    2015-07-01

    In bipartite quantum systems commutation relations between the Hamiltonian of each subsystem and the interaction impose fundamental constraints on the dynamics of each partition. Here we investigate work, heat and entropy production in bipartite systems characterized by particular commutators between their local Hamiltonians and the interaction operator. We consider the formalism of (Weimer et al 2008 Europhys. Lett. 83 30008), in which heat (work) is identified with energy changes that (do not) alter the local von Neumann entropy, as observed in an effective local measurement basis. We demonstrate the consequences of the commutation relations on the work and heat fluxes into each partition, and extend the formalism to open quantum systems where one, or both, partitions are subject to a Markovian thermal bath. We also discuss the relation between heat and entropy in bipartite quantum systems out of thermal equilibrium, and reconcile the aforementioned approach with the second law of thermodynamics.

  16. Fluidized-bed waste-heat recovery system development: Semiannual report, August 1, 1984-January 31, 1985

    SciTech Connect

    Cole, W.E.; Patch, K.D.

    1987-03-01

    A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy is to preheat the combustion air for the process heater. The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a raining bed. The hot medium is then removed from the bed and placed in a fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled medium is then returned to the raining bed. Initial development of this concept is for the aluminum smelting industry. In this report, the accomplishments of the preceding six-month period are described. Specifically, tests in the laboratory FBWHR system, performing integrated system testing and subsystem development, were completed.

  17. Effects of gas bubble production on heat transfer from a volumetrically heated liquid pool

    NASA Astrophysics Data System (ADS)

    Bull, Geoffrey R.

    Aqueous solutions of uranium salts may provide a new supply chain to fill potential shortfalls in the availability of the most common radiopharmaceuticals currently in use worldwide, including Tc99m which is a decay product of Mo99. The fissioning of the uranium in these solutions creates Mo99 but also generates large amounts of hydrogen and oxygen from the radiolysis of the water. When the dissolved gases reach a critical concentration, bubbles will form in the solution. Bubbles in the solution affect both the fission power and the heat transfer out of the solution. As a result, for safety and production calculations, the effects of the bubbles on heat transfer must be understood. A high aspect ratio tank was constructed to simulate a section of an annulus with heat exchangers on the inner and outer steel walls to provide cooling. Temperature measurements via thermocouples inside the tank and along the outside of the steel walls allowed the calculation of overall and local heat transfer coefficients. Different air injection manifolds allowed the exploration of various bubble characteristics and patterns on heat transfer from the pool. The manifold type did not appear to have significant impact on the bubble size distributions in water. However, air injected into solutions of magnesium sulfate resulted in smaller bubble sizes and larger void fractions than those in water at the same injection rates. One dimensional calculations provide heat transfer coefficient values as functions of the superficial gas velocity in the pool.

  18. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    SciTech Connect

    Pruess, K.; Spycher, N.

    2009-05-01

    It has been suggested that enhanced geothermal systems (EGS) may be operated with supercritical CO{sub 2} instead of water as heat transmission fluid (D.W. Brown, 2000). Such a scheme could combine recovery of geothermal energy with simultaneous geologic storage of CO{sub 2}, a greenhouse gas. At geothermal temperature and pressure conditions of interest, the flow and heat transfer behavior of CO{sub 2} would be considerably different from water, and chemical interactions between CO{sub 2} and reservoir rocks would also be quite different from aqueous fluids. This paper summarizes our research to date into fluid flow and heat transfer aspects of operating EGS with CO{sub 2}. (Chemical aspects of EGS with CO{sub 2} are discussed in a companion paper; Xu and Pruess, 2010.) Our modeling studies indicate that CO{sub 2} would achieve heat extraction at larger rates than aqueous fluids. The development of an EGS-CO{sub 2} reservoir would require replacement of the pore water by CO{sub 2} through persistent injection. We find that in a fractured reservoir, CO{sub 2} breakthrough at production wells would occur rapidly, within a few weeks of starting CO{sub 2} injection. Subsequently a two-phase water-CO{sub 2} mixture would be produced for a few years,followed by production of a single phase of supercritical CO{sub 2}. Even after single-phase production conditions are reached,significant dissolved water concentrations will persist in the CO{sub 2} stream for many years. The presence of dissolved water in the production stream has negligible impact on mass flow and heat transfer rates.

  19. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2015-09-15

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode. At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net energy (5.20-6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8-1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. PMID:26057718

  20. Verification of relationship model between Korean new elderly class’s recovery resilience and productive aging

    PubMed Central

    Cho, Gun-Sang; Kim, Dae-Sung; Yi, Eun-Surk

    2015-01-01

    The purpose of this study is to verification of relationship model between Korean new elderly class’s recovery resilience and productive aging. As of 2013, this study sampled preliminary elderly people in Gyeonggi-do and other provinces nationwide. Data from a total of effective 484 subjects was analyzed. The collected data was processed using the IBM SPSS 20.0 and AMOS 20.0, and underwent descriptive statistical analysis, confirmatory factor analysis, and structure model verification. The path coefficient associated with model fitness was examined. The standardization path coefficient between recovery resilience and productive aging is β=0.975 (t=14.790), revealing a statistically significant positive effect. Thus, it was found that the proposed basic model on the direct path of recovery resilience and productive aging was fit for the model. PMID:26730383

  1. Recovery of phenolic compounds from biomass during ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass to ethanol conversion represents an alternative liquid fuel technology that does not need to compete with food crops. Maintaining agricultural production of commodity crops such as corn and soybeans for the food supply and using agricultural waste or low input energy crops grown on marginal ...

  2. Combined heat recovery and dry scrubbing for MWCs to meet the new EPA guidelines

    SciTech Connect

    Finnis, P.J.; Heap, B.M.

    1997-12-01

    Both the UK and US Municipal Waste Combuster (MWC) markets have undergone upgraded regulatory control. In the UK, the government`s Integrated Pollution Control (IPC) regime, enforced by the 1990 Environmental Protection Act (EPA) Standard IPR5/3 moved control of emissions of MWCs from local councils to the government Environmental Authority (EA). Existing MWCs had until December 1, 1996 to complete environmental upgrades. Simultaneously, the European Community (EC) was finalizing more stringent legislation to take place in the year 2001. In the US, the 1990 Clean Air Act amendments required the Environmental Protection Agency (EPA) to issue emission guidelines for new and existing facilities. Existing facilities are likely to have only until the end of 1999 to complete upgrades. In North America, Procedair Industries Corp had received contracts from Kvaerner EnviroPower AB, for APC systems of four new Refuse Derived Fuel (RDF) fluid bed boilers that incorporated low outlet temperature economizers as part of the original boiler equipment. The Fayetteville, North Carolina facility was designed for 200,000 tpy. What all these facilities have in common is low economizer outlet temperatures of 285{degrees}F coupled with a Total Dry Scrubbing System. MWC or RDF facilities using conventional spray dryer/fabric filter combinations have to have economizer gas outlet temperatures about 430{degrees}F to allow for evaporation of the lime slurry in the spray dryer without the likelihood of wall build up or moisture carry over. Since the Totally Dry Scrubbing System can operate with economizer gas outlet temperatures about 285{degrees}F, the added energy available for sale from adding low outlet temperature economizer heat recovery can be considerable. This paper focuses on Procedair`s new plant and retrofit experience using `Dry Venturi Reactor/Fabric Filter` combinations with the lower inlet temperature operating conditions.

  3. Energy and economic analysis of total energy systems for residential and commercial buildings. [utilizing waste heat recovery techniques

    NASA Technical Reports Server (NTRS)

    Maag, W. L.; Bollenbacher, G.

    1974-01-01

    Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.

  4. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    NASA Technical Reports Server (NTRS)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  5. A study of natural circulation in the evaporator of a horizontal-tube heat recovery steam generator

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Pleshanov, K. A.; Sterkhov, K. V.

    2014-07-01

    Results obtained from investigations of stable natural circulation in an intricate circulation circuit with a horizontal layout of the tubes of evaporating surface having a negative useful head are presented. The possibility of making a shift from using multiple forced circulation organized by means of a circulation pump to natural circulation in vertical heat recovery steam generator is estimated. Criteria for characterizing the performance reliability and efficiency of a horizontal evaporator with negative useful head are proposed. The influence of various design solutions on circulation robustness is considered. With due regard of the optimal parameters, the most efficient and least costly methods are proposed for achieving more stable circulation in a vertical heat recovery steam generator when a shift is made from multiple forced to natural circulation. A procedure for calculating the circulation parameters and an algorithm for checking evaporator performance reliability are developed, and recommendations for the design of heat recovery steam generator, nonheated parts of natural circulation circuit, and evaporating surface are suggested.

  6. Testing and evaluation of heat recovery/seed recovery. Quarterly technical progress report, March, April, May, June 1980

    SciTech Connect

    Wehr, A.G.; Wade, M.L.

    1980-07-01

    Mississippi State University has constructed a Test Stand that can simulate MHD environments, and this facility was used to study the effect of combustion stoichiometry and secondary combustion on nitrogen oxide generation, heat transfer, and gas stream properties. Mathematical models are being developed and evaluated for the heat transfer in hot-wall test sections, and the prediction of NO/sub x/ levels generated during hydrocarbon combustion. Radiant boiler test sections have been built for the Test Stand, and a radiant boiler test system has been designed to provide water/steam at the proper temperature and pressure for the test sections. Packaged microprocessor-controlled diagnostic instrumentation is being developed, constructed, and evaluated for use in characterizing MHD system parameters. The instrumentation includes a two-color pyrometer, sodium line reversal system, laser transmissiometer and a laser doppler velocimetry system. Work is also underway to utilize a Coherent Anti-Stokes Raman Spectroscopy (CARS) system, an optical nitric oxide detection system, and a particle size distribution system.

  7. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    SciTech Connect

    Nick Rosenberry, Harris Companies

    2012-05-04

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  8. A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles

    NASA Astrophysics Data System (ADS)

    Yari, Mortaza; Mahmoudi, S. M. S.

    2011-02-01

    This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The considered organic Rankine cycles were: simple organic Rankine cycle (SORC), ORC with internal heat exchanger (HORC) and regenerative organic Rankine cycle (RORC). The performances of the combined cycles were studied from the point of view of first and second-laws of thermodynamics. Individual models were developed for each component and the effects of some important parameters such as compressor pressure ratio, turbine inlet temperature, and evaporator and environment temperatures on the efficiencies and on the exergy destruction rate were studied. Finally the combined cycles were optimized thermodynamically using the EES (Engineering Equation Solver) software. Based on the identical operating conditions for the GT-MHR cycle, a comparison between the three combined cycles and a simple GT-MHR cycle is also were made. This comparison was also carried out from the point of view of economics. The GT-MHR/SORC combined cycle proved to be the best among all the cycles from the point of view of both thermodynamics and economics. The efficiency of this cycle was about 10% higher than that of GT-MHR alone.

  9. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    NASA Astrophysics Data System (ADS)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  10. Malignant hyperthermia and calcium-induced heat production.

    PubMed

    Ueda, I; Shinoda, F; Kamaya, H; Krishna, P R

    1994-05-01

    The abnormal increase in intracellular Ca++ in malignant hyperthermia (MH) is well documented, but the link between the increased Ca++ concentration and high temperature remains speculative. We investigated the possibility that the Ca(++)-induced change in the state of cell membranes may contribute to the temperature elevation. Calcium ion transforms phospholipid membranes from the fluid to solid state. This is analogous to the freezing of water, and liberates latent heat. Differential titration calorimetry (DTC) measures heat production or absorption during ligand binding to macromolecules. When CaCl2 solution was added to anionic dimyristoylphosphatidic acid (DMPA) and dimyristoylphosphatidylglycerol (DMPG) vesicle membranes in incremental doses, DTC showed that the heat production suddenly increased when the Ca++ concentration exceeded about 120 microM. At this Ca++ concentration range, these lipid membranes underwent phase transition. The latent heat of transition was measured by differential scanning calorimetry (DSC). The values were 7.1 +/- 0.7 (SD, n = 4) kcal.mol-1 of DMPA and 6.8 +/- 0.7 (SD, n = 4) kcal.mol-1 of DMPG. The study shows that Ca++ produces heat when bound to lipid membranes. We are not proposing, however, that this is the sole source of heat. We contend that the lipid phase transition is one of the heat sources and it may trigger a hypermetabolic state by elevating the temperature of cell membranes. Because Ca++ is implicated as the second messenger in signal transduction, multiple systems may be involved. More studies are needed to clarify how Ca++ increases body temperature. PMID:8055615

  11. Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems

    SciTech Connect

    Edwards, Kevin Dean; Wagner, Robert M; Briggs, Thomas E

    2010-01-01

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery

  12. Chloride metallurgy: PGM recovery and titanium dioxide production

    NASA Astrophysics Data System (ADS)

    Puvvada, G. V. K.; Sridhar, R.; Lakshmanan, V. I.

    2003-08-01

    This paper examines in detail the thermodynamics and application of chloride metallurgy for the extraction of precious metals, such as gold and silver, and platinum-group metals. The advantages with regard to the solubilities of metal ion species and their reduction potentials in chloride media are discussed with examples. The use of chloride media for the extraction of platinum-group metals from spent autocatalysts and for the production of high-purity pigment-grade TiO2 and titanium metal from ilmenite feed stocks is discussed in the case studies provided.

  13. Lipopeptide surfactants: Production, recovery and pore forming capacity.

    PubMed

    Inès, Mnif; Dhouha, Ghribi

    2015-09-01

    Lipopeptides are microbial surface active compounds produced by a wide variety of bacteria, fungi and yeast. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Surfactin, iturin and fengycin of Bacillus subtilis are among the most studied lipopeptides. This review will present the main factors encountering lipopeptides production along with the techniques developed for their extraction and purification. Moreover, we will discuss their ability to form pores and destabilize biological membrane permitting their use as antimicrobial, hemolytic and antitumor agents. These open great potential applications in biomediacal, pharmaceutic and agriculture fields. PMID:26189973

  14. Comparison of supplements to enhance recovery of heat-injured Salmonella from egg albumen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recovery of Salmonella from liquid egg white (LEW) is complicated by thermal and innate LEW antimicrobial-induced injury. Numerous supplements have been reported to promote the recovery of injured bacteria. The purpose of this study was to determine the efficacy of twelve media supplements to af...

  15. Factors associated with marketable milk production recovery after treatment of naturally occurring acute coliform mastitis.

    PubMed

    Shinozuka, Yasunori; Kaneko, Sohei; Kurose, Tomoyasu; Watanabe, Aiko; Kuruhara, Kana; Kawai, Kazuhiro

    2016-06-01

    Milk production loss after recovery from acute coliform mastitis causes major economic losses for dairy industries. Declines in milk production and composition are caused by multiple factors, including cow factors, microorganisms and treatments, but the influence of each factor has not been determined. To investigate risk factors for milk loss after treatment for acute coliform mastitis, multiple logistic regression analyses were conducted in 53 clinical cases. Systemic administration of fluoroquinolone was significantly associated with recovery of marketable milk production. The time to slaughter was significantly shorter in cows with complete loss of quarter milk production than in cows that produced marketable milk. In this study, we identified factors associated with increased risk of milk production loss. PMID:26860356

  16. Factors associated with marketable milk production recovery after treatment of naturally occurring acute coliform mastitis

    PubMed Central

    SHINOZUKA, Yasunori; KANEKO, Sohei; KUROSE, Tomoyasu; WATANABE, Aiko; KURUHARA, Kana; KAWAI, Kazuhiro

    2016-01-01

    Milk production loss after recovery from acute coliform mastitis causes major economic losses for dairy industries. Declines in milk production and composition are caused by multiple factors, including cow factors, microorganisms and treatments, but the influence of each factor has not been determined. To investigate risk factors for milk loss after treatment for acute coliform mastitis, multiple logistic regression analyses were conducted in 53 clinical cases. Systemic administration of fluoroquinolone was significantly associated with recovery of marketable milk production. The time to slaughter was significantly shorter in cows with complete loss of quarter milk production than in cows that produced marketable milk. In this study, we identified factors associated with increased risk of milk production loss. PMID:26860356

  17. Recent advances in the microbial production and recovery of apolar molecules.

    PubMed

    Cuellar, Maria C; van der Wielen, Luuk A M

    2015-06-01

    Several apolar molecules of interest for the production of fuels and chemicals can nowadays be produced by fermentation. Those secreted from the microbial cell are of particular interest for large scale bioprocessing, since they allow for cell reuse, in situ product recovery and competitive production levels. So far, however, bioprocess strategies for fermentation and product recovery have been developed for addressing needs at the laboratory scale, rather than the process scale. Most commonly used strategies include extractive fermentations, product stripping in the gas phase, and off-line de-emulsification followed by intensive centrifugation. At the same time, current techno-economic studies at process scale have demonstrated the absolute need for significant improvements in both microorganism and process technology, for these processes to become competitive. PMID:25445546

  18. One-, two-, and three-phase flow during free-product recovery

    SciTech Connect

    Baker, R.S.

    1995-12-31

    An increasing variety of options is becoming available for recovering organic liquids from the subsurface following releases from leaking underground storage tanks, buried pipelines, and surface spills. Multiphase fluid flow in porous media during product recovery must be considered to optimize desired effects and minimize unintended consequences. Free-product recovery commonly focuses first on soils that are saturated with respect to nonaqueous-phase liquid (NAPL), especially when a substantial thickness of floating product is apparent in monitoring wells. This paper also addresses product recovery from soils that are unsaturated with respect to NAPL, such as in the transition zone between the water table and the capillary fringe. Considering both saturated and unsaturated soils, the available product recovery methods can generally be classified as those that aim to recover NAPL only; NAPL and water; and NAPL, water, and vapor. The corresponding flow processes, respectively, involve one, two, and three phases. Examples of these distinctly different approaches are presented, along with their applicability, advantages, and disadvantages.

  19. Can supine recovery mitigate the exercise intensity dependent attenuation of post-exercise heat loss responses?

    PubMed

    Kenny, Glen P; Gagnon, Daniel; Jay, Ollie; McInnis, Natalie H; Journeay, W Shane; Reardon, Francis D

    2008-08-01

    Cutaneous vascular conductance (CVC) and sweat rate are subject to non-thermal baroreflex-mediated attenuation post-exercise. Various recovery modalities have been effective in attenuating these decreases in CVC and sweat rate post-exercise. However, the interaction of recovery posture and preceding exercise intensity on post-exercise thermoregulation remains unresolved. We evaluated the combined effect of supine recovery and exercise intensity on post-exercise cardiovascular and thermal responses relative to an upright seated posture. Seven females performed 15 min of cycling ergometry at low- (LIE, 55% maximal oxygen consumption) or high-(HIE, 85% maximal oxygen consumption) intensity followed by 60 min of recovery in either an upright seated or supine posture. Esophageal temperature, CVC, sweat rate, cardiac output, stroke volume, heart rate, total peripheral resistance, and mean arterial pressure (MAP) were measured at baseline, at end-exercise, and at 2, 5, 12, 20, and every 10 min thereafter until the end of recovery. MAP and stroke volume were maintained during supine recovery to a greater extent relative to an upright seated recovery following HIE (p recovery (p recovery following LIE, no differences were observed for MAP, CVC, sweat rate or esophageal temperature. Supine recovery attenuates the post-exercise reductions in MAP, CVC, and sweat rate in a manner dependent directly on exercise intensity. This effect is likely attributable to a non-thermal baroreceptor mechanism. PMID:18641710

  20. Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery

    NASA Astrophysics Data System (ADS)

    Chen, Kaifeng; Santhanam, Parthiban; Fan, Shanhui

    2015-08-01

    We consider a near-field thermophotovoltaic device with metal as the emitter and semiconductor as the photovoltaic cell. We show that when the cell is a III-V semiconductor, such as GaSb, parasitic phonon-polariton heat transfer reduces efficiency in the near-field regime, especially when the temperature of the emitter is not high enough. We further propose ways to avoid the phonon-polariton heat transfer by replacing the III-V semiconductor with a non-polar semiconductor such as Ge. Our work provides practical guidance on the design of near-field thermophotovoltaic systems for efficient harvesting of low-quality waste heat.

  1. Influence of heat shock on glycerol production in alcohol fermentation.

    PubMed

    Berovic, Marin; Pivec, Aleksandra; Kosmerl, Tatjana; Wondra, Mojmir; Celan, Stefan

    2007-02-01

    The influence of single and double heat shocks induced during the exponential growth phase of the Saccharomyces cerevisiae fermentation of cultivar Sauvignon Blanc grape must was examined. Rapid temperature changes from 18 degrees C to 34 degrees C have been applied. The effect of the duration of exposure to a high temperature has been analyzed. By the applications of a single heat shock and a double heat shock, up to 8.2 g l(-1) and 11.0 g l(-1) glycerol have been produced, respectively. To prevent the evaporation of fine wine bouquet compounds during the temperature changes, reflux coolers on the top of bioreactors have been employed. By using this method, glycerol production was increased by up to 65%. PMID:17368395

  2. A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting

    NASA Astrophysics Data System (ADS)

    Zabek, D.; Taylor, J.; Ayel, V.; Bertin, Y.; Romestant, C.; Bowen, C. R.

    2016-07-01

    Low temperature thermal to electrical energy converters have the potential to provide a route for recovering waste energy. In this paper, we propose a new configuration of a thermal harvester that uses a naturally driven thermal oscillator free of mechanical motion and operates between a hot heat source and a cold heat sink. The system exploits a heat induced liquid-vapour transition of a working fluid as a primary driver for a pyroelectric generator. The two-phase instability of a fluid in a closed looped capillary channel of an oscillating heat pipe (OHP) creates pressure differences which lead to local high frequency temperature oscillations in the range of 0.1-5 K. Such temperature changes are suitable for pyroelectric thermal to electrical energy conversion, where the pyroelectric generator is attached to the adiabatic wall of the OHP, thereby absorbing thermal energy from the passing fluid. This new pyroelectric-oscillating heat pipe (POHP) assembly of a low temperature generator continuously operates across a spatial heat source temperature of 55 °C and a heat sink temperature of 25 °C, and enables waste heat recovery and thermal energy harvesting from small temperature gradients at low temperatures. Our electrical measurements with lead zirconate titanate (PZT) show an open circuit voltage of 0.4 V (AC) and with lead magnesium niobate-lead titanate (PMN-PT) an open circuit voltage of 0.8 V (AC) at a frequency of 0.45 Hz, with an energy density of 95 pJ cm-3 for PMN-PT. Our novel POHP device therefore has the capability to convert small quantities of thermal energy into more desirable electricity in the nW to mW range and provides an alternative to currently used batteries or centralised energy generation.

  3. UST CORRECTIVE ACTION TECHNOLOGIES: ENGINEERING DESIGN OF FREE PRODUCT RECOVERY SYSTEMS

    EPA Science Inventory

    The objective of this project was to develop a technical assistance document for assessment of subsurface hydrocarbon spills and for evaluating effects of well placement and pumping rates on separate phase plume control and on free product recovery. rocedures developed for estima...

  4. TREATMENT AND PRODUCT RECOVERY: SUPERCRITICAL WATER OXIDATION OF NYLON MONOMER MANUFACTURING WASTE

    EPA Science Inventory

    EPA GRANT NUMBER: R822721C569
    Title: Treatment and Product Recovery: Supercritical Water Oxidation of Nylon Monomer Manufacturing Waste
    Investigator: Earnest F. Gloyna
    Institution: University of Texas at Austin
    EPA Project Officer:<...

  5. Ethanol production from food waste at high solid contents with vacuum recovery technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol production from food wastes does not only solve the environmental issues but also provide renewable biofuel to partially substitute fossil fuels. This study investigated the feasibility of utilization of food wastes for producing ethanol at high solid contents (35%, w/w). Vacuum recovery sys...

  6. UST CORRECTIVE ACTION TECHNOLOGIES: ENGINEERING DESIGN OF FREE PRODUCT RECOVERY SYSTEMS

    EPA Science Inventory

    The objective of this project was to develop a technical assistance document for assessment of subsurface hydrocarbon spills and for evaluating effects of well placement and pumping rates on separate phase plume control and on free product recovery. Procedures developed for estim...

  7. δ 13C evidence that high primary productivity delayed recovery from end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Yu, M.; Jost, A. B.; Kelley, B. M.; Payne, J. L.

    2011-02-01

    Euxinia was widespread during and after the end-Permian mass extinction and is commonly cited as an explanation for delayed biotic recovery during Early Triassic time. This anoxic, sulfidic episode has been ascribed to both low- and high-productivity states in the marine water column, leaving the causes of euxinia and the mechanisms underlying delayed recovery poorly understood. Here we use isotopic analysis to examine the changing chemical structure of the water column through the recovery interval and thereby better constrain paleoproductivity. The δ 13C of limestones from 5 stratigraphic sections in south China displays a negative gradient of approximately 4‰ from shallow-to-deep water facies within the Lower Triassic. This intense gradient declines within Spathian and lowermost Middle Triassic strata, coincident with accelerated biotic recovery and carbon cycle stabilization. Model simulations show that high nutrient levels and a vigorous biological pump are required to sustain such a large gradient in δ 13C, indicating that Early Triassic ocean anoxia and delayed recovery of benthic animal ecosystems resulted from too much productivity rather than too little.

  8. Fluidized-bed waste-heat recovery system development. Semiannual report, February 1, 1983-July 31, 1983

    SciTech Connect

    Cole, W. E.; De Saro, R.; Joshi, C.

    1983-08-01

    A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize this energy, which is applicable to all processes, is to preheat the combustion air from the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry. In this report, the accomplishments of the proceeding six-month period are described.

  9. Modelling, sizing and testing a scroll expander for a waste heat recovery application on a gasoline engine

    NASA Astrophysics Data System (ADS)

    Legros, Arnaud; Guillaume, Ludovic; Diny, Mouad; Lemort, Vincent

    2015-08-01

    Waste heat recovery technologies in a mobile application emerge every time energy becomes a valuable resource. It has been the case in the 70s with oil crisis and it is starting to regain some interests now due to the continuously rising price of oil and due to the restrictive standards imposed by the different governments. This paper deals with the recovery on the exhaust gases of an internal combustion engine by using a Rankine system. The study focuses on the expander, which is one of the most important components of the system. The use of a scroll expander operating with steam is currently investigated through simulation and experimentation. This paper presents the modelling of a scroll expander. The model is a detailed model including various losses such as leakage, friction or under or over expansion. This model has been used to design and size a tailor-made scroll expander. This was necessary due to the small amount of expanders on the market and also to have a machine that fits our application. After designing the machine, a prototype has been built. It has also been tested on our prototype bench of waste heat recovery on a gasoline engine, by means of a Rankine cycle. Measured performance will be presented, analysed and compared to predictions by the model. The first results will be presented here and discussed in order to give recommendations for the design of next prototypes.

  10. Hanford production reactor heat releases 1951--1971

    SciTech Connect

    Kannberg, L.D.

    1992-04-01

    The purpose of this report is to document and detail the thermal releases from the Hanford nuclear production reactors during the period 1951 through 1971, and to put these releases in historical perspective with respect to changing Columbia River flows and temperatures. This information can also be used as a foundation for further ecological evaluations. When examining Hanford production reactor thermal releases to the Columbia River all related factors affecting the releases and the characteristics of the river should be considered. The major considerations in the present study were the characteristics of the releases themselves (primarily coolant flow rate, temperatures, discharge facilities, period of operation, and level of operation) and the characteristics of the river in that reach (primarily flow rate, temperature and mixing characteristics; the effects of dam construction were also taken into account). In addition, this study addressed ecological effects of thermal releases on aquatic species. Accordingly, this report includes discussion of the reactor cooling system, historical heat releases, thermal mixing and transport studies, hydroelectric power development, and ecologic effects of Hanford production reactor heat releases on salmon and trout. Appendix A contains reactor operating statistics, and Appendix B provide computations of heat added to the Columbia River between Priest Rapids Dam and Richland, Washington.

  11. A New Model for Heat Flow in Extensional Basins: Estimating Radiogenic Heat Production

    SciTech Connect

    Waples, Douglas W.

    2002-06-15

    Radiogenic heat production (RHP) represents a significant fraction of surface heat flow, both on cratons and in sedimentary basins. RHP within continental crust-especially the upper crust-is high. RHP at any depth within the crust can be estimated as a function of crustal age. Mantle RHP, in contrast, is always low, contributing at most 1 to 2 mW/m{sup 2} to total heat flow. Radiogenic heat from any noncrystalline basement that may be present also contributes to total heat flow. RHP from metamorphic rocks is similar to or slightly lower than that from their precursor sedimentary rocks. When extension of the lithosphere occurs-as for example during rifting-the radiogenic contribution of each layer of the lithosphere and noncrystalline basement diminishes in direct proportion to the degree of extension of that layer. Lithospheric RHP today is somewhat less than in the distant past, as a result of radioactive decay. In modeling, RHP can be varied through time by considering the half lives of uranium, thorium, and potassium, and the proportional contribution of each of those elements to total RHP from basement. RHP from sedimentary rocks ranges from low for most evaporites to high for some shales, especially those rich in organic matter. The contribution to total heat flow of radiogenic heat from sediments depends strongly on total sediment thickness, and thus differs through time as subsidence and basin filling occur. RHP can be high for thick clastic sections. RHP in sediments can be calculated using ordinary or spectral gamma-ray logs, or it can be estimated from the lithology.

  12. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2006-05-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar.

  13. Constant Temperature Storage House Heated by the Respiration Heat of Agricultural Products

    NASA Astrophysics Data System (ADS)

    Kobiyama, Masayoshi; Takegata, Kiyohide; Hashimoto, Yoshiaki; Kawamoto, Syuroh; Ohno, Syozi

    HIMURO type storage house, cooled by natural snow/ice, has been practically applied by means of its good storing condition and of the easy handling. As this type storage house is constructed by enough insulation structure, it can been used not only for a cool house in the summer but also a constant temperature storage house in the winter. In this paper, the authors suggested that the HIMURO type storage house might be used as the constant temperature house in the severe cold winter season after the theoretical investigation on the thermal characteristics of it. In general, the conventional type constant temperature storage house is heated by heater throughout storing period, that of this paper is self heated by the respiration heat of agricultural products stored in this house, so the house proposed in this paper look forward to smaller heat addition than that of conventional house. The practical experiment was performed to verify the theoretical investigation and to observe the storing condition of the product and we obtained enough results.

  14. Model wall and recovery temperature effects on experimental heat transfer data analysis

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Stone, D. R.

    1974-01-01

    Basic analytical procedures are used to illustrate, both qualitatively and quantitatively, the relative impact upon heat transfer data analysis of certain factors which may affect the accuracy of experimental heat transfer data. Inaccurate knowledge of adiabatic wall conditions results in a corresponding inaccuracy in the measured heat transfer coefficient. The magnitude of the resulting error is extreme for data obtained at wall temperatures approaching the adiabatic condition. High model wall temperatures and wall temperature gradients affect the level and distribution of heat transfer to an experimental model. The significance of each of these factors is examined and its impact upon heat transfer data analysis is assessed.

  15. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery

    PubMed Central

    Elshafie, Abdulkadir E.; Joshi, Sanket J.; Al-Wahaibi, Yahya M.; Al-Bemani, Ali S.; Al-Bahry, Saif N.; Al-Maqbali, Dua’a; Banat, Ibrahim M.

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13–15% salinity, pH range of 2–12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery. PMID:26635782

  16. Heat production in Littorina saxatilis Olivi and Littorina neritoides L. (gastropoda: Prosobranchia) during an experimental exposure to air

    NASA Astrophysics Data System (ADS)

    Kronberg, Inge

    1990-06-01

    The adaptation of littorinid molluscs to prolonged aerial exposure was investigated by the determination of heat production. Littorina saxatilis, inhabiting the upper eulittoral, reached a maximum metabolic activity during submersion (heat production: 3.26×10-3J s-1 (gadw)-1. On the first three days of desiccation, the heat production was continuously reduced to 40% of the submersed value. A prolonged aerial exposure was lethal for this species. In the supralittoral L. neritoides, three stages of energy metabolism could be observed: An intermediate heat production during submersion (1.97×10-3Js-1 (gadw)-1), an increased metabolism during the first hour of aerial exposure (heat production 204% of submersed value), and a minimal metabolism (39% of the submersed value and 19% of maximum value) during the following days and weeks of desiccation. Recovery depended on water salinity; L. saxatilis proved to be less euryhaline than L. neritoides. Thus, the metabolic adaptations correlate with the level of littoral habitat; inactivity combined with a drastically reduced energy consumption is a metabolically economic way to survive in periodically dry environments.

  17. Recovery of Proteolytic and Collagenolytic Activities from Viscera By-products of Rayfish (Raja clavata)

    PubMed Central

    Murado, Miguel Anxo; del Pilar González, María; Vázquez, José Antonio

    2009-01-01

    The aim of this work was to study the recovery of proteolytic and collagenolytic activities from rayfish (Raja clavata) viscera wastes. Initially, different parts of the gastrointestinal tract by-products (stomach, duodenum section including pancreas, final intestine) were evaluated. The extracts from proximal intestine yielded the highest values of both enzymatic activities. Optimal conditions for protease activity quantification were established at pH = 6, T = 40 °C and incubation time ≤20 min. The mathematical equation used to model the joint effect of pH and temperature led to maximum activity at pH = 8.66 and 59.4 °C, respectively. Overcooled acetone was found to be best option for recovery of enzymatic activities in comparison with ethanol, PEG-4000, ammonium sulphate and ultrafiltration system. Finally, a simple and systematic protocol of partial purification and total recovery of proteases and collagenases was defined. PMID:20098611

  18. ONSITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery. The technologies were (1) atmospheric batch distillation, (2) vacuum heat-pump distillation, and (3) low-emission vapor degreas...

  19. ONSITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery: atmospheric batch distillation, vacuum heat-pump distillation, and a low-emission vapor degreaser with closed solvent, liquid an...

  20. Changes in recovery due to drug product matrix ageing as a source of mass imbalances.

    PubMed

    Schulz, Katharina; Oberdieck, Ulrich; Backensfeld, Thomas; Weitschies, Werner

    2013-02-23

    An important quality feature of stability testing of drug products is mass balance. Besides several known or anticipated causes for mass imbalances, a further potential cause that has not yet been systematically assessed might be incomplete recovery due to the influence of matrix ageing. The genotoxic degradation product 4-chloroaniline (PCA) and the unstable drug substance estradiol (E2) that is known to be difficult to extract from matrices in low-dose solid formulations were chosen as examples. A marketed product containing E2 as well as two marketed products that potentially contain PCA were investigated together with experimental formulations containing E2 or PCA that were produced for this study. To accelerate drug product matrix ageing, samples were stored at different conditions for defined storage periods. PCA and E2 recovery was determined at all sampling time points, respectively. In comparison to unstressed samples, significant changes in recovery were observed in 67% of the formulations investigated. Consequently, the outlined procedure can be regarded as a promising approach to reveal potential reasons for mass imbalance. PMID:23245242

  1. Free-product plume distribution and recovery modeling prediction in a diesel-contaminated volcanic aquifer

    NASA Astrophysics Data System (ADS)

    Hernández-Espriú, Antonio; Martínez-Santos, Pedro; Sánchez-León, Emilio; Marín, Luis E.

    Light non-aqueous phase liquids (LNAPL) represent one of the most serious problems in aquifers contaminated with petroleum hydrocarbons liquids. To design an appropriate remediation strategy it is essential to understand the behavior of the plume. The aim of this paper is threefold: (1) to characterize the fluid distribution of an LNAPL plume detected in a volcanic low-conductivity aquifer (∼0.4 m/day from slug tests interpretation), (2) to simulate the recovery processes of the free-product contamination and (3) to evaluate the primary recovery efficiency of the following alternatives: skimming, dual-phase extraction, Bioslurping and multi-phase extraction wells. The API/Charbeneau analytical model was used to investigate the recovery feasibility based on the geological properties and hydrogeological conditions with a multi-phase (water, air, LNAPL) transport approach in the vadose zone. The modeling performed in this research, in terms of LNAPL distribution in the subsurface, show that oil saturation is 7% in the air-oil interface, with a maximum value of 70% in the capillary fringe. Equilibrium between water and LNAPL phases is reached at a depth of 1.80 m from the air-oil interface. On the other hand, the LNAPL recovery model results suggest a remarkable enhancement of the free-product recovery when simultaneous extra-phase extraction was simulated from wells, in addition to the LNAPL lens. Recovery efficiencies were 27%, 65%, 66% and 67% for skimming, dual-phase extraction, Bioslurping and multi-phase extraction, respectively. During a 3-year simulation, skimmer wells and multi-phase extraction showed the lowest and highest LNAPL recovery rates, with expected values from 207 to 163 and 2305 to 707 l-LNAPL/day, respectively. At a field level we are proposing a well distribution arrangement that alternates pairs of dual-phase well-Bioslurping well. This not only improves the recovery of the free-product plume, but also pumps the dissolve plume and enhances in

  2. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOEpatents

    Ochs, Thomas L.; O'Connor, William K.

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  3. Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired Thermotolerance during Long Recovery after Acclimation1[W

    PubMed Central

    Charng, Yee-yung; Liu, Hsiang-chin; Liu, Nai-yu; Hsu, Fu-chiun; Ko, Swee-suak

    2006-01-01

    Plants and animals share similar mechanisms in the heat shock (HS) response, such as synthesis of the conserved HS proteins (Hsps). However, because plants are confined to a growing environment, in general they require unique features to cope with heat stress. Here, we report on the analysis of the function of a novel Hsp, heat-stress-associated 32-kD protein (Hsa32), which is highly conserved in land plants but absent in most other organisms. The gene responds to HS at the transcriptional level in moss (Physcomitrella patens), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa). Like other Hsps, Hsa32 protein accumulates greatly in Arabidopsis seedlings after HS treatment. Disruption of Hsa32 by T-DNA insertion does not affect growth and development under normal conditions. However, the acquired thermotolerance in the knockout line was compromised following a long recovery period (>24 h) after acclimation HS treatment, when a severe HS challenge killed the mutant but not the wild-type plants, but no significant difference was observed if they were challenged within a short recovery period. Quantitative hypocotyl elongation assay also revealed that thermotolerance decayed faster in the absence of Hsa32 after a long recovery. Similar results were obtained in Arabidopsis transgenic plants with Hsa32 expression suppressed by RNA interference. Microarray analysis of the knockout mutant indicates that only the expression of Hsa32 was significantly altered in HS response. Taken together, our results suggest that Hsa32 is required not for induction but rather maintenance of acquired thermotolerance, a feature that could be important to plants. PMID:16500991

  4. Design of heat and power recovery systems for energy conservation in chemical plants

    SciTech Connect

    Colmenares Torrealba, T.R.

    1988-01-01

    The heat and power integration problem is formulated as a nonlinear programming (NLP) model using an optimality criterion as a design objective that includes the energy-capital trade-offs for the power cycles. The strategies utilize the Temperature Interval method and permit the efficient use of negative heat deficits to obtain lower cost designs. Also, a technique for the lumping of temperature intervals is developed, which often increases the efficiency of optimization without adversely affecting the solution. Initially, a NLP model is formulated for the integration of the heat engines and heat pumps with the process. The model permits an easy assessment of the alternatives for integration and the potential working fluids. Then, an algorithm is presented for the synthesis of cascade refrigeration systems, integrated with the process, with alternate working fluids, and optimized over a continuous range of operating temperatures. Finally, a nonlinear programming strategy is presented for the synthesis of utility systems that satisfy the heating and power demands of the process at 100 percent efficiency. The utility system is modeled as a cascade of heat engines that exchange heat with the process and among themselves. Mass exchange between the adjacent heat engines produces lower pressure designs and provides heat for the process over a broader range of temperatures for a given power demand. Through mass integration, it was discovered that simple Rankine cycles are adequate to generate the complex utility systems that characterize industrial practice. Process examples are presented to illustrate the utility of these models.

  5. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration during Plan-Wide Energy-Efficiency Assessment

    SciTech Connect

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than $1 million during the first year.

  6. Oxidation/corrosion of metallic and ceramic materials in an aluminum remelt furnace. [For fluidized bed waste heat recovery systems

    SciTech Connect

    Federer, J.I.; Jones, P.J.

    1985-12-01

    Both metallic alloys and ceramic materials are candidates for the distributor plate and other components of fluidized bed waste heat recovery (FBWHR) systems. Eleven Fe-, Ni-, and Co-base alloys were exposed to air at elevated temperatures in laboratory furnaces and to flue gases in an aluminum remelt furnace to assess their resistance to oxidation and corrosion. Four SiC ceramics and two oxide ceramics were also tested in the aluminum remelt furnace. Some alloys were coated with aluminum or SiO2 by commercial processes in an effort to enhance their oxidation and corrosion resistance.

  7. Hydrogen production from coal using a nuclear heat source

    NASA Technical Reports Server (NTRS)

    Quade, R. N.

    1976-01-01

    A strong candidate for hydrogen production in the intermediate time frame of 1985 to 1995 is a coal-based process using a high-temperature gas-cooled reactor (HTGR) as a heat source. Expected process efficiencies in the range of 60 to 70% are considerably higher than all other hydrogen production processes except steam reforming of a natural gas. The process involves the preparation of a coal liquid, hydrogasification of that liquid, and steam reforming of the resulting gaseous or light liquid product. A study showing process efficiency and cost of hydrogen vs nuclear reactor core outlet temperature has been completed, and shows diminishing returns at process temperatures above about 1500 F. A possible scenario combining the relatively abundant and low-cost Western coal deposits with the Gulf Coast hydrogen users is presented which provides high-energy density transportation utilizing coal liquids and uranium.

  8. Recovery of Acid Production in Streptococcus mutans Biofilms after Short-Term Fluoride Treatment.

    PubMed

    Dang, Minh-Huy; Jung, Ji-Eun; Lee, Dae-Woo; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2016-01-01

    Fluoride is commonly used as an ingredient of topical oral hygiene measures. Despite the anti-acidogenic activities of fluoride against cariogenic biofilms, the recovery of the biofilms from fluoride damage is unclear. Herein, we investigated the recovery of acid production in Streptococcus mutans biofilms after short-term or during periodic 1-min fluoride treatments. For this study, 46-hour-old S. mutans biofilms were treated with fluoride (0-2,000 ppm F-) for 1-8 min and then incubated in saliva for 0-100 min. The 74-hour-old biofilms were also periodically treated with the fluoride concentration during biofilm formation (1 min/treatment). Changes in acidogenicity and viability were determined via pH drop and colony-forming unit assays, respectively. In this study, acid production after a 1-min fluoride treatment was recovered as saliva incubation time increased, which followed a linear pattern of concentration dependence (R = 0.99, R2 = 0.98). The recovery pattern was in a biphasic pattern, with an initial rapid rate followed by a second slow recovery. Furthermore, recovery from fluoride damage was retarded in a concentration-dependent manner as treatment time increased. In periodic 1-min fluoride treatments, acid production in the biofilms was not diminished during the non-fluoride treatment period; however, it was reduced in a concentration-dependent manner during the fluoride treatment period. The viability of the biofilm cells did not change, even at high fluoride concentrations. Collectively, our results suggest that brief fluoride treatment does not sustain anti-acidogenic activity against S. mutans in biofilms since the damage is recoverable with time. PMID:27355469

  9. Recovery of spores of Clostridium botulinum in yeast extract agar and pork infusion agar after heat treatment.

    PubMed

    Odlaug, T E; Pflug, I J

    1977-10-01

    Yeast extract agar, pork infusion agar, and modifications of these media were used to recover heated Clostridium botulinum spores. The D- and z-values were determined. Two type A strains and one type B strain of C. botulinum were studied. In all cases the D-values were largest when the spores were recovered in yeast extract agar, compared to the D-values for spores recovered in pork infusion agar. The z-values for strains 62A and A16037 were largest when the spores were recovered in pork infusion agar. The addition of sodium bicarbonate and sodium thioglycolate to pork infusion agar resulted in D-values for C. botulinum 62A spores similar to those for the same spores recovered in yeast extract agar. The results suggest that sodium bicarbonate and sodium thioglycolate should be added to recovery media for heated C. botulinum spores to obtain maximum plate counts. PMID:335970

  10. Heat recovery from sorbent-based CO.sub.2 capture

    SciTech Connect

    Jamal, Aqil; Gupta, Raghubir P

    2015-03-10

    The present invention provides a method of increasing the efficiency of exothermic CO.sub.2 capture processes. The method relates to withdrawing heat generated during the exothermic capture of CO.sub.2 with various sorbents via heat exchange with a working fluid. The working fluid is provided at a temperature and pressure such that it is in the liquid state, and has a vaporization temperature in a range such that the heat arising from the reaction of the CO.sub.2 and the sorbent causes a phase change from liquid to vapor state in whole or in part and transfers heat from to the working fluid. The resulting heated working fluid may subsequently be used to generate power.

  11. Quantitation of microbial products and their effectiveness in enhanced oil recovery. Final report

    SciTech Connect

    Zhang, X.; Knapp, R.M.; McInerney, M.J.

    1995-02-01

    A three-dimensional, three-phase, multiple-component numerical simulator was developed to investigate transport and growth of microorganisms in porous media and the impacts of microbial activities on oil recovery. The microbial activities modeled in this study included: (1) growth, retention, chemotaxis, and end product inhibition of growth, (2) the formation of metabolic products, and (3) the consumption of nutrients. Major mechanisms for microbial enhanced oil recovery (MEOR) processes were modeled as follows: (1) improvement in sweep efficiency of a displacement process due to in situ plugging of highly-permeable production zones by cell mass or due to improved mobility control achieved by increasing the viscosity of the displacing fluid with a biopolymer, and (2) solubilization and mobilization of residual oil in porous media due to the reduction of the interfacial tension between oleic and aqueous phases by the production of a biosurfactant. The numerical solutions for mathematical models involved two steps. The distributions of pressure and phase saturations were solved from continuity equations and Darcy flow velocities for the aqueous phase were computed. This was followed by the solution of convection-dispersion equations for individual components. Numerical solutions from the proposed model were compared to results obtained from analytical equations, commercial simulators, and laboratory experiments. The comparison indicated that the model accurately quantified microbial transport and metabolism in porous media, and predicted additional crude oil recovery due to microbial processes. 50 refs., 41 figs., 26 tabs.

  12. Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus

    SciTech Connect

    Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

    2013-09-30

    The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method

  13. Defense by-products production and utilization program: noble metal recovery screening experiments

    SciTech Connect

    Hazelton, R.F.; Jensen, G.A.; Raney, P.J.

    1986-03-01

    Isotopes of the platinum metals (rutheium, rhodium, and palladium) are produced during uranium fuel fission in nuclear reactors. The strategic values of these noble metals warrant considering their recovery from spent fuel should the spent fuel be processed after reactor discharge. A program to evaluate methods for ruthenium, rhodium, and palladium recovery from spent fuel reprocessing liquids was conducted at Pacific Northwest Laboratory (PNL). The purpose of the work reported in this docuent was to evaluate several recovery processes revealed in the patent and technical literature. Beaker-scale screening tests were initiated for three potential recovery processes: precipitation during sugar denitration of nitric acid reprocessing solutions after plutonium-uranium solvent extraction, adsorption using nobe metal selective chelates on active carbon, and reduction forming solid noble metal deposits on an amine-borane reductive resin. Simulated reprocessing plant solutions representing typical nitric acid liquids from defense (PUREX) or commercial fuel reprocessing facilities were formulated and used for evaluation of the three processes. 9 refs., 3 figs., 9 tabs.

  14. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... COMMISSION Certain Integrated Circuit Packages Provided With Multiple Heat- Conducting Paths and Products... With Multiple Heat-Conducting Paths and Products Containing Same, DN 2899; the Commission is soliciting... multiple heat-conducting paths and products containing same. The complaint names as respondents...

  15. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    NASA Astrophysics Data System (ADS)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  16. Detection of Thermal Radiation, Sensing of Heat Flux, and Recovery of Waste Heat by the Transverse Thermoelectric Effect

    NASA Astrophysics Data System (ADS)

    Kanno, Tsutomu; Takahashi, Kouhei; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2014-06-01

    The transverse thermoelectric effect is unique in that an output voltage can be extracted in the direction perpendicular to the input temperature gradient. This paper describes how this transverse feature can be exploited to realize simple and promising configurations of thermoelectric devices. For detection of thermal radiation, two-dimensional imaging has been demonstrated by a fabricated sensor array of tilt-oriented Ca x CoO2 epitaxial thin film. We have also developed a serpentine heat flux sensor made of multilayered Bi/Cu, and Bi0.5Sb1.5Te3/Ni tubular thermoelectric devices for power generation. The fabrication processes and test results are presented.

  17. In situ recovery from residually heated sections in a hydrocarbon containing formation

    DOEpatents

    Vinegar, Harold J.; Karanikas, John Michael; Ryan, Robert Charles

    2010-12-14

    Methods of treating a tar sands formation is described herein. The methods may include providing heat to a first section of a hydrocarbon layer in the formation from a plurality of heaters located in the first section of the formation. Heat is transferred from the heaters so that at least a first section of the formation reaches a selected temperature. At least a portion of residual heat from the first section transfers from the first section to a second section of the formation. At least a portion of hydrocarbons in the second section are mobilized by providing a solvation fluid and/or a pressurizing fluid to the second section of the formation.

  18. Automated product recovery in a Hg-196 photochemical isotope separation process

    DOEpatents

    Grossman, M.W.; Speer, R.

    1992-07-21

    A method of removing deposited product from a photochemical reactor used in the enrichment of [sup 196]Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out. 2 figs.

  19. Automated product recovery in a HG-196 photochemical isotope separation process

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    A method of removing deposited product from a photochemical reactor used in the enrichment of .sup.196 Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out.

  20. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  1. The effect of using a heat recovery absorber on the performance and operating cost of the solar ammonia absorption cycles

    SciTech Connect

    Saghiruddin; Siddiqui, M.A.

    1997-02-01

    Economic analysis of ordinary and evacuated tubular type flat-plate collectors have been carried out for operating absorption cycles with and without heat recovery absorber. Water-ammonia, NaSCN-NH{sub 3} and LiNO{sub 3}-NH{sub 3} have been selected as the working fluids in the cycles. Use of a heat recovery absorber, in addition to the primary absorber in the conventional absorption cycles, lead to improvement in the system performances by about 20--30% in the H{sub 2}O-NH{sub 3} and 33--36% in the NaSCN-NH{sub 3} and LiNO{sub 3}-NH{sub 3} mixtures. Subsequently, there is a considerable amount of reduction in the cost of the solar collector required to operate them. For the set of operating conditions, in this theoretical study, the cost reduces to about 25% in the H{sub 2}O-NH{sub 3} and 30% in the NaSCN and LiNO{sub 3}-NH{sub 3} cycles.

  2. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    DOEpatents

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  3. Application of thermal energy storage to process heat recovery in the aluminum industry

    NASA Technical Reports Server (NTRS)

    Mccabe, J.

    1980-01-01

    The economic viability and the institutional compatibility of a district heating system in the city of Bellingham, Washington are assessed and the technical and economic advantages of using thermal energy storage methods are determined.

  4. Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system

    SciTech Connect

    Wang, Shaojie; Ellis, Dan

    2014-05-29

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.

  5. Process technology for production and recovery of heterologous proteins with Pichia pastoris.

    PubMed

    Jahic, Mehmedalija; Veide, Andres; Charoenrat, Theppanya; Teeri, Tuula; Enfors, Sven-Olof

    2006-01-01

    Developments in process techniques for production and recovery of heterologous proteins with Pichia pastoris are presented. Limitations for the standard techniques are described, and alternative techniques that solve the limitations problems are reviewed together with the methods that resulted in higher productivity of the P. pastoris processes. The main limitations are proteolysis of the secreted products and cell death in the high cell density bioreactor cultures. As a consequence, both low productivity and lower quality of the feedstock for downstream processing are achieved in processes hampered with these problems. Methods for exploring proteolysis and cell death are also presented. Solving the problems makes the conditions for downstream processing superior for the P. pastoris expression systems compared to other systems, which either need complex media or rely on intracellular production. These improved conditions allow for interfacing of cultivation with downstream processing in an integrated fashion. PMID:17137292

  6. Recovery of hydrophobicity of nylon aged by heat and saline water

    SciTech Connect

    Tokoro, Tetsuro; Hackam, R.

    1996-12-31

    The recovery of hydrophobicity of Nylon after aging by long exposure to a stress of saline water at different temperatures is investigated. The hydrophobicity is determined by measuring the contact angle of a droplet of distilled water on Nylon. The aging of Nylon was done by immersing it for up to 336 h in saline water solutions in the range 5.0 {times} 10{sup 5} {micro}S/cm. The aging temperatures were 0 to 98 C. After aging, the specimens were kept in air at room temperature for up to 4,500 h during which the recovery of hydrophobicity and weight changes were measured. Specimens were also kept in high vacuum for 20 h to determine the changes in the contact angle and in the weight with the absence of air.

  7. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    SciTech Connect

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  8. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    SciTech Connect

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-29

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  9. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    NASA Astrophysics Data System (ADS)

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-01

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  10. Bioproduction of butanol in bioreactors: new insights from simultaneous in situ butanol recovery to eliminate product toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simultaneous acetone butanol ethanol (ABE) fermentation by Clostridium beijerinckii 260 and in situ product recovery was investigated using a vacuum process operated in two modes: continuous and intermittent. Integrated batch fermentations and ABE recovery were conducted at 37 deg C using a 14-L bio...

  11. Method and an apparatus for subdivision of and heat recovery from a liquid slag

    SciTech Connect

    Bergkvist, B.; Kohli, M.; Strandell, E.; Svemar, C.

    1986-08-05

    A method is described of sub-dividing and recovering heat from a liquid slag comprising: rolling the liquid slag between at least two cooled briquetting rolls, controlling the temperature of and distance between the rolls so as to obtain a cohesive slag slab with shaped briquettes having a solidified surface layer and a melted central layer, cooling the briquetted slab to a temperature whereat the portions of the shaped slab between the briquettes themselves crack up, whereby the briquettes are automatically separated from each other and recovering heat from the separated briquettes.

  12. Recovery of Viable Bacteria from Probiotic Products that Target Oral Health

    PubMed Central

    Banas, Jeffrey A.; Popp, Eric T.

    2013-01-01

    Probiotic therapy has predominantly been directed toward promoting and maintaining intestinal health. In recent years, however, probiotic regimens that target oral health have appeared on the market. These regimens are often delivered in the form of lozenges. Despite the oral health claims made by the manufacturers of these products, there is little independent evidence in the literature to support such claims. In theory, probiotic organisms can be beneficial by several different means including direct inhibition of pathogens and boosting of the host immune response, with the underlying assumption that these mechanisms require a critical number of viable organisms. In this study, five brands of probiotics marketed for oral health were tested for the recovery of viable bacteria. For only one brand could viable bacteria be recovered within one log of the manufacturer’s stated starting amount of bacteria. Nearly a billion viable bacteria could be recovered from a lozenge of this brand. The other brands claimed similar starting amounts of bacteria at the time of manufacture but at least a three-log drop off was observed in the amount of viable bacteria recovered from those products. Refrigeration of the probiotics significantly improved the recovery for one brand, but recoveries for all but one brand remained below the recommended daily dosage for probiotic regimens. It is concluded that probiotic brands differ significantly in the quantities of bacteria that remain viable with most failing to meet recommended dosage targets. PMID:24015157

  13. Integrated carbon dioxide/sludge gasification using waste heat from hot slags: syngas production and sulfur dioxide fixation.

    PubMed

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-04-01

    The integrated CO2/sludge gasification using the waste heat in hot slags, was explored with the aim of syngas production, waste heat recovery and sewage sludge disposal. The results demonstrated that hot slags presented multiple roles on sludge gasification, i.e., not only a good heat carrier (500-950 °C) but also an effective desulfurizer (800-900 °C). The total gas yields increased from 0.022 kg/kgsludge at 500 °C to 0.422 kg/kgsludge at 900 °C; meanwhile, the SO2 concentration at 900 °C remarkably reduced from 164 ppm to 114 ppm by blast furnace slags (BFS) and 93 ppm by steel slags (SS), respectively. A three-stage reaction was clarified including volatile release, char transformation and fixed carbon using Gaussian fittings and the kinetic model was analyzed. Accordingly, a decline process using the integrated method was designed and the optimum slag/sludge ratio was deduced. These deciphered results appealed potential ways of reasonable disposal of sewage sludge and efficient recovery of waste heat from hot slags. PMID:25647028

  14. Investigations about the quantitative changes of carbon dioxide production in humans. Report 2: Carbon dioxide production during fever and its relationship with heat production

    NASA Technical Reports Server (NTRS)

    Liebermeister, C.

    1978-01-01

    Investigations are cited and explained for carbon dioxide production during fever and its relationship with heat production. The general topics of discussion are: (1) carbon dioxide production for alternating fever attacks; (2) heat balance during the perspiration phase; (3) heat balance during the chill phase; (4) the theory of fever; and (5) chill phase for other fever attacks.

  15. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-11-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  16. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    PubMed Central

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450–1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  17. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction.

    PubMed

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 (o)C) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  18. Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery.

    PubMed

    Sun, Shanshan; Zhang, Zhongzhi; Luo, Yijing; Zhong, Weizhang; Xiao, Meng; Yi, Wenjing; Yu, Li; Fu, Pengcheng

    2011-05-01

    Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37°C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l(-1) in molasses medium at 54°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR. PMID:21444201

  19. Feasibility of Thermoelectrics for Waste Heat Recovery in Hybrid Vehicles: Preprint

    SciTech Connect

    Smith, K.; Thornton, M.

    2007-12-01

    Using advanced materials, thermoelectric conversion of efficiencies on the order of 20% may be possible in the near future. Thermoelectric generators offer potential to increase vehicle fuel economy by recapturing a portion of the waste heat from the engine exhaust and generating electricity to power vehicle accessory or traction loads.

  20. Brayton-Cycle Heat Recovery System Characterization Program. Glass-furnace facility test plan

    SciTech Connect

    Not Available

    1980-08-29

    The test plan for development of a system to recover waste heat and produce electricity and preheated combustion air from the exhaust gases of an industrial glass furnace is described. The approach is to use a subatmospheric turbocompressor in a Brayton-cycle system. The operational furnace test requirements, the operational furnace environment, and the facility design approach are discussed. (MCW)

  1. INDUSTRIAL WASTE HEAT RECOVERY AND THE POTENTIAL FOR EMISSIONS REDUCTION. VOLUME 1. MAIN REPORT

    EPA Science Inventory

    This report examines the applicability of conservation equipment to various industrial sectors, determines the net costs involved, and assesses the potential for conservation as a means of air pollution control. Predictions of the amount of waste heat available from U.S. industri...

  2. Economic and Environmental Analysis of Thermoelectric Waste Heat Recovery in Conventional Vehicles Operated in Korea: A Model Study

    NASA Astrophysics Data System (ADS)

    Bang, S.; Kim, B.; Youn, N.; Kim, Y. K.; Wee, D.

    2016-03-01

    Thermoelectric (TE) waste heat recovery from automotive exhaust streams is a potential technology that can significantly increase the overall efficiency of vehicles and subsequently reduce the consumption of fossil fuels. By reducing the consumption of fossil fuels, vehicular application of TE generators may also potentially reduce the emission of greenhouse gases (GHGs) and other air pollutants from the transportation sector. In this study, we analyse the economic benefit and feasibility of TE waste heat recovery systems in conventional vehicles operated in Korea by analytically modeling related vehicle systems and by analyzing driving patterns in urban environments. The economic effects of the associated efficiency improvement and the reduction of GHGs and air pollutants are simultaneously considered. Vehicular application of a TE generator may reduce 0.15 kL/year for a mid-size sedan and 1.04 kL/year for a medium-duty truck through fuel savings at a typical driving speed of 80 km/h. Based on the benefit-cost ratio analysis, it is shown that the economically acceptable costs of TE waste heat recovery systems are 744 /kW for the mid-size sedan and 2905 /kW for the medium-duty truck, respectively, when an operation period of 10 years is assumed. In terms of GHGs and air pollutants, the reduction annually amounts to 0.334 tCO2e of GHGs, 0.142 kg of CO, 0.00290 kg of VOC, 0.0150 kg of NO X , 0.198 kg of NH3, and 0.00006 kg of SO X for the mid-size sedan, while 2.65 tCO2e of GHGs, 1.974 kg of CO, 0.401 kg of VOC, 6.98 kg of NO X , 0.00034 kg of NH3, and 0.00229 kg of SO X can be annually reduced by applying a TE generator in the medium-duty truck.

  3. Heat Production and Energy Efficiency of Broilers Infected With Necrotic Enteritis.

    PubMed

    M'Sadeq, Shawkat A; Wu, Shu-Biao; Choct, Mingan; Swick, Robert A

    2016-03-01

    Necrotic enteritis (NE) in poultry is the most important bacterial disease in terms of economic losses. The present study was conducted to evaluate the effect of an experimental challenge with necrotic enteritis on respiration and heat production in birds pretreated with dietary acylated starch or antibiotics (AB) zinc bacitracin (50 mg/kg) plus salinomycin (60 mg/kg). In total, 48 1-day-old Ross 308 male broilers were assigned to floor pens until day 10. On day 11, birds were randomly placed into 16 calorimetric chambers with four replicates of three birds per treatment. Treatments were: control, AB, acetylated high-amylose maize starch (SA), or butyrylated high-amylose maize starch (SB). Birds were NE challenged by inoculation with 5000 sporulated oocysts each of Eimeria maxima and Eimeria acervulina and 2500 sporulated oocysts of Eimeria brunetti on day 9 and Clostridium perfringens (3.8 × 10(8) colony-forming units) on day 14. The results showed that heat production (HP), respiratory quotient (RQ), heat increment, weight gain (WG), feed intake (FI), and livability (LV) of birds fed control, SA, and SB diets were lower than birds fed AB at 19 and 42 hr postinoculation (P < 0.05). At 65 hr postchallenge, increased FI and WG of birds were observed, indicating recovery from NE. During the entire period, from day 14 to day 17, birds fed control, SA, and SB had lower WG, FI, HP, RQ, metabolizable energy intake (MEI), and metabolizable energy (P < 0.01) than those fed AB. The data demonstrate that Eimeria sp. and C. perfringens challenge reduces growth performance, HP, RQ, metabolizable energy, and MEI of birds fed control, SA, and SB but not AB diets. PMID:26953943

  4. Oocyte recovery by ovum pick up and embryo production in river buffaloes (Bubalus bubalis).

    PubMed

    Manjunatha, B M; Ravindra, J P; Gupta, P S P; Devaraj, M; Nandi, S

    2008-08-01

    Ovum pick up (OPU) was conducted twice a week for 12 weeks in six cycling, non-descriptive (local breed), Indian buffaloes to study the efficiency of OPU on recovery of oocytes for embryo production. OPU was performed using an ultrasound equipment with a 5-MHz transvaginal transducer, a single-lumen, 18-gauge, 55-cm-long needle and a constant vacuum pressure of 110 mmHg. The number and size of follicles were determined before puncture. The recovered oocytes were graded, washed, matured for 24 h and then fertilized with frozen-thawed semen, followed by embryo culture on the oviductal monolayer. The mean number of follicles observed per animal per session did not differ between animals or between puncture sessions. A mean number of 3.62 +/- 0.32 mm follicles were observed, 2.90 +/- 0.15 mm follicles were punctured and 1.21 +/- 0.07 oocytes were recovered per animal per session, with an average recovery rate of 42%. Of the total oocytes recovered, 64% were suitable for in vitro embryo production (grade A + B) whereas 36% were classified to be of grades C + D. A mean number of 0.25 +/- 0.2 transferable embryos was produced in vitro per buffalo per session with a transferable embryo production rate of 32%. In conclusion, this study demonstrated that twice-a-week OPU could be applied repeatedly, without any adverse effects on the follicular growth and oocyte recovery and that recovered oocytes could be used for in vitro embryo production in buffaloes. PMID:18282214

  5. The Chemistry of Self-Heating Food Products: An Activity for Classroom Engagement

    ERIC Educational Resources Information Center

    Oliver-Hoyo, Maria T.; Pinto, Gabriel; Llorens-Molina, Juan Antonio

    2009-01-01

    Two commercial self-heating food products have been used to apply chemical concepts such as stoichiometry, enthalpies of reactions and solutions, and heat transfer in a classroom activity. These products are the self-heating beverages sold in Europe and the Meals, Ready to Eat or MREs used primarily by the military in the United States. The main…

  6. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress.

    PubMed

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-01-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase. PMID:26831215

  7. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress

    PubMed Central

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-01-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase. PMID:26831215

  8. A Fresnel collector process heat experiment at Capitol Concrete Products

    NASA Technical Reports Server (NTRS)

    Hauger, J. S.

    1981-01-01

    An experiment is planned, conducted and evaluated to determine the feasibility of using a Power Kinetics' Fresnel concentrator to provide process heat in an industrial environment. The plant provides process steam at 50 to 60 psig to two autoclaves for curing masonry blocks. When steam is not required, the plant preheats hot water for later use. A second system is installed at the Jet Propulsion Laboratory parabolic dish test site for hardware validation and experiment control. Experiment design allows for the extrapolation of results to varying demands for steam and hot water, and includes a consideration of some socio-technical factors such as the impact on production scheduling of diurnal variations in energy availability.

  9. Culture of the green microalga Botryococcus braunii Showa with LED irradiation eliminating violet light enhances hydrocarbon production and recovery.

    PubMed

    Atobe, Sueko; Saga, Kiyotaka; Maeyama, Haruko; Fujiwara, Kazuhiro; Okada, Shigeru; Imou, Kenji

    2014-01-01

    The green microalga Botryococcus braunii (B. braunii), race B, was cultured under light-emitting diode (LED) irradiation with and without violet light. This study examined the effect of violet light on hydrocarbon recovery and production in B. braunii. C34 botryococcene hydrocarbons were efficiently extracted by thermal pretreatments at lower temperatures when the alga was cultured without violet light. The hydrocarbon content was also higher (approximately 3%) in samples cultured without violet light. To elucidate the mechanism of effective hydrocarbon recovery and production, we examined structural components of the extracellular matrix (ECM). The amounts of extracellular carotenoids and water-soluble polymers extracted by thermal pretreatment from the ECM were decreased when the alga was cultured without violet light. These results indicate that LED irradiation without violet light is more effective for hydrocarbon recovery and production in B. braunii. Furthermore, structural ECM components are closely involved in hydrocarbon recovery and production in B. braunii. PMID:25069809

  10. Final Report, Materials for Industrial Heat Recovery Systems, Task 1 Improved Materials and Operation of Recuperators for Aluminum Melting Furnaces

    SciTech Connect

    Keiser, James R.; Sarma, Gorti B.; Thekdi, Arvind; Meisner Roberta A.; Phelps, Tony; Willoughby, Adam W.; Gorog, J. Peter; Zeh, John; Ningileri, Shridas; Liu, Yansheng; Xiao, Chenghe

    2007-09-30

    Production of aluminum is a very energy intensive process which is increasingly more important in the USA. This project concentrated on the materials issues associated with recovery of energy from the flue gas stream in the secondary industry where scrap and recycled metal are melted in large furnaces using gas fired burners. Recuperators are one method used to transfer heat from the flue gas to the air intended for use in the gas burners. By preheating this combustion air, less fuel has to be used to raise the gas temperature to the desired level. Recuperators have been successfully used to preheat the air, however, in many cases the metallic recuperator tubes have a relatively limited lifetime – 6 to 9 months. The intent of this project was to determine the cause of the rapid tube degradation and then to recommend alternative materials or operating conditions to prolong life of the recuperator tubes. The first step to understanding degradation of the tubes was to examine exposed tubes to identify the corrosion products. Analyses of the surface scales showed primarily iron oxides rather than chromium oxide suggesting the tubes were probably cycled to relatively high temperatures to the extent that cycling and subsequent oxide spalling reduced the surface concentration of chromium below a critical level. To characterize the temperatures reached by the tubes, thermocouples were mounted on selected tubes and the temperatures measured. During the several hour furnace cycle, tube temperatures well above 1000°C were regularly recorded and, on some occasions, temperatures of more than 1100°C were measured. Further temperature characterization was done with an infrared camera, and this camera clearly showed the variations in temperature across the first row of tubes in the four recuperator modules. Computational fluid dynamics was used to model the flow of combustion air in the tubes and the flue gas around the outside of the tubes. This modeling showed the

  11. Flat-plate, gas-to-gas heat exchanger recovers 1. 5 million Btu/hr from perlite production

    SciTech Connect

    Hench, R.; Hodel, A.E.; Regan, J.T.

    1986-08-01

    Calshake, a mineral shake shingle manufacturer in Irwindale, CA started having problems with a carbon steel, gas-to-gas process heat exchanger when the plant changed their perlite popping process from a three shift to a two shift operation. The first evidence of trouble was a loss of air volume throughput. Then the heat transfer efficiency of the stationary flatplate heat exchanger was reduced. The economy of the operation continued to diminish as fans drawing gases through the exchanger had to work harder. Finally the plant was forced to shut down the processing line. Calshake replaced the single, 20' long carbon steel, flat-plate heat exchanger with two, 10' long, modular, stainless steel units from the same manufacturer. The new exchangers were installed vertically in series to provide basically the same 20' long heat transfer surface. The flow path on the hot side was made continuous. The flow path on the cold side was interrupted by a duct joining the top and bottom units. Counterflow conditions were maintained just as they were in the original unit. The flat-plate, gas-to-gas heat exchanger recovers 1.5 million Btu/hr from perlite production. The new exchanger gives nearly twice the recovery of the system it replaced. Since installation in August 1985 it has required only minor maintenance (total downtime of 9 hours) and has performed above expectations.

  12. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  13. Fluidized bed waste heat recovery system. Annual report, 1 October 1981-31 March 1983

    SciTech Connect

    Williams, H. W.; Unmack, K. E.

    1983-01-01

    An agreement was reached in July 1982 with the Aluminum Company of America regarding the Massena operations in New York. Since that agreement, a specification has been published which characterizes the waste stream and includes ALCOA, DOE and Aerojet design requirements. Installation of the test unit has been engineered in preliminary form by ALCOA in close liaison with Aerojet and details are being established. A subcontract has been awarded for the design and fabrication of the fluid bed heat exchanger. Initial thermal analyses are complete and a preliminary arrangement layout has been started. Materials corrosion tests were conducted by Oak Ridge National Laboratory on samples of fluid bed heat exchanger materials under the range of temperatures expected. Samples included carbon steel, stainless steels and Incoloy. Test atmospheres included hydrogen chloride and chlorine corrosive species. A study was completed of the research and development which would be necessary to raise the gas inlet temperature rating of the heat exchanger above 1100/sup 0/F. This study has been formalized and submitted in a topical report and discussions are ongoing regarding an activity (Task VI) added to the present contract to conduct high temperature R and D work.

  14. Light masking of circadian rhythms of heat production, heat loss, and body temperature in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Robinson, E. L.; Fuller, C. A.

    1999-01-01

    Whole body heat production (HP) and heat loss (HL) were examined to determine their relative contributions to light masking of the circadian rhythm in body temperature (Tb). Squirrel monkey metabolism (n = 6) was monitored by both indirect and direct calorimetry, with telemetered measurement of body temperature and activity. Feeding was also measured. Responses to an entraining light-dark (LD) cycle (LD 12:12) and a masking LD cycle (LD 2:2) were compared. HP and HL contributed to both the daily rhythm and the masking changes in Tb. All variables showed phase-dependent masking responses. Masking transients at L or D transitions were generally greater during subjective day; however, L masking resulted in sustained elevation of Tb, HP, and HL during subjective night. Parallel, apparently compensatory, changes of HL and HP suggest action by both the circadian timing system and light masking on Tb set point. Furthermore, transient HL increases during subjective night suggest that gain change may supplement set point regulation of Tb.

  15. Copper recovery combined with electricity production in a microbial fuel cell.

    PubMed

    Heijne, Annemiek Ter; Liu, Fei; Weijden, Renata van der; Weijma, Jan; Buisman, Cees J N; Hamelers, Hubertus V M

    2010-06-01

    A metallurgical microbial fuel cell (MFC) is an attractive alternative for recovery of copper from copper containing waste streams, as the metal is recovered in its metallic form at the cathode, while the energy for metal reduction can be obtained from oxidation of organic materials at the anode with possible additional production of electricity. We studied the recovery of copper in an MFC using a bipolar membrane as a pH separator. Under anaerobic conditions, the maximum power density was 0.43 W/m(2) at a current density of 1.7 A/m(2). In the presence of oxygen, MFC performance improved considerably to a maximum power density of 0.80 W/m(2) at a current density of 3.2 A/m(2). Pure copper crystals were formed on the cathode, and no CuO or Cu(2)O was detected. Removal efficiencies of >99.88% were obtained. The cathodic recovery of copper compared to the produced electricity was 84% (anaerobic) and 43% (aerobic). The metallurgy MFC with the Cu(2+) reducing cathode further enlarges the application range of MFCs. PMID:20462261

  16. Pyrolysis with staged recovery

    DOEpatents

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.

    1979-03-20

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.

  17. Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art.

    PubMed

    Ilgin, Mehmet Ali; Gupta, Surendra M

    2010-01-01

    Gungor and Gupta [1999, Issues in environmentally conscious manufacturing and product recovery: a survey. Computers and Industrial Engineering, 36(4), 811-853] presented an important review of the development of research in Environmentally Conscious Manufacturing and Product Recovery (ECMPRO) and provided a state of the art survey of published work. However, that survey covered most papers published through 1998. Since then, a lot of activity has taken place in EMCPRO and several areas have become richer. Many new areas also have emerged. In this paper we primarily discuss the evolution of ECMPRO that has taken place in the last decade and discuss the new areas that have come into focus during this time. After presenting some background information, the paper systematically investigates the literature by classifying over 540 published references into four major categories, viz., environmentally conscious product design, reverse and closed-loop supply chains, remanufacturing, and disassembly. Finally, we conclude by summarizing the evolution of ECMPRO over the past decade together with the avenues for future research. PMID:19853369

  18. Food Waste to Energy: How Six Water Resource Recovery Facilities are Boosting Biogas Production and the Bottom Line

    EPA Science Inventory

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and...

  19. Bioreactors and in situ product recovery techniques for acetone-butanol-ethanol fermentation.

    PubMed

    Li, Si-Yu; Chiang, Chung-Jen; Tseng, I-Ting; He, Chi-Ruei; Chao, Yun-Peng

    2016-07-01

    The microbial fermentation process is one of the sustainable and environment-friendly ways to produce 1-butanol and other bio-based chemicals. The success of the fermentation process greatly relies on the choice of bioreactors and the separation methods. In this review, the history and the performance of bioreactors for the acetone-butanol-ethanol (ABE) fermentation is discussed. The subject is then focused on in situ product recovery (ISPR) techniques, particularly for the integrated extraction-gas stripping. The usefulness of this promising hybrid ISPR device is acknowledged by its incorporation with batch, fed-batch and continuous processes to improve the performance of ABE fermentation. PMID:27190167

  20. Product recovery of ponderosa pine in Arizona and New Mexico. Forest Service research paper

    SciTech Connect

    Fahey, T.D.; Ayer Sachet, J.K.

    1993-11-01

    A mill recovery of ponderosa pine in Arizona and New Mexico showed wide variation in quality within the resource. Lumber grade ranged widely by log grade and diameter, with a major difference within grade 5 logs between old growth and young growth. Old growth produced mostly Shop and Selects grades of lumber while young growth produced mostly Dimension grades of lumber; small-diameter young growth developed severe problems of warpage. Log grades separated logs into distinct value classes, and separating young-growth timber (as an additional grade) allowed better segregation of logs by product type and expected value.

  1. Utility reduces fuel cost with heat recovery, industrial byproduct fuel, cogeneration

    SciTech Connect

    Holland, R.J.

    1982-02-01

    A 50-MW North Dakota power plant is refurbished to recover major waste-heat sources. Use of agricultural byproduct fuel and cogeneration also helps to cut future costs. The plant is saving on fuel costs by burning 150-200 tons/day of sunflower seed hulls from a local processing plant. The hulls are pulverized and mixed with the primary fuel, North Dakota lignite. At the same time, the processing plant that supplies the sunflower hulls buys steam from the power plant, thus giving the utility some of the economic benefits of cogeneration.

  2. Thermal engine driven heat pump for recovery of volatile organic compounds

    DOEpatents

    Drake, Richard L.

    1991-01-01

    The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

  3. A Comparison between Conductive and Infrared Devices for Measuring Mean Skin Temperature at Rest, during Exercise in the Heat, and Recovery

    PubMed Central

    Bach, Aaron J. E.; Stewart, Ian B.; Disher, Alice E.; Costello, Joseph T.

    2015-01-01

    Purpose Skin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery. Methods Mean skin temperature (T-sk) was assessed in thirty healthy males during 30 min rest (24.0 ± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery (24.0 ± 1.3°C, 56 ± 9%). T-sk was assessed at four sites using two conductive devices (thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera). Results Bland–Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of T-sk found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery. Conclusions These results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring T-sk in the presence of, or following, metabolic and environmental induced heat stress. PMID:25659140

  4. Energy recovery system

    DOEpatents

    Moore, Albert S.; Verhoff, Francis H.

    1980-01-01

    The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

  5. Lotus-like effect for metal filings recovery and particle removal on heated metal surfaces using Leidenfrost water droplets.

    PubMed

    Tan, Cher Lin Clara; Sapiha, Kostantyn; Leong, Yoke Fun Hannah; Choi, Siwon; Anariba, Franklin; Thio, Beng Joo Reginald

    2015-07-21

    A "lotus-like" effect is applied to demonstrate the ability of the Leidenfrost water droplets to recover Cu particles on a heated Al substrate. Cu particles on the heated surface adhere to the rim of the Leidenfrost droplets and eventually coat the droplets' surface to form an aggregation. When Fe filings are added to the Cu particles, the aggregated mixture can then be collected using a strong rare earth magnet (NdFeB) upon evaporation of the water. We also show that the Leidenfrost effect can be effectively utilized to recover both hydrophobic (dust and activated carbon) and hydrophilic (SiO2 and MgO) particles from heated Al surfaces without any topographical modification or surfactant addition. Our results show that hydrophobic and hydrophilic materials can be collected with >92% and >96% effectiveness on grooved and smooth Al surfaces, respectively. Furthermore, we observed no significant differences in the amount of material collected above the Leidenfrost point within the tested temperature range (240 °C vs. 340 °C) as well as when the Al sheet was replaced with a Cu sheet as the substrate. However, we did observe that the Leidenfrost droplets were able to collect a greater amount of material when the working liquid was water than when it was ethanol. Our findings show promise in the development of an effective precious coinage metal filings recovery technology for application in the mint industry, as well as the self-cleaning of metallic and semiconductor surfaces where manual cleaning is not amenable. PMID:26053932

  6. Simulation of Bioleaching Heat Effects for Enhancement of Copper Recovery from Sarcheshmeh Chalcopyrite

    NASA Astrophysics Data System (ADS)

    Mahmoudian, Ali Reza; Sadrnezhaad, S. K.; Manafi, Zahra

    2014-08-01

    A heat-transfer model was formulated to determine the distribution of temperature within a bioheap of chalcopyrite of Sarcheshmeh copper mine. Bioleaching employs mixed mesophilic and thermophilic microbes for Cu extraction. Thermophiles are better than mesophiles to dissolve CuFeS2. The solution irrigation and aeration rates were taken into account as the main operational factors. The model was validated by comparing the temperature profiles of test columns with those of bioheap. The model was used to find the optimal ratio of irrigation to aeration. It was found that when the solution was fed at a flow rate of 5 kg/m2 h and air was blown at a flow rate of 7.5 kg/m2 h, the transition from a mesophilic to thermophilic state inside the heap was possible. In this situation, the maximum temperature rise inside the heap was about 332 K (59 °C) after 60 days.

  7. Performance of a Turboprop Engine with Heat Recovery in Off-Design Conditions

    NASA Astrophysics Data System (ADS)

    Andriani, Roberto; Ghezzi, Umberto; Gamma, Fausto; Ingenito, Antonella; Agresta, Antonio

    2013-09-01

    The research for fuel consumption and pollution reduction in new generation aero engines has indicated intercooling and regeneration as very effective methods for this purpose. Hence, different countries have joined their efforts in common research programs, to develop new gas turbine engines able to reduce considerably the fuel consumption and the ambient impact by means of these two techniques. To study their effects on the engine performance and characteristics, a thermodynamic numerical program that simulates the behavior of a turboprop engine with intercooling and regeneration in different operating conditions has been developed. After the parametric study, and the definition of the design conditions, the off-design analysis is carried on, comparing the main characteristics of the intercooled-regenerated turboprop with those of a conventional engine. Then, once a particular mission profile was fixed, the engine performance, in particular the equivalent power, the fuel consumption and the heat exchanger weight were discussed.

  8. Technique for recovery of voice data from heat damaged magnetic tape

    NASA Technical Reports Server (NTRS)

    Melugin, J. F.; Obrien, D. E., III (Inventor)

    1974-01-01

    A method for conditioning, and thus enabling retrieval of intelligence from, magnetic tapes after damage from heat has caused the tape to wrinkle and curl severely thereby reducing tape width to less than one-half its original size. The damaged tape is superposed on a first piece of splicing tape with the oxide side of the magnetic tape in contact with the adhesive side of the splicing tape and then carefully smoothed by a special tool. A second piece of splicing tape is placed on the backing side of the magnetic tape then the resulting tape stack is trimmed to the original width of the magnetic tape. After the first piece of splicing tape is carefully removed from the oxide side of the damaged magnetic tape, the resulting magnetic tape is then ready to be placed into a recorder for playback.

  9. Recovery of Mechanical Properties of a 6061-T6 Aluminum Weld by Heat Treatment After Welding

    NASA Astrophysics Data System (ADS)

    Pérez, Javier Serrano; Ambriz, Ricardo Rafael; López, Francisco Fernando Curiel; Vigueras, David Jaramillo

    2016-07-01

    The dilution effects in welds of a 6061-T6 (Al-Si-Mg) alloy obtained by the modified indirect electric arc (MIEA), using an ER4043 filler metal (Al-Si), and postweld heat treatment (PWHT) were analyzed. The soft zone (55 to 70 HV0.1) formed by the microstructural transformation in the heat-affected zone (HAZ) was eliminated. The hardness measurements were presented on a traditional microhardness profile and mapping representation. A hardening effect of the fusion zone was observed; the hardness values were above 120 HV0.1 and tended to be uniform. This behavior could be attributed to the chemical composition of the filler metal, the Mg migration from the base to the weld metal, and the reversible process of the PWHT, which promotes precipitation hardening. Improvement for yield (260 MPa) and tensile strength (310 MPa) of the MIEA joints was observed; these values were similar to those obtained for the base metal. However, the presence of porosity in the fusion zone limits the ductility of the joints (4.3 pct). Even though the yield and tensile strengths of the base metal and welded joints were similar, the stress concentration due to porosity in the weld metal generated data dispersion in fatigue life. As a consequence, the high-cycle fatigue life decreases with respect to the base metal. In contrast, when the crack propagates under elastic conditions, the crack-tip singularity is affected by the porosity in the weld metal (stress liberator). This aspect, in conjunction with the hardening effect in joints subjected to PWHT, improves the fatigue crack growth rate when compared to the as-welded condition.

  10. Recovery of Mechanical Properties of a 6061-T6 Aluminum Weld by Heat Treatment After Welding

    NASA Astrophysics Data System (ADS)

    Pérez, Javier Serrano; Ambriz, Ricardo Rafael; López, Francisco Fernando Curiel; Vigueras, David Jaramillo

    2016-05-01

    The dilution effects in welds of a 6061-T6 (Al-Si-Mg) alloy obtained by the modified indirect electric arc (MIEA), using an ER4043 filler metal (Al-Si), and postweld heat treatment (PWHT) were analyzed. The soft zone (55 to 70 HV0.1) formed by the microstructural transformation in the heat-affected zone (HAZ) was eliminated. The hardness measurements were presented on a traditional microhardness profile and mapping representation. A hardening effect of the fusion zone was observed; the hardness values were above 120 HV0.1 and tended to be uniform. This behavior could be attributed to the chemical composition of the filler metal, the Mg migration from the base to the weld metal, and the reversible process of the PWHT, which promotes precipitation hardening. Improvement for yield (260 MPa) and tensile strength (310 MPa) of the MIEA joints was observed; these values were similar to those obtained for the base metal. However, the presence of porosity in the fusion zone limits the ductility of the joints (4.3 pct). Even though the yield and tensile strengths of the base metal and welded joints were similar, the stress concentration due to porosity in the weld metal generated data dispersion in fatigue life. As a consequence, the high-cycle fatigue life decreases with respect to the base metal. In contrast, when the crack propagates under elastic conditions, the crack-tip singularity is affected by the porosity in the weld metal (stress liberator). This aspect, in conjunction with the hardening effect in joints subjected to PWHT, improves the fatigue crack growth rate when compared to the as-welded condition.

  11. Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review

    DOE PAGESBeta

    Dong, Tao; Knoshaug, Eric P.; Pienkos, Philip T.; Laurens, Lieve M. L.

    2016-06-15

    Biological lipids derived from oleaginous microorganisms are promising precursors for renewable biofuel productions. Direct lipid extraction from wet cell-biomass is favored because it eliminates the need for costly dehydration. However, the development of a practical and scalable process for extracting lipids from wet cell-biomass is far from ready to be commercialized, instead, requiring intensive research and development to understand the lipid accessibility, mechanisms in mass transfer and establish robust lipid extraction approaches that are practical for industrial applications. Furthermore, this paper aims to present a critical review on lipid recovery in the context of biofuel productions with special attention tomore » cell disruption and lipid mass transfer to support extraction from wet biomass.« less

  12. Bioemulsifier production by a halothermophilic Bacillus strain with potential applications in microbially enhanced oil recovery.

    PubMed

    Dastgheib, S M M; Amoozegar, M A; Elahi, E; Asad, S; Banat, I M

    2008-02-01

    A halothermotolerant Gram-positive spore-forming bacterium was isolated from petroleum reservoirs in Iran and identified as Bacillus licheniformis sp. strain ACO1 by phenotypic characterization and 16S rRNA analysis. It showed a high capacity for bioemulsifier production and grew up to 60 degrees C with NaCl at 180 g l(-1). The optimum NaCl concentration, pH and temperature for bioemulsifier production were 4% (w/v), 8.0, and 45 degrees C, respectively. Although ACO1 did not utilize hydrocarbons, it had a high emulsifying activity (E (24) = 65 +/- 5%) on different hydrophobic substrates. Emulsification was optimal while growing on yeast extract as the sole carbon source and NaNO(3) as the nitrogen source. The efficiency of the residual oil recovery increased by 22% after in situ growth of B. licheniformis ACO1 in a sand-pack model saturated with liquid paraffin. PMID:17876532

  13. Training verb argument structure production in agrammatic aphasia: Behavioral and neural recovery patterns

    PubMed Central

    Thompson, Cynthia K.; Riley, Ellyn A.; den Ouden, Dirk-Bart; Meltzer-Asscher, Aya; Lukic, Sladjana

    2013-01-01

    Introduction Neuroimaging and lesion studies indicate a left hemisphere network for verb and verb argument structure processing, involving both frontal and temporoparietal brain regions. Although their verb comprehension is generally unimpaired, it is well known that individuals with agrammatic aphasia often present with verb production deficits, characterized by an argument structure complexity hierarchy, indicating faulty access to argument structure representations for production and integration into syntactic contexts. Recovery of verb processing in agrammatism, however, has received little attention and no studies have examined the neural mechanisms associated with improved verb and argument structure processing. In the present study we trained agrammatic individuals on verbs with complex argument structure in sentence contexts and examined generalization to verbs with less complex argument structure. The neural substrates of improved verb production were examined using functional magnetic resonance imaging (fMRI). Methods Eight individuals with chronic agrammatic aphasia participated in the study (four experimental and four control participants). Production of three-argument verbs in active sentences was trained using a sentence generation task emphasizing the verb’s argument structure and the thematic roles of sentential noun phrases. Before and after training, production of trained and untrained verbs was tested in naming and sentence production and fMRI scans were obtained, using an action naming task. Results Significant pre- to post-training improvement in trained and untrained (one- and two-argument) verbs was found for treated, but not control, participants, with between-group differences found for verb naming, production of verbs in sentences, and production of argument structure. fMRI activation derived from post-treatment compared to pre-treatment scans revealed upregulation in cortical regions implicated for verb and argument structure processing

  14. Novel analytical method to measure formaldehyde release from heated hair straightening cosmetic products: Impact on risk assessment.

    PubMed

    Galli, Corrado Lodovico; Bettin, Federico; Metra, Pierre; Fidente, Paola; De Dominicis, Emiliano; Marinovich, Marina

    2015-08-01

    Hair straightening cosmetic products may contain formaldehyde (FA). In Europe, FA is permitted for use in personal care products at concentrations ⩽ 0.2g/100g. According to the Cosmetic Ingredient Review (CIR) Expert Panel products are safe when formalin (a 37% saturated solution of FA in water) concentration does not exceed 0.2g/100g (0.074 g/100g calculated as FA). The official method of reference does not discriminate between "free" FA and FA released into the air after heating FA donors. The method presented here captures and collects the FA released into the air from heated cosmetic products by derivatization with 2,4-dinitrophenylhydrazine and final analysis by UPLC/DAD instrument. Reliable data in terms of linearity, recovery, repeatability and sensitivity are obtained. On a total of 72 market cosmetic products analyzed, 42% showed FA concentrations very close to or above the threshold value (0.074 g/100g calculated as FA) suggested by the Cosmetic Ingredient Review committee, whereas 11 products, negative using the official method of reference, were close to or above the threshold value (0.074 g/100g calculated as FA). This may pose a health problem for occasional users and professional hair stylists. PMID:26003512

  15. An investigation of the thermal shock resistance of lunar regolith and the recovery of hydrogen from lunar soil heated using microwave radiation

    NASA Technical Reports Server (NTRS)

    Meek, T. T.

    1991-01-01

    The objective is to develop a better understanding of the thermal shock properties of lunar regolith sintered using 2.45 GHz electromagnetic radiation and to do a preliminary study into the recovery of bound hydrogen in lunar soil heated using 2.45 GHz radiation. During the first phase of this work, lunar simulant material was used to test whether or not microhardness data could be used to infer thermal shock resistance and later actual lunar regolith was used. Results are included on the lunar regolith since this is of primary concern and not the simulant results. They were similar, however. The second phase investigated the recovery of hydrogen from lunar regolith and results indicate that microwave heating of lunar regolith may be a good method for recovery of bound gases in the regolith.

  16. Differential heat shock tolerance and expression of heat shock inducible proteins in two stored-product psocids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent recognition of psocid infestations as a major concern in stored products, where their management with fumigants and conventional insecticides has proven difficult, and also the recent reemergence of heat treatment as a potential tactic for control of stored-product insects led to the pres...

  17. Battleground Energy Recovery Project

    SciTech Connect

    Bullock, Daniel

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  18. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives

  19. A study of a desuperheater heat recovery system complete with a reversibly used water cooling tower (RUWCT) for hot water supply

    NASA Astrophysics Data System (ADS)

    Tan, Kunxiong

    Recovering heat rejected from the condenser in a refrigeration system to generate service hot water for buildings is commonly seen in both tropics and subtropics. This study included a critical literature review on heat recovery from air-conditioning/refrigeration systems, with particular emphasis on the direct condenser heat recovery and its related mathematical simulation models. The review identified many applications of desuperheaters to small-scaled residential air-conditioning or heat pump units. The heat and mass transfer characteristics of a RUWCT have been studied in detail, which is based on the theory of direct contact heat and mass transfer between moist air and water. The thesis reports on the differences in the heat and mass transfer process that takes place in a RUWCT, a standard water cooling tower and a spray room. A corrective factor that accounts for the change of chilled water mass flow rate is incorporated into the theoretical analysis of a RUWCT. The algorithms developed from the theoretical analysis are capable of predicting the heat exchange capacity of a RUWCT at any operating conditions. This theoretical analysis is the first of its kind. Extensive field experimental work on the heat and mass transfer characteristics of a RUWCT has been carried out in a hotel building in Haikou, Hainan province of China, where the RUWCT is installed. Results from the experimental work indicate that the theoretical analysis can represent the heat and mass transfer characteristics in a RUWCT with an acceptable accuracy. A numerical analysis for a RUWCT is undertaken to determine both air and water states at intermediate horizontal sections along the tower height. Field experimental data confirm that the predicted air and water conditions at the tower inlet and outlet are of acceptable accuracy. A steady-state mathematical model is developed to simulate the operational performance of a water chiller plant complete with a desuperheater heat recovery system and

  20. Effect of Thermoelectric Modules' Topological Connection on Automotive Exhaust Heat Recovery System

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Zheng, S. J.; Su, C. Q.; Yuan, X. H.; Yu, C. G.; Wang, Y. P.

    2016-03-01

    In automotive exhaust-based thermoelectric generators (AETEGs), a certain number of thermoelectric modules are connected in series and/or parallel to recover energy from exhaust gas, which provides a way to improve fuel efficiency of the vehicle. Because of the temperature distribution on the surfaces of heat exchanger, several types of modules are planned for use in an AETEG; however, property disparities among modules exist and wire resistance cannot be neglected in practical application, so experiments have been carried out to research effects of the two factors on the maximum output power of series and parallel connection. The performance of series and parallel connections have been characterized, and mathematic models have been built to analyze and predict the performance of each connection. Experiments and theoretical analysis reveal that parallel connection shows a better performance than series connection when large differences of Seebeck coefficient and resistivity exist. However, wire resistance will cause more significant power dissipation in parallel connection. The authors believe the research presented in this paper is the first to carry out an examination of the impact of module property disparity and wire resistance on the output power of an array of thermoelectric modules connected in series and parallel, which provides a reference for choosing module connection in AETEGs.

  1. A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.

    PubMed

    Zhu, Xiuping; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce

    2016-04-21

    Large amounts of low-grade waste heat (temperatures <130 °C) are released during many industrial, geothermal, and solar-based processes. Using thermally-regenerative ammonia solutions, low-grade thermal energy can be converted to electricity in battery systems. To improve reactor efficiency, a compact, ammonia-based flow battery (AFB) was developed and tested at different solution concentrations, flow rates, cell pairs, and circuit connections. The AFB achieved a maximum power density of 45 W m(-2) (15 kW m(-3) ) and an energy density of 1260 Wh manolyte (-3) , with a thermal energy efficiency of 0.7 % (5 % relative to the Carnot efficiency). The power and energy densities of the AFB were greater than those previously reported for thermoelectrochemical and salinity-gradient technologies, and the voltage or current could be increased using stacked cells. These results demonstrated that an ammonia-based flow battery is a promising technology to convert low-grade thermal energy to electricity. PMID:26990485

  2. Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks

    NASA Astrophysics Data System (ADS)

    Magnetto, D.; Vidiella, G.

    2012-06-01

    The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.

  3. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    SciTech Connect

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  4. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study is the first field based experiment that uses IR heaters to study the effects of a regionally defined heat wave on soybean physiology and productivity. The heating technology was successful and all of the heat waves were maintained at the target temperature for the three day duration of t...

  5. High-temperature strength of prealloyed-powder products increased by heat/pressure treatment

    NASA Technical Reports Server (NTRS)

    Ashbrook, R. L.; Freche, J. C.; Waters, W. J.

    1971-01-01

    Heat treatment process involves heating products to a temperature above the solidus, and subsequently applying pressure at a temperature below the solidus. Technique can be modified to one step process involving simultaneous application if both high pressure and heat. Process is not limited to cobalt-base alloys.

  6. A Highly Efficient Six-Stroke Internal Combustion Engine Cycle with Water Injection for In-Cylinder Exhaust Heat Recovery

    SciTech Connect

    Conklin, Jim; Szybist, James P

    2010-01-01

    A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion was used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this

  7. Optimisation of two-stage screw expanders for waste heat recovery applications

    NASA Astrophysics Data System (ADS)

    Read, M. G.; Smith, I. K.; Stosic, N.

    2015-08-01

    It has previously been shown that the use of two-phase screw expanders in power generation cycles can achieve an increase in the utilisation of available energy from a low temperature heat source when compared with more conventional single-phase turbines. However, screw expander efficiencies are more sensitive to expansion volume ratio than turbines, and this increases as the expander inlet vapour dryness fraction decreases. For singlestage screw machines with low inlet dryness, this can lead to under expansion of the working fluid and low isentropic efficiency for the expansion process. The performance of the cycle can potentially be improved by using a two-stage expander, consisting of a low pressure machine and a smaller high pressure machine connected in series. By expanding the working fluid over two stages, the built-in volume ratios of the two machines can be selected to provide a better match with the overall expansion process, thereby increasing efficiency for particular inlet and discharge conditions. The mass flow rate though both stages must however be matched, and the compromise between increasing efficiency and maximising power output must also be considered. This research uses a rigorous thermodynamic screw machine model to compare the performance of single and two-stage expanders over a range of operating conditions. The model allows optimisation of the required intermediate pressure in the two- stage expander, along with the rotational speed and built-in volume ratio of both screw machine stages. The results allow the two-stage machine to be fully specified in order to achieve maximum efficiency for a required power output.

  8. Bioconversion of barley straw and corn stover to butanol (a biofuel) in integrated fermentation and simultaneous product recovery bioreactors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In these studies concentrated sugar solutions of barley straw and corn stover hydrolysates were fermented with simultaneous product recovery and compared with the performance of a control glucose batch fermentation process. The control glucose batch fermentation resulted in the production of 23.25 g...

  9. Climate change, workplace heat exposure, and occupational health and productivity in Central America.

    PubMed

    Kjellstrom, Tord; Crowe, Jennifer

    2011-01-01

    Climate change is increasing heat exposure in places such as Central America, a tropical region with generally hot/humid conditions. Working people are at particular risk of heat stress because of the intrabody heat production caused by physical labor. This article aims to describe the risks of occupational heat exposure on health and productivity in Central America, and to make tentative estimates of the impact of ongoing climate change on these risks. A review of relevant literature and estimation of the heat exposure variable wet bulb globe temperature (WBGT) in different locations within the region were used to estimate the effects. We found that heat stress at work is a real threat. Literature from Central America and heat exposure estimates show that some workers are already at risk under current conditions. These conditions will likely worsen with climate change, demonstrating the need to create solutions that will protect worker health and productivity. PMID:21905396

  10. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.

    PubMed

    Amani, Hossein; Müller, Markus Michael; Syldatk, Christoph; Hausmann, Rudolf

    2013-07-01

    Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g(-1), respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a

  11. Aluminum recovery as a product with high added value using aluminum hazardous waste.

    PubMed

    David, E; Kopac, J

    2013-10-15

    The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al(3+) soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%). PMID:23959251

  12. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Operation, Recovery, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Steele, John W.; Caron, Mark E.; Laliberte, Yvon J.; Shaw, Laura A.

    2013-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX in the ISS segments, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the ISS cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings as well as remediation and recovery of the full heat exchanger will be

  13. Production of concrete articles utilizing heat-reclaiming system

    SciTech Connect

    Wauhop Jr., B. J.; Stratz, W. W.

    1985-07-30

    A method of producing concrete articles comprises reclaiming a portion of the heat energy from the kiln atmosphere during the curing of the concrete articles, and then utilizing the reclaimed heat energy to pre-heat mixing water used to form other concrete articles, or to add to boiler feed water used to generate low pressure steam, or both. In the case where two or more kilns are operated simultaneously at staggered curing cycles, the high temperature kiln atmosphere from the kiln undergoing cool down is intermixed with the low temperature kiln atmosphere from the kiln undergoing heat up thereby reclaiming heat energy from one kiln and using it in the other kiln thereby reducing the total energy consumption required for curing.

  14. 77 FR 39735 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... COMMISSION Certain Integrated Circuit Packages Provided With Multiple Heat- Conducting Paths and Products... the sale within the United States after importation of certain integrated circuit packages provided... integrated circuit packages provided with multiple heat-conducting paths and products containing same...

  15. Heating of thin products by means of transverse-flux inductors

    NASA Astrophysics Data System (ADS)

    1980-02-01

    There are some forms of metallic products which do not lend themselves well to induction heating upon first consideration, either because of their shape (small thickness) or their nature (materials with low resistance). In particular, this applies to all products in the form of a thin sheet. Various applications are suggested such as the drying of the sheet after pickling the heating of the sheet in order to dry or harden varnish lacquer, and the heat treatment of aluminium sheet.

  16. An Overview of hydrogen production from KRW oxygen-blown gasification with carbon dioxide recovery

    SciTech Connect

    Doctor, R. D.; Brockmeier, N. F.; Molburg, J. C.; Thimmapuram, P.; Chess, K. L.

    2000-08-31

    All the process elements are commercially available to operate coal gasification so that it can produce electricity, hydrogen, and carbon dioxide while delivering the same quantity of power as without H{sub 2} and CO{sub 2} recovery. To assess the overall impact of such a scheme, a full-energy cycle must be investigated (Figure 1). Figure 2 is a process flow diagram for a KRW oxygen-blown integrated gasification combined-cycle (IGCC) plant that produces electricity, H{sub 2}, and supercritical CO{sub 2}. This system was studied in a full-energy cycle analysis, extending from the coal mine to the final destination of the gaseous product streams [Doctor et al. 1996, 1999], on the basis of an earlier study [Gallaspy et al. 1990]. The authors report the results of updating these studies to use current turbine performance.

  17. Growing duckweed in swine wastewater for nutrient recovery and biomass production.

    PubMed

    Xu, Jiele; Shen, Genxiang

    2011-01-01

    Spirodela oligorrhiza, a promising duckweed identified in previous studies, was examined under different cropping conditions for nutrient recovery from swine wastewater and biomass production. To prevent algae bloom during the start-up of a duckweed system, inoculating 60% of the water surface with duckweed fronds was required. In the growing season, the duckweed system was capable of removing 83.7% and 89.4% of total nitrogen (TN) and total phosphorus (TP) respectively from 6% swine lagoon water in eight weeks at a harvest frequency of twice a week. The total biomass harvested was 5.30 times that of the starting amount. In winter, nutrients could still be substantially removed in spite of the limited duckweed growth, which was probably attributed to the improved protein accumulation of duckweed plants and the nutrient uptake by the attached biofilm (algae and bacteria) on duckweed and walls of the system. PMID:20869239

  18. Recovery of fluorine from bastnasite as synthetic cryolite by-product.

    PubMed

    Wang, Liangshi; Wang, Chunmei; Yu, Ying; Huang, Xiaowei; Long, Zhiqi; Hou, Yongke; Cui, Dali

    2012-03-30

    This paper investigates the development of a new environment friendly approach for treatment of bastnasite. A new process was developed to recover fluorine from bastnasite as synthetic cryolite by-product. The conditions affecting the fluorine removal and recovery in the process, including contact time, acidity, Al(3+) concentration, Al/F molar ratio and different kinds of aluminum salts being used, were investigated. The results indicate that high acidity and large Al/F molar ratio were beneficial to fluoride removal, and that the reaction reached equilibrium after 15 min. The effect of the initial Al(3+) concentration at a certain total Al(3+) amount was slight. Aluminum nitrate was more efficient than aluminum sulfate for the removal of fluoride. Optimum operation parameters for synthesizing cryolite have been obtained and proposed for industrial applications. PMID:22281026

  19. Dimeric heat shock protein 40 binds radial spokes for generating coupled power strokes and recovery strokes of 9 + 2 flagella

    PubMed Central

    Yang, Chun; Owen, Heather A.; Yang, Pinfen

    2008-01-01

    T-shape radial spokes regulate flagellar beating. However, the precise function and molecular mechanism of these spokes remain unclear. Interestingly, Chlamydomonas reinhardtii flagella lacking a dimeric heat shock protein (HSP) 40 at the spokehead–spokestalk juncture appear normal in length and composition but twitch actively while cells jiggle without procession, resembling a central pair (CP) mutant. HSP40− cells begin swimming upon electroporation with recombinant HSP40. Surprisingly, the rescue doesn't require the signature DnaJ domain. Furthermore, the His-Pro-Asp tripeptide that is essential for stimulating HSP70 adenosine triphosphatase diverges in candidate orthologues, including human DnaJB13. Video microscopy reveals hesitance in bend initiation and propagation as well as irregular stalling and stroke switching despite fairly normal waveform. The in vivo evidence suggests that the evolutionarily conserved HSP40 specifically transforms multiple spoke proteins into stable conformation capable of mechanically coupling the CP with dynein motors. This enables 9 + 2 cilia and flagella to bend and switch to generate alternate power strokes and recovery strokes. PMID:18227282

  20. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization.

    PubMed

    Negro, Viviana; Mancini, Giuseppe; Ruggeri, Bernardo; Fino, Debora

    2016-08-01

    The citrus peels and residue of fruit juices production are rich in d-limonene, a cyclic terpene characterized by antimicrobial activity, which could hamper energy valorization bioprocess. Considering that limonene is used in nutritional, pharmaceutical and cosmetic fields, citrus by-products processing appear to be a suitable feedstock either for high value product recovery or energy bio-processes. This waste stream, more than 10MTon at 2013 in European Union (AIJN, 2014), can be considered appealing, from the view point of conducting a key study on limonene recovery, as its content of about 1%w/w of high value-added molecule. Different processes are currently being studied to recover or remove limonene from citrus peel to both prevent pollution and energy resources recovery. The present review is aimed to highlight pros and contras of different approaches suggesting an energy sustainability criterion to select the most effective one for materials and energy valorization. PMID:27237574

  1. New industrial heat pump applications to textile production

    SciTech Connect

    1990-12-01

    Application of pinch technology to the US industries in an early screening study has identified potential for heat pumps in several standard processes such as distillation and drying processes. Due to lack process information, the previous study was not able to draw any definite conclusion concerning the heat pump application potential in textile process. However, the commonly encountered drying process in the finishing section of textile plant has been shown to create opportunities for heat pump placement. The site selected for this study is a textile plant in North Carolina and the participating utility is Duke Power Company. The objective of this study is to further identify the energy savings potential through advanced heat pumps and other energy conservation methods developed in the context of pinch technology. The key findings of this study are as follows. The previously unrecoverable waste heat from the exhaust air can now be reclaimed through a spray type air washer and heat pump system. The recommended heat pump system recovers heat from the looper exhaust and use it to preheat the air in the gas tenter. A reduction of 50% of the gas consumption in the tenter can be achieved. The removal of lint from the exhaust air reduced the potential of air pollution. The collected lint can be burned in the boiler as a supplemental fuel source to reduce the fuel consumption in the plant. With fuel price predicted to go up and electricity price remain relatively stable in the future, the heat pump system can payback in less than three years. 15 figs., 4 tabs.

  2. Incorporating multi-platform remote sensing products for prediction of post-fire hydrologic recovery

    NASA Astrophysics Data System (ADS)

    Kinoshita, A. M.; Hogue, T. S.; Kim, J.

    2011-12-01

    Wildfires are increasing in intensity and size across the western US, and more than half of the 20 largest fires in California have occurred within the last decade. Development in southern California has increased and as a result many homes at the wildland-urban interface (WUI) are affected by fire events themselves and post-fire processes. Current management efforts are mostly concentrated around immediate post-fire effects (first storm season); however, burned systems are often altered for prolonged periods of time, creating long-term concerns for downstream communities at the WUI. Previous work in two southern Californian watersheds, City Creek and Devil Canyon, shows lack of vegetation recovery and significant changes in annual and seasonal discharge for the post-fire study period (seven years). Applying remotely sensed data streams enhances monitoring of large and ungauged burned areas at high spatial and temporal resolutions. The goal of the current study is to integrate remote sensing data from multiple satellite platforms to improve prediction of the spatial and temporal variability of key hydrological variables controlling post-fire response. Remote sensing data streams from Moderate-resolution Imaging Spectroradiometer (MODIS) and Landsat are used to derive a range of land surface parameters and evaluate ecosystem and hydrologic recovery for the Arroyo Seco, an urban-fringe watershed in southern California burned by the 2009 Station Fire. A UCLA remotely-sensed evapotranspiration (ET) product is used to provide insight on vegetation growth and plant water availability. A UCLA MODIS-AMSR-E soil moisture product is used to evaluate the spatial variability of post-fire surface soil moisture and coupled storm runoff response. A range of other parameters, surface temperature, albedo and vegetation indices, are also evaluated to provide insight on the spatial variability of watershed recovery. Predicting the short and long-term risks of post-fire floods, debris

  3. Recovery of ammonia and sulfate from waste streams and bioenergy production via bipolar bioelectrodialysis.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2015-11-15

    Ammonia and sulfate, which are prevalent pollutants in agricultural and industrial wastewaters, can cause serious inhibition in several biological treatment processes, such as anaerobic digestion. In this study, a novel bioelectrochemical approach termed bipolar bioelectrodialysis was developed to recover ammonia and sulfate from waste streams and thereby counteracting their toxicity during anaerobic digestion. Furthermore, hydrogen production and wastewater treatment were also accomplished. At an applied voltage of 1.2 V, nitrogen and sulfate fluxes of 5.1 g NH4(+)-N/m(2)/d and 18.9 g SO4(2-)/m(2)/d were obtained, resulting in a Coulombic and current efficiencies of 23.6% and 77.4%, respectively. Meanwhile, H2 production of 0.29 L/L/d was achieved. Gas recirculation at the cathode increased the nitrogen and sulfate fluxes by 2.3 times. The applied voltage, initial (NH4)2SO4 concentrations and coexistence of other ions were affecting the system performance. The energy balance revealed that net energy (≥ 16.8 kWh/kg-N recovered or ≥ 4.8 kWh/kg-H2SO4 recovered) was produced at all the applied voltages (0.8-1.4 V). Furthermore, the applicability of bipolar bioelectrodialysis was successfully demonstrated with cattle manure. The results provide new possibilities for development of cost-effective technologies, capable of waste resources recovery and renewable energy production. PMID:26318650

  4. Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery

    SciTech Connect

    Edwards, Kevin Dean; Wagner, Robert M

    2010-01-01

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

  5. Strontium-90 and promethium-147 recovery

    SciTech Connect

    Hoisington, J.E.; McDonell, W.R.

    1982-08-30

    Strontium-90 and promethium-147 are fission product radionuclides with potential for use as heat source materials in high reliability, non-interruptible power supplies. Interest has recently been expressed in their utilization for Department of Defense (DOD) applications. This memorandum summarizes the current inventories, the annual production rates, and the possible recovery of Sr-90 and Pm-147 from nuclear materials production operations at Hanford and Savannah River. Recovery of these isotopes from LWR spend fuel utilizing the Barnwell Nuclear Fuels Plant (BNFP) is also considered. Unit recovery costs at each site are provided.

  6. Energy development and recovery in South Central Wyoming: Soils, vegetation, and productivity

    NASA Astrophysics Data System (ADS)

    Avirmed, Otgonsuren

    Energy development is expanding rapidly in sagebrush ecosystems of Western North America. This ecosystem is a critical habitat for many obligate wildlife species, and contains substantial soil carbon. Although we have some knowledge about how wildlife species are affected by energy development, there is much that remains to be understood about how energy development affects sagebrush ecosystem structure and function. In my research, I explored 1) how fast sagebrush plant communities recover from oil and gas development; 2) how soil organic matter was impacted by historical oil and gas development; and 3) how oil and gas development and wind development affect ecosystem production. My results showed that some components of the sagebrush plant communities recover in ~ 90 years after oil and gas development, but other components to do not recover at all. Sagebrush density recovered in ~65 years, and both grass and shrub cover recovered to pre-disturbance levels in 30 years. However, there was no indication of any recovery of forbs, nor any trend toward recovery. Since forbs represent a critical component of the biological diversity of sagebrush systems, these results indicate that reclamation activities should target forbs to promote plant diversity in sagebrush ecosystems. Ninety years of oil and gas development had no effect on labile, recalcitrant, or total soil organic matter pools. Site specific conditions such as soils texture and shrub-induced heterogeneity explained substantial variance in soil organic matter pools, but the disturbance from oil and gas development showed no significant impact. While the disturbance had no effect on soil organic matter, it did eliminate the heterogeneity associated with individual shrubs. I found that shrub-induced heterogeneity recovered in about 45 years in loamy sand soils, but in sandy soils, heterogeneity did not recover. On the other hand, the insignificant effect of disturbance on soil organic matter leads us re

  7. Effect of heating system using a geothermal heat pump on the production performance and housing environment of broiler chickens.

    PubMed

    Choi, H C; Salim, H M; Akter, N; Na, J C; Kang, H K; Kim, M J; Kim, D W; Bang, H T; Chae, H S; Suh, O S

    2012-02-01

    A geothermal heat pump (GHP) is a potential heat source for the economic heating of broiler houses with optimum production performance. An investigation was conducted to evaluate the effect of a heating system using a GHP on production performance and housing environment of broiler chickens. A comparative analysis was also performed between the GHP system and a conventional heating system that used diesel for fuel. In total, 34,000 one-day-old straight run broiler chicks were assigned to 2 broiler houses with 5 replicates in each (3,400 birds/replicate pen) for 35 d. Oxygen(,) CO(2), and NH(3) concentrations in the broiler house, energy consumption and cost of heating, and production performance of broilers were evaluated. Results showed that the final BW gain significantly (P < 0.05) increased when chicks were reared in the GHP broiler house compared with that of chicks reared in the conventional broiler house (1.73 vs. 1.62 kg/bird). The heating system did not affect the mortality of chicks during the first 4 wk of the experimental period, but the mortality markedly increased in the conventional broiler house during the last wk of the experiment. Oxygen content in the broiler house during the experimental period was not affected by the heating system, but the CO(2) and NH(3) contents significantly increased (P < 0.05) in the conventional broiler house compared with those in the GHP house. Fuel consumption was significantly reduced (P < 0.05) and electricity consumption significantly increased (P < 0.05) in the GHP house compared with the consumption in the conventional house during the experiment. The total energy cost of heating the GHP house was significantly lower (P < 0.05) compared with that of the conventional house. It is concluded that a GHP system could increase the production performance of broiler chicks due to increased inside air quality of the broiler house. The GHP system had lower CO(2) and NH(3) emissions with lower energy cost than the

  8. Enhanced oil recovery system

    DOEpatents

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  9. r-process Lanthanide Production and Heating Rates in Kilonovae

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-12-01

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka & Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Ye, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Ye ≳ 0.22-0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Ye lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Ye, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Ye, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  10. Radiogenic Heat Production of Rock from Three Rivers in Osun State of Nigeria

    NASA Astrophysics Data System (ADS)

    Alabi, O. O.; Akinluyi, F. O.; Ojo, M. O.; Adebo, B. A.

    Ten fresh rock samples were collected from three rivers in Osun State, namely Erin-Ijesha (EI), Osun-Osogbo river (OS) and Ishasha river in Edunabon near Ile-Ife (IS). The study area is underlain by the Precambrian Basement Complex of southwestern Nigeria. This is to determine their radioactive heat production and the contribution of each radionuclide content. The radiogenic heat production was determined by spectrometer which gives the area photopeak of the radionuclides contribution. These photo peaks were later converted to Bq Kg-1 and part per million (ppm) for radiogenic heat computation. The result shows that concentration and rate of heat production of 40K, 238U and 232Th in the samples varies significantly with geological location. The total heat production ranges from 8.21 to 235.82 pW kg-1. The highest concentration and heat production is recorded in Quatz of Osun-Osogbo rivers and the heat produced by 40k is highest in six samples. It is also noted that rock samples from Erin-Ijesha river are associated with high heat production of 232U.

  11. Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Lelong, Gérald; Guillaumet, Maxime; Weber, William J.; Takaki, Seiya; Yasuda, Kazuhiro

    2016-08-01

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV–visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (~0.3–0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ~3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.

  12. Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria.

    PubMed

    Costantini, Jean-Marc; Lelong, Gérald; Guillaumet, Maxime; Weber, William J; Takaki, Seiya; Yasuda, Kazuhiro

    2016-08-17

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F(+) centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ~3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections. PMID:27319289

  13. Geoneutrinos and Heat Production in the Earth: Constraints and Implications

    ScienceCinema

    McDonough, Bill [University of Maryland, College Park, Maryland, United States

    2010-01-08

    Recent results from antineutrino (geoneutrino) studies at KamLAND are coincident with geochemical models of Th and U in the Earth.  KamLAND and Borexino detectors are on line, thus uncertainties in counting statistics will be reduced as data are accumulated.  The SNO+ detector, situated in the middle of the North American plate will come on line in ~3 yrs and will be best suited to yield a precise estimate of the continental contribution to the Earth?s Th & U budget.  The distribution of heat producing elements in the Earth drives convection and plate tectonics.  Geochemical models posit that ~40% of the heat producing elements are in the continental crust, with the remainder in the mantle.  Although models of core formation allow for the incorporation of heat producing elements, the core contribution of radiogenic heating is considered to be negligible.  Most parameterized convection models for the Earth require significant amounts of radiogenic heating of the Earth, a factor of two greater than geochemical models predict.  The initial KamLAND results challenge these geophysical models and support geochemical models calling for a significant contribution from secular cooling of the mantle.

  14. Geoneutrinos and Heat Production in the Earth: Constraints and Implications

    SciTech Connect

    McConough, Bill

    2008-07-02

    Recent results from antineutrino (geoneutrino) studies at KamLAND are coincident with geochemical models of Th and U in the Earth. KamLAND and Borexino detectors are on line, thus uncertainties in counting statistics will be reduced as data are accumulated. The SNO+ detector, situated in the middle of the North American plate will come on line in {approx}3 yrs and will be best suited to yield a precise estimate of the continental contribution to the Earth's Th & U budget. The distribution of heat producing elements in the Earth drives convection and plate tectonics. Geochemical models posit that {approx}40% of the heat producing elements are in the continental crust, with the remainder in the mantle. Although models of core formation allow for the incorporation of heat producing elements, the core contribution of radiogenic heating is considered to be negligible. Most parameterized convection models for the Earth require significant amounts of radiogenic heating of the Earth, a factor of two greater than geochemical models predict. The initial KamLAND results challenge these geophysical models and support geochemical models calling for a significant contribution from secular cooling of the mantle.

  15. Geoneutrinos and Heat Production in the Earth: Constraints and Implications

    SciTech Connect

    McDonough, Bill

    2008-07-02

    Recent results from antineutrino (geoneutrino) studies at KamLAND are coincident with geochemical models of Th and U in the Earth.  KamLAND and Borexino detectors are on line, thus uncertainties in counting statistics will be reduced as data are accumulated.  The SNO+ detector, situated in the middle of the North American plate will come on line in ~3 yrs and will be best suited to yield a precise estimate of the continental contribution to the Earth’s Th & U budget.  The distribution of heat producing elements in the Earth drives convection and plate tectonics.  Geochemical models posit that ~40% of the heat producing elements are in the continental crust, with the remainder in the mantle.  Although models of core formation allow for the incorporation of heat producing elements, the core contribution of radiogenic heating is considered to be negligible.  Most parameterized convection models for the Earth require significant amounts of radiogenic heating of the Earth, a factor of two greater than geochemical models predict.  The initial KamLAND results challenge these geophysical models and support geochemical models calling for a significant contribution from secular cooling of the mantle.

  16. Influence of starch on microalgal biomass recovery, settleability and biogas production.

    PubMed

    Gutiérrez, Raquel; Ferrer, Ivet; García, Joan; Uggetti, Enrica

    2015-06-01

    In the context of wastewater treatment with microalgae cultures, coagulation-flocculation followed by sedimentation is one of the suitable options for microalgae harvesting. This process is enabled by the addition of chemicals (e.g. iron). However, in a biorefinery perspective, it is important to avoid possible contamination of downstream products caused by chemicals addition. The aim of this study was to evaluate the effect of potato starch as flocculant for microalgal biomass coagulation-flocculation and sedimentation. The optimal flocculant dose (25mg/L) was determined with jar tests. Such a concentration led to more than 95% biomass recovery (turbidity<9NTU). The settleability of flocs was studied using an elutriation apparatus measuring the settling velocities distribution. This test underlined the positive effect of starch on the biomass settling velocity, increasing to >70% the percentage of particles with settling velocities >6.5m/h. Finally, biochemical methane potential tests showed that starch biodegradation increased the biogas production from harvested biomass. PMID:25795448

  17. Dipole Theory of Heat Production and Absorption in Nerve Axon

    PubMed Central

    Wei, Ling Y.

    1972-01-01

    Exact formulas are derived for the energy change of a dipole system with two energy states (or bands) in a changing field in two cases: (a) no dipole flip-flop and (b) dipole flip-flop caused by stimulation. Based on these formulas, the positive and negative heats are calculated. The results are in good agreement with experiment in case b but are 60-180% larger in case a. Furthermore, the theory shows that the negative heat cannot be less than the positive heat in case a but can be either way in case b, the latter result being found prevalent in experiment. It is concluded that nerve excitation is most likely to involve dipole flip-flop at the membrane surface. The theory is consistent in the interpretations and correlations of the electrical, optical, and thermal effects observed in nerve axon. PMID:5056960

  18. Coping with heat stress during match-play tennis: Does an individualised hydration regimen enhance performance and recovery?

    PubMed Central

    Périard, Julien D; Racinais, Sebastien; Knez, Wade L; Herrera, Christopher P; Christian, Ryan J; Girard, Olivier

    2014-01-01

    Objectives To determine whether an individualised hydration regimen reduces thermal, physiological and perceptual strain during match-play tennis in the heat, and minimises alterations in neuromuscular function and physical performance postmatch and into recovery. Methods 10 men undertook two matches for an effective playing time (ball in play) of 20 min (∼113 min) in ∼37°C and ∼33% RH conditions. Participants consumed fluids ad libitum during the first match (HOT) and followed a hydration regimen (HYD) in the second match based on undertaking play euhydrated, standardising sodium intake and minimising body mass losses. Results HYD improved prematch urine specific gravity (1.013±0.006 vs 1.021±0.009 g/mL; p<0.05). Body mass losses (∼0.3%), fluid intake (∼2 L/h) and sweat rates (∼1.6 L/h) were similar between conditions. Core temperature was higher during the first 10 min of effective play in HOT (p<0.05), but increased similarly (∼39.3°C) on match completion. Heart rate was higher (∼11 bpm) throughout HOT (p<0.001). Thermal sensation was higher during the first 7.5 min of effective play in HOT (p<0.05). Postmatch knee extensor and plantar flexor strength losses, along with reductions in 15 m sprint time and repeated-sprint ability (p<0.05), were similar in both conditions, and were restored within 24 h. Conclusions Both the hydration regimen and ad libitum fluid consumption allowed for minimal body mass losses (<1%). However, undertaking match-play in a euhydrated state attenuated thermal, physiological and perceptual strain. Maximal voluntary strength in the lower limbs and repeated-sprint ability deteriorated similarly in both conditions, but were restored within 24 h. PMID:24668383

  19. Simultaneous bioconversion of barley straw to butanol and product recovery: use of concentrated sugar solution and process integration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a result of increased gasoline prices, we focused on the production of butanol which contains more energy than ethanol on per gallon (or kg) basis from cellulosic agricultural biomass such as wheat straw using two different systems: i) separate hydrolysis, fermentation, and recovery (SHFR), and ...

  20. 50 CFR Table 3 to Part 679 - Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut 3 Table 3 to Part 679 Wildlife and Fisheries FISHERY... Rates for Groundfish Species and Conversion Rates for Pacific Halibut ER28JA02.074 ER10JY02.000...