Science.gov

Sample records for recovery process field

  1. Economic Implementation and Optimization of Secondary Oil Recovery Process: St. Mary West Field, Lafayette County, Arkansas

    SciTech Connect

    Brock P.E., Cary D.

    2003-03-10

    The purpose of this study was to investigate the economic appropriateness of several enhanced oil recovery processes that are available to a small mature oil field located in southwest Arkansas and to implement the most economic efficient process evaluated. The State of Arkansas natural resource laws require that an oilfield is to be unitized before conducting a secondary recovery project. This requires all properties that can reasonably be determined to include the oil productive reservoir must be bound together as one common lease by a legal contract that must be approved to be fair and equitable to all property owners within the proposed unit area.

  2. Recovery process

    SciTech Connect

    Apffel, F.

    1989-06-13

    This patent describes a process for manufacturing char and hydrocarbons from discarded used tires. The process consists of: introducing the substantially whole tires into a reactor; pyrolyzing the substantially whole tires in a reaction chamber continuously at a temperature and pressure and for a reaction time sufficient to cause the tires to dissociate into a vapor and a solid phase; the pyrolyzing step including directly heating the tires with a radiant heat source at temperatures of 1000{sup 0} to 3000{sup 0}F; producing char from the solid phase; and processing the vapor phase to produce hydrocarbons.

  3. Recovery process

    SciTech Connect

    Apffel, F.

    1987-03-03

    A process is described for manufacturing carbon black and hydrocarbons from discarded tires, comprising: introducing the tires into a reactor; pyrolyzing the tires in a pyrolysis reaction vessel substantially in the absence of artificially introduced oil heating media at a temperature and pressure and for a reaction time sufficient to cause the tires to dissociate into a vapor phase and a solid phase; the pyrolyzing step including directly, internally heating the tires in the reaction vessel using microwave energy; producing carbon black from the solid phase; and processing the vapor phase to produce hyrocarbons.

  4. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  5. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  6. Field experiments and numerical simulations of confined aquifer response to multi-cycle recharge-recovery process through a well

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiu; Wu, Yuanbin; Zhang, Xingsheng; Liu, Yan; Yang, Tianliang; Feng, Bo

    2012-09-01

    SummaryShanghai is one of the cities suffering from land subsidence in China. Land subsidence has caused serious financial losses. Thus, artificial recharge measures have been adopted to compensate the drawdown in shallow, confined aquifers and thereby control land subsidence. In this study, a multi-cycle recharge-recovery field experiment was performed to investigate the response of a shallow, confined aquifer to artificial recharge through a well. In the experiment, a series of recharge-recovery cycles with different recharge volumes and durations, with and without artificial pressure, were performed. The water levels monitored in the recharge and observation wells indicated the response of the aquifer to the multi-cycle recharge-recovery process. Meanwhile, a finite-difference method (FDM) numerical model was established, and its parameters were obtained via a reversed numerical analysis on the experimental data. The responses of the shallow, confined aquifer to the multi-cycle recharge-recovery process were simulated in detail using the model. The calculation results showed that the water level dropped significantly when the recharge ended. Moreover, the efficiency of a multi-cycle recharge was found to be higher than that of a concentrated one under the same recharge volume and time. The relationship between recharge frequency and efficiency, expressed as H = 0.29498 f0.40163 and R2 = 0.97264, respectively, was obtained through the FDM numerical simulation. In the recharge intervals, the optimal recharge efficiency was achieved when the water level rose to 40% of the peak.

  7. Enhanced oil recovery process

    SciTech Connect

    Martin, A. B.; Jackson, E. J.

    1985-10-15

    An improved portable, versatile, modular, above-ground system and process for generating combustion gases, principally nitrogen and carbon dioxide, and steam, for removing particulate matter and corrosive components from the combustion gases, and for injecting the purified nitrogen and CO/sub 2/, and steam, individually or in selected mixtures, at controlled temperatures and pressures into a subterranean formation bearing hydrocarbons to enhance the recovery thereof. The system includes a high-pressure combustion reactor for efficient generation of combustion gases at the required rates and at pressures up to about 8000 psi and temperatures up to about 4500/sup 0/ F. The reactor is water-jacketed but lined with refractory material to minimize soot formation. Combustion chamber temperature is reduced to a safe level by water injection with the fuel.

  8. URANIUM RECOVERY PROCESS

    DOEpatents

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  9. URANIUM RECOVERY PROCESS

    DOEpatents

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  10. URANIUM RECOVERY PROCESS

    DOEpatents

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  11. Hydrogen recovery process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2000-01-01

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  12. URANIUM RECOVERY PROCESS

    DOEpatents

    Yeager, J.H.

    1958-08-12

    In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

  13. Actinide recovery process

    DOEpatents

    Muscatello, Anthony C.; Navratil, James D.; Saba, Mark T.

    1987-07-28

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrenedivinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like.

  14. Actinide recovery process

    DOEpatents

    Muscatello, A.C.; Navratil, J.D.; Saba, M.T.

    1985-06-13

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrene-divinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like. 2 tabs.

  15. Stillage processing for nutrient recovery

    SciTech Connect

    Sweeten, J.M.; Coble, C.G.; Egg, R.P.; Lawhon, J.T.; McBee, G.G.; Schelling, G.T.

    1983-06-01

    Stillage from fermentation of grain sorghum and sweet potatoes was processed for dry matter and nutrient recovery by combinations of screw press, vibrating screen, centrifugation, ultrafiltration, and reverse osmosis, yielding up to 98% dry matter removal. For most processes, protein removal equaled or exceeded dry matter removal.

  16. URANIUM RECOVERY PROCESS

    DOEpatents

    Kaufman, D.

    1958-04-15

    A process of recovering uranium from very low-grade ore residues is described. These low-grade uraniumcontaining hydroxide precipitates, which also contain hydrated silica and iron and aluminum hydroxides, are subjected to multiple leachings with aqueous solutions of sodium carbonate at a pH of at least 9. This leaching serves to selectively extract the uranium from the precipitate, but to leave the greater part of the silica, iron, and aluminum with the residue. The uranium is then separated from the leach liquor by the addition of an acid in sufficient amount to destroy the carbonate followed by the addition of ammonia to precipitate uranium as ammonium diuranate.

  17. METAL RECOVERY PROCESS

    DOEpatents

    Werner, L.B.; Hill, O.F.

    1957-12-01

    A process is presented for the separation of plutonium from the niobium oxide which is frequently used as a carrier precipitate to separate the plutonium from solutions of dissolved fuel elements. The niobium oxide, plutonium bearing precipitate is treated with hydrogen fluoride converting the niobium to the volatile pentafluoride, while the plutonium is changed into the substantially non- volatile plutonium tetrafluoride. After the niobium has been removed, the plutonium tetrafluoride is reacted with elemental fluorine, converting it to a higher plutonium fluoride and this may in turn be volitilized away from any residual impurities.

  18. Shale oil recovery process

    DOEpatents

    Zerga, Daniel P.

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  19. Gravity Field Recovery with Simulated GOCE Observations

    NASA Astrophysics Data System (ADS)

    Marty, J.; Bruinsma, S.; Balmino, G.; Abrikosov, O.; Foerste, C.; Rothacher, M.

    2005-12-01

    Numerical simulations of the gravity field parameter recovery using the direct method, with satellite positions as pseudo observations instead of simulated GPS Satellite-to-Satellite (SST) tracking data, and with gravity gradients (SGG data), were done and are ongoing in the framework of the European GOCE Gravity Consortium test and validation plan for GOCE mission data processing. This work shows the latest results from the CNES and GFZ software packages, GINS and EPOS, respectively. After the iterative least-squares orbit adjustment procedure has converged to the highest attainable precision level, the gravity field normal equations are computed in a subsequent step. These SST normal equations, representing the long wavelength gravity field signal, are then reduced for arc-dependent parameters (i.e. state vector at epoch, empirical parameters) and cumulated over the entire observation period. Secondly, the gravity gradient measurements (SGG) are processed, taking into account the coloured noise in these data, and yield (high resolution) normal equations. They are combined with the SST normal equations and the gravity field and gradiometer common mode calibration parameters are simultaneously estimated. The coloured noise in the SGG data is based on the latest and realistic gradiometer specifications. The precision in the measurement bandwidth is approximately 3-5 milliEotvos, but rapidly decreasing for lower frequencies. Due to this behaviour, the observation equations have to be filtered in order to obtain the most accurate recovery. The filter algorithm, design and results are presented to considerable detail since this particular step is the key element that will enable the achievement of the GOCE mission objectives from the ground segment point of view.

  20. Heat recovery reduces process energy losses

    SciTech Connect

    Anon

    1981-09-01

    After evaluation of process and plant operation losses, a pharmaceutical plant found heat recovery a viable means of reducing energy losses. One of the first applications of air-to-air heat recovery was in a recirculation/dehumidification process. Heat exchangers were used to recover heat from the air used to generate or dry the dehumidification material.

  1. A field laboratory for improved oil recovery

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  2. Surfactant and process for enhanced oil recovery

    SciTech Connect

    Stapp, P. R.

    1985-03-12

    A novel surfactant is formed by reacting maleic anhydride with a polynuclear aromatic compound having a molecular weight of at least 155. A novel surfactant system useful in enhanced oil recovery containing the above surfactant is also provided. In addition, an improved process for the enhanced recovery of oil is provided utilizing the novel surfactant system.

  3. Surfactant and process for enhanced oil recovery

    SciTech Connect

    Stapp, P. R.

    1984-12-11

    A novel surfactant is formed by reacting maleic anhydride with either a petroleum sulfonate or an alkaryl sulfonate. A surfactant system containing the above surfactant useful in enhanced oil recovery processes is also provided.

  4. Global Lunar Gravity Field Recovery from SELENE

    NASA Technical Reports Server (NTRS)

    Matsumoto, Koji; Heki, Kosuke; Hanada, Hideo

    2002-01-01

    Results of numerical simulation are presented to examine the global gravity field recovery capability of the Japanese lunar exploration project SELENE (Selenological and Engineering Explorer) which will be launched in 2005. New characteristics of the SELENE lunar gravimetry include four-way satellite-to-satellite Doppler tracking of main orbiter and differential VLBI tracking of two small free-flier satellites. It is shown that planned satellites configuration will improve lunar gravity field in wide range of wavelength as well as far-side selenoid.

  5. REDUCTION IN Pu RECOVERY PROCESSES

    DOEpatents

    Ritter, D.M.; Black, R.P.S.

    1959-09-29

    A method is described for reducing plutonium from the hexavalent to the tetravalent state in a carrier precipitation process for separating plutonium and nuclear fission products. In accordance with the invention oxalate ions are incorporated in the hexavalent plutoniumcontaining solution prior to a step of precipitating lanthanum fluoride in the solution.

  6. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  7. PROCESS FOR RECOVERY OF CONSTITUENTS OF ORES

    DOEpatents

    McCullough, R.F.

    1959-05-01

    A process for U recovery from leached zone material is described. Calcination with alkali metal carbonate at 600 to 2000 deg F followed by digestion with H/sub 2/SO/sub 4/ and filtration forms the basis of the process. (T.R.H.)

  8. URANIUM LEACHING AND RECOVERY PROCESS

    DOEpatents

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  9. Metallic Recovery and Ferrous Melting Processes

    SciTech Connect

    Luis Trueba

    2004-05-30

    The effects of melting atmosphere and charge material type on the metallic and alloy recovery of ferrous charge materials were investigated in two sets of experiments (Tasks 1 and 2). In addition, thermodynamic studies were performed (Task 3) to determine the suitability of ladle treatment for the production of ductile iron using scrap charge materials high in manganese and sulfur. Task 1--In the first set of experiments, the charge materials investigated were thin steel scrap, thick steel scrap, cast iron scrap, and pig iron in the rusty and clean states. Melting atmospheres in this set of experiments were varied by melting with and without a furnace cover. In this study, it was found that neither covered melting nor melting clean (non-rusty) ferrous charge materials improved the metallic recovery over the recovery experienced with uncovered melting or rusty charge materials. However, the silicon and manganese recoveries were greater with covered melting and clean materials. Silicon and manganese in the molten iron react with oxygen dissolved in the iron from uncovered melting and oxidized iron (surface rust). Silica and manganese silicates are formed which float to the slag decreasing recoveries of silicon and manganese. Cast iron and pig iron had higher metallic recoveries than steel scrap. Carbon recovery was affected by the carbon content of the charge materials, and not by the melting conditions. Irons with higher silicon contents had higher silicon recovery than irons with lower silicon contents. Task 2--In the second set of experiments, briquetted turnings and borings were used to evaluate the effects of briquette cleanliness, carbon additions, and melting atmosphere on metallic and alloy recovery. The melting atmosphere in this set of experiments was varied by melting in air and with an argon atmosphere using the SPAL process. In this set of experiments, carbon additions to the briquettes were found to have the greatest effect on metallic and alloy

  10. Recovery of transuranics from process residues

    SciTech Connect

    Gray, J.H.; Gray, L.W.

    1987-01-01

    Process residues are generated at both the Rocky Flats Plant (RFP) and the Savannah River Plant (SRP) during aqueous chemical and pyrochemical operations. Frequently, process operations will result in either impure products or produce residues sufficiently contaminated with transuranics to be nondiscardable as waste. Purification and recovery flowsheets for process residues have been developed to generate solutions compatible with subsequent Purex operations and either solid or liquid waste suitable for disposal. The ''scrub alloy'' and the ''anode heel alloy'' are examples of materials generated at RFP which have been processed at SRP using the developed recovery flowsheets. Examples of process residues being generated at SRP for which flowsheets are under development include LECO crucibles and alpha-contaminated hydraulic oil.

  11. PROCESS FOR THE RECOVERY OF URANIUM

    DOEpatents

    Morris, G.O.

    1955-06-21

    This patent relates to a process for the recovery of uranium from impure uranium tetrafluoride. The process consists essentially of the steps of dissolving the impure uranium tetrafluoride in excess dilute sulfuric acid in the presence of excess hydrogen peroxide, precipitating ammonium uranate from the solution so formed by adding an excess of aqueous ammonia, dissolving the precipitate in sulfuric acid and adding hydrogen peroxide to precipitate uranium peroxdde.

  12. Catalyst for elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  13. Pyrolysis processing for solid waste resource recovery

    NASA Technical Reports Server (NTRS)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  14. Oil recovery process using polymer microemulsion complexes

    SciTech Connect

    Baker, E.G.; Canter, N.H.; Robbins, M.L.

    1982-11-23

    A process for the enhanced recovery of oil from a subterranean formation using a polymer-microemulsion complex is disclosed. The polymer is polyethylene oxide or polyvinyl pyrrolidone which interacts with the surfactant of the microemulsion to form a physical association. The resulting complex is characterized by a complexation energy of at least 2 kcal/mole. Slugs containing the present polymer-microemulsion complexes are stable at high salinity, show reduced destabilization due to surfactant adsorption and retention by the formation, have low interfacial tensions and achieve an early banking, as well as increased displacement of crude oil.

  15. Zinc Recovery via the Flame Reactor Process

    NASA Astrophysics Data System (ADS)

    Pusateri, J. F.; Bounds, C. O.; Lherbier, L. W.

    1988-08-01

    A major objective of the zinc industry for the 1990s will be to maintain high zinc recovery while eliminating the disposal of copious quantities of hazardous iron residues. The flame reactor process has demonstrated the potential of meeting this objective by either treating the residues or smelting zinc directly. The process has been proven commercially viable for treating flue dusts generated during electric arc furnace steelmaking. Zinc, lead and cadmium are recovered from the dust as a crude oxide for recycle while a nonhazardous slag is produced for sale. Similar products are efficiently produced from electrolytic zinc plant neutral leach and iron precipitation residues. In addition, the reactor shows promise of fulfilling its original objective of being a low-energy primary zinc smelter by fuming and condensing zinc from roasted concentrates.

  16. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Ritter, D.M.

    1959-01-13

    An improvement is presented in the process for recovery and decontamination of plutonium. The carrier precipitate containing plutonium is dissolved and treated with an oxidizing agent to place the plutonium in a hexavalent oxidation state. A lanthanum fluoride precipitate is then formed in and removed from the solution to carry undesired fission products. The fluoride ions in the reniaining solution are complexed by addition of a borate sueh as boric acid, sodium metaborate or the like. The plutonium is then reduced and carried from the solution by the formation of a bismuth phosphate precipitate. This process effects a better separation from unwanted flssion products along with conccntration of the plutonium by using a smaller amount of carrier.

  17. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  18. Field Geology/Processes

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  19. [Recovery of consciousness: process-oriented approach].

    PubMed

    Gusarova, S B

    2014-01-01

    Traditionally psychological neurorehabilitation of neurosurgical patients is provided subject to availability of clear consciousness and minimal potential to communicate verbally. Cognitive and emotional disorders, problems in social adaptation, neurotic syndromes are normally targets in such cases. We work with patients having survived severe brain damage being in different states of consciousness: vegetative state, minimal state of consciousness, mutism, confusion, posttraumatic Korsaroff syndrom. Psychologist considers recovery of consciousness as the target besides traditional tasks. Construction of communication with patient is central part of such job, where the patient remains unable to contact verbally, yet it is impossible to consider potential aphasia. This is a non-verbal "dialogue" with patient created by psychologist with gradual development and involving other people and objects of environment. Inline with modern neuroscientific achievements demonstrating ability to recognize by patients with severe brain injury (A. Owen, S. Laureys, M. Monti, M. Coleman, A. Soddu, M. Boly and others) we base upon psychological science, on psychotherapeutic approaches containing instruments inevitable to work with patients in altered states of consciousness and creation of non-verbal communication with patient (Jung, Reich, Alexander, Lowen, Keleman, Arnold and Amy Mindell, S. Tomandl, D. Boadella, A. Längle, P. Levin etc). This article will include 15 years of experience to apply Process-oriented approach by A. Mindell to recovery of consciousness of neurosurgical patients based on work with "minimal signals" (micro moves, breath, mimic reactions etc.), principle of feedback, psychosomatic resonance, empathy. PMID:24761599

  20. Enhanced oil recovery process and apparatus

    SciTech Connect

    Martin, A. B.; Jackson, E. V.

    1985-02-19

    An improved portable, versatile, modular, aboveground system and process for generating combustion gases, principally nitrogen and carbon dioxide, and steam, for removing particulate matter and corrosive components from the combustion gases, and for injecting the purified nitrogen and CO/sub 2/, and steam, individually or in selected mixtures, at controlled temperatures and pressures into a subterranean formation bearing hydrocarbons to enhance the recovery thereof. The system includes a high-pressure combustion reactor for efficient generation of combustion gases at the required rates and at pressures up to about 8000 psi and temperatures up to about 4500/sup 0/ F. The reactor is water-jacketed but lined with refractory material to minimize soot formation. Combustion chamber temperature is reduced to a safe level by water injection with the fuel.

  1. Sulfur recovery plant and process using oxygen

    SciTech Connect

    Palm, J.W.

    1989-07-18

    This patent describes a process for recovery of sulfur from a gaseous stream containing hydrogen sulfide. The process consists the steps of: introducing a thermal reaction mixture comprising the gaseous stream containing hydrogen sulfide, and an oxygen-enriched stream of air or pure oxygen into a combustion zone of a Claus furnace; combusting the thermal reaction mixture in the Claus furnace to thereby produce hot combustion gases comprising hydrogen sulfide, sulfur dioxide, carbon dioxide, water, and elemental sulfur; introducing the hot combustion gases into a Claus catalytic reactor; subjecting the hot combustion gases in the catalytic reactor to Claus reaction conditions in the presence of a Claus catalyst to thereby produce a Claus plant gaseous effluent stream comprising hydrogen sulfide, sulfur dioxide, carbon dioxide, water, and elemental sulfur; introducing the Claus plant gaseous effluent into a condenser to thereby produce liquid sulfur, which is recovered, and a gaseous condenser effluent, which comprises hydrogen sulfide, sulfur dioxide, carbon dioxide and water and which is divided into a recycle portion and a tailgas portion; converting substantially all sulfur species in the recycle portion of the gaseous condenser effluent to hydrogen sulfide to thereby form condenser effluent comprising hydrogen sulfide, carbon dioxide and water; removing water from the recycle portion of the condenser; and moderating the temperature in the Claus furnace by returning at least a portion of the dried recycle condenser, as a diluent stream, to a combustion zone of the Claus furnace.

  2. Sulfur recovery plant and process using oxygen

    SciTech Connect

    Palm, J.W.

    1989-01-17

    This patent describes a process for the recovery of sulfur from a gaseous stream containing hydrogen sulfide, the process comprising the steps of: (a) introducing a thermal reaction mixture comprising (1) the gaseous stream containing hydrogen sulfide, and (2) an oxygen-enriched stream of air or pure oxygen into a combustion zone of a Claus furnace; (b) combusting the thermal reaction mixture in the Claus furnace to thereby produce hot combustion gases comprising hydrogen sulfide, sulfur dioxide, carbon dioxide, water, and elemental sulfur; (c) introducing the hot combustion gases into a Claus catalytic reactor; (d) subjecting the hot combustion gases in the catalytic reactor to Claus reaction conditions in the presence of a Claus catalyst to thereby produce a Claus plant gaseous effluent stream comprising hydrogen sulfide, sulfur dioxide, carbon dioxide, water, and elemental sulfur; (e) introducing the Claus plant gaseous effluent into a condenser to thereby produce liquid sulfur, which is recovered, and a gaseous condenser effluent, which comprises hydrogen sulfide, sulfur dioxide, carbon dioxide and water; (f) converting substantially all sulfur species in the gaseous condenser effluent to hydrogen sulfide, to thereby form a condenser effluent comprising hydrogen sulfide, carbon dioxide and water; (g) removing water from the condenser effluent from step (f); and (h) moderating the temperature in the Claus furnace by returning at least a portion of the dried condenser effluent from step (g), as a diluent stream, to a combustion zone of the Claus furnace in step (a) above.

  3. Catalyst for elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Liu, Wei

    1995-01-01

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  4. Recycled fatty acid crude petroleum recovery process

    SciTech Connect

    Herter, G. L.; Herter, C.

    1984-11-06

    A method of recovering crude oil for subsequent processing. The method contemplates the step of exposing the source of crude oil such as a subterranean petroleum reservoir or a vessel or container of tar sands, kerogen or the like to aliphatic or carboxylic acid, preferably oleic acid, to produce a solvated crude oil mixture of reduced viscosity. This mixture is saponifyed by reacting it with a nucleophilic base, preferably a hydroxide of potassium or sodium, under pressure whereby to separate the solvated mixture into petroleum crude and an acid soap which migrates to an aqueous phase. The petroleum crude is separated from the aqueous soap through conventional techniques. Afterwards, a desaponification step contemplates recovery of the aliphatic or carboxylic acid for subsequent recycling in the previously mentioned exposing step. Reuse is facilitated by desaponifying aqueous soap within a high pressure containment vessel reacted with an acid suitable for donating a hydrated proton to the aqueous phase of the soap. This reconstituted acid is recycled for injection into the inputting step. Preferably carbonic acid is generated for the desaponifying step by injecting high pressure carbon dioxide within the containment vessel. By-products of the chemical reaction are separated and/or filtered as necessary to effectuate necessary purification sub-steps.

  5. Photochemical response of the nighttime mesosphere to electric field heating—Recovery of electron density enhancements

    NASA Astrophysics Data System (ADS)

    Kotovsky, D. A.; Moore, R. C.

    2016-02-01

    A photochemical model has been developed to examine the response of the nighttime mesosphere to electric field heating. Time dynamics of 29 chemical species are accounted for by a set of 156 reactions. Recovery dynamics of electron density enhancements are examined in detail, and the recovery timescales of VLF scattering resulting from the modeled conductivity changes are quantitatively estimated. Both typical recovery (up to 240 s) and long recovery (>300 s) timescales of early VLF scattering events are explainable in terms of the model results. Electron production and loss during recovery is determined by a small set of attachment, detachment, and recombination processes. Based on the model results, we conclude that long recovery VLF scattering proceeds from sufficiently large electron density enhancements that are controlled by slow recombination loss (i.e., when attachment loss is small or balanced by detachment).

  6. Economic feasibility study for phosphorus recovery processes.

    PubMed

    Molinos-Senante, María; Hernández-Sancho, Francesc; Sala-Garrido, Ramón; Garrido-Baserba, Manel

    2011-06-01

    Phosphorus recovery from wastewater has become a necessity for sustainable development because phosphorus is a non-renewable essential resource, and its discharge into the environment causes serious negative impacts. There are no economic incentives for the implementation of phosphorus recovery technologies because the selling price of rock phosphate is lower than phosphorus recovered from sewage. The methodologies used to determine the feasibility of such projects are usually focused on internal costs without considering environmental externalities. This article shows a methodology to assess the economic feasibility of wastewater phosphorus recovery projects that takes into account internal and external impacts. The shadow price of phosphorus is estimated using the directional distance function to measure the environmental benefits obtained by preventing the discharge of phosphorus into the environment. The economic feasibility analysis taking into account the environmental benefits shows that the phosphorus recovery is viable not only from sustainable development but also from an economic point of view. PMID:21809783

  7. Estimation of oil recovery by in-situ combustion in the Jobo Field of Eastern Venezuela

    SciTech Connect

    Luengo-C, J.R.; Sanyal, S.K.

    1981-03-01

    A laboratory combustion experiment using samples from Jobo Field was completed. The data obtained by this experiment could be used for an approximate estimation of recovery for a pilot project in this field. An isolated pilot test would give enough information to determine the behavior of the combustion process for field applications. Aplication of recovery correlations indicate that a pilot test in an inverted 5-spot pattern (10 to 20 acres spacing) appears adequate for these field conditions. Air injection rates should be calculated and compared with injectivity tests, the ability of the producing wells to handle the oil, and the maximum pressure the reservoir can handle without fracturing.

  8. Low cost process heat recovery. Interim report

    SciTech Connect

    Theisen, P.; McCray, J.

    1980-01-01

    The objectives of this project are to analyze waste heat recovery potential, economic analysis, heat exchanger and system design, and computer analysis programs. The heating demand and heat recovery potential at a Madison neighborhood bakery was conducted. The building has steam heat and natural gas is used in the hot water heater, the cooking stoves, and in the baking oven. Heat recovery potential was analyzed based upon fuel consumption in the baking oven, flue gas temperature, mass flow rate, and hours of oven operation. The feasibility of waste heat recovery systems is analyzed using life cycle cost and life cycle savings. For a first approximation, hand calculations were performed for air-to-air flat plate, fin-plate, and liquid-to-air tube type heat exchangers using the temperature and mass flow data from a pizza restaurant in Madison. Then a heat exchanger analysis program was written in interactive BASIC. The analysis indicates that heat recovery using the flat-plate and fin-plate exchanger designs is technically feasible and yields high effectiveness. (MCW)

  9. Thought field therapy and trauma recovery.

    PubMed

    Folkes, Crystal E

    2002-01-01

    People who have been repeatedly exposed to traumatic events are at high risk for Post Traumatic Stress Disorder (PTSD). Refugees and immigrants can certainly be in this category, but seldom seek professional therapy due to cultural, linguistic, financial, and historical reasons. A rapid and culturally sensitive treatment is highly desirable with communities new to Western-style healing. In this study of 31 clients, a pre-test was given, all participants received Thought Field Therapy (TFT), and were then post-tested after 30 days. Pre-test and post-test total scores showed a significant drop in all symptom sub-groupings of the DSM criteria for PTSD. The findings of this study contrast with the outcomes of other methods of treatment, and are a significant addition to the growing body of data on refugee mental health. PMID:12166020

  10. Helium recovery at the National High Magnetic Field Laboratory

    NASA Astrophysics Data System (ADS)

    Barrios, M.; Kynoch, J.

    2015-12-01

    Helium conservation is becoming increasingly important as helium availability is on the decline and prices are on the rise. The Florida State University National High Magnetic Field Laboratory has taken several steps over the past five years to increase the percentage of helium recovered. These include the installation of a standalone purifier, recovery flow meters, contamination meters, and a new piping system. The improvements to the recovery system have reduced the amount of helium purchased by the Mag Lab by 60% while helium usage has increased by roughly 40%. This article will provide details about the recovery system as a whole and describe some of the main components. There will also be some examples of the problems we've had to overcome, and some that we are still working on. Finally, there will be an update on the current status of the recovery system and a description of our plans for the future.

  11. Analysis of backward error recovery for concurrent processes with recovery blocks

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Lee, Y. H.

    1982-01-01

    Three different methods of implementing recovery blocks (RB's). These are the asynchronous, synchronous, and the pseudo recovery point implementations. Pseudo recovery points so that unbounded rollback may be avoided while maintaining process autonomy are proposed. Probabilistic models for analyzing these three methods under standard assumptions in computer performance analysis, i.e., exponential distributions for related random variables were developed. The interval between two successive recovery lines for asynchronous RB's mean loss in computation power for the synchronized method, and additional overhead and rollback distance in case PRP's are used were estimated.

  12. Diamond recovery from natural gas fields

    SciTech Connect

    Chen, C.S.H.; Wentzek, S.E.

    1992-06-09

    This patent describes a process for separating diamondoid compounds from a solvent. It comprises providing a hydrocarbon solvent containing at least about 70 weight percent paraffins having at least 30 carbon atoms and less than about 5 weight percent aliphatics having less than about 30 carbon atoms; charging the diamondoid-containing hydrocarbon solvent to a separation stage under subatmospheric pressure and temperature within the range of from about 0 to about 150{degrees} C; and withdrawing a vapor stream enriched in diamondoids from the separation stage and condensing the vapor stream at a temperature from about {minus}80{degrees} C to about ambient in the absence of reflux to the separation stage.

  13. Bangkit: The Processes of Recovery from First Episode Psychosis in Java.

    PubMed

    Subandi, M A

    2015-12-01

    There is a growing literature on recovery from schizophrenia. Most studies, however, focused on outcome, with insufficient attention paid to the process of recovery. The aim of this study was to explore the process of recovery from first episode psychotic illness in a Javanese cultural setting. An ethnographic method was applied where researcher conducted a field work and followed seven participants in their natural setting. This study identified three phases of recovery process in the context of Javanese culture: Bangkit, gaining insight; Usaha, struggling to achieve recovery; and Rukun, harmonious integration with family and community integration. Recovery entails regaining insight, followed by simultaneous inward and outward efforts that reconstitute one's inner and outer world, respectively. Participants also expressed their recovery in terms of a movement through physical space, from confinement in their own home to the wider spaces shared with family and community. Movements in physical space parallel movements in social space, where participants accomplish a social recovery. The Javanese phase of recovery found in this study is comparable to the phase of recovery identified by previous literatures in the Western context. PMID:25600832

  14. A field laboratory for improved oil recovery. Final report

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  15. Monitoring of thermal enhanced oil recovery processes with electromagnetic methods

    SciTech Connect

    Wilt, M.

    1992-09-01

    Research in applying electromagnetic methods for imaging thermal enhanced oil recovery has progressed significantly during the past eighteen months. Working together with researchers at Lawrence Berkeley Laboratory (LBL) and supported by a group of industrial sponsors we have focused our effort on field system development and doing field surveys connected with EOR operations. Field surveys were recently completed at the Lost Hills No.3 oil field and at UC Richmond Field station. At Lost Hills, crosshole EM data sets were collected before a new phase of steam injection for EOR and again four months after the onset of steaming. The two data sets were nearly identical suggesting that very little steam had been injected into this borehole. This is in accord with the operators records which indicate injectivity problems with this particular well. At Richmond we conducted a salt water injection monitoring experiment where 50,000 gallons of salt water were injected in a shallow aquifer and crosshole EM data were collected using the injection well and several observation wells. We applied the imaging code to some of the collected data and produced an image showing that the salt water slug has propagated 8--10 m from the injector into the aquifer. This result is partially confirmed by prior calculations and well logging data. Applying the EM methods to the problem of oil field characterization essentially means extending the borehole resistivity log into the region between wells. Since the resistivity of a sedimentary environment is often directly dependent on the fluids in the rock the knowledge of the resistivity distribution within an oil field can be invaluable for finding missed or bypassed oil or for mapping the overall structure. With small modification the same methods used for mapping EOR process can be readily applied to determining the insitu resistivity structure.

  16. DOE tallies Class III oil recovery field projects

    SciTech Connect

    Not Available

    1994-07-25

    Here are details from midterm proposals submitted as part of the US Department of Energy's Class 3 oil recovery field demonstration candidate projects. All of the proposals emphasize dissemination of project details so that the results, if successful, can be applied widely in similar reservoirs. Project results will also be fed into a national petroleum technology transfer network. The proposals include: Gulf of Mexico, Gulf coast, offshore California, a California thermal, immiscible CO[sub 2], produced/potable water, microbial EOR, California diatomite, West Texas Spraberry field, and other Permian Basin fields.

  17. Cementation process for minerals recovery from Salton Sea geothermal brines

    SciTech Connect

    Maimoni, A.

    1982-01-26

    The potential for minerals recovery from a 1000-MWe combined geothermal power and minerals recovery plant in the Salton Sea is examined. While the possible value of minerals recovered would substantially exceed the revenue from power production, information is insufficient to carry out a detailed economic analysis. The recovery of precious metals - silver, gold, and platinum - is the most important factor in determining the economics of a minerals recovery plant; however, the precious metals content of the brines is not certain. Such a power plant could recover 14 to 31% of the US demand for manganese and substantial amounts of zinc and lead. Previous work on minerals extraction from Salton Sea brines is also reviewed and a new process, based on a fluidized-bed cementation reaction with metallic iron, is proposed. This process would recover the precious metals, lead, and tin present in the brines.

  18. Surface process study for oil recovery using a thermal extraction process

    SciTech Connect

    Sethl, V.K.; Satchwell, R.M.; Johnson, L.A. Jr.

    1994-06-01

    Geological studies have shown that there are many surface or near-surface deposits in the United States that contain large quantities of petroleum. In the State of Wyoming, a high concentration of such deposits exists in the Wind River, Big Horn, and Powder River Basins. These shallow deposits typically occur as unconsolidated or friable formations that contain millions of barrels of oil. Conventional petroleum production techniques have been attempted in many of these deposits with little or no economic success. In an attempt to improve the production economics, the Western Research Institute was solicited to develop a technique for the recovery of oil from these deposits. WRI, with support from the Economic and Community Development Division of the State of Wyoming, and as a part of the WRI/US Department of Energy, Jointly Sponsored Research program, proposed to develop, test, and demonstrate a viable and economical technology for the recovery of oil using mining and surface recovery processes. Reneau Energy, Inc. of La Quinta, California, agreed to participate in the project in providing a test site and mined materials. The goal of the proposed project to be completed in two phases, was to develop existing energy resources which are not presently being utilized. Phase 1 of the project, consisting of six specific tasks, was conducted to evaluate the suitability of various surface processing schemes. Phase 1 also included gravity drainage tests to determine if recovery techniques such as horizontal drilling could be applied. Phase 1 work was completed, and a final report was prepared and submitted to the funding agencies. Based on the results obtained in Phase 1 of the project, fluidized-bed based thermal recovery appeared to be a viable option. A 100 tons per day pilot plant was designed, constructed, and operated in the field. This report describes the results and experiences of the Phase 2 testing.

  19. Cultural points of resistance to the 12-Step recovery process.

    PubMed

    Smith, D E; Buxton, M E; Bilal, R; Seymour, R B

    1993-01-01

    This article addresses some of the key issues in developing culturally relevant approaches to drug abuse treatment and recovery, using the HAFC/Glide African-American Extended Family Program as a positive example of effective cultural adaptability within recovery. Cultural points of resistance to the recovery process are also addressed, including the perception that 12-Step fellowships are exclusive and confused with religion, confusion over surrender versus powerlessness, and concerns about low self-esteem, dysfunctional family structure, communication difficulties, and institutionalized and internalized racism. The authors also focus on professional resistance in other countries, where different treatment approaches and philosophies block the acceptance of a recovery concept in general and the 12-Step process in particular. In explicating these issues, addiction is presented as a multicultural problem in need of multicultural solutions. The challenge is to adapt the process of recovery to all cultures and races, to counter stereotypes on all sides, and to eliminate the perception that recovery only works for addicts from the White mainstream. PMID:8483054

  20. SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-17

    A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

  1. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Potratz, H.A.

    1958-12-16

    A process for the separation of plutonium from uranlum and other associated radioactlve fission products ls descrlbed conslstlng of contacting an acid solution containing plutonium in the tetravalent state and uranium in the hexavalent state with enough ammonium carbonate to form an alkaline solution, adding cupferron to selectlvely form plutonlum cupferrlde, then recoverlng the plutonium cupferride by extraction with a water lmmiscible organic solvent such as chloroform.

  2. Recovery process for electroless plating baths

    DOEpatents

    Anderson, R.W.; Neff, W.A.

    1992-05-12

    A process is described for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO[sub 3]. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths. 18 figs.

  3. Recovery process for electroless plating baths

    DOEpatents

    Anderson, Roger W.; Neff, Wayne A.

    1992-01-01

    A process for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO.sub.3. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths.

  4. Process for tertiary oil recovery using tall oil pitch

    DOEpatents

    Radke, C.J.

    1983-07-25

    A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

  5. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  6. Process for recovery of hydrogen and

    DOEpatents

    James, Brian R.; Li-Lee, Chung; Lilga, Michael A.; Nelson, David A.

    1987-01-01

    on of sulfur Abstract A process of abstracting sulfur from H.sub.2 S and generating hydrogen is disclosed comprising dissolving Pd.sub.2 X.sub.2 (.mu.-dppm).sub.2 in a solvent and then introducing H.sub.2 S. The palladium complex abstracts sulfur, forming hydrogen and a (.mu.-S) complex. The (.mu.-S) complex is readily oxidizable to a (.mu.-SO.sub.2) adduct which spontaneously loses SO.sub.2 and regenerates the palladium complex.

  7. BISMUTH PHOSPHATE CARRIER PROCESS FOR Pu RECOVERY

    DOEpatents

    Finzel, T.G.

    1959-02-01

    An improvement in the bismuth phosphate carrier precipitation process for recovering plutonium is described. It has been found that a more granular and more easily filterable carrier precipitiite is formed if the addition of the bismuth and phosphate ions is effected by first adding 9/10 of the bismuth ions necessary, then slowly adding all of the source of the phosphate ions to be incorporated in the precipitate, while digesting at 75 C and afterwards incorporating the remainder of the total bismuth ions necessary

  8. Actinide recovery techniques utilizing electromechanical processes

    SciTech Connect

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy.

  9. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yorstos, Yanis C.

    2002-03-11

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.

  10. Process Control for Precipitation Prevention in Space Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  11. Data warehousing methods and processing infrastructure for brain recovery research.

    PubMed

    Gee, T; Kenny, S; Price, C J; Seghier, M L; Small, S L; Leff, A P; Pacurar, A; Strother, S C

    2010-09-01

    In order to accelerate translational neuroscience with the goal of improving clinical care it has become important to support rapid accumulation and analysis of large, heterogeneous neuroimaging samples and their metadata from both normal control and patient groups. We propose a multi-centre, multinational approach to accelerate the data mining of large samples and facilitate data-led clinical translation of neuroimaging results in stroke. Such data-driven approaches are likely to have an early impact on clinically relevant brain recovery while we simultaneously pursue the much more challenging model-based approaches that depend on a deep understanding of the complex neural circuitry and physiological processes that support brain function and recovery. We present a brief overview of three (potentially converging) approaches to neuroimaging data warehousing and processing that aim to support these diverse methods for facilitating prediction of cognitive and behavioral recovery after stroke, or other types of brain injury or disease. PMID:21175009

  12. Two-reactor, high-recovery sulfur plant and process

    SciTech Connect

    Reed, R.L.; Palm, J.W.

    1989-04-18

    This patent describes a process for the recovery of sulfur wherein an acid gas feedstream comprising hydrogen sulfide is processed for the recovery of sulfur in a Claus process sulfur recovery plant. The process consists of: (a) passing the acid gas feedstream successively through the thermal reaction zone, the first position Claus catalytic reaction zone, and the second position Claus catalytic reaction zone for the recovery of sulfur; (b) preconditioning the first position Claus catalytic reaction zone by introducing thereinto a cold stream having an inlet temperature effective for condensing sulfur on at least a portion of the catalyst and passing the resulting stream through a remaining substantial portion of the catalyst, the cold stream thus used for preconditioning being produced by cooling acid gas feedstream effluent from the thermal reaction zone to the first position catalytic reaction zone to the temperature; and (c) switching the thus preconditioned Claus catalytic reaction zone in the first position into the second position and continuing cooling the thus preconditioned freshly regenerated reactor in the second position concurrently with forming and depositing sulfur on catalyst therein, and switching the Claus catalytic reaction zone in the second position into the first position and continuing the process according to (a), (b), and (c).

  13. Supporting technology for enhanced oil recovery: Sixth amendment and extension to Annex IV enhanced oil recovery thermal processes

    SciTech Connect

    Reid, T.B. ); Rivas, O. )

    1991-10-01

    This report contains the results of efforts under the six tasks of the Sixth Amendment and Extension of Annex 4, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 44 through 49. Tasks are: DOE-SUPRI-laboratory research on steam foam, CAT-SCAN, and in-situ combustion; INTEVEP-laboratory research and field projects on steam foam; DOE-NIPER-laboratory research and field projects light oil steam flooding; INTEVEP-laboratory research and field studies on wellbore heat losses; DOE-LLNL-laboratory research and field projects on electromagnetic induction tomography; INTEVEP-laoboratory research on mechanistic studies.

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT FOR AMMONIA RECOVERY PROCESS

    EPA Science Inventory

    This Technology Verification report describes the nature and scope of an environmental evaluation of ThermoEnergy Corporation’s Ammonia Recovery Process (ARP) system. The information contained in this report represents data that were collected over a 3-month pilot study. The ti...

  15. Surfactant compositions useful in enhanced oil recovery processes

    SciTech Connect

    Nuckels nee Byth, N. J.; Thompson, J. L.

    1985-07-30

    Surfactant compositions comprising: (1) an alkylated, diaromatic sulfonate, (2) a petroleum sulfonate, (3) a condensation product of an alkanol and an alkylene oxide, or a sulfate of such a condensation product, and (4) a glycol ether are useful in enhanced oil recovery processes.

  16. Process for the recovery of alumina from fly ash

    DOEpatents

    Murtha, M.J.

    1983-08-09

    An improvement in the lime-sinter process for recovering alumina from pulverized coal fly ash is disclosed. The addition of from 2 to 10 weight percent carbon and sulfur to the fly ash-calcium carbonate mixture increase alumina recovery at lower sintering temperatures.

  17. Oil recovery process involving the injection of thickened water

    SciTech Connect

    Byham, D.E.; Chen, C.S.; Sheppard, E.W.

    1980-09-16

    Waterflood oil recovery process involving the use of an amphoteric polyelectrolyte as a thickening agent for mobility control. The amphoteric polyelectrolyte is a copolymer of a quaternary vinyl pyridinium sulfonate and a water-insoluble alpha olefin or hydrogenated diene. Specifically disclosed are vinyl pyridinium sulfonate-styrene block copolymers. The amphoteric polyelectrolytes are stable in high temperature and high brine environments.

  18. Use of geostatistic techniques to describe a reservoir to be submitted into a secondary recovery process field case: {open_quotes}Eocene B-Inferior/VLG-3659, Ceuta, Venezuela{close_quotes}

    SciTech Connect

    Hernandez, T.; Poquioma, W.

    1997-08-01

    This study presents the results of an integrated reservoir study of the Eocene B-Inferior/VLG-3659, Area 7, Ceuta filed. This field located in the Maracaibo Lake in the western side of Venezuela. The objective was to evaluating the feasibility to implement a secondary recovery project by means of water flooding. Core information was used for this study (194 ft), PVT analysis, RFI, build-up and statistic`s pressure analysis, modem logs and production history data. Using geostatistical techniques (Kriging) it was defined a low uncertainty geological model that was validated by means of a black oil simulator (Eclipse). The results showed a good comparison of historical pressure of the reservoir against those obtained from the model, without the need of {open_quotes}history matching{close_quotes}. It means without modifying neither the initial rock properties nor reservoir fluids. The results of this study recommended drilling in two new locations, also the reactivation of four producing wells and water flooding under peripherical array by means of four injection wells, with the recovery of an additional 30.2 MMSTB. The economical evaluation shows an internal return rate of 31.4%.

  19. On the optimal design of the disassembly and recovery processes

    SciTech Connect

    Xanthopoulos, A.; Iakovou, E.

    2009-05-15

    This paper tackles the problem of the optimal design of the recovery processes of the end-of-life (EOL) electric and electronic products, with a special focus on the disassembly issues. The objective is to recover as much ecological and economic value as possible, and to reduce the overall produced quantities of waste. In this context, a medium-range tactical problem is defined and a novel two-phased algorithm is presented for a remanufacturing-driven reverse supply chain. In the first phase, we propose a multicriteria/goal-programming analysis for the identification and the optimal selection of the most 'desirable' subassemblies and components to be disassembled for recovery, from a set of different types of EOL products. In the second phase, a multi-product, multi-period mixed-integer linear programming (MILP) model is presented, which addresses the optimization of the recovery processes, while taking into account explicitly the lead times of the disassembly and recovery processes. Moreover, a simulation-based solution approach is proposed for capturing the uncertainties in reverse logistics. The overall approach leads to an easy-to-use methodology that could support effectively middle level management decisions. Finally, the applicability of the developed methodology is illustrated by its application on a specific case study.

  20. On the optimal design of the disassembly and recovery processes.

    PubMed

    Xanthopoulos, A; Iakovou, E

    2009-05-01

    This paper tackles the problem of the optimal design of the recovery processes of the end-of-life (EOL) electric and electronic products, with a special focus on the disassembly issues. The objective is to recover as much ecological and economic value as possible, and to reduce the overall produced quantities of waste. In this context, a medium-range tactical problem is defined and a novel two-phased algorithm is presented for a remanufacturing-driven reverse supply chain. In the first phase, we propose a multicriteria/goal-programming analysis for the identification and the optimal selection of the most 'desirable' subassemblies and components to be disassembled for recovery, from a set of different types of EOL products. In the second phase, a multi-product, multi-period mixed-integer linear programming (MILP) model is presented, which addresses the optimization of the recovery processes, while taking into account explicitly the lead times of the disassembly and recovery processes. Moreover, a simulation-based solution approach is proposed for capturing the uncertainties in reverse logistics. The overall approach leads to an easy-to-use methodology that could support effectively middle level management decisions. Finally, the applicability of the developed methodology is illustrated by its application on a specific case study. PMID:19138507

  1. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2001-05-01

    This first quarter report of 2001 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf{trademark} (service mark of Gas Research Institute) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. During this reporting periods new catalyst formulations were tested. The experiments showed that the newest catalyst has slightly better performance, but catalyst TDA No.2 is still superior overall for use with the hybrid CrystaSulf process due to lower costs. Plans for catalyst pelletization and continued testing are described.

  2. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Dennis Dalrymple

    2003-10-01

    This third quarter report of 2003 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low-cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and off-shore applications. CrystaSulf{reg_sign} (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant site in west Texas.

  3. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Dennis Dalrymple

    2004-04-01

    This first quarter report of 2004 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low-cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and off-shore applications. CrystaSulf{reg_sign} (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane while avoiding methane oxidation and fouling due to coking from other hydrocarbon contaminants. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant site in west Texas.

  4. Reductive stripping process for uranium recovery from organic extracts

    DOEpatents

    Hurst, Jr., Fred J.

    1985-01-01

    In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H.sub.3 PO.sub.4 is available from the evaporator stage of the process.

  5. Reductive stripping process for uranium recovery from organic extracts

    DOEpatents

    Hurst, F.J. Jr.

    1983-06-16

    In the reductive stripping of uranium from an organic extractant in a uranium recovery process, the use of phosphoric acid having a molarity in the range of 8 to 10 increases the efficiency of the reductive stripping and allows the strip step to operate with lower aqueous to organic recycle ratios and shorter retention time in the mixer stages. Under these operating conditions, less solvent is required in the process, and smaller, less expensive process equipment can be utilized. The high strength H/sub 3/PO/sub 4/ is available from the evaporator stage of the process.

  6. A Mineral Processing Field Course

    ERIC Educational Resources Information Center

    Carmody, Maurice

    2014-01-01

    This article describes a field course in Cornwall looking at mineral processing with the focus on the chemistry involved. The course was split into two parts. The first looked at tin mining based around Penzance. This involved visiting mines, hunting for mineral samples, carrying out a stream survey and visiting the Camborne School of Mines…

  7. Test of TDA's Direct Oxidation Process for Sulfur Recovery

    SciTech Connect

    Girish Srinivas; Steven C. Gebhard; Eugene Peeples; Sandra Huzyk; Randy Welch

    2005-01-01

    This project was a Phase III pilot plant test of TDA's gas sweetening process done under realistic conditions. TDA Research Inc successfully completed the test at Whiting Petroleum's Sable San Andreas Gas Plant. The feed was approximately 228,000 standard cubic feet per day (SCFD) of gas that contained approximately 60 vol% CO{sub 2}, 20 vol% CH{sub 4} and 10 vol% C{sub 3}+ and higher hydrocarbons. The feed was associated gas from CO{sub 2} flooding operations carried out on Whiting's oil wells. The gas is collected and piped to the Sable gas plant where it is normally flared. We sited our pilot plant in line with the flare so that we could remove the hydrogen sulfide (H{sub 2}S) prior to flaring. The average H{sub 2}S concentration in the gas during the field test was 7341 ppm. The selectivity of our process for converting H{sub 2}S into elemental sulfur was essentially 100% and the catalyst converted 90% of the H{sub 2}S into sulfur and water (the remaining 10% of the H{sub 2}S passed through unconverted). Importantly, no catalyst deactivation was observed for over the course of the 1000+ hour test. Minimal (ca. 10-15 ppm) of SO{sub 2} was formed during the test. Approximately 3.6 tons of elemental sulfur was recovered from a total inlet of 3.9 tons of sulfur (as H{sub 2}S). The total amount of SO{sub 2} released from the plant (taking into account flaring of the unconverted 10% H2S) was 0.86 tons. This amount of SO{sub 2} is much lower than the normal 8 tons that would have been emitted if all of the H{sub 2}S were flared over the time of the pilot plant test. The pilot plant was simple to operate and required much less operator intervention than is typical for a new unit being commissioned. Our operator (Mr. Eugene Peeples) has more than 30 years of experience operating commercial scale liquid redox sulfur recovery processes and in his opinion, TDA's Direct Oxidation pilot plant is easier to operate than liquid systems. The ease of use and low capital and

  8. Process for tertiary oil recovery using tall oil pitch

    DOEpatents

    Radke, Clayton J.

    1985-01-01

    Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

  9. Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect

    1995-03-01

    This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

  10. Process for tertiary oil recovery using tall oil pitch

    SciTech Connect

    Radke, C. J.

    1985-07-02

    Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

  11. Automobile shredder residue: Process developments for recovery of recyclable constituents

    SciTech Connect

    Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.; Shoemaker, E.L.

    1990-01-01

    The objectives of this paper are threefold: (1) to briefly outline the structure of the automobile shredder industry as a supplier of ferrous scrap, (2) to review the previous research that has been conducted for recycling automobile shredder residue (ASR), and (3) to present the results and implications of the research being conducted at ANL on the development of a process for the selective recovery and recycling of the thermoplastics content of ASR. 15 refs., 5 figs.

  12. Latest developments in lunar gravity field recovery within the project GRAZIL

    NASA Astrophysics Data System (ADS)

    Krauss, Sandro; Wirnsberger, Harald; Klinger, Beate; Mayer-Gürr, Torsten; Baur, Oliver

    2016-04-01

    The project GRAZIL addresses the highly accurate recovery of the lunar gravity field using intersatellite Ka-band ranging (KBR) measurements collected by the Lunar Gravity Ranging System (LGRS) of the Gravity Recovery And Interior Laboratory (GRAIL) mission. Dynamic precise orbit determination is an indispensable task in order to recover the lunar gravity field based on LGRS measurements. The concept of variational equations is adopted to determine the orbit of the two GRAIL satellites based on radio science data. In this contribution we focus on the S-band two-way Doppler data collected by the Deep Space Network. As far as lunar gravity field recovery is concerned, we apply an integral equation approach using short orbital arcs in the order of one hour. In this contribution special attention is given to the refinement of our processing strategy in conjunction with an increase of the spectral resolution. Based on these considerations we present the latest version of a lunar gravity field model developed in Graz which is based on KBR observations during the primary mission phase (March 1 to May 29, 2012). Our results are validated against GRAIL models computed at NASA-GSFC and NASA-JPL.

  13. A Fractional Order Recovery SIR Model from a Stochastic Process.

    PubMed

    Angstmann, C N; Henry, B I; McGann, A V

    2016-03-01

    Over the past several decades, there has been a proliferation of epidemiological models with ordinary derivatives replaced by fractional derivatives in an ad hoc manner. These models may be mathematically interesting, but their relevance is uncertain. Here we develop an SIR model for an epidemic, including vital dynamics, from an underlying stochastic process. We show how fractional differential operators arise naturally in these models whenever the recovery time from the disease is power-law distributed. This can provide a model for a chronic disease process where individuals who are infected for a long time are unlikely to recover. The fractional order recovery model is shown to be consistent with the Kermack-McKendrick age-structured SIR model, and it reduces to the Hethcote-Tudor integral equation SIR model. The derivation from a stochastic process is extended to discrete time, providing a stable numerical method for solving the model equations. We have carried out simulations of the fractional order recovery model showing convergence to equilibrium states. The number of infecteds in the endemic equilibrium state increases as the fractional order of the derivative tends to zero. PMID:26940822

  14. Electric field dependent decay and recovery of DO11 doped into PMMA thin films: beyond 100% recovery?

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin; Hung, Sheng Ting; Kuzyk, Mark G.

    2012-11-01

    Anthraquinones are a class of organic dyes with a wide range of uses in optical devices that require intensities above the damage threshold for operation. It has been demonstrated that some anthraquinones doped into (poly)methyl methacrylate(PMMA) demonstrate the novel effect of self healing. One theory of decay and self healing is photocharge ejection and recombination. Using digital imaging we probe the electric field dependent decay and recovery of the anthraquinone disperse orange 11(DO11) doped into PMMA. We find that the electric field works to mitigate decay and improves recovery, as well as find that for large fields the sample appears to recover beyond 100%.

  15. Recovery and purification process development for monoclonal antibody production

    PubMed Central

    Ma, Junfen; Winter, Charles; Bayer, Robert

    2010-01-01

    Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs. PMID:20647768

  16. Process for the recovery of coke oven waste heat

    SciTech Connect

    Flockenhaus, C.; Meckel, J.F.; Wagener, D.

    1981-01-20

    This invention is directed to a process for making coke and recovering the heat therefrom for preheating the firing gas to the coke oven. The process involves the use of the coke oven firing gas to extract the sensible heat from the hot coke from the coking oven to both preheat the firing gas for the coke oven and cool the hot coke. Significant economies are achieved in the two-fold function of coke production and heat recovery in accordance with the method disclosed.

  17. Phosphorus recovery from sewage sludge ash through an electrodialytic process.

    PubMed

    Guedes, Paula; Couto, Nazaré; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2014-05-01

    The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB). Both samples were ED treated as stirred suspensions in sulphuric acid for 3, 7 and 14 days. After 14 days, phosphorus was mainly mobilized towards the anode end (approx. 60% in the SA and 70% in the SB), whereas heavy metals mainly electromigrated towards the cathode end. The anolyte presented a composition of 98% of P, mainly as orthophosphate, and 2% of heavy metals. The highest heavy metal removal was achieved for Cu (ca. 80%) and the lowest for Pb and Fe (between 4% and 6%). The ED showed to be a viable method for phosphorus recovery from SSA, as it promotes the separation of P from the heavy metals. PMID:24656469

  18. Thermal acidization and recovery process for recovering viscous petroleum

    DOEpatents

    Poston, Robert S.

    1984-01-01

    A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

  19. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-07-01

    This second quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. Previous reports described development of a catalyst with the required selectivity and efficiency for producing sulfur dioxide from H{sub 2}S. In the laboratory, the catalyst was shown to be robust and stable in the presence of several intentionally added contaminants, including condensate from the pilot plant site. This report describes testing using the laboratory apparatus but operated at the pilot plant using the actual pilot plant

  20. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Dennis Dalrymple

    2003-07-01

    This second quarter report of 2003 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and off-shore applications. CrystaSulf{reg_sign} (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. Previous reports described development of a catalyst with the required selectivity and efficiency for producing sulfur dioxide from H{sub 2}S. In the laboratory, the catalyst was shown to be robust and stable in the presence of several intentionally added contaminants, including condensate from the pilot plant site. Bench-scale catalyst testing at the CrystaSulf pilot plant using the actual pilot plant gas was successful, and

  1. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Joe Lundeen; Girish Srinivas; David W. DeBerry

    2003-01-01

    This fourth quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. Previous reports described development of a catalyst with the required selectivity and efficiency for producing sulfur dioxide from H{sub 2}S. In the laboratory, the catalyst was shown to be robust and stable in the presence of several intentionally added contaminants, including condensate from the pilot plant site. Bench-scale catalyst testing at the CrystaSulf pilot plant using the actual pilot plant gas was successful and a skid

  2. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-04-01

    This first quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf{sup SM} (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. In a previous reporting period tests were done to determine the effect of hydrocarbons such as n-hexane on catalyst performance with and without H{sub 2}S present. The experiments showed that hexane oxidation is suppressed when H{sub 2}S is present. Hexane represents the most reactive of the C1 to C6 series of alkanes. Since hexane exhibits low reactivity under H{sub 2}S oxidation conditions, and more importantly, does not change

  3. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Dennis Dalrymple

    2003-04-01

    This first quarter report of 2003 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and off-shore applications. CrystaSulf{reg_sign} (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. Previous reports described development of a catalyst with the required selectivity and efficiency for producing sulfur dioxide from H{sub 2}S. In the laboratory, the catalyst was shown to be robust and stable in the presence of several intentionally added contaminants, including condensate from the pilot plant site. Bench-scale catalyst testing at the CrystaSulf pilot plant using the actual pilot plant gas was successful, and

  4. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2001-08-01

    This first quarter report of 2001 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf (service mark of Gas Research Institute) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. During this reporting period tests were done to determine the effect of hydrocarbons such as n-hexane on catalyst performance with and without H{sub 2}S present. The experiments showed that hexane oxidation is suppressed when H{sub 2}S is present. Hexane represents the most reactive of the C1 to C6 series of alkanes. Since hexane exhibits low reactivity under H{sub 2}S oxidation conditions, and more importantly, does not change the

  5. Activities of the Oil Implementation Task Force, reporting period March--August 1991; Contracts for field projects and supporting research on enhanced oil recovery, reporting period October--December 1990

    SciTech Connect

    Not Available

    1991-10-01

    Activities of DOE's Oil Implementation Task Force for the period March--August 1991 are reviewed. Contracts for fields projects and supporting research on enhanced oil recovery are discussed, with a list of related publications given. Enhanced recovery processes covered include chemical flooding, gas displacement, thermal recovery, and microbial recovery.

  6. A process for treatment and recovery of spent potliner (SPL)

    SciTech Connect

    Adrien, R.J.; Besida, J.; Pong, T.K.; O`Donnell, T.A.; Wood, D.G.; Covey, G.H.; Giansiracusa, J.J.; Price, D.E.

    1996-10-01

    Spent potliner (SPL) is classified as a hazardous waste as it contains cyanides and high levels of fluorides. This paper describes a novel process for the conversion of SPL at near ambient temperatures for the recovery of useful products and a benign residue. The initial treatment of crushed SPL removes over 90% of the cyanide and a large percentage of the fluoride. By appropriate selection of the chemical species and wash conditions aluminum fluoride and other fluorides are effectively recovered in subsequent stages. After this treatment by a series of chemical washes the residue produced is a carbonaceous material containing only carbon and brick fragments, i.e. refractory aluminum compounds.

  7. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    DOEpatents

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  8. UF.sub.6 -Recovery process utilizing desublimation

    DOEpatents

    Eby, Robert S.; Stephenson, Michael J.; Andrews, Deborah H.; Hamilton, Thomas H.

    1985-01-01

    The invention is a UF.sub.6 -recovery process of the kind in which a stream of substantially pure gaseous UF.sub.6 is directed through an externally chilled desublimer to convert the UF.sub.6 directly to an annular solid ring adhering to the interior wall of the desublimer. After accumulation of a desired amount of solid UF.sub.6, the desublimer is heated to liquefy the solid. Subsequently, the liquid is recovered from the desublimer. It has been found that during the heating operation the desublimer is subjected to excessive mechanical stresses. In addition, it has been found that the incorporation of a very small percentage of relatively noncondensable, nonreactive gas (e.g., nitrogen) in the UF.sub.6 input to the desublimer effects significant decreases in the stresses generated during the subsequent melting operation. This modification to the process provides valuable advantages in terms of reduced hazard, lower operating costs for the desublimer, and increased service life for the desublimer and its auxiliaries. The new process is especially suitable for the recovery of enriched UF.sub.6 from high-speed UF.sub.6 gas-centrifuge cascades.

  9. UF/sub 6/-recovery process utilizing desublimation

    DOEpatents

    Eby, R.S.; Stephenson, M.J.; Andrews, D.H.; Hamilton, T.H.

    1983-12-21

    The invention is a UF/sub 6/-recovery process of the kind in which a stream of substantially pure gaseous UF/sub 6/ is directed through an externally chilled desublimer to convert the UF/sub 6/ directly to an annular solid ring adhering to the interior wall of the desublimer. After accumulation of a desired amount of solid UF/sub 6/, the desublimer is heated to liquefy the solid. Subsequently, the liquid is recovered from the desublimer. It has been found that during the heating operation the desublimer is subjected to excessive mechanical stresses. In addition, it has been found that the incorporation of a very small percentage of relatively noncondensable, nonreactive gas (e.g., nitrogen) in the UF/sub 6/ input to the desublimer effects significant decreases in the stresses generated during the subsequent melting operation. This modification to the process provides valuable advantages in terms of reduced hazard, lower operating costs for the desublimer, and increased service life for the desublimer and its auxiliaries. The new process is especially suitable for the recovery of enriched UF/sub 6/ from high-speed UF/sub 6/ gas-centrifuge cascades.

  10. Process for the recovery of curium-244 from nuclear waste

    SciTech Connect

    Posey, J.C.

    1980-10-01

    A process has been designed for the recovery of curium from purex waste. Curium and americium are separated from the lanthanides by a TALSPEAK extraction process using differential extraction. Equations were derived for the estimation of the economically optimum conditions for the extraction using laboratory batch extraction data. The preparation of feed for the extraction involves the removal of nitric acid from the Purex waste by vaporization under reduced pressure, the leaching of soluble nitrates from the resulting cake, and the oxalate precipitation of a pure lanthanide-actinide fraction. Final separation of the curium from americium is done by ion-exchange. The steps of the process, except ion-exchange, were tested on a laboratory scale and workable conditions were determined.

  11. Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process

    SciTech Connect

    Klint, V.W.; Dale, P.R.; Stephenson, C.

    1997-10-01

    Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) process for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus

  12. Recovery processes and dynamics in single and interdependent networks

    NASA Astrophysics Data System (ADS)

    Majdandzic, Antonio

    Systems composed of dynamical networks --- such as the human body with its biological networks or the global economic network consisting of regional clusters --- often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread, and recovery. Here we develop a model for such systems and find phase diagrams for single and interacting networks. By investigating networks with a small number of nodes, where finite-size effects are pronounced, we describe the spontaneous recovery phenomenon present in these systems. In the case of interacting networks the phase diagram is very rich and becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions, and two forbidden transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyze an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model.

  13. Durability Testing of the Direct Sulfur Recovery Process

    SciTech Connect

    Portzer, Jeffrey W.; Turk, Brian S.; Gangwal, Santosh K.

    1996-12-31

    Designs for advanced integrated gasification combined cycle (IGCC) power systems call for desulfurization of coal gasifier gas at high-temperature, high-pressure (HTHP) conditions using highly efficient, regenerable metal oxides such as zinc titanate. Regeneration of the sulfided sorbent using an oxygen-containing gas stream results in a sulfur dioxide (SO{sub 2})-containing off-gas at HTHP conditions. The patented Direct Sulfur Recovery Process (DSRP) developed by the Research Triangle Institute (RTI) with Morgantown Energy Technology Center (METC) support is an attractive option for treatment of this regeneration off-gas. Using a slipstream of coal gas as a reducing agent, it efficiently converts the SO{sub 2} to elemental sulfur, an essential industrial commodity that is easily stored and transported.

  14. ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS

    DOEpatents

    Long, R.S.; Bailes, R.H.

    1958-04-15

    A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.

  15. Recovery

    NASA Video Gallery

    This video discusses the recovery events that occur in high-power rocketry and the various devices used in safely recovering the rocket. The video includes a discussion of black powder and ejection...

  16. Combined effect of ohmic heating and enzyme assisted aqueous extraction process on soy oil recovery.

    PubMed

    Pare, Akash; Nema, Anurag; Singh, V K; Mandhyan, B L

    2014-08-01

    This research describes a new technological process for soybean oil extraction. The process deals with the combined effect of ohmic heating and enzyme assisted aqueous oil extraction process (EAEP) on enhancement of oil recovery from soybean seed. The experimental process consisted of following basic steps, namely, dehulling, wet grinding, enzymatic treatment, ohmic heating, aqueous extraction and centrifugation. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on aqueous oil extraction process were investigated. Three levels of electric field strength (i.e. OH600V, OH750V and OH900V), 3 levels of end point temperature (i.e. 70, 80 and 90 °C) and 3 levels of holding time (i.e. 0, 5 and 10 min.) were taken as independent variables using full factorial design. Percentage oil recovery from soybean by EAEP alone and EAEP coupled with ohmic heating were 53.12 % and 56.86 % to 73 % respectively. The maximum oil recovery (73 %) was obtained when the sample was heated and maintained at 90 °C using electric field strength of OH600V for a holding time of 10 min. The free fatty acid (FFA) of the extracted oil (i.e. in range of 0.97 to 1.29 %) was within the acceptable limit of 3 % (oleic acid) and 0.5-3 % prescribed respectively by PFA and BIS. PMID:25114355

  17. [Recovery].

    PubMed

    Estingoy, Pierrette; Gilliot, Élodie; Parisot, Clément

    2015-01-01

    The historical fatalism of the impossibility of recovering from psychosis eased from the 1970s with the shaping of the idea of a possible recovery. Recovery is today the objective for the patient and caregivers. The key to achieving this lies in the encounter with Others. A collective approach, on the level of the institution, must be established. The aim is to create opportunities for the patient to express their doubts and feelings. PMID:26363659

  18. Evaluation of enhanced recovery operations in Smackover fields of southwest Alabama. Draft topical report on Subtasks 5 and 6

    SciTech Connect

    Hall, D.R.

    1992-06-01

    This report contains detailed geologic and engineering information on enhanced-recovery techniques used in unitized Smackover fields in Alabama. The report also makes recommendations on the applicability of these enhanced-recovery techniques to fields that are not now undergoing enhanced recovery. Eleven Smackover fields in Alabama have been unitized. Three fields were unitized specifically to allow the drilling of a strategically placed well to recover uncontacted oil. Two fields in Alabama are undergoing waterflood projects. Five fields are undergoing gas-injection programs to increase the ultimate recovery of hydrocarbons. Silas and Choctaw Ridge fields were unitized but no enhanced-recovery operations have been implemented.

  19. Impact of Processing Method on Recovery of Bacteria from Wipes Used in Biological Surface Sampling

    PubMed Central

    Olson, Nathan D.; Filliben, James J.; Morrow, Jayne B.

    2012-01-01

    Environmental sampling for microbiological contaminants is a key component of hygiene monitoring and risk characterization practices utilized across diverse fields of application. However, confidence in surface sampling results, both in the field and in controlled laboratory studies, has been undermined by large variation in sampling performance results. Sources of variation include controlled parameters, such as sampling materials and processing methods, which often differ among studies, as well as random and systematic errors; however, the relative contributions of these factors remain unclear. The objective of this study was to determine the relative impacts of sample processing methods, including extraction solution and physical dissociation method (vortexing and sonication), on recovery of Gram-positive (Bacillus cereus) and Gram-negative (Burkholderia thailandensis and Escherichia coli) bacteria from directly inoculated wipes. This work showed that target organism had the largest impact on extraction efficiency and recovery precision, as measured by traditional colony counts. The physical dissociation method (PDM) had negligible impact, while the effect of the extraction solution was organism dependent. Overall, however, extraction of organisms from wipes using phosphate-buffered saline with 0.04% Tween 80 (PBST) resulted in the highest mean recovery across all three organisms. The results from this study contribute to a better understanding of the factors that influence sampling performance, which is critical to the development of efficient and reliable sampling methodologies relevant to public health and biodefense. PMID:22706055

  20. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    PubMed Central

    Urbanski, Marika; Coubard, Olivier A.; Bourlon, Clémence

    2014-01-01

    Visual field defects (VFDs) are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumors, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. Visual field defects is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading) and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first 6 months, with the best chance of improvement at 1 month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity) and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements), reading training, visual field restitution (the Vision Restoration Therapy, VRT), or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography, PET; Diffusion Tensor Imaging, DTI; functional Magnetic Resonance Imaging, fMRI; Magneto Encephalography, MEG) or neurostimulation techniques (Transcranial Magnetic Stimulation, TMS; transcranial Direct Current Stimulation, tDCS) to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques. PMID:25324739

  1. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    NASA Astrophysics Data System (ADS)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    The first stage of production of any oil reservoir involves oil displacement by natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that have been depleted naturally. In more recent years, IOR techniques are applied to reservoirs even before their natural energy drive is exhausted by primary depletion. Descriptive screening criteria for IOR methods are used to select the appropriate recovery technique according to the fluid and rock properties. This methodology helps in assessing the most suitable recovery process for field deployment of a candidate reservoir. However, the already published screening guidelines neither provide information about the expected reservoir performance nor suggest a set of project design parameters, which can be used towards the optimization of the process. In this study, artificial neural networks (ANN) are used to build a high-performance neuro-simulation tool for screening different improved oil recovery techniques: miscible injection (CO2 and N2), waterflooding and steam injection processes. The simulation tool consists of proxy models that implement a multilayer cascade feedforward back propagation network algorithm. The tool is intended to narrow the ranges of possible scenarios to be modeled using conventional simulation, reducing the extensive time and energy spent in dynamic reservoir modeling. A commercial reservoir simulator is used to generate the data to train and validate the artificial neural networks. The proxy models are built considering four different well patterns with different well operating conditions as the field design parameters. Different expert systems are developed for each well pattern. The screening networks predict oil production rate and cumulative oil production profiles for a given set of rock and fluid properties, and design parameters. The results of this study show that the networks are

  2. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Dennis Dalrymple

    2004-06-01

    This final report describes the objectives, technical approach, results and conclusions for a project funded by the U.S. Department of Energy to test a hybrid sulfur recovery process for natural gas upgrading. The process concept is a configuration of CrystaTech, Inc.'s CrystaSulf{reg_sign} process which utilizes a direct oxidation catalyst upstream of the absorber tower to oxidize a portion of the inlet hydrogen sulfide (H{sub 2}S) to sulfur dioxide (SO{sub 2}) and elemental sulfur. This hybrid configuration of CrystaSulf has been named CrystaSulf-DO and represents a low-cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day and more. This hybrid process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both onshore and offshore applications. CrystaSulf is a nonaqueous sulfur recovery process that removes H{sub 2}S from gas streams and converts it to elemental sulfur. In CrystaSulf, H{sub 2}S in the inlet gas is reacted with SO{sub 2} to make elemental sulfur according to the liquid phase Claus reaction: 2H{sub 2}S + SO{sub 2} {yields} 2H{sub 2}O + 3S. The SO{sub 2} for the reaction can be supplied from external sources by purchasing liquid SO{sub 2} and injecting it into the CrystaSulf solution, or produced internally by converting a portion of the inlet gas H{sub 2}S to SO{sub 2} or by burning a portion of the sulfur produced to make SO{sub 2}. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, the needed SO{sub 2} is produced by placing a bed of direct oxidation catalyst in the inlet gas stream to oxidize a

  3. A nitriding process for the recovery of niobium from ferroniobium

    NASA Astrophysics Data System (ADS)

    Suri, A. K.; Singh, Kulwant; Gupta, C. K.

    1992-08-01

    A three-step process based on nitriding-leaching-pyrovacuum decomposition has been developed for the recovery of niobium metal relatively free of iron from ferroniobium. The process essentially involves nitriding of ferroniobium powder with ammonia at 950 °C to 1000 °C. Nitrided ferroalloy was then treated with a 9:1 mixture of 30 pct HNO3 and HC1 to leach out iron nitrides. The residue was then pyrovacuum treated at 1825 °C under a dynamic vacuum of 0.02 m torr to finally yield metal containing about 0.2 pct iron starting from ferroniobium containing about 35 pct iron. The treated material has been further purified by electron-beam melt refining. The refined metal showed a hardness in the range of 80 to 84 VHN under a load of 100 g. The metal on analysis was found to contain 200 ppm of oxygen, less than 100 ppm of nitrogen, and about 100 ppm of carbon. The process appears to be quite attractive because it does not involve the treatment of ferroniobium with halogens or halides at elevated temperatures.

  4. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible

  5. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes

    SciTech Connect

    Innocenzi, Valentina; De Michelis, Ida; Kopacek, Bernd

    2014-07-15

    Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized the main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.

  6. PROCESS FOR RECOVERY OF URANIUM VALUES FROM IMPURE SOLUTIONS THEREOF

    DOEpatents

    Kilner, S.B.

    1959-11-01

    A process is presented for the recovery of uraninm values from impure solutions which are obtained, for example, by washing residual uranium salt or uranium metal deposits from stainless steel surfaces using an aqueous or certain acidic aqueous solutions. The solutions include uranyl and oxidized iron, chromium, nickel, and copper ions and may contain manganese, zinc, and silver ions. In accordance with one procedure. the uranyl ions are reduced to the uranous state, and the impurity ions are complexed with cyanide under acidic conditions. The solution is then treated with ammonium hydroxide or alkali metal hydroxide to precipitate uranous hydroxide away from the complexed impurity ions in the solution. Alternatively, an excess of alkali metal cyanide is added to the reduced solution until the solution becomes sufficiently alkaline for the uranons hydroxide to precipitate. An essential feature in operating the process is in maintaining the pH of the solution sufficiently acid during the complexing operation to prevent the precipitation of the impurity metal hydroxides.

  7. Electric Field Containerless Processing Technology

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Rhim, W. K.

    1985-01-01

    The objective of this task is to develop the science and technology base required to design and construct a high temperature electric field positioning module that could be used by materials scientists to conduct containerless science experiments in a low gravity environment. Containerless science modules that employ electric fields to position and manipulate samples offer several advantages over acoustic or electromagnetic systems. The electric field system will operate not only at atmospheric pressures but also in a vacuum, in contrast to the acoustic modules which can only operate in atmosphere where the acoustic forces are sufficient. The electric field technique puts minimum energy into the sample, whereas the electromagnetic system can deposit energy into the sample through eddy current heat as well as physical mixing in the sample. Two types of electric field modules have been constructed and tested to date. One employs a charged sample and uses electrostatic forces to position and control the sample. The second type of module induces electrical polarization of the sample and electric field gradients to position and control the sample.

  8. Neurofunctional Reward Processing Changes in Cocaine Dependence During Recovery.

    PubMed

    Balodis, Iris M; Kober, Hedy; Worhunsky, Patrick D; Stevens, Michael C; Pearlson, Godfrey D; Carroll, Kathleen M; Potenza, Marc N

    2016-07-01

    Although reward processing appears altered in addiction, few studies track neurofunctional changes following treatment or relate these to measures of reduced drug use. The current study examined neurofunctional alterations in reward processing in cocaine dependence (CD) pretreatment and posttreatment to determine whether these changes relate to clinically meaningful outcome indicators. Treatment-seeking CD outpatients (N=29) underwent functional magnetic resonance imaging while performing a monetary incentive delay task (MIDT) pretreatment and posttreatment. The MIDT parses anticipatory from outcome phases of reward/loss processing. Abstinence indicators (negative urines, days abstinent from cocaine during follow-up) were collected throughout treatment and up to 1 year later. Healthy control (HC) participants (N=28) were also scanned twice with the MIDT. Relative to pretreatment, at posttreatment CD participants demonstrated increased anticipatory reward activity in the midbrain, thalamus, and precuneus (pFWE<0.05). Increased midbrain activity correlated with cocaine abstinence during the 1-year follow-up. Ventral striatal (VS) activity during loss anticipation correlated negatively with negative urine screens. HC group test-retest results showed decreased ventromedial prefrontal cortex activity during winning outcomes. CD-HC group-by-time differences revealed increased left inferior frontal gyrus activity in the CD group during anticipatory phases at posttreatment. In CD participants, increased posttreatment activity in dopamine-innervated regions suggests lowered thresholds in anticipatory signaling for non-drug rewards. Midbrain and VS responses may represent biomarkers associated with CD abstinence. Abstinence-related neurobiological changes occur in similar regions implicated during active use and may possibly be used to track progress during short- and long-term recovery. PMID:26792441

  9. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning.

    PubMed

    Tsakiridis, P E; Oustadakis, P; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The characterization and the agitation leaching of electric arc furnace dust (EAFD) by diluted sulphuric acid have been studied in Part I, as a separate article. The aim of the present research work (Part II) is the development of a purification process of the leach liquor for the recovery of high-purity zinc by electrowinning. The proposed hydrometallurgical process consists of the following four (4) unit operations: (1) Removal of iron as easily filterable crystalline basic sulphate salt of the jarosite type, at atmospheric pressure, by chemical precipitation at pH: 3.5 and 95 degrees C. (2) Zinc solvent extraction by Cyanex 272 at pH: 3.5, T: 40 degrees C, with 25% extractant concentration. (3) Stripping of the loaded organic phase by zinc spent electrolyte (62.5 g/L Zn(2+)) at T: 40 degrees C with diluted H(2)SO(4) (3 mol/L). (4) Zinc electrowinning from sulphate solutions (at 38 degrees C) using Al as cathode and Pb as anode. The acidity of the electrolyte was fixed at 180 g/L H(2)SO(4), while the current density was kept constant at 500 A/m(2). PMID:20434263

  10. 60-Hz electric-field effects on pineal melatonin rhythms: time course for onset and recovery

    SciTech Connect

    Wilson, B.W.; Chess, E.K.; Anderson, L.E.

    1986-01-01

    Rats exposed for 3 weeks to uniform 60-Hz electric fields of 39 kV/m (effective field strength) failed to show normal pineal gland circadian rhythms in serotonin N-acetyl transferase activity and melatonin concentrations. The time required for recovery of the melatonin rhythm after cessation of field exposure was determined to be less than 3 days. The rapid recovery suggests that the overall metabolic competence of the pineal is not permanently compromised by electric-field exposure, and that the circadian rhythm effect may be neuronally mediated.

  11. Supporting technology for enhanced oil recovery for thermal processes

    SciTech Connect

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  12. In-situ steam drive oil recovery process

    SciTech Connect

    Vanmeurs, P.; Waxman, M.H.; Vinegar, H.J.

    1987-02-03

    A process is described for heating a subterranean oil and water-containing reservoir formation, comprising: completing at least one each of heat-injecting and fluid-producing wells into a treatment interval of the formation which is at least about 100 feet thick, contains both oil and water, and is both undesirably impermeable and non-productive in response to injections of oil recovery fluids; arranging the wells to have boreholes which, substantially throughout the treatment interval, are substantially parallel and are separated by substantially equal distances of at least about 20 feet; in each heat-injecting well, substantially throughout the treatment interval, sealing the face of the reservoir formation with a solid material which is relatively heat-conductive and substantially fluid impermeable; in each fluid-producing well, substantially throughout the treatment interval, establishing fluid communication between the wellbore and the reservoir formation and arranging the well for producing fluid from the reservoir formation; and heating the interior of each heat-injecting well, at least substantially throughout the treatment interval, at a rate or rates capable of (a) increasing the temperature within the borehole interior to at least about 600/sup 0/C. and (b) maintaining a borehole interior temperature of at least about 600/sup 0/C. without causing it to become high enough to thermally damage equipment within the borehole while heat is being transmitted away from the borehole at a rate not significantly faster than that permitted by the thermal conductivity of the reservoir formation.

  13. EFFICIENT RECOVERY OF BIOETHANOL USING NOVEL PERVAPORATION-DEPHLEGMATION PROCESS

    EPA Science Inventory

    Bioethanol is the most important liquid fuel made in the U.S. from domestically produced renewable resources. Traditional production of bioethanol involves batch fermation of biomass followed by ethanol recovery from the fermentation broths using distillation. The distillation st...

  14. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction.

    PubMed

    Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem

    2016-02-01

    Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. PMID:26674549

  15. Identification of existing waste heat recovery and process improvement technologies

    SciTech Connect

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  16. Kinematic space-baselines and their use for gravity field recovery

    NASA Astrophysics Data System (ADS)

    Jäggi, Adrian; Bock, Heike; Meyer, Ulrich; Arnold, Daniel; Dahle, Christoph

    Kinematic positions of individual low Earth orbiting satellites equipped with spaceborne GPS receivers have been widely used to determine the long wavelength part of the Earth's gravity field. GPS-derived relative kinematic positions (space-baselines) of formation flying satellites may be used as additional pseudo-observations to support long wavelength gravity field recovery. In preparation for the Swarm data analysis we review the principles of gravity field determination from kinematic baseline data (Jäggi et al. 2009, doi:10.1007/978-3-540-85426-5_14) and extend them towards a more flexible combination with the contribution from the absolute kinematic positions. Kinematic baselines will be treated in close analogy to GRACE inter-satellite K-Band measurements, but instead of the inter-satellite biased range observations the (unbiased) components of the inter-satellite distance vector will be used as additional pseudo-observations. Covariance information from the kinematic baseline determination will be used to properly weight the baseline contribution in the combination with the normal equations stemming from the absolute kinematic positions. GPS data from the GRACE mission will be used to study different baseline processing options and to assess the benefit for long wavelength gravity field determination.

  17. Low-Salinity Waterflooding to Improve Oil Recovery - Historical Field Evidence

    SciTech Connect

    Eric P. Robertson

    2007-11-01

    Waterflooding is by far the most widely applied method of improved oil recovery. Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of wa-terfloods. Laboratory water-flood tests and single-well tracer tests have shown that injection of dilute brine can increase oil recovery, but work designed to test the method on a field scale has not yet been undertaken. Historical waterflood records could unintentionally provide some evidence of improved recovery from waterflooding with lower salinity brine. Nu-merous fields in the Powder River basin of Wyoming have been waterflooded using low salinity brine (about 500 ppm) obtained from the Madison limestone or Fox Hills sandstone. Three Minnelusa formation fields in the basin were identified as potential candidates for waterflood comparisons based on the salinity of the connate and injection water. Historical pro-duction and injection data for these fields were obtained from the public record. Field waterflood data were manipulated to be displayed in the same format as laboratory coreflood re-sults. Recovery from fields using lower salinity injection wa-ter was greater than that using higher salinity injection wa-ter—matching recovery trends for laboratory and single-well tests.

  18. Visualizing underwater acoustic matched-field processing

    NASA Astrophysics Data System (ADS)

    Rosenblum, Lawrence; Kamgar-Parsi, Behzad; Karahalios, Margarida; Heitmeyer, Richard

    1991-06-01

    Matched-field processing is a new technique for processing ocean acoustic data measured by an array of hydrophones. It produces estimates of the location of sources of acoustic energy. This method differs from source localization techniques in other disciplines in that it uses the complex underwater acoustic environment to improve the accuracy of the source localization. An unexplored problem in matched-field processing has been to separate multiple sources within a matched-field ambiguity function. Underwater acoustic processing is one of many disciplines where a synthesis of computer graphics and image processing is producing new insight. The benefits of different volume visualization algorithms for matched-field display are discussed. The authors show how this led to a template matching scheme for identifying a source within the matched-field ambiguity function that can help move toward an automated source localization process.

  19. Reductive stripping process for the recovery of uranium from wet-process phosphoric acid

    DOEpatents

    Hurst, Fred J.; Crouse, David J.

    1984-01-01

    A reductive stripping flow sheet for recovery of uranium from wet-process phosphoric acid is described. Uranium is stripped from a uranium-loaded organic phase by a redox reaction converting the uranyl to uranous ion. The uranous ion is reoxidized to the uranyl oxidation state to form an aqueous feed solution highly concentrated in uranium. Processing of this feed through a second solvent extraction cycle requires far less stripping reagent as compared to a flow sheet which does not include the reductive stripping reaction.

  20. 27 CFR 19.4 - Recovery and reuse of denatured spirits in manufacturing processes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Recovery and reuse of denatured spirits in manufacturing processes. 19.4 Section 19.4 Alcohol, Tobacco Products and Firearms... General Provisions § 19.4 Recovery and reuse of denatured spirits in manufacturing processes....

  1. 27 CFR 19.4 - Recovery and reuse of denatured spirits in manufacturing processes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Recovery and reuse of denatured spirits in manufacturing processes. 19.4 Section 19.4 Alcohol, Tobacco Products and Firearms... General Provisions § 19.4 Recovery and reuse of denatured spirits in manufacturing processes....

  2. 27 CFR 19.4 - Recovery and reuse of denatured spirits in manufacturing processes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Recovery and reuse of denatured spirits in manufacturing processes. 19.4 Section 19.4 Alcohol, Tobacco Products and Firearms... General Provisions § 19.4 Recovery and reuse of denatured spirits in manufacturing processes....

  3. 27 CFR 19.4 - Recovery and reuse of denatured spirits in manufacturing processes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Recovery and reuse of denatured spirits in manufacturing processes. 19.4 Section 19.4 Alcohol, Tobacco Products and Firearms... General Provisions § 19.4 Recovery and reuse of denatured spirits in manufacturing processes....

  4. GRACE Time-Variable Gravity Field Recovery Using an Improved Energy Balance Formalism

    NASA Astrophysics Data System (ADS)

    Shang, Kun

    Earth's gravity is continuously varying with respect to time due primarily to mass transports within the Earth system and external gravitational forcing. A new formalism based on energy conservation principle for time-variable gravity field recovery using satellite gravimetry has been developed and yields more accurate estimation of in-situ geopotential difference observables using K-Band Ranging (KBR) measurements from the Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission. The new approach can preserve more time-variable gravity information sensed by KBR range-rate measurements and reduce orbit error as compared to previous energy balance studies. Results based on analysis of more than 10 years of GRACE data indicate that the estimated geopotential differences agree well with the predicted values from official Level 2 solutions: with much higher correlation of 0.9, as compared to 0.5-0.8 reported by previous energy balance studies. This study demonstrates that the new approach is more flexible for both global and regional temporal gravity recovery, leading to the first independent GRACE monthly solution series based on energy conservation principle, which is comparable to the results from different approach. The developed formalism is applicable to the general case of low-low satellite-to-satellite radiometric or laser interferometric tracking measurements, such as GRACE Follow-on or other Next Generation Gravity Field missions, for efficient retrieval and studies of Earth's mass transport evolutions. The regional gravity analysis over Greenland reveals that a substantially higher temporal resolution is achievable at 10 or 11-day interval from GRACE data, as compared to the official monthly solutions, but without the compromise of spatial resolution, nor the need to use regularization or post-processing. Studies of the terrestrial and ground water storage change over North China Plain show high correlation in sub-monthly scale, among the 11

  5. Lunar gravity field recovery: sensitivity studies from simulated tracking data

    NASA Astrophysics Data System (ADS)

    Maier, A.; Baur, O.

    2012-04-01

    The lunar gravity field is essential for understanding the structure and the thermal evolution of the Moon. Typically, the gravity field is inferred from tracking data to satellites orbiting the Moon. Due to the fact that the Moon is in the state of synchronous rotation with the Earth, direct tracking to the farside is impossible. NASA's Lunar Reconnaissance Orbiter (LRO), launched in 2009, is equipped with various instruments whose purpose is to prepare for save robotic returns to the Moon. To geolocate LRO, the spacecraft is tracked by means of radiometric techniques (ranges, range rates, angles) and optical laser (laser ranges). We analyzed tracking data to LRO with respect to various aspects, such as the number of observations, their spatial distribution on the lunar surface, and the present noise level. We used these real-data characteristics to simulate tracking data to LRO. We generated three different simulation scenarios: observations were simulated (1) during the exact time spans when LRO was tracked from a specific ground station, (2) whenever the spacecraft was in view from a station, and (3) for the nearside as well as for the farside of the Moon. Based on the resulting trajectories, we estimated three sets of spherical harmonic coefficients representing the lunar gravity field. Moreover, we varied the maximum degree of estimated coefficients and investigated the effect of noise on the estimated parameters. Observation simulation and parameter estimation was accomplished with the software packages GEODYN and SOLVE.

  6. BENCH-SCALE RECOVERY OF LEAD USING AND ELECTRO- MEMBRANE/CHELATION PROCESS

    EPA Science Inventory

    This report presents the results of a bench-scale treatability test to investigate key process parameters influencing an innovative chelation electrodeposition process for recovery of lead from contaminated sons. thylenediamine tetraacetic acid (EDTA) and diethylenetriamine penta...

  7. Field pilot tests for tertiary recovery using butane and propane injection

    SciTech Connect

    Pacheco, E.F.; Garcia, A.I.

    1981-01-01

    This work describes a pilot project for tertiary recovery of liquid hydrocarbons through LPG injection in water-out sections of the Bolivar reservoir in La Pena Field, Santa Cruz, Boliva. The promising results obtained in the initial field miscibility tests, as well as the results from a mathematical model built to stimulate and evaluate the tertiary recovery project, directed subsequent work into a cyclic scheme for enhanced recovery. This scheme is explained and injection production data is presented. Field facilities built to handle both the injected LPG and the produced oil-LPG mixture are described. The oil/LPG ratio and the LPG recovered/injected fraction are the main factors measured in this to make further considerations for a full scale project.

  8. INNOVATIVE RINSE-AND-RECOVERY SYSTEM FOR METAL FINISHING PROCESSES

    EPA Science Inventory

    This report describes the feasibility of a rinse-and-recovery system that can be installed in almost any metal finishing line and does not harm the environment because no plating solution exits to the sewer. Most toxic pollutants from metal finishing operations are associated wit...

  9. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    PubMed

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. PMID:26133477

  10. Souls in Extremis: Enacting Processes of Recovery from Homelessness Among Older African American Women.

    PubMed

    Moxley, David P; Washington, Olivia G M

    2016-06-01

    In a midwestern city of the USA, the authors implemented the Leaving Homelessness Intervention Research Project-and its eight subprojects-to further understand homelessness as experienced by older minority women, develop intervention strategies to facilitate the movement of the participants out of homelessness, and illuminate the women's recovery process. After reviewing the social issue of homelessness among older African American women in the USA, and offering a framework on recovery and qualitative themes of recovery among participants involved in the Telling My Story subproject, the authors present a four-factor model of recovery-focused practice. The model reflects two recovery paradigms: one that is responsive to the negative consequences people experience as a result of their exposure to extreme situations, such as homelessness, and a proactive one in which assistance is designed to help people in recovery advance their own self-development and move forward their process of individuation. PMID:26781673

  11. High-Resolution Gravity and Time-Varying Gravity Field Recovery using GRACE and CHAMP

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    2002-01-01

    This progress report summarizes the research work conducted under NASA's Solid Earth and Natural Hazards Program 1998 (SENH98) entitled High Resolution Gravity and Time Varying Gravity Field Recovery Using GRACE (Gravity Recovery and Climate Experiment) and CHAMP (Challenging Mini-satellite Package for Geophysical Research and Applications), which included a no-cost extension time period. The investigation has conducted pilot studies to use the simulated GRACE and CHAMP data and other in situ and space geodetic observable, satellite altimeter data, and ocean mass variation data to study the dynamic processes of the Earth which affect climate change. Results from this investigation include: (1) a new method to use the energy approach for expressing gravity mission data as in situ measurements with the possibility to enhance the spatial resolution of the gravity signal; (2) the method was tested using CHAMP and validated with the development of a mean gravity field model using CHAMP data, (3) elaborate simulation to quantify errors of tides and atmosphere and to recover hydrological and oceanic signals using GRACE, results show that there are significant aliasing effect and errors being amplified in the GRACE resonant geopotential and it is not trivial to remove these errors, and (4) quantification of oceanic and ice sheet mass changes in a geophysical constraint study to assess their contributions to global sea level change, while the results improved significant over the use of previous studies using only the SLR (Satellite Laser Ranging)-determined zonal gravity change data, the constraint could be further improved with additional information on mantle rheology, PGR (Post-Glacial Rebound) and ice loading history. A list of relevant presentations and publications is attached, along with a summary of the SENH investigation generated in 2000.

  12. Recovery of Magnesium from Seawaters and Development of Analytical Techniques for Eco-Friendly Materials Processing.

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Yoon, C.; Chung, K.

    2008-12-01

    Nevertheless other resources such as fossil fuel, oils, mineral resources, drive continued interest in developing fundamental techniques for recovering valuable metals like seawater origin. A process for recovery of magnesium from brine and bittern have been described in achieving low-level detection limits as well as reliability of analytical technique. The choice of analytical technique to meet the most stringent analytical needs of our fields is ICP-OES and XRF for commercial purposes in high solid waters like bittern. This study contains the results of a study of processes for seawater reverse osmosis with enhanced precipitation yield such as NaCl, Mg(OH)2, and Br2. The original bittern composition supplied from Hanjoo Co. Ltd. was pretreated for microbial matter and additional NaOH, NH4OH, or Na2CO3. Adding NaOH at pH 9.0 to pH 9.9 yield precipitation of Na2CO3.

  13. Simulation of EOR (enhanced oil recovery) processes in stochastically generated permeable media

    SciTech Connect

    Waggoner, J.R.; Castillo, J.L.; Lake, L.W. . Dept. of Petroleum Engineering)

    1990-01-01

    Many enhanced oil recovery (EOR) processes involve injecting an agent, such as steam or CO{sub 2}, that is much more mobile than the resident oil. Other EOR processes attempt to improve sweep efficiency by adding polymer or surfactant to the injected water to create a favorable mobility ratio. This study examines the effect of statistically generated heterogeneity on miscible displacements at unfavorable and favorable mobility ratios. The principal goal is to delineate the effects of fingering, dispersion and channeling on volumetric sweep efficiency. Two-dimensional heterogeneous permeability fields are generated with variability (heterogeneity) and spatial correlation as characterizing parameters. Four levels of correlation and three of variability make up a 12 element matrix. At each element of the matrix, a miscible displacement simulation at unit mobility ratio shows the effect of the heterogeneity, and simulations at mobility ratios of 10 and 0.5 show the effect of viscous force differences combined with heterogeneity. 20 refs., 7 figs., 3 tabs.

  14. GOCE Precise Science Orbits for the Entire Mission and their Use for Gravity Field Recovery

    NASA Astrophysics Data System (ADS)

    Jäggi, Adrian; Bock, Heike; Meyer, Ulrich; Weigelt, Matthias

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE), ESA's first Earth Explorer Core Mission, was launched on March 17, 2009 into a sun-synchronous dusk-dawn orbit and re-entered into the Earth's atmosphere on November 11, 2013. It was equipped with a three-axis gravity gradiometer for high-resolution recovery of the Earth's gravity field, as well as with a 12-channel, dual-frequency Global Positioning System (GPS) receiver for precise orbit determination (POD), instrument time-tagging, and the determination of the long wavelength part of the Earth’s gravity field. A precise science orbit (PSO) product was provided during the entire mission by the GOCE High-level Processing Facility (HPF) from the GPS high-low Satellite-to-Satellite Tracking (hl-SST) data. We present the reduced-dynamic and kinematic PSO results for the entire mission period. Orbit comparisons and validations with independent Satellite Laser Ranging (SLR) measurements demonstrate the high quality of both orbit products being close to 2 cm 1-D RMS, but also reveal a correlation between solar activity, GPS data availability, and the quality of the orbits. We use the 1-sec kinematic positions of the GOCE PSO product for gravity field determination and present GPS-only solutions covering the entire mission period. The generated gravity field solutions reveal severe systematic errors centered along the geomagnetic equator, which may be traced back to the GPS carrier phase observations used for the kinematic orbit determination. The nature of the systematic errors is further investigated and reprocessed orbits free of systematic errors along the geomagnetic equator are derived. Eventually, the potential of recovering time variable signals from GOCE kinematic positions is assessed.

  15. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong

    2012-02-01

    Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.

  16. The process of recovery of people with mental illness: The perspectives of patients, family members and care providers: Part 1

    PubMed Central

    2010-01-01

    Background It is a qualitative design study that examines points of divergence and convergence in the perspectives on recovery of 36 participants or 12 triads. Each triad comprising a patient, a family member/friend, a care provider and documents the procedural, analytic of triangulating perspectives as a means of understanding the recovery process which is illustrated by four case studies. Variations are considered as they relate to individual characteristics, type of participant (patient, family, member/friend and care provider), and mental illness. This paper which is part of a larger study and is based on a qualitative research design documents the process of recovery of people with mental illness: Developing a Model of Recovery in Mental Health: A middle range theory. Methods Data were collected in field notes through semi-structured interviews based on three interview guides (one for patients, one for family members/friends, and one for caregivers). Cross analysis and triangulation methods were used to analyse the areas of convergence and divergence on the recovery process of all triads. Results In general, with the 36 participants united in 12 triads, two themes emerge from the cross-analysis process or triangulation of data sources (12 triads analysis in 12 cases studies). Two themes emerge from the analysis process of the content of 36 interviews with participants: (1) Revealing dynamic context, situating patients in their dynamic context; and (2) Relationship issues in a recovery process, furthering our understanding of such issues. We provide four case studies examples (among 12 cases studies) to illustrate the variations in the way recovery is perceived, interpreted and expressed in relation to the different contexts of interaction. Conclusion The perspectives of the three participants (patients, family members/friends and care providers) suggest that recovery depends on constructing meaning around mental illness experiences and that the process is

  17. PROCESS FOR THE RECOVERY OF URANIUM FROM PHOSPHATIC ORE

    DOEpatents

    Long, R.L.

    1959-04-14

    A proccss is described for the recovery of uranium from phosphatic products derived from phosphatic ores. It has been discovered that certain alkyl phosphatic, derivatives can be employed in a direct solvent extraction operation to recover uranium from solid products, such as superphosphates, without first dissolving such solids. The organic extractants found suitable include alkyl derivatives of phosphoric, pyrophosphoric, phosof the derivative contains from 4 to 7 carbon atoms. A diluent such as kerosene is also used.

  18. Effects of chemical additives on microbial enhanced oil recovery processes

    SciTech Connect

    Bryant, R.S.; Chase, K.L.; Bertus, K.M.; Stepp, A.K.

    1989-12-01

    An extensive laboratory study has been conducted to determine (1) the role of the microbial cells and products in oil displacement, (2) the relative rates of transport of microbial cells and chemical products from the metabolism of nutrient in porous media, and (3) the effects of chemical additives on the oil recovery efficiency of microbial formulations. This report describes experiments relating to the effects of additives on oil recovery efficiency of microbial formulations. The effects of additives on the oil recovery efficiency of microbial formulations were determined by conducting oil displacement experiments in 1-foot-long Berea sandstone cores. Sodium tripolyphosphate (STPP), a low-molecular-weight polyacrylamide polymer, a lignosulfonate surfactant, and sodium bicarbonate were added to a microbial formulation at a concentration of 1%. The effects of using these additives in a preflush prior to injection of the microbial formulation were also evaluated. Oil-displacement experiments with and without a sodium bicarbonate preflush were conducted in 4-foot-long Berea sandstone cores, and samples of in situ fluids were collected at various times at four intermediate points along the core. The concentrations of metabolic products and microbes in the fluid samples were determined. 9 refs., 22 figs., 8 tabs.

  19. Field recovery of layered tektites in northeast Thailand

    SciTech Connect

    Wasson, J.T.; Pitakpaivan, K.; Putthapiban, P.

    1995-07-25

    The authors recovered Australasian tektites in place throughout a 40 X 130 km region in northeast Thailand extending from the Laotian border westward to a line connecting Na Pho Klang in the northeast through Det Udom to Nam Yun in the south. With two exceptions, in sites near the western edge of this region, all fragments are layered (muong-Nong-type) tektites. It appears that large layered tektites are mainly found by rice farmers in fields that were forested until the recent past. The presence of layered tektites in this 40 X 130 km area implies that impact melt that fell in these areas was hot enough to flow if it was deposited on a sloping surface. The absence of splash-form tektites from the region indicates that the layer was still molten when masses having shapes (teardrops, dumbbells, etc.) produced by spinning reached the ground. To account for this and to allow time for the melt to flow a few tens of centimeters requires that the atmosphere remained hot (>2300 K) for a few minutes. Tektites that are in place are almost always associated with a widespread 10-cm to meter-thick layer of laterite. In two cases (one involving layered, one involving splash-form tektites), where accurate stratigraphic control demonstrated that the tektites were still in section, they were sited on top of the laterite layer just below a layer of aeolian sand. 27 refs., 1 fig., 1 tab.

  20. Field recovery of layered tektites in northeast Thailand

    NASA Astrophysics Data System (ADS)

    Wasson, John T.; Pitakpaivan, Kaset; Putthapiban, Prinya; Salyapongse, Sirot; Thapthimthong, Boonlom; McHone, John F.

    1995-07-01

    We recovered Australasian tektites in place throughout a 40×130 km region in northeast Thailand extending from the Laotian border westward to a line connecting Na Pho Klang in the northeast through Det Udom to Nam Yun in the south. With two exceptions, in sites near the western edge of this region, all fragments are layered (muong-Nong-type) tektites. It appears that large layered tektites are mainly found by rice farmers in fields that were forested until the recent past. The presence of layered tektites in this 40×130 km area implies that impact melt that fell in these areas was not enough to flow if it was deposited on a sloping surface. The absence of splash-form tektites from the region indicates that the layer was still molten when masses having shapes (teardrops, dumbbells, etc.) produced by spinning reached the ground. To account for this and to allow time for the melt to flow a few tens of centimeters requires that the atmosphere remained hot (>2300 K) for a few minutes. Tektites that are in place are almost always associated with a wide-spread 10-cm to meter-thick layer of laterite. In two cases (one involving layered, one involving splash-form tektites), where accurate stratigraphic control demonstrated that the tektites were still in section, they were sited on top of the laterite layer just below a layer of aeolian sand.

  1. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction

    NASA Astrophysics Data System (ADS)

    Liang, Yicheng; Peng, Hao

    2015-02-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  2. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction.

    PubMed

    Liang, Yicheng; Peng, Hao

    2015-02-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity. PMID:25591118

  3. 27 CFR 19.57 - Recovery and reuse of denatured spirits in manufacturing processes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Recovery and reuse of denatured spirits in manufacturing processes. 19.57 Section 19.57 Alcohol, Tobacco Products and Firearms... Administrative and Miscellaneous Provisions Activities Not Subject to This Part § 19.57 Recovery and reuse...

  4. The recovery of VOC from vapours and condensates by membrane processes

    SciTech Connect

    Chmiel, H.; Mavrov, V.; Faehnrich, A.

    1995-12-31

    Membrane separation processes, applied individually or combined with other separation processes, have proven to be particularly suitable for integration into production processes. This paper provides examples which focus on the recovery of volatile organic components from exhaust air, vapours and condensates by membrane processes. The processes described are vapour permeation combined with adsorption, nanofiltration, and reverse osmosis.

  5. Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase

    NASA Technical Reports Server (NTRS)

    Le, G.; Russell, C. T.; Slavin, J. A.; Lucek, E. A.

    2008-01-01

    We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L greater than 5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L less than 5). The precipitation loss

  6. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 89

    SciTech Connect

    1998-04-01

    Summaries are presented for the DOE contracts related to supported research for thermal recovery of petroleum, geoscience technology, and field demonstrations in high-priority reservoir classes. Data included for each project are: title, contract number, principal investigator, research organization, beginning date, expected completion date, amount of award, objectives of the research, and summary of technical progress.

  7. Behavioral recovery induced by applied electric fields after spinal cord hemisection in guinea pig

    SciTech Connect

    Borgens, R.B.; Blight, A.R.; McGinnis, M.E.

    1987-10-16

    Applied electric fields were used to promote axonal regeneration in spinal cords of adult guinea pigs. A propriospinal intersegmental reflex (the cutaneous trunci muscle reflex) was used to test lateral tract function after hemisection of the thoracic spinal cord. An electrical field (200 microvolts per millimeter, cathode rostral) applied across the lesion led to functional recovery of the cutaneous trunci muscle reflex in 25 percent of experimental animals, whereas the functional deficit remained in control animals, which were implanted with inactive stimulators.

  8. Nonthermal processing by radio frequency electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency electric fields (RFEF) processing is relatively new and has been shown to inactivate bacteria in apple juice, orange juice and apple cider at moderately low temperatures. Key equipment components of the process include a radio frequency power supply and a treatment chamber that is ca...

  9. CLASSSTRONG: Classical simulations of strong field processes

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Pérez-Hernández, J. A.; Lewenstein, M.

    2014-01-01

    A set of Mathematica functions is presented to model classically two of the most important processes in strong field physics, namely high-order harmonic generation (HHG) and above-threshold ionization (ATI). Our approach is based on the numerical solution of the Newton-Lorentz equation of an electron moving on an electric field and takes advantage of the symbolic languages features and graphical power of Mathematica. Like in the Strong Field Approximation (SFA), the effects of atomic potential on the motion of electron in the laser field are neglected. The SFA was proven to be an essential tool in strong field physics in the sense that it is able to predict with great precision the harmonic (in the HHG) and energy (in the ATI) limits. We have extended substantially the conventional classical simulations, where the electric field is only dependent on time, including spatial nonhomogeneous fields and spatial and temporal synthesized fields. Spatial nonhomogeneous fields appear when metal nanosystems interact with strong and short laser pulses and temporal synthesized fields are routinely generated in attosecond laboratories around the world. Temporal and spatial synthesized fields have received special attention nowadays because they would allow to exceed considerably the conventional harmonic and electron energy frontiers. Classical simulations are an invaluable tool to explore exhaustively the parameters domain at a cheap computational cost, before massive quantum mechanical calculations, absolutely indispensable for the detailed analysis, are performed.

  10. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.

    PubMed

    Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou

    2016-01-01

    The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application. PMID:26403818

  11. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  12. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yorstos, Yannis C.

    2003-03-19

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  13. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  14. Tensiomygraphic Measurement of Atrophy Related Processes During Bed Rest and Recovery

    NASA Astrophysics Data System (ADS)

    Simunic, B. ostjan; Degens, Hans; Rittweger, Jorn; Narici, Marcco; Pisot, Venceslav; Mekjavic, Igor B.; Pisot, Rado

    2013-02-01

    Tensiomyographic (TMG) parameters were recently proposed for a non-invasive estimation of MHC distribution in human vastus lateralis muscle. However, TMG potential is even higher, offers additional insight into the skeletal muscle physiology, especially in the field of atrophy and hypertrophy. The purpose of this study is in developing time dynamics of TMG-measured contraction time (Tc) and maximal response amplitude (Dm), together with muscle belly thickness, measure thoroughly during 35-day bed rest and followed in 30-day recovery (N = 10 males; age 24.3 ± 2.6 years). Measurements were performed in two postural muscles (vastus medialis and lateralis) and one non-postural muscle (biceps femoris). During bed rest period we found different dynamics of muscle thickness decrease and Dm increase. Tc was unchanged in postural muscles, but in non-postural muscle increased significantly and stayed as such even at the end of recovery. We could conclude that TMG related parameters are more sensitive in measuring muscle atrophic and hypertrophic processes than biomedical imaging technique. However, a mechanism that regulates Dm still needs to be identified.

  15. FLUORIDE VOLATILITY PROCESS FOR THE RECOVERY OF URANIUM

    DOEpatents

    Katz, J.J.; Hyman, H.H.; Sheft, I.

    1958-04-15

    The separation and recovery of uraniunn from contaminants introduced by neutron irradiation by a halogenation and volatilization method are described. The irradiated uranium is dissolved in bromine trifluoride in the liquid phase. The uranium is converted to the BrF/sub 3/ soluble urmium hexafluoride compound whereas the fluorides of certain contaminating elements are insoluble in liquid BrF/sub 3/, and the reaction rate of the BrF/sub 3/ with certain other solid uranium contamirnnts is sufficiently slower than the reaction rate with uranium that substantial portions of these contaminating elements will remain as solids. These solids are then separated from the solution by a distillation, filtration, or centrifugation step. The uranium hexafluoride is then separated from the balance of the impurities and solvent by one or more distillations.

  16. Interfacial phenomena in foam flooding process for heavy oil recovery

    SciTech Connect

    Sharma, M.K.; Shah, D.O.

    1983-08-01

    The ability of pure and commercial foaming agents to generate in situ foams and their effects on air mobility, breakthrough time, fluid recovery and oil displacement efficiency have been studied. These parameters were correlated with the interfacial properties of foaming agents. A striking decrease in the air mobility was observed with increasing temperature as well as pressure which in turn increased the effectiveness of foams to displace additional fluid. It was observed that the chain length compatibility and molecular packing at the air-liquid interface strikingly influenced the interfacial properties of foaming agents, microscopic characteristics and behavior of foams. From the studies on mixed surfactant systems, a minimum in surface tension, a maximum in surface viscosity, a minimum in bubble size and a maximum in heavy oil displacement efficiency in a porous medium were observed when both the components of the foaming system had equal chain length.

  17. Block copolymers useful for enhanced oil recovery processes

    SciTech Connect

    Shu, P.

    1989-10-03

    This patent describes a method for permeability control of a subterranean formation and for enhancing oil recovery from the subterranean formation. The method comprising injecting into the subterranean formation an aqueous solution comprised of a block copolymer having the structural form of ABA triblock or (AB){sub n} multiblock wherein A is a crosslinkable polymer, B is a non-crosslinkable polymer or a polymer having low reactivity to crosslinking agents, n is a number of at least 2 and a crosslinking agent. Wherein A is selected from the group consisting of polyacrylic acid, partially hydrolyzed polyacrylamide, highly hydrolyzed polyacrylamide, partially hydrolyzed polyacrylic ester, highly hydrolyzed polyacrylic ester, polyvinyl alcohol and mixtures thereof and B is selected from the group consisting of polyacrylamide, partially hydrolyzed polyacrylamide, polyalkylene ethers, polyvinyl alcohol and polyvinylpyridine.

  18. Local Risk-Minimization for Defaultable Claims with Recovery Process

    SciTech Connect

    Biagini, Francesca; Cretarola, Alessandra

    2012-06-15

    We study the local risk-minimization approach for defaultable claims with random recovery at default time, seen as payment streams on the random interval [0,{tau} Logical-And T], where T denotes the fixed time-horizon. We find the pseudo-locally risk-minimizing strategy in the case when the agent information takes into account the possibility of a default event (local risk-minimization with G-strategies) and we provide an application in the case of a corporate bond. We also discuss the problem of finding a pseudo-locally risk-minimizing strategy if we suppose the agent obtains her information only by observing the non-defaultable assets.

  19. Geochemical processes during five years of aquifer storage recovery.

    PubMed

    Herczeg, Andrew L; Rattray, Karen J; Dillon, Peter J; Pavelic, Paul; Barry, Karen E

    2004-01-01

    A key factor in the long-term viability of aquifer storage recovery (ASR) is the extent of mineral solution interaction between two dissimilar water types and consequent impact on water quality and aquifer stability. We collected geochemical and isotopic data from three observation wells located 25, 65, and 325 m from an injection well at an experimental ASR site located in a karstic, confined carbonate aquifer in South Australia. The experiment involved five major injection cycles of a total of 2.5 x 10(5) m3 of storm water (total dissolved solids [TDS] approximately 150 mg/L) into the brackish (TDS approximately 2400 mg/L) aquifer. Approximately 60% of the mixture was pumped out during the fifth year of the experiment. The major effect on water quality within a 25 m radius of the injection well following injection of storm water was carbonate dissolution (35 +/- 6 g of CaCO3 dissolved/m3 of aquifer) and sulfide mineral oxidation (50 +/- 10 g as FeS2/m3 after one injection). < 0.005% of the total aquifer carbonate matrix was dissolved during each injection event, and approximately 0.2% of the total reduced sulfur. Increasing amounts of ambient ground water was entrained into the injected mixture during each of the storage periods. High 14C(DIC) activities and slightly more negative delta13C(DIC) values measured immediately after injection events show that substantial CO2(aq) is produced by oxidation of organic matter associated with injectant. There were no detectable geochemical reactions while pumping during the recovery phase in the fifth year of the experiment. PMID:15161160

  20. Direct filtration for recovery of Schistosoma mansoni cercariae in the field

    PubMed Central

    Sandt, Donald G.

    1973-01-01

    The recovery of schistosome cercariae from natural waters has been limited by variations in turbidity and in the accuracy of recovery with different techniques. A modification of the Rowan vacuum paper filtration method employing a battery-operated pumping system, a glass—silicone plate filter, and a specially designed filter holder is described and evaluated. Field tests on St Lucia indicate a mean filtration volume of 12.2 litres per filter at a mean turbidity of 20.3 Jackson turbidity units. Overall, 86% of the volumes filtered per filter were in excess of 6 litres. Particle size, rather than turbidity, was found to be the main factor influencing filter blockage, reading time, and accuracy. Recoveries of 0.01 cercaria (Schistosoma mansoni) per litre sampled were obtained, but the practical limit of the method is considered to be closer to 0.1 cercaria per litre sampled. PMID:4541145

  1. Acceptance and Avoidance Processes at Different Levels of Psychological Recovery from Enduring Mental Illness

    PubMed Central

    Siqueira, Vinicius R.; Oades, Lindsay G.

    2015-01-01

    Objective. This study examined the use of psychological acceptance and experiential avoidance, two key concepts of Acceptance and Commitment Therapy (ACT), in the psychological recovery process of people with enduring mental illness. Method. Sixty-seven participants were recruited from the metropolitan, regional, and rural areas of New South Wales, Australia. They all presented some form of chronic mental illness (at least 12 months) as reflected in DSM-IV Axis I diagnostic criteria. The Acceptance and Action Questionnaire (AAQ-19) was used to measure the presence of psychological acceptance and experiential avoidance; the Recovery Assessment Scale (RAS) was used to examine the levels of psychological recovery; and the Scales of Psychological Well-Being was used to observe if there are benefits in utilizing psychological acceptance and experiential avoidance in the recovery process. Results. An analysis of objectively quantifiable measures found no clear correlation between the use of psychological acceptance and recovery in mental illness as measured by the RAS. The data, however, showed a relationship between psychological acceptance and some components of recovery, thereby demonstrating its possible value in the recovery process. Conclusion. The major contribution of this research was the emerging correlation that was observed between psychological acceptance and positive levels of psychological well-being among individuals with mental illness. PMID:26576412

  2. Effective Field Theory for Jet Processes

    NASA Astrophysics Data System (ADS)

    Becher, Thomas; Neubert, Matthias; Rothen, Lorena; Shao, Ding Yu

    2016-05-01

    Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom that are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at different energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order terms, in particular also the nonglobal logarithms.

  3. Effective Field Theory for Jet Processes.

    PubMed

    Becher, Thomas; Neubert, Matthias; Rothen, Lorena; Shao, Ding Yu

    2016-05-13

    Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom that are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at different energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order terms, in particular also the nonglobal logarithms. PMID:27232017

  4. MSO spent salt clean-up recovery process

    SciTech Connect

    Adamson, M G; Brummond, W A; Hipple, D L; Hsu, P C; Summers, L J; Von Holtz, E H; Wang, F T

    1997-02-01

    An effective process has been developed to separate metals, mineral residues, and radionuclides from spent salt, a secondary waste generated by Molten Salt Oxidation (MSO). This process includes salt dissolution, pH adjustment, chemical reduction and/or sulfiding, filtration, ion exchange, and drying. The process uses dithionite to reduce soluble chromate and/or sulfiding agent to suppress solubilities of metal compounds in water. This process is capable of reducing the secondary waste to less than 5% of its original weight. It is a low temperature, aqueous process and has been demonstrated in the laboratory [1].

  5. Coreflood assay using extremophile microorganisms for recovery of heavy oil in Mexican oil fields.

    PubMed

    Castorena-Cortés, Gladys; Roldán-Carrillo, Teresa; Reyes-Avila, Jesús; Zapata-Peñasco, Icoquih; Mayol-Castillo, Martha; Olguín-Lora, Patricia

    2012-10-01

    A considerable portion of oil reserves in Mexico corresponds to heavy oils. This feature makes it more difficult to recover the remaining oil in the reservoir after extraction with conventional techniques. Microbial enhanced oil recovery (MEOR) has been considered as a promising technique to further increase oil recovery, but its application has been developed mainly with light oils; therefore, more research is required for heavy oil. In this study, the recovery of Mexican heavy oil (11.1°API and viscosity 32,906 mPa s) in a coreflood experiment was evaluated using the extremophile mixed culture A7, which was isolated from a Mexican oil field. Culture A7 includes fermentative, thermophilic, and anaerobic microorganisms. The experiments included waterflooding and MEOR stages, and were carried out under reservoir conditions (70°C and 9.65 MPa). MEOR consisted of injections of nutrients and microorganisms followed by confinement periods. In the MEOR stages, the mixed culture A7 produced surface-active agents (surface tension reduction 27 mN m⁻¹), solvents (ethanol, 1738 mg L⁻¹), acids (693 mg L⁻¹), and gases, and also degraded heavy hydrocarbon fractions in an extreme environment. The interactions of these metabolites with the oil, as well as the bioconversion of heavy oil fractions to lighter fractions (increased alkanes in the C₈-C₃₀ range), were the mechanisms responsible for the mobility and recovery of heavy oil from the porous media. Oil recovery by MEOR was 19.48% of the residual oil in the core after waterflooding. These results show that MEOR is a potential alternative to heavy oil recovery in Mexican oil fields. PMID:22704814

  6. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases

  7. Magnetic field processing of inorganic polymers

    SciTech Connect

    Kunerth, D.C.; Peterson, E.S.

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  8. Granuflow and Mulled coal: Alternative processes for fine coal recovery

    SciTech Connect

    Davis, B.E.

    1999-07-01

    Granuflow and Mulled Coal were developed in parallel to enhance the ability to recover and process wet coal fines. There are some similarities in the processes; however, the end products are quite different. This paper will compare the properties of the two products prepared from the same coal and identify the unique properties of each. Criteria for selecting between the two processes, including cost, will be discussed.

  9. Bogi and Capiron fields, Oriente Basin, Ecuador: Similar reservoirs but contrasting drive mechanisms and recoveries

    SciTech Connect

    Sanchez, H.; Morales, M.; Young, R.; Zambrano, H.

    1996-08-01

    Bogi and Capiron fields are being developed under a unit agreement with Petroecuador. These adjoining fields straddle Block 16 in the Oriente Basin and probably share a common oil water contact. Both fields are simple four-way-dip closures which produce heavy oil from Campanian sandstones of similar quality. However, the two fields are remarkably different in terms of oil production and projected recovery as a result of differing structural closures, reservoir distributions and, hence, differing drive mechanisms. The main reservoir at Bogi field is an amalgamation of two fluvial sheet sandstones thought to be low-stand deposits associated with two falls in relative sea level. The reservoir is thick (56-78 ft) and, with an observed oil column of only 38 feet, a bottom-water drive mechanism is ubiquitous. The oil is heavy (18 API) and mobility ratios unfavorable; water production is high and oil recovery from conventional drilling is expected to be 3-5%. In contrast, only the upper fluvial sheet sandstone is present in Capiron field and a reservoir thickness of 32-48 ft combined with an oil column of 99 ft ensures an edge-water drive mechanism over most of the field with concomitant initial low water production and oil recoveries of approximately 30%. The contrast between Bogi and Capiron fields highlights the problems and challenges in the Block 16 area. Small structural closures filled with heavy oil are abundant and an accurate seismic depth map coupled with an understanding of reservoir distribution are vital to economic success.

  10. Ultrasonic processing for recovery of chicken erythrocyte hemoglobin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemoglobin from chicken blood has been shown to be a good substitute for synthetic polymeric flocculants. One stage of processing the blood entails breaking open the cells and releasing the cytoplasmic contents; in the present study, we investigate the use of ultrasonic processing at this stage. Was...

  11. Processing (Non)Compositional Expressions: Mistakes and Recovery

    ERIC Educational Resources Information Center

    Holsinger, Edward; Kaiser, Elsi

    2013-01-01

    Current models of idiom representation and processing differ with respect to the role of literal processing during the interpretation of idiomatic expressions. Word-like models (Bobrow & Bell, 1973; Swinney & Cutler, 1979) propose that idiomatic meaning can be accessed directly, whereas structural models (Cacciari & Tabossi, 1988;…

  12. Impact of materials used in lab and field experiments on the recovery of organic micropollutants

    NASA Astrophysics Data System (ADS)

    Hebig, Klaus; Nödler, Karsten; Licha, Tobias; Scheytt, Traugott

    2015-04-01

    Organic micropollutants are frequently detected in the aquatic environment. There-fore, a large number of field and laboratory studies have been conducted in order to study their fate in the environment. Due to the diversity of chemical properties among these compounds some of them may interact with materials commonly used in field and laboratory studies like tubes, filters, or sample bottles. The aim of our experiment was to study the interaction between those materials and an aqueous solution of 43 widely detected basic, neutral, and acidic organic micropollutants hereby covering a broad range of polarities. Experiments with materials were conducted as a batch study using spiked tap water and for different syringe filters by filtration with subsequent fraction collection. The best recoveries over a wide range of organic compounds were observed for batches in contact with the following materials (in descending order) acryl glass, PTFE, HDPE, and PP. The use of Pharmed©, silicone, NBR70, Tygon©, and LDPE should be avoided. Flexible tubing materials especially influence many of the investigated compounds here. Filtration with most of the tested filter types leads to no significant loss of almost all of the investigated micropollutants. Nonetheless, significant mass losses of some compounds (loratadine, fluoxetine, sertraline, and diuron) were observed during the first mL of the filtration process. No systematic correlation between compound properties, tested materials, and ob-served mass losses could be identified in this study. The behavior of each compound is specific and thus, not predictable. It is therefore suggested to study the interaction of compounds with filters and material prior to the actual experiment or include blank studies.

  13. Impact of materials used in lab and field experiments on the recovery of organic micropollutants.

    PubMed

    Hebig, Klaus H; Nödler, Karsten; Licha, Tobias; Scheytt, Traugott J

    2014-03-01

    Organic micropollutants are frequently detected in the aquatic environment. Therefore, a large number of field and laboratory studies have been conducted in order to study their fate in the environment. Due to the diversity of chemical properties among these compounds some of them may interact with materials commonly used in field and laboratory studies like tubes, filters, or sample bottles. The aim of our experiment was to study the interaction between those materials and an aqueous solution of 43 widely detected basic, neutral, and acidic organic micropollutants hereby covering a broad range of polarities. Experiments with materials were conducted as a batch study using spiked tap water and for different syringe filters by filtration with subsequent fraction collection. The best recoveries over a wide range of organic compounds were observed for batches in contact with the following materials (in descending order) acryl glass, PTFE, HDPE, and PP. The use of Pharmed©, silicone, NBR70, Tygon©, and LDPE should be avoided. Flexible tubing materials especially influence many of the investigated compounds here. Filtration with most of the tested filter types leads to no significant loss of almost all of the investigated micropollutants. Nonetheless, significant mass losses of some compounds (loratadine, fluoxetine, sertraline, and diuron) were observed during the first mL of the filtration process. No systematic correlation between compound properties, tested materials, and observed mass losses could be identified in this study. The behavior of each compound is specific and thus, not predictable. It is therefore suggested to study the interaction of compounds with filters and material prior to the actual experiment or include blank studies. PMID:24365588

  14. Electrodialysis field test for selective chloride removal from the chemical recovery cycle of a kraft pulp mill

    SciTech Connect

    Rapp, H.J.; Pfromm, P.H.

    1998-12-01

    Chloride accumulation is a serious issue in the kraft pulping process. Chloride can be selectively removed from dissolved electrostatic precipitator dust (ESP dust) in the kraft chemical recovery cycle by electrodialysis with monovalent-selective anion-exchange membranes. In a pilot-scale field test, this process was investigated (total run time, 750 h). The test was performed at about 3.5% of full scale. The process showed outstanding performance and no significant membrane fouling. In feed-and-bleed operation, chloride removal levels of 94% and 61% were tested. The energy consumption for electrodialysis is low (120 kWh per metric ton of chloride removed at a 63% chloride removal level). The process performed very well even with no feed pretreatment, polarity reversal, or membrane cleaning.

  15. Chemical Processes in Astrophysical Radiation Fields

    SciTech Connect

    Stancil, P.C.; Dalgarno, A.

    1997-12-31

    The effects of stimulated photon emission on chemical processes in a radiation field are considered and their influence on the chemistry of the early universe and other astrophysical environments is investigated. Spontaneous and stimulated radiative attachment rate coefficients for H(-), Li(-) and C(-) are presented.

  16. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    PubMed

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment. PMID:25662253

  17. Radiative processes in external gravitational fields

    SciTech Connect

    Papini, Giorgio

    2010-07-15

    Kinematically forbidden processes may be allowed in the presence of external gravitational fields. These can be taken into account by introducing generalized particle momenta. The corresponding transition probabilities can then be calculated to all orders in the metric deviation from the field-free expressions by simply replacing the particle momenta with their generalized counterparts. The procedure applies to particles of any spin and to any gravitational fields. Transition probabilities, emission power, and spectra are, to leading order, linear in the metric deviation. It is also shown how a small dissipation term in the particle wave equations can trigger a strong backreaction that introduces resonances in the radiative process and deeply affects the resulting gravitational background.

  18. Phonological Processing in Human Auditory Cortical Fields

    PubMed Central

    Woods, David L.; Herron, Timothy J.; Cate, Anthony D.; Kang, Xiaojian; Yund, E. W.

    2011-01-01

    We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant–vowel–consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features. PMID:21541252

  19. Secondary natural gas recovery in mature fluvial sandstone reservoirs, Frio Formation, Agua Dulce Field, South Texas

    SciTech Connect

    Ambrose, W.A.; Levey, R.A. ); Vidal, J.M. ); Sippel, M.A. ); Ballard, J.R. ); Coover, D.M. Jr. ); Bloxsom, W.E. )

    1993-09-01

    An approach that integrates detailed geologic, engineering, and petrophysical analyses combined with improved well-log analytical techniques can be used by independent oil and gas companies of successful infield exploration in mature Gulf Coast fields that larger companies may consider uneconomic. In a secondary gas recovery project conducted by the Bureau of Economic Geology and funded by the Gas Research Institute and the U.S. Department of Energy, a potential incremental natural gas resource of 7.7 bcf, of which 4.0 bcf may be technically recoverable, was identified in a 490-ac lease in Agua Dulce field. Five wells in this lease had previously produced 13.7 bcf from Frio reservoirs at depths of 4600-6200 ft. The pay zones occur in heterogeneous fluvial sandstones offset by faults associated with the Vicksburg fault zone. The compartments may each contain up to 1.0 bcf of gas resources with estimates based on previous completions and the recent infield drilling experience of Pintas Creek Oil Company. Uncontacted gas resources occur in thin (typically less than 10 ft) bypassed zones that can be identified through a computed log evaluation that integrates open-hole logs, wireline pressure tests, fluid samples, and cores. At Agua Dulce field, such analysis identified at 4-ft bypassed zone uphole from previously produced reservoirs. This reservoir contained original reservoir pressure and flowed at rates exceeding 1 mmcf/d. The expected ultimate recovery is 0.4 bcf. Methodologies developed in the evaluation of Agua Dulce field can be successfully applied to other mature gas fields in the south Texas Gulf Coast. For example, Stratton and McFaddin are two fields in which the secondary gas recovery project has demonstrated the existence of thin, potentially bypassed zones that can yield significant incremental gas resources, extending the economic life of these fields.

  20. TECHNOLOGICAL OVERVIEW REPORTS FOR EIGHT SHALE OIL RECOVERY PROCESSES

    EPA Science Inventory

    The purpose of the document is to supply background information for evaluation of environmental impacts and pollution control technologies in connection with oil shale development. Six surface retorting processes selected for characterization were: (1) Union Oil Retort B, (2) Par...

  1. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.

  2. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1992-03-31

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid. 5 figs.

  3. Process for the recovery of strontium from acid solutions

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.

    1990-12-31

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.

  4. Process for enhancing recovery of oil from oil-bearing earth formations

    SciTech Connect

    Watson, J.M.; Butler, J.R.

    1984-04-03

    A process is claimed for increasing recovery of oil from oil-bearing earth formations wherein H/sub 2/S from sour wellhead gas is oxidized to SO/sub 3/ which in turn is reacted with a petroleum hydrocarbon mixture to produce a petroleum sulfonate. The petroleum sulfonate is incorporated into an oil recovery enhancing fluid and introduced through an injection well into an oil-bearing earth formation to displace oil toward a production well.

  5. Spectral analysis of creep recovery process in finemet type amorphous alloy

    NASA Astrophysics Data System (ADS)

    Juríková, A.; Csach, K.; Ocelík, V.; Miškuf, J.; Bengus, V. Z.

    2002-01-01

    The creep recovery process in Finemet type amorphous alloy has been analyzed using the method for calculating the relaxation time spectra. The influence of structural relaxation and temperature on the spectra shape has been studied. The creep recovery spectrum of the anelastic deformation of the multicomponent Fe-Nb-Cu-Si-B amorphous alloy seems to be more complex in comparison with standard amorphous alloys.

  6. Avoiding total reduced sulfur (TRS) emissions from sodium sulfite pulping recovery processes

    SciTech Connect

    Norman, J.C.; Sell, N.J. ); Ciriacks, J.C. )

    1990-06-01

    This paper reports that one of the current trends in paper-making with cellulose pulping is the use of high-yield processes. With yields greater than 65%, these processes include mechanical pulps (groundwood and thermomechanical pulps or TMP), and semichemical types (chemi-TMP or CTMP). Groundwood and TMP make up about 10% of North American pulp production. Semichemical pulp makes up about 7% and is mostly used for corrugating medium. High-yield pulping for linerboard, particularly using the alkaline sulfite process, is also likely to be used in the future. High-yield pulping is based primarily on the sulfite process using mostly sodium-based chemicals. A disadvantage of this process is the unavailability of a recovery system for the inorganic pulping chemicals. Generally, mills have not accepted any particular recovery system for this process. For this and other reasons, sulfite processes constitute only 3-4% of the total North American pulp production. If high-yield processes continue to increase in popularity, a sodium sulfite chemical recovery system will be needed. A number of chemical recovery systems have been developed in the past 30 years for sodium-based sulfite pulping processes, with most of the mills successfully using this process located in Scandinavia.

  7. Heat recovery/thermal energy storage for energy conservation in food processing

    SciTech Connect

    Combes, R.S.; Boykin, W.B.

    1981-01-01

    Based on energy consumption data compiled for 1974, 59% of the total energy consumed in the US food processing industry was thermal energy. The energy-consuming processes which utilize this thermal energy reject significant quantities of waste heat, usually to the atmosphere or to the wastewater discharged from the plant. Design considerations for waste heat recovery systems in the food processing industry are discussed. A systematic analysis of the waste heat source, in terms of quantity and quality is explored. Other aspects of the waste heat source, such as contamination, are addressed as potential impediments to practical heat recovery. The characteristics of the recipient process which will utilize the recovered waste heat are discussed. Thermal energy storage, which can be used as a means of allowing the waste eat recovery process to operate independent of the subsequent utilization of the recovered energy, is discussed. The project included the design, installation and monitoring of two heat recovery systems in a Gold Kist broiler processing plant. These systems recover waste heat from a poultry scalder overflow (heated wastewater) and from a refrigeration condenser utilizing ammonia as the refrigerant. The performance and economic viability of the heat recovery systems are presented.

  8. Processing of materials for uniform field emission

    DOEpatents

    Pam, Lawrence S.; Felter, Thomas E.; Talin, Alec; Ohlberg, Douglas; Fox, Ciaran; Han, Sung

    1999-01-01

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/.mu.m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 .mu.m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceeded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material.

  9. Processing of materials for uniform field emission

    DOEpatents

    Pam, L.S.; Felter, T.E.; Talin, A.; Ohlberg, D.; Fox, C.; Han, S.

    1999-01-12

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/{micro}m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 {micro}m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material. 2 figs.

  10. Temperature model for process impact non-uniformity in genipin recovery by high pressure processing.

    PubMed

    Ramos-de-la-Peña, Ana Mayela; Montañez, Julio C; Reyes-Vega, María de la Luz; Contreras-Esquivel, Juan Carlos

    2015-11-15

    A model for the process impact temperature non-uniformity during high pressure processing (HPP) of genipap fruit purees was found during genipin recovery. Purees were subjected to HPP (130-530 MPa) under quasi-isobaric non-isothermal conditions (15 min; 0, 4.6 and 9.3mg pectinases/g fruit). Genipin and protein concentration was determined, and pH was measured. Polygalacturonase activity was quantified indirectly by protein content (mg/g fruit). First order kinetics described temperature changes (0-4 min). Polygalacturonase was activated at 130 MPa, inactivated reversibly at 330 MPa and activated again at 530 MPa. Enzyme reaction rate constant (k) was placed in the 0-4 min model and temperature from 2 to 15 min was described. Protein content and pH characterization in terms of decimal reduction time improved highly the 2-15 min model. Since temperature changes were modeled, more insight of its behavior in an HPP reactor was obtained, avoiding uniformity assumptions, making easier the industrial scale HPP implementation. PMID:25977049

  11. Recovery in rubble fields: long-term impacts of blast fishing.

    PubMed

    Fox, Helen E; Pet, Jos S; Dahuri, Rokhmin; Caldwell, Roy L

    2003-08-01

    This paper presents initial results from a study of factors that inhibit or enhance hard coral recovery in rubble fields created by blast fishing in Komodo National Park and Bunaken National Park, Indonesia. Within nine sites monitored since 1998, there was no significant natural recovery. Levels of potential source coral larvae were assessed with settlement tiles in the rubble fields and in nearby high coral cover sites. Rubble movement was measured and shown to be detrimental to small scleractinians, especially in high current areas. In shallow water (2-6 m deep), rubble is often overgrown by soft corals and corallimorpharians, which inhibit hard coral survival. There is increased scleractinian recruitment in quadrats cleared of soft coral, and Acropora nubbins transplanted into soft coral fields suffer greater mortality than those transplanted above the soft coral canopy. Gaining an understanding of the prognosis for coral recovery is essential not only in order to assess the long-term impacts of blast fishing, but also to improve management decisions about protection of intact reefs and potential restoration of damaged areas. PMID:12907196

  12. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    USGS Publications Warehouse

    Ramsey, Elijah W., III; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  13. Operation of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery.

    PubMed

    Saktaywin, W; Tsuno, H; Nagare, H; Soyama, T

    2006-01-01

    This paper shows the potential application of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery. The process incorporated ozonation for excess sludge reduction and crystallisation process for phosphorus recovery to a conventional anaerobic/oxic (A/O) phosphorus removal process. A lab-scale continuous operation experiment was conducted with the ratio of sludge flow rate to ozonation tank of 1.1% of sewage inflow under 30 to 40 mgO3/gSS of ozone consumption and with sludge wasting ratio of 0.34% (one-fifth of a conventional A/O process). Throughout the operational experiment, a 60% reduction of excess sludge production was achieved in the new process. A biomass concentration of 2300 mg/L was maintained, and the accumulation of inactive biomass was not observed. The new process was estimated to give a phosphorus recovery degree of more than 70% as an advantage of excess sludge reduction. The slight increase in effluent COD was observed, but the process performance was maintained at a satisfactory level. These facts demonstrate an effectiveness of the new process for excess sludge reduction as well as for phosphorus recovery. PMID:16889258

  14. Recovery of Plutonium from Refractory Residues Using a Sodium Peroxide Pretreatment Process

    SciTech Connect

    Rudisill, T.S.

    2003-10-23

    The recycle of plutonium from refractory residues is a necessary activity for the nuclear weapon production complex. Traditionally, high-fired plutonium oxide (PuO2) was leached from the residue matrix using a nitric acid/fluoride dissolving flowsheet. The recovery operations were time consuming and often required multiple contacts with fresh dissolving solution to reduce the plutonium concentration to levels where residual solids could be discarded. Due to these drawbacks, the development of an efficient process for the recovery of plutonium from refractory materials is desirable. To address this need, a pretreatment process was developed. The development program utilized a series of small-scale experiments to optimize processing conditions for the fusion process and demonstrate the plutonium recovery efficiency using ceramic materials developed as potential long-term storage forms for PuO2 and an incinerator ash from the Rocky Flats Environmental Technology Site (Rocky Flats) as te st materials.

  15. Fluid diversion and sweep improvement with chemical gels in oil recovery processes. Final report

    SciTech Connect

    Seright, R.S.; Martin, F.D.

    1992-09-01

    The objectives of this project were to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants were examined, including polymer-based gelants, a monomer-based gelant, and a colloidal-silica gelant. This research was directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work examined how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals included determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. During this three-year project, a number of theoretical analyses were performed to determine where gel treatments are expected to work best and where they are not expected to be effective. The most important, predictions from these analyses are presented. Undoubtedly, some of these predictions will be controversial. However, they do provide a starting point in establishing guidelines for the selection of field candidates for gel treatments. A logical next step is to seek field data that either confirm or contradict these predictions. The experimental work focused on four types of gels: (1) resorcinol-formaldehyde, (2) colloidal silica, (3) Cr{sup 3+}(chloride)-xanthan, and (4) Cr{sup 3+}(acetate)-polyacrylamide. All experiments were performed at 41{degrees}C.

  16. A combined cesium-strontium extraction/recovery process

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Jensen, M.P.

    1996-03-01

    A new solvent extraction process for the simultaneous extraction of cesium and strontium from acidic nitrate media is described. This process uses a solvent formulation comprised of 0.05 M di-t-butylcyclohexano-18-crown-6 (DtBuCH18C6), 0.1 M Crown 100{prime} (a proprietary, cesium-selective derivative of dibenzo-18-crown-6), 1.2 M tributyl phosphate (TBP), and 5% (v/v) lauryl nitrile in an isoparaffinic hydrocarbon diluent. Distribution ratios for cesium and strontium from 4 M nitric acid are 4.13 and 3.46, respectively. A benchtop batch countercurrent extraction experiment indicates that >98% of the cesium and strontium initially present in the feed solution can be removed in only four extraction stages. Through proper choice of extraction and strip conditions, extracted cesium and strontium can be recovered either together or individually.

  17. Flotation process for sludge recovery and energy conversion

    SciTech Connect

    Hammel, G.

    1987-09-08

    This patent describes a process for offshore sewage treatment comprising: () separating sewage into a watery effluent and a sludge; (b) placing the sludge in flexible buoyant balloon storage tanks for anaerobic digestion; (c) recovering and drying methane produced from the sludge during the digestion; (d) transferring the sludge to drying barges; (e) drying the sludge; and (f) supplying the watery effluent to surrounding seaweed farms as a nutrient.

  18. Use of membranes for ethylene recovery in polymerization processes

    SciTech Connect

    Dembicki, D.R.; Coan, F.L.; Glassford, C.L.; Overman, D.C.

    1986-11-18

    This patent describes an improved process for manufacture of ethylene polymers wherein the improvement comprises: (a) contacting at least part of the gas mixture remaining after polymerization containing unconverted ethylene monomer with a normally solid, semi-permeable, asymmetric, water-dry, cellulose triacetate hollow fiber membrane at conditions which promote selective permeation of ethylene through the membrane; and (b) recycling the ethylene-enriched permeate as feed for the ethylene polymerization.

  19. High pressure process for recovery of sulphur from gases

    SciTech Connect

    Jagodzinski, R.F.; Kerr, R.K.

    1981-07-28

    A process is provided for producing elemental sulphur from a hydrogen sulphide and sulphur dioxide containing gas stream by a claus type of catalytic reaction. The process is based on the discovery that the conventional claus catalyst, in the presence of liquid sulphur and at pressures considerably greater than one atmosphere, is significantly active toward the claus catalytic reaction. Thus, in accordance with the invention, increasing the pressure of the reaction in the presence of liquid sulphur increases both the catalytic activity and the elemental sulphur conversion. The process involves introducing a compressed hydrogen sulphide and sulphur dioxide containing gas stream into a catalytic reactor and reacting the gases in a claus catalyst bed in the reactor to produce elemental sulphur under conditions of temperature and pressure such that water in the reactor exists only as water vapor and sulphur vapor is condensed in the catalyst bed, being removed therefrom as a liquid. The pressure within the reactor is preferably between 5 and 50 atmospheres absolute.

  20. An efficient process for recovery of fine coal from tailings of coal washing plants

    SciTech Connect

    Cicek, T.; Cocen, I.; Engin, V.T.; Cengizler, H.

    2008-07-01

    Gravity concentration of hard lignites using conventional jigs and heavy media separation equipment is prone to produce coal-rich fine tailings. This study aims to establish a fine coal recovery process of very high efficiency at reasonable capital investment and operational costs. The technical feasibility to upgrade the properties of the predeslimed fine refuse of a lignite washing plant with 35.9% ash content was investigated by employing gravity separation methods. The laboratory tests carried out with the combination of shaking table and Mozley multi-gravity separator (MGS) revealed that the clean coal with 18% ash content on dry basis could be obtained with 58.9% clean coal recovery by the shaking table stage and 4.1% clean coal recovery by MGS stage, totaling to the sum of 63.0% clean coal recovery from a predeslimed feed. The combustible recovery and the organic efficiency of the shaking table + MGS combination were 79.5% and 95.5%, respectively. Based on the results of the study, a flow sheet of a high-efficiency fine coal recovery process was proposed, which is also applicable to the coal refuse pond slurry of a lignite washing plant.

  1. Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution

    DOEpatents

    Tomczuk, Zygmunt; Miller, William E.; Wolson, Raymond D.; Gay, Eddie C.

    1991-01-01

    An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

  2. Exploring the Personal Reality of Disability and Recovery: A Tool for Empowering the Rehabilitation Process

    PubMed Central

    Kurz, Ashley E.; Saint-Louis, Nicole; Burke, Janice P.; Stineman, Margaret G.

    2010-01-01

    People experiencing disability and chronic disease often feel powerless, relinquishing medical control to “more knowledgeable” professionals. This article presents qualitative and quantitative results from three individual patients experiencing an emerging procedure called Recovery Preference Exploration (RPE). To inspire greater patient involvement, self-direction, and individual choice, we instructed participants to create an imagined recovery path, exposing recovery preferences while learning about clinical rehabilitation concepts. Results uncovered important values and feelings about disability, providing a richer context for patient evaluation and treatment goal modification. Applying mixed methods, RPE is presented as an explanatory process for quantifying recovery preferences in a way that stimulates rich narrative of how people see different types of disabilities. RPE shows promise for increasing depth of discussions among patients, family, and clinicians. RPE may promote greater quality of life through patient empowerment by directed learning, increased communication, and enhanced self-knowledge. PMID:18174538

  3. Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3

    SciTech Connect

    Frey, H.C.; Williams, R.B.

    1995-09-01

    The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

  4. Exploring scalar field dynamics with Gaussian processes

    SciTech Connect

    Nair, Remya; Jhingan, Sanjay; Jain, Deepak E-mail: sanjay.jhingan@gmail.com

    2014-01-01

    The origin of the accelerated expansion of the Universe remains an unsolved mystery in Cosmology. In this work we consider a spatially flat Friedmann-Robertson-Walker (FRW) Universe with non-relativistic matter and a single scalar field contributing to the energy density of the Universe. Properties of this scalar field, like potential, kinetic energy, equation of state etc. are reconstructed from Supernovae and BAO data using Gaussian processes. We also reconstruct energy conditions and kinematic variables of expansion, such as the jerk and the slow roll parameter. We find that the reconstructed scalar field variables and the kinematic quantities are consistent with a flat ΛCDM Universe. Further, we find that the null energy condition is satisfied for the redshift range of the Supernovae data considered in the paper, but the strong energy condition is violated.

  5. VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES

    DOEpatents

    Hanley, W.R.

    1959-01-01

    A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.

  6. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOEpatents

    Campbell, David O.; Buxton, Samuel R.

    1981-01-01

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M, (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound, (c) heating the solution at reflux temperature until precipitation is complete, and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  7. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOEpatents

    Campbell, D.O.; Buxton, S.R.

    1980-06-16

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  8. Orbit determination and gravity field recovery from tracking data to the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Maier, Andrea; Baur, Oliver

    2015-04-01

    The Lunar Reconnaissance Orbiter (LRO), launched in 2009, is well suited for the estimation of the long wavelengths of the lunar gravity field due to its low altitude of 50 km. Further, the orbit of LRO was polar for two years providing global coverage. The satellite has been primarily tracked via S-band (mainly two-way Doppler range-rates and two-way radiometric ranges) from the dedicated station in White Sands and from the Universal Space Network (USN). Due to the onboard altimeter the orbital precision requirement in the radial direction was rigorously defined as 1m. Because simulation studies before LRO's launch showed that this precision could not be reached with S-band observations alone, it was decided to additionally track LRO via optical laser ranges. It is worthwhile to point out that LRO is the first spacecraft in interplanetary space routinely tracked with optical one-way laser ranges. Gravity field recovery from orbit perturbations is intrinsically related to precise orbit determination. This is why considerable effort was made to find the optimum settings for orbit modeling. For a time span of three months we conducted a series of orbit overlapping tests based on Doppler observations to find the optimum arc length and the optimum set of empirical parameters. The analysis of observation residuals and orbit overlap differences showed that the estimated orbits are most precise when subdividing the time span into 2.5 days and estimating one constant empirical acceleration in along track direction. These settings were then used to analyze 13 months of Doppler data to LRO. The processing of the optical one-way laser was difficult due to the involvement of two non-synchronous clocks in one measurement (one clock at the ground station and one clock onboard LRO). The NASA software GEODYN, which was used for orbit determination and parameter estimation, models the LRO clock using a drift rate (first-order term) and an aging rate (second-order term). It seems

  9. Yttrium recovery from primary and secondary sources: a review of main hydrometallurgical processes.

    PubMed

    Innocenzi, Valentina; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco

    2014-07-01

    Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized the main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal. PMID:24613592

  10. Process and apparatus for recovery of oil from tar sands

    SciTech Connect

    Brewer, J.C.

    1982-11-30

    A crude oil product is extracted from a tar sand by first crushing the tar sand as mined and then fine grinding the crushed material in a grinding mill in the presence of a cleansing liquid, such as an aqueous solution of a caustic. The resulting slurry is passed into suitable extractor-classifier equipment, such as that shown in U.S. Pat. No. 3,814,336, in which a body of cleansing liquid is maintained. Agitation of the slurry in such maintained body of cleansing liquid substantially completes removal of the bituminous matter from the sand, and the resulting crude oil and cleansing liquid phase is discharged separately from the sand solid phase. The liquid phase is treated for the removal of residual sand particles and for the separation of residual cleansing liquid from the crude oil. The cleansing liquid so recovered is recycled and the crude oil is passed to further processing or for use as such.

  11. PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS

    DOEpatents

    Carter, J.M.; Kamen, M.D.

    1958-10-14

    A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.

  12. A Practical Approach for Studying Fouling Process in Li-Recovery Pilot Plant

    NASA Astrophysics Data System (ADS)

    Kong, M.; Yoon, H.; Eom, C.; Kim, B.; Chung, K.

    2011-12-01

    The efficiency of selective ion recovery such as lithium from seawater has been major interest of previous studies. However, the characterization of adsorption behavior as well as dissolution yield as discharging environmentally problematic chemical species must carefully studied in various conditions including different seawater conditions [1]. Marine biofouling communities are complex, highly dynamic ecosystems consisting of a diverse range of organisms. The development of such communities begins with bacterial attachment followed by the colonization of higher organisms such as invertebrate larvae and algal spores [2-3]. Monitoring and field studies regarding fouling problems during operation of Li-recovery pilot plant which is designed by the Korea Institute of Geoscience & Mineral Resources (KIGAM) were major concern of this study. We examined fouling process for the duration of exposure time in real marine environment. Substrated with no-antifouling treated material and antifouling treated material were exposed and tested for different behaviors toward fouling in ocean. SEM-EDS (Scanning Electron Microscope-Energy dispersive Spectroscopy) analysis was done for surface identification of specific elements for possible dissolution during seawater exposure. To identify organic compound was used GC-MS (Gas Chromatography Mass Spectrometer) analysis. Experiment results, organisms such as alga are fouled the most on 30 days and antitreated material is fouled less than non antitreated material. Operating Li-recovery pilot plant to sea, we need to consider in order to effectively and economically resolve the fouling problem. Acknowledgement : This research was supported by the national research project titled "The Development of Technology for Extraction of Resources Dissolved in Seawater" of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Land, Transport and Maritime Affairs. References [1] M. Y. Diego, K. Soren, and D. J. Kim

  13. Progress in the development of the reverse osmosis process for spacecraft wash water recovery.

    NASA Technical Reports Server (NTRS)

    Pecoraro, J. N.; Podall, H. E.; Spurlock, J. M.

    1972-01-01

    Research work on ambient- and pasteurization-temperature reverse osmosis processes for wash water recovery in a spacecraft environment is reviewed, and the advantages and drawbacks of each are noted. A key requirement in each case is to provide a membrane of appropriate stability and semipermeability. Reverse osmosis systems intended for such use must also take into account the specific limitations and requirements imposed by the small volume of water to be processed and the high water recovery desired. The incorporation of advanced high-temperature membranes into specially designed modules is discussed.

  14. Novel Process for Removal and Recovery of Vapor Phase Mercury

    SciTech Connect

    Greenwell, Collin; Roberts, Daryl L; Albiston, Jason; Stewart, Robin; Broderick, Tom

    1998-03-09

    We demonstrated in the Phase I program all key attributes of a new technology for removing mercury from flue gases, namely, a) removal of greater than 95% of both elemental and oxidized forms of mercury, both in the laboratory and in the field b) regenerability of the sorbent c) ability to scale up, and d) favorable economics. The Phase I program consisted of four tasks other than project reporting: Task I-1 Screen Sorbent Configurations in the Laboratory Task I-2 Design and Fabricate Bench-Scale Equipment Task I-3 Test Bench-Scale Equipment on Pilot Combustor Task I-4 Evaluate Economics Based on Bench-Scale Results In Task I-1, we demonstrated that the sorbents are thermally durable and are regenerable through at least 55 cycles of mercury uptake and desorption. We also demonstrated two low-pressure- drop configurations of the sorbent, namely, a particulate form and a monolithic form. We showed that the particulate form of the sorbent would take up 100% of the mercury so long as the residence time in a bed of the sorbent exceeded 0.1 seconds. In principle, the particulate form of the sorbent could be imbedded in the back side of a higher temperature bag filter in a full-scale application. With typical bag face velocities of four feet per minute, the thickness of the particulate layer would need to be about 2000 microns to accomplish the uptake of the mercury. For heat transfer efficiency, however, we believed the monolithic form of the sorbent would be the more practical in a full scale application. Therefore, we purchased commercially-available metallic monoliths and applied the sorbent to the inside of the flow channels of the monoliths. At face velocities we tested (up to 1.5 ft/sec), these monoliths had less than 0.05 inches of water pressure drop. We tested the monolithic form of the sorbent through 21 cycles of mercury sorption and desorption in the laboratory and included a test of simultaneous uptake of both mercury and mercuric chloride. Overall, in Task

  15. Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Sordo, Federica; Michaud, Véronique

    2016-08-01

    Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.

  16. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 78, quarter ending March 31, 1994

    SciTech Connect

    1995-05-01

    This report presents descriptions of various research projects and field projects concerned with the enhanced recovery of petroleum. Contract numbers, principal investigators, company names, and project management information is included.

  17. Selective recovery of palladium from waste printed circuit boards by a novel non-acid process.

    PubMed

    Zhang, Zhiyuan; Zhang, Fu-Shen

    2014-08-30

    An environmental benign, non-acid process was successfully developed for selective recovery of palladium from waste printed circuit boards (PCBs). In the process, palladium was firstly enriched during copper recovery procedure and dissolved in a special solution made of CuSO4 and NaCl. The dissolved palladium was then extracted by diisoamyl sulfide (S201). It was found that 99.4% of Pd(II) could be extracted from the solution under the optimum conditions (10% S201, A/O ratio 5 and 2min extraction). In the whole extraction process, the influence of base metals was negligible due to the relatively weak nucleophilic substitution of S201 with base metal irons and the strong steric hindrance of S201 molecular. Around 99.5% of the extracted Pd(II) could be stripped from S201/dodecane with 0.1mol/L NH3 after a two-stage stripping at A/O ratio of 1. The total recovery percentage of palladium was 96.9% during the dissolution-extraction-stripping process. Therefore, this study established a benign and effective process for selective recovery of palladium from waste printed circuit boards. PMID:25037000

  18. ARISTOTELES: A European approach for an Earth gravity field recovery mission

    NASA Technical Reports Server (NTRS)

    Benz, R.; Faulks, H.; Langemann, M.

    1989-01-01

    Under contract of the European Space Agency a system study for a spaceborne gravity field recovery mission was performed, covering as a secondary mission objective geodetic point positioning in the cm range as well. It was demonstrated that under the given programmatic constraints including dual launch and a very tight development schedule, a six months gravity field mission in a 200 km near polar, dawn-dusk orbit is adequate to determine gravity anomalies to better than 5 mgal with a spatial resolution of 100 x 100 km half wavelength. This will enable scientists to determine improved spherical harmonic coefficients of the Earth gravity field equation to the order and degree of 180 or better.

  19. In Situ Field Testing of Processes

    SciTech Connect

    J. Wang

    2001-12-14

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR.

  20. Physical processes at high field strengths

    SciTech Connect

    Rhodes, C.K.

    1986-01-01

    Measurements of the radiation produced by the high field interaction with the rare gases have revealed the presence of both copious harmonic production and fluorescence. The highest harmonic observed was the seventeenth (14.6 rm) in Ne, the shortest wavelength ever produced by that means. Strong fluorescence was seen in Ar, Kr, and Xe with the shortest wavelengths observed being below 10 nm. Furthermore, radiation from inner-shell excited configurations in Xe, specifically the 4d/sup 9/5s5p ..-->.. 4d/sup 10/5s manifold at approx. 17.7 nm, was detected. The behaviors of the rare gases with respect to multiquantum ionization, harmonic production, and fluorescence were found to be correlated so that the materials fell into two groups, He and Ne in one and Ar, Kr, and Xe in the other. These experimental findings, in alliance with other studies on inner-shell decay processes, give evidence for a role of atomic correlations in a direct nonlinear process of inner-shell excitation. It is expected that an understanding of these high-field processes will enable the generation of stimulated emission in the x-ray range. 59 refs., 6 figs., 5 tabs.

  1. Near Field Environment Process Model Report

    SciTech Connect

    R.A. Wagner

    2000-11-14

    Waste emplacement and activities associated with construction of a repository system potentially will change environmental conditions within the repository system. These environmental changes principally result from heat generated by the decay of the radioactive waste, which elevates temperatures within the repository system. Elevated temperatures affect distribution of water, increase kinetic rates of geochemical processes, and cause stresses to change in magnitude and orientation from the stresses resulting from the overlying rock and from underground construction activities. The recognition of this evolving environment has been reflected in activities, studies and discussions generally associated with what has been termed the Near-Field Environment (NFE). The NFE interacts directly with waste packages and engineered barriers as well as potentially changing the fluid composition and flow conditions within the mountain. As such, the NFE defines the environment for assessing the performance of a potential Monitored Geologic Repository at Yucca Mountain, Nevada. The NFe evolves over time, and therefore is not amenable to direct characterization or measurement in the ambient system. Analysis or assessment of the NFE must rely upon projections based on tests and models that encompass the long-term processes of the evolution of this environment. This NFE Process Model Report (PMR) describes the analyses and modeling based on current understanding of the evolution of the near-field within the rock mass extending outward from the drift wall.

  2. A study of secondary recovery possibilities of the Hogshooter field, Washington County, Oklahoma

    USGS Publications Warehouse

    Fox, I. William; Thigpen, Claude H.; Ginter, Roy L.; Alden, George P.

    1945-01-01

    The Hogshooter field, located in east central Washington County, Oklahoma, was first developed during the period 1906 to 1913. The field was extended later during the period 1918 to 1922. The principal producing horizon is the Bartlesville sand, found at an average depth of 1,150 feet. To January 1, 1944, the Bartlesville sand has produced 7,566,000 barrels of oil from 5,610 productive acres and 871 oil wells. Peak production, averaging 2,025 barrels per day for the year, was attained in the year 1910. The accumulation of oil in the Bartlesville sand is not related to structure. The total recovery from the Bartlesville sand in the Hogshooter field to January 1, 1944, is estimated to represent 10.3 per cent of the original oil in place, and the total residual oil is estimated to average 11,776 barrels per acre. Widespread application of vacuum, started in 1915, has had little beneficial effect on production. Some gas-repressuring in recent years has increased recovery to a small extent. Conservatively estimated water-flood recovery possibilities are: 3,500 barrels per acre for an area consisting of 1,393 acres (4,875,000 barrels total) with a reasonable profit at the present price of crude oil, and 2,500 barrels per acre for an area of 2,248 acres (5,620,000 barrels total), with no profit indicated under existing conditions. The latter area would show a profit equal to the first-mentioned area only with an increase in price of crude oil of forty-five cents per barrel. Subsurface waters at depths of 1,400 to 1,700 feet are indicated as a satisfactory source for use in water-flooding operations.

  3. Simple functionalization strategies for enhancing nanoparticle separation and recovery with asymmetric flow field flow fractionation.

    PubMed

    Mudalige, Thilak K; Qu, Haiou; Sánchez-Pomales, Germarie; Sisco, Patrick N; Linder, Sean W

    2015-02-01

    Due to the increasing use of engineered nanomaterials in consumer products, regulatory agencies and other research organizations have determined that the development of robust, reliable, and accurate methodologies to characterize nanoparticles in complex matrices is a top priority. Of particular interest are methods that can separate and determine the size of nanomaterials in samples that contain polydisperse and/or multimodal nanoparticle populations. Asymmetric-flow field flow fractionation (AF4) has shown promise for the separation of nanoparticles with wide size range distributions; however, low analyte recoveries and decreased membrane lifetimes, due to membrane fouling, have limited its application. Herein, we report straightforward strategies to minimize membrane fouling and improve nanoparticle recovery by functionalizing the surface of the nanoparticles, as well as that of the AF4 membranes. Gold nanoparticles (AuNP) were stabilized through functionalization with a phosphine molecule, whereas the surface of the membranes was coated with a negatively charged polystyrenesulfonate polymer. Improved nanoparticle separation, recoveries of 99.1 (±0.5) %, and a detection limit of 6 μg/kg were demonstrated by analyzing AuNP reference materials of different sizes (e.g., 10, 30, and 60 nm), obtained from the National Institute of Standards and Technology (NIST). Furthermore, the stability of the polymer coating and its specificity toward minimizing membrane fouling were demonstrated. PMID:25556296

  4. The Application Of Microbial Enhanced Oil Recovery On Unconventional Oil: A Field Specific Approach

    NASA Astrophysics Data System (ADS)

    Goodman, Sean; Millar, Andrew; Allison, Heather; McCarthy, Alan

    2014-05-01

    A substantial amount of the world's recoverable oil reserves are made from unconventional or heavy resources. However, great difficulty has been had in recovering this oil after primary and secondary recovery methods have been employed. Therefore, tertiary methods such as microbial enhanced oil recovery (MEOR) have been employed. MEOR involves the use of bacteria and their metabolic products to alter the oil properties or rock permeability within a reservoir in order to promote the flow of oil. Although MEOR has been trialed in the past with mixed outcomes, its feasibility on heavier oils has not been demonstrated. The aim of this study is to show that MEOR can be successfully applied to unconventional oils. By using an indigenous strain of bacteria isolated from a reservoir of interest and applied to field specific microcosms, we will look into the effect of these bacteria compared to variant inoculums to identify which mechanisms of action the bacteria are using to improve recovery. Using this information, we will be able to identify genes of interest and groups of bacteria that may be beneficial for MEOR and look accurately identify favorable bacteria within a reservoir.

  5. Feasibility study of enhanced oil recovery for fields in decline. Export trade information (Final)

    SciTech Connect

    Not Available

    1991-08-01

    The report, generated by Scientific Software-Intercomp, Inc. for Yacimientos Petroliferos Fiscales Bolivianos, documents the results of a feasibility study which addressed the viability of developing petroleum areas in Bolivia. The primary objective of the project was to describe the reservoirs that have been discovered and their reserves, describe which would be the best alternatives for development of these reservoirs, and to determine the best alternatives for development of all the reserves together. The report, volume 4 of 4, concerns the feasibility of enhancing the oil or condensate recovery from a chosen group of fields (Yapacani, Humberto Suarez Roca, Vibora, La Pena, San Roque, and Camiri).

  6. Fluid diversion and sweep improvement with chemical gels in oil recovery processes

    SciTech Connect

    Seright, F.S.; Martin, F.D.

    1991-04-01

    The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.

  7. Acoustic field positioning for containerless processing

    NASA Technical Reports Server (NTRS)

    Whymark, R. R.

    1975-01-01

    The noncontact positioning of materials in a space processing chamber is accomplished using a new type of acoustic levitator. Liquid and solid materials are positioned using a single source of sound. Fine control of position may be obtained by motion of an acoustical reflector. The electrical power required is usually less than 100 watts. The system operates satisfactorily at high and low temperatures and is adaptable as an 'add-on' feature to existing space experiments. Containerless melting and solidification can be performed and a freely suspended liquid can be shaped to the contour of the sound field. Experiments are described in which aluminum, glass and plastic materials are melted and solidified in the containerless state. The system has applications to containerless crystal growth, melting and related processes.

  8. Sulfur recovery process including removal of residual sulfur from Claus catalyst after regeneration

    SciTech Connect

    Cabanaw, B.E.

    1990-03-13

    This patent describes a process for the recovery of sulfur. It comprises: passing an acid gas feedstream having as a sulfur species essentially only hydrogen sulfide therein to a Claus plant comprising a thermal conversion zone and at least one Claus catalytic reaction zone operated under adsorption conditions including temperature for forming and depositing a preponderance of sulfur formed on catalyst therein.

  9. 78 FR 22451 - Cost Recovery for Permit Processing, Administration, and Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Parts 701, 736, 737, 738, and 750 RIN 1029-AC65 Cost Recovery for Permit Processing, Administration, and Enforcement Correction In proposed...

  10. Energy recovery by the thermal pyrolysis of processed oil shale: An evaluation

    SciTech Connect

    Hankinson, R.W.; Miller, C.E.

    1985-01-01

    Economic recovery of energy from residual carbon on processed oil shales has generated a great deal of interest. The authors present new data and interpretation which show that residual organic carbon content, composition of the retort off-gas and product cut quality are strong functions of retorting conditions.

  11. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  12. DEMONSTRATION BULLETIN: IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC.

    EPA Science Inventory

    The Steam Enhanced Recovery Process (SERP) is designed to remove volatile compounds such as halogenated solvents and petroleum hydrocarbons, and semi-volatile compounds from contaminated soils in situ. The vapor pressures of most contaminants will increase by the addition of ste...

  13. Gene recovery microdissection (GRM) a process for producing chromosome region-specific libraries of expressed genes

    SciTech Connect

    Christian, A T; Coleman, M A; Tucker, J D

    2001-02-08

    Gene Recovery Microdissection (GRM) is a unique and cost-effective process for producing chromosome region-specific libraries of expressed genes. It accelerates the pace, reduces the cost, and extends the capabilities of functional genomic research, the means by which scientists will put to life-saving, life-enhancing use their knowledge of any plant or animal genome.

  14. Sensitivity of Global Modeling Initiative Model Predictions of Antarctic Ozone Recovery to Input Meteorological Fields

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Connell, Peter S.; Bergmann, Daniel J.; Rotman, Douglas A.; Strahan, Susan E.

    2004-01-01

    We use the Global Modeling Initiative chemistry and transport model to simulate the evolution of stratospheric ozone between 1995 and 2030, using boundary conditions consistent with the recent World Meteorological Organization ozone assessment. We compare the Antarctic ozone recovery predictions of two simulations, one driven by an annually repeated year of meteorological data from a general circulation model (GCM), the other using a year of output from a data assimilation system (DAS), to examine the sensitivity of Antarctic ozone recovery predictions to the characteristic dynamical differences between GCM- and DAS-generated meteorological data. Although the age of air in the Antarctic lower stratosphere differs by a factor of 2 between the simulations, we find little sensitivity of the 1995-2030 Antarctic ozone recovery between 350 and 650 K to the differing meteorological fields, particularly when the recovery is specified in mixing ratio units. Percent changes are smaller in the DAS-driven simulation compared to the GCM-driven simulation because of a surplus of Antarctic ozone in the DAS-driven simulation which is not consistent with observations. The peak ozone change between 1995 and 2030 in both simulations is approx.20% lower than photochemical expectations, indicating that changes in ozone transport due to changing ozone gradients at 450 K between 1995 and 2030 constitute a small negative feedback. Total winter/spring ozone loss during the base year (1995) of both simulations and the rate of ozone loss during August and September is somewhat weaker than observed. This appears to be due to underestimates of Antarctic Cl(sub y) at the 450 K potential temperature level.

  15. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    SciTech Connect

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  16. Remote monitoring and fault recovery for FPGA-based field controllers of telescope and instruments

    NASA Astrophysics Data System (ADS)

    Zhu, Yuhua; Zhu, Dan; Wang, Jianing

    2012-09-01

    As the increasing size and more and more functions, modern telescopes have widely used the control architecture, i.e. central control unit plus field controller. FPGA-based field controller has the advantages of field programmable, which provide a great convenience for modifying software and hardware of control system. It also gives a good platform for implementation of the new control scheme. Because of multi-controlled nodes and poor working environment in scattered locations, reliability and stability of the field controller should be fully concerned. This paper mainly describes how we use the FPGA-based field controller and Ethernet remote to construct monitoring system with multi-nodes. When failure appearing, the new FPGA chip does self-recovery first in accordance with prerecovery strategies. In case of accident, remote reconstruction for the field controller can be done through network intervention if the chip is not being restored. This paper also introduces the network remote reconstruction solutions of controller, the system structure and transport protocol as well as the implementation methods. The idea of hardware and software design is given based on the FPGA. After actual operation on the large telescopes, desired results have been achieved. The improvement increases system reliability and reduces workload of maintenance, showing good application and popularization.

  17. Thermodynamic and economic analysis of heat pumps for energy recovery in industrial processes

    NASA Astrophysics Data System (ADS)

    Urdaneta-B, A. H.; Schmidt, P. S.

    1980-09-01

    A computer code has been developed for analyzing the thermodynamic performance, cost and economic return for heat pump applications in industrial heat recovery. Starting with basic defining characteristics of the waste heat stream and the desired heat sink, the algorithm first evaluates the potential for conventional heat recovery with heat exchangers, and if applicable, sizes the exchanger. A heat pump system is then designed to process the residual heating and cooling requirements of the streams. In configuring the heat pump, the program searches a number of parameters, including condenser temperature, evaporator temperature, and condenser and evaporator approaches. All system components are sized for each set of parameters, and economic return is estimated and compared with system economics for conventional processing of the heated and cooled streams (i.e., with process heaters and coolers). Two case studies are evaluated, one in a food processing application and the other in an oil refinery unit.

  18. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES

    SciTech Connect

    David O. Ogbe; Tao Zhu

    2004-01-01

    A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

  19. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Thaer N.N. Mahmoud; Wagirin Ruiz Paidin

    2006-01-01

    This report describes the progress of the project ''Development And Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the thirteenth project quarter (Oct 1, 2005 to Dec 30, 2005). There are three main tasks in this research project. Task 1 is a scaled physical model study of the GAGD process. Task 2 is further development of a vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. Section I reports experimental work designed to investigate wettability effects of porous medium, on secondary and tertiary mode GAGD performance. The experiments showed a significant improvement of oil recovery in the oil-wet experiments versus the water-wet runs, both in secondary as well as tertiary mode. When comparing experiments conducted in secondary mode to those run in tertiary mode an improvement in oil recovery was also evident. Additionally, this section summarizes progress made with regard to the scaled physical model construction and experimentation. The purpose of building a scaled physical model, which attempts to include various multiphase mechanics and fluid dynamic parameters operational in the field scale, was to incorporate visual verification of the gas front for viscous instabilities, capillary fingering, and stable displacement. Preliminary experimentation suggested that construction of the 2-D model from sintered glass beads was a feasible alternative. During this reporting quarter, several sintered glass mini-models were prepared and some preliminary experiments designed to visualize gas bubble development were completed. In Section II, the gas-oil interfacial tensions measured in decane-CO{sub 2} system at 100 F and live decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane against CO{sub 2} gas at 160 F have been modeled using the Parachor and newly proposed

  20. An assessment of waste processing/resource recovery technologies for lunar/Mars life applications

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Packham, Nigel J. C.; Henninger, Donald H.

    1992-01-01

    NASA's future manned missions to explore the solar system are by nature of long duration, mandating extensive regeneration of life support consumables from wastes generated in space-based habitats. Long-duration exploration missions would otherwise be prohibitive due to the number and frequency of energy-intensive resupply missions from Earth. Resource recovery is therefore a critical component of the controlled ecological life support system (CELSS). In order to assess resource recovery technologies for CELSS applications, the Crew and Thermal Systems Division at NASA-Johnson Space Center convened a three-day workshop to assess potential resource recovery technologies for application in a space-based CELSS. This paper describes the methodology of assessing and ranking of these technologies. Recommendations and issues are identified. Evaluations focused on the processes for handling and treatment of inedible plant biomass, human waste, and human generated trash. Technologies were assessed on the basis of safety, reliability, technology readiness, and performance characteristics.

  1. Microbial processes in oil fields: culprits, problems, and opportunities.

    PubMed

    Youssef, Noha; Elshahed, Mostafa S; McInerney, Michael J

    2009-01-01

    Our understanding of the phylogenetic diversity, metabolic capabilities, ecological roles, and community dynamics of oil reservoir microbial communities is far from complete. The lack of appreciation of the microbiology of oil reservoirs can lead to detrimental consequences such as souring or plugging. In contrast, knowledge of the microbiology of oil reservoirs can be used to enhance productivity and recovery efficiency. It is clear that (1) nitrate and/or nitrite addition controls H2S production, (2) oxygen injection stimulates hydrocarbon metabolism and helps mobilize crude oil, (3) injection of fermentative bacteria and carbohydrates generates large amounts of acids, gases, and solvents that increases oil recovery particularly in carbonate formations, and (4) nutrient injection stimulates microbial growth preferentially in high permeability zones and improves volumetric sweep efficiency and oil recovery. Biosurfactants significantly lower the interfacial tension between oil and water and large amounts of biosurfactant can be made in situ. However, it is still uncertain whether in situ biosurfactant production can be induced on the scale needed for economic oil recovery. Commercial microbial paraffin control technologies slow the rate of decline in oil production and extend the operational life of marginal oil fields. Microbial technologies are often applied in marginal fields where the risk of implementation is low. However, more quantitative assessments of the efficacy of microbial oil recovery will be needed before microbial oil recovery gains widespread acceptance. PMID:19203651

  2. Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas

    SciTech Connect

    James Spillane

    2005-10-01

    The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

  3. Automated product recovery in a Hg-196 photochemical isotope separation process

    DOEpatents

    Grossman, M.W.; Speer, R.

    1992-07-21

    A method of removing deposited product from a photochemical reactor used in the enrichment of [sup 196]Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out. 2 figs.

  4. Automated product recovery in a HG-196 photochemical isotope separation process

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1992-01-01

    A method of removing deposited product from a photochemical reactor used in the enrichment of .sup.196 Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out.

  5. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Final report

    SciTech Connect

    1995-11-01

    The National Energy Strategy Plan (NES) has called for 900,000 barrels/day production of heavy oil in the mid-1990s to meet our national needs. To achieve this goal, it is important that the Alaskan heavy oil fields be brought to production. Alaska has more than 25 billion barrels of heavy oil deposits. Conoco, and now BP Exploration have been producing from Schrader Bluff Pool, which is part of the super heavy oil field known as West Sak Field. Schrader Bluff reservoir, located in the Milne Point Unit, North Slope of Alaska, is estimated to contain up to 1.5 billion barrels of (14 to 21{degrees}API) oil in place. The field is currently under production by primary depletion; however, the primary recovery will be much smaller than expected. Hence, waterflooding will be implemented earlier than anticipated. The eventual use of enhanced oil recovery (EOR) techniques, such as hydrocarbon miscible solvent slug injection process, is vital for recovery of additional oil from this reservoir. The purpose of this research project was to determine the nature of miscible solvent slug which would be commercially feasible, to evaluate the performance of the hydrocarbon miscible solvent slug process, and to assess the feasibility of this process for improved recovery of heavy oil from Schrader Bluff reservoir. The laboratory experimental work includes: slim tube displacement experiments and coreflood experiments. The components of solvent slug includes only those which are available on the North Slope of Alaska.

  6. Development of on-farm oil recovery and processing methods: Final report

    SciTech Connect

    Goodrum, J.W.; Kilgo, M.B.

    1987-09-02

    Using supercritical carbon dioxide (SC-CO2), peanut oil was extracted from ground peanuts at pressures of 2000 to 10,000 psi and temperatures of 25-120/degree/ C. Above 6000 psi, increasing the temperature to the maximum possible without heavily charring the peanuts (120/degree/C) significantly increased the initial extraction rate. Increasing the pressure at constant temperature increased the rate. At higher temperatures (75/degree/ C and above) roasting began to occur, however, this was not detrimental to the extraction rate or overall oil recovery. Decreasing the particle size increases the overall yield per batch of peanuts as seen in both the half factorial and particle size experiments. Increasing the moisture increases the amount of volatiles lost. The flow rate does not affect the solubility, percent oil recovered or volatiles lost for flow rates of 40 to 60 liters CO2/minute at STP. Recovery of peanut and rapeseed oil with a combined process of partial recovery in a screw press plus extraction of the remaining oil with SC-CO2 is technically a viable alternative to other oil recovery methods. Oil recoveries of 95% (peanuts) and 75% (rapeseed) have been demonstrated. The initial extraction rate for rapeseed was consistently lower than the rate for peanuts at the same extraction temperature and pressure. No differences in SC-CO2 extraction rates or yields were found between Dwarf Essex and Cascade varieties of rapeseed. 8 refs., 17 figs., 5 tabs.

  7. Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission.

    PubMed

    Zuber, Maria T; Smith, David E; Watkins, Michael M; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Melosh, H Jay; Neumann, Gregory A; Phillips, Roger J; Solomon, Sean C; Wieczorek, Mark A; Williams, James G; Goossens, Sander J; Kruizinga, Gerhard; Mazarico, Erwan; Park, Ryan S; Yuan, Dah-Ning

    2013-02-01

    Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies. PMID:23223395

  8. Geothermal injection treatment: process chemistry, field experiences, and design options

    SciTech Connect

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  9. Applications of EOR (enhanced oil recovery) technology in field projects--1990 update

    SciTech Connect

    Pautz, J.F.; Thomas, R.D.

    1991-01-01

    Trends in the type and number of US enhanced oil recovery (EOR) projects are analyzed for the period from 1980 through 1989. The analysis is based on current literature and news media and the Department of Energy (DOE) EOR Project Data Base, which contains information on over 1,348 projects. The characteristics of the EOR projects are grouped by starting date and process type to identify trends in reservoir statistics and applications of process technologies. Twenty-two EOR projects starts were identified for 1989 and ten project starts for 1988. An obvious trend over recent years has been the decline in the number of project starts since 1981 until 1988 which corresponds to the oil price decline during that period. There was a modest recovery in 1989 of project starts, which lags the modest recovery of oil prices in 1987 that was reconfirmed in 1989. During the time frame of 1980 to 1989, there has been a gradual improvement in costs of operation for EOR technology. The perceived average cost of EOR has gone down from a $30/bbl range to low $20/bbl. These costs of operation seems to stay just at the price of oil or slightly above to result in marginal profitability. The use of polymer flooding has drastically decreased both in actual and relative numbers of project starts since the oil price drop in 1986. Production from polymer flooding is down more than 50%. Long-term plans for large, high-cost projects such as CO{sub 2} flooding in West Texas, steamflooding in California, and hydrocarbon flooding on the North Slope have continued to be implemented. EOR process technologies have been refined to be more cost effective as shown by the continued application and rising production attributable to EOR. 8 refs., 6 figs., 13 tabs.

  10. Effect of acidulants on the recovery of milk constituents and quality of Mozzarella processed cheese.

    PubMed

    Seth, Karuna; Bajwa, Usha

    2015-03-01

    The investigation was undertaken to study the effect of acidulants on the recovery of milk constituents and composition of Mozzarella pre-cheese and physical, chemical and sensory characteristics and texture profile analysis (TPA) of processed cheese prepared there from. The pre-cheese was made by direct acidification technique using citric, acetic and lactic acid and processed with 1 % tri-sodium citrate. The acidulants significantly (p < 0.05) affected the fat and protein recoveries and chemical composition of pre-cheese. These also had a significant (p < 0.05) effect on chemical constituents (moisture, protein, fat on dry basis and moisture in non-fat substances), sensory characteristics, physical properties (expressible serum, fat leakage and meltability) and TPA (hardness, fracturability, adhesiveness, elasticity, gumminess and chewiness) of processed cheese. PMID:25745225

  11. PROCESS MODELING AND ANALYSIS FOR RECOVERY OF PUBE SOURCES AT LOS ALAMOS

    SciTech Connect

    D. KORNREICH; ET AL

    2000-11-01

    Los Alamos National Laboratory maintains one of the premier plutonium processing facilities in the country. The plutonium facility supports several defense- and nondefense-related missions. This paper describes process-modeling efforts focused on the operations related to the Radioactive Source Recovery Program, which recovers the plutonium from plutonium-beryllium neutron sources. This program accomplishes at least two goals: it is evidence of good stewardship of a national resource, plutonium, and destroys a potential health hazard, the neutron source, by separating the plutonium from the beryllium in sources that are no longer being used in various industries or the military. We examine the processes related to source recovery operations in terms of throughput, ionizing radiation exposure to workers, and mass balances using two discrete-event simulation tools: Extend{trademark}, which is commercially available; and ProMoS, which is in-house software specifically tailored for modeling nuclear-materials operations.

  12. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  13. Pulsed electric field processing of egg products: a review.

    PubMed

    Yogesh, K

    2016-02-01

    Thermal processing ensures safety and enhances the shelf-life of most of the food products. It alters the structural-chemical composition, modifies heat labile components, as well as affects the functional properties of food products. This has driven the development of non-thermal food processing techniques, primarily for extending the shelf-life of different food products. These techniques are currently also being evaluated for their effects on product processing, quality and other safety parameters. Pulsed electric field (PEF) is an example of non-thermal technique which can be applied for a variety of purpose in the food processing industry. PEF can be used for antimicrobial treatment of various food products to improve the storability or food safety, for extraction and recovery of some high-value compounds from a food matrix or for stabilization of various food products through inactivation of some enzymes or catalysts. Research on the application of PEF to control spoilage or pathogenic microorganisms in different egg products is being currently focused. It has been reported that PEF effectively reduces the activity of various microorganisms in a variety of egg products. However, the PEF treatment also alters the structural and functional properties to some extent and there is a high degree of variability between different studies. In addition to integrating findings, the present review also provides several explanations for the inconsistency in findings between different studies related to PEF processing of egg products. Several specific recommendations for future research directions on PEF processing are well discussed in this review. PMID:27162373

  14. Membrane process designs in the recovery of bio-fuels and bio-chemicals

    SciTech Connect

    Leeper, S.A.

    1990-01-01

    In this presentation, the emerging membrane unit operations and process designs that can be used in recovery of fuels and organic chemicals produced via bioconversion are briefly summarized. Product recovery costs are a major barrier to increased use of bioconversion for the production of fuels and chemicals. The integration of developing membrane unit operations into product recovery schemes may reduce process energy requirements and cost. Membrane unit operations that are used or studied in recovery of bio-fuels and organic chemicals include pervaporation (PV), vapor permeation (VPe), reverse osmosis (RO), membrane extraction, and electrodialysis (ED). Although it can be argued that ultrafiltration (UF) is used to purify bio-fuels and bio-chemicals, UF is not included in this survey for two reasons: (1) the primary uses of UF in bioprocessing are to clarify fermentation broth and to retain cells/enzymes in bioreactors and (2) the literature on UF in biotechnology is expansive. Products of bioconversion for which data are compiled include ethanol, acetone, butanol, glycerol, isopropanol, ethyl acetate, fusel oils, acetaldehyde, acetic acid, butyric acid, citric acid, propionic acid, succinic acid, and tartaric acid. 13 refs.

  15. Coal-gold agglomeration: an alternative separation process in gold recovery

    SciTech Connect

    Akcil, A.; Wu, X.Q.; Aksay, E.K.

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  16. Network structure dependence on unconstrained isothermal-recovery processes for shape-memory thiol-epoxy "click" systems

    NASA Astrophysics Data System (ADS)

    Belmonte, Alberto; Fernández-Francos, Xavier; De la Flor, Silvia; Serra, Àngels

    2016-07-01

    The shape-memory response (SMR) of "click" thiol-epoxy polymers produced using latent catalysts, with different network structure and thermo-mechanical properties, was tested on unconstrained shape-recovery processes under isothermal conditions. Experiments at several programming temperatures ( T_{prog}) and isothermal-recovery temperatures ( T_{iso}) were carried out, and the shape-memory stability was analyzed through various consecutive shape-memory cycles. The temperature profile during the isothermal-recovery experiments was monitored, and it showed that the shape-recovery process takes place while the sample is becoming thermally stable and before stable isothermal temperature conditions are eventually reached. The shape-recovery process takes place in two different stages regardless of T_{iso}: a slow initial stage until the process is triggered at a temperature strongly related with the beginning of network relaxation, followed by the typical exponential decay of the relaxation processes until completion at a temperature below or very close to Tg. The shape-recovery process is slower in materials with more densely crosslinked and hindered network structures. The shape-recovery time ( t_{sr}) is significantly reduced when the isothermal-recovery temperature T_{iso} increases from below to above Tg because the network relaxation dynamics accelerates. However, the temperature range from the beginning to the end of the recovery process is hardly affected by T_{iso}; at higher T_{iso} it is only slightly shifted to higher temperatures. These results suggest that the shape-recovery process can be controlled by changing the network structure and working at T_{iso} < Tg to maximize the effect of the structure and/or by increasing T_{iso} to minimize the effect but increasing the shape-recovery rate.

  17. Field-Scale Inhibition and Recovery of Atmospheric-Methane Oxidation in Soil

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Dax, A.; Genter, F.; Henneberger, R.

    2015-12-01

    Aerobic methane (CH4) oxidation in upland soils is the only known terrestrial sink for atmospheric CH4. It is mediated by methane-oxidizing bacteria (MOB) that possess a high-affinity form of the enzyme methane monooxygenase (MMO), allowing utilization of CH4 at near-atmospheric, low concentrations (≤ 1.9 µL/L). As cultivation attempts for high-affinity MOB have shown little success to date, there remains much speculation regarding their functioning in different environmental systems. For quantification of microbial functions at the field scale, inhibition experiments are often used as a control and to verify that observed substrate turnover is microbially mediated. Targeting MMO, several compounds have been proposed as inhibitors of CH4 oxidation. However, previous inhibition experiments were mostly conducted in systems dominated by low-affinity MOB, which mediate CH4 oxidation at elevated CH4 concentrations. On the contrary, inhibition experiments targeting high-affinity MOB are scare, particularly at the field scale. We present results of field-scale experiments to investigate effectiveness of and recovery from inhibition of atmospheric CH4 oxidation using the competitive inhibitors CH3F and CH2F2, as well as the non-competitive inhibitor C2H2. The latter is of particular interest, because C2H2 irreversibly binds to MMO, requiring de-novo synthesis of MMO for recovery of CH4 oxidation activity. Experiments were conducted during both winter and summer seasons in a sandy soil. Atmospheric CH4 oxidation was quantified in regular intervals at reference and treatment locations using the soil-profile method with concurrent measurements of soil-water contents and -temperature. Whereas C2H2 inhibition was highly effective in both seasons, the time required for recovery to the level of the reference location was much shorter during the summer experiment (~1 mo compared with 4 mo during winter). Our data provide new insights into the physiology of high-affinity MOB.

  18. Assessing Landscape Change and Processes of Recurrence, Replacement, and Recovery in the Southeastern Coastal Plains, USA

    NASA Astrophysics Data System (ADS)

    Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis L.; Griffith, Glenn E.; Riegle, Jodi L.; Hester, David J.; Soulard, Christopher E.; McBeth, Jamie L.

    2015-11-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.

  19. Assessing Landscape Change and Processes of Recurrence, Replacement, and Recovery in the Southeastern Coastal Plains, USA.

    PubMed

    Drummond, Mark A; Stier, Michael P; Auch, Roger F; Taylor, Janis L; Griffith, Glenn E; Riegle, Jodi L; Hester, David J; Soulard, Christopher E; McBeth, Jamie L

    2015-11-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8% of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15% of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83%. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3% of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory. PMID:26163198

  20. Assessing landscape change and processes of recurrence, replacement, and recovery in the Southeastern Coastal Plains, USA

    USGS Publications Warehouse

    Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis; Griffith, Glenn E.; Hester, David J.; Riegle, Jodi L.; Soulard, Christopher E.; McBeth, Jamie L.

    2015-01-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.

  1. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996

    SciTech Connect

    1997-05-01

    Summaries are presented for 37 enhanced oil recovery contracts being supported by the Department of Energy. The projects are grouped into gas displacement methods, thermal recovery methods, geoscience technology, reservoir characterization, and field demonstrations in high-priority reservoir classes. Each summary includes the objectives of the project and a summary of the technical progress, as well as information on contract dates, size of award, principal investigator, and company or facility doing the research.

  2. Design of Hybrid Steam-In Situ Combustion Bitumen Recovery Processes

    SciTech Connect

    Yang Xiaomeng; Gates, Ian D.

    2009-09-15

    Given enormous capital costs, operating expenses, flue gas emissions, water treatment and handling costs of thermal in situ bitumen recovery processes, improving the overall efficiency by lowering energy requirements, environmental impact, and costs of these production techniques is a priority. Steam-assisted gravity drainage (SAGD) is the most widely used in situ recovery technique in Athabasca reservoirs. Steam generation is done on surface and consequently, because of heat losses, the energy efficiency of SAGD can never be ideal with respect to the energy delivered to the sandface. An alternative to surface steam generation is in situ combustion (ISC) where heat is generated within the formation through injection of oxygen at a sufficiently high pressure to initiate combustion of bitumen. In this manner, the heat from the combustion reactions can be used directly to mobilize the bitumen. As an alternative, the heat can be used to generate steam within the formation which then is the agent to move heat in the reservoir. In this research, alternative hybrid techniques with simultaneous and sequential steam-oxygen injection processes are examined to maximize the thermal efficiency of the recovery process. These hybrid processes have the advantage that during ISC, steam is generated within the reservoir from injected and formation water and as a product of oxidation. This implies that ex situ steam generation requirements are reduced and if there is in situ storage of combustion gases, that overall gas emissions are reduced. In this research, detailed reservoir simulations are done to examine the dynamics of hybrid processes to enable design of these processes. The results reveal that hybrid processes can lower emitted carbon dioxide-to-oil ratio by about 46%, decrease the consumed natural gas-to-oil ratio by about 73%, reduce the cumulative energy-to-oil ratio by between 40% and 70% compared to conventional SAGD, and drop water consumption per unit oil produced

  3. Natural stone muds as secondary raw materials: towards a new sustainable recovery process

    NASA Astrophysics Data System (ADS)

    Zichella, Lorena; Tori, Alice; Bellopede, Rossana; Marini, Paola

    2016-04-01

    The production of residual sludge is a topical issue, and has become essential to recover and reuse the materials, both for the economics and the environmental aspect. According to environmental EU Directives, in fact ,the stone cutting and processing should characterized by following objectives, targets and actions: the reduction of waste generated, the decreasing of use of critical raw material, the zero landfilling of sludge and decreasing in potential soil contamination, the prevention of transport of dangerous waste, the reduction of energy consumption, the zero impact on air pollution and the cost reduction . There are many industrial sector in which residual sludge have high concentrations of metals and/or elements deemed harmful and therefore hazardous waste. An important goal, for all industrial sectors, is an increase in productivity and a parallel reduction in costs. The research leads to the development of solutions with an always reduced environmental impact. The possibility to decrease the amount of required raw materials and at the same time the reduction in the amount of waste has become the aim for any industrial reality. From literature there are different approaches for the recovery of raw and secondary materials, and are often used for the purpose chemical products that separate the elements constituting the mud but at the same time make additional pollutants. The aim of the study is to find solutions that are environmentally sustainable for both industries and citizens. The present study is focused on three different Piedmont rocks: Luserna, Diorite from Traversella and Diorite from Vico, processed with three different stone machining technologies: cutting with diamond wire in quarry (blocks), in sawmill (slabs) and surface polishing. The steps are: chemical analysis, particle size analysis and mineralogical composition and characterization of the sludge obtained from the various machining operations for the recovery of the metal material by

  4. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    NASA Technical Reports Server (NTRS)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  5. Stratigraphy of Citronelle Oil Field, AL: Perspectives from Enhanced Oil Recovery and Potential CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Pashin, J. C.; Kopaska-Merkel, D. C.; Esposito, R. A.

    2008-12-01

    The Citronelle Dome is a giant salt-cored anticline in the eastern Mississippi Interior Salt Basin of south Alabama. The dome forms an elliptical structural closure containing multiple opportunities for enhanced oil recovery (EOR) and large-capacity saline reservoir CO2 sequestration. The Citronelle Oil Field, which is on the crest of the dome, has produced more than 168 MMbbl of 42° gravity oil from marginal marine sandstone in the Lower Cretaceous Donovan Sand. Recently, EOR field tests have begun in the northeastern part of the oil field. Citronelle Unit B-19-10 #2 well (Alabama State Oil and Gas Board Permit No. 3232) will serve as the CO2 injector for the first field test. CO2 will be injected into the Upper Donovan 14-1 and 16-2 sandstone units. All well logs in the 4-square-mile area surrounding the test site have been digitized and used to construct a network of nineteen stratigraphic cross sections correlating Sands 12 through 20A in the Upper Donovan. Detailed study of Citronelle cores has shown that depositional environments in the Donovan Sand differed significantly from the earlier model that has guided past development of the Citronelle Field. The cross sections demonstrate the extreme facies heterogeneity of the Upper Donovan, and this heterogeneity is well expressed within the five-spot well pattern where the field test will be conducted. Many other features bearing on the performance of the CO2 injection test have been discovered. Of particular interest is the 16-2 sand, which is interpreted as a composite of two tiers of channel fills. Pay strata are typically developed in the lower tier, and this is where CO2 will be injected. The upper tier is highly heterogeneous and is interpreted to contain sandstone fills of variable reservoir quality, as well as mudstone plugs.

  6. Modeling the effects of ore properties on water recovery in the thickening process

    NASA Astrophysics Data System (ADS)

    Unesi, Majid; Noaparast, Mohammad; Shafaei, Seiyd Ziaedin; Jorjani, Esmaeil

    2014-09-01

    A better understanding of solid-liquid separation would assist in improving the thickening performance and perhaps water recovery as well. The present work aimed to develop an empirical model to study the effects of ore properties on the thickening process based on pilot tests using a column. A hydro-cyclone was used to prepare the required samples for the experiments. The model significantly predicted the experimental underflow solid content using a regression equation at a given solid flux and bed level for different samples, indicating that ore properties are the effective parameters in the thickening process. This work confirmed that the water recovery would be increased about 5% by separating the feed into two parts, overflow and underflow, and introducing two different thickeners into them separately. This is duo to the fact that thickeners are limited by permeability and compressibility in operating conditions.

  7. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  8. Flux Recovery of a Forward Osmosis Membrane After a Fouling Process

    NASA Technical Reports Server (NTRS)

    Gamboa-Vázquez, Sonia; Flynn, Michael; Romero Mangado, Jaione; Parodi, Jurek

    2016-01-01

    Wastewater treatment through Forward Osmosis (FO) membranes is a process that has been evaluated in the past years as an innovative technology for the Next Generation Life Support Systems. FO technologies are cost effective, and require very low energy consumption, but are subject to membrane fouling. Membrane fouling occurs when unwanted materials accumulate on the active side of the membrane during the wastewater treatment process, which leads to a decrease in membrane flow rates. Membrane fouling can be reversed with the use of antifoulant solutions. The aim of this study is to identify the materials that cause flow rate reduction due to membrane fouling, as well as to evaluate the flux recovery after membrane treatment using commercially available antifoulants. 3D Laser Scanning Microscope images were taken to observe the surface of the membrane. Fourier Transform Infrared (FTIR) spectrometry results identified possible compounds that cause membrane fouling and FO testing results demonstrated flow rate recovery after membrane treatment using antifoulants.

  9. Flux Recovery of a Forward Osmosis Membrane After a Fouling Process

    NASA Technical Reports Server (NTRS)

    Romero-Mangado, Jaione; Parodi, Jurek; Gamboa-Vazquez, Sonia; Stefanson, Ofir; Diaz-Cartagena, Diana C.; Flynn, Michael

    2016-01-01

    Wastewater treatment through forward osmosis (FO) membranes is a process that has been evaluated in the past years as an innovative technology for the Next Generation Life Support Systems. FO technologies are cost effective, and require very low energy consumption, but are subject to membrane fouling. Membrane fouling occurs when unwanted materials accumulate on the active side of the membrane during the wastewater treatment process, which leads to a decrease in membrane flux rate. The aim of this study is to identify the materials that cause flux rate reduction due to membrane fouling, as well as to evaluate the flux rate recovery after membrane treatment using commercially available antifoulants. Fourier Transform Infrared (FTIR) spectrometry results identified possible compounds that cause membrane fouling and FO testing results demonstrated flux rate recovery after membrane treatment using antifoulants.

  10. Fluid Diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes

    SciTech Connect

    Seright, R.S.; Martin, F.D.

    1991-11-01

    This report describes progress made during the second year of the three-year project, Fluid diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes.'' The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gasfloods. The work examines how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. 93 refs., 39 figs., 43 tabs.

  11. SEPARATIONS RESEARCH AT THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY - TOWARDS RECOVERY OF VOCS AND METALS USING MEMBRANES AND ADSORPTION PROCESSES

    EPA Science Inventory

    The USEPA's National Risk Management Research Laboratory is investigating new separations materials and processes for removal and recovery of volatile organic compounds (VOCs) and toxic metals from wastestreams and industrial process streams. Research applying membrane-based perv...

  12. Soil nutrient processes during spring thaw along a thermokarst recovery chronosequence

    NASA Astrophysics Data System (ADS)

    Buckeridge, K. M.; Schaeffer, S. M.; Baron, A.; Mack, M. C.; Schuur, E. A.; Schimel, J.

    2012-12-01

    of microbial activity and soil nutrient status. Microbial activity and biomass nutrient contents were highest in the shrubby, intermediate recovery stages. Contrary to our expectations, the addition of tea instead of water during the thaw process did not stimulate enhanced microbial activity, indicating that late winter soil microbial communities are not limited by the minimally processed vegetation leachate that characterizes tundra spring melt waters. During the course of the incubation, microbial activity increased linearly, indicating an increasingly active microbial community at both subzero and near zero soil temperatures.

  13. The Effects of Children on the Process of Recovery in Oxford Houses.

    PubMed

    Legler, Ray; Chiaramonte, Danielle; Patterson, Meaghan; Allis, Ashley; Runion, Hilary; Jason, Leonard

    2012-01-01

    The effects of children on the process of substance use recovery for adults living in Oxford Houses is explored in two qualitative studies. Oxford Houses are self-run, community-based residential homes for small groups of adults who live together and support each other's efforts to recover from drug and/or alcohol addiction. In the first study, telephone interviews were conducted with 29 adults who were living in Oxford Houses that allowed children to live in the house with their parent. Results suggest that having children in the house supported a positive living environment for the recovery of house members. In the second study, telephone interviews were conducted with an additional 15 mothers who lived in Oxford Houses. These interviews focused on the effects of the mothers' addiction and recovery on their relationships with their children. This study found that most parents acknowledged the negative effects of their addiction on their relationship with their child and the effects of their recovery on improving those relationships. PMID:23875179

  14. The Effects of Children on the Process of Recovery in Oxford Houses

    PubMed Central

    Legler, Ray; Chiaramonte, Danielle; Patterson, Meaghan; Allis, Ashley; Runion, Hilary; Jason, Leonard

    2013-01-01

    The effects of children on the process of substance use recovery for adults living in Oxford Houses is explored in two qualitative studies. Oxford Houses are self-run, community-based residential homes for small groups of adults who live together and support each other’s efforts to recover from drug and/or alcohol addiction. In the first study, telephone interviews were conducted with 29 adults who were living in Oxford Houses that allowed children to live in the house with their parent. Results suggest that having children in the house supported a positive living environment for the recovery of house members. In the second study, telephone interviews were conducted with an additional 15 mothers who lived in Oxford Houses. These interviews focused on the effects of the mothers’ addiction and recovery on their relationships with their children. This study found that most parents acknowledged the negative effects of their addiction on their relationship with their child and the effects of their recovery on improving those relationships. PMID:23875179

  15. Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery.

    PubMed

    Al-Bahry, Saif N; Elshafie, Abdulkader E; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Joshi, Sanket J; Al-Maaini, Ratiba A; Al-Alawi, Wafa J; Sugai, Yuichi; Al-Mandhari, Mussalam

    2013-01-01

    Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR. PMID:23314376

  16. Evaluation of lead recovery efficiency from waste CRT funnel glass by chlorinating volatilization process.

    PubMed

    Erzat, Aris; Zhang, Fu-Shen

    2014-01-01

    The current study was carried out to develop a novel process, namely chloride volatilization procedure for lead recovery from waste cathode ray tube (CRT) funnel glass. In the recovery system, the glass powder was first compressed into cylindrical pellet homogeneously with chlorinating agents, and then subjected to thermal treatment for solid-phase reaction. In this case, lead could be easily released from the silicon oxide network of the glass and it was recovered in the form of PbCl₂. It was found that CaCl2 was the most effective chlorinating agent, and the optimum operation temperature, holding time and system pressure were 1000 °C, 2 h, 600 ± 50 Pa, respectively. The evaporated PbCl₂could be easily recovered by a cooling device. The evaporation ratio of lead from waste CRT was 99.1% and the purity of the recovered PbCl₂product was 97.0%. The reaction routes and lead recovery mechanisms of the process were identified. This study provides an efficient and practical process for waste CRT funnel glass detoxification and recycling. PMID:25176480

  17. Reduced beamset adaptive matched field processing

    NASA Astrophysics Data System (ADS)

    Tracey, Brian; Turaga, Srinivas; Lee, Nigel

    2003-04-01

    Matched field processing (MFP) offers the possibility of improved towed array performance at endfire through range/depth discrimination of contacts. One challenge is that arrays with limited vertical aperture can often resolve only a small number of multipath arrivals. This paper explores ways to capture the array resolution by re-parametrizing the set of MFP replicas. A reduced beamset can be created by performing a singular value decomposition on the MFP replica set. Alternatively, clustering techniques can be used to generate MFP cell families, or regions of similar response. These parametrizations are applied to adaptive MFP algorithms to show speed and performance gains. The use of cell families/regions instead of individual MFP cells also provides a framework for increasing the robustness of MFP by defocusing the MFP beamforming operation. The techniques are demonstrated for shallow-water towed array scenarios. [Work sponsored by DARPA-ATO under Air Force Contract No. F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense. Approved for Public Release, Distribution Unlimited.

  18. IN SITU FIELD TESTING OF PROCESSES

    SciTech Connect

    J.S.Y. YANG

    2004-11-08

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and

  19. Initial Results of Global Lunar Gravity Field Recovery from SELENE tracking data

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koji; Goossens, Sander; Ishihara, Yoshiaki; Liu, Qinghui; Iwata, Takahiro; Namiki, Noriyuki; Noda, Hirotomo; Hanada, Hideo; Kikuchi, Fuyuhiko; Kawano, Nobuyuki; Tsuruta, Seiitsu; Asari, Kazuyoshi; Ishikawa, Toshiaki; Sasaki, Sho

    Two small spin-stabilized sub-satellites, Rstar (OKINA) and Vstar (OUNA), have successfully been separated from Main satellite of SELENE (KAGUYA) and inserted into planned elliptical orbits on October 9 and 12, 2007, respectively. These spacecraft are dedicated to improving our knowledge of the global lunar gravity field with the mission instruments on-board, i.e., RSAT (a satellite-to-satellite Doppler tracking sub-system) and VRAD (artificial radio sources for VLBI). We have started collecting new types of tracking data for the lunar-orbiting satellites, i.e., 4-way Doppler tracking between the Main satellite and Rstar (i.e., a direct far-side gravity observation), and multi-frequency differential VLBI tracking between Rstar and Vstar. A global lunar gravity field with unprecedented accuracy is expected to be estimated through precision orbit determination by using these tracking data. A preliminary global lunar gravity field model (degree and order up to 60) was developed from about 3-month of SELENE tracking data which include 2-way Doppler, 2-way range, and 4-way Doppler data. Although the current far-side data coverage is incomplete and a Kaula-type a priori constraint is necessary for meaningful inversion, some of ring-shaped gravity anomalies are more clearly resolved in the far-side compared with existing lunar gravity models. We will present concept of tracking data acquisition scheduling, current status of tracking data acquisition, and preliminary results of global lunar gravity filed recovery.

  20. Reverse recovery in p- n junction diodes with built-in drift fields

    NASA Astrophysics Data System (ADS)

    Moll, J. L.; Ray, U. C.; Jain, S. C.

    1983-11-01

    This paper extends the earlier analysis of Moll, Krakauer and Shen of the reverse recovery of a symmetrical p- n junction diode with built-in retarding drift field in the base to the diodes in which the effect of bulk recombinations in the base is important. It is shown that the effect of bulk recombination becomes important if {J f}/{J R} ⪆ 0.5 ( JF and JR are the forward and the reverse currents respectively) even when the drift field is very strong. For very strong retarding fields, ts vs ln (1 + {J F}/{J R}) plot is linear and has a slope very close to the minority carrier lifetime τB in the base even for small values of time. Hence, τB can be conveniently determined by this method for such diodes. Expressions for the charge left in the base at the end of the storage phase and for the decay of the current in the second phase are also derived and discussed.

  1. Process technology for production and recovery of heterologous proteins with Pichia pastoris.

    PubMed

    Jahic, Mehmedalija; Veide, Andres; Charoenrat, Theppanya; Teeri, Tuula; Enfors, Sven-Olof

    2006-01-01

    Developments in process techniques for production and recovery of heterologous proteins with Pichia pastoris are presented. Limitations for the standard techniques are described, and alternative techniques that solve the limitations problems are reviewed together with the methods that resulted in higher productivity of the P. pastoris processes. The main limitations are proteolysis of the secreted products and cell death in the high cell density bioreactor cultures. As a consequence, both low productivity and lower quality of the feedstock for downstream processing are achieved in processes hampered with these problems. Methods for exploring proteolysis and cell death are also presented. Solving the problems makes the conditions for downstream processing superior for the P. pastoris expression systems compared to other systems, which either need complex media or rely on intracellular production. These improved conditions allow for interfacing of cultivation with downstream processing in an integrated fashion. PMID:17137292

  2. Recovery of waste heat from industrial slags via modified float glass process

    SciTech Connect

    Serth, R.W.; Ctvrtnicek, T.E.; McCormick, R.J.; Zanders, D.L.

    1981-01-01

    A novel process for recovering waste heat from molten slags produced as by-products in the steel, copper, and elemental phosphorus industries is investigated. The process is based on technology developed in the glass industry for the commercial production of flat glass. In this process, energy is recovered from molten slag as it cools and solidifies on the surface of a pool of molten tin. In order to determine the technical and economic feasibility of the process, an energy recovery facility designed to handle the slag from a large elemental phosphorus plant is studied. Results indicate that the process is marginally economical at current energy price levels. A number of technical uncertainties in the process design are also identified. 9 refs.

  3. Monitoring exogenous and indigenous bacteria by PCR-DGGE technology during the process of microbial enhanced oil recovery.

    PubMed

    Wang, Jun; Ma, Ting; Zhao, Lingxia; Lv, Jinghua; Li, Guoqiang; Zhang, Hao; Zhao, Ben; Liang, Fenglai; Liu, Rulin

    2008-06-01

    A field experiment was performed to monitor changes in exogenous bacteria and to investigate the diversity of indigenous bacteria during a field trial of microbial enhanced oil recovery (MEOR). Two wells (26-195 and 27-221) were injected with three exogenous strains and then closed to allow for microbial growth and metabolism. After a waiting period, the pumps were restarted and the samples were collected. The bacterial populations of these samples were analyzed by denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments. DGGE profiles indicated that the exogenous strains were retrieved in the production water samples and indigenous strains could also be detected. After the pumps were restarted, average oil yield increased to 1.58 and 4.52 tons per day in wells 26-195 and 27-221, respectively, compared with almost no oil output before the injection of exogenous bacteria. Exogenous bacteria and indigenous bacteria contributed together to the increased oil output. Sequence analysis of the DGGE bands revealed that Proteobacteria were a major component of the predominant bacteria in both wells. Changes in the bacteria population in the reservoirs during MEOR process were monitored by molecular analysis of the 16S rRNA gene sequence. DGGE analysis was a successful approach to investigate the changes in microorganisms used for enhancing oil recovery. The feasibility of MEOR technology in the petroleum industry was also demonstrated. PMID:18273653

  4. Nutrient removal and phosphorus recovery performances of a novel anaerobic-anoxic/nitrifying/induced crystallization process.

    PubMed

    Shi, Jing; Lu, Xiwu; Yu, Ran; Zhu, Wentao

    2012-10-01

    An anaerobic-anoxic/nitrifying (A(2)N) two sludge process coupled with induced crystallization (IC) called A(2)N-IC process was developed for wastewater nutrient removal and phosphorus recovery. The performances of A(2)N-IC process in comparison with A(2)N process at different COD to phosphorus (COD/P) feeding ratios were investigated. The results indicated that A(2)N-IC achieved not only high and stable nutrient removal but also phosphorus recovery. Calcium phosphorus crystals were formed in the crystallization reactor in A(2)N-IC. Moreover, the incorporation of chemical induced crystallization improved biological phosphorus removal. In A(2)N-IC process, phosphorus removal efficiency was consistently maintained at 99.2%, whereas in A(2)N it decreased from 93.0% to 65.7% with the decrease of feeding COD/P ratio. The COD and ammonia removal efficiencies were regardless of feeding COD/P ratio in the two processes. PMID:22858484

  5. 238Pu recovery and salt disposition from the molten salt oxidation process

    NASA Astrophysics Data System (ADS)

    Remerowski, M. L.; Stimmel, Jay J.; Wong, Amy S.; Ramsey, Kevin B.

    2000-07-01

    We have begun designing and optimizing our recovery and recycling processes by experimenting with samples of "spent salt" produced by MSO treatment of surrogate waste in the reaction vessel at the Naval Surface Warfare Center-Indian Head. One salt was produced by treating surrogate waste containing pyrolysis ash spiked with cerium. The other salt contains residues from MSO treatment of materials similar to those used in 238Pu processing, e.g., Tygon tubing, PVC bagout bags, HDPE bottles. Using these two salt samples, we will present results from our investigations.

  6. SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM PHOSPHORIC ACID

    DOEpatents

    Bailes, R.H.; Long, R.S.

    1958-11-01

    > A solvent extraction process is presented for recovering metal values including uranium, thorium, and other lanthanide and actinide elements from crude industrial phosphoric acid solutions. The process conslsts of contacting said solution with an immisclble organic solvent extractant containing a diluent and a material selected from the group consisting of mono and di alkyl phosphates, alkyl phosphonates and alkyl phosphites. The uranlum enters the extractant phase and is subsequently recovered by any of the methods known to the art. Recovery is improved if the phosphate solution is treated with a reducing agent such as iron or aluminum powder prior to the extraction step.

  7. An environmentally friendly process for the recovery of valuable metals from spent refinery catalysts.

    PubMed

    Rocchetti, Laura; Fonti, Viviana; Vegliò, Francesco; Beolchini, Francesca

    2013-06-01

    The present study dealt with the whole valorization process of exhaust refinery catalysts, including metal extraction by ferric iron leaching and metal recovery by precipitation with sodium hydroxide. In the leaching operation the effects on metal recovery of the concentration and kind of acid, the concentration of catalyst and iron (III) were determined. The best operating conditions were 0.05 mol L(-1) sulfuric acid, 40 g L(-1) iron (III), 10% catalyst concentration; almost complete extraction of nickel and vanadium, and 50%extraction efficiency of aluminium and less than 20% for molybdenum. Sequential precipitation on the leach liquor showed that it was not possible to separate metals through such an approach and a recovery operation by means of a single-stage precipitation at pH 6.5 would simplify the procedures and give a product with an average content of iron (68%), aluminium (13%), vanadium (11%), nickel (6%) and molybdenum (1%) which would be potentially of interest in the iron alloy market. The environmental sustainability of the process was also assessed by means of life cycle assessment and yielded an estimate that the highest impact was in the category of global warming potential with 0.42 kg carbon dioxide per kg recovered metal. PMID:23393098

  8. An approach to determining the economic feasibility of refuse-derived fuel and materials recovery processing

    NASA Astrophysics Data System (ADS)

    Gershman, H. W.

    1980-06-01

    An approach for determining the economic feasibility of refuse-derived fuel production and the recovery of materials is presented. This information is based on data developed for the metropolitan Washington, D.C. area as input for the consideration of a regional resource recovery program which would eventually encompass 4000 t/day of municipal solid waste; it is designed to recover refuse-derived fuel (RDF), ferrous and nonferrous metals, flint and color-mixed glass cullet, color-mixed glass fines, and waste newspapers. The planning process requires estimates of recovery product revenues and of process feasibility; since materials revenues can be predicted with a greater degree of certainty than RDF revenues, it becomes necessary to determine what revenues will be required from the sale of RDF so that predicted economics can be the same as the alternative disposal practice. A technique is described which will assist the decisionmaker in evaluating the economic feasibility of the proposed project by determining the RDF 'Indifference Value'.

  9. Oxidation of Pu-bearing solids: A process for Pu recovery from Rocky Flats incinerator ash

    SciTech Connect

    Karraker, D.G.

    1997-07-18

    High-fired PuO{sub 2}, RFP ash heels, and synthetic RFP incinerator ash were easily soluble after oxidation of Pu(IV) to Pu(VI) by heating with Na{sub 2}O{sub 2} or KO{sub 2} to 450{degrees} for two hours. This offers a route to the recovery of Pu from these and similar PuO{sub 2}-bearing solids that can be carried out in present equipment. Evidence for new compounds K{sub 2}PuO{sub 4}, K{sub 4}PuO{sub 5} and K{sub 6}PuO{sub 6} is presented. A process for recovery of Pu from RFP incinerator ash is presented.

  10. Taiwanese women's process of recovery from stillbirth: a qualitative descriptive study.

    PubMed

    Tseng, Ying-Fen; Chen, Chung-Hey; Wang, Hsiu-Hung

    2014-06-01

    The purpose of this qualitative descriptive study was to portray the recovery process of Taiwanese women after stillbirth. Data were generated through individual in-depth interviews with 21 women selected using purposeful sampling. Three stages in an emotional journey of recovery were suffering from silent grief, searching for a way out, and achieving peace of mind and mental stability. Throughout their journey, the women's overarching concern was where the deceased child had gone and whether it was well. Together these stages composed A pathway to peace of mind, a mental journey on which women struggled to spiritually connect with the lost baby and finally sought a personal pathway to emotional peace. Findings can inform healthcare providers in providing culturally sensitive care for Taiwanese women to facilitate healing after a stillbirth. PMID:24737490

  11. Dynamic Magnetic Field Applications for Materials Processing

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.

  12. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    SciTech Connect

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.; Salamov, Z.Z.; Cherkasov, A.B.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes in the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.

  13. Use of the global positioning system in the field recovery of scattered human remains.

    PubMed

    Listi, Ginesse A; Manhein, Mary H; Leitner, Michael

    2007-01-01

    This study examines the Global Positioning System (GPS) as a tool for field mapping of scattered human remains or other materials in forensic investigations. Two aspects of the GPS are considered: (1) the level of accuracy that can be obtained using a mid-priced GPS unit, and (2) the effectiveness of using the GPS to map scattered materials. The positional accuracy of the GPS receiver was tested using a National Geodetic Survey (NGS) point located in Baton Rouge, LA. The utility of the GPS for mapping was investigated by setting up a mock field recovery and mapping the remains using both the GPS and traditional archeological methods. The results indicate that the positional error for a single location using GPS was less than one-half meter. However, when multiple positions were considered, the data produced on different days were not consistent. Further, the GPS receiver used in this study could not distinguish items in close association. Factors such as tree cover density, the proximity of the materials to structures or trees, and satellite positioning contributed to the erratic data. These results indicate that traditional techniques and photographs are still indispensable for mapping scattered remains or artifacts. PMID:17209903

  14. Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes

    SciTech Connect

    Reid, T B; Colonomos, P

    1993-02-01

    This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

  15. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.

    PubMed

    Kumari, Sinu; Das, Debabrata

    2015-10-01

    The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%). PMID:26210150

  16. Extremely low-frequency magnetic fields can impair spermatogenesis recovery after reversible testicular damage induced by heat.

    PubMed

    Tenorio, Bruno Mendes; Ferreira Filho, Moisés Bonifacio Alves; Jimenez, George Chaves; de Morais, Rosana Nogueira; Peixoto, Christina Alves; Nogueira, Romildo de Albuquerque; da Silva Junior, Valdemiro Amaro

    2014-06-01

    Male infertility is often related to reproductive age couples experiencing fertility-related issues. Men may have fertility problems associated with reversible testicular damage. Considering that men have been increasingly exposed to extremely low-frequency magnetic fields generated by the production, distribution and use of electricity, this study analyzed whether 60 Hz and 1 mT magnetic field exposure may impair spermatogenesis recovery after reversible testicular damage induced by heat shock using rats as an experimental model. Adult male rats were subjected to a single testicular heat shock (HS, 43 °C for 12 min) and then exposed to the magnetic field for 15, 30 and 60 d after HS. Magnetic field exposure during the spermatogenesis recovery induced changes in testis components volume, cell ultrastructure and histomorphometrical parameters. Control animals had a reestablished and active spermatogenesis at 60 d after heat shock, while animals exposed to magnetic field still showed extensive testicular degeneration. Magnetic field exposure did not change the plasma testosterone. In conclusion, extremely low-frequency magnetic field may be harmful to fertility recovery in males affected by reversible testicular damage. PMID:23781997

  17. A new direct steel making process based upon the blast furnace (Including scrap processing with recovery of tramp elements)

    SciTech Connect

    Nabi, G.

    1996-12-31

    Steel is produced from raw materials containing iron and alloying elements with direct elimination of oxygen and impurities in the blast furnace process. The blast furnace shaft is modified to take off load from the liquid bath and carbon is prevented from going into the liquid steel. In the gas purification system sulphur and CO{sub 2} removal facilities are included and purified reducing gases so obtained are combusted in the hearth with oxygen to produce heat for smelting. Scrap can be charged as raw material with the recovery of tramp elements with continuous production of liquid steel.

  18. Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 74, Quarter ending March 31, 1993

    SciTech Connect

    Not Available

    1994-03-01

    Accomplishments for the past quarter are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; field demonstrations in high-priority reservoir classes; and novel technology. A list of available publication is also provided.

  19. Contracts for field projects and supporting research on enhanced oil recovery. Progress review quarter ending September 30, 1993

    SciTech Connect

    Not Available

    1994-08-01

    Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and field demonstrations in high-priority reservoir classes. A list of available publications is also included.

  20. GRAIL gravity field recovery based on the short-arc integral equation technique: Simulation studies and first real data results

    NASA Astrophysics Data System (ADS)

    Klinger, B.; Baur, O.; Mayer-Gürr, T.

    2014-02-01

    The NASA mission GRAIL (Gravity Recovery And Interior Laboratory) makes use of low-low satellite-to-satellite tracking between the spacecraft GRAIL-A (Ebb) and GRAIL-B (Flow) to determine high-resolution lunar gravity field features. The inter-satellite measurements are independent of the visibility of the spacecraft from Earth, and hence provide data for both the nearside and the farside of the Moon. We propose to exploit this ranging data by an integral equation approach using short orbital arcs; it is based on the reformulation of Newton's equation of motion as a boundary value problem. This technique has been successfully applied for the recovery of the gravity field of the Earth from the Gravity Recovery And Climate Experiment (GRACE) project-the terrestrial sibling of GRAIL. By means of a series of simulation studies we demonstrate the potential of the approach. We pay particular attention on a priori gravity field information, orbital arc length, observation noise and the impact of spectral aliasing (omission error). Finally, we compute a first lunar gravity model (GrazLGM200a) from real data of the primary mission phase (March 1, 2012 to May 29, 2012). The unconstrained model is expanded up to spherical harmonic degree and order 200. From our simulations and real data results we conclude that the integral equation approach is well suited for GRAIL gravity field recovery.

  1. Multiblock Copolymer Grafting for Butanol Biofuel Recovery by a Sustainable Membrane Process.

    PubMed

    Vijay Kumar, Shankarayya; Arnal-Herault, Carole; Wang, Miao; Babin, Jérôme; Jonquieres, Anne

    2016-06-29

    Biobutanol is an attractive renewable biofuel mainly obtained by the acetone-butanol-ethanol (ABE) fermentation process. Nevertheless, the alcohol concentration has to be limited to a maximum of 2 wt % in ABE fermentation broths to avoid butanol toxicity to the microorganisms. The pervaporation (PV) membrane process is a key sustainable technology for butanol recovery in these challenging conditions. In this work, the grafting of azido-polydimethylsiloxane (PDMS-N3) onto a PDMS-based multiblock copolymer containing alkyne side groups led to a series of original membrane materials with increasing PDMS contents from 50 to 71 wt %. Their membrane properties were assessed for butanol recovery by pervaporation from a model aqueous solution containing 2 wt % of n-butanol at 50 °C. The membrane flux J50μm for a reference thickness of 50 μm strongly increased from 84 to 192 g/h m(2) with increasing PDMS content for free-standing dense membranes with thicknesses in the range of 38-95 μm. At the same time, the intrinsic butanol permeability increased from 1.47 to 4.68 kg μm/h m(2) kPa and the permeate butanol content was also strongly improved from 38 to 53 wt %, corresponding to high and very high membrane separation factors of 30 and 55, respectively. Therefore, the new grafted copolymer materials strongly overcame the common permeability/selectivity trade-off for butanol recovery by a sustainable membrane process. PMID:27267173

  2. A Field-Scale Simulation of the Reversible Nanoparticle Adsorption for Enhancing Oil Recovery Using Hydrophilic Nanofluids

    NASA Astrophysics Data System (ADS)

    Cao, Liyuan

    In order to develop and apply nanotechnology in oil industry, nanoparticles transport in porous media has been studied in the past few years. Theoretical modeling were carried out to evaluate nanoparticle mobility and investigate nanoparticle retention mechanism. In this study, a simulator based on Ju and Fan's mathematical model was used to study nanoparticles transport in porous media on a reservoir scale. The simulator was verified with two simulation software, Eclipse from Schlumberger and MNM1D (Micro- and Nanoparticle transport Model in porous media in 1D geometry) developed by Tosco et al. Different injection scenarios were simulated: continuous injection, slug injection, and postflush. The effect of injection time, injection rate, and slug size on oil recovery were studied. The result discovered that when nanofluids flooding is used after water flooding as tertiary recovery method, early nanofluids injection will lead to higher oil recovery, but with more nanoparticle loss. Higher injection rate of nanofluids could help improve the flooding efficiency, but not the ultimate oil recovery for field development. Also, it can cause more nanoparticle loss. Brine water postflush is recommended when doing nanoflooding. It can significantly improve the recovery of nanoparticles, and for a homogeneous or heterogeneous reservoir, oil recovery is better compared to water flooding.

  3. Zero-discharge: An application of process water recovery technology in the food processing industry

    SciTech Connect

    Fok, S.; Moore, B.

    1999-07-01

    Water is a valuable natural resource and the food processing industry has been among the leading industrial water users in California. With support from a major northern California utility and the California Institute for Food and Agricultural Research, Tri Valley Growers (TVG) has successfully installed the first US energy-efficient zero-discharge process water reclamation system at its Oberti Olive processing facility in Madera, California. The advanced zero-discharge system is the largest application in the world of membrane filtration for recovering water from a food processing plant. Previously, the plant discharged an average of 1 million gallons of salty wastewater (brine) a day into 160 acres of evaporation ponds. However, new environmental regulations made the ponds obsolete. The cost of process water disposal using alternate biotreatment system was prohibitive and would make continued operation uneconomical with plant closure and job loss the likely outcome. Through comprehensive pilot testing and subsequent system design and operational optimization, the advance membrane filtration system with pre- and post-treatment now recovers about 80% of the process liquid in high priority form of water for subsequent reuse at the plant. The solids produced in olive processing, plus concentrated process liquids are used off-site as an animal feed component, thus achieving the plant zero-discharge scheme. The successful implementation of the zero discharge system at the Oberti Olive processing plant has produced energy saving of 3,500,000 kilowatthours and 244,000 therms of gas a year of power as compared to the alternate biotreatment system. It also prevented plant closure and job loss. In addition, water conservation and the discontinuation of evaporation pond use is beneficial to the environment. The project was applauded by the California Environmental Protection Agency as a positive step forward for environmental technology in the agricultural sector in

  4. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  5. A novel process for diethanolamine recovery from partially degraded solutions. 2: Process analysis

    SciTech Connect

    Abdi, M.A.; Meisen, A.

    1999-08-01

    The performance of a separation process for the purification of contaminated amine solutions is described. The process uses multistage distillation and an inert carrier liquid (hexadecane). A distillation column (50-mm i.d., filled to a height of 250 mm with stainless steel DE-Pak {1/4}-in. packing) was employed to confirm the predictions made with the ASPEN process simulator and using the physical property data presented in part 1. Very good separation efficiencies were obtained under vacuum conditions for impurities typically found in contaminated diethanolamine solutions. The results are compared with conventional single-stage flash distillation.

  6. Field Testing of Downgradient Uranium Mobility at an In-Situ Recovery Uranium Mine

    NASA Astrophysics Data System (ADS)

    Reimus, P. W.; Clay, J. T.; Rearick, M.; Perkins, G.; Brown, S. T.; Basu, A.; Chamberlain, K.

    2015-12-01

    In-situ recovery (ISR) mining of uranium involves the injection of O2 and CO2 (or NaHCO3) into saturated roll-front deposits to oxidize and solubilize the uranium, which is then removed by ion exchange at the surface and processed into U3O8. While ISR is economical and environmentally-friendly relative to conventional mining, one of the challenges of extracting uranium by this process is that it leaves behind a geochemically-altered aquifer that is exceedingly difficult to restore to pre-mining geochemical conditions, a regulatory objective. In this research, we evaluated the ability of the aquifer downgradient of an ISR mining area to attenuate the transport of uranium and other problem constituents that are mobilized by the mining process. Such an evaluation can help inform both regulators and the mining industry as to how much restoration of the mined ore zone is necessary to achieve regulatory compliance at various distances downgradient of the mining zone even if complete restoration of the ore zone proves to be difficult or impossible. Three single-well push-pull tests and one cross-well test were conducted in which water from an unrestored, previously-mined ore zone was injected into an unmined ore zone that served as a geochemical proxy for the downgradient aquifer. In all tests, non-reactive tracers were injected with the previously-mined ore zone water to allow the transport of uranium and other constituents to be compared to that of the nonreactive species. In the single-well tests, it was shown that the recovery of uranium relative to the nonreactive tracers ranged from 12-25%, suggesting significant attenuation capacity of the aquifer. In the cross-well test, selenate, molybdate and metavanadate were injected with the unrestored water to provide information on the transport of these potentially-problematic anionic constituents. In addition to the species-specific transport information, this test provided valuable constraints on redox conditions within

  7. Distribution ratios on Dowex 50W resins of metal leached in the caron nickel recovery process

    SciTech Connect

    Reynolds, B.A.; Metsa, J.C.; Mullins, M.E.

    1980-05-01

    Pressurized ion exchange on Dowex 50W-X8 and 50W-X12 resins was investigated using elution techniques to determine distribution ratios for copper, nickel, and cobalt complexes contained in ammonium carbonate solution, a mixture which approximates the waste liquor from the Caron nickel recovery process. Results were determined for different feed concentrations, as well as for different concentrations and pH values of the ammonium carbonate eluant. Distribution ratios were compared with those previously obtained from a continuous annular chromatographic system. Separation of copper and nickel was not conclusively observed at any of the conditions examined.

  8. Chemical recovery process using break up steam control to prevent smelt explosions

    DOEpatents

    Kohl, Arthur L.; Stewart, Albert E.

    1988-08-02

    An improvement in a chemical recovery process in which a hot liquid smelt is introduced into a dissolving tank containing a pool of green liquor. The improvement comprises preventing smelt explosions in the dissolving tank by maintaining a first selected superatmospheric pressure in the tank during normal operation of the furnace; sensing the pressure in the tank; and further impinging a high velocity stream of steam upon the stream of smelt whenever the pressure in the tank decreases below a second selected superatmospheric pressure which is lower than said first pressure.

  9. An approach to determining the economic feasibility of refuse-derived fuels and materials recovery processing

    SciTech Connect

    Gershman, H.W.

    1980-06-01

    An approach for determining the economic feasibility of refuse-derived fuel production and the recovery of various materials is demonstrated, using data developed for the metropolitan Washington, D.C., area as input. The processing facility, designed to handle 650 tpd of refuse, is described. Since materials revenues can be predicted with a higher degree of certainty than refuse fuel revenues, it is necessary to determine what revenues the sale of solid waste fuel will have to generate for projected economics to be the same as an alternative disposal practice. (1 diagram, 8 references, 6 tables)

  10. PETROPHYSICAL INVESTIGATION OF THE SECONDARY RECOVERY POTENTIAL IN THE CHERRY CANYON FORMATION NE LEA FIELD LEA COUNTY, NEW MEXICO

    SciTech Connect

    T. Scott Hickman

    2002-06-01

    Read and Stevens has proposed the evaluation of the waterflood potential from the Cherry Canyon formation in the NE Lea Field in lea County, New Mexico. Much of the development in this area is approaching primary recovery limitations; additional recovery of remaining oil reserves by waterflood needs to be evaluated. The Cherry Canyon formation is composed of fine grained sandstone, containing clay material which results in high water saturation, and also has the tendency to swell and reduce reservoir permeability--the ability of fluid to flow through the rock pores and fractures. There are also abundant organic materials that interfere with obtaining reliable well logs. These complications have limited oil in place calculations and identification of net pay zones, presenting a challenge to the planned waterflood. Core analysis of the Cherry Canyon should improve the understanding of existing well logs and possibly indicate secondary recovery measures, such as waterflood, to enhance field recovery. Lacking truly representative core to provide accurate analyses, Read and Stevens will obtain and preserve fresh core. The consulting firm of T. Scott Hickman and Associates will then collaborate on special core analyses and obtain additional well logs for a more detailed analysis of reservoir properties. The log interpretation will be compared to the core analysis results, and the entire collected data set will be used to assess the potential and economic viability of successfully waterflooding the identified oil zones. Successful results from the project will improve accuracy of log interpretation and establish a methodology for evaluating secondary recovery by waterflood.

  11. Process and apparatus for recovery of sulfur from ammonia containing acid gas streams

    SciTech Connect

    Palm, J.W.

    1987-02-17

    This patent describes a Claus process for the recovery of sulfur, the steps comprising: passing a first stream containing hydrogen sulfide, sulfur dioxide, and ammonia through a low temperature Claus catalytic conversion zone and depositing elemental sulfur and ammonium compounds on catalyst therein; deriving a regeneration stream from the Claus process and regenerating the resulting laden catalyst therewith vaporizing sulfur and ammonia therefrom and producing a regeneration effluent stream comprising elemental sulfur and ammonia; cooling the regeneration effluent stream and condensing elemental sulfur therefrom and producing a sulfur lean regeneration effluent stream; introducing at least a portion of the sulfur lean regeneration effluent stream into a hydrogenation zone and converting substantially all sulfur compounds therein to hydrogen sulfide. The resulting hydrogen sulfide containing stream is introduced into an ammonia removal zone. The resulting stream is contacted with a first aqueous stream and produces a second aqueous stream enriched in ammonia and a sulfur lean regeneration effluent stream reduced in ammonia content; removing ammonia from the second aqueous stream and producing an ammonia enriched stream; returning the sulfur lean regeneration effluent stream reduced in ammonia content to the Claus process adjacent and downstream of the point of derivation of the regeneration stream for the further recovery of sulfur therefrom; and introducing the ammonia enriched stream into an ammonia conversion zone and reducing the concentration of ammonia therein.

  12. Process control and recovery in the Link Monitor and Control Operator Assistant

    NASA Technical Reports Server (NTRS)

    Lee, Lorrine; Hill, Randall W., Jr.

    1993-01-01

    This paper describes our approach to providing process control and recovery functions in the Link Monitor and Control Operator Assistant (LMCOA). The focus of the LMCOA is to provide semi-automated monitor and control to support station operations in the Deep Space Network. The LMCOA will be demonstrated with precalibration operations for Very Long Baseline Interferometry on a 70-meter antenna. Precalibration, the task of setting up the equipment to support a communications link with a spacecraft, is a manual, time consuming and error-prone process. One problem with the current system is that it does not provide explicit feedback about the effects of control actions. The LMCOA uses a Temporal Dependency Network (TDN) to represent an end-to-end sequence of operational procedures and a Situation Manager (SM) module to provide process control, diagnosis, and recovery functions. The TDN is a directed network representing precedence, parallelism, precondition, and postcondition constraints. The SM maintains an internal model of the expected and actual states of the subsystems in order to determine if each control action executed successfully and to provide feedback to the user. The LMCOA is implemented on a NeXT workstation using Objective C, Interface Builder and the C Language Integrated Production System.

  13. Recovery of ammonia in digestates of calf manure through a struvite precipitation process using unconventional reagents.

    PubMed

    Siciliano, A; De Rosa, S

    2014-01-01

    Land spreading of digestates causes the discharge of large quantities of nutrients into the environment, which contributes to eutrophication and depletion of dissolved oxygen in water bodies. For the removal of ammonia nitrogen, there is increasing interest in the chemical precipitation of struvite, which is a mineral that can be reused as a slow-release fertilizer. However, this process is an expensive treatment of digestate because large amounts of magnesium and phosphorus reagents are required. In this paper, a struvite precipitation-based process is proposed for an efficient recovery of digestate nutrients using low-cost reagents. In particular, seawater bittern, a by-product of marine salt manufacturing and bone meal, a by-product of the thermal treatment of meat waste, have been used as low-cost sources of magnesium and phosphorus, respectively. Once the operating conditions are defined, the process enables the removal of more than 90% ammonia load, the almost complete recovery of magnesium and phosphorus and the production of a potentially valuable precipitate containing struvite crystals. PMID:24645466

  14. Removal and recovery of carbon disulfide emitted by the viscose process. Final report

    SciTech Connect

    McIntosh, M.J.

    1992-02-01

    Teepak, Inc., which manufactures cellulose food casings by means of the viscose process, has a plant in Danville, Illinois, that emits approximately 400,000 cubic feet per minute (cfm) of water-saturated air containing approximately 100 parts per million (ppm) of carbon disulfide (CS{sub 2}). Both Teepak and the state of Illinois desire to reduce these emissions as soon as possible; however, the large air flow and very small CS{sub 2} concentration result in a difficult and costly separations problem without an obvious economically viable solution. One possibility is to incinerate the CS{sub 2}, but a more environmentally and economically acceptable alternative is to recover the CS{sub 2} for recycle to the process. The recovered CS{sub 2} would be worth about $700,000 annually to Teepak. Teepak has sponsored, with the Hazardous Waste Research and Information Center (HWRIC) of the Illinois Department of Natural Resources, a research project at Argonne National Laboratory (ANL) to evaluate current gas- purification and recovery technology and to suggest a route of development that will lead to a CS{sub 2} recovery process. The Illinois Department of Commerce and Community Affairs later provided on Illinois Challenge Grant to allow laboratory studies to supplement this effort. This report is a result of all those studies.

  15. Removal and recovery of carbon disulfide emitted by the viscose process

    SciTech Connect

    McIntosh, M.J.

    1992-02-01

    Teepak, Inc., which manufactures cellulose food casings by means of the viscose process, has a plant in Danville, Illinois, that emits approximately 400,000 cubic feet per minute (cfm) of water-saturated air containing approximately 100 parts per million (ppm) of carbon disulfide (CS{sub 2}). Both Teepak and the state of Illinois desire to reduce these emissions as soon as possible; however, the large air flow and very small CS{sub 2} concentration result in a difficult and costly separations problem without an obvious economically viable solution. One possibility is to incinerate the CS{sub 2}, but a more environmentally and economically acceptable alternative is to recover the CS{sub 2} for recycle to the process. The recovered CS{sub 2} would be worth about $700,000 annually to Teepak. Teepak has sponsored, with the Hazardous Waste Research and Information Center (HWRIC) of the Illinois Department of Natural Resources, a research project at Argonne National Laboratory (ANL) to evaluate current gas- purification and recovery technology and to suggest a route of development that will lead to a CS{sub 2} recovery process. The Illinois Department of Commerce and Community Affairs later provided on Illinois Challenge Grant to allow laboratory studies to supplement this effort. This report is a result of all those studies.

  16. Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery

    SciTech Connect

    Couch, R; Becker, R; Rhee, M; Li, M

    2004-09-24

    Lawrence Livermore National Laboratory participated in a U. S. Department of Energy/Office of Industrial Technology sponsored research project 'Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery', as a Cooperative Agreement TC-02028 with the Alcoa Technical Center (ATC). The objective of the joint project with Alcoa is to develop a numerical modeling capability to optimize the hot rolling process used to produce aluminum plate. Product lost in the rolling process and subsequent recycling, wastes resources consumed in the energy-intensive steps of remelting and reprocessing the ingot. The modeling capability developed by project partners will be used to produce plate more efficiently and with reduced product loss.

  17. Resource recovery of organic sludge as refuse derived fuel by fry-drying process.

    PubMed

    Chang, Fang-Chih; Ko, Chun-Han; Wu, Jun-Yi; Wang, H Paul; Chen, Wei-Sheng

    2013-08-01

    The organic sludge and waste oil were collected from the industries of thin film transistor liquid crystal display and the recycled cooking oil. The mixing ratio of waste cooking oil and organic sludge, fry-drying temperatures, fry-drying time, and the characteristics of the organic sludge pellet grain were investigated. After the fry-drying process, the moisture content of the organic sludge pellet grain was lower than 5% within 25 min and waste cooking oil was absorbed on the dry solid. The fry-drying organic sludge pellet grain was easy to handle and odor free. Additionally, it had a higher calorific value than the derived fuel standards and could be processed into organic sludge derived fuels. Thus, the granulation and fry-drying processes of organic sludge with waste cooking oil not only improves the calorific value of organic sludge and becomes more valuable for energy recovery, but also achieves waste material disposal and cost reduction. PMID:23623433

  18. Recovery of Impaired Somatosensory Evoked Fields After Improvement of Tongue Sensory Deficits With Neurosurgical Reconstruction.

    PubMed

    Maezawa, Hitoshi; Tojyo, Itaru; Yoshida, Kazuya; Fujita, Shigeyuki

    2016-07-01

    Somatosensory evoked fields (SEFs) induced by tongue stimulation can be useful as an objective parameter to assess sensory disturbances in the tongue. However, whether tongue SEFs can be useful as a clinical, objective follow-up assessment method of tongue sensation after oral surgery is unknown. We describe 2 cases in which tongue SEFs were successfully used in clinical assessment. Two patients with unilateral tongue sensory deficits caused by lingual nerve injury during lower third molar extraction were recruited. Both patients underwent surgery to repair the damaged nerve, and all tongue sensory evaluations were performed once before and once after surgery. SEFs were recorded by stimulating the affected and unaffected sides of the tongue separately, and cortical activity was evaluated over the contralateral hemisphere. The unilaterality of the deficit also was assessed. In both patients, stimulation of the unaffected side evoked reproducible cortical responses before and after surgery. Both patients also recovered some sensation after surgery, given that presurgery stimulation of the affected side failed to evoke cortical activity whereas postsurgery stimulation evoked cortical activity on both sides. Sensation was initially highly lateralized in both patients but was restored to approximately normal in the postsurgery evaluation. Finally, both patients rated their subjective tongue sensations on the affected side over 50% better after the surgical intervention. These cases indicate that tongue SEFs may have a clinical use as an objective parameter for assessing the course of tongue sensory recovery. PMID:26855025

  19. Modeling surface deformation due to CO2 injection at an enhanced oil recovery field in Texas

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Abdollahzadeh, M.; Dixon, T. H.; Malservisi, R.; Hosseini, S.

    2013-12-01

    The Geodesy Laboratory at the University of South Florida has operated 3 C-GPS stations at an enhanced oil recovery field in Texas since October 2011. Our GPS sites recorded vertical uplift during the injection phase when the reservoir was initially pressurized, and localized subsidence in phase with reservoir pressure after oil extraction started. In this study, we use analytical and numerical models to better understand the small-scale surface deformation observed by GPS due to CO2 injection. First, we use an analytical model of a pressurized horizontal circular crack in an elastic half-space to fit the surface deformation data. Then, constrained by the analytical modeling results, we develop a poroelastic Finite Element Model (FEM) to investigate the influence of reservoir geometry and overlying stratigraphy on surface displacement. A sensitivity study is carried out to understand the effects of realistic geometry and material properties on surface deformation. Our preliminary results show that a poroelastic FEM can explain the location-dependant time delay between the injection and surface response.

  20. The unusual glitch recoveries of the high-magnetic-field pulsar J1119-6127

    NASA Astrophysics Data System (ADS)

    Antonopoulou, D.; Weltevrede, P.; Espinoza, C. M.; Watts, A. L.; Johnston, S.; Shannon, R. M.; Kerr, M.

    2015-03-01

    Providing a link between magnetars and radio pulsars, high-magnetic-field neutron stars are ideal targets to investigate how bursting/magnetospheric activity and braking torque variations are connected to rotational glitches. The last spin-up glitch of the highly magnetized pulsar J1119-6127 back in 2007 was the first glitch in a rotationally powered radio pulsar to be accompanied by radiative changes. Moreover, it was followed by an uncommon glitch relaxation that resulted in a smaller spin-down rate relative to the prediction of the pre-glitch timing model. Here, we present four years of new radio timing observations and analyse the total of 16 years of timing data for this source. The new data uncover an ongoing evolution of the spin-down rate, thereby allowing us to exclude permanent changes in the external or internal torque as a standalone cause of the peculiar features of the glitch recovery. Furthermore, no additional variations of the radio pulse profile are detected, strengthening the association of the previously observed transient emission features with the glitching activity. A self-consistent measurement of the braking index yields a value n ≃ 2.7, indicating a trajectory in the P-dot{P} plane inclined towards the magnetars. Such a potential evolutionary link might be strengthened by a, possibly permanent, reduction of ˜15 per cent in n at the epoch of the 2007 glitch.

  1. Women's experiences of how their recovery process is promoted after a first myocardial infarction: Implications for cardiac rehabilitation care

    PubMed Central

    Wieslander, Inger; Mårtensson, Jan; Fridlund, Bengt; Svedberg, Petra

    2016-01-01

    Background A rapid improvement in the care of myocardial infarction (MI) in the emergency services has been witnessed in recent years. There is, however, a lack of understanding of the factors involved in a successful recovery process, after the initial stages of emergency care among patients, and in particular those who are women. Both preventive and promotive perspectives should be taken into consideration for facilitating the recovery process of women after a MI. Aim To explore how women's recovery processes are promoted after a first MI. Methods A qualitative content analysis was used. Findings The women's recovery process is a multidirectional process with a desire to develop and approach a new perspective on life. The women's possibility to approach new perspectives on life incorporates how they handle the three dimensions: behaviour, that is, women's acting and engaging in various activities; social, that is, how women receive and give support in their social environment; and psychological, that is, their way of thinking, reflecting, and appreciating life. Conclusions The personal recovery of women is a multidirectional process with a desire to develop and approach a new perspective on life. It is important for cardiac rehabilitation nurses to not only focus on lifestyle changes and social support but also on working actively with the women's inner strength in order to promote the recovery of the women. PMID:27172514

  2. RO brine treatment and recovery by biological activated carbon and capacitive deionization process.

    PubMed

    Tao, Guihe; Viswanath, Bala; Kekre, Kiran; Lee, Lai Yoke; Ng, How Yong; Ong, Say Leong; Seah, Harry

    2011-01-01

    The generation of brine solutions from dense membrane (reverse osmosis, RO or nanofiltration, NF) water reclamation systems has been increasing worldwide, and the lack of cost effective disposal options is becoming a critical water resources management issue. In Singapore, NEWater is the product of a multiple barrier water reclamation process from secondary treated domestic effluent using MF/UF-RO and UV technologies. The RO brine (concentrates) accounts for more than 20% of the total flow treated. To increase the water recovery and treat the RO brine, a CDI based process with BAC as pretreatment was tested. The results show that ion concentrations in CDI product were low except SiO2 when compared with RO feed water. CDI product was passed through a RO and the RO permeate was of better quality including low SiO2 as compared to NEWater quality. It could be beneficial to use a dedicated RO operated at optimum conditions with better performance to recover the water. BAC was able to achieve 15-27% TOC removal of RO brine. CDI had been tested at a water recovery ranging from 71.6 to 92.3%. CDI based RO brine treatment could improve overall water recovery of NEWater production over 90%. It was found that calcium phosphate scaling and organic fouling was the major cause of CDI pressure increase. Ozone disinfection and sodium bisulfite dosing were able to reduce CDI fouling rate. For sustainable operation of CDI organic fouling control and effective organic fouling cleaning should be further studied. PMID:22053461

  3. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    SciTech Connect

    1997-10-01

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  4. A novel electrochemical process for the recovery and recycling of ferric chloride from precipitation sludge.

    PubMed

    Mejia Likosova, E; Keller, J; Poussade, Y; Freguia, S

    2014-03-15

    During wastewater treatment and drinking water production, significant amounts of ferric sludge (comprising ferric oxy-hydroxides and FePO4) are generated that require disposal. This practice has a major impact on the overall treatment cost as a result of both chemical addition and the disposal of the generated chemical sludge. Iron sulfide (FeS) precipitation via sulfide addition to ferric phosphate (FePO4) sludge has been proven as an effective process for phosphate recovery. In turn, iron and sulfide could potentially be recovered from the FeS sludge, and recycled back to the process. In this work, a novel process was investigated at lab scale for the recovery of soluble iron and sulfide from FeS sludge. Soluble iron is regenerated electrochemically at a graphite anode, while sulfide is recovered at the cathode of the same electrochemical cell. Up to 60 ± 18% soluble Fe and 46 ± 11% sulfide were recovered on graphite granules for up-stream reuse. Peak current densities of 9.5 ± 4.2 A m(-2) and minimum power requirements of 2.4 ± 0.5 kWh kg Fe(-1) were reached with real full strength FeS suspensions. Multiple consecutive runs of the electrochemical process were performed, leading to the successful demonstration of an integrated process, comprising FeS formation/separation and ferric/sulfide electrochemical regeneration. PMID:24397913

  5. Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes.

    PubMed

    Navarro, R; Guzman, J; Saucedo, I; Revilla, J; Guibal, E

    2007-01-01

    In order to reduce the environmental impact due to land disposal of oil fly ash from power plants and to valorize this waste material, the removal of vanadium was investigated using leaching processes (acidic and alkaline treatments), followed by a second step of metal recovery from leachates involving either solvent extraction or selective precipitation. Despite a lower leaching efficiency (compared to sulfuric acid), sodium hydroxide was selected for vanadium leaching since it is more selective for vanadium (versus other transition metals). Precipitation was preferred to solvent extraction for the second step in the treatment since: (a) it is more selective; enabling complete recovery of vanadate from the leachate in the form of pure ammonium vanadate; and (b) stripping of the loaded organic phase (in the solvent extraction process) was not efficient. Precipitation was performed in a two-step procedure: (a) aluminum was first precipitated at pH 8; (b) then ammonium chloride was added at pH 5 to bring about vanadium precipitation. PMID:16563726

  6. Shape Memory as a Process: Optimizing Polymer Design for Shape Recovery

    NASA Astrophysics Data System (ADS)

    Vaia, Richard; Koerner, Hilmar; Lee, Kyungmin; Strong, Robert; Smith, Mattew; Wang, Huabin; White, Tim; Tan, Loon-Seng

    2012-02-01

    Shape memory is a process that enables the reversible storage and recovery of mechanical energy through a change in shape. Polymers provide a unique alternative to kinematic designs and other materials (e.g. metallic alloys) for applications requiring large deformation and novel control options. The effect control of storage and relaxation of strain energy associated with chain deformation depends on the nonlinear visco-elasitc behavior and glassy dynamics of the polymer network. Considering the molecular understanding of rubbery elasticity, chain entanglements in concentrated polymer liquids, affine deformation of networks, and glass fragility, heuristic guidelines can be formulated to optimize the molecular design of a polymer for shape memory. These are applied to the development of a polymer system for shape memory processes at high-temperature (200^oC). The low-crosslink density polyimide exhibits very rapid shape recovery, excellent fixity, high creep resistance, and good cyclability. Furthermore, the molecular design affords a very narrow temperature range for programming and triggering shape change that can also be accessed by photo-isomerization of the cross-link nodes.

  7. Recovery of kraft lignin from pulping wastewater via emulsion liquid membrane process.

    PubMed

    Ooi, Zing-Yi; Harruddin, Norlisa; Othman, Norasikin

    2015-01-01

    Kraft lignin (KL) is a renewable source of many valuable intermediate biochemical products currently derived from petroleum. An excessive of lignin comes from pulping wastewater caused an adverse pollution problems hence affecting human and aquatic life. A comprehensive study pertaining to emulsion liquid membrane (ELM) extraction of lignin from pulping wastewater was presented. ELM formulation contains Aliquat 336 as carrier, kerosene as diluent, sodium bicarbonate (NaHCO3 ) as stripping agent and Span 80 as surfactant. The emulsion stability was investigated at different surfactant concentrations, homogenizer speed and emulsification time. Modifier (2-ethyl-1-hexanol) was added to avoid segregation of third phase while improving the emulsion stability. At optimum conditions, 95% and 56% of lignin were extracted and recovered, respectively at 10 min of extraction time, 0.007 M of Aliquat 336, 0.1 M of NaHCO3 and 1:5 of treat ratio. Additional of modifier was contributed to highest recovery up to 98%. The ELM process was found to be equally feasible and quite effective in the recovery of KL from real pulping wastewater. Therefore, ELM process provides a promising alternative technology to recover KL from pulping wastewater while solving the environmental problems simultaneously. PMID:26101101

  8. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    PubMed

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work. PMID:26433358

  9. Stagewise processing of yellow water using clinoptilolite for nitrogen and phosphorus recovery and higher residual quality.

    PubMed

    Allar, A D; Beler Baykal, B

    2015-01-01

    Source-separated human urine may be used as a source of fertilizers indirectly through processing with clinoptilolite. The suggested form of fertilizer is clinoptilolite loaded with plant nutrients from urine, where nitrogen and phosphorus will be released upon contact with water. Triggered by the need for handling high concentrations remaining in the liquid phase to be disposed of, this paper aims to present the option of improving the residual nutrient quality through stagewise processing with clinoptilolite, while investigating any improvement in nutrient removal. Two sets of experiments, stagewise operation under (i) constant loadings and (ii) variable loadings in each stage, are discussed. Stagewise operation has been observed to be successful for attaining reduced residual liquid phase concentrations as well as improvements in nitrogen recovery as compared to single-stage operation. Comparing constant and variable stagewise loadings, the final concentration is 10 times lower with variable loadings. The latter is comparable to a level found in only 1% of conventional domestic wastewater volume. Stagewise operation was beneficial from the standpoint of both additional nutrient recovery and for residuals control, with more pronounced benefits for attaining higher quality residual liquid phase concentrations to be disposed of. PMID:26067508

  10. Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine.

    PubMed

    Shao, Jiahui; Qin, Shu; Davidson, Joshua; Li, Wenxi; He, Yiliang; Zhou, H Susan

    2013-01-15

    The recovery of nickel from aqueous dilute solutions by complexation-ultrafiltration process with sodium polyacrylate (PAAS) and polyethylenimine (PEI) was studied. Experiments were performed as a function of aqueous pH, polymer/Ni(2+) ratio and background electrolyte concentration. At optimum experimental conditions, the nickel removal rate reaches 99.5% using PAAS and 93.0% using PEI as the complexation agent. The nickel removal rate was found to decrease as the adding salt NaCl concentration increases for both complexation agents. A series of experiments implied that the mechanism could be the compressing electric double layer other than the competitive complexation. Diafiltration technique was further performed to regenerate complexation agents and recover nickel. The nickel removal rates were found to be close to those obtained with the original PEI and PAAS. Finally, Langmuir-type binding isotherm equation was employed to evaluate the extent of nickel bound to PAAS and PEI. The overall results from the two-step process of complexation-UF and decomplexation-UF separation showed that it could be a promising method for nickel removal and recovery from aqueous solutions. PMID:23177250

  11. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    SciTech Connect

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, SUCCiOlC acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  12. GRACE time-variable gravity field recovery using an improved energy balance approach

    NASA Astrophysics Data System (ADS)

    Shang, Kun; Guo, Junyi; Shum, C. K.; Dai, Chunli; Luo, Jia

    2015-12-01

    A new approach based on energy conservation principle for satellite gravimetry mission has been developed and yields more accurate estimation of in situ geopotential difference observables using K-band ranging (KBR) measurements from the Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission. This new approach preserves more gravity information sensed by KBR range-rate measurements and reduces orbit error as compared to previous energy balance methods. Results from analysis of 11 yr of GRACE data indicated that the resulting geopotential difference estimates agree well with predicted values from official Level 2 solutions: with much higher correlation at 0.9, as compared to 0.5-0.8 reported by previous published energy balance studies. We demonstrate that our approach produced a comparable time-variable gravity solution with the Level 2 solutions. The regional GRACE temporal gravity solutions over Greenland reveals that a substantially higher temporal resolution is achievable at 10-d sampling as compared to the official monthly solutions, but without the compromise of spatial resolution, nor the need to use regularization or post-processing.

  13. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yortsos, Yanis C.

    2001-08-07

    This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  14. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOEpatents

    Rao, Dandina N.

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  15. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process

    PubMed Central

    Fesharaki, Parisa Jafari; Nazari, Pardis; Shakibaie, Mojtaba; Rezaie, Sassan; Banoee, Maryam; Abdollahi, Mohammad; Shahverdi, Ahmad Reza

    2010-01-01

    The use of biologically derived metal nanoparticles for various proposes is going to be an issue of considerable importance; thus, appropriate methods should be developed and tested for the biological synthesis and recovery of these nanoparticles from bacterial cells. In this research study, a strain of Klebsiella pneumoniae was tested for its ability to synthesize elemental selenium nanoparticles from selenium chloride. A broth of Klebsiella pneumoniae culture containing selenium nanoparticles was subjected to sterilization at 121oC and 17 psi for 20 minutes. Released selenium nanoparticles ranged in size from 100 to 550 nm, with an average size of 245 nm. Our study also showed that no chemical changes occurred in selenium nanoparticles during the wet heat sterilization process. Therefore, the wet heat sterilization process can be used successfully to recover elemental selenium from bacterial cells. PMID:24031517

  16. The solvent absorption-extractive distillation (SAED) process for ethanol recovery from gas/vapor streams

    SciTech Connect

    Dale, M.C.

    1993-12-31

    A low energy system for ethanol recovery and dehydration has been developed. This system utilizes a solvent for (1) absorption of ethanol vapors, and then the same solvent for (2) extractive distillation. The ideal solvent for this process would have a high affinity for ethanol, and no affinity for water. Heavy alcohols such as dodecanol, and tridecanol, some phosphorals, and some fatty acids have been determined to meet the desired specifications. These solvents have the effect of making water more volatile than ethanol. Thus, a water stream is taken off initially in the dehydration column, and a near anhydrous ethanol stream is recovered from the ethanol/solvent stripper column. Thus the solvent serves dual uses (1) absorption media, and (2) dehydration media. The SAED process as conceptualized would use a solvent similar to solvents used for direct extractive separation of ethanol from aqueous ethanol solutions.

  17. Resource recovery and epidemiology of anaerobic wastewater treatment process in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Li, Ku-Yen; Hunt, Madelyn D.

    1995-01-01

    The results of work accomplished under two different areas: (1) Resource Recovery of an Anaerobic Wastewater Treatment process, and (2) Epidemiological Study of an Anaerobic Wastewater Treatment Process are documented. The first part of the work was to set up and test three anaerobic digesters and then run these three digesters with a NASA-simulated wastewater. The second part of the work was to use a multi-drug resistant strain of Salmonella choleraesuis as the indicator bacteria for the epidemiological study. Details of these two parts can be found in two master's theses and are described in Sections 3 and 4 of this report. Several important results condensed from these two parts are summarized in Section 2.

  18. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yortsos, Y.C.

    2001-05-29

    This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  19. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  20. Accident and Off Normal Response and Recovery from Multi Canister Overpack (MCO) Processing Events

    SciTech Connect

    ALDERMAN, C.A.

    2000-09-19

    In the process of removing spent nuclear fuel (SNF) from the K Basins through its subsequent packaging, drymg, transportation and storage steps, the SNF Project must be able to respond to all anticipated or foreseeable off-normal and accident events that may occur. Response procedures and recovery plans need to be in place, personnel training established and implemented to ensure the project will be capable of appropriate actions. To establish suitable project planning, these events must first be identified and analyzed for their expected impact to the project. This document assesses all off-normal and accident events for their potential cross-facility or Multi-Canister Overpack (MCO) process reversal impact. Table 1 provides the methodology for establishing the event planning level and these events are provided in Table 2 along with the general response and recovery planning. Accidents and off-normal events of the SNF Project have been evaluated and are identified in the appropriate facility Safety Analysis Report (SAR) or in the transportation Safety Analysis Report for Packaging (SARP). Hazards and accidents are summarized from these safety analyses and listed in separate tables for each facility and the transportation system in Appendix A, along with identified off-normal events. The tables identify the general response time required to ensure a stable state after the event, governing response documents, and the events with potential cross-facility or SNF process reversal impacts. The event closure is predicated on stable state response time, impact to operations and the mitigated annual occurrence frequency of the event as developed in the hazard analysis process.

  1. Treatment of smelting residue for arsenic removal and recovery of copper using pyro-hydrometallurgical process.

    PubMed

    Shibayama, Atsushi; Takasaki, Yasushi; William, Tongamp; Yamatodani, Atsushi; Higuchi, Yasunori; Sunagawa, Shigeru; Ono, Eiki

    2010-09-15

    During pyro-metallurgical processing of non-ferrous metals, smelting residues such as smelter slag, flue gas, containing value metals and also harmful substances are inevitably generated as secondary product. For reduction of environmental loading and recovery of the value metals, such materials demand proper treatment options. In this research, some experimental steps were investigated to remove high arsenic (As: 19.5 wt%) and recover copper (Cu: 3.1 wt%) contained in such smelting residues. In the first-stage arsenic and other volatile materials were removed by pyro-metallurgical treatment and in the second-stage the treated residue from pyro-processing was treated in hydrometallurgical processing involving a two-stage leaching operation in H(2)SO(4) solution to dissolve the metals followed by solvent extraction using LIX-84I as extractant to recover dissolved Cu in final leached solution. The results showed that over 90% of arsenic in smelting residue was removed by volatilization and recovered as As(2)O(3) while copper content increased to 4.2 wt%. In the two-stage leaching process, first up to 90% of arsenic was selectively dissolved in 0.25 mol/L H(2)SO(4) solution and second, the solids were further leached in 1.0 mol/L H(2)SO(4) solution giving 85% of copper dissolution. Over 90% of copper dissolved into solution was recovered by solvent extraction. Finally over 99% of arsenic dissolved in the first-stage leach solution was co-precipitated with iron dissolved in second-stage leach solution after copper recovery. PMID:20619796

  2. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect

    Charles McCormick; Roger Hester

    2004-09-30

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increase in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.

  3. Xanthan gum recovery from fermentation broth using ultrafiltration: Kinetics and process evaluation

    SciTech Connect

    Lo, Y.M.; Yang, S.T.; Min, D.B.

    1995-12-01

    Ultrafiltration of xanthan gum solution as an alternative method to alcohol precipitation for xanthan gum recovery from dilute fermentation broth was studied. A polysulfone membrane (with 500,000 MWCO) hollow fiber (106 mil fiber diameter) tubular cartridge was used to concentrate xanthan broth from less than 3 (w/v) % to {approximately}13.5 (w/v) %, with the xanthan recovery yield of {approximately}95 % or higher. During ultrafiltration, the filtrate flux was one order of magnitude lower for xanthan broth than for water, However, the flux remained almost constant for xanthan concentrations up to {approximately}8%. It was then reduced dramatically as the xanthan concentration increased beyond 8%. The reduced filtrate flux was caused by the reduced pumping (shear) rate and higher viscosities at higher xanthan concentrations. At constant xanthan concentration, the filtrate flux remained almost unchanged for the entire period studied, suggesting that the process is not subject to membrane fouling. In general, the filtrate flux decreased with increasing the xanthan concentration and increased with increasing the pumping (shear) rate and the trans-membrane pressure difference. Changing the solution pH had a slight effect on the viscosity of xanthan solution, but did not affect the filtration performance. Even under high-shear-rate conditions, ultrafiltration did not give any adverse effects on the rheological properties and molecular weight of the xanthan polymer. Thus, ultra filtration can be used to concentrate xanthan broth from fermentation by a factor of four or higher and to reduce the subsequent alcohol recovery costs by at least 75 %.

  4. Assessment of errors associated with plot size and lateral movement of nitrogen-15 when studying fertilizer recovery under field conditions

    SciTech Connect

    Sanchez, C.A.; Blackmer, A.M.; Horton, R.; Timmons, D.R.

    1987-11-01

    The high cost of /sup 15/N-labeled fertilizers encourages the use of field plots having minimum size. If plot size is reduced too much, however, lateral movement of N near the plots by mass flow or diffusion within the soil or by translocation through plant roots can become a significant source of error in determinations of fertilizer N recovery. This study was initiated to assess the importance of lateral movement of labeled fertilizer when unconfined plots are used to determine recovery of fertilizer. Corn grain samples were collected at various positions inside and outside /sup 15/N plots, and the /sup 15/N contents of these samples were determined. The data were fit to mathematical models to estimate the extent to which lateral movement of fertilizer N caused errors in determined values of fertilizer recovery for the first, second, and third crops following fertilization. These models also were used to predict the plot size needed for similar /sup 15/N-tracer studies in the future. The results of these studies indicate that /sup 15/N plots having a size of 2 by 2 m are sufficiently large for determining recovery of fertilizer N for corn crops under most conditions. Where lateral movement of fertilizer N in soils is suspected to be a problem, we recommend collection of a few plant samples outside the /sup 15/N plots as insurance against misleading conclusions concerning fertilizer N recovery.

  5. Incorporating Geomorphological and Biological Processes Into Recovery Planning Strategies for Listed Salmonids in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Ruckelshaus, M.; Beechie, T.; Lagueux, K.; Haas, A.

    2005-05-01

    A number of species of Pacific salmonids are listed under the U.S. Endangered Species Act due to a combination of habitat loss and degradation, hatchery programs, and harvest practices. Efforts are underway throughout the geographic ranges of the listed salmon to develop recovery plans describing the necessary conditions for delisting. Habitat restoration strategies in some watershed recovery plans address the functioning of landscape processes that create and sustain stream habitats, in addition to the traditional focus on instream habitat conditions and their effects on salmon populations. Including restoration approaches that aim to improve habitat-forming processes is a step forward in addressing the root causes of habitat problems for salmon. In this talk, we illustrate how GIS-based analyses indicating the degree of impairment to sediment supply, stream flows, and riparian functions were used to help identify restoration strategies for Chinook salmon populations in a watershed in Puget Sound, WA. We first developed empirical relationships between landscape attributes (i.e., land cover, geology and forest road density) and processes or conditions (stream flows, riparian zone condition, large wood recruitment, and sediment supply rates). Then we summarized those landscape attributes in all sub-basins within the watershed to indicate the likely current condition of peak flow hydrology, riparian function, and sediment supply. Finally, we quantified the degree of impairment in these 3 processes relative to their likely historical rates or conditions, and classified sub-basins into groupings of common restoration strategies. Specific habitat restoration actions aimed at redressing the riparian, sediment, and flow problems at their sources were identified separately for each sub-basin strategy group. We explored the potential effects of 3 alternative restoration approaches on the status of Chinook salmon populations at the watershed scale using a fish

  6. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  7. Solvent extraction and recovery of the transuranic elements from waste solutions using the TRUEX process

    SciTech Connect

    Horwitz, E.P.; Schulz, W.W.

    1985-01-01

    High-level liquid waste is produced during the processing of irradiated nuclear fuel by the PUREX process. In some cases the treatment of metallurgical scrap to recover the plutonium values also generates a nitric acid waste solution. Both waste solutions contain sufficient concentrations of transuranic elements (mostly /sup 241/Am) to require handling and disposal as a TRU waste. This paper describes a recently developed solvent extraction/recovery process called TRUEX (transuranium extraction) which is designed to reduce the TRU concentration in nitric waste solutions to <100 nCi/g of disposed form (1,2). (In the USA, non-TRU waste is defined as <100 nCi of TRU/g of disposed form.) The process utilizes PUREX process solvent (TBP in a normal paraffinic hydrocarbon or carbon tetrachloride) modified by a small concentration of octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (abbrev. CMPO). The presence of CMPO enables the modified PUREX process solvent to extract trivalent actinides as well as tetra- and hexavalent actinides. A major feature of the TRUEX process is that is is applicable to waste solutions containing a wide range of nitric acid, salt, and fission product concentrations and at the same time is very compatible with existing liquid-liquid extraction technology as usually practiced in a fuel reprocessing plant. To date the process has been tested on two different types of synthetic waste solutions. The first solution is a typical high-level nitric acid waste and the second a typical waste solution generated in metallurgical scrap processing. Results are discussed. 4 refs., 1 fig., 4 tabs.

  8. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Technical Reports Server (NTRS)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  9. Damage and recovery processes for the luminescence of irradiated PEN films

    NASA Astrophysics Data System (ADS)

    Nagata, S.; Mitsuzuka, M.; Onodera, S.; Yaegashi, T.; Hoshi, K.; Zhao, M.; Shikama, T.

    2013-11-01

    The degradation and recovery of the optical emission characteristics of polyethylene naphthalate (PEN) films were studied during irradiation with MeV protons and UV photons. The photo-stimulated luminescence (PL) consisting of two major peaks decreased with the incident energy fluence, particularly for ion irradiation. At the beginning of irradiation, the rate of reduction of the PL intensity in the UV-irradiated film was comparable to that for ion irradiation, but the residual PL intensity in the UV-irradiated film was considerably larger at higher fluences. In addition, no change in the PL characteristics of the UV-irradiated film was observed after stopping the UV irradiation, indicating that the damage caused by the UV photons was permanent. However, the PL intensity from the ion irradiated film increased immediately when the film was exposed to air. The recovery of the luminescence centers in the ion-irradiated PEN film is attributed to ion-induced surface modification, which plays a role in the enhancement of the dissociation of water molecules and the diffusion process for constituent atoms.

  10. Energy loss process analysis for radiation degradation and immediate recovery of amorphous silicon alloy solar cells

    NASA Astrophysics Data System (ADS)

    Sato, Shin-ichiro; Beernink, Kevin; Ohshima, Takeshi

    2015-06-01

    Performance degradation of a-Si/a-SiGe/a-SiGe triple-junction solar cells due to irradiation of silicon ions, electrons, and protons are investigated using an in-situ current-voltage measurement system. The performance recovery immediately after irradiation is also investigated. Significant recovery is always observed independent of radiation species and temperature. It is shown that the characteristic time, which is obtained by analyzing the short-circuit current annealing behavior, is an important parameter for practical applications in space. In addition, the radiation degradation mechanism is discussed by analyzing the energy loss process of incident particles (ionizing energy loss: IEL, and non-ionizing energy loss: NIEL) and their relative damage factors. It is determined that ionizing dose is the primarily parameter for electron degradation whereas displacement damage dose is the primarily parameter for proton degradation. This is because the ratio of NIEL to IEL in the case of electrons is small enough to be ignored the damage due to NIEL although the defect creation ratio of NIEL is much larger than that of IEL in the cases of both protons and electrons. The impact of “radiation quality effect” has to be considered to understand the degradation due to Si ion irradiation.

  11. A review on recent advances in the numerical simulation for coalbed-methane-recovery process

    SciTech Connect

    Wei, X.R.; Wang, G.X.; Massarotto, P.; Golding, S.D.; Rudolph, V.

    2007-12-15

    The recent advances in numerical simulation for primary coalbed methane (CBM) recovery and enhanced coalbed-methane recovery (ECBMR) processes are reviewed, primarily focusing on the progress that has occurred since the late 1980s. Two major issues regarding the numerical modeling will be discussed in this review: first, multicomponent gas transport in in-situ bulk coal and, second, changes of coal properties during methane (CH{sub 4}) production. For the former issues, a detailed review of more recent advances in modeling gas and water transport within a coal matrix is presented. Further, various factors influencing gas diffusion through the coal matrix will be highlighted as well, such as pore structure, concentration and pressure, and water effects. An ongoing bottleneck for evaluating total mass transport rate is developing a reasonable representation of multiscale pore space that considers coal type and rank. Moreover, few efforts have been concerned with modeling water-flow behavior in the coal matrix and its effects on CH{sub 4} production and on the exchange of carbon dioxide (CO{sub 2}) and CH{sub 4}. As for the second issue, theoretical coupled fluid-flow and geomechanical models have been proposed to describe the evolution of pore structure during CH{sub 4} production, instead of traditional empirical equations. However, there is currently no effective coupled model for engineering applications. Finally, perspectives on developing suitable simulation models for CBM production and for predicting CO{sub 2}-sequestration ECBMR are suggested.

  12. Intensified recovery of valuable products from whey by use of ultrasound in processing steps - A review.

    PubMed

    Gajendragadkar, Chinmay N; Gogate, Parag R

    2016-09-01

    The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications. PMID:27150751

  13. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  14. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  15. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats

    PubMed Central

    Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

    2016-01-01

    [Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

  16. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats.

    PubMed

    Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

    2016-05-01

    [Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

  17. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the

  18. Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process.

    PubMed

    Haines, Aaron M; Zak, Matthew; Hammond, Katie; Scott, J Michael; Goble, Dale D; Rachlow, Janet L

    2013-01-01

    United States recovery plans contain biological information for a species listed under the Endangered Species Act and specify recovery criteria to provide basis for species recovery. The objective of our study was to evaluate whether recovery plans provide uncertainty (e.g., variance) with estimates of population size. We reviewed all finalized recovery plans for listed terrestrial vertebrate species to record the following data: (1) if a current population size was given, (2) if a measure of uncertainty or variance was associated with current estimates of population size and (3) if population size was stipulated for recovery. We found that 59% of completed recovery plans specified a current population size, 14.5% specified a variance for the current population size estimate and 43% specified population size as a recovery criterion. More recent recovery plans reported more estimates of current population size, uncertainty and population size as a recovery criterion. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty compared to reptiles and amphibians. We suggest the use of calculating minimum detectable differences to improve confidence when delisting endangered animals and we identified incentives for individuals to get involved in recovery planning to improve access to quantitative data. PMID:26479531

  19. Drought and Recovery: Independently Regulated Processes Highlighting the Importance of Protein Turnover Dynamics and Translational Regulation in Medicago truncatula.

    PubMed

    Lyon, David; Castillejo, Maria Angeles; Mehmeti-Tershani, Vlora; Staudinger, Christiana; Kleemaier, Christoph; Wienkoop, Stefanie

    2016-06-01

    Climate change in conjunction with population growth necessitates a systems biology approach to characterize plant drought acclimation as well as a more thorough understanding of the molecular mechanisms of stress recovery. Plants are exposed to a continuously changing environment. Extremes such as several weeks of drought are followed by rain. This requires a molecular plasticity of the plant enabling drought acclimation and the necessity of deacclimation processes for recovery and continuous growth.During drought stress and subsequent recovery, the metabolome and proteome are regulated through a sequence of molecular processes including synthesis and degradation and molecular interaction networks are part of this regulatory process. In order to study this complex regulatory network, a comprehensive analysis is presented for the first time, investigating protein turnover and regulatory classes of proteins and metabolites during a stress recovery scenario in the model legume Medicago truncatula The data give novel insights into the molecular capacity and differential processes required for acclimation and deacclimation of severe drought stressed plants.Functional cluster and network analyses unraveled independent regulatory mechanisms for stress and recovery with different dynamic phases that during the course of recovery define the plants deacclimation from stress. The combination of relative abundance levels and turnover analysis revealed an early transition phase that seems key for recovery initiation through water resupply and is independent from renutrition. Thus, a first indication for a metabolite and protein-based load capacity was observed necessary for the recovery from drought, an important but thus far ignored possible feature toward tolerance. The data indicate that apart from the plants molecular stress response mechanisms, plasticity may be related to the nutritional status of the plant prior to stress initiation. A new perspective and possible new

  20. Modified sodium diuranate process for the recovery of uranium from uranium hexafluoride transport cylinder wash solution

    NASA Astrophysics Data System (ADS)

    Meredith, Austin Dean

    Uranium hexafluoride (UF6) containment cylinders must be emptied and washed every five years in order to undergo recertification, according to ANSI standards. During the emptying of the UF6 from the cylinders, a thin residue, or heel, of UF6 is left behind. This heel must be removed in order for recertification to take place. To remove it, the inside of the containment cylinder is washed with acid and the resulting solution generally contains three or four kilograms of uranium. Thus, before the liquid solution can be disposed of, the uranium must be separated. A modified sodium diuranate (SDU) uranium recovery process was studied to support development of a commercial process. This process was sought to ensure complete uranium recovery, at high purity, in order that it might be reused in the nuclear fuel cycle. An experimental procedure was designed and carried out in order to verify the effectiveness of the commercial process in a laboratory setting. The experiments involved a small quantity of dried UO2F2 powder that was dosed with 3wt% FeF3 and was dissolved in water to simulate the cylinder wash solution. Each experiment series started with a measured amount of this powder mixture which was dissolved in enough water to make a solution containing about 120 gmU/liter. The experiments involved validating the modified SDU extraction process. A potassium diuranate (KDU) process was also attempted. Very little information exists regarding such a process, so the task was undertaken to evaluate its efficacy and determine whether a potassium process yields any significant differences or advantages as compared to a sodium process. However, the KDU process ultimately proved ineffective and was abandoned. Each of the experiments was organized into a series of procedures that started with the UO2F2 powder being dissolved in water, and proceeded through the steps needed to first convert the uranium to a diuranate precipitate, then to a carbonate complex solution, and finally

  1. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    NASA Astrophysics Data System (ADS)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir

  2. Heterogeneous processes: Laboratory, field, and modeling studies

    NASA Technical Reports Server (NTRS)

    Poole, Lamont R.; Kurylo, Michael J.; Jones, Rod L.; Wahner, Andreas; Calvert, Jack G.; Leu, M.-T.; Fried, A.; Molina, Mario J.; Hampson, Robert F.; Pitts, M. C.

    1991-01-01

    The efficiencies of chemical families such as ClO(x) and NO(x) for altering the total abundance and distribution of stratospheric ozone are controlled by a partitioning between reactive (active) and nonreactive (reservoir) compounds within each family. Gas phase thermodynamics, photochemistry, and kinetics would dictate, for example, that only about 1 percent of the chlorine resident in the lower stratosphere would be in the form of active Cl or ClO, the remainder existing in the reservoir compounds HCl and ClONO2. The consistency of this picture was recently challenged by the recognition that important chemical transformations take place on polar regions: the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASA). Following the discovery of the Antarctic ozone hole, Solomon et al. suggested that the heterogeneous chemical reaction: ClONO2(g)+HCl(s) yields Cl2(g)+HNO3(s) could play a key role in converting chlorine from inactive forms into a species (Cl2) that would rapidly dissociate in sunlight to liberate atomic chlorine and initiate ozone depletion. The symbols (s) and (g) denote solid phase, or adsorbed onto a solid surface, and gas phase, respectively, and represent the approach by which such a reaction is modeled rather than the microscopic details of the reaction. The reaction was expected to be most important at altitudes where PSC's were most prevalent (10 to 25 km), thereby extending the altitude range over which chlorine compounds can efficiently destroy ozone from the 35 to 45 km region (where concentrations of active chlorine are usually highest) to lower altitudes where the ozone concentration is at its peak. This chapter will briefly review the current state of knowledge of heterogeneous processes in the stratosphere, emphasizing those results obtained since the World Meteorological Organization (WMO) conference. Sections are included on laboratory investigations of heterogeneous reactions, the

  3. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, Mark E.; Benicewicz, Brian C.; Douglas, Elliot P.

    1998-01-01

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  4. High magnetic field processing of liquid crystalline polymers

    DOEpatents

    Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.

    1998-11-24

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  5. Electric Field-Mediated Processing of Polymers. Appendix 1

    NASA Technical Reports Server (NTRS)

    Wnek, G. E.; Bowlin, G. L.; Haas, T. W.

    2000-01-01

    Significant opportunities exist for the processing of polymers (homopolymers and blends) using electric fields. We suggest that a broad range of properties can be achieved using a relatively small number of polymers, with electric fields providing the ability to tailor properties via the control of shape, morphology, and orientation. Specific attention is given to electrospinning, but we note that electroaerosol formation and field-modulated film casting represent additional processing options.

  6. Creation and recovery of a W(111) single atom gas field ion source

    SciTech Connect

    Pitters, Jason L.; Urban, Radovan; Wolkow, Robert A.

    2012-04-21

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  7. On refractive processes in strong laser field quantum electrodynamics

    SciTech Connect

    Di Piazza, A.

    2013-11-15

    Refractive processes in strong-field QED are pure quantum processes, which involve only external photons and the background electromagnetic field. We show analytically that such processes occurring in a plane-wave field and involving external real photons are all characterized by a surprisingly modest net exchange of energy and momentum with the laser field, corresponding to a few laser photons, even in the limit of ultra-relativistic laser intensities. We obtain this result by a direct calculation of the transition matrix element of an arbitrary refractive QED process and accounting exactly for the background plane-wave field. A simple physical explanation of this modest net exchange of laser photons is provided, based on the fact that the laser field couples with the external photons only indirectly through virtual electron–positron pairs. For stronger and stronger laser fields, the pairs cover a shorter and shorter distance before they annihilate again, such that the laser can transfer to them an energy corresponding to only a few photons. These results can be relevant for the future experiments aiming to test strong-field QED at present and next-generation facilities. -- Highlights: •Investigation of the one-loop amplitude of refractive QED processes in a laser field. •The amplitude is suppressed for a large number of net-exchanged laser photons. •Suggestion for first observation of high-nonlinear vacuum effects in a laser field.

  8. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    SciTech Connect

    Ernest A. Mancini

    2003-12-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance

  9. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    SciTech Connect

    Ernest A. Mancini

    2006-05-31

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance

  10. Development of an improved membrane for a vapor diffusion water recovery process. [onboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Rich, T. R.; Mix, T. W.

    1974-01-01

    Recovery of potable water from urine on manned space missions of extended duration was the objective of work aimed at the improvement of membrane performance for the vapor diffusion process (VDR). Kynar, Teflon, PVC, and polysulfone candidate membranes were evaluated from chemical, thermal, mechanical, and fabricating standpoints to determine their suitability for operation in the VDR pervaporation module. Pervaporation rates and other performance characteristics were determined in a breadboard pervaporator test rig. Kynar and Teflon membranes were demonstrated to be chemically stable at pervaporation temperatures in urine pretreated with chromic acid bactericide. The separation of the pervaporator and condenser modules, the use of a recirculating sweep gas to conduct pervaporate to the condenser, and the selection of a hollow fiber membrane configuration for pervaporator module design is recommended as a result of the investigation.

  11. Bioterrorism: processing contaminated evidence, the effects of formaldehyde gas on the recovery of latent fingermarks.

    PubMed

    Hoile, Rebecca; Walsh, Simon J; Roux, Claude

    2007-09-01

    In the present age of heightened emphasis on counter terrorism, law enforcement and forensic science are constantly evolving and adapting to the motivations and capabilities of terrorist groups and individuals. The use of biological agents on a population, such as anthrax spores, presents unique challenges to the forensic investigator, and the processing of contaminated evidence. In this research, a number of porous and non-porous items were contaminated with viable [corrected] spores and marked with latent fingermarks. The test samples were then subjected to a standard formulation of formaldehyde gas. Latent fingermarks were then recovered post decontamination using a range of methods. Standard fumigation, while effective at destroying viable spores, contributed to the degradation of amino acids leading to loss of ridge detail. A new protocol for formaldehyde gas decontamination was developed which allows for the destruction of viable spores and the successful recovery of latent marks, all within a rapid response time of less than 1 h. PMID:17767655

  12. Recovery and regeneration of spent MHD seed material by the formate process

    DOEpatents

    Sheth, A.C.; Holt, J.K.; Rasnake, D.G.; Solomon, R.L.; Wilson, G.L.; Herrigel, H.R.

    1991-10-15

    The specification discloses a spent seed recovery and regeneration process for an MHD power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to suppress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate. 5 figures.

  13. Recovery and regeneration of spent MHD seed material by the formate process

    DOEpatents

    Sheth, Atul C.; Holt, Jeffrey K.; Rasnake, Darryll G.; Solomon, Robert L.; Wilson, Gregory L.; Herrigel, Howard R.

    1991-01-01

    The specification discloses a spent seed recovery and regeneration process for an MHM power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to supress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate.

  14. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao

    2003-10-01

    This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and

  15. Required distribution of noise sources for Green's function recovery in diffusive fields

    NASA Astrophysics Data System (ADS)

    Shamsalsadati, S.; Weiss, C. J.

    2011-12-01

    In the most general sense, noise is the part of the signal of little or no interest, due to a multitude of reasons such as operator error, imperfect instrumentation, experiment design, or inescapable background interference. Considering the latter, it has been shown that Green's function can be extracted from cross-correlation of the ambient, diffusive wavefields arising from background random noise sources. Pore pressure and low-frequency electromagnetic induction are two such examples of diffusive fields. In theory, applying Green's function method in geophysical exploration requires infinity of volumetrically distributed sources; however, in the real world the number of noise sources in an area is limited, and furthermore, unevenly distributed in time, space and spectral content. Hence, quantification of the requisite noise sources that enable us to calculate Green's function acceptably well remains an open research question. The purpose of this study is to find the area of noise sources that contribute most to the Green's function estimation in diffusive systems. We call such a region the Volume of Relevance (VoR). Our analysis builds upon recent work in 1D homogeneous system where it was shown that sources located between two receivers positions are the most important ones for the purpose of Green's function recovery. Our results confirm the previous finding but we also examine the effect of heterogeneity, dimensionality and receiver location in both 1D and 2D at a fixed frequency. We demonstrate that for receivers located symmetrically across an interface between regions of contrasting diffusivity, the VoR rapidly shifts from one side of the interface to the other, and back again, as receiver separation increases. We also demonstrate that where the receiver pair is located on the interface itself, the shifting is less rapid, and for moderate to high diffusivity contrasts, the VoR remains entirely on the more diffusive side. In addition, because classical

  16. Joint Recovery of f-Elements Using Solvent Based on Carbamoyl-phosphine Oxides Heading Toward ORGA-Process

    SciTech Connect

    Ozawa, M.; Babain, V.; Shadrin, A.; Strelkov, S.; Kiseleva, R.; Murzin, A.

    2007-07-01

    Development of the recovery system which allows realizing joint recovery of all the actinides from the HLW is one of the relevant questions in radiochemistry. Carbamoyl-phosphine oxides (CMPO) were proposed and studied as extractant for rare-earth and transplutonium elements (RE and TPE) recovery from HLW with high acidity, for example TRUEX- and SETFICS-process. Organic system CMPO with TBP in kerosene is usually used as a solvent. However, low solubility of actinide adducts with CMPO results in third phase formation when the actinides concentration in organic phase is high. Application of fluorinated polar diluents increases the solubility of CMPO adducts with actinides in organic phase. It was shown that solvent based on carbamoyl-phosphonate in fluorinated polar diluents allows to recover both uranium and minor actinides concurrently, and there was no precipitation or third phase formation even at high uranium concentration in organic phase. The f-elements joint recovery process based on this solvent was proposed. Solvent containing octyl-phenyl-N,N-di-isobutyl-carbamoyl-methylene-phosphine oxide (O{phi}D[iB]CMPO) in polar diluent meta-nitro-benzo-trifluoride (fluoro-pole-732) was screened out for these studies. And, combined use of them with TBP modifier allows to provide uranium and europium (americium) high recovery characteristics concurrently with an opportunity of attainment of f-elements high concentration in organic phase. As it was indicated, precipitates or third phase was absent even when uranium content in organic phase was 100 g/l. Recovery efficiency to europium remained sufficiently high for its effective recovery. Organic phase saturation about 100% from theoretical attains in europium recovery with this system. Increasing of (O{phi}D[iB]CMPO) concentration in recovery system from 0.2 to 0.8 M results in europium content increasing in organic phase, but no third phase formation is observed. The highest possible europium content in organic phase

  17. A combined recovery process of metals in spent lithium-ion batteries.

    PubMed

    Li, Jinhui; Shi, Pixing; Wang, Zefeng; Chen, Yao; Chang, Chein-Chi

    2009-11-01

    This work proposes a new process of recovering Co from spent Li-ion batteries (LIBs) by a combination of crushing, ultrasonic washing, acid leaching and precipitation, in which ultrasonic washing was used for the first time as an alternative process to improve the recovery efficiency of Co and reduce energy consumption and pollution. Spent LIBs were crushed with a 12 mm aperture screen, and the undersize products were put into an ultrasonic washing container to separate electrode materials from their support substrate. The washed materials were filtered through a 2mm aperture screen to get underflow products, namely recovered electrodes. Ninety two percent of the Co was transferred to the recovered electrodes where Co accounted for 28% of the mass and impurities, including Al, Fe, and Cu, accounted for 2%. The valuable materials left in 2-12 mm products, including Cu, Al, and Fe, were presented as thin sheets, and could be easily separated. The recovered electrodes were leached with 4.0M HCl for 2.0 h, at 80 degrees C, along with concurrent agitation. Ninety seven percent of the Li and 99% of the Co in recovered electrodes could be dissolved. The impurities could be removed at pH 4.5-6.0 with little loss of Co by chemical precipitation. This process is feasible for recycling spent LIBs in scale-up. PMID:19775724

  18. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate

    NASA Astrophysics Data System (ADS)

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-06-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g‑1 COD and methane percentages of 53–76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L‑1) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg‑1 N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L‑1 d‑1 was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68–95 fmol N cell‑1 d‑1, which finally led to the stable operation of the system.

  19. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate.

    PubMed

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-01-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g(-1) COD and methane percentages of 53-76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L(-1)) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg(-1) N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L(-1) d(-1) was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68-95 fmol N cell(-1) d(-1), which finally led to the stable operation of the system. PMID:27279481

  20. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    PubMed

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR. PMID:21853326

  1. Integrating landfill bioreactors, partial nitritation and anammox process for methane recovery and nitrogen removal from leachate

    PubMed Central

    Sun, Faqian; Su, Xiaomei; Kang, Tingting; Wu, Songwei; Yuan, Mengdong; Zhu, Jing; Zhang, Xiayun; Xu, Fang; Wu, Weixiang

    2016-01-01

    A new process consisting of a landfill bioreactor, partial-nitritation (PN) and the anammox process has been developed for landfill leachate treatment. In this study, the landfill bioreactor exhibited excellent performance in methane-rich biogas recovery, with a specific biogas yield of 0.47 L gas g−1 COD and methane percentages of 53–76%. PN was achieved in the aerobic reactor by high free ammonia (101 ± 83 mg NH3 L−1) inhibition for nitrite-oxidizing bacteria, and the desired PN effluent composition (effluent nitrite: ammonium ratio of 1.1 ± 0.3) was controlled by adjusting the alkalinity concentration per unit of ammonium oxidized to approximately 14.3 mg CaCO3 mg−1 N in the influent. The startup of anammox process was successfully achieved with a membrane bioreactor in 160 d, and a maximum nitrogen removal rate of 216 mg N L−1 d−1 was attained for real landfill leachate treatment. The quantitative polymerase chain reaction results confirmed that the cell-specific anammox activity was approximately 68–95 fmol N cell−1 d−1, which finally led to the stable operation of the system. PMID:27279481

  2. Dynamic Engagement of Cognitive Control Modulates Recovery From Misinterpretation During Real-Time Language Processing.

    PubMed

    Hsu, Nina S; Novick, Jared M

    2016-04-01

    Speech unfolds swiftly, yet listeners keep pace by rapidly assigning meaning to what they hear. Sometimes, though, initial interpretations turn out to be wrong. How do listeners revise misinterpretations of language input moment by moment to avoid comprehension errors? Cognitive control may play a role by detecting when processing has gone awry and then initiating behavioral adjustments accordingly. However, no research to date has investigated a cause-and-effect interplay between cognitive-control engagement and the overriding of erroneous interpretations in real time. Using a novel cross-task paradigm, we showed that Stroop-conflict detection, which mobilizes cognitive-control procedures, subsequently facilitates listeners' incremental processing of temporarily ambiguous spoken instructions that induce brief misinterpretation. When instructions followed incongruent Stroop items, compared with congruent Stroop items, listeners' eye movements to objects in a scene reflected more transient consideration of the false interpretation and earlier recovery of the correct one. Comprehension errors also decreased. Cognitive-control engagement therefore accelerates sentence-reinterpretation processes, even as linguistic input is still unfolding. PMID:26957521

  3. Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes.

    PubMed

    Buzatu, Traian; Popescu, Gabriela; Birloaga, Ionela; Săceanu, Simona

    2013-03-01

    Used batteries contain numerous metals in high concentrations and if not disposed of with proper care, they can negatively affect our environment. These metals represent 83% of all spent batteries and therefore it is important to recover metals such as Zn and Mn, and reuse them for the production of new batteries. The recovery of Zn and Mn from used batteries, in particular from Zn-C and alkaline ones has been researched using hydrometallurgical methods. After comminution and classification of elemental components, the electrode paste resulting from these processes was treated by chemical leaching. Prior to the leaching process the electrode paste has been subjected to two washing steps, in order to remove the potassium, which is an inconvenient element in this type of processes. To simultaneously extract Zn and Mn from this paste, the leaching method in alkaline medium (NaOH solution) and acid medium (sulphuric acid solution) was used. Also, to determine the efficiency of extraction of Zn and Mn from used batteries, the following variables were studied: reagents concentration, S/L ratio, temperature, time. The best results for extraction yield of Zn and Mn were obtained under acid leaching conditions (2M H2SO4, 1h, 80°C). PMID:23158875

  4. Designing of an intensification process for biosynthesis and recovery of menaquinone-7.

    PubMed

    Berenjian, Aydin; Mahanama, Raja; Talbot, Andrea; Regtop, Hubert; Kavanagh, John; Dehghani, Fariba

    2014-02-01

    A nutritional food rich in menaquinone-7 has a potential in preventing osteoporosis and cardiovascular diseases. The static fermentation of Bacillus subtilis natto is widely regarded as an optimum process for menaquinone-7 production. The major issues for the bulk production of menaquinone-7 are the low fermentation yield, biofilm formation and the use of organic solvents for the vitamin extraction. In this study, we demonstrate that the dynamic fermentation involving high stirring and aeration rates enhances the yield of fermentation process significantly compared to static system. The menaquinone-7 concentration of 226 mg/L was produced at 1,000 rpm, 5 vvm, 40 °C after 5 days of fermentation. This concentration is 70-fold higher than commercially available food products such as natto. Additionally, it was found that more than 80% of menaquinone-7 was recovered in situ in the vegetable oil that was gradually added to the system as an anti-foaming agent. The intensification process developed in this study has a capacity to produce an oil rich in menaquinone-7 in one step and eliminate the use of organic solvents for recovery of this compound. This oil can, therefore, be used for the preparation of broad range of supplementary and dietary food products rich in menaquinone-7 to reduce the risk of osteoporotic fractures and cardiovascular diseases. PMID:24173914

  5. Evaluating the Credibility of Transport Processes in Simulations of Ozone Recovery using the Global Modeling Initiative Three-dimensional Model

    NASA Technical Reports Server (NTRS)

    Strahan, Susan E.; Douglass, Anne R.

    2004-01-01

    The Global Modeling Initiative (GMI) has integrated two 36-year simulations of an ozone recovery scenario with an offline chemistry and tra nsport model using two different meteorological inputs. Physically ba sed diagnostics, derived from satellite and aircraft data sets, are d escribed and then used to evaluate the realism of temperature and transport processes in the simulations. Processes evaluated include barri er formation in the subtropics and polar regions, and extratropical w ave-driven transport. Some diagnostics are especially relevant to sim ulation of lower stratospheric ozone, but most are applicable to any stratospheric simulation. The global temperature evaluation, which is relevant to gas phase chemical reactions, showed that both sets of me teorological fields have near climatological values at all latitudes and seasons at 30 hPa and below. Both simulations showed weakness in upper stratospheric wave driving. The simulation using input from a g eneral circulation model (GMI(GCM)) showed a very good residual circulation in the tropics and Northern Hemisphere. The simulation with inp ut from a data assimilation system (GMI(DAS)) performed better in the midlatitudes than it did at high latitudes. Neither simulation forms a realistic barrier at the vortex edge, leading to uncertainty in the fate of ozone-depleted vortex air. Overall, tracer transport in the offline GML(GCM) has greater fidelity throughout the stratosphere tha n it does in the GMI(DAS)

  6. Evaluating the Credibility of Transport Processes in the Global Modeling Initiative 3D Model Simulations of Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Strahan, Susan E.; Douglass, Anne R.

    2003-01-01

    The Global Modeling Initiative has integrated two 35-year simulations of an ozone recovery scenario with an offline chemistry and transport model using two different meteorological inputs. Physically based diagnostics, derived from satellite and aircraft data sets, are described and then used to evaluate the realism of temperature and transport processes in the simulations. Processes evaluated include barrier formation in the subtropics and polar regions, and extratropical wave-driven transport. Some diagnostics are especially relevant to simulation of lower stratospheric ozone, but most are applicable to any stratospheric simulation. The temperature evaluation, which is relevant to gas phase chemical reactions, showed that both sets of meteorological fields have near climatological values at all latitudes and seasons at 30 hPa and below. Both simulations showed weakness in upper stratospheric wave driving. The simulation using input from a general circulation model (GMI(sub GCM)) showed a very good residual circulation in the tropics and northern hemisphere. The simulation with input from a data assimilation system (GMI(sub DAS)) performed better in the midlatitudes than at high latitudes. Neither simulation forms a realistic barrier at the vortex edge, leading to uncertainty in the fate of ozone-depleted vortex air. Overall, tracer transport in the offline GMI(sub GCM) has greater fidelity throughout the stratosphere than the GMI(sub DAS).

  7. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.

    PubMed

    Xia, Cheng-Wang; Ma, Yun-Jie; Zhang, Fang; Lu, Yong-Ze; Zeng, Raymond J

    2014-01-01

    In enhanced biological phosphorus removal (EBPR) process, phosphorus (P) in wastewater is removed via wasted sludge without actual recovery. A novel approach to realize phosphorus recovery with special external chemical oxygen demand (COD) addition in EBPR process was proposed. During the new operating approach period, it was found that (1) no phosphorus was detected in the effluent; (2) with an external addition of 10 % of influent COD amount, 79 % phosphorus in the wastewater influent was recovered; (3) without wasted sludge, the MLVSS concentration in the system increased from 2,010 to 3,400 mg/L and kept stable after day 11 during 24-day operating period. This demonstrates that the novel approach is feasible to realize phosphorus recovery with no wasted sludge discharge in EBPR process. Furthermore, this approach decouples P removal and sludge age, which may enhance the application of membrane bioreactor for P removal. PMID:24122666

  8. Barrier recovery is impeded at neutral pH, independent of ionic effects: implications for extracellular lipid processing.

    PubMed

    Mauro, T; Holleran, W M; Grayson, S; Gao, W N; Man, M Q; Kriehuber, E; Behne, M; Feingold, K R; Elias, P M

    1998-04-01

    Epidermal permeability barrier homeostasis requires the postsecretory processing of polar lipid precursors into nonpolar lipid products within the stratum corneum (SC) interstices by a family of lipid hydrolases. A specific requirement for beta-glucocerebrosidase (beta-GlcCer'ase), which exhibits a distinct acidic pH optimum, is particularly well documented. Therefore, we sought to determine whether the recovery of the barrier after acute insults requires acidification of the SC. We examined permeability barrier recovery by assessing changes in transepidermal water loss (TEWL), SC membrane ultrastructure utilizing ruthenium tetroxide (RuO4) postfixation, and beta-GlcCer'ase activity by in situ zymography at an acidic vs neutral pH. Barrier recovery proceeded normally when acetone-treated skin was exposed to solutions buffered to an acidic pH. In contrast, the initiation of barrier recovery was slowed when treated skin was exposed to neutral or alkaline pH, regardless of buffer composition. In addition, enhancement of the alkaline buffer-induced delay in barrier recovery occurred with Ca2+ and K+ inclusion in the buffer. Moreover, the pH-dependent alteration in barrier recovery appeared to occur through a mechanism that was independent of Ca(2+)- or K(+)-controlled lamellar body secretion, since both the formation and secretion of lamellar bodies proceeded comparably at pH 5.5 and pH 7.4. In contrast, exposure to pH 7.4 (but not pH 5.5) resulted in both the persistence of immature, extracellular lamellar membrane structures, and a marked decrease in the in situ activity of beta-GlcCer'ase. These results suggest first that an acidic extracellular pH is necessary for the initiation of barrier recovery, and second that the delay in barrier recovery is a consequence of inhibition of postsecretory lipid processing. PMID:9617442

  9. Reservoir modeling of the Solvent Thermal Resource Innovation Process for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    James, S. C.; Lucia, A.; Voskov, D.; Schneider, A.

    2012-12-01

    The Automatic Differentiation General Purpose Research Simulator (ADGPRS) has been improved to more accurately simulate multiphase, multi-component flow in porous media. ADGPRS has been augmented with a general, multi-scale framework for multi-component, multi-phase equilibrium flash calculations, which uses information at the molecular and bulk fluid length scales. The key attributes of this multi-scale Gibbs-Helmholtz Constrained Equation of State (GHC EOS) approach are (1) the use of coarse-grained, fixed-particle, temperature, and pressure Monte Carlo simulations to gather pure component internal energies of departure, (2) a linear mixing rule for internal energies of departure for mixtures, (3) a novel expression for partial fugacity coefficients, and (4) a flash algorithm based on complex-valued compressibility factors and densities to assist in phase existence determination. Our thermal nonlinear formulation for solution of reservoir equations is based on saturations and phase concentrations and uses variable substitution to handle phase appearances and disappearances in systems with an arbitrary number of phases. This coupled ADGPRS-GHC framework simulates multi-component, thermal flow at equilibrium conditions, which is important for modeling thermally enhanced oil recovery including steam and CO2 co-solvent injection. The coupled code is applied to an example problem where heat and mass (steam and CO2) are added to a "depleted" oil-bearing formation. Results demonstrate the improved efficiency of the Solvent Thermal Resource Innovation Process (STRIP) oil recovery method over standard steam injection without CO2. Also, STRIP operating parameters are optimized based on simulation results.

  10. Culture, stress and recovery from schizophrenia: lessons from the field for global mental health.

    PubMed

    Myers, Neely Laurenzo

    2010-09-01

    This cultural case study investigates one U.S. psychosocial rehabilitation organization's (Horizons) attempt to implement the recovery philosophy of the U.S. Recovery Movement and offers lessons from this local attempt that may inform global mental health care reform. Horizons' "recovery-oriented" initiatives unwittingly mobilized stressful North American discourses of valued citizenship. At times, efforts to "empower" people diagnosed with schizophrenia to become esteemed self-made citizens generated more stressful sociocultural conditions for people whose daily lives were typically remarkably stressful. A recovery-oriented mental health system must account for people diagnosed with schizophrenia's sensitivity to stress and offer consumers contextually relevant coping mechanisms. Any attempt to export U.S. mental health care practices to the rest of the world must acknowledge that (1) sociocultural conditions affect schizophrenia outcomes; (2) schizophrenia outcomes are already better in the developing world than in the United States; and (3) much of what leads to "better" outcomes in the developing world may rely on the availability of locally relevant techniques to address stress. PMID:20571905

  11. SOIL QUALITY RECOVERY IN PREVIOUSLY FARMED FIELDS SEEDED TO PERENNIAL WARM SEASON NATIVE GRASS

    EPA Science Inventory

    A study of twelve Conservation Reserve Program sites in northeastern Kansas was conducted to determine native grass species and selected soil textures influence on soil quality recovery.
    Plant productivity, plant carbon and nitrogen concentrations, total soil nitrogen and car...

  12. Culture, Stress and Recovery from Schizophrenia: Lessons from the Field for Global Mental Health

    PubMed Central

    2011-01-01

    This cultural case study investigates one U.S. psychosocial rehabilitation organization’s (Horizons) attempt to implement the recovery philosophy of the U.S. Recovery Movement and offers lessons from this local attempt that may inform global mental health care reform. Horizons’ “recovery-oriented” initiatives unwittingly mobilized stressful North American discourses of valued citizenship. At times, efforts to “empower” people diagnosed with schizophrenia to become esteemed self-made citizens generated more stressful sociocultural conditions for people whose daily lives were typically remarkably stressful. A recovery-oriented mental health system must account for people diagnosed with schizophrenia’s sensitivity to stress and offer consumers contextually relevant coping mechanisms. Any attempt to export U.S. mental health care practices to the rest of the world must acknowledge that (1) sociocultural conditions affect schizophrenia outcomes; (2) schizophrenia outcomes are already better in the developing world than in the United States; and (3) much of what leads to “better” outcomes in the developing world may rely on the availability of locally relevant techniques to address stress. PMID:20571905

  13. Procedure of recovery of pin-by-pin fields of energy release in the core of VVER-type reactor for the BIPR-8 code

    SciTech Connect

    Gordienko, P. V. Kotsarev, A. V.; Lizorkin, M. P.

    2014-12-15

    The procedure of recovery of pin-by-pin energy-release fields for the BIPR-8 code and the algorithm of the BIPR-8 code which is used in nodal computation of the reactor core and on which the recovery of pin-by-pin fields of energy release is based are briefly described. The description and results of the verification using the module of recovery of pin-by-pin energy-release fields and the TVS-M program are given.

  14. Recovery of chromium from spent plating solutions by a chromyl chloride process

    SciTech Connect

    Guddati, S.L.; Holsen, T.M.; Selman, J.R.

    1994-12-31

    A novel chromyl chloride process has been investigated for the recovery of hexavalent chromium from spent plating solutions. In this process chromium is converted to chromyl chloride by reacting it with concentrated hydrochloric acid and then separated as a heavy underlayer, or alternatively, extracted into a solvent as follows: H{sub 2}CrO{sub 4} + 2 HCl {Leftrightarrow} CrO{sub 2}Cl{sub 2} + 2 H{sub 2}O. Purified chromyl chloride is then hydrolyzed and the resulting solution dried and chromium trioxide recovered. H{sub 2}CrO{sub 4} [+ 2 HCl] {Leftrightarrow} CrO{sub 3}{down_arrow} + H{sub 2}O{up_arrow} [+ 2 HCl{up_arrow}]. In preliminary experiments more than 98% of the chromium has been separated as chromyl chloride (without using any solvent) from an aqueous solution which originally contained 200 g/L chromic acid. Temperature and reactant concentrations were found to greatly affect the stability and the yield of chromyl chloride respectively. Equilibrium conditions have been identified using a geochemical equilibrium speciation model. A statistical analysis of experimental results has been performed to quantify the effects of various parameters on the yield of chromyl chloride.

  15. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process

    PubMed Central

    Cassano, Alfredo; Conidi, Carmela; Ruby-Figueroa, René

    2014-01-01

    Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF) in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS) content of 10 g·100 g−1 was pre-concentrated by nanofiltration (NF) up to 32 g TSS 100 g−1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g−1, was performed by using an osmotic distillation (OD) apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g−1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF). The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications. PMID:25116725

  16. Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 82, quarterly report, January--March 1995

    SciTech Connect

    1996-06-01

    This document consists of a list of projects supporting work on oil recovery programs. A publications list and index of companies and institutions is provided. The remaining portion of the document provides brief descriptions on projects in chemical flooding, gas displacement, thermal recovery, geoscience, resource assessment, and reservoir class field demonstrations.

  17. INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

    SciTech Connect

    Yannis C. Yortsos

    2003-02-01

    This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

  18. Uranium recovery from wet-process phosphoric acid with octylphenyl acid phosphate. Progress report

    SciTech Connect

    Arnold, W.D.; McKamey, D.R.; Baes, C.F.

    1980-01-01

    Studies were continued of a process for recovering uranium from wet-process phosphoric acid with octylphenyl acid phosphate (OPAP), a mixture of mono- and dioctylphenyl phosphoric acids. The mixture contained at least nine impurities, the principal one being octyl phenol, and also material that readily hydrolyzed to octyl phenol and orthophosphoric acid. The combination of mono- and dioctylphenyl phosphoric acids was the principal uranium extractant, but some of the impurities also extracted uranium. Hydrolysis of the extractant had little effect on uranium extraction, as did the presence of moderate concentrations of octyl phenol and trioctylphenyl phosphate. Diluent choice among refined kerosenes, naphthenic mixtures, and paraffinic hydrocarbons also had little effect on uranium extraction, but extraction was much lower when an aromatic diluent was used. Purified OPAP fractions were sparingly soluble in aliphatic hydrocarbon diluents. The solubility was increased by the presence of impurities such as octyl phenol, and by the addition of water or an acidic solution to the extractant-diluent mixture. In continuous stability tests, extractant loss by distribution to the aqueous phase was much less to wet-process phosphoric acid than to reagent grade acid. Uranium recovery from wet-process acid decreased steadily because of the combined effects of extractant poisoning and precipitation of the extractant as a complex with ferric iron. Unaccountable losses of organic phase volume occurred in the continuous tests. While attempts to recover the lost organic phase were unsuccessful, the test results indicate it was not lost by entrainment or dissolution in the phosphoric acid solutions. 21 figures, 8 tables.

  19. Osmotically-driven membrane processes for water reuse and energy recovery

    NASA Astrophysics Data System (ADS)

    Achilli, Andrea

    Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery. This work focused on innovative applications of osmotically-driven membrane processes. The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen. Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes. Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to

  20. Abstracts for the Planetary Geology Field Conference on Aeolian Processes

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Black, D. (Editor)

    1978-01-01

    The Planetary Geology Field Conference on Aeolian Processes was organized at the request of the Planetary Geology Program office of the National Aeronautics and Space Administration to bring together geologists working on aeolian problems on earth and planetologists concerned with similar problems on the planets. Abstracts of papers presented at the conference are arranged herein by alphabetical order of the senior author. Papers fall into three broad categories: (1) Viking Orbiter and Viking Lander results on aeolian processes and/or landforms on Mars, (2) laboratory results on studies of aeolian processes, and (3) photogeology and field studies of aeolian processes on Earth.

  1. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    PubMed

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater. PMID:27003794

  2. Pilot Field Test: Recovery from a Simulated Fall and Quiet Stance Stability After Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Phillips, T. R.; Rukavishnikov, I. V.; Kitov, V. V.; Lysova, N. Yu; Lee, S. M. C.; Stenger, M. B.; Bloomberg, J. J.; Mulavara, A. P.; Tomilovskaya, E. S.; Kozlovskaya, I. B.

    2016-01-01

    Astronauts returning from the International Space Station (ISS) are met by a team of recovery personnel typically providing physical assistance and medical support immediately upon landing. That is because long-duration spaceflight impacts astronauts' functional abilities. Future expeditions to planets or asteroids beyond the low Earth orbit, however, may require crewmembers to egress the vehicle and perform other types of physical tasks unassisted. It is therefore important to characterize the extent and longevity of functional deficits experienced by astronauts in order to design safe exploration class missions. Pilot Field Test (PFT) experiment conducted with participation of ISS crewmembers traveling on Soyuz expeditions 34S - 41S comprised several tasks designed to study the recovery of sensorimotor abilities of astronauts during the first 24 hours after landing and beyond.

  3. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    SciTech Connect

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N.; Hullette, J.N.

    2009-09-01

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  4. Field Artillery Ammunition Processing System (FAAPS) concept evaluation study

    SciTech Connect

    Kring, C.T.; Babcock, S.M.; Watkin, D.C.; Oliver, R.P.

    1992-06-01

    The Field Artillery Ammunition Processing System (FAAPS) is an initiative to introduce a palletized load system (PLS) that is transportable with an automated ammunition processing and storage system for use on the battlefield. System proponents have targeted a 20% increase in the ammunition processing rate over the current operation while simultaneously reducing the total number of assigned field artillery battalion personnel by 30. The overall objective of the FAAPS Project is the development and demonstration of an improved process to accomplish these goals. The initial phase of the FAAPS Project and the subject of this study is the FAAPS concept evaluation. The concept evaluation consists of (1) identifying assumptions and requirements, (2) documenting the process flow, (3) identifying and evaluating technologies available to accomplish the necessary ammunition processing and storage operations, and (4) presenting alternative concepts with associated costs, processing rates, and manpower requirements for accomplishing the operation. This study provides insight into the achievability of the desired objectives.

  5. Enhanced recovery of light-induced degradation on the micromorph solar cells by electric field

    NASA Astrophysics Data System (ADS)

    Sun, H.-C.; Yang, Y.-J.; Chen, J. Y.; Chao, T.-M.; Liu, C. W.; Lin, W.-Y.; Bi, C.-C.; Yeh, C.-H.

    2012-09-01

    The recovery of light-induced degradation of the tandem micromorph solar cell by applying reverse bias is compared with the single-junction amorphous silicon solar cell. The illuminated current density-voltage characteristics and external quantum efficiency show that the degradation of both the micromorph and the amorphous silicon cells can be recovered by applying sufficient reverse bias. The micromorph cell was recovered at smaller reverse bias than amorphous silicon cell. The abundant H in the microcrystalline silicon bottom cell of the micromorph cell can act as a reservoir to repair the defects in the amorphous silicon top cell at the reverse bias. This is responsible for small recovery bias of tandem cells.

  6. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    PubMed

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively. PMID:25191877

  7. PEG-400 Partitioning in the HCCD/PEG Process for Cs and Sr Recovery

    SciTech Connect

    R. S. Herbst; T. A. Robinson; D. R. Peterman

    2008-07-01

    The properties of the chloro-protected cobalt bis(dicarbollide) anion in the protonated or acid form (HCCD), in the presence of polyethylene glycol with an average molecular weight of 400 (PEG-400), are well known for the recovery of Cs and Sr from acidic radioactive streams. In the early development of HCCD/PEG based extraction process, questions were raised regarding the ability to control the concentration of PEG-400 in the organic phase since it has the greatest solubility in the aqueous process solutions relative to the HCCD or diluent. The purpose of this study was to determine the distribution ratio of PEG-400 under a wide variety of relevant process conditions and represents a precursory examination of the PEG-400 losses from the HCCD/PEG extraction system. PEG distribution ratios (DPEG = [PEG]org / [PEG]aq) were measured by equilibrium batch contacts between the organic and aqueous phases over a wide range of experimental conditions using radiometric techniques with 14C labeled PEG-400 to monitor the behavior of the bulk material. The results vary dramatically from 0.1 > DPEG > 50. The data generated to date indicate that the concentration of HNO3 in the aqueous phase has a minimal impact on PEG solubility and the PEG phase transfer kinetics are rapid. Of the variables studied, the organic phase concentration ratio of [HCCD]:[PEG] has the greatest impact on PEG solubility. The initial ratio in the organic phase should be maintained at [HCCD]:[PEG] ~ 6 to 10 to minimize PEG losses from the organic phase.

  8. MVC: A user-based on-line optimal control system for gas processing and treating plants. Development and results for claus sulfur recovery and sweetening modules. Topical report, June 1992-September 1993

    SciTech Connect

    Berkowitz, P.N.; Papadopoulos, M.N.; Colwell, L.W.; Poe, W.; Yiu, Y.

    1993-09-01

    The objective of this project was to develop and field validate modular, on-line, advanced control systems to optimize the operation of Claus sulfur recovery and sweetening in gas processing plants with emphasis on small and mid-sized facilities.

  9. Imaging 3D strain field monitoring during hydraulic fracturing processes

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.

    2016-05-01

    In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.

  10. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process. PMID:26918838

  11. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low

  12. Gravity field processing with enhanced numerical precision for LL-SST missions

    NASA Astrophysics Data System (ADS)

    Daras, Ilias; Pail, Roland; Murböck, Michael; Yi, Weiyong

    2015-02-01

    On their way to meet the augmenting demands of the Earth system user community concerning accuracies of temporal gravity field models, future gravity missions of low-low satellite-to-satellite tracking (LL-SST) type are expected to fly at optimized formations and make use of the latest technological achievements regarding the on-board sensor accuracies. Concerning the main measuring unit of an LL-SST type gravity mission, the inter-satellite measuring instrument, a much more precise interferometric laser ranging system is planned to succeed the K-band ranging system used by the Gravity Recovery and Climate Experiment (GRACE) mission. This study focuses on investigations concerning the potential performance of new generation sensors such as the laser interferometer within the gravity field processing chain. The sufficiency of current gravity field processing accuracies is tested against the new sensor requirements, via full-scale closed-loop numerical simulations of a GRACE Follow-On configuration scenario. Each part of the processing is validated separately with special emphasis on numerical errors and their impact on gravity field solutions. It is demonstrated that gravity field processing with double precision may be a limiting factor for taking full advantage of the laser interferometer's accuracy. Instead, a hybrid processing scheme of enhanced precision is introduced, which uses double and quadruple precision in different parts of the processing chain, leading to system accuracies of only 17 nm in terms of geoid height reconstruction errors. Simulation results demonstrate the ability of enhanced precision processing to minimize the processing errors and thus exploit the full precision of a laser interferometer, when at the same time the computational times are kept within reasonable levels.

  13. Design concepts of a heavy-oil recovery process by an immiscible CO/sub 2/ application

    SciTech Connect

    Kantar, K.; Issever, K.; Karaoguz, D.; Vrana, L.

    1985-02-01

    Bati Raman oil field, in southeast Turkey, represents Turkey's biggest single oil reserve. The rapid production decline of the field and increases in the price of crude oil has led Turkish Petroleum Corp. (TPAO) to consider intervening with EOR techniques. Since 1967, various recovery schemes have been attempted, including steam and water injection. Extensive laboratory, modeling, and comparative engineering studies of various immiscible CO/sub 2/ application techniques resulted. This paper presents the reservoir engineering aspects of immiscible CO/sub 2/ application as applied to Bati Raman oil field.

  14. A preliminary error analysis of the gravity field recovery from a lunar Satellite-to-Satellite mission

    NASA Technical Reports Server (NTRS)

    Iz, Huseyin B.

    1993-01-01

    A low cost lunar Satellite-to-Satellite radio tracking mission in a low-low configuration could considerably improve the existing knowledge about the lunar gravity field. The impact of various mission parameters that may contribute to the recovery of the gravity field, such as satellite altitude, satellite separation mission duration, measurement precision and sampling interval were quantified using the Jekeli-Rapp algorithm. Preliminary results indicate that the gravity field resolution up to harmonic degree 40 to 80 is feasible depending on various mission configurations. Radio tracking data from a six-month mission with a precision of 1 mm/s every 10 s and 300 km satellite separation at 150 km altitude will permit the determination of 5 deg x 5 deg mean gravity anomalies with an error of approximately 15 mgals. Consideration of other unaccounted error sources of instrumental, operational, and environmental nature may lower this resolution.

  15. Field Research: Learning through the Process of Observation

    ERIC Educational Resources Information Center

    Hartlep, Nicholas Daniel

    2009-01-01

    This paper reports on the process of a participant observation. Its focus is its process, not on what was observed. This report provides the following: (1) an overview of this observation, (2) the purpose of this observation, (3) the site and situation of this observation, (4) two samples of reflective field notes from this observation, and (5) an…

  16. Developing Mathematical Processes (DMP). Field Test Evaluation, 1972-1973.

    ERIC Educational Resources Information Center

    Schall, William E.; And Others

    The field test of the Developing Mathematical Processes (DMP) program was conducted jointly by the Falconer Central School, St. Mary's Elementary School in Dunkirk, New York, and the Teacher Education Research Center at the State University College in Fredonia, New York. DMP is a research-based, innovative, process-oriented elementary mathematics…

  17. Radio frequency electric fields as a nonthermal process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An overview is presented of the current state of art in microbial inactivation in food products by radio frequency electric fields (RFEF) processing. Critical process parameters determining inactivation are discussed. Some issues are offered that need further investigation in order to commercialize ...

  18. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of...

  19. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of...

  20. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of...

  1. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of...

  2. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units XIII Appendix XIII to Part 266 Protection of...

  3. Phosphorus recovery prior to land application of biosolids using the “Quick Wash” process developed by USDA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: To present the case study of a new treatment process, called “quick wash”, that was developed by the USDA-ARS for extraction and recovery of phosphorus from animal manure solids but research has shown the approach is equally effective to recover phosphorus from biosolids prior to applica...

  4. The method of quartz damage recovery in the photomask repair process

    NASA Astrophysics Data System (ADS)

    Namkung, Hoon; Kim, MunSik; Park, EuiSang; Jung, HoYong; Kim, SangPyo; Yim, DongGyu

    2015-07-01

    As the pattern size became gradually smaller, the defect detectability of the photomask inspection tool was more improved. For these reasons, we have to repair various defects more precisely. By improving the mask yield through the repair process, we can reduce the cost of mask fabrication. In this study, we studied the defect called quartz damage which distorts the AIMSTM (Arial Image Measurement System) intensity of the repaired pattern and causes the scrap of the photomask. The quartz damage is generally observed when the abnormal defects like particles were repaired in the poor repairing condition. The quartz damage occasionally results in repair errors and affects the AIMS intensity. Currently there is no clear solution for recovering the quartz damage. As a result, it is very difficult to get the high quality photomask if the quartz damage is generated on the photomask. Therefore, it is important to find a method of recovering the quartz damage for producing the high quality photomask. In this paper, we demonstrated that the quartz damage can be recovered through the TEOS (Tetraethoxysilane) gas deposition. Also we investigated the effect on the recovery of the quartz damage of various parameters such as the type and the depth of the quartz damage as well as the repair conditions of the TEOS gas deposition.

  5. Gas processing developments/purify CO/sub 2/ for use in enhanced recovery

    SciTech Connect

    Meissner, R.E.

    1980-04-01

    The total installed capital cost of a Selexol plant to produce 10.9 million cu ft/day of acid gas with 91-96% CO/sub 2/ and 1.3 million cu ft/day of treated gas with < 2% CO/sub 2/ from 12.2 million std cu ft/day of natural gas containing 70-85% CO/sub 2/ would be $8.5 million, which could be reduced by approx. 10% if the CO/sub 2/ content of the treated gas were increased to approx. 3-5% by vol. An alternative scheme, which would cost < 67% of the Selexol scheme, would involve compression of the raw feed to 300-600 psig, dehydration with a solvent such as triethylene glycol, and cooling to a temperature at which most of the carbon dioxide and heavier hydrocarbons would condense. The removal of water from the CO/sub 2/ to prevent plugging due to freezing or hydrate formation and to reduce pipeline and equipment corrosion may be achieved by processes that use triethylene glycol or ethylene glycol injection. Other recovery schemes for CO/sub 2/ from natural gas and from ammonia and hydrogen plants, are discussed.

  6. Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12

    SciTech Connect

    Izequeido, Alexandor

    2001-04-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.

  7. Evaluation of an anaerobic digestion system for processing CELSS crop residues for resource recovery.

    PubMed

    Strayer, R F; Finger, B W; Alazraki, M P

    1997-01-01

    Three bioreactors, connected in series, were used to process CELSS potato residues for recovery of resources. The first stage was an anaerobic digestor (8 L working volume; cow rumen contents inoculum; fed-batch; 8 day retention time; feed rate 25 gdw day-1) that converted 33% of feed (dry weight loss) to CO2 and "volatile fatty acids" (vfa, 83:8:8 mmolar ratio acetic:propionic:butyric). High nitrate-N in the potato residue feed was absent in the anaerobic effluent, with a high portion converted to NH4(+)-N and the remainder unaccounted and probably lost to denitrification and NH4+ volatilization. Liquid anaerobic effluent was fed to an aerobic, yeast biomass production vessel (2 L volume; Candida ingens inoculum; batch [pellicle] growth; 2 day retention time) where the VFAs and some NH4(+)-N were converted into yeast biomass. Yeast yields accounted for up to 8% of potato residue fed into the anaerobic bioreactor. The third bioreactor (0.5 L liquid working volume; commercial nitrifier inoculum; packed-bed biofilm; continuous yeast effluent feed; recirculating; constant volume; 23 day hydraulic retention time) was used to convert successfully the remaining NH4(+)-N into nitrate-N (preferred form of N for CELSS crop production) and to remove the remaining degradable soluble organic carbon. Effluents from the last two stages were used for partial replenishment of minerals for hydroponic potato production. PMID:11542583

  8. Optimization of the anaerobic treatment of a waste stream from an enhanced oil recovery process.

    PubMed

    Alimahmoodi, Mahmood; Mulligan, Catherine N

    2011-01-01

    The aim of this work was to optimize the anaerobic treatment of a waste stream from an enhanced oil recovery (EOR) process. The treatment of a simulated waste water containing about 150 mg chemical oxygen demand (COD)/L of total petroleum hydrocarbons (TPH) and the saturation level of CO2 was evaluated. A two-step anaerobic system was undertaken in the mesophilic temperature range (30-40°C). The method of evolutionary operation EVOP factorial design was used to optimize pH, temperature and organic loading rate with the target parameters of CO2 reduction and CH4 production in the first reactor and TPH removal in the second reactor. The results showed 98% methanogenic removal of CO2 and CH4 yield of 0.38 L/gCOD in the first reactor and 83% TPH removal in the second reactor. In addition to enhancing CO2 and TPH removal and CH4 production, application of this method showed the degree of importance of the operational variables and their interactive effects for the two reactors in series. PMID:20846858

  9. Production of a polyacrylamide solution used in an oil recovery process

    SciTech Connect

    Luetzelschwab, W.E.

    1987-01-06

    A process is described for recovering oil from a subterranean oil-bearing formation having performance demands comprising the steps of: determining the performance demands of the formation; determining correlations between an initial polymerization reaction parameter of initiator level and partially hydrolyzed polyacrylamide solution properties of screen factor and viscosity, each correlation having a discontinuity; selecting a value of the initiator level below each discontinuity such that the selected value of the initiator level is capable of producing a partially hydrolyzed polyacrylamide solution having values of the properties of viscosity and screen factor relatively sensitive to varying the initiator level and capable of meeting the performance demands of the formation; producing the partially hydrolyzed polyacrylamide solution having the values of the properties relatively sensitive to varying the initiator level and capable of meeting the performance demands by polymerizing an acrylamide monomer using a polymerization initiator at the selected value; and injecting the partially hydrolyzed polyacrylamide solution into the formation to improve oil recovery therefrom.

  10. Evaluation of an Anaerobic Digestion System for Processing CELSS Crop Residues for Resource Recovery

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    Three bioreactors, connected in series, were used to process CELSS potato residues for recovery of resources. The first stage was an anaerobic digestor (8 L working volume; cow rumen contents inoculum; fed-batch; 8 day retention time; feed rate 25 gdw/day) that converted 33% of feed (dry weight loss) to CO2 and "volatile fatty acids" (vfa, 83:8:8 mmolar ratio acetic:propionic:butyric). High nitrate-N in the potato residue feed was absent in the anaerobic effluent, with a high portion converted to NH4(+)-N and the remainder unaccounted and probably lost to denitrification and NH4(+) volatilization. Liquid anaerobic effluent was fed to an aerobic, yeast biomass production vessel (2 L volume; Candida ingens inoculum; batch [pellicle] growth; 2 day retention time) where the VFAs and some NH4(+)-N were converted into yeast biomass. Yeast yields accounted for up to 8% of potato residue fed into the anaerobic bioreactor. The third bioreactor (0.5 L liquid working volume; commercial nitrifier inoculum; packed-bed biofilm; continuous yeast effluent feed; recirculating; constant volume; 2 day hydraulic retention time) was used to convert successfully the remaining NH4(+)-N into nitrate-N (preferred form of N for CELSS crop production) and to remove the remaining degradable soluble organic carbon. Effluents from the last two stages were used for partial replenishment of minerals for hydroponic potato production.

  11. Evaluation of an anaerobic digestion system for processing CELSS crop residues for resource recovery

    NASA Astrophysics Data System (ADS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    Three bioreactors, connected in series, were used to process CELSS potato residues for recovery of resources. The first stage was an anaerobic digestor (8 L working volume; cow rumen contents inoculum; fed-batch; 8 day retention time; feed rate 25 gdw day^-1) that converted 33% of feed (dry weight loss) to CO_2 and ``volatile fatty acids'' (vfa, 83:8:8 mmolar ratio acetic:propionic:butyric). High nitrate-N in the potato residue feed was absent in the anaerobic effluent, with a high portion converted to NH_4^+-N and the remainder unaccounted and probably lost to denitrification and NH_4^+ volatilization. Liquid anaerobic effluent was fed to an aerobic, yeast biomass production vessel (2 L volume; Candida ingens inoculum; batch [pellicle] growth; 2 day retention time) where the VFAs and some NH_4^+-N were converted into yeast biomass. Yeast yields accounted for up to 8% of potato residue fed into the anaerobic bioreactor. The third bioreactor (0.5 L liquid working volume; commercial nitrifier inoculum; packed-bed biofilm; continuous yeast effluent feed; recirculating; constant volume; 2 day hydraulic retention time) was used to convert successfully the remaining NH_4^+-N into nitrate-N (preferred form of N for CELSS crop production) and to remove the remaining degradable soluble organic carbon. Effluents from the last two stages were used for partial replenishment of minerals for hydroponic potato production.

  12. Recovery of zinc from residues by SX-galvanic stripping process

    SciTech Connect

    Moats, M.S.; Chang, C.M.; O`Keefe, T.J.

    1995-12-31

    The treatment of oxidized residues of zinc with high iron content continues to present a technical challenge in both the steel and zinc industries. Two main problems are commonly identified and include high treatment costs and environmental concerns about contaminated, iron-bearing residuals. A new approach to this problem is described in which selective separation of the iron and zinc into salable products may be potentially feasible. The waste material is first leached to give a solution having an approximate concentration of 110 g/l Zn, 15 g/l Fe and 40 g/l H{sub 2}SO{sub 4} and other impurities such as Pb, Cd, Cu and Sb. A suitable organic, such as D2EHPA, is used to load the majority of the iron. The aqueous phase is then acceptable for zinc electrowinning after standard solution purification. The novel step in the flow sheet is the efficient recovery of the ferric iron from the organic solvent using a solid metal to reduce the iron to the ferrous state. The Fe{sup +2} is easily stripped into an aqueous phase in a relatively pure form, suitable for use in water treatment. Process parameters and possible flow sheet designs are described and discussed.

  13. Possibilities of the regional gravity field recovery from first-, second- and third-order radial derivatives of the disturbing gravitational potential measured on moving platforms

    NASA Astrophysics Data System (ADS)

    Pitonak, Martin; Sprlak, Michal; Novak, Pavel; Tenzer, Robert

    2016-04-01

    Recently realized gravity-dedicated satellite missions allow for measuring values of scalar, vectorial (Gravity Recovery And Climate Experiment - GRACE) and second-order tensorial (Gravity field and steady-state Ocean Circulation Explorer - GOCE) parameters of the Earth's gravitational potential. Theoretical aspects related to using moving sensors for measuring elements of the third-order gravitational tensor are currently under investigation, e.g., the gravity field-dedicated satellite mission OPTIMA (OPTical Interferometry for global Mass change detection from space) should measure third-order derivatives of the Earth's gravitational potential. This contribution investigates regional recovery of the disturbing gravitational potential on the Earth's surface from satellite and aerial observations of the first-, second- and third-order radial derivatives of the disturbing gravitational potential. Synthetic measurements along a satellite orbit at the altitude of 250 km and along an aircraft track at the altitude of 10 km are synthetized from the global gravitational model EGM2008 and polluted by the Gaussian noise. The process of downward continuation is stabilized by the Tikhonov regularization. Estimated values of the disturbing gravitational potential are compared with the same quantity synthesized directly from EGM2008.

  14. Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE

    NASA Astrophysics Data System (ADS)

    Ditmar, Pavel; Teixeira da Encarnação, João; Hashemi Farahani, Hassan

    2012-06-01

    Spectral analysis of data noise is performed in the context of gravity field recovery from inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. The motivation of the study is two-fold: (i) to promote a further improvement of GRACE data processing techniques and (ii) to assist designing GRACE follow-on missions. The analyzed noise realizations are produced as the difference between the actual GRACE inter-satellite range measurements and the predictions based on state-of-the-art force models. The exploited functional model is based on the so-called "range combinations," which can be understood as a finite-difference analog of inter-satellite accelerations projected onto the line-of-sight connecting the satellites. It is shown that low-frequency noise is caused by limited accuracy of the computed GRACE orbits. In the first instance, it leads to an inaccurate estimation of the radial component of the inter-satellite velocities. A large impact of this component stems from the fact that it is directly related to centrifugal accelerations, which have to be taken into account when the measured range-accelerations are linked with inter-satellite accelerations. Another effect of orbit inaccuracies is a miscalculation of forces acting on the satellites (particularly, the one described by the zero-degree term of the Earth's gravitational field). The major contributors to the noise budget at high frequencies (above 9 mHz) are (i) ranging sensor errors and (ii) limited knowledge of the Earth's static gravity field at high degrees. Importantly, we show that updating the model of the static field on the basis of the available data must be performed with a caution as the result may not be physical due to a non-unique recovery of high-degree coefficients. The source of noise in the range of intermediate frequencies (1-9 mHz), which is particularly critical for an accurate gravity field recovery, is not fully understood yet. We show, however, that

  15. DECLINE AND RECOVERY OF THE INTERPLANETARY MAGNETIC FIELD DURING THE PROTRACTED SOLAR MINIMUM

    SciTech Connect

    Smith, Charles W.; Schwadron, Nathan A.; DeForest, Craig E. E-mail: N.Schwadron@unh.edu

    2013-09-20

    The interplanetary magnetic field (IMF) is determined by the amount of solar magnetic flux that passes through the top of the solar corona into the heliosphere, and by the dynamical evolution of that flux. Recently, it has been argued that the total flux of the IMF evolves over the solar cycle due to a combination of flux that extends well outside of 1 AU and is associated with the solar wind, and additionally, transient flux associated with coronal mass ejections (CMEs). In addition to the CME eruption rate, there are three fundamental processes involving conversion of magnetic flux (from transient to wind-associated), disconnection, and interchange reconnection that control the levels of each form of magnetic flux in the interplanetary medium. This is distinct from some earlier models in which the wind-associated component remains steady across the solar cycle. We apply the model of Schwadron et al. that quantifies the sources, interchange, and losses of magnetic flux to 50 yr of interplanetary data as represented by the Omni2 data set using the sunspot number as a proxy for the CME eruption rate. We do justify the use of that proxy substitution. We find very good agreement between the predicted and observed interplanetary magnetic flux. In the absence of sufficient CME eruptions, the IMF falls on the timescale of ∼6 yr. A key result is that rising toroidal flux resulting from CME eruption predates the increase in wind-associated IMF.

  16. Field Evaluation of the Restorative Capacity of the Aquifer Downgradient of a Uranium In-Situ Recovery Mining Site

    SciTech Connect

    Reimus, Paul William

    2015-05-22

    A two-part field study was conducted in Smith Ranch-Highland in-situ recovery (ISR) near Douglas, Wyoming, to evaluate the restorative capacity of the aquifer downgradient (i.e., hydrologically downstream) of a Uranium ISR mining site with respect to the transport of uranium and other potential contaminants in groundwater after mining has ceased. The study was partially conducted by checking the Uranium content and the alkalinity of separate wells, some wells had been restored and others had not. A map and in-depth procedures of the study are included.

  17. Hydat-A Hyperspectral Data Processing Tool for Field Spectroradiometer Data

    NASA Astrophysics Data System (ADS)

    Singh, S.; Dutta, D.; Singh, U.; Sharma, J. R.; Dadhwal, V. K.

    2014-11-01

    A hyperspectral data processing tool "HyDAT" has been developed in MATLAB environment for processing of Field Spectroradiometer data for vegetation studies. Several basic functions e.g. data visualization, pre-processing, noise removal and data transformation and features like automatic absorption feature recovery and their characterization have been introduced. A new concept of spectral geometry has been included as a separate module which is conceptualized as triangle formed over spectral space joining the vertices of green reflectance peak, red well and inflection point and is extremely useful for vegetation health analysis. A large variety of spectral indices both static and dynamic, have been introduced which is useful for remote estimation of foliar biochemicals. Keeping in view the computational requirement, MATLAB was used in the programming environment. It has various in-built functions for statistical and mathematical analysis, signal processing functions like FFT (Fast Fourier Transform), CWT (Continuous Wavelet Transform), direct smoothing function for moving average, Savitzky-Golay smoothing technique, etc. which can be used with ease for the signal processing and field data analysis. FSF (Field Spectroscopy Facility) Post processing Toolbox can also be freely downloaded and can be used for the direct importing and pre-processing of Spectroradiometer data for detector overlap correction, erroneous water band removal and smoothing. The complete package of the software has been bundled for standalone application of shared libraries with additional files for end users. The software is powered by creation of spectral library and customized report generation. An online help menu guides the user for performing different functions. The tool is capable of reducing the time required for processing field based hyperspectral data significantly and eliminate the need for different software to process the raw data and spectral features extraction.

  18. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.

    PubMed

    Fan, Bailin; Chen, Xiangping; Zhou, Tao; Zhang, Jinxia; Xu, Bao

    2016-05-01

    In this work, an eco-friendly and hydrometallurgical process for the recovery of cobalt and lithium from spent lithium-ion batteries has been proposed, which includes pretreatment, citric acid leaching, selective chemical precipitation and circulatory leaching. After pretreatment (manual dismantling, N-methyl pyrrolidone immersion and calcination), Cu and Al foils are recycled directly and the cathode active materials are separated from the cathode efficiently. Then, the obtained cathode active materials (waste LiCoO2) was firstly leached with 1.25 mol l(-1) citric acid and 1 vol.% H2O2 solution. Then cobalt was precipitated using oxalic acid (H2C2O4) under a molar ratio of 1:1.05 (H2C2O4: Co(2+)). After filtration, the filtrate (containing Li(+)) and H2O2 was employed as a leaching agent and the optimum conditions are studied in detail. The leaching efficiencies can reach as high as 98% for Li and 90.2% for Co, respectively, using filter liquor as leaching reagent under conditions of leaching temperature of 90°C, 0.9 vol.% H2O2 and a solid-to-liquid ratio of 60 ml g(-1) for 35 min. After three bouts of circulatory leaching, more than 90% Li and 80% Co can be leached under the same leaching conditions. In this way, Li and Co can be recovered efficiently and waste liquor re-utilization is achievable with this hydrometallurgical process, which may promise both economic and environmental benefits. PMID:26951340

  19. Beta decay and other processes in strong electromagnetic fields

    SciTech Connect

    Akhmedov, E. Kh.

    2011-09-15

    We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of nonrelativistic charged particles. Using nuclear {beta} decay as an example, we study the weak- and strong-field limits, as well as the field-induced {beta} decay of nuclei stable in the absence of the external fields, both in the tunneling and multiphoton regimes. We also consider the possibility of accelerating forbidden nuclear {beta} decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total {beta}-decay rates are unobservably small.

  20. Sensitivity of Global Modeling Initiative CTM predictions of Antarctic ozone recovery to GCM and DAS generated meteorological fields

    SciTech Connect

    Rotman, D; Bergmann, D

    2003-12-04

    We use the Global Modeling Initiative chemistry and transport model to simulate the evolution of stratospheric ozone between 1995 and 2030, using boundary conditions consistent with the recent World Meteorological Organization ozone assessment. We compare the Antarctic ozone recovery predictions of two simulations, one driven by meteorological data from a general circulation model (GCM), the other using the output of a data assimilation system (DAS), to examine the sensitivity of Antarctic ozone recovery predictions to the characteristic dynamical differences between GCM and DAS-generated meteorological data. Although the age of air in the Antarctic lower stratosphere differs by a factor of 2 between the simulations, we find little sensitivity of the 1995-2030 Antarctic ozone recovery between 350 K and 650 K to the differing meteorological fields, particularly when the recovery is specified in mixing ratio units. Relative changes are smaller in the DAS-driven simulation compared to the GCM-driven simulation due to a surplus of Antarctic ozone in the DAS-driven simulation which is not consistent with observations. The peak ozone change between 1995 and 2030 in both simulations is {approx}20% lower than photochemical expectations, indicating that changes in ozone transport at 450 K between 1995 and 2030 constitute a small negative feedback. Total winter/spring ozone loss during the base year (1995) of both simulations and the rate of ozone loss during August and September is somewhat weaker than observed. This appears to be due to underestimates of Antarctic Cl{sub y} at the 450 K potential temperature level.

  1. Interlock recovery during the drying, calcination and vitrification phase of Am/Cm processing

    SciTech Connect

    Snyder, T.K.

    2000-01-20

    This document summarizes the results of five CIM5 [5-inch Cylindrical Induction Melter] runs designed to demonstrate power interlock recovery methods during the drying, calcination and vitrification phases of the Am/Cm melter cycle.

  2. A REVIEW OF PERVAPORATION FOR PRODUCT RECOVERY FROM BIOMASS FERMENTATION PROCESSES

    EPA Science Inventory

    Although several separation technologies are technically capable of removing volatile products from fermentation broths, distillation remains the dominant technology. This is especially true for the recovery of biofuels such as ethanol. In this paper, the status of an emerging m...

  3. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING LAST TECHNICAL REPORT BEFORE NOVATION FROM URS CORP. TO CRYSTATECH, INC.

    SciTech Connect

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2001-02-01

    This project was funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf (service mark of Gas Research Institute) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane while avoiding methane oxidation. The project involved the development of a detailed plan for laboratory and bench scale-up application, laboratory/bench-scale catalyst testing, and demonstration of scale-up economic advantages. The bench-scale tests examined two different catalysts that are promoted modifications of TDA's patented partial oxidation catalyst used to make elemental sulfur. The experiments showed that catalyst TDA No.2 is superior for use with the hybrid CrystaSulf process in that much higher yields of SO{sub 2} can be obtained. Continued testing is planned.

  4. Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990

    SciTech Connect

    Tiedemann, H.A. )

    1991-05-01

    The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

  5. Field Education: Student and Field Instructor Perceptions of the Learning Process

    ERIC Educational Resources Information Center

    Miller, Jaclyn; Kovacs, Pamela J.; Wright, Leslie; Corcoran, Jacqueline; Rosenblum, Amy

    2005-01-01

    This exploratory qualitative study investigated the learning process in field education from the perspective of two major stakeholder groups. Field instructors (n=80) and students (n=100) participated in an experiential exercise (Jarvis, 1987) that used Kolb's Learning Cycle as a basis to explore and expand upon their perceptions of how this…

  6. Quantum processes in short and intensive electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Titov, A. I.; Kämpfer, Burkhard; Hosaka, Atsushi; Takabe, Hideaki

    2016-05-01

    This work provides an overview of our recent results in studying two most important and widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g. laser) wave field or generalized Breit-Wheeler process, and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that the probabilities of particle production in both processes are determined by interplay of two dynamical effects, where the first one is related to the shape and duration of the pulse and the second one is non-linear dynamics of the interaction of charged fermions with a strong electromagnetic field. We elaborate suitable expressions for the production probabilities and cross sections, convenient for studying evolution of the plasma in presence of strong electromagnetic fields.

  7. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  8. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.

    PubMed

    Oustadakis, P; Tsakiridis, P E; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The present paper is the first of a series of two articles dealing with the development of an integrated process for the recovery of zinc from electric arc furnace dust (EAFD), a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Part I presents the EAFD characterization and its leaching process by diluted sulphuric acid, whereas Part II deals with the purification of the leach liquor and the recovery of zinc by solvent extraction/electrowinning. The characterization of the examined electric arc furnace dust was carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The leaching process was based on the Zn extraction with diluted sulphuric acid from EAFD under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The zinc recovery efficiency on the basis of EAFD weight reached 80%. X-ray diffraction and scanning electron microscopy were used for the characterization of the leached residues. PMID:20129730

  9. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, January 1, 1994--December 31, 1994

    SciTech Connect

    Sharma, G.D.

    1995-07-01

    Alaska is the second largest oil producing state in the nation and currently contributes nearly 24% of the nations oil production. It is imperative that Alaskan heavy oil fields be brought into production. Schrader Bluff reservoir, located in the Milne Point Unit, which is part of the heavy oil field known as West Sak is estimated to contain 1.5 billion barrels of (14 to 21 degree API) oil-in-place. The field is currently under production by primary depletion. The eventual implementation of enhanced oil recovery (EOR) techniques will be vital for the recovery of additional oil from this reservoir. The availability of hydrocarbon gases (solvents) on the Alaska North Slope make the hydrocarbon miscible solvent injection process an important consideration for the EOR project in Schrader Bluff reservoir. Since Schrader Bluff oil is heavy and viscous, a water-alternating-gas (WAG) type of process for oil recovery is appropriate since such a process tends to derive synergetic benefits from both water injection (which provides mobility control and improvement in sweep efficiency) and miscible gas injection (which provides improved displacement efficiency). A miscible solvent slug injection process rather than continuous solvent injection is considered appropriate. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Coreflood experiments are also needed to determine the effect of solvent slug size, WAG ratio and solvent composition on the recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir.

  10. Reservoir Model of the Jacksonburg-Stringtown Oil Field; Northwestern West Virginia: Potential for Miscible Carbon Dioxide Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Bergerud, Blake

    Located in northwestern West Virginia, the Jacksonburg-Stringtown field has produced over 22 million barrels of oil (MMBO) since its discovery in 1895. The primary producing interval within the field is the Late Devonian Gordon Stray. Log analysis shows this formation to represent an estuarine depositional system. Four subunits within the formation are defined based on depositional framework: barrier sand, central bay shale, estuarine channels, and fluvial channel subunits. RHOmaa/Umaa lithological composition plots support the conclusion of a marine-influenced estuarine depositional framework. Structural and isopach maps generated with data from 73 local wells reveal a northeast-southwest trending sand deposit of 15-35 foot thickness, which is interpreted as the depocenter for the incised valley of the Gordon Stray. Analysis of formation horizon maps shows that the reservoir is synclinal and, as a result, contains a stratigraphic trap as opposed to the more common structural traps found in the immediate area. Porosity and pore-feet distribution maps indicate high porosity regions in southern regions of the field and high pore volume in northern areas. A miscible CO2 flood model estimates that an additional 7.3 MMBO could be recovered from the high porosity regions in the southern half of the field. The Jacksonburg-Stringtown field is well-suited for enhanced oil recovery and/or geologic CO2 sequestration.

  11. Effects of ultrasonic fields in the phosphoric acid process

    NASA Technical Reports Server (NTRS)

    Kowalska, E.; Mizera, J.; Jakobiec, H.

    1974-01-01

    A process of apatite decomposition with sulfuric acid was studied under the influence of ultrasound in the phosphoric acid production process. The studies were carried out with and without ultrasonic fields in the reaction mixture, which resembled the mixing ratio used in technical production processes. Ultrasound with a frequency of 20 kHz and an intensity of 1 W/sq cm was used in the studies. A very favorable ultrasonic effect upon the degree of apatite decomposition was observed. The ultrasonic field affects the shape of byproduct gypsum crystals. In the H3PO4 production process without ultrasound, the byproduct gypsum crystallizes as long, thin needles which cause problems in filtration. In the trials involving the application of wound, gypsum crystallized in the form of small platelets possessing a favorable ratio of length to width.

  12. Sea otter population status and the process of recovery from the 1989 Exxon Valdez oil spill

    USGS Publications Warehouse

    Bodkin, J.L.; Ballachey, B.E.; Dean, T.A.; Fukuyama, A.K.; Jewett, S.C.; McDonald, L.; Monson, D.H.; O'Clair, C. E.; VanBlaricom, G.R.

    2002-01-01

    Sea otter Enhydra lutris populations were severely affected by the 1989 Exxon Valdez oil spill in western Prince William Sound, AK, and had not fully recovered by 2000. Here we present results of population surveys and incorporate findings from related studies to identify current population status and factors affecting recovery. Between 1993 and 2000, the number of sea otters in the spill-area of Prince William Sound increased by about 600 to nearly 2700. However, at Knight Island, where oil exposure and sea otter mortality in 1989 was most severe, no increase has been observed. Sea otter reproduction was not impaired, and the age and sex composition of captured otters are consistent with both intrinsic reproduction and immigration contributing to recovery. However, low resighting rates of marked otters at Knight Island compared to an unoiled reference area, and high proportions of young otters in beach cast carcasses through 1998, suggest that the lack of recovery was caused by relatively poor survival or emigration of potential recruits. Significantly higher levels of cytochrome P4501A (CYP1A), a biomarker of hydrocarbons, were found in sea otters at Knight Island from 1996 to 1998 compared to unoiled Montague Island, implicating oil effects in the lack of recovery at Knight Island. Delayed recovery does not appear to be directly related to food limitation. Although food availability was relatively low at both oiled and unoiled areas, we detected significant increases in sea otter abundance only at Montague Island, a finding inconsistent with food as a principal limiting factor. Persistent oil in habitats and prey provides a source of continued oil exposure and, combined with relatively low prey densities, suggests a potential interaction between oil and food. However, sea otters foraged more successfully at Knight Island and young females were in better condition than those at Montague Island. We conclude that progress toward recovery of sea otters in Prince

  13. Sea otter population status and the process of recovery from the 1989 'Exxon Valdez' oil spill

    USGS Publications Warehouse

    Bodkin, J.L.; Ballachey, B.E.; Dean, T.A.; Fukuyama, A.K.; Jewett, S.C.; McDonald, L.; Monson, D.H.; O'Clair, C. E.; VanBlaricom, G.R.

    2002-01-01

    Sea otter Enhydra lutris populations were severely affected by the 1989 'Exxon Valdez' oil spill in western Prince William Sound, AK, and had not fully recovered by 2000. Here we present results of population surveys and incorporate findings from related studies to identify current population status and factors affecting recovery. Between 1993 and 2000, the number of sea otters in the spill-area of Prince William Sound increased by about 600 to nearly 2700. However, at Knight Island, where oil exposure and sea otter mortality in 1989 was most severe, no increase has been observed. Sea otter reproduction was not impaired, and the age and sex composition of captured otters are consistent with both intrinsic reproduction and immigration contributing to recovery. However, low resighting rates of marked otters at Knight Island compared to an unoiled reference area, and high proportions of young otters in beach cast carcasses through 1998, suggest that the lack of recovery was caused by relatively poor survival or emigration of potential recruits. Significantly higher levels of cytochrome P4501A (CYP1A), a biomarker of hydrocarbons, were found in sea otters at Knight Island from 1996 to 1998 compared to unoiled Montague Island, implicating oil effects in the lack of recovery at Knight Island. Delayed recovery does not appear to be directly related to food limitation. Although food availability was relatively low at both oiled and unoiled areas, we detected significant increases in sea otter abundance only at Montague Island, a finding inconsistent with food as a principal limiting factor. Persistent oil in habitats and prey provides a source of continued oil exposure and, combined with relatively low prey densities, suggests a potential interaction between oil and food. However, sea otters foraged more successfully at Knight Island and young females were in better condition than those at Montague Island. We conclude that progress toward recovery of sea otters in Prince

  14. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    PubMed

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. PMID:22159733

  15. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery Furnaces XII Appendix XII to Part 266... Processed in Exempt Nickel-Chromium Recovery Furnaces A. Exempt Nickel or Chromium-Bearing Materials...

  16. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery Furnaces XII Appendix XII to Part 266... Processed in Exempt Nickel-Chromium Recovery Furnaces A. Exempt Nickel or Chromium-Bearing Materials...

  17. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery Furnaces XII Appendix XII to Part 266... Processed in Exempt Nickel-Chromium Recovery Furnaces A. Exempt Nickel or Chromium-Bearing Materials...

  18. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery Furnaces XII Appendix XII to Part 266... Processed in Exempt Nickel-Chromium Recovery Furnaces A. Exempt Nickel or Chromium-Bearing Materials...

  19. 40 CFR Appendix Xii to Part 266 - Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Nickel or Chromium-Bearing Materials that may be Processed in Exempt Nickel-Chromium Recovery Furnaces XII Appendix XII to Part 266... Processed in Exempt Nickel-Chromium Recovery Furnaces A. Exempt Nickel or Chromium-Bearing Materials...

  20. Magnetic Field Satellite (Magsat) data processing system specifications

    NASA Technical Reports Server (NTRS)

    Berman, D.; Gomez, R.; Miller, A.

    1980-01-01

    The software specifications for the MAGSAT data processing system (MDPS) are presented. The MDPS is divided functionally into preprocessing of primary input data, data management, chronicle processing, and postprocessing. Data organization and validity, and checks of spacecraft and instrumentation are dicussed. Output products of the MDPS, including various plots and data tapes, are described. Formats for important tapes are presented. Dicussions and mathematical formulations for coordinate transformations and field model coefficients are included.

  1. Gravity Field Recovery from the Cartwheel Formation by the Semi-analytical Approach

    NASA Astrophysics Data System (ADS)

    Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico; Zhong, Min; Zhou, Zebing

    2016-04-01

    Past and current gravimetric satellite missions have contributed drastically to our knowledge of the Earth's gravity field. Nevertheless, several geoscience disciplines push for even higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure. With respect to other methods, one significant advantage of the semi-analytical approach is its effective pre-mission error assessment for gravity field missions. The semi-analytical approach builds a linear analytical relationship between the Fourier spectrum of the observables and the spherical harmonic spectrum of the gravity field. The spectral link between observables and gravity field parameters is given by the transfer coefficients, which constitutes the observation model. In connection with a stochastic model, it can be used for pre-mission error assessment of gravity field mission. The cartwheel formation is formed by two satellites on elliptic orbits in the same plane. The time dependent ranging will be considered in the transfer coefficients via convolution including the series expansion of the eccentricity functions. The transfer coefficients are applied to assess the error patterns, which are caused by different orientation of the cartwheel for range-rate and range acceleration. This work will present the isotropy and magnitude of the formal errors of the gravity field coefficients, for different orientations of the cartwheel.

  2. Pulsed electric field processing of foods: a review.

    PubMed

    Jeyamkondan, S; Jayas, D S; Holley, R A

    1999-09-01

    Use of pulsed electric fields (PEFs) for inactivation of microorganisms is one of the more promising nonthermal processing methods. Inactivation of microorganisms exposed to high-voltage PEFs is related to the electromechanical instability of the cell membrane. Electric field strength and treatment time are the two most important factors involved in PEF processing. Encouraging results are reported at the laboratory level, but scaling up to the industrial level escalates the cost of the command charging power supply and of the high-speed electrical switch. In this paper, we critically review the results of earlier experimental studies on PEFs and we suggest the future work that is required in this field. Inactivation tests in viscous foods and in liquid food containing particulates must be conducted. A successful continuous PEF processing system for industrial applications has yet to be designed. The high initial cost of setting up the PEF processing system is the major obstacle confronting those who would encourage the system's industrial application. Innovative developments in high-voltage pulse technology will reduce the cost of pulse generation and will make PEF processing competitive with thermal-processing methods. PMID:10492486

  3. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  4. FOREWORD: Focus on Materials Analysis and Processing in Magnetic Fields Focus on Materials Analysis and Processing in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-03-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other

  5. A Hi Fidelity Asymptotic Theory For Local Field Recovery Inside Pre-stressed Composite Media

    SciTech Connect

    Breitzman, Timothy; Lipton, Robert; Iarve, Endel

    2008-02-15

    We introduce a new mathematically rigorous high fidelity asymptotic theory for recovering the local field behavior inside complex composite architectures. The theory applies to zones containing strong spatial variance of local material properties. The method is used to recover the local field across ply interfaces for a pre-stressed multi-ply fiber reinforced composite. The results are shown to be in good agreement with direct numerical simulations for realistic fiber sizes and fiber-matrix elastic properties.

  6. Process Improvement Education with Professionals in the Addiction Treatment Field

    ERIC Educational Resources Information Center

    Pulvermacher, Alice

    2006-01-01

    Continuing education is being provided to professionals in the addiction treatment field to help them develop skills in process improvement and better meet the needs and requests they encounter. Access and retention of individuals seeking addiction treatment have been two of the greatest challenges addiction treatment professionals face.…

  7. Pulsed electric field processing for fruit and vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This month’s column reviews the theory and current applications of pulsed electric field (PEF) processing for fruits and vegetables to improve their safety and quality. This month’s column coauthor, Stefan Toepfl, is advanced research manager at the German Institute of Food Technologies and professo...

  8. Developing Mathematical Processes (DMP). Field Test Evaluation, 1973-1974.

    ERIC Educational Resources Information Center

    Schall, William; And Others

    The Developing Mathematical Processes (DMP) program was field-tested in the kindergarten and first three grades of one parochial and five public schools. DMP is an activity-based program developed around a comprehensive list of behavioral objectives. The program is concerned with the development of intuitive geometric concepts as well as…

  9. Field study of disposed wastes from advanced coal processes

    SciTech Connect

    Not Available

    1990-01-01

    The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. DOE has contracted Radian Corporation and the North Dakota Energy Environmental Research Center (EERC) to design, construct and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. This report discusses waste composition from fluidized bed coal combustion. Also presented is analytical data from the leaching of waste sampled from storage soils and of soil samples collected. 6 figs., 13 tabs.

  10. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect

    Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

    1999-02-01

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

  11. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect

    Schamel, Steven

    1997-07-29

    This project reactivates ARCO's idle Pru Fee property in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery was initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and the recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  12. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect

    Jenkins, Creties; Sprinkel, Doug; Deo, Milind; Wydrinski, Ray; Swain, Robert

    1997-10-21

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  13. Recativation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect

    Schamel, Steven

    1997-03-24

    This project reactivates ARCO`s idle Pru Fee lease in the Midway- Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modem reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  14. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect

    Schamel, Steven

    1999-07-08

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steam was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objective of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  15. New Method For Static and Temporal Gravity Field Recovery Using Grace

    NASA Astrophysics Data System (ADS)

    Han, S.-C.; Jekeli, C.; Shum, C. K.

    The gravity field dedicated satellite missions like CHAMP, GRACE, and GOCE are supposed to map the Earth's global gravity field with the unprecedented accuracy and resolution. New models of Earth's static and time-variable gravity field will be avail- able every month as one of the science products from GRACE. Here we present an alternative method [Jekeli, 1999] to estimate the gravity field efficiently using the in situ satellite-to-satellite observations at satellite altitude. Considering the energy re- lation between the kinetic energy of the satellite and the gravitational potential, the disturbing potential observations can be computed from the specific force observa- tions and the state vector in the inertial frame, using the high-low GPS-LEO GPS tracking data, the low-low satellite-to-satellite GRACE measurement, and data from 3-axis accelerometers. The disturbing potential observations is the sum of a linear combination of other potentials due to tides, atmosphere, other modeled signals (e.g., N-body) and signals (hydrological and oceanic mass variations). The advantage of the method is its potential ability to efficiently replace corrections (e.g., atmosphere and tides) from different models. The inverse solution method is based on conjugate gra- dient [Han et al., 2001] and has been demonstrated to be able to efficiently recover gravity field solutions up to degree and order 120. The appropriate pre-conditioner like the block-diagonal part of the full normal matrix is used to accelerate the conver- gence rate. The method is applicable to CHAMP and GOCE. The CHAMP RSO orbit products and STAR accelerometer data are used to compute the in situ potentials and the corresponding gravity field is recovered. The synthetic potential difference obser- vations are computed with the expected error of GRACE range-rage measurements and the monthly gravity field is recovered in the presence of systematic errors such as atmosphere and tides.

  16. Assessing sensitivity and recovery of field-collected periphyton acutely exposed to atrazine using PSII inhibition under laboratory conditions.

    PubMed

    Prosser, Ryan S; Brain, Richard A; Hosmer, Alan J; Solomon, Keith R; Hanson, Mark L

    2013-11-01

    Periphyton communities are an integral component of freshwater ecosystems and the desire to include data from toxicity testing with these organisms for ecological risk assessment is growing. This study developed sampling, storage, and exposure methods for the consistent and effective characterization of acute response and recovery of field-derived periphyton to photosystem II (PSII) inhibiting herbicides, particularly atrazine. Pulse amplitude modulated fluorometry was used to assess PSII quantum yield. For the method development phase, periphyton samples were collected from lotic and lentic systems in the Guelph, Ontario, Canada area during the summer of 2011. Following method development, native periphyton communities from three agricultural streams from the midwestern U.S. were sampled and exposed to atrazine (10-320 μg/L) and assessed for inhibition of PSII quantum yield (from 2 up to 24 h) and subsequent recovery upon cessation of exposure (up to 48 h post-exposure). Sensitivity to atrazine (EC10 and EC50 values) varied slightly (typically less than twofold difference) by site, date of sampling, and exposure interval. Only the highest initial test concentrations (160 or 320 μg/L) demonstrated greater than ~5% inhibition at 48 h post-exposure; however all other test concentrations recovered to within 5% of control levels, typically within 24 h. The rapid physiological recovery of periphyton communities upon atrazine removal supports the conclusion that acute exposure will not likely result in significant or sustained impacts on either structure or function of periphyton in lotic ecosystems. For ecological risk assessment, this suggests the current approach of relying on direct effects data for the most sensitive single species alone may result in overly conservative estimates of potential effects, especially for complex communities of primary producers. PMID:24043588

  17. The Effect of Electromagnetic Field Treatment on Recovery from Ischemic Stroke in a Rat Stroke Model: Clinical, Imaging, and Pathological Findings.

    PubMed

    Segal, Y; Segal, L; Blumenfeld-Katzir, T; Sasson, E; Poliansky, V; Loeb, E; Levy, A; Alter, A; Bregman, N

    2016-01-01

    Stroke is a leading cause of death and disability. Effects of stroke include significant deficits in sensory-motor skills and cognitive abilities. At present, there are limited effective interventions for postacute stroke patients. In this preliminary research we studied a new noninvasive, very low intensity, low frequency, electromagnetic field treatment (VLIFE), targeting a neural network, on an in vivo stroke rat model. Eighteen rats were divided into three groups: sham (M1) and two treatment groups which were exposed to VLIFE treatment for 4 weeks, one using theta waves (M2) and another using beta waves (M3); all groups were followed up for an additional month. Results indicate that the M2 and M3 treated groups showed recovery of sensorimotor functional deficits, as demonstrated by Modified Neurological Severity Score and forelimb placement tests. Brain MRI imaging results show a decrease in perilesional edema and lateral ventricle widening in the treated groups. Fiber tracts' imaging, following VLIFE treatment, showed a higher white matter integrity compared to control. Histological findings support neural regeneration processes. Our data suggest that VLIFE treatment, targeting a specific functional neural network by frequency rather than location, promotes neuronal plasticity after stroke and, as a result, improves clinical recovery. Further studies will investigate the full potential of the treatment. PMID:26949561

  18. The Effect of Electromagnetic Field Treatment on Recovery from Ischemic Stroke in a Rat Stroke Model: Clinical, Imaging, and Pathological Findings

    PubMed Central

    Segal, Y.; Segal, L.; Blumenfeld-Katzir, T.; Sasson, E.; Poliansky, V.; Loeb, E.; Levy, A.; Alter, A.; Bregman, N.

    2016-01-01

    Stroke is a leading cause of death and disability. Effects of stroke include significant deficits in sensory-motor skills and cognitive abilities. At present, there are limited effective interventions for postacute stroke patients. In this preliminary research we studied a new noninvasive, very low intensity, low frequency, electromagnetic field treatment (VLIFE), targeting a neural network, on an in vivo stroke rat model. Eighteen rats were divided into three groups: sham (M1) and two treatment groups which were exposed to VLIFE treatment for 4 weeks, one using theta waves (M2) and another using beta waves (M3); all groups were followed up for an additional month. Results indicate that the M2 and M3 treated groups showed recovery of sensorimotor functional deficits, as demonstrated by Modified Neurological Severity Score and forelimb placement tests. Brain MRI imaging results show a decrease in perilesional edema and lateral ventricle widening in the treated groups. Fiber tracts' imaging, following VLIFE treatment, showed a higher white matter integrity compared to control. Histological findings support neural regeneration processes. Our data suggest that VLIFE treatment, targeting a specific functional neural network by frequency rather than location, promotes neuronal plasticity after stroke and, as a result, improves clinical recovery. Further studies will investigate the full potential of the treatment. PMID:26949561

  19. Decoupled recovery of energy and momentum with correction of n  =  2 error fields

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.; Logan, N. C.; Lanctot, M. J.; Hanson, J. M.; King, J. D.; La Haye, R. J.; Nazikian, R.; Park, J.-K.; Strait, E. J.

    2015-08-01

    Experiments applying known n  =  2 ‘proxy’ error fields (EFs) find that the rotation braking introduced by the proxy EF cannot be completely alleviated through optimal n  =  2 correction with poorly matched poloidal spectra. This imperfect performance recovery demonstrates the importance of correcting multiple components of the n  =  2 field spectrum and is in contrast to previous results with n  =  1 EFs despite a similar execution. Measured optimal n  =  2 proxy EF correction currents are consistent with those required to null dominant mode coupling to the resonant surfaces and minimize the neoclassical toroidal viscosity (NTV) torque, calculated using ideal MHD plasma response computation. Unlike rotation braking, density pumpout can be fully corrected despite poorly matched spectra, indicating density pumpout is driven only by a single component proportional to the resonant coupling. Through precise n  =  2 spectral control density pumpout and rotation braking can thus be decoupled. Rotation braking with n  =  2 fields is also found to be proportional to the level of co-current toroidal rotation, consistent with NTV theory. Plasmas with modest counter-current rotation are insensitive to the n  =  2 field with neither rotation braking nor density pumpout observed.

  20. Fate of bulk and trace organics during a simulated aquifer recharge and recovery (ARR)-ozone hybrid process.

    PubMed

    Yoon, Min K; Drewes, Jörg E; Amy, Gary L

    2013-11-01

    The attenuation of bulk organic matter and trace organic contaminants (TOrCs) was evaluated for various aquifer recharge and recovery (ARR)-ozone (O3) hybrid treatment process combinations using soil-batch reactor and bench-scale ozonation experiments as a proof of concept prior to pilot and/or field studies. In water reclamation and especially potable reuse, refractory bulk organic matter and TOrCs are of potential health concern in recycled waters. In this study, the role of biotransformation of bulk organic matter and TOrCs was investigated considering different simulated treatment combinations, including soil passage (ARR) alone, ARR after ozonation (O3-ARR), and ARR prior to ozonation (ARR-O3). During oxic (aerobic) ARR simulations, soluble microbial-like substances (e.g., higher molecular weight polysaccharides and proteins) were easily removed while (lower molecular weight) humic substances and aromatic organic matter were not efficiently removed. During ARR-ozone treatment simulations, removals of bulk organic matter and TOrCs were rapid and effective compared to ARR alone. A higher reduction of effluent-derived organic matter, including aromatic organic matter and humic substances, was observed in the ARR-O3 hybrid followed by the O3-ARR hybrid. An enhanced attenuation of recalcitrant TOrCs was observed while increasing the ozone dose slightly (O3: DOC=1). TOrC removal efficiency also increased during the post-ozone treatment combination (i.e., ARR-O3). In addition, the carcinogenic wastewater disinfection byproduct N-nitrosodimethylamine (NDMA) was eliminated below the method reporting limit (<5 ng L(-1)) both during ARR treatment alone and the ARR-ozone hybrid. PMID:23942016