Science.gov

Sample records for recycling regulator ehd1

  1. Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development

    PubMed Central

    Bhattacharyya, Sohinee; Rainey, Mark A; Arya, Priyanka; Dutta, Samikshan; George, Manju; Storck, Matthew D.; McComb, Rodney D.; Muirhead, David; Todd, Gordon L.; Gould, Karen; Datta, Kaustubh; Waes, Janee Gelineau-van; Band, Vimla; Band, Hamid

    2016-01-01

    Members of the four-member C-terminal EPS15-Homology Domain-containing (EHD) protein family play crucial roles in endocytic recycling of cell surface receptors from endosomes to the plasma membrane. In this study, we show that Ehd1 gene knockout in mice on a predominantly B6 background is embryonic lethal. Ehd1-null embryos die at mid-gestation with a failure to complete key developmental processes including neural tube closure, axial turning and patterning of the neural tube. We found that Ehd1-null embryos display short and stubby cilia on the developing neuroepithelium at embryonic day 9.5 (E9.5). Loss of EHD1 also deregulates the ciliary SHH signaling with Ehd1-null embryos displaying features indicative of increased SHH signaling, including a significant downregulation in the formation of the GLI3 repressor and increase in the ventral neuronal markers specified by SHH. Using Ehd1-null MEFS we found that EHD1 protein co-localizes with the SHH receptor Smoothened in the primary cilia upon ligand stimulation. Under the same conditions, EHD1 was shown to co-traffic with Smoothened into the developing primary cilia and we identify EHD1 as a direct binding partner of Smoothened. Overall, our studies identify the endocytic recycling regulator EHD1 as a novel regulator of the primary cilium-associated trafficking of Smoothened and Hedgehog signaling. PMID:26884322

  2. Rabenosyn-5 and EHD1 Interact and Sequentially Regulate Protein Recycling to the Plasma MembraneD⃞

    PubMed Central

    Naslavsky, Naava; Boehm, Markus; Backlund, Peter S.; Caplan, Steve

    2004-01-01

    EHD1 has been implicated in the recycling of internalized proteins to the plasma membrane. However, the mechanism by which EHD1 mediates recycling and its relationship to Rab-family–controlled events has yet to be established. To investigate further the mode of EHD1 action, we sought to identify novel interacting partners. GST-EHD1 was used as bait to isolate a ∼120-kDa species from bovine and murine brain cytosol, which was identified by mass spectrometry as the divalent Rab4/Rab5 effector Rabenosyn-5. We mapped the sites of interaction to the EH domain of EHD1, and the first two of five NPF motifs of Rabenosyn-5. Immunofluorescence microscopy studies revealed that EHD1 and Rabenosyn-5 partially colocalize to vesicular and tubular structures in vivo. To address the functional roles of EHD1 and Rabenosyn-5, we first demonstrated that RNA interference (RNAi) dramatically reduced the level of expression of each protein, either individually or in combination. Depletion of either EHD1 or Rabenosyn-5 delayed the recycling of transferrin and major histocompatibility complex class I to the plasma membrane. However, whereas depletion of EHD1 caused the accumulation of internalized cargo in a compact juxtanuclear compartment, Rabenosyn-5-RNAi caused its retention within a dispersed peripheral compartment. Simultaneous RNAi depletion of both proteins resulted in a similar phenotype to that observed with Rabenosyn-5-RNAi alone, suggesting that Rabenosyn-5 acts before EHD1 in the regulation of endocytic recycling. Our studies suggest that Rabenosyn-5 and EHD1 act sequentially in the transport of proteins from early endosomes to the endosomal recycling compartment and back to the plasma membrane. PMID:15020713

  3. EHD1 regulates cholesterol homeostasis and lipid droplet storage

    PubMed Central

    Naslavsky, Naava; Rahajeng, Juliati; Rapaport, Debora; Horowitz, Mia; Caplan, Steve

    2007-01-01

    Endocytic transport is critical for the subcellular distribution of free cholesterol and the endocytic recycling compartment (ERC) is an important organelle that stores cholesterol and regulates its trafficking. The C-terminal EHD protein, EHD1, controls receptor recycling through the ERC and affects free cholesterol distribution in the cell. We utilized embryonic fibroblasts from EHD1 knockout mice (Ehd1-/-MEF) and SiRNA in normal MEF cells to assess the role of EHD1 in intracellular transport of cholesterol. Surprisingly, Ehd1-/-MEFs displayed reduced levels of esterified and free cholesterol, which returned to normal level upon re-introduction of wild-type, but not dysfunctional EHD1. Moreover, triglyceride and cholesterol storage organelles known as ‘lipid droplets’ were smaller in size in cells lacking EHD1, indicating that less esterified cholesterol and triglycerides were being stored. Decreased cellular cholesterol and reduced lipid droplet size in Ehd1-/-MEFs correlated with ineffectual cholesterol uptake via LDL receptor, suggesting involvement of EHD1 in LDL receptor internalization. PMID:17451652

  4. EHD1 functions in endosomal recycling and confers salt tolerance.

    PubMed

    Bar, Maya; Leibman, Meirav; Schuster, Silvia; Pitzhadza, Hilla; Avni, Adi

    2013-01-01

    Endocytosis is a crucial process in all eukaryotic organisms including plants. We have previously shown that two Arabidopsis proteins, AtEHD1 and AtEHD2, are involved in endocytosis in plant systems. Knock-down of EHD1 was shown to have a delayed recycling phenotype in mammalians. There are many works in mammalian systems detailing the importance of the various domains in EHDs but, to date, the domains of plant EHD1 that are required for its activity have not been characterized. In this work we demonstrate that knock-down of EHD1 causes a delayed recycling phenotype and reduces Brefeldin A sensitivity in Arabidopsis seedlings. The EH domain of EHD1 was found to be crucial for the localization of EHD1 to endosomal structures. Mutant EHD1 lacking the EH domain did not localize to endosomal structures and showed a phenotype similar to that of EHD1 knock-down seedlings. Mutants lacking the coiled-coil domain, however, showed a phenotype similar to wild-type or EHD1 overexpression seedlings. Salinity stress is a major problem in current agriculture. Microarray data demonstrated that salinity stress enhances the expression of EHD1, and this was confirmed by semi quantitative RT-PCR. We demonstrate herein that transgenic plants over expressing EHD1 possess enhanced tolerance to salt stress, a property which also requires an intact EH domain. PMID:23342166

  5. ARF-GEF cytohesin-2/ARNO regulates R-Ras and α5-integrin recycling through an EHD1-positive compartment

    PubMed Central

    Salem, Joseph C.; Reviriego-Mendoza, Marta M.; Santy, Lorraine C.

    2015-01-01

    When expressed in epithelial cells, cytohesin-2/ARNO, a guanine nucleotide exchange factor (GEF) for ARF small GTPases, causes a robust migration response. Recent evidence suggests that cytohesin-2/ARNO acts downstream of small the GTPase R-Ras to promote spreading and migration. We hypothesized that cytohesin-2/ARNO could transmit R-Ras signals by regulating the recycling of R-Ras through ARF activation. We found that Eps15-homology domain 1 (EHD1), a protein that associates with the endocytic recycling compartment (ERC), colocalizes with active R-Ras in transiently expressed HeLa cells. In addition, we show that EHD1-positive recycling endosomes are a novel compartment for cytohesin-2/ARNO. Knockdown or expression of GEF-inactive (E156K) cytohesin-2/ARNO causes R-Ras to accumulate on recycling endosomes containing EHD1 and inhibits cell spreading. E156K-ARNO also causes a reduction in focal adhesion size and number. Finally, we demonstrate that R-Ras/ARNO signaling is required for recycling of α5-integrin and R-Ras to the plasma membrane. These data establish a role for cytohesin-2/ARNO as a regulator of R-Ras and integrin recycling and suggest that ARF-regulated trafficking of R-Ras is required for R-Ras–dependent effects on spreading and adhesion formation. PMID:26378252

  6. GRAF1 forms a complex with MICAL-L1 and EHD1 to cooperate in tubular recycling endosome vesiculation

    PubMed Central

    Cai, Bishuang; Xie, Shuwei; Caplan, Steve; Naslavsky, Naava

    2014-01-01

    The biogenesis of tubular recycling endosomes (TREs) and their subsequent vesiculation after cargo-sorting has occurred, is essential for receptor and lipid recycling to the plasma membrane. Although recent studies have implicated the C-terminal Eps15 Homology Domain (EHD) protein, EHD1, as a key regulator of TRE vesiculation, additional proteins involved in this process have been largely uncharacterized. In the present study, we identify the GTPase Regulator Associated with Focal adhesion kinase-1 (GRAF1) protein in a complex with EHD1 and the TRE hub protein, Molecules Interacting with CasL-Like1 (MICAL-L1). Over-expression of GRAF1 caused vesiculation of MICAL-L1-containing TRE, whereas GRAF1-depletion led to impaired TRE vesiculation and delayed receptor recycling. Moreover, co-addition of purified EHD1 and GRAF1 in a semi-permeabilized cell vesiculation assay produced synergistic TRE vesiculation. Overall, based on our data, we suggest that in addition to its roles in clathrin-independent endocytosis, GRAF1 synergizes with EHD1 to support TRE vesiculation. PMID:25364729

  7. Transport through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase

    PubMed Central

    Lee, Shoken; Uchida, Yasunori; Wang, Jiao; Matsudaira, Tatsuyuki; Nakagawa, Takatoshi; Kishimoto, Takuma; Mukai, Kojiro; Inaba, Takehiko; Kobayashi, Toshihide; Molday, Robert S; Taguchi, Tomohiko; Arai, Hiroyuki

    2015-01-01

    P4-ATPases translocate aminophospholipids, such as phosphatidylserine (PS), to the cytosolic leaflet of membranes. PS is highly enriched in recycling endosomes (REs) and is essential for endosomal membrane traffic. Here, we show that PS flipping by an RE-localized P4-ATPase is required for the recruitment of the membrane fission protein EHD1. Depletion of ATP8A1 impaired the asymmetric transbilayer distribution of PS in REs, dissociated EHD1 from REs, and generated aberrant endosomal tubules that appear resistant to fission. EHD1 did not show membrane localization in cells defective in PS synthesis. ATP8A2, a tissue-specific ATP8A1 paralogue, is associated with a neurodegenerative disease (CAMRQ). ATP8A2, but not the disease-causative ATP8A2 mutant, rescued the endosomal defects in ATP8A1-depleted cells. Primary neurons from Atp8a2−/− mice showed a reduced level of transferrin receptors at the cell surface compared to Atp8a2+/+ mice. These findings demonstrate the role of P4-ATPase in membrane fission and give insight into the molecular basis of CAMRQ. PMID:25595798

  8. Rabankyrin-5 interacts with EHD1 and Vps26 to regulate endocytic trafficking and retromer function

    PubMed Central

    Zhang, Jing; Reiling, Calliste; Reinecke, James B.; Prislan, Iztok; Marky, Luis A.; Sorgen, Paul L.; Naslavsky, Naava; Caplan, Steve

    2012-01-01

    Rabankyrin-5 (Rank-5) has been implicated as an effector of the small GTPase Rab5 and plays an important role in macropinocytosis. We have now identified Rank-5 as an interaction partner for the recycling regulatory protein EHD1. We have demonstrated this interaction by GST-pulldown, yeast two-hybrid assay, isothermal calorimetry, and co-immunoprecipitation and found that the binding occurs between the EH-domain of EHD1 and the NPFED motif of Rank-5. Similar to EHD1, we found that Rank-5 co-localizes and interacts with components of the retromer complex such as Vps26, suggesting a role for Rank-5 in retromer-based transport. Indeed, depletion of Rank-5 causes mislocalization of Vps26 and affects both the retrieval of mannose 6-phosphate receptor (M6PR) transport to the Golgi from endosomes and biosynthetic transport. Moreover, Rank-5 is required for normal retromer distribution, as over-expression of a wild-type Rank-5-siRNA-resistant construct rescues retromer mislocalization. Finally, we show that depletion of either Rank-5 or EHD1 impairs secretion of VSV-G. Overall, our data identify a new interaction between Rank-5 and EHD1, and novel endocytic regulatory roles that include retromer-based transport and secretion. PMID:22284051

  9. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi

    PubMed Central

    McKenzie, Jenna E.; Raisley, Brent; Zhou, Xin; Naslavsky, Naava; Taguchi, Tomohiko; Caplan, Steve; Sheff, David

    2012-01-01

    Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and ER. To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes, recycling endosomes, late endosomes and lysosomes. All cargos pass through early endosomes, but may take different routes to the Golgi. Retromer dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-Mannose-6-Phosphate Receptor, which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CD8-Mannose-6-Phosphate Receptor was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the early endosomes, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB. PMID:22540229

  10. Eps 15 Homology Domain (EHD)-1 Remodels Transverse Tubules in Skeletal Muscle

    PubMed Central

    Demonbreun, Alexis R.; Swanson, Kaitlin E.; Rossi, Ann E.; Deveaux, H. Kieran; Earley, Judy U.; Allen, Madison V.; Arya, Priyanka; Bhattacharyya, Sohinee; Band, Hamid; Pytel, Peter; McNally, Elizabeth M.

    2015-01-01

    We previously showed that Eps15 homology domain-containing 1 (EHD1) interacts with ferlin proteins to regulate endocytic recycling. Myoblasts from Ehd1-null mice were found to have defective recycling, myoblast fusion, and consequently smaller muscles. When expressed in C2C12 cells, an ATPase dead-EHD1 was found to interfere with BIN1/amphiphysin 2. We now extended those findings by examining Ehd1-heterozygous mice since these mice survive to maturity in normal Mendelian numbers and provide a ready source of mature muscle. We found that heterozygosity of EHD1 was sufficient to produce ectopic and excessive T-tubules, including large intracellular aggregates that contained BIN1. The disorganized T-tubule structures in Ehd1-heterozygous muscle were accompanied by marked elevation of the T-tubule-associated protein DHPR and reduction of the triad linker protein junctophilin 2, reflecting defective triads. Consistent with this, Ehd1-heterozygous muscle had reduced force production. Introduction of ATPase dead-EHD1 into mature muscle fibers was sufficient to induce ectopic T-tubule formation, seen as large BIN1 positive structures throughout the muscle. Ehd1-heterozygous mice were found to have strikingly elevated serum creatine kinase and smaller myofibers, but did not display findings of muscular dystrophy. These data indicate that EHD1 regulates the maintenance of T-tubules through its interaction with BIN1 and links T-tubules defects with elevated creatine kinase and myopathy. PMID:26325203

  11. Novel Functions for the Endocytic Regulatory Proteins MICAL-L1 AND EHD1 in Mitosis

    PubMed Central

    Reinecke, James B.; Katafiasz, Dawn; Naslavsky, Naava; Caplan, Steve

    2014-01-01

    During interphase, recycling endosomes mediate the transport of internalized cargo back to the plasma membrane. However, in mitotic cells, recycling endosomes are essential for the completion of cytokinesis, the last phase of mitosis that promotes the physical separation the two daughter cells. Despite recent advances, our understanding of the molecular determinants that regulate recycling endosome dynamics during cytokinesis remains incomplete. We have previously demonstrated that Molecule Interacting with CasL Like-1 (MICAL-L1) and C-terminal Eps15 Homology Domain protein 1 (EHD1) coordinately regulate receptor transport from tubular recycling endosomes during interphase. However, their potential roles in controlling cytokinesis had not been addressed. In this study, we show that MICAL-L1 and EHD1 regulate mitosis. Depletion of either protein resulted in increased numbers of bi-nucleated cells. We provide evidence that bi-nucleation in MICAL-L1- and EHD1-depleted cells is a consequence of impaired recycling endosome transport during late cytokinesis. However, depletion of MICAL-L1, but not EHD1, resulted in aberrant chromosome alignment and lagging chromosomes, suggesting an EHD1-independent function for MICAL-L1 earlier in mitosis. Moreover, we provide evidence that MICAL-L1 and EHD1 differentially influence microtubule dynamics during early and late mitosis. Collectively, our new data suggest several unanticipated roles for MICAL-L1 and EHD1 during the cell cycle. PMID:25287187

  12. The importance of EHD1 in neurite outgrowth contributing to the functional recovery after spinal cord injury.

    PubMed

    Wu, Chunshuai; Cui, Zhiming; Liu, Yonghua; Zhang, Jinlong; Ding, Wensen; Wang, Song; Bao, Guofeng; Xu, Guanhua; Sun, Yuyu; Chen, Jiajia

    2016-08-01

    Traumatic spinal cord injury is one of the most common and severe problems for using NGF to promote the neurite outgrowth of survival neurons. EHD1 regulates and controls the endocytosis and transportation of neurotrophins and transmembrane cargo via recycling endosome for neurite outgrowth. TrkA is particularly considered to be a functional specific recepter in the cell membrane for NGF and is activated upon NGF binding. The transcytosis of TrkA is dependent on Rab11 recycling endosomes and is promoted by NGF signaling itself at the axon terminal. In this study, we established an acute spinal cord contusion injury model in adult rats to investigate the potential role of EHD1 during the pathological process of SCI. Western blot analysis suggested that EHD1 expression was low in the sham-operated adult rat spinal cords and was significantly up-regulated 1d after injury. Immunohistochemical staining detected the general distribution of EHD1 protein in both the gray and white matter of adult rat spinal cords. Double immunofluorescent staining indicated that EHD1 was expressed in neurons, astrocytes and microglias in the adult rat spinal cord, and obvious changes of EHD1 expression occurred in neurons during SCI pathological process. Significant up-regulation of EHD1 expression was observed in MAP2 positive neurons at 1 day after SCI, in comparison with the sham-operated control, which indicated that EHD1 might play a vital role in neurite outgrowth. Our data indicated that EHD1 could interact with TrkA, and is in the upstream of TrkA. EHD1 up-regulated the expression of TrkA in the glutamate stimulated primary neurons. Based on our experimental data, we boldly conclude that EHD1 regulates the recycling of TrkA back to cell membrane, improving the utilization efficiency of the NGF, which is vital for neurite outgrowth and functional recovery after spinal cord injury. PMID:27211346

  13. cPLA2α and EHD1 interact and regulate the vesiculation of cholesterol-rich, GPI-anchored, protein-containing endosomes

    PubMed Central

    Cai, Bishuang; Caplan, Steve; Naslavsky, Naava

    2012-01-01

    The lipid modifier phospholipase A2 catalyzes the hydrolysis of phospholipids to inverted-cone–shaped lysophospholipids that contribute to membrane curvature and/or tubulation. Conflicting findings exist regarding the function of cytosolic phospholipase A2 (cPLA2) and its role in membrane regulation at the Golgi and early endosomes. However, no studies addressed the role of cPLA2 in the regulation of cholesterol-rich membranes that contain glycosylphosphatidylinositol-anchored proteins (GPI-APs). Our studies support a role for cPLA2α in the vesiculation of GPI-AP–containing membranes, using endogenous CD59 as a model for GPI-APs. On cPLA2α depletion, CD59-containing endosomes became hypertubular. Moreover, accumulation of lysophospholipids induced by a lysophospholipid acyltransferase inhibitor extensively vesiculated CD59-containing endosomes. However, overexpression of cPLA2α did not increase the endosomal vesiculation, implying a requirement for additional factors. Indeed, depletion of the “pinchase” EHD1, a C-terminal Eps15 homology domain (EHD) ATPase, also induced hypertubulation of CD59-containing endosomes. Furthermore, EHD1 and cPLA2α demonstrated in situ proximity (<40 nm) and interacted in vivo. The results presented here provide evidence that the lipid modifier cPLA2α and EHD1 are involved in the vesiculation of CD59-containing endosomes. We speculate that cPLA2α induces membrane curvature and allows EHD1, possibly in the context of a complex, to sever the curved membranes into vesicles. PMID:22456504

  14. Mutually exclusive interactions of EHD1 with GS32 and syndapin II.

    PubMed

    Xu, Yue; Shi, Hong; Wei, Shunhui; Wong, Siew Heng; Hong, Wanjin

    2004-01-01

    GS32/SNAP-29 is a SNAP-25-like SNARE and has been shown to interact with syntaxin 6. Using immobilized recombinant GS32, we have recovered EHD1 as a major GS32-interacting protein from total HeLa cell extracts. This interaction is mediated by the EH domain of EHD1 and the N-terminal NPF-containing 17-residue region of GS32. Co-immunoprecipitation suggests that GS32 could also interact with EHD1 in intact cells. When immobilized GST-EHD1 was used to fish out interacting proteins from total brain extracts, syndapin II was identified as a major interacting partner. Similar to the GS32-EHD1 interaction, syndapin II also interacts with the EH domain of EHD1 via its NPF repeat region. Interaction of endogenous EHD1 and syndapin II was also established by co-immunoprecipitation. Furthermore, interaction of GS32 and syndapin II with EHD1 was shown to be mutually exclusive, suggesting that EHD1 may regulate/participate in the functional pathways of both GS32 and syndapin II in a mutual exclusive manner. Opposing roles of GS32 and syndapin II in regulating the surface level of transferrin receptor (TfR) were observed. PMID:15371016

  15. Eps15 Homology Domain 1-associated Tubules Contain Phosphatidylinositol-4-Phosphate and Phosphatidylinositol-(4,5)-Bisphosphate and Are Required for Efficient Recycling

    PubMed Central

    Jović, Marko; Kieken, Fabien; Naslavsky, Naava

    2009-01-01

    The C-terminal Eps15 homology domain (EHD) 1/receptor-mediated endocytosis-1 protein regulates recycling of proteins and lipids from the recycling compartment to the plasma membrane. Recent studies have provided insight into the mode by which EHD1-associated tubular membranes are generated and the mechanisms by which EHD1 functions. Despite these advances, the physiological function of these striking EHD1-associated tubular membranes remains unknown. Nuclear magnetic resonance spectroscopy demonstrated that the Eps15 homology (EH) domain of EHD1 binds to phosphoinositides, including phosphatidylinositol-4-phosphate. Herein, we identify phosphatidylinositol-4-phosphate as an essential component of EHD1-associated tubules in vivo. Indeed, an EHD1 EH domain mutant (K483E) that associates exclusively with punctate membranes displayed decreased binding to phosphatidylinositol-4-phosphate and other phosphoinositides. Moreover, we provide evidence that although the tubular membranes to which EHD1 associates may be stabilized and/or enhanced by EHD1 expression, these membranes are, at least in part, pre-existing structures. Finally, to underscore the function of EHD1-containing tubules in vivo, we used a small interfering RNA (siRNA)/rescue assay. On transfection, wild-type, tubule-associated, siRNA-resistant EHD1 rescued transferrin and β1 integrin recycling defects observed in EHD1-depleted cells, whereas expression of the EHD1 K483E mutant did not. We propose that phosphatidylinositol-4-phosphate is an essential component of EHD1-associated tubules that also contain phosphatidylinositol-(4,5)-bisphosphate and that these structures are required for efficient recycling to the plasma membrane. PMID:19369419

  16. A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice.

    PubMed

    Sheng, Peike; Wu, Fuqing; Tan, Junjie; Zhang, Huan; Ma, Weiwei; Chen, Liping; Wang, Jiachang; Wang, Jie; Zhu, Shanshan; Guo, Xiuping; Wang, Jiulin; Zhang, Xin; Cheng, Zhijun; Bao, Yiqun; Wu, Chuanyin; Liu, Xuanming; Wan, Jianmin

    2016-09-01

    Flowering time determines the adaptability of crop plants to different local environments, thus being one of the most important agronomic traits targeted in breeding programs. Photoperiod is one of the key factors that control flowering in plant. A number of genes that participate in the photoperiod pathway have been characterized in long-day plants such as Arabidopsis, as well as in short-day plants such as Oryza sativa. Of those, CONSTANS (CO) as a floral integrator promotes flowering in Arabidopsis under long day conditions. In rice, Heading date1 (Hd1), a homologue of CO, functions in an opposite way, which inhibits flowering under long day conditions and induces flowering under short day conditions. Here, we show that another CONSTANS-like (COL) gene, OsCOL13, negatively regulates flowering in rice under both long and short day conditions. Overexpression of OsCOL13 delays flowering regardless of day length. We also demonstrated that OsCOL13 has a constitutive and rhythmic expression pattern, and that OsCOL13 is localized to the nucleus. OsCOL13 displays transcriptional activation activity in the yeast assays and likely forms homodimers in vivo. OsCOL13 suppresses the florigen genes Hd3a and RFT1 by repressing Ehd1, but has no relationship with other known Ehd1 regulators as determined by using mutants or near isogenic lines. In addition, the transcriptional level of OsCOL13 significantly decreased in the osphyb mutant, but remained unchanged in the osphya and osphyc mutants. Thus, we conclude that OsCOL13 functions as a negative regulator downstream of OsphyB and upstream of Ehd1 in the photoperiodic flowering in rice. PMID:27405463

  17. CSF-1 receptor signalling is governed by pre-requisite EHD1 mediated receptor display on the macrophage cell surface.

    PubMed

    Cypher, Luke R; Bielecki, Timothy Alan; Huang, Lu; An, Wei; Iseka, Fany; Tom, Eric; Storck, Matthew D; Hoppe, Adam D; Band, Vimla; Band, Hamid

    2016-09-01

    Colony stimulating factor-1 receptor (CSF-1R), a receptor tyrosine kinase (RTK), is the master regulator of macrophage biology. CSF-1 can bind CSF-1R resulting in receptor activation and signalling essential for macrophage functions such as proliferation, differentiation, survival, polarization, phagocytosis, cytokine secretion, and motility. CSF-1R activation can only occur after the receptor is presented on the macrophage cell surface. This process is reliant upon the underlying macrophage receptor trafficking machinery. However, the mechanistic details governing this process are incompletely understood. C-terminal Eps15 Homology Domain-containing (EHD) proteins have recently emerged as key regulators of receptor trafficking but have not yet been studied in the context of macrophage CSF-1R signalling. In this manuscript, we utilize primary bone-marrow derived macrophages (BMDMs) to reveal a novel function of EHD1 as a regulator of CSF-1R abundance on the cell surface. We report that EHD1-knockout (EHD1-KO) macrophages cell surface and total CSF-1R levels are significantly decreased. The decline in CSF-1R levels corresponds with reduced downstream macrophage functions such as cell proliferation, migration, and spreading. In EHD1-KO macrophages, transport of newly synthesized CSF-1R to the macrophage cell surface was reduced and was associated with the shunting of the receptor to the lysosome, which resulted in receptor degradation. These findings reveal a novel and functionally important role for EHD1 in governing CSF-1R signalling via regulation of anterograde transport of CSF-1R to the macrophage cell surface. PMID:27224507

  18. Regulated recycling of mutant CFTR is partially restored by pharmacological treatment.

    PubMed

    Holleran, John P; Zeng, Jianxin; Frizzell, Raymond A; Watkins, Simon C

    2013-06-15

    Efficient trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) to and from the cell surface is essential for maintaining channel density at the plasma membrane (PM) and ensuring proper physiological activity. The most common mutation, F508del, exhibits reduced surface expression and impaired function despite treatment with currently available pharmacological small molecules, called correctors. To gain more detailed insight into whether CFTR enters compartments that allow corrector stabilization in the cell periphery, we investigated the peripheral trafficking itineraries and kinetics of wild type (WT) and F508del in living cells using high-speed fluorescence microscopy together with fluorogen activating protein detection. We directly visualized internalization and accumulation of CFTR WT from the PM to a perinuclear compartment that colocalized with the endosomal recycling compartment (ERC) markers Rab11 and EHD1, reaching steady-state distribution by 25 minutes. Stimulation by protein kinase A (PKA) depleted this intracellular pool and redistributed CFTR channels to the cell surface, elicited by reduced endocytosis and active translocation to the PM. Corrector or temperature rescue of F508del also resulted in targeting to the ERC and exhibited subsequent PKA-stimulated trafficking to the PM. Corrector treatment (24 hours) led to persistent residence of F508del in the ERC, while thermally destabilized F508del was targeted to lysosomal compartments by 3 hours. Acute addition of individual correctors, C4 or C18, acted on peripheral trafficking steps to partially block lysosomal targeting of thermally destabilized F508del. Taken together, corrector treatment redirects F508del trafficking from a degradative pathway to a regulated recycling route, and proteins that mediate this process become potential targets for improving the efficacy of current and future correctors. PMID:23572510

  19. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    SciTech Connect

    FTHENAKIS,V.

    2001-01-29

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  20. Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides* #

    PubMed Central

    Yu, Hua; Wang, Mao-Jun; Xuan, Nan-Xia; Shang, Zhi-Cai; Wu, Jun

    2015-01-01

    Objective: To provide essential information for peptide inhibitor design, the interactions of Eps15 homology domain of Eps15 homology domain-containing protein 1 (EHD1 EH domain) with three peptides containing NPF (asparagine-proline-phenylalanine), DPF (aspartic acid-proline-phenylalanine), and GPF (glycine-proline-phenylalanine) motifs were deciphered at the atomic level. The binding affinities and the underlying structure basis were investigated. Methods: Molecular dynamics (MD) simulations were performed on EHD1 EH domain/peptide complexes for 60 ns using the GROMACS package. The binding free energies were calculated and decomposed by molecular mechanics/generalized Born surface area (MM/GBSA) method using the AMBER package. The alanine scanning was performed to evaluate the binding hot spot residues using FoldX software. Results: The different binding affinities for the three peptides were affected dominantly by van der Waals interactions. Intermolecular hydrogen bonds provide the structural basis of contributions of van der Waals interactions of the flanking residues to the binding. Conclusions: van der Waals interactions should be the main consideration when we design peptide inhibitors of EHD1 EH domain with high affinities. The ability to form intermolecular hydrogen bonds with protein residues can be used as the factor for choosing the flanking residues. PMID:26465136

  1. Regulation of Plasma Membrane Recycling by CFTR

    NASA Astrophysics Data System (ADS)

    Bradbury, Neil A.; Jilling, Tamas; Berta, Gabor; Sorscher, Eric J.; Bridges, Robert J.; Kirk, Kevin L.

    1992-04-01

    The gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) is defective in patients with cystic fibrosis. Although the protein product of the CFTR gene has been proposed to function as a chloride ion channel, certain aspects of its function remain unclear. The role of CFTR in the adenosine 3',5'-monophosphate (cAMP)-dependent regulation of plasma membrane recycling was examined. Adenosine 3',5'-monophosphate is known to regulate endocytosis and exocytosis in chloride-secreting epithelial cells that express CFTR. However, mutant epithelial cells derived from a patient with cystic fibrosis exhibited no cAMP-dependent regulation of endocytosis and exocytosis until they were transfected with complementary DNA encoding wild-type CFTR. Thus, CFTR is critical for cAMP-dependent regulation of membrane recycling in epithelial tissues, and this function of CFTR could explain in part the pleiotropic nature of cystic fibrosis.

  2. AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd in endocytic recycling

    PubMed Central

    Pant, Saumya; Sharma, Mahak; Patel, Kruti; Caplan, Steve; Carr, Chavela M.; Grant, Barth D.

    2009-01-01

    RME-1/EHD1 family proteins are key residents of the recycling endosome required for endosome to plasma membrane transport in C. elegans and mammals. Recent studies suggest parallels of the RME-1/EHD proteins to the Dynamin GTPase superfamily of mechanochemical pinchases that promote membrane fission. Here we show that that endogenous C. elegans AMPH-1, the only C. elegans member of Amphiphysin/BIN1 family of BAR-domain proteins, colocalizes with RME-1 on recycling endosomes in vivo, that amph-1 deletion mutants are defective in recycling endosome morphology and function, and that binding of AMPH-1 NPF (D/E) sequences to the RME-1 EH-domain promotes the recycling of transmembrane cargo. We also show a requirement for human BIN1/Amphyphysin 2 in EHD1-regulated endocytic recycling. In vitro we find that the purified recombinant AMPH-1/RME-1 complexes produce short, coated, membrane tubules that are qualitatively distinct from those produced by either protein alone. Our results indicate that AMPH-1 and RME-1 cooperatively regulate endocytic recycling, likely through functions required for the production of cargo carriers exiting the recycling endosome for the cell surface. PMID:19915558

  3. Collapsin Response Mediator Protein-2 (Crmp2) Regulates Trafficking by Linking Endocytic Regulatory Proteins to Dynein Motors*

    PubMed Central

    Rahajeng, Juliati; Giridharan, Sai S. P.; Naslavsky, Naava; Caplan, Steve

    2010-01-01

    Endocytosis is a conserved cellular process in which nutrients, lipids, and receptors are internalized and transported to early endosomes, where they are sorted and either channeled to degradative pathways or recycled to the plasma membrane. MICAL-L1 and EHD1 are important regulatory proteins that control key endocytic transport steps. However, the precise mechanisms by which they mediate transport, and particularly the mode by which they connect to motor proteins, have remained enigmatic. Here we have identified the collapsin response mediator protein-2 (Crmp2) as an interaction partner of MICAL-L1 in non-neuronal cells. Crmp2 interacts with tubulin dimers and kinesin and negatively regulates dynein-based transport in neuronal cells, but its expression and function in non-neuronal cells have remained poorly characterized. Upon Crmp2 depletion, we observed dramatic relocalization of internalized transferrin (Tf) from peripheral vesicles to the endocytic recycling compartment (ERC), similar to the effect of depleting either MICAL-L1 or EHD1. Moreover, Tf relocalization to the ERC could be inhibited by interfering with microtubule polymerization, consistent with a role for uncoupled motor protein-based transport upon depletion of Crmp2, MICAL-L1, or EHD1. Finally, transfection of dynamitin, a component of the dynactin complex whose overexpression inhibits dynein activity, prevented the relocalization of internalized Tf to the ERC upon depletion of Crmp2, MICAL-L1, or EHD1. These data provide the first trafficking regulatory role for Crmp2 in non-neuronal cells and support a model in which Crmp2 is an important endocytic regulatory protein that links MICAL-L1·EHD1-based vesicular transport to dynein motors. PMID:20801876

  4. EHD3 Protein Is Required for Tubular Recycling Endosome Stabilization, and an Asparagine-Glutamic Acid Residue Pair within Its Eps15 Homology (EH) Domain Dictates Its Selective Binding to NPF Peptides.

    PubMed

    Bahl, Kriti; Xie, Shuwei; Spagnol, Gaelle; Sorgen, Paul; Naslavsky, Naava; Caplan, Steve

    2016-06-24

    An elaborate network of dynamic lipid membranes, termed tubular recycling endosomes (TRE), coordinates the process of endocytic recycling in mammalian cells. The C-terminal Eps15 homology domain (EHD)-containing proteins have been implicated in the bending and fission of TRE, thus regulating endocytic recycling. EHD proteins have an EH domain that interacts with proteins containing an NPF motif. We found that NPF-containing EHD1 interaction partners such as molecules interacting with CasL-like1 (MICAL-L1) and Syndapin2 are essential for TRE biogenesis. Also crucial for TRE biogenesis is the generation of phosphatidic acid, an essential lipid component of TRE that serves as a docking point for MICAL-L1 and Syndapin2. EHD1 and EHD3 have 86% amino acid identity; they homo- and heterodimerize and partially co-localize to TRE. Despite their remarkable identity, they have distinct mechanistic functions. EHD1 induces membrane vesiculation, whereas EHD3 supports TRE biogenesis and/or stabilization by an unknown mechanism. While using phospholipase D inhibitors (which block the conversion of glycerophospholipids to phosphatidic acid) to deplete cellular TRE, we observed that, upon inhibitor washout, there was a rapid and dramatic regeneration of MICAL-L1-marked TRE. Using this "synchronized" TRE biogenesis system, we determined that EHD3 is involved in the stabilization of TRE rather than in their biogenesis. Moreover, we identify the residues Ala-519/Asp-520 of EHD1 and Asn-519/Glu-520 of EHD3 as defining the selectivity of these two paralogs for NPF-containing binding partners, and we present a model to explain the atomic mechanism and provide new insight for their differential roles in vesiculation and tubulation, respectively. PMID:27189942

  5. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways.

    PubMed

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. PMID:25970033

  6. Recycling.

    ERIC Educational Resources Information Center

    Sinker, Barbara

    1986-01-01

    Discusses the range of benefits resulting from recycling efforts and projects. Presents information and data related to the recycling of metals, cans, paper, fans, and plastics. Suggestions for motivating and involving youth in recycling programs are also offered. (ML)

  7. Diacylglycerol Kinase α Regulates Tubular Recycling Endosome Biogenesis and Major Histocompatibility Complex Class I Recycling*

    PubMed Central

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2014-01-01

    Major histocompatibility complex class I (MHC I) presents intracellular-derived peptides to cytotoxic T lymphocytes and its subcellular itinerary is important in regulating the immune response. While a number of diacylglycerol kinase isoforms have been implicated in clathrin-dependent internalization, MHC I lacks the typical motifs known to mediate clathrin-dependent endocytosis. Here we show that depletion of diacylglycerol kinase α (DGKα), a kinase devoid of a clathrin-dependent adaptor protein complex 2 binding site, caused a delay in MHC I recycling to the plasma membrane without affecting the rate of MHC I internalization. We demonstrate that DGKα knock-down causes accumulation of intracellular and surface MHC I, resulting from decreased degradation. Furthermore, we provide evidence that DGKα is required for the generation of phosphatidic acid required for tubular recycling endosome (TRE) biogenesis. Moreover, we show that DGKα forms a complex with the TRE hub protein, MICAL-L1. Given that MICAL-L1 and the F-BAR-containing membrane-tubulating protein Syndapin2 associate selectively with phosphatidic acid, we propose a positive feedback loop in which DGKα generates phosphatidic acid to drive its own recruitment to TRE via its interaction with MICAL-L1. Our data support a novel role for the involvement of DGKα in TRE biogenesis and MHC I recycling. PMID:25248744

  8. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4.

    PubMed

    Foley, Kevin; Boguslavsky, Shlomit; Klip, Amira

    2011-04-19

    Glucose transporter 4 (GLUT4) is responsible for the uptake of glucose into muscle and adipose tissues. Under resting conditions, GLUT4 is dynamically retained through idle cycling among selective intracellular compartments, from whence it undergoes slow recycling to the plasma membrane (PM). This dynamic retention can be released by command from intracellular signals elicited by insulin and other stimuli, which result in 2-10-fold increases in the surface level of GLUT4. Insulin-derived signals promote translocation of GLUT4 to the PM from a specialized compartment termed GLUT4 storage vesicles (GSV). Much effort has been devoted to the characterization of the intracellular compartments and dynamics of GLUT4 cycling and to the signals by which GLUT4 is sorted into, and recruited from, GSV. This review summarizes our understanding of intracellular GLUT4 traffic during its internalization from the membrane, its slow, constitutive recycling, and its regulated exocytosis in response to insulin. In spite of specific differences in GLUT4 dynamic behavior in adipose and muscle cells, the generalities of its endocytic and exocytic itineraries are consistent and an array of regulatory proteins that regulate each vesicular traffic event emerges from these cell systems. PMID:21405107

  9. Recycling

    NASA Astrophysics Data System (ADS)

    Goto, Junya; Santorelli, Michael

    Recycling systems are classified into those employing typically three methods, and the progress of each method is described. In mechanical recycling, powders of phenolic materials are recovered via a mechanical process and reused as fillers or additives in virgin materials. The effects to flowability, curability, and mechanical properties of the materials are explained. In feedstock recycling, monomers, oligomers, or oils are recovered via chemical processes and reused as feedstock. Pyrolysis, solvolysis or hydrolysis, and supercritical or subcritical fluid technology will also be introduced. When using a subcritical fluid of phenol, the recycled material maintains excellent properties similar to the virgin material, and a demonstration plant has been constructed to carry out mass production development. In energy recovery, wastes of phenolic materials are used as an alternative solid fuel to coal because they are combustible and have good calorific value. Industrial wastes of these have been in practical use in a cement plant. Finally, it is suggested that the best recycling method should be selected according to the purpose or situation, because every recycling method has both strengths and weaknesses. Therefore, quantitative and objective evaluation methods in recycling are desirable and should be established.

  10. EH domain proteins regulate cardiac membrane protein targeting

    PubMed Central

    Gudmundsson, Hjalti; Hund, Thomas J.; Wright, Patrick J.; Kline, Crystal F.; Snyder, Jedidiah S.; Qian, Lan; Koval, Olha M.; Cunha, Shane R.; George, Manju; Rainey, Mark A.; Kashef, Farshid E.; Dun, Wen; Boyden, Penelope A.; Anderson, Mark E.; Band, Hamid; Mohler, Peter J.

    2010-01-01

    Rationale Cardiac membrane excitability is tightly regulated by an integrated network of membrane-associated ion channels, transporters, receptors, and signaling molecules. Membrane protein dynamics in health and disease are maintained by a complex ensemble of intracellular targeting, scaffolding, recycling, and degradation pathways. Surprisingly, despite decades of research linking dysfunction in membrane protein trafficking with human cardiovascular disease, essentially nothing is known regarding the molecular identity or function of these intracellular targeting pathways in excitable cardiomyocytes. Objective We sought to discover novel pathways for membrane protein targeting in primary cardiomyocytes. Methods and Results We report the initial characterization of a large family of membrane trafficking proteins in human heart. We employed a tissue-wide screen for novel ankyrin-associated trafficking proteins and identified four members of a unique Eps15 homology (EH) domain-containing protein family (EHD1, EHD2, EHD3, EHD4) that serve critical roles in endosome-based membrane protein targeting in other cell types. We show that EHD1-4 directly associate with ankyrin, provide the first information on the expression and localization of these molecules in primary cardiomyocytes, and demonstrate that EHD1-4 are co-expressed with ankyrin-B in the myocyte perinuclear region. Notably, the expression of multiple EHD proteins is increased in animal models lacking ankyrin-B, and EHD3-deficient cardiomyocytes display aberrant ankyrin-B localization and selective loss of Na/Ca exchanger expression and function. Finally, we report significant modulation of EHD expression following myocardial infarction, suggesting that these proteins may play a key role in regulating membrane excitability in normal and diseased heart. Conclusions Our findings identify and characterize a new class of cardiac trafficking proteins, define the first group of proteins associated with the ankyrin

  11. Loss of SNAP29 Impairs Endocytic Recycling and Cell Motility

    PubMed Central

    Rapaport, Debora; Lugassy, Yevgenia; Sprecher, Eli; Horowitz, Mia

    2010-01-01

    Intracellular membrane trafficking depends on the ordered formation and consumption of transport intermediates and requires that membranes fuse with each other in a tightly regulated and highly specific manner. Membrane anchored SNAREs assemble into SNARE complexes that bring membranes together to promote fusion. SNAP29 is a ubiquitous synaptosomal-associated SNARE protein. It interacts with several syntaxins and with the EH domain containing protein EHD1. Loss of functional SNAP29 results in CEDNIK syndrome (Cerebral Dysgenesis, Neuropathy, Ichthyosis and Keratoderma). Using fibroblast cell lines derived from CEDNIK patients, we show that SNAP29 mediates endocytic recycling of transferrin and β1-integrin. Impaired β1-integrin recycling affected cell motility, as reflected by changes in cell spreading and wound healing. No major changes were detected in exocytosis of VSVG protein from the Golgi apparatus, although the Golgi system acquired a dispersed morphology in SNAP29 deficient cells. Our results emphasize the importance of SNAP29 mediated membrane fusion in endocytic recycling and consequently, in cell motility. PMID:20305790

  12. Endothelial Src kinase regulates membrane recycling from the lateral border recycling compartment during leukocyte transendothelial migration.

    PubMed

    Dasgupta, Bidisha; Muller, William A

    2008-12-01

    When leukocytes cross endothelial cells during the inflammatory response, membrane from the recently described lateral border recycling compartment (LBRC) is selectively targeted around diapedesing leukocytes. This "targeted recycling" is critical for leukocyte transendothelial migration. Blocking homophilic PECAM interactions between leukocytes and endothelial cells blocks targeted recycling from the LBRC and blocks diapedesis. However, the cellular signaling pathways that trigger targeted recycling are not known. We show that targeted recycling from the LBRC is dependent on Src kinase. The selective Src kinase inhibitor PP2 blocked targeted recycling and blocked diapedesis by over 70%. However, Src kinase inhibition did not affect the structure or normal constitutive recycling of membrane from the LBRC in the absence of leukocytes. PECAM, a Src kinase substrate, traffics between the LBRC and the endothelial surface at the cell border. However, virtually all of the PECAM in the cell that was phosphorylated on tyrosine residues was found in the LBRC. These findings demonstrate that Src kinase activity is critical for the targeted recycling of membrane from the LBRC to the site of transendothelial migration and that the PECAM in the LBRC is qualitatively different from the PECAM on the surface of endothelial cells. PMID:18991269

  13. 40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b)...

  14. 40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b)...

  15. 40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b)...

  16. 40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b)...

  17. 40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b)...

  18. Developmentally regulated GTP-binding protein 2 coordinates Rab5 activity and transferrin recycling

    PubMed Central

    Mani, Muralidharan; Lee, Unn Hwa; Yoon, Nal Ae; Kim, Hyo Jeong; Ko, Myoung Seok; Seol, Wongi; Joe, Yeonsoo; Chung, Hun Taeg; Lee, Byung Ju; Moon, Chang Hoon; Cho, Wha Ja; Park, Jeong Woo

    2016-01-01

    The small GTPase Rab5 regulates the early endocytic pathway of transferrin (Tfn), and Rab5 deactivation is required for Tfn recycling. Rab5 deactivation is achieved by RabGAP5, a GTPase-activating protein, on the endosomes. Here we report that recruitment of RabGAP5 is insufficient to deactivate Rab5 and that developmentally regulated GTP-binding protein 2 (DRG2) is required for Rab5 deactivation and Tfn recycling. DRG2 was associated with phosphatidylinositol 3-phosphate–containing endosomes. It colocalized and interacted with EEA1 and Rab5 on endosomes in a phosphatidylinositol 3-kinase–dependent manner. DRG2 depletion did not affect Tfn uptake and recruitment of RabGAP5 and Rac1 to Rab5 endosomes. However, it resulted in impairment of interaction between Rab5 and RabGAP5, Rab5 deactivation on endosomes, and Tfn recycling. Ectopic expression of shRNA-resistant DRG2 rescued Tfn recycling in DRG2-depleted cells. Our results demonstrate that DRG2 is an endosomal protein and a key regulator of Rab5 deactivation and Tfn recycling. PMID:26582392

  19. Cell-Autonomous Regulation of Mu-Opioid Receptor Recycling by Substance P

    PubMed Central

    Bowman, Shanna L.; Soohoo, Amanda L.; Shiwarski, Daniel J.; Schulz, Stefan; Pradhan, Amynah A.; Puthenveedu, Manojkumar A.

    2015-01-01

    SUMMARY How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP), a neuropep-tide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R) receptor, increases the post-endocytic recycling of the muopioid receptor (MOR) in trigeminal ganglion (TG) neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC) activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeo-static interaction between the pain and analgesic systems. PMID:25801029

  20. Hd3a, RFT1 and Ehd1 integrate photoperiodic and drought stress signals to delay the floral transition in rice.

    PubMed

    Galbiati, Francesca; Chiozzotto, Remo; Locatelli, Franca; Spada, Alberto; Genga, Annamaria; Fornara, Fabio

    2016-09-01

    Plants show a high degree of developmental plasticity in response to external cues, including day length and environmental stress. Water scarcity in particular can interfere with photoperiodic flowering, resulting in the acceleration of the switch to reproductive growth in several species, a process called drought escape. However, other strategies are possible and drought stress can also delay flowering, albeit the underlying mechanisms have never been addressed at the molecular level. We investigated these interactions in rice, a short day species in which drought stress delays flowering. A protocol that allows the synchronization of drought with the floral transition was set up to profile the transcriptome of leaves subjected to stress under distinct photoperiods. We identified clusters of genes that responded to drought differently depending on day length. Exposure to drought stress under floral-inductive photoperiods strongly reduced transcription of EARLY HEADING DATE 1 (Ehd1), HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1), primary integrators of day length signals, providing a molecular connection between stress and the photoperiodic pathway. However, phenotypic and transcriptional analyses suggested that OsGIGANTEA (OsGI) does not integrate drought and photoperiodic signals as in Arabidopsis, highlighting molecular differences between long and short day model species. PMID:27111837

  1. Rab11a and myosin Vb regulate recycling of the M4 muscarinic acetylcholine receptor.

    PubMed

    Volpicelli, Laura A; Lah, James J; Fang, Guofu; Goldenring, James R; Levey, Allan I

    2002-11-15

    Agonist-induced internalization followed by subsequent return to the cell surface regulates G-protein-coupled receptor (GPCR) activity. Because the cellular responsiveness to ligand depends on the balance between receptor degradation and recycling, it is crucial to identify the molecules involved in GPCR recovery to the cell surface. In this study, we identify mechanisms involved in the recycling of the M4 subtype of muscarinic acetylcholine receptor. M4 is highly expressed in the CNS, plays a role in locomotor activity, and is a novel therapeutic target for neurologic and psychiatric disorders. Previous studies show that, after cholinergic stimulation, M4 internalizes from the cell surface to endosomes in cell culture and the rat brain. Here, we show that, after activation, M4 traffics to transferrin receptor- and Rab11a-positive perinuclear endosomes. Expression of the constitutively GDP-bound, inactive mutant Rab11aS25N inhibits M4 trafficking to recycling endosomes. Expression of the C-terminal tail of myosin Vb, a Rab11a effector, enhances M4 accumulation in perinuclear endosomes. Both Rab11aS25N and the myosin Vb tail impair M4 recycling. The results demonstrate that GPCR recycling is mediated through a discrete pathway using both Rab11a and myosin Vb. PMID:12427833

  2. Asymmetric Rab 11 endosomes regulate delta recycling and specify cell fate in the Drosophila nervous system.

    PubMed

    Emery, Gregory; Hutterer, Andrea; Berdnik, Daniela; Mayer, Bernd; Wirtz-Peitz, Frederik; Gaitan, Marcos Gonzalez; Knoblich, Juergen A

    2005-09-01

    Drosophila sensory organ precursor (SOP) cells are a well-studied model system for asymmetric cell division. During SOP division, the determinants Numb and Neuralized segregate into the pIIb daughter cell and establish a distinct cell fate by regulating Notch/Delta signaling. Here, we describe a Numb- and Neuralized-independent mechanism that acts redundantly in cell-fate specification. We show that trafficking of the Notch ligand Delta is different in the two daughter cells. In pIIb, Delta passes through the recycling endosome which is marked by Rab 11. In pIIa, however, the recycling endosome does not form because the centrosome fails to recruit Nuclear fallout, a Rab 11 binding partner that is essential for recycling endosome formation. Using a mammalian cell culture system, we demonstrate that recycling endosomes are essential for Delta activity. Our results suggest that cells can regulate signaling pathways and influence their developmental fate by inhibiting the formation of individual endocytic compartments. PMID:16137758

  3. Rab11b Regulates the Apical Recycling of the Cystic Fibrosis Transmembrane Conductance Regulator in Polarized Intestinal Epithelial Cells

    PubMed Central

    Silvis, Mark R.; Bertrand, Carol A.; Ameen, Nadia; Golin-Bisello, Franca; Butterworth, Michael B.; Bradbury, Neil A.

    2009-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP/PKA-activated anion channel, undergoes efficient apical recycling in polarized epithelia. The regulatory mechanisms underlying CFTR recycling are understood poorly, yet this process is required for proper channel copy number at the apical membrane, and it is defective in the common CFTR mutant, ΔF508. Herein, we investigated the function of Rab11 isoforms in regulating CFTR trafficking in T84 cells, a colonic epithelial line that expresses CFTR endogenously. Western blotting of immunoisolated Rab11a or Rab11b vesicles revealed localization of endogenous CFTR within both compartments. CFTR function assays performed on T84 cells expressing the Rab11a or Rab11b GDP-locked S25N mutants demonstrated that only the Rab11b mutant inhibited 80% of the cAMP-activated halide efflux and that only the constitutively active Rab11b-Q70L increased the rate constant for stimulated halide efflux. Similarly, RNAi knockdown of Rab11b, but not Rab11a, reduced by 50% the CFTR-mediated anion conductance response. In polarized T84 monolayers, adenoviral expression of Rab11b-S25N resulted in a 70% inhibition of forskolin-stimulated transepithelial anion secretion and a 50% decrease in apical membrane CFTR as assessed by cell surface biotinylation. Biotin protection assays revealed a robust inhibition of CFTR recycling in polarized T84 cells expressing Rab11b-S25N, demonstrating the selective requirement for the Rab11b isoform. This is the first report detailing apical CFTR recycling in a native expression system and to demonstrate that Rab11b regulates apical recycling in polarized epithelial cells. PMID:19244346

  4. Differential Roles of C-terminal Eps15 Homology Domain Proteins as Vesiculators and Tubulators of Recycling Endosomes*

    PubMed Central

    Cai, Bishuang; Giridharan, Sai Srinivas Panapakkam; Zhang, Jing; Saxena, Sugandha; Bahl, Kriti; Schmidt, John A.; Sorgen, Paul L.; Guo, Wei; Naslavsky, Naava; Caplan, Steve

    2013-01-01

    Endocytic recycling involves the return of membranes and receptors to the plasma membrane following their internalization into the cell. Recycling generally occurs from a series of vesicular and tubular membranes localized to the perinuclear region, collectively known as the endocytic recycling compartment. Within this compartment, receptors are sorted into tubular extensions that later undergo vesiculation, allowing transport vesicles to move along microtubules and return to the cell surface where they ultimately undergo fusion with the plasma membrane. Recent studies have led to the hypothesis that the C-terminal Eps15 homology domain (EHD) ATPase proteins are involved in the vesiculation process. Here, we address the functional roles of the four EHD proteins. We developed a novel semipermeabilized cell system in which addition of purified EHD proteins to reconstitute vesiculation allows us to assess the ability of each protein to vesiculate MICAL-L1-decorated tubular recycling endosomes (TREs). Using this assay, we show that EHD1 vesiculates membranes, consistent with enhanced TRE generation observed upon EHD1 depletion. EHD4 serves a role similar to that of EHD1 in TRE vesiculation, whereas EHD2, despite being capable of vesiculating TREs in the semipermeabilized cells, fails to do so in vivo. Surprisingly, the addition of EHD3 causes tubulation of endocytic membranes in our semipermeabilized cell system, consistent with the lack of tubulation observed upon EHD3 depletion. Our novel vesiculation assay and in vitro electron microscopy analysis, combined with in vivo data, provide evidence that the functions of both EHD1 and EHD4 are primarily in TRE membrane vesiculation, whereas EHD3 is a membrane-tubulating protein. PMID:24019528

  5. Spatiotemporal control of phosphatidylinositol 4-phosphate by Sac2 regulates endocytic recycling

    PubMed Central

    Hsu, FoSheng; Hu, Fenghua

    2015-01-01

    It is well established that the spatial- and temporal-restricted generation and turnover of phosphoinositides (PIs) by a cascade of PI-metabolizing enzymes is a key regulatory mechanism in the endocytic pathway. Here, we demonstrate that the Sac1 domain–containing protein Sac2 is a PI 4-phosphatase that specifically hydrolyzes phosphatidylinositol 4-phosphate in vitro. We further show that Sac2 colocalizes with early endosomal markers and is recruited to transferrin (Tfn)-containing vesicles during endocytic recycling. Exogenous expression of the catalytically inactive mutant Sac2C458S resulted in altered cellular distribution of Tfn receptors and delayed Tfn recycling. Furthermore, genomic ablation of Sac2 caused a similar perturbation on Tfn and integrin recycling as well as defects in cell migration. Structural characterization of Sac2 revealed a unique pleckstrin-like homology Sac2 domain conserved in all Sac2 orthologues. Collectively, our findings provide evidence for the tight regulation of PIs by Sac2 in the endocytic recycling pathway. PMID:25869669

  6. Rab11A Controls the Biogenesis of Birbeck Granules by Regulating Langerin Recycling and Stability

    PubMed Central

    Uzan-Gafsou, Stéphanie; Bausinger, Huguette; Proamer, Fabienne; Monier, Solange; Lipsker, Dan; Cazenave, Jean-Pierre; Goud, Bruno; de la Salle, Henri

    2007-01-01

    The extent to which Rab GTPases, Rab-interacting proteins, and cargo molecules cooperate in the dynamic organization of membrane architecture remains to be clarified. Langerin, a recycling protein accumulating in the Rab11-positive compartments of Langerhans cells, induces the formation of Birbeck granules (BGs), which are membrane subdomains of the endosomal recycling network. We investigated the role of Rab11A and two members of the Rab11 family of interacting proteins, Rip11 and RCP, in Langerin traffic and the biogenesis of BGs. The overexpression of a dominant-negative Rab11A mutant or Rab11A depletion strongly influenced Langerin traffic and stability and the formation of BGs, whereas modulation of other Rab proteins involved in dynamic regulation of the endocytic-recycling pathway had no effect. Impairment of Rab11A function led to a missorting of Langerin to lysosomal compartments, but inhibition of Langerin degradation by chloroquine did not restore the formation of BGs. Loss of RCP, but not of Rip11, also had a modest, but reproducible effect on Langerin stability and BG biogenesis, pointing to a role for Rab11A–RCP complexes in these events. Our results show that Rab11A and Langerin are required for BG biogenesis, and they illustrate the role played by a Rab GTPase in the formation of a specialized subcompartment within the endocytic-recycling system. PMID:17538027

  7. Rab11A controls the biogenesis of Birbeck granules by regulating Langerin recycling and stability.

    PubMed

    Uzan-Gafsou, Stéphanie; Bausinger, Huguette; Proamer, Fabienne; Monier, Solange; Lipsker, Dan; Cazenave, Jean-Pierre; Goud, Bruno; de la Salle, Henri; Hanau, Daniel; Salamero, Jean

    2007-08-01

    The extent to which Rab GTPases, Rab-interacting proteins, and cargo molecules cooperate in the dynamic organization of membrane architecture remains to be clarified. Langerin, a recycling protein accumulating in the Rab11-positive compartments of Langerhans cells, induces the formation of Birbeck granules (BGs), which are membrane subdomains of the endosomal recycling network. We investigated the role of Rab11A and two members of the Rab11 family of interacting proteins, Rip11 and RCP, in Langerin traffic and the biogenesis of BGs. The overexpression of a dominant-negative Rab11A mutant or Rab11A depletion strongly influenced Langerin traffic and stability and the formation of BGs, whereas modulation of other Rab proteins involved in dynamic regulation of the endocytic-recycling pathway had no effect. Impairment of Rab11A function led to a missorting of Langerin to lysosomal compartments, but inhibition of Langerin degradation by chloroquine did not restore the formation of BGs. Loss of RCP, but not of Rip11, also had a modest, but reproducible effect on Langerin stability and BG biogenesis, pointing to a role for Rab11A-RCP complexes in these events. Our results show that Rab11A and Langerin are required for BG biogenesis, and they illustrate the role played by a Rab GTPase in the formation of a specialized subcompartment within the endocytic-recycling system. PMID:17538027

  8. SNX15 Regulates Cell Surface Recycling of APP and Aβ Generation.

    PubMed

    Feng, Tuancheng; Niu, Mengmeng; Ji, Chengxiang; Gao, Yuehong; Wen, Jing; Bu, Guojun; Xu, Huaxi; Zhang, Yun-Wu

    2016-08-01

    Amyloid-β (Aβ) peptide plays an essential role in the pathogenesis of Alzheimer's disease (AD) and is generated from amyloid-β precursor protein (APP) through sequential proteolytic cleavages by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Trafficking dysregulation of APP, BACE1, and γ-secretase may affect Aβ generation and disease pathogenesis. Sorting nexin 15 (SNX15) is known to regulate protein trafficking. Here, we report that SNX15 is abundantly expressed in mouse neurons and astrocytes. In addition, we show that although not affecting the protein levels of APP, BACE1, and γ-secretase components and the activity of BACE1 and γ-secretase, overexpression and downregulation of SNX15 reduce and promote Aβ production, respectively. Furthermore, we find that overexpression of SNX15 increases APP protein levels in cell surface through accelerating APP recycling, whereas downregulation of SNX15 has an opposite effect. Finally, we show that exogenous expression of human SNX15 in the hippocampal dentate gyrus by adeno-associated virus (AAV) infection can significantly reduce Aβ pathology in the hippocampus and improve short-term working memory in the APPswe/PSEN1dE9 double transgenic AD model mice. Together, our results suggest that SNX15 regulates the recycling of APP to cell surface and, thus, its processing for Aβ generation. PMID:26115702

  9. 40 CFR 260.40 - Additional regulation of certain hazardous waste recycling activities on a case-by-case basis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Additional regulation of certain hazardous waste recycling activities on a case-by-case basis. 260.40 Section 260.40 Protection of... SYSTEM: GENERAL Rulemaking Petitions § 260.40 Additional regulation of certain hazardous waste...

  10. 40 CFR 260.40 - Additional regulation of certain hazardous waste recycling activities on a case-by-case basis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Additional regulation of certain hazardous waste recycling activities on a case-by-case basis. 260.40 Section 260.40 Protection of... SYSTEM: GENERAL Rulemaking Petitions § 260.40 Additional regulation of certain hazardous waste...

  11. 40 CFR 260.40 - Additional regulation of certain hazardous waste recycling activities on a case-by-case basis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Additional regulation of certain hazardous waste recycling activities on a case-by-case basis. 260.40 Section 260.40 Protection of... SYSTEM: GENERAL Rulemaking Petitions § 260.40 Additional regulation of certain hazardous waste...

  12. 40 CFR 260.40 - Additional regulation of certain hazardous waste recycling activities on a case-by-case basis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Additional regulation of certain hazardous waste recycling activities on a case-by-case basis. 260.40 Section 260.40 Protection of... SYSTEM: GENERAL Rulemaking Petitions § 260.40 Additional regulation of certain hazardous waste...

  13. 40 CFR 260.40 - Additional regulation of certain hazardous waste recycling activities on a case-by-case basis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Additional regulation of certain hazardous waste recycling activities on a case-by-case basis. 260.40 Section 260.40 Protection of... SYSTEM: GENERAL Rulemaking Petitions § 260.40 Additional regulation of certain hazardous waste...

  14. Ehd4 Encodes a Novel and Oryza-Genus-Specific Regulator of Photoperiodic Flowering in Rice

    PubMed Central

    Gao, He; Zheng, Xiao-Ming; Fei, Guilin; Chen, Jun; Jin, Mingna; Ren, Yulong; Wu, Weixun; Zhou, Kunneng; Sheng, Peike; Zhou, Feng; Jiang, Ling; Wang, Jie; Zhang, Xin; Guo, Xiuping; Wang, Jiu-Lin; Cheng, Zhijun; Wu, Chuanyin; Wang, Haiyang; Wan, Jian-Min

    2013-01-01

    Land plants have evolved increasingly complex regulatory modes of their flowering time (or heading date in crops). Rice (Oryza sativa L.) is a short-day plant that flowers more rapidly in short-day but delays under long-day conditions. Previous studies have shown that the CO-FT module initially identified in long-day plants (Arabidopsis) is evolutionary conserved in short-day plants (Hd1-Hd3a in rice). However, in rice, there is a unique Ehd1-dependent flowering pathway that is Hd1-independent. Here, we report isolation and characterization of a positive regulator of Ehd1, Early heading date 4 (Ehd4). ehd4 mutants showed a never flowering phenotype under natural long-day conditions. Map-based cloning revealed that Ehd4 encodes a novel CCCH-type zinc finger protein, which is localized to the nucleus and is able to bind to nucleic acids in vitro and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional regulator. Ehd4 expression is most active in young leaves with a diurnal expression pattern similar to that of Ehd1 under both short-day and long-day conditions. We show that Ehd4 up-regulates the expression of the “florigen” genes Hd3a and RFT1 through Ehd1, but it acts independently of other known Ehd1 regulators. Strikingly, Ehd4 is highly conserved in the Oryza genus including wild and cultivated rice, but has no homologs in other species, suggesting that Ehd4 is originated along with the diversification of the Oryza genus from the grass family during evolution. We conclude that Ehd4 is a novel Oryza-genus-specific regulator of Ehd1, and it plays an essential role in photoperiodic control of flowering time in rice. PMID:23437005

  15. Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis

    PubMed Central

    Giridharan, Sai Srinivas Panapakkam; Cai, Bishuang; Vitale, Nicolas; Naslavsky, Naava; Caplan, Steve

    2013-01-01

    Endocytic transport necessitates the generation of membrane tubules and their subsequent fission to transport vesicles for sorting of cargo molecules. The endocytic recycling compartment, an array of tubular and vesicular membranes decorated by the Eps15 homology domain protein, EHD1, is responsible for receptor and lipid recycling to the plasma membrane. It has been proposed that EHD dimers bind and bend membranes, thus generating recycling endosome (RE) tubules. However, recent studies show that molecules interacting with CasL-Like1 (MICAL-L1), a second, recently identified RE tubule marker, recruits EHD1 to preexisting tubules. The mechanisms and events supporting the generation of tubular recycling endosomes were unclear. Here, we propose a mechanism for the biogenesis of RE tubules. We demonstrate that MICAL-L1 and the BAR-domain protein syndapin2 bind to phosphatidic acid, which we identify as a novel lipid component of RE. Our studies demonstrate that direct interactions between these two proteins stabilize their association with membranes, allowing for nucleation of tubules by syndapin2. Indeed, the presence of phosphatidic acid in liposomes enhances the ability of syndapin2 to tubulate membranes in vitro. Overall our results highlight a new role for phosphatidic acid in endocytic recycling and provide new insights into the mechanisms by which tubular REs are generated. PMID:23596323

  16. Rab8b Regulates Transport of West Nile Virus Particles from Recycling Endosomes.

    PubMed

    Kobayashi, Shintaro; Suzuki, Tadaki; Kawaguchi, Akira; Phongphaew, Wallaya; Yoshii, Kentaro; Iwano, Tomohiko; Harada, Akihiro; Kariwa, Hiroaki; Orba, Yasuko; Sawa, Hirofumi

    2016-03-18

    West Nile virus (WNV) particles assemble at and bud into the endoplasmic reticulum (ER) and are secreted from infected cells through the secretory pathway. However, the host factor related to these steps is not fully understood. Rab proteins, belonging to the Ras superfamily, play essential roles in regulating many aspects of vesicular trafficking. In this study, we sought to determine which Rab proteins are involved in intracellular trafficking of nascent WNV particles. RNAi analysis revealed that Rab8b plays a role in WNV particle release. We found that Rab8 and WNV antigen were colocalized in WNV-infected human neuroblastoma cells, and that WNV infection enhanced Rab8 expression in the cells. In addition, the amount of WNV particles in the supernatant of Rab8b-deficient cells was significantly decreased compared with that of wild-type cells. We also demonstrated that WNV particles accumulated in the recycling endosomes in WNV-infected cells. In summary, these results suggest that Rab8b is involved in trafficking of WNV particles from recycling endosomes to the plasma membrane. PMID:26817838

  17. The palmitoyl acyltransferase DHHC2 regulates recycling endosome exocytosis and synaptic potentiation through palmitoylation of AKAP79/150.

    PubMed

    Woolfrey, Kevin M; Sanderson, Jennifer L; Dell'Acqua, Mark L

    2015-01-14

    Phosphorylation and dephosphorylation of AMPA-type ionotropic glutamate receptors (AMPARs) by kinases and phosphatases and interactions with scaffold proteins play essential roles in regulating channel biophysical properties and trafficking events that control synaptic strength during NMDA receptor-dependent synaptic plasticity, such as LTP and LTD. We previously demonstrated that palmitoylation of the AMPAR-linked scaffold protein A-kinase anchoring protein (AKAP) 79/150 is required for its targeting to recycling endosomes in dendrites, where it regulates exocytosis from these compartments that is required for LTP-stimulated enlargement of postsynaptic dendritic spines, delivery of AMPARs to the plasma membrane, and maintenance of synaptic potentiation. Here, we report that the recycling endosome-resident palmitoyl acyltransferase DHHC2 interacts with and palmitoylates AKAP79/150 to regulate these plasticity signaling mechanisms. In particular, RNAi-mediated knockdown of DHHC2 expression in rat hippocampal neurons disrupted stimulation of exocytosis from recycling endosomes, enlargement of dendritic spines, AKAP recruitment to spines, and potentiation of AMPAR-mediated synaptic currents that occur during LTP. Importantly, expression of a palmitoylation-independent lipidated AKAP mutant in DHHC2-deficient neurons largely restored normal plasticity regulation. Thus, we conclude that DHHC2-AKAP79/150 signaling is an essential regulator of dendritic recycling endosome exocytosis that controls both structural and functional plasticity at excitatory synapses. PMID:25589740

  18. The Palmitoyl Acyltransferase DHHC2 Regulates Recycling Endosome Exocytosis and Synaptic Potentiation through Palmitoylation of AKAP79/150

    PubMed Central

    Woolfrey, Kevin M.; Sanderson, Jennifer L.

    2015-01-01

    Phosphorylation and dephosphorylation of AMPA-type ionotropic glutamate receptors (AMPARs) by kinases and phosphatases and interactions with scaffold proteins play essential roles in regulating channel biophysical properties and trafficking events that control synaptic strength during NMDA receptor-dependent synaptic plasticity, such as LTP and LTD. We previously demonstrated that palmitoylation of the AMPAR-linked scaffold protein A-kinase anchoring protein (AKAP) 79/150 is required for its targeting to recycling endosomes in dendrites, where it regulates exocytosis from these compartments that is required for LTP-stimulated enlargement of postsynaptic dendritic spines, delivery of AMPARs to the plasma membrane, and maintenance of synaptic potentiation. Here, we report that the recycling endosome-resident palmitoyl acyltransferase DHHC2 interacts with and palmitoylates AKAP79/150 to regulate these plasticity signaling mechanisms. In particular, RNAi-mediated knockdown of DHHC2 expression in rat hippocampal neurons disrupted stimulation of exocytosis from recycling endosomes, enlargement of dendritic spines, AKAP recruitment to spines, and potentiation of AMPAR-mediated synaptic currents that occur during LTP. Importantly, expression of a palmitoylation-independent lipidated AKAP mutant in DHHC2-deficient neurons largely restored normal plasticity regulation. Thus, we conclude that DHHC2-AKAP79/150 signaling is an essential regulator of dendritic recycling endosome exocytosis that controls both structural and functional plasticity at excitatory synapses. PMID:25589740

  19. Sorting nexin 17 regulates ApoER2 recycling and reelin signaling.

    PubMed

    Sotelo, Pablo; Farfán, Pamela; Benitez, María Luisa; Bu, Guojun; Marzolo, María-Paz

    2014-01-01

    ApoER2 is a member of the low density-lipoprotein receptor (LDL-R) family. As a receptor for reelin, ApoER2 participates in neuronal migration during development as well as synaptic plasticity and survival in the adult brain. A previous yeast two-hybrid screen showed that ApoER2 is a binding partner of sorting nexin 17 (SNX17) - a cytosolic adaptor protein that regulates the trafficking of several membrane proteins in the endosomal pathway, including LRP1, P-selectin and integrins. However, no further studies have been performed to investigate the role of SNX17 in ApoER2 trafficking and function. In this study, we present evidence based on GST pull-down and inmunoprecipitation assays that the cytoplasmic NPxY endocytosis motif of ApoER2 interacts with the FERM domain of SNX17. SNX17 stimulates ApoER2 recycling in different cell lines including neurons without affecting its endocytic rate and also facilitates the transport of ApoER2 from the early endosomes to the recycling endosomes. The reduction of SNX17 was associated with accumulation of an ApoER2 carboxy-terminal fragment (CTF). In addition, in SNX17 knockdown cells, constitutive ApoER2 degradation was not modified, whereas reelin-induced ApoER2 degradation was increased, implying that SNX17 is a regulator of the receptor's half-life. Finally, in SNX17 silenced hippocampal and cortical neurons, we underscored a positive role of this endosomal protein in the development of the dendritic tree and reelin signaling. Overall, these results establish the role of SNX17 in ApoER2 trafficking and function and aid in identifying new links between endocytic trafficking and receptor signaling. PMID:24705369

  20. Sorting Nexin 17 Regulates ApoER2 Recycling and Reelin Signaling

    PubMed Central

    Sotelo, Pablo; Farfán, Pamela; Benitez, María Luisa; Bu, Guojun; Marzolo, María-Paz

    2014-01-01

    ApoER2 is a member of the low density-lipoprotein receptor (LDL-R) family. As a receptor for reelin, ApoER2 participates in neuronal migration during development as well as synaptic plasticity and survival in the adult brain. A previous yeast two-hybrid screen showed that ApoER2 is a binding partner of sorting nexin 17 (SNX17) - a cytosolic adaptor protein that regulates the trafficking of several membrane proteins in the endosomal pathway, including LRP1, P-selectin and integrins. However, no further studies have been performed to investigate the role of SNX17 in ApoER2 trafficking and function. In this study, we present evidence based on GST pull-down and inmunoprecipitation assays that the cytoplasmic NPxY endocytosis motif of ApoER2 interacts with the FERM domain of SNX17. SNX17 stimulates ApoER2 recycling in different cell lines including neurons without affecting its endocytic rate and also facilitates the transport of ApoER2 from the early endosomes to the recycling endosomes. The reduction of SNX17 was associated with accumulation of an ApoER2 carboxy-terminal fragment (CTF). In addition, in SNX17 knockdown cells, constitutive ApoER2 degradation was not modified, whereas reelin-induced ApoER2 degradation was increased, implying that SNX17 is a regulator of the receptor's half-life. Finally, in SNX17 silenced hippocampal and cortical neurons, we underscored a positive role of this endosomal protein in the development of the dendritic tree and reelin signaling. Overall, these results establish the role of SNX17 in ApoER2 trafficking and function and aid in identifying new links between endocytic trafficking and receptor signaling. PMID:24705369

  1. A Role for EHD4 in the Regulation of Early Endosomal Transport

    PubMed Central

    Sharma, Mahak; Naslavsky, Naava; Caplan, Steve

    2009-01-01

    All four of the C-terminal Eps15 homology domain (EHD) proteins have been implicated in the regulation of endocytic trafficking. However, the high level of amino acid sequence identity among these proteins has made it challenging to elucidate the precise function of individual EHD proteins. We demonstrate here with specific peptide antibodies that endogenous EHD4 localizes to Rab5-, early embryonic antigen 1 (EEA1)- and Arf6-containing endosomes and colocalizes with internalized transferrin in the cell periphery. Knock-down of EHD4 expression by both small interfering RNA and short hairpin RNA leads to the generation of enlarged early endosomal structures that contain Rab5 and EEA1 as well as internalized transferrin or major histocompatibility complex class I molecules. In addition, cargo destined for degradation, such as internalized low-density lipoprotein, also accumulates in the enlarged early endosomes in EHD4-depleted cells. Moreover, we have demonstrated that these enlarged early endosomes are enriched in levels of the activated GTP-bound Rab5. Finally, we show that endogenous EHD4 and EHD1 interact in cells, suggesting coordinated involvement in the regulation of receptor transport along the early endosome to endocytic recycling compartment axis. The results presented herein provide evidence that EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward both the recycling compartment and the late endocytic pathway. PMID:18331452

  2. Rab22a Regulates the Recycling of Membrane Proteins Internalized Independently of ClathrinV⃞

    PubMed Central

    Weigert, Roberto; Yeung, Albert Chi; Li, Jean; Donaldson, Julie G.

    2004-01-01

    Plasma membrane proteins that are internalized independently of clathrin, such as major histocompatibility complex class I (MHCI), are internalized in vesicles that fuse with the early endosomes containing clathrin-derived cargo. From there, MHCI is either transported to the late endosome for degradation or is recycled back to the plasma membrane via tubular structures that lack clathrin-dependent recycling cargo, e.g., transferrin. Here, we show that the small GTPase Rab22a is associated with these tubular recycling intermediates containing MHCI. Expression of a dominant negative mutant of Rab22a or small interfering RNA-mediated depletion of Rab22a inhibited both formation of the recycling tubules and MHCI recycling. By contrast, cells expressing the constitutively active mutant of Rab22a exhibited prominent recycling tubules and accumulated vesicles at the periphery, but MHCI recycling was still blocked. These results suggest that Rab22a activation is required for tubule formation and Rab22a inactivation for final fusion of recycling membranes with the surface. The trafficking of transferrin was only modestly affected by these treatments. Dominant negative mutant of Rab11a also inhibited recycling of MHCI but not the formation of recycling tubules, suggesting that Rab22a and Rab11a might coordinate different steps of MHCI recycling. PMID:15181155

  3. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    PubMed Central

    Beaton, Nigel; Rudigier, Carla; Moest, Hansjörg; Müller, Sebastian; Mrosek, Nadja; Röder, Eva; Rudofsky, Gottfried; Rülicke, Thomas; Ukropec, Jozef; Ukropcova, Barbara; Augustin, Robert; Neubauer, Heike; Wolfrum, Christian

    2015-01-01

    Objective Failure to properly dispose of glucose in response to insulin is a serious health problem, occurring during obesity and is associated with type 2 diabetes development. Insulin-stimulated glucose uptake is facilitated by the translocation and plasma membrane fusion of vesicles containing glucose transporter 4 (GLUT4), the rate-limiting step of post-prandial glucose disposal. Methods We analyzed the role of Tusc5 in the regulation of insulin-stimulated Glut4-mediated glucose uptake in vitro and in vivo. Furthermore, we measured Tusc5 expression in two patient cohorts. Results Herein, we report that TUSC5 controls insulin-stimulated glucose uptake in adipocytes, in vitro and in vivo. TUSC5 facilitates the proper recycling of GLUT4 and other key trafficking proteins during prolonged insulin stimulation, thereby enabling proper protein localization and complete vesicle formation, processes that ultimately enable insulin-stimulated glucose uptake. Tusc5 knockout mice exhibit impaired glucose disposal and TUSC5 expression is predictive of glucose tolerance in obese individuals, independent of body weight. Furthermore, we show that TUSC5 is a PPARγ target and in its absence the anti-diabetic effects of TZDs are significantly blunted. Conclusions Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans. PMID:26629404

  4. The active zone protein CAST regulates synaptic vesicle recycling and quantal size in the mouse hippocampus.

    PubMed

    Kobayashi, Shizuka; Hida, Yamato; Ishizaki, Hiroyoshi; Inoue, Eiji; Tanaka-Okamoto, Miki; Yamasaki, Miwako; Miyazaki, Taisuke; Fukaya, Masahiro; Kitajima, Isao; Takai, Yoshimi; Watanabe, Masahiko; Ohtsuka, Toshihisa; Manabe, Toshiya

    2016-09-01

    Synaptic efficacy is determined by various factors, including the quantal size, which is dependent on the amount of neurotransmitters in synaptic vesicles at the presynaptic terminal. It is essential for stable synaptic transmission that the quantal size is kept within a constant range and that synaptic efficacy during and after repetitive synaptic activation is maintained by replenishing release sites with synaptic vesicles. However, the mechanisms for these fundamental properties have still been undetermined. We found that the active zone protein CAST (cytomatrix at the active zone structural protein) played pivotal roles in both presynaptic regulation of quantal size and recycling of endocytosed synaptic vesicles. In the CA1 region of hippocampal slices of the CAST knockout mice, miniature excitatory synaptic responses were increased in size, and synaptic depression after prolonged synaptic activation was larger, which was attributable to selective impairment of synaptic vesicle trafficking via the endosome in the presynaptic terminal likely mediated by Rab6. Therefore, CAST serves as a key molecule that regulates dynamics and neurotransmitter contents of synaptic vesicles in the excitatory presynaptic terminal in the central nervous system. PMID:27422015

  5. Recycling endosome membrane incorporation into the leading edge regulates lamellipodia formation and macrophage migration.

    PubMed

    Veale, Kelly J; Offenhäuser, Carolin; Whittaker, Shane P; Estrella, Ruby P; Murray, Rachael Z

    2010-10-01

    In comparison to our knowledge of the recycling of adhesion receptors and actin assembly, exactly how the cell controls its surface membrane to form a lamellipodium during migration is poorly understood. Here, we show the recycling endosome membrane is incorporated into the leading edge of a migrating cell to expand lamellipodia membrane. We have identified the SNARE complex that is necessary for fusion of the recycling endosome with the cell surface, as consisting of the R-SNARE VAMP3 on the recycling endosome partnering with the surface Q-SNARE Stx4/SNAP23, which was found to translocate and accumulate on the leading edge of migrating cells. Increasing VAMP3-mediated fusion of the recycling endosome with the surface increased membrane ruffling, while inhibition of VAMP3-mediated fusion showed that incorporation of the recycling endosome is necessary for efficient lamellipodia formation. At the same time, insertion of this recycling endosome membrane also delivers its cargo integrin α5β1 to the cell surface. The loss of this extra membrane for lamellipodia expansion and delivery of cargo in cells resulted in macrophages with a diminished capacity to effectively migrate. Thus, the recycling endosome membrane is incorporated into the leading edge and this aids expansion of the lamellipodia and simultaneously delivers integrins necessary for efficient cell migration. PMID:20604897

  6. An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation.

    PubMed

    Arfin, Scott K; Sarpeshkar, Rahul

    2012-02-01

    In this paper, we present a novel energy-efficient electrode stimulator. Our stimulator uses inductive storage and recycling of energy in a dynamic power supply. This supply drives an electrode in an adiabatic fashion such that energy consumption is minimized. It also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The dynamic power supply allows efficient transfer of energy both to and from the electrode and is based on a DC-DC converter topology that we use in a bidirectional fashion in forward-buck or reverse-boost modes. In an exemplary electrode implementation intended for neural stimulation, we show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard .35 μm CMOS process. This stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply. We perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. This theoretical analysis reveals that further improvements in energy efficiency may be achievable with better implementations in the future. Our electrode stimulator could be widely useful for neural, cardiac, retinal, cochlear, muscular and other biomedical implants where low power operation is important. PMID:23852740

  7. Neurotensin-induced miR-133α expression regulates neurotensin receptor 1 recycling through its downstream target aftiphilin

    PubMed Central

    Law, Ivy Ka Man; Jensen, Dane; Bunnett, Nigel W.; Pothoulakis, Charalabos

    2016-01-01

    Neurotensin (NT) triggers signaling in human colonic epithelial cells by activating the G protein-coupled receptor, the neurotensin receptor 1 (NTR1). Activated NTR1 traffics from the plasma membrane to early endosomes, and then recycles. Although sustained NT/NTR1 signaling requires efficient NTR1 recycling, little is known about the regulation of NTR1 recycling. We recently showed that NT/NTR1 signaling increases expression of miR-133α. Herein, we studied the mechanism of NT-regulated miR-133α expression and examined the role of miR-133α in intracellular NTR1 trafficking in human NCM460 colonocytes. We found that NT-induced miR-133α upregulation involves the negative transcription regulator, zinc finger E-box binding homeobox 1. Silencing of miR-133α or overexpression of aftiphilin (AFTPH), a binding target of miR-133α, attenuated NTR1 trafficking to plasma membrane in human colonocytes, without affecting NTR1 internalization. We localized AFTPH to early endosomes and the trans-Golgi network (TGN) in unstimulated human colonic epithelial cells. AFTPH overexpression reduced NTR1 localization in early endosomes and increased expression of proteins related to endosomes and the TGN trafficking pathway. AFTPH overexpression and de-acidification of intracellular vesicles increased NTR1 expression. Our results suggest a novel mechanism of GPCR trafficking in human colonic epithelial cells by which a microRNA, miR-133α regulates NTR1 trafficking through its downstream target AFTPH. PMID:26902265

  8. Neurotensin-induced miR-133α expression regulates neurotensin receptor 1 recycling through its downstream target aftiphilin.

    PubMed

    Law, Ivy Ka Man; Jensen, Dane; Bunnett, Nigel W; Pothoulakis, Charalabos

    2016-01-01

    Neurotensin (NT) triggers signaling in human colonic epithelial cells by activating the G protein-coupled receptor, the neurotensin receptor 1 (NTR1). Activated NTR1 traffics from the plasma membrane to early endosomes, and then recycles. Although sustained NT/NTR1 signaling requires efficient NTR1 recycling, little is known about the regulation of NTR1 recycling. We recently showed that NT/NTR1 signaling increases expression of miR-133α. Herein, we studied the mechanism of NT-regulated miR-133α expression and examined the role of miR-133α in intracellular NTR1 trafficking in human NCM460 colonocytes. We found that NT-induced miR-133α upregulation involves the negative transcription regulator, zinc finger E-box binding homeobox 1. Silencing of miR-133α or overexpression of aftiphilin (AFTPH), a binding target of miR-133α, attenuated NTR1 trafficking to plasma membrane in human colonocytes, without affecting NTR1 internalization. We localized AFTPH to early endosomes and the trans-Golgi network (TGN) in unstimulated human colonic epithelial cells. AFTPH overexpression reduced NTR1 localization in early endosomes and increased expression of proteins related to endosomes and the TGN trafficking pathway. AFTPH overexpression and de-acidification of intracellular vesicles increased NTR1 expression. Our results suggest a novel mechanism of GPCR trafficking in human colonic epithelial cells by which a microRNA, miR-133α regulates NTR1 trafficking through its downstream target AFTPH. PMID:26902265

  9. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor

    PubMed Central

    Kortüm, Fanny; Harms, Frederike Leonie; Hennighausen, Natascha; Rosenberger, Georg

    2015-01-01

    Endosomal sorting is an essential control mechanism for signaling through the epidermal growth factor receptor (EGFR). We report here that the guanine nucleotide exchange factor αPIX, which modulates the activity of Rho-GTPases, is a potent bimodal regulator of EGFR trafficking. αPIX interacts with the E3 ubiquitin ligase c-Cbl, an enzyme that attaches ubiquitin to EGFR, thereby labelling this tyrosine kinase receptor for lysosomal degradation. We show that EGF stimulation induces αPIX::c-Cbl complex formation. Simultaneously, αPIX and c-Cbl protein levels decrease, which depends on both αPIX binding to c-Cbl and c-Cbl ubiquitin ligase activity. Through interaction αPIX sequesters c-Cbl from EGFR and this results in reduced EGFR ubiquitination and decreased EGFR degradation upon EGF treatment. However, quantitatively more decisive for cellular EGFR distribution than impaired EGFR degradation is a strong stimulating effect of αPIX on EGFR recycling to the cell surface. This function depends on the GIT binding domain of αPIX but not on interaction with c-Cbl or αPIX exchange activity. In summary, our data demonstrate a previously unappreciated function of αPIX as a strong promoter of EGFR recycling. We suggest that the novel recycling regulator αPIX and the degradation factor c-Cbl closely cooperate in the regulation of EGFR trafficking: uncomplexed αPIX and c-Cbl mediate a positive and a negative feedback on EGFR signaling, respectively; αPIX::c-Cbl complex formation, however, results in mutual inhibition, which may reflect a stable condition in the homeostasis of EGF-induced signal flow. PMID:26177020

  10. Vasoconstrictor-induced endocytic recycling regulates focal adhesion protein localization and function in vascular smooth muscle

    PubMed Central

    Poythress, Ransom H.; Gallant, Cynthia; Vetterkind, Susanne

    2013-01-01

    Turnover of focal adhesions (FAs) is known to be critical for cell migration and adhesion of proliferative vascular smooth muscle (VSM) cells. However, it is often assumed that FAs in nonmigratory, differentiated VSM (dVSM) cells embedded in the wall of healthy blood vessels are stable structures. Recent work has demonstrated agonist-induced actin polymerization and Src-dependent FA phosphorylation in dVSM cells, suggesting that agonist-induced FA remodeling occurs. However, the mechanisms and extent of FA remodeling are largely unknown in dVSM. Here we show, for the first time, that a distinct subpopulation of dVSM FA proteins, but not the entire FA, remodels in response to the α-agonist phenylephrine. Vasodilator-stimulated phosphoprotein and zyxin displayed the largest redistributions, while β-integrin and FA kinase showed undetectable redistribution. Vinculin, metavinculin, Src, Crk-associated substrate, and paxillin displayed intermediate degrees of redistribution. Redistributions into membrane fractions were especially prominent, suggesting endosomal mechanisms. Deconvolution microscopy, quantitative colocalization analysis, and Duolink proximity ligation assays revealed that phenylephrine increases the association of FA proteins with early endosomal markers Rab5 and early endosomal antigen 1. Endosomal disruption with the small-molecule inhibitor primaquine inhibits agonist-induced redistribution of FA proteins, confirming endosomal recycling. FA recycling was also inhibited by cytochalasin D, latrunculin B, and colchicine, indicating that the redistribution is actin- and microtubule-dependent. Furthermore, inhibition of endosomal recycling causes a significant inhibition of the rate of development of agonist-induced dVSM contractions. Thus these studies are consistent with the concept that FAs in dVSM cells, embedded in the wall of the aorta, remodel during the action of a vasoconstrictor. PMID:23703522

  11. ITAM signaling in dendritic cells controls T helper cell priming by regulating MHC class II recycling

    PubMed Central

    Graham, Daniel B.; Akilesh, Holly M.; Gmyrek, Grzegorz B.; Piccio, Laura; Gilfillan, Susan; Sim, Julia; Belizaire, Roger; Carrero, Javier A.; Wang, Yinan; Blaufuss, Gregory S.; Sandoval, Gabriel; Fujikawa, Keiko; Cross, Anne H.; Russell, John H.; Cella, Marina

    2010-01-01

    Immature dendritic cells (DCs) specialize in antigen capture and maintain a highly dynamic pool of intracellular major histocompatibility complex class II (MHCII) that continuously recycles from peptide loading compartments to the plasma membrane and back again. This process facilitates sampling of environmental antigens for presentation to T helper cells. Here, we show that a signaling pathway mediated by the DC immunoreceptor tyrosine-based activation motif (ITAM)–containing adaptors (DAP12 and FcRγ) and Vav family guanine nucleotide exchange factors controls the half-life of surface peptide-MHCII (pMHCII) complexes and is critical for CD4 T-cell triggering in vitro. Strikingly, mice with disrupted DC ITAMs show defective T helper cell priming in vivo and are protected from experimental autoimmune encephalitis. Mechanistically, we show that deficiency in ITAM signaling results in increased pMHCII internalization, impaired recycling, and an accumulation of ubiquitinated MHCII species that are prematurely degraded in lysosomes. We propose a novel mechanism for control of T helper cell priming. PMID:20634378

  12. The role of the recycling endosome in regulating lamellipodia formation and macrophage migration.

    PubMed

    Veale, Kelly J; Offenhäuser, Carolin; Murray, Rachael Z

    2011-01-01

    Cell migration is a highly complex process that requires the extension of cell membrane in the direction of travel. This membrane is continuously remodeled to expand the leading edge and alter its membrane properties. For a long time it has been known that there is a continual flow of polarized membrane traffic towards the leading edge during migration and that this trafficking is essential for cell migration. However, there is little information on how the cell coordinates exocytosis at the leading edge. It is also unclear whether these internal membranes are incorporated into the leading edge or are just delivering the necessary proteins for migration to occur. We have shown that recycling endosome membrane is incorporated into the plasma membrane at the leading edge to expand the membrane and at the same time delivers receptors to the leading edge to mediate migration. In order for this to happen the surface Q-SNARE complex Stx4/SNAP23 translocates to the leading edge where it binds to the R-SNARE VAMP3 on the recycling endosome allowing incorporation into the plasma membrane. Loss of any one of the components of this complex reduces efficient lamellipodia formation and restrains cell migration. PMID:21509176

  13. Metabolic Regulation as a Consequence of Anaerobic 5-Methylthioadenosine Recycling in Rhodospirillum rubrum

    PubMed Central

    North, Justin A.; Sriram, Jaya; Chourey, Karuna; Ecker, Christopher D.; Sharma, Ritin; Wildenthal, John A.; Hettich, Robert L.

    2016-01-01

    ABSTRACT Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence of sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. These results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source. PMID:27406564

  14. Precipitation Recycling

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1996-01-01

    The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?

  15. Recycling, Inc.

    ERIC Educational Resources Information Center

    Martin, Amy

    1992-01-01

    Suggestions for creating a successful office recycling system are enumerated from start up plans to waste reduction and paper recycling. Contact information for recycling equipment, potential buyers of recycled materials, recycled products for purchase, and ideas for promotion and education of staff are included. (MCO)

  16. Recycling endosomes

    PubMed Central

    Goldenring, James R

    2015-01-01

    The endosomal membrane recycling system represents a dynamic conduit for sorting and re-exporting internalized membrane constituents. The recycling system is composed of multiple tubulovesicular recycling pathways that likely confer distinct trafficking pathways for individual cargoes. In addition, elements of the recycling system are responsible for assembly and maintenance of apical membrane specializations including primary cilia and apical microvilli. The existence of multiple intersecting and diverging recycling tracks likely accounts for specificity in plasma membrane recycling trafficking. PMID:26022676

  17. The sorting protein PACS-2 promotes ErbB signalling by regulating recycling of the metalloproteinase ADAM17

    PubMed Central

    Dombernowsky, Sarah Louise; Samsøe-Petersen, Jacob; Petersen, Camilla Hansson; Instrell, Rachael; Hedegaard, Anne-Mette Bornhardt; Thomas, Laurel; Atkins, Katelyn Mae; Auclair, Sylvain; Albrechtsen, Reidar; Mygind, Kasper Johansen; Fröhlich, Camilla; Howell, Michael; Parker, Peter; Thomas, Gary; Kveiborg, Marie

    2015-01-01

    The metalloproteinase ADAM17 activates ErbB signalling by releasing ligands from the cell surface, a key step underlying epithelial development, growth, and tumour progression. However, mechanisms acutely controlling ADAM17 cell-surface availability to modulate the extent of ErbB ligand release are poorly understood. Here, through a functional genome-wide siRNA screen, we identify the sorting protein PACS-2 as a regulator of ADAM17 trafficking and ErbB signalling. PACS-2 loss reduces ADAM17 cell-surface levels and ADAM17-dependent ErbB ligand shedding, without apparent effects on related proteases. PACS-2 co-localizes with ADAM17 on early endosomes and PACS-2 knockdown decreases the recycling and stability of internalized ADAM17. Hence, PACS-2 sustains ADAM17 cell-surface activity by diverting ADAM17 away from degradative pathways. Interestingly, Pacs2-deficient mice display significantly reduced levels of phosphorylated EGFR and intestinal proliferation. We suggest that this mechanism controlling ADAM17 cell-surface availability and EGFR signalling may play a role in intestinal homeostasis, with potential implications for cancer biology. PMID:26108729

  18. Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations, and partners.

    PubMed

    Ishiki, Manabu; Klip, Amira

    2005-12-01

    Glucose transporter (GLUT) 4 is the major glucose transporter of muscle and adipose cells, exquisitely regulated by insulin through posttranslational events. Twenty years after the seminal observations that GLUT4 levels rapidly rise at the plasma membrane (PM) and drop in endomembranes in response to an acute insulin challenge, we are still mapping the intracellular traffic of the transporter and the regulatory events that insulin unleashes. Newly synthesized GLUT4 enters an insulin-responsive compartment aided by GGA2 (an Arf-binding protein). In cultured adipocytes and myocytes, GLUT4 concentrates in a perinuclear pole through participation of microtubules and the EHD1 Eps15 homology domain-containing protein 1. In the absence of stimuli, GLUT4 distributes between recycling endosomes and the insulin-responsive compartment. A handful of proteins that bind to GLUT4 appear to regulate its half-life (e.g. Ubc9) and tethering within endomembranes (e.g. TUG). Insulin-derived signals promote not only GLUT4 mobilization toward the PM but also its traffic between endosomal compartments and internalization from the PM. Class IA phosphatidylinositol (PI) 3-kinase plays a pivotal role at several steps of GLUT4 mobilization. The PI 3-kinase --> atypical PKC and --> Akt/PKB --> AS160 signaling cascades are major regulators of GLUT4 exocytosis aided by small GTPases. At the cell periphery, GLUT4-containing vesicles tether, dock, and fuse with the PM assisted by the exocyst complex followed by engagement of a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex [with vesicle-associated membrane protein (VAMP)2 as the vesicular (v)-SNARE and soluble NSF-attachment protein (SNAP)23 and syntaxin4 as target (t)-SNAREs] regulated by the accessory proteins Munc18c, Synip and Tomosyn. Vesicle tethering and fusion are regulated by insulin through input from class IA PI 3-kinase. PMID:16150904

  19. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling

    PubMed Central

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-01-01

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical–basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity. PMID:26888284

  20. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.

    PubMed

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-03-01

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity. PMID:26888284

  1. HIV-1 Nef binds with human GCC185 protein and regulates mannose 6 phosphate receptor recycling.

    PubMed

    Kumar, Manjeet; Kaur, Supinder; Nazir, Aamir; Tripathi, Raj Kamal

    2016-05-20

    HIV-1 Nef modulates cellular function that enhances viral replication in vivo which culminate into AIDS pathogenesis. With no enzymatic activity, Nef regulates cellular function through host protein interaction. Interestingly, trans-cellular introduction of recombinant Nef protein in Caenorhabditis elegans results in AIDS like pathogenesis which might share common pathophysiology because the gene sequence of C. elegans and humans share considerable homology. Therefore employing C. elegans based initial screen complemented with sequence based homology search we identified GCC185 as novel host protein interacting with HIV-1 Nef. The detailed molecular characterization revealed N-terminal EEEE65 acidic domain of Nef as key region for interaction. GCC185 is a tethering protein that binds with Rab9 transport vesicles. Our results show that Nef-GCC185 interaction disrupts Rab9 interaction resulting in delocalization of CI-MPR (cation independent Mannose 6 phosphate receptor) resulting in elevated secretion of hexosaminidase. In agreement with this, our studies identified novel host GCC185 protein that interacts with Nef EEEE65 acidic domain interfering GCC185-Rab9 vesicle membrane fusion responsible for retrograde vesicular transport of CI-MPR from late endosomes to TGN. In light of existing report suggesting critical role of Nef-GCC185 interaction reveals valuable mechanistic insights affecting specific protein transport pathway in docking of late endosome derived Rab9 bearing transport vesicle at TGN elucidating role of Nef during viral pathogenesis. PMID:27105913

  2. Hanford recycling

    SciTech Connect

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  3. The Regulated Expression, Intracellular Trafficking, and Membrane Recycling of the P2Y-like Receptor GPR17 in Oli-neu Oligodendroglial Cells*

    PubMed Central

    Fratangeli, Alessandra; Parmigiani, Elena; Fumagalli, Marta; Lecca, Davide; Benfante, Roberta; Passafaro, Maria; Buffo, Annalisa; Abbracchio, Maria P.; Rosa, Patrizia

    2013-01-01

    GPR17 is a G-protein-coupled receptor that is activated by two classes of molecules: uracil-nucleotides and cysteinyl-leukotrienes. GPR17 is required for initiating the differentiation of oligodendrocyte precursors but has to be down-regulated to allow cells to undergo terminal maturation. Although a great deal has been learned about GPR17 expression and signaling, no information is currently available about the trafficking of native receptors after the exposure of differentiating oligodendrocytes to endogenous agonists. Here, we demonstrate that neuron-conditioned medium induces the transcriptionally mediated, time-regulated expression of GPR17 in Oli-neu, an oligodendrocyte precursor cell line, making these cells suitable for studying the endocytic traffic of the native receptor. Agonist-induced internalization, intracellular trafficking, and membrane recycling of GPR17 were analyzed by biochemical and immunofluorescence assays using an ad hoc-developed antibody against the extracellular N-terminal of GPR17. Both UDP-glucose and LTD4 increased GPR17 internalization, although with different efficiency. At early time points, internalized GPR17 co-localized with transferrin receptor, whereas at later times it partially co-localized with the lysosomal marker Lamp1, suggesting that a portion of GPR17 is targeted to lysosomes upon ligand binding. An analysis of receptor recycling and degradation demonstrated that a significant aliquot of GPR17 is recycled to the cell surface. Furthermore, internalized GPR17 displayed a co-localization with the marker of the “short loop” recycling endosomes, Rab4, while showing very minor co-localization with the “long loop” recycling marker, Rab11. Our results provide the first data on the agonist-induced trafficking of native GPR17 in oligodendroglial cells and may have implications for both physiological and pathological myelination. PMID:23288840

  4. Recycled roads

    SciTech Connect

    Tarricone, P.

    1993-04-01

    This article examines the efforts of various states in the USA to recycle waste materials in highway construction as fill and pavements. The topics of the article include recycling used tires whole, ground, and shredded, cost of recycling, wood fiber chips as fill material in embankments, and mining wastes used to construct embankments and as coarse aggregates in asphalt pavement.

  5. Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-Cadherin trafficking from recycling endosomes to the plasma membrane.

    PubMed

    Langevin, Johanna; Morgan, Matthew J; Sibarita, Jean-Baptiste; Aresta, Sandra; Murthy, Mala; Schwarz, Thomas; Camonis, Jacques; Bellaïche, Yohanns

    2005-09-01

    The E-Cadherin-catenin complex plays a critical role in epithelial cell-cell adhesion, polarization, and morphogenesis. Here, we have analyzed the mechanism of Drosophila E-Cadherin (DE-Cad) localization. Loss of function of the Drosophila exocyst components sec5, sec6, and sec15 in epithelial cells results in DE-Cad accumulation in an enlarged Rab11 recycling endosomal compartment and inhibits DE-Cad delivery to the membrane. Furthermore, Rab11 and Armadillo interact with the exocyst components Sec15 and Sec10, respectively. Our results support a model whereby the exocyst regulates DE-Cadherin trafficking, from recycling endosomes to sites on the epithelial cell membrane where Armadillo is located. PMID:16224820

  6. Arf GTPase-activating Protein ASAP1 Interacts with Rab11 Effector FIP3 and Regulates Pericentrosomal Localization of Transferrin Receptor–positive Recycling Endosome

    PubMed Central

    Inoue, Hiroki; Ha, Vi Luan; Prekeris, Rytis

    2008-01-01

    ADP-ribosylation factors (Arfs) and Arf GTPase-activating proteins (GAPs) are key regulators of membrane trafficking and the actin cytoskeleton. The Arf GAP ASAP1 contains an N-terminal BAR domain, which can induce membrane tubulation. Here, we report that the BAR domain of ASAP1 can also function as a protein binding site. Two-hybrid screening identified FIP3, which is a putative Arf6- and Rab11-effector, as a candidate ASAP1 BAR domain-binding protein. Both coimmunoprecipitation and in vitro pulldown assays confirmed that ASAP1 directly binds to FIP3 through its BAR domain. ASAP1 formed a ternary complex with Rab11 through FIP3. FIP3 binding to the BAR domain stimulated ASAP1 GAP activity against Arf1, but not Arf6. ASAP1 colocalized with FIP3 in the pericentrosomal endocytic recycling compartment. Depletion of ASAP1 or FIP3 by small interfering RNA changed the localization of transferrin receptor, which is a marker of the recycling endosome, in HeLa cells. The depletion also altered the trafficking of endocytosed transferrin. These results support the conclusion that ASAP1, like FIP3, functions as a component of the endocytic recycling compartment. PMID:18685082

  7. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling

    PubMed Central

    Cruse, Glenn; Beaven, Michael A.; Music, Stephen C.; Bradding, Peter; Gilfillan, Alasdair M.; Metcalfe, Dean D.

    2015-01-01

    MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases. PMID:25717186

  8. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling.

    PubMed

    Cruse, Glenn; Beaven, Michael A; Music, Stephen C; Bradding, Peter; Gilfillan, Alasdair M; Metcalfe, Dean D

    2015-05-01

    MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1-enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases. PMID:25717186

  9. Myosin VI and its interacting protein LMTK2 regulate tubule formation and transport to the endocytic recycling compartment

    PubMed Central

    Chibalina, Margarita V.; Seaman, Matthew N.J.; Miller, Christopher C.; Kendrick-Jones, John; Buss, Folma

    2009-01-01

    Summary Myosin VI is an actin-based retrograde motor protein, which plays a crucial role in both endocytic and secretory membrane trafficking pathways. Myosin VI’s targeting to and function in these intracellular pathways is mediated by a number of specific binding partners. In this paper we have identified a new myosin VI binding partner, Lemur tyrosine kinase 2 (LMTK2), which is the first transmembrane protein and kinase that directly binds to myosin VI. LMTK2 binds to the WWY site in the C-terminal myosin VI tail, the same site as the endocytic adaptor protein Dab2. When either myosin VI or LMTK2 is depleted by siRNA, the transferrin receptor (TfR) is trapped in swollen endosomes and tubule formation in the endocytic recycling pathway is dramatically reduced, showing that both proteins are required for the transport of cargo such as the TfR from early endosomes to the endocytic recycling compartment. PMID:18029400

  10. Proceedings of the waste recycling workshop

    SciTech Connect

    Bailey, R.E.; Thomas, A.F.; Ries, M.A.

    1993-12-31

    Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

  11. Textile recycling

    SciTech Connect

    Jablonowski, E. ); Carlton, J.

    1995-01-01

    The most common household textiles include clothing, linens, draperies, carpets, shoes, handbags, and rugs. Old clothing, of course, is the most readily reused and/or recycled residentially generated textile category. State and/or local mandates to recycle a percentage of the waste stream are providing the impetus to add new materials to existing collection programs. Concurrently, the textile industry is aggressively trying to increase its throughput by seeking new sources of material to meet increased world demand for product. As experienced with drop-off programs for traditional materials, a majority of residents will not recycle materials unless the collection programs are convenient, i.e., curbside collection. The tonnage of marketable textiles currently being landfilled provide evidence of this. It is the authors' contention that if textile recycling is made convenient and accessible to every household in a municipality or region, then the waste stream disposed may be reduced in a similar fashion as when traditional recyclables are included in curbside programs.

  12. Tire Recycling

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  13. 40 CFR 260.43 - Legitimate recycling of hazardous secondary materials regulated under § 260.34, § 261.2(a)(2)(ii...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Legitimate recycling of hazardous... (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.43 Legitimate recycling of... demonstrate that the recycling is legitimate. Hazardous secondary material that is not legitimately...

  14. 40 CFR 260.43 - Legitimate recycling of hazardous secondary materials regulated under § 260.34, § 261.2(a)(2)(ii...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Legitimate recycling of hazardous... (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.43 Legitimate recycling of... demonstrate that the recycling is legitimate. Hazardous secondary material that is not legitimately...

  15. 40 CFR 260.43 - Legitimate recycling of hazardous secondary materials regulated under § 260.34, § 261.2(a)(2)(ii...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Legitimate recycling of hazardous... (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.43 Legitimate recycling of... demonstrate that the recycling is legitimate. Hazardous secondary material that is not legitimately...

  16. 40 CFR 260.43 - Legitimate recycling of hazardous secondary materials regulated under § 260.34, § 261.2(a)(2)(ii...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Legitimate recycling of hazardous... (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.43 Legitimate recycling of... demonstrate that the recycling is legitimate. Hazardous secondary material that is not legitimately...

  17. 40 CFR 260.43 - Legitimate recycling of hazardous secondary materials regulated under § 260.34, § 261.2(a)(2)(ii...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Legitimate recycling of hazardous... (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.43 Legitimate recycling of... demonstrate that the recycling is legitimate. Hazardous secondary material that is not legitimately...

  18. Glucose Starvation Inhibits Autophagy via Vacuolar Hydrolysis and Induces Plasma Membrane Internalization by Down-regulating Recycling*

    PubMed Central

    Lang, Michael J.; Martinez-Marquez, Jorge Y.; Prosser, Derek C.; Ganser, Laura R.; Buelto, Destiney; Wendland, Beverly; Duncan, Mara C.

    2014-01-01

    Cellular energy influences all aspects of cellular function. Although cells can adapt to a gradual reduction in energy, acute energy depletion poses a unique challenge. Because acute depletion hampers the transport of new energy sources into the cell, the cell must use endogenous substrates to replenish energy after acute depletion. In the yeast Saccharomyces cerevisiae, glucose starvation causes an acute depletion of intracellular energy that recovers during continued glucose starvation. However, how the cell replenishes energy during the early phase of glucose starvation is unknown. In this study, we investigated the role of pathways that deliver proteins and lipids to the vacuole during glucose starvation. We report that in response to glucose starvation, plasma membrane proteins are directed to the vacuole through reduced recycling at the endosomes. Furthermore, we found that vacuolar hydrolysis inhibits macroautophagy in a target of rapamycin complex 1-dependent manner. Accordingly, we found that endocytosis and hydrolysis are required for survival in glucose starvation, whereas macroautophagy is dispensable. Together, these results suggest that hydrolysis of components delivered to the vacuole independent of autophagy is the cell survival mechanism used by S. cerevisiae in response to glucose starvation. PMID:24753258

  19. The Oryza sativa Regulator HDR1 Associates with the Kinase OsK4 to Control Photoperiodic Flowering.

    PubMed

    Sun, Xuehui; Zhang, Zhiguo; Wu, Jinxia; Cui, Xuean; Feng, Dan; Wang, Kai; Xu, Ming; Zhou, Li; Han, Xiao; Gu, Xiaofeng; Lu, Tiegang

    2016-03-01

    Rice is a facultative short-day plant (SDP), and the regulatory pathways for flowering time are conserved, but functionally modified, in Arabidopsis and rice. Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS (CO), is a key regulator that suppresses flowering under long-day conditions (LDs), but promotes flowering under short-day conditions (SDs) by influencing the expression of the florigen gene Heading date 3a (Hd3a). Another key regulator, Early heading date 1 (Ehd1), is an evolutionarily unique gene with no orthologs in Arabidopsis, which acts as a flowering activator under both SD and LD by promoting the rice florigen genes Hd3a and RICE FLOWERING LOCUST 1 (RFT1). Here, we report the isolation and characterization of the flowering regulator Heading Date Repressor1 (HDR1) in rice. The hdr1 mutant exhibits an early flowering phenotype under natural LD in a paddy field in Beijing, China (39°54'N, 116°23'E), as well as under LD but not SD in a growth chamber, indicating that HDR1 may functionally regulate flowering time via the photoperiod-dependent pathway. HDR1 encodes a nuclear protein that is most active in leaves and floral organs and exhibits a typical diurnal expression pattern. We determined that HDR1 is a novel suppressor of flowering that upregulates Hd1 and downregulates Ehd1, leading to the downregulation of Hd3a and RFT1 under LDs. We have further identified an HDR1-interacting kinase, OsK4, another suppressor of rice flowering under LDs. OsK4 acts similarly to HDR1, suppressing flowering by upregulating Hd1 and downregulating Ehd1 under LDs, and OsK4 can phosphorylate HD1 with HDR1 presents. These results collectively reveal the transcriptional regulators of Hd1 for the day-length-dependent control of flowering time in rice. PMID:26954091

  20. The Oryza sativa Regulator HDR1 Associates with the Kinase OsK4 to Control Photoperiodic Flowering

    PubMed Central

    Cui, Xuean; Feng, Dan; Wang, Kai; Xu, Ming; Zhou, Li; Han, Xiao; Gu, Xiaofeng; Lu, Tiegang

    2016-01-01

    Rice is a facultative short-day plant (SDP), and the regulatory pathways for flowering time are conserved, but functionally modified, in Arabidopsis and rice. Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS (CO), is a key regulator that suppresses flowering under long-day conditions (LDs), but promotes flowering under short-day conditions (SDs) by influencing the expression of the florigen gene Heading date 3a (Hd3a). Another key regulator, Early heading date 1 (Ehd1), is an evolutionarily unique gene with no orthologs in Arabidopsis, which acts as a flowering activator under both SD and LD by promoting the rice florigen genes Hd3a and RICE FLOWERING LOCUST 1 (RFT1). Here, we report the isolation and characterization of the flowering regulator Heading Date Repressor1 (HDR1) in rice. The hdr1 mutant exhibits an early flowering phenotype under natural LD in a paddy field in Beijing, China (39°54'N, 116°23'E), as well as under LD but not SD in a growth chamber, indicating that HDR1 may functionally regulate flowering time via the photoperiod-dependent pathway. HDR1 encodes a nuclear protein that is most active in leaves and floral organs and exhibits a typical diurnal expression pattern. We determined that HDR1 is a novel suppressor of flowering that upregulates Hd1 and downregulates Ehd1, leading to the downregulation of Hd3a and RFT1 under LDs. We have further identified an HDR1-interacting kinase, OsK4, another suppressor of rice flowering under LDs. OsK4 acts similarly to HDR1, suppressing flowering by upregulating Hd1 and downregulating Ehd1 under LDs, and OsK4 can phosphorylate HD1 with HDR1 presents. These results collectively reveal the transcriptional regulators of Hd1 for the day-length-dependent control of flowering time in rice. PMID:26954091

  1. Critical Role for Tetrahydrobiopterin Recycling by Dihydrofolate Reductase in Regulation of Endothelial Nitric-oxide Synthase Coupling

    PubMed Central

    Crabtree, Mark J.; Tatham, Amy L.; Hale, Ashley B.; Alp, Nicholas J.; Channon, Keith M.

    2009-01-01

    Tetrahyrobiopterin (BH4) is a required cofactor for the synthesis of nitric oxide by endothelial nitric-oxide synthase (eNOS), and BH4 bioavailability within the endothelium is a critical factor in regulating the balance between NO and superoxide production by eNOS (eNOS coupling). BH4 levels are determined by the activity of GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in de novo BH4 biosynthesis. However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but the functional importance of DHFR in maintaining eNOS coupling remains unclear. We investigated the role of DHFR in regulating BH4 versus BH2 levels in endothelial cells and in cell lines expressing eNOS combined with tet-regulated GTPCH expression in order to compare the effects of low or high levels of de novo BH4 biosynthesis. Pharmacological inhibition of DHFR activity by methotrexate or genetic knockdown of DHFR protein by RNA interference reduced intracellular BH4 and increased BH2 levels resulting in enzymatic uncoupling of eNOS, as indicated by increased eNOS-dependent superoxide but reduced NO production. In contrast to the decreased BH4:BH2 ratio induced by DHFR knockdown, GTPCH knockdown greatly reduced total biopterin levels but with no change in BH4:BH2 ratio. In cells expressing eNOS with low biopterin levels, DHFR inhibition or knockdown further diminished the BH4:BH2 ratio and exacerbated eNOS uncoupling. Taken together, these data reveal a key role for DHFR in eNOS coupling by maintaining the BH4:BH2 ratio, particularly in conditions of low total biopterin availability. PMID:19666465

  2. Recycling Lesson Plans.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Environmental Resources, Harrisburg.

    This document contains lesson plans about recycling for teachers in grades K-12. Titles include: (1) "Waste--Where Does It Come From? Where Does It Go?" (2) "Litter Detectives," (3) "Classroom Paper Recycling," (4) "Recycling Survey," (5) "Disposal and Recycling Costs," (6) "Composting Project," (7) Used Motor Oil Recycling," (8) "Unwrapping…

  3. MICAL-L1

    PubMed Central

    Sharma, Mahak; Giridharan, Sai Srinivas Panapakkam; Rahajeng, Juliati

    2010-01-01

    A key regulator of the slow recycling of receptors and lipids that occurs from the endocytic recycling compartment (ERC) back to the cell surface is EHD1. We have recently identified the Rab8a-interacting protein, MICAL-L1, as a novel binding partner for EHD1 that both recruits and interacts with EHD1 on tubular recycling endosomes. MICAL-L1 belongs to the MICALfamily of proteins that are highly expressed in neurons and involved in plexin-mediated repulsive axon guidance. Interestingly, MICAL-L1 contains a coiled coil region in its C-terminus that is both necessary and sufficient for its localization to the EHD1-containing long tubular membranes of the ERC. Furthermore, MICAL-L1-depletion also impaired recycling of both transferrin and integrin receptors from the ERC back to the plasma membrane. In conclusion, our studies implicate MICAL-L1 as a novel regulator of endocytic recycling, and raises the possibility that additional neuronal-expressed proteins may mediate endocytic events in non-neuronal cells. PMID:20585517

  4. Recycling policy in the european union

    NASA Astrophysics Data System (ADS)

    Gaballah, I.; Kanari, N.

    2001-11-01

    Recycling in the European Union (EU) has benefited from R&D efforts and strict environmental regulations of the EU’s members. Thanks to the adoption of sustainable development policies by the EU’s European Institutions, economic incentives are expected to further strengthen the recycling industry. Moreover, the historical accumulation of non-ferrous metals in Europe will likely enhance secondary metal production. Also contributing to EU recycling is mining in East European countries and the resulting industrial waste. The rate of growth of the recycling industry is expected to approach double digits for at least this decade.

  5. Pathways and mechanisms of endocytic recycling

    PubMed Central

    Grant, Barth D.; Donaldson, Julie G.

    2011-01-01

    Endocytic recycling is coordinated with endocytic uptake to control the composition of the plasma membrane. Although much of our understanding of endocytic recycling has come from studies on the transferrin receptor, a protein internalized through clathrin-dependent endocytosis, increased interest in clathrin-independent endocytosis has led to the discovery of new endocytic recycling systems. Recent insights into the regulatory mechanisms that control endocytic recycling have focused on recycling through tubular carriers and the return to the cell surface of cargo that enters cells through clathrin-independent mechanisms. Recent work emphasizes the importance of regulated recycling in such diverse processes as cytokinesis, cell adhesion and morphogenesis, cell fusion, and learning and memory. PMID:19696797

  6. Recycled pulsars

    NASA Astrophysics Data System (ADS)

    Jacoby, Bryan Anthony

    2005-11-01

    In a survey of ~4,150 square degrees, we discovered 26 previously unknown pulsars, including 7 "recycled" millisecond or binary pulsars. The most significant discovery of this survey is PSR J1909-3744, a 2.95 ms pulsar in an extremely circular 1.5 d orbit with a low-mass white dwarf companion. Though this system is a fairly typical low-mass binary pulsar (LMBP) system, it has several exceptional qualities: an extremely narrow pulse profile and stable rotation have enabled the most precise long-term timing ever reported, and a nearly edge-on orbit gives rise to a strong Shapiro delay which has allowed the most precise measurement of the mass of a millisecond pulsar: m p = (1.438 +/- 0.024) [Special characters omitted.] . Our accurate parallax distance measurement, d p = ([Special characters omitted.] ) kpc, combined with the mass of the optically-detected companion, m c = (0.2038 +/- 0.022) [Special characters omitted.] , will provide an important calibration for white dwarf models relevant to other LMBP companions. We have detected optical counterparts for two intermediate mass binary pulsar (IMBP) systems; taken together with optical detections and non-detections of several similar systems, our results indicate that the characteristic age t = c P /2 P consistently overestimates the time since the end of mass accretion in these recycled systems. We have measured orbital decay in the double neutron star system PSR B2127+11C in the globular cluster M15. This has allowed an improved measurement of the mass of the pulsar, m p = (1.3584 +/- 0.0097) [Special characters omitted.] , and companion, m c = (1.3544 +/- 0.0097) [Special characters omitted.] , as well as a test of general relativity at the 3% level. We find that the proper motions of this pulsar as well as PSR B2127+11A and PSR B2127+11B are consistent with each other and with one published measurement of the cluster proper motion. We have discovered three binary millisecond pulsars in the globular cluster M62

  7. Green Science: Revisiting Recycling

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  8. Emulsified industrial oils recycling

    SciTech Connect

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  9. RLIP76 regulates Arf6-dependent cell spreading and migration by linking ARNO with activated R-Ras at recycling endosomes.

    PubMed

    Wurtzel, Jeremy G T; Lee, Seunghyung; Singhal, Sharad S; Awasthi, Sanjay; Ginsberg, Mark H; Goldfinger, Lawrence E

    2015-11-27

    R-Ras small GTPase enhances cell spreading and motility via RalBP1/RLIP76, an R-Ras effector that links GTP-R-Ras to activation of Arf6 and Rac1 GTPases. Here, we report that RLIP76 performs these functions by binding cytohesin-2/ARNO, an Arf GTPase guanine exchange factor, and connecting it to R-Ras at recycling endosomes. RLIP76 formed a complex with R-Ras and ARNO by binding ARNO via its N-terminus (residues 1-180) and R-Ras via residues 180-192. This complex was present in Rab11-positive recycling endosomes and the presence of ARNO in recycling endosomes required RLIP76, and was not supported by RLIP76(Δ1-180) or RLIP76(Δ180-192). Spreading and migration required RLIP76(1-180), and RLIP76(Δ1-180) blocked ARNO recruitment to recycling endosomes, and spreading. Arf6 activation with an ArfGAP inhibitor overcame the spreading defects in RLIP76-depleted cells or cells expressing RLIP76(Δ1-180). Similarly, RLIP76(Δ1-180) or RLIP76(Δ180-192) suppressed Arf6 activation. Together these results demonstrate that RLIP76 acts as a scaffold at recycling endosomes by binding activated R-Ras, recruiting ARNO to activate Arf6, thereby contributing to cell spreading and migration. PMID:26498519

  10. 40 CFR 141.76 - Recycle provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.76 Recycle provisions. (a... completed no later than June 8, 2006. (d) Recordkeeping. The system must collect and retain on file...

  11. International radioactive material recycling challenges

    SciTech Connect

    Greeves, John T.; Lieberman, James

    2007-07-01

    The paper explores current examples of successful International radioactive recycling programs and also explores operational regulatory and political challenges that need to be considered for expanding international recycling world-wide. Most countries regulations are fully consistent with the International Atomic Agency (IAEA) Code of Practice on the International Transboundary Movement of Radioactive Material and the IAEA Code of Conduct on the Safety and Security of Radioactive Sources. IAEA member States reported on the status of their efforts to control transboundary movement of radioactive material recently during the Joint Convention on the Safety of Spent Fuel management and on the Safety of Radioactive Waste Management meeting in May 2006. (authors)

  12. Recycled Art: Create Puppets Using Recycled Objects.

    ERIC Educational Resources Information Center

    Clearing, 2003

    2003-01-01

    Presents an activity from "Healthy Foods from Healthy Soils" for making puppets using recycled food packaging materials. Includes background information, materials, instructions, literature links, resources, and benchmarks. (NB)

  13. Recycle Used Oil on America Recycles Day.

    ERIC Educational Resources Information Center

    White, Boyd W.

    2000-01-01

    Explains that motor oils can be reused and recycled. Educates students about environmental hazards and oil management and includes classroom activities. Addresses the National Science Education Standards. (YDS)

  14. Recycling steel from grinding swarf

    SciTech Connect

    Fu, H.; Matthews, M.A.; Warner, L.S.

    1998-12-31

    Two cleaning processes have been investigated for removing contaminants (cutting oil with phosphorus ester) from high speed steel (HSS) griding swarf. One process uses an aqueous surfactant washing technique, and the second process uses supercritical carbon dioxide (SCCO{sub 2}) extraction. Both technical and preliminary financial analysis are performed to have a better evaluation of these two competing cleaning technologies. Bench scale aqueous washings have shown that the required phosphorus removal is easily obtained, but a sufficient oil removal is more difficult. The experimental results also indicate a strong dependence of the aqueous washing efficiency on the choice of a suitable surfactant. SCCO{sub 2} extraction at 80 C and 340 atm shows that approximately 80% of the oil can be removed from swarf during a 60-minute process to produce a batch of recyclable steel, and that the phosphorus removal also reaches the required level. The cost of processing swarf using either aqueous surfactant washing or SCCO{sub 2} extraction in a 3,000,000 lbs per year plant is analyzed and the market forces impacting the feasibility of recycling on a commercial basis are reviewed. Commercial scale recycling is, in part, dependent upon resolution of regulatory uncertainty on the definition of swarf. States regulating swarf as hazardous provide a significant financial incentive to recycle. In states that regulate swarf as a solid waste, low disposal costs provide a disincentive that must be balanced with the possible hidden, future liabilities of landfill disposal.

  15. Solid waste recycling programs at Rocky Flats

    SciTech Connect

    Millette, R.L.; Blackman, T.E.; Shepard, M.D.

    1994-12-31

    The Rocky Flats (RFP) recycling programs for solid waste materials have been in place for over ten years. Within the last three years, the programs were centralized under the direction of the Rocky Flats Waste Minimization department, with the assistance of various plant organizations (e.g., Trucking, Building Services, Regulated Waste Operations, property Utilization and Disposal and Security). Waste Minimization designs collection and transportation systems for recyclable materials and evaluates recycling markets for opportunities to add new commodities to the existing programs. The Waste Minimization department also promotes employee participation in the Rocky Flats Recycling Programs, and collects all recycling data for publication. A description of the program status as of January 1994 is given.

  16. Recycling overview in Sweden

    SciTech Connect

    Not Available

    1989-07-01

    This article discusses the recycling programs currently in use in Sweden. Recycling of newspapers, batteries, plastics are all mentioned in this report by the Swedish Association of Public Cleansing and Solid Waste Management.

  17. Recycling Research. Tracking Trash.

    ERIC Educational Resources Information Center

    DeLago, Louise Furia

    1991-01-01

    An activity in which students research the effectiveness of recycling is presented. Students compare the types and amount of litter both before and after recycling is implemented. Directions for the activity and a sample data sheet are included. (KR)

  18. Recycling and the automobile

    SciTech Connect

    Holt, D.J.

    1993-10-01

    This article examines the current status of automobile recycling and contains a summary of a survey which points out the major drivers and their impacts on automotive recycling. The topics of the article include computerized dismantling, polyurethane, sheet molding compound, polyester, thermoplastic polyester, recycling salvaged parts, vinyl and automotive shredder residue.

  19. The Sustainability of Recycling.

    ERIC Educational Resources Information Center

    Juniper, Christopher

    1993-01-01

    Describes the need for closing the business cycle in the recycling process. Discusses whether the government should mandate or the free market create uses for recycled products. Presents challenges associated with marketing recycled materials including what has been and what needs to be done to stimulate markets, encourage business, and balance…

  20. Rethink, Rework, Recycle.

    ERIC Educational Resources Information Center

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  1. Scrap car recycling in Taiwan

    SciTech Connect

    Lee, C.H.; Tai, H.S.; Fan, R.K.S.

    1997-12-31

    The official figure of registered automobiles released by the Ministry of Transportation of Taiwan, R.O.C. as of the end of April 1996, is approximately 4.8 millions. Among them, 18% of the cars are between seven and ten years old and 15% of the cars are old than ten years. The result of this large number of old cars is the problem of abandoned cars on the street of Taiwan. This phenomena not only hinders traffic flow but also undermines the living quality in the cities. To minimize these negative effects, EPA has promulgated a Scrap Motor Vehicles Management Regulation to enforce the scrap car recycling in Taiwan. Under this regulation, a buyer of a new vehicle has to pay the Scrap Motor Vehicle Disposal fee (NT$ 3000, or US$ 110 for a car; and NT$ 700, or US$ 25 for a motorcycle). This paper presents the current status of scrap car recycling in Taiwan.

  2. The current status of scrap metal recycling

    NASA Astrophysics Data System (ADS)

    Spoel, Han

    1990-04-01

    Although millions of tonnes of metals are recycled around the world every year, even more can be done if the proper economic incentives are present. Increasing the rate of recycle will slow the growth of primary production and reduce the potential for environmental overload. But to progress beyond the present state of affairs, public opinion, regulations and economics must combine to encourage the responsible reprocessing of metal wastes.

  3. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  4. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  5. Scrap tire recycling in Minnesota

    SciTech Connect

    Not Available

    1989-10-01

    The author discusses the problems associated with scrap tires. For example, surface storing of scrap tires poses a fire hazard and the rainwater trapped in the tire casings is an ideal breeding ground for mosquitoes. Use as a fuel for energy production is unattractive as long as oil retails at its present low price. Past reclamation processes have not met expectations. Legislation alone is not the answer, because scrap tires cannot be regulated out of existence. However, the Minnesota state legislature has come up with an approach that seems to be successful. It has passed the Waste Tire Act, which not only formulates regulations but also provides funding for research and development. Thus, it has established a tire disposal fund for financing construction costs of tire recycling facilities. One of the outcomes was the construction of the St. Louis county Waste Tire Recycling Facility. Through a leasing arrangement with Minneapolis-based Rubber Elastomerics, Inc. (RRE), construction costs financed by the tire disposal fund eventually will be repaid by RRE to the fund. The arrangement is described in detail. By a process also described, RRE produces a product that can be used in thermoset and in thermoplastic compounds. The user can incorporate between 50 percent and 85 percent of the recycled product into a rubber or plastic compound without significantly affecting the physical properties of the compound.

  6. Benchmarking survey for recycling.

    SciTech Connect

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  7. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  8. AIRCRAFT INDUSTRY WASTEWATER RECYCLING

    EPA Science Inventory

    The feasibility of recycling certain categories of water used in the manufacture of airplanes was demonstrated. Water in four categories was continuously recycled in 380-liter (100-gallon) treatment plants; chemical process rinse water, dye-penetrant crack-detection rinse water, ...

  9. Wee Recyclers Resources.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    Hands-on activities in this guide are designed to help preschool children (ages 3-5) understand that reducing, reusing, and recycling preserves natural resources and prolongs the life of landfills. Children sort, match and compare recyclable items and learn to separate some items by number and color. The 29 activities are divided into units that…

  10. The Fermilab recycler ring

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  11. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  12. Design for aluminum recycling

    SciTech Connect

    Not Available

    1993-10-01

    This article describes the increasing use of aluminum in automobiles and the need to recycle to benefit further growth of aluminum applications by assuring an economical, high-quality source of metal. The article emphasizes that coordination of material specifications among designers can raise aluminum scrap value and facilitate recycling. Applications of aluminum in automobile construction are discussed.

  13. Reuse, Reduce, Recycle.

    ERIC Educational Resources Information Center

    Briscoe, Georgia

    1991-01-01

    Discussion of recycling paper in law libraries is also applicable to other types of libraries. Results of surveys of law libraries that investigated recycling practices in 1987 and again in 1990 are reported, and suggestions for reducing the amount of paper used and reusing as much as possible are offered. (LRW)

  14. Recycling at Camp.

    ERIC Educational Resources Information Center

    Cummins, William M.

    1988-01-01

    Outlines a Michigan summer camp's efforts to reduce solid waste disposal by recycling cardboard, tin, glass, aluminum, and plastic milk containers. Points out variables affecting the success of such efforts. Discusses Michigan state funding for the development of recycling programs. (SV)

  15. Interactions between EHD Proteins and Rab11-FIP2: A Role for EHD3 in Early Endosomal TransportD⃞

    PubMed Central

    Naslavsky, Naava; Rahajeng, Juliati; Sharma, Mahak; Jović, Marko; Caplan, Steve

    2006-01-01

    Eps15 homology domain (EHD) 1 enables membrane recycling by controlling the exit of internalized molecules from the endocytic recycling compartment (ERC) en route to the plasma membrane, similar to the role described for Rab11. However, no physical or functional connection between Rab11 and EHD-family proteins has been demonstrated yet, and the mode by which they coordinate their regulatory activity remains unknown. Here, we demonstrate that EHD1 and EHD3 (the closest EHD1 paralog), bind to the Rab11-effector Rab11-FIP2 via EH–NPF interactions. The EHD/Rab11-FIP2 associations are affected by the ability of the EHD proteins to bind nucleotides, and Rab11-FIP2 is recruited to EHD-containing membranes. These results are consistent with a coordinated role for EHD1 and Rab11-FIP2 in regulating exit from the ERC. However, because no function has been attributed to EHD3, the significance of its interaction with Rab11-FIP2 remained unclear. Surprisingly, loss of EHD3 expression prevented the delivery of internalized transferrin and early endosomal proteins to the ERC, an effect differing from that described upon EHD1 knockdown. Moreover, the subcellular localization of Rab11-FIP2 and endogenous Rab11 were altered upon EHD3 knockdown, with both proteins absent from the ERC and retained in the cell periphery. The results presented herein promote a coordinated role for EHD proteins and Rab11-FIP2 in mediating endocytic recycling and provide evidence for the function of EHD3 in early endosome to ERC transport. PMID:16251358

  16. Advances in plastic recycling. Volume 1: Recycling of polyurethanes

    SciTech Connect

    Frisch, K.C.; Klempner, D.; Prentice, G.

    1999-07-01

    ``Recycling of Polyurethanes'', the first volume in the Advances in Plastics Recycling series, is focused on the physical and chemical recycling of polyurethanes, with attention given to energy conversion. A compilation of the present ongoing studies on recycling of urethane and, in general, isocyanate-based polymers, the focus is on thermosetting urethane polymers. Contents include: Recycling of Polyurethane Plastics in the European Automotive Industry; Present State of Polyurethane Recycling in Europe; Processing Overview of Bonded Polyurethane Foam; Mechanical Recycling of Polyurethane Scrap; Ecostream{trademark}--A Technology Beyond Recycling; Recycling of Flexible polyurethane Foam; General purpose Adhesives Prepared from Chemically Recycled Waste Rigid Polyurethane Foams; and Utilization of Isocyanate Binders in Recycling of Scrap Automotive Headliners.

  17. Role of the EHD2 Unstructured Loop in Dimerization, Protein Binding and Subcellular Localization

    PubMed Central

    Bahl, Kriti; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    The C-terminal Eps 15 Homology Domain proteins (EHD1-4) play important roles in regulating endocytic trafficking. EHD2 is the only family member whose crystal structure has been solved, and it contains an unstructured loop consisting of two proline-phenylalanine (PF) motifs: KPFRKLNPF. In contrast, despite EHD2 having nearly 70% amino acid identity with its paralogs, EHD1, EHD3 and EHD4, the latter proteins contain a single KPF or RPF motif, but no NPF motif. In this study, we sought to define the precise role of each PF motif in EHD2’s homo-dimerization, binding with the protein partners, and subcellular localization. To test the role of the NPF motif, we generated an EHD2 NPF-to-NAF mutant to mimic the homologous sequences of EHD1 and EHD3. We demonstrated that this mutant lost both its ability to dimerize and bind to Syndapin2. However, it continued to localize primarily to the cytosolic face of the plasma membrane. On the other hand, EHD2 NPF-to-APA mutants displayed normal dimerization and Syndapin2 binding, but exhibited markedly increased nuclear localization and reduced association with the plasma membrane. We then hypothesized that the single PF motif of EHD1 (that aligns with the KPF of EHD2) might be responsible for both binding and localization functions of EHD1. Indeed, the EHD1 RPF motif was required for dimerization, interaction with MICAL-L1 and Syndapin2, as well as localization to tubular recycling endosomes. Moreover, recycling assays demonstrated that EHD1 RPF-to-APA was incapable of supporting normal receptor recycling. Overall, our data suggest that the EHD2 NPF phenylalanine residue is crucial for EHD2 localization to the plasma membrane, whereas the proline residue is essential for EHD2 dimerization and binding. These studies support the recently proposed model in which the EHD2 N-terminal region may regulate the availability of the unstructured loop for interactions with neighboring EHD2 dimers, thus promoting oligomerization. PMID

  18. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  19. Operational experience and performance characteristics of a valve-regulated lead-acid battery energy-storage system for providing the customer with critical load protection and energy-management benefits at a lead-recycling plant

    NASA Astrophysics Data System (ADS)

    Hunt, G. W.

    The Power Control Division of GNB Technologies, commissioned on May 13, 1996 a new facility which houses a 5-MW battery energy-storage system (BESS) at GNB's Lead Recycling Centre in Vernon, CA. When the plant loses utility power (which typically happens two or three times a year), the BESS will provide up to 5 MW of power at 4160 VAC in support of all the plant loads. Since the critical loads are not isolated, it is necessary to carry the entire plant load (maximum of 5 MVA) for a short period immediately following an incident until non-critical loads have been automatically shed. Plant loading typically peaks at 3.5 MVA with critical loads of about 2.1 MVA. The BESS also provides the manufacturing plant with customer-side-of-the-meter energy management options to reduce its energy demand during peak periods of the day. The BESS has provided a reduction in monthly electric bills through daily peak-shaving. By design, the battery can provide up to 2.5 MWh of energy and still retain 2.5 MWh of capacity in reserve to handle the possibility of a power outage in protecting the critical loads for up to 1 h. By storing energy from the utility during off-peak hours of the night in the batteries when the cost is low (US4.5¢ per kWh), GNB can then discharge this energy during high demand periods of the day (US14.50 per kW). For example, by reducing its peak demand by 300 kW, the lead-recycling centre can save over US4000 per month in its electric bills. The BESS at Vernon represents a first large-scale use of valve-regulated lead-acid batteries in such a demanding application. This paper presents a summary of the operational experience and performance characteristics of the BESS over the past 2 years.

  20. International law on ship recycling and its interface with EU law.

    PubMed

    Argüello Moncayo, Gabriela

    2016-08-15

    The regulation on ship recycling at international and European Union (EU) level has transitioned from the realm of transboundary movement of wastes to a specialized regime, i.e., the Hong Kong International Convention for the Safe and Environmentally Sound Recycling of Ships (2009) (Hong Kong Convention). Although this convention is not in force yet, the principal features of it have been incorporated in EU Regulation 1257/2013 on ship recycling. This paper examines the rationale behind developing a ship recycling regime, its disassociation from wastes, and the departure from the main principles of transboundary movement of wastes, such as the proximity principle, reduction of transboundary movement of wastes, and the prior informed consent procedure. While acknowledging some of the positive features of the emerging ship recycling, it is submitted that the Hong Kong Convention and EU Regulation 1257/2013 on ship recycling represent a step back in the regulation of ship recycling. PMID:27287868

  1. The Totem Pole Recycled.

    ERIC Educational Resources Information Center

    Sewall, Susan Breyer

    1991-01-01

    Presents an activity that integrates science, environmental education, art, and social studies. Students identify and research an endangered species and construct a totem pole depicting the species using a recyclable material. (MDH)

  2. A Practical Recycling Project . . .

    ERIC Educational Resources Information Center

    Durant, Raymond H.; Mikuska, James M.

    1973-01-01

    Descirbes a school district's recycling program of aluminum lunch trays that are collected after their use. The trays are used as scrap metal in industrial education workshop and used for sand castings. (PS)

  3. Recycle plastics into feedstocks

    SciTech Connect

    Kastner, H.; Kaminsky, W.

    1995-05-01

    Thermal cracking of mixed-plastics wastes with a fluidized-bed reactor can be a viable and cost-effective means to meet mandatory recycling laws. Strict worldwide environmental statutes require the hydrocarbon processing industry (HPI) to develop and implement product applications and technologies that reuse post-consumer mixed-plastics waste. Recycling or reuse of plastics waste has a broad definition. Recycling entails more than mechanical regranulation and remelting of polymers for film and molding applications. A European consortium of academia and refiners have investigated if it is possible and profitable to thermally crack plastics into feedstocks for refining and petrochemical applications. Development and demonstration of pyrolysis methods show promising possibilities of converting landfill garbage into valuable feedstocks such as ethylene, propylene, BTX, etc. Fluidized-bed reactor technologies offer HPI operators a possible avenue to meet recycling laws, conserve raw materials and yield a profit. The paper describes thermal cracking for feedstocks and pyrolysis of polyolefins.

  4. Recycling of nonmetallics

    USGS Publications Warehouse

    Amey, E.B.; Kelly, T.D.

    1996-01-01

    The first factor determining recyclability is the composition of the material itself. Metals, for example, can be reused with little or no loss in quality. Paper and rubber, by this criterion, are less recyclable. Each time paper is recycled, some cellulose fibers are broken. Shorter fibers can mean weaker paper of perceived lower quality and value. Vulcanizing is an irreversible chemical process that precludes recycling rubber in its original form. Both materials may be reused in other applications often of lower value than the original one. To be recyclable, the discarded material must have a collection infrastructure at the source of waste generation, at a central collection site, or at curbside. The recovered material must also have a market. If it is priced noncompetitively or no market exists, if it does not meet specifications, or if it requires special technology investments which cannot be recovered through future sales, the recovered material may be stockpiled or discarded rather than recycled. ?? 1996 International Association for Mathematical Geology.

  5. Combustion Byproducts Recycling Consortium

    SciTech Connect

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  6. Role of Phosphatidylinositol 4,5-Bisphosphate in Regulating EHD2 Plasma Membrane Localization

    PubMed Central

    Simone, Laura C.; Caplan, Steve; Naslavsky, Naava

    2013-01-01

    The four mammalian C-terminal Eps15 homology domain-containing proteins (EHD1-EHD4) play pivotal roles in endocytic membrane trafficking. While EHD1, EHD3 and EHD4 associate with intracellular tubular/vesicular membranes, EHD2 localizes to the inner leaflet of the plasma membrane. Currently, little is known about the regulation of EHD2. Thus, we sought to define the factors responsible for EHD2’s association with the plasma membrane. The subcellular localization of endogenous EHD2 was examined in HeLa cells using confocal microscopy. Although EHD partner proteins typically mediate EHD membrane recruitment, EHD2 was targeted to the plasma membrane independent of two well-characterized binding proteins, syndapin2 and EHBP1. Additionally, the EH domain of EHD2, which facilitates canonical EHD protein interactions, was not required to direct overexpressed EHD2 to the cell surface. On the other hand, several lines of evidence indicate that the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) plays a crucial role in regulating EHD2 subcellular localization. Pharmacologic perturbation of PIP2 metabolism altered PIP2 plasma membrane distribution (as assessed by confocal microscopy), and caused EHD2 to redistribute away from the plasma membrane. Furthermore, overexpressed EHD2 localized to PIP2-enriched vacuoles generated by active Arf6. Finally, we show that although cytochalasin D caused actin microfilaments to collapse, EHD2 was nevertheless maintained at the plasma membrane. Intriguingly, cytochalasin D induced relocalization of both PIP2 and EHD2 to actin aggregates, supporting a role of PIP2 in controlling EHD2 subcellular localization. Altogether, these studies emphasize the significance of membrane lipid composition for EHD2 subcellular distribution and offer new insights into the regulation of this important endocytic protein. PMID:24040268

  7. Recycling at naval shore installations: One means of curbing the garbage glut. Research report, August 1992-April 1993

    SciTech Connect

    Phillips, R.L.

    1993-04-01

    The document provides techniques and strategies to aid Federal recycling program managers. Highlights the major laws and regulations that stimulated recycling within the Department of Defense, discusses several benefits of recycling, and addressees start-up and operating costs associated with a recycling program. Briefly examines the Navy's current recycling efforts at shore activities; and contends that the real breakthrough in effective solid waste management will only come when intense recycling is combined with reducing waste at the source, expanding the use recycled materials, and investing in better research and development.

  8. Scrap uranium recycling via electron beam melting

    SciTech Connect

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  9. Recycling of Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  10. The U4/U6 Recycling Factor SART3 Has Histone Chaperone Activity and Associates with USP15 to Regulate H2B Deubiquitination*

    PubMed Central

    Long, Lindsey; Thelen, Joseph P.; Furgason, Melonnie; Haj-Yahya, Mahmood; Brik, Ashraf; Cheng, Dongmei; Peng, Junmin; Yao, Tingting

    2014-01-01

    Post-translational modifications of histone proteins produce dynamic signals that regulate the structure and function of chromatin. Mono-ubiquitination of H2B in the histone tail (at Lys-123 in yeast or Lys-120 in humans) is a conserved modification that has been implicated in the regulation of transcription, replication, and DNA repair processes. In a search for direct effectors of ubH2B, we identified a deubiquitinating enzyme, Usp15, through affinity purification with a nonhydrolyzable ubH2B mimic. In the nucleus, Usp15 indirectly associates with the ubH2B E3 ligase, RNF20/RNF40, and directly associates with a component of the splicing machinery, SART3 (also known as TIP110 or p110). These physical interactions place Usp15 in the vicinity of actively transcribed DNA. Importantly we found that SART3 has previously unrecognized histone chaperone activities. SART3, but not the well-characterized histone chaperone Nap1, enhances Usp15 binding to ubH2B and facilitates deubiquitination of ubH2B in free histones but not in nucleosomes. These results suggest that SART3 recruits ubH2B, which may be evicted from DNA during transcription, for deubiquitination by Usp15. In light of the function played by SART3 in U4/U6 di-snRNP formation, our discovery points to a direct link between eviction-coupled erasure of the ubiquitin mark from ubH2B and co-transcriptional pre-mRNA splicing. PMID:24526689

  11. Who owns the recyclables

    SciTech Connect

    Parker, B.

    1994-05-01

    On March 31, the California Supreme Court decided the much awaited Rancho Mirage'' case (Waste Management of the Desert, Inc., and the City of Rancho Mirage v. Palm Springs Recycling Center, Inc.), and held that the California Integrated Waste Management Act of 1989 does not allow an exclusive franchise for the collection of recyclables not discarded by their owner.'' This ends a three-year slugfest between secondary materials processors in the state and municipalities and their franchised garbage haulers who also collect and process recyclables as part of their exclusive arrangement. Central to this nationally-watched litigation is a most fundamental question in waste management: at what point in time do articles in the solid waste stream become actual or potentially valuable secondary materials

  12. Scrap tire recycling

    SciTech Connect

    Lula, J.W.; Bohnert, G.W.

    1997-03-01

    As the automobile tire technology has grown and met the need for safer and more durable tires, stronger reinforcement and more chemically resistant rubber compounds have made recycling tires more difficult. In an effort to resolve this problem, techniques and equipment were developed to grind tires into small pieces, and new markets were sought to utilize the crumb rubber product streams from ground tires. Industrial combustion processes were modified to accept scrap tires as fuel. These efforts have been beneficial, steadily increasing the percentage of scrap tires recycled to about 10% in 1985, and reaching 72% in 1995. By the end of 1997, fully 100% of tires generated in the U.S. are expected to be recycled.

  13. Evidence for a recycling role for Rab7 in regulating a late step in endocytosis and in retention of lysosomal enzymes in Dictyostelium discoideum.

    PubMed Central

    Buczynski, G; Bush, J; Zhang, L; Rodriguez-Paris, J; Cardelli, J

    1997-01-01

    The mammalian small molecular weight GTPase Rab7 (Ypt7 in yeast) has been implicated in regulating membrane traffic at postinternalization steps along the endosomal pathway. A cDNA encoding a protein 85% identical at the amino acid level to mammalian Rab7 has been cloned from Dictyostelium discoideum. Subcellular fractionation and immunofluorescence microscopy indicated that Rab7 was enriched in lysosomes, postlysosomes, and maturing phagosomes. Cell lines were generated that overexposed Rab7 wild-type (WT), Rab7 Q67L (constitutively active form), and Rab7 T22N (dominant negative form) proteins. The Rab7 T22N cell line internalized fluid phase markers and latex beads (phagocytosis) at one-third the rate of control cells, whereas Rab7 WT and Rab7 Q67L cell lines were normal in uptake rates but exocytosed fluid phase faster than control cells. In contrast, fluid phase markers resided in acidic compartments for longer periods of time and were more slowly exocytosed from Rab7 T22N cells as compared with control cells. Light microscopy indicated that Rab7-expressing cell lines contained morphologically altered endosomal compartments. Compared with control cells, Rab7 WT- and Rab7 Q67L-expressing cells contained a reduced number of vesicles, the size of postlysosomes (> 2.5 microns) and an increased number of smaller vesicles, many of which were nonacidic; in control cells, > 90% of the smaller vesicles were acidic. In contrast, Rab7 T22N cells contained an increased proportion of large acidic vesicles relative to nonacidic vesicles. Radiolabel pulse-chase experiments indicated that all of the cell lines processed and targeted lysosomal alpha-mannosidase normally, indicating the lack of a significant role for Rab7 in the targeting pathway; however, retention of mature lysosomal hydrolases was affected in Rab7 WT and Rab7 T22N cell lines. Contrary to the results observed for the fluid phase efflux experiments, Rab7 T22N cells oversecreted alpha-mannosidase, whereas Rab7

  14. Tritium recycling (processing) facility design

    SciTech Connect

    Metzler, J.; Le, T.

    1995-10-01

    The maintenance of a nuclear weapons capability requires the periodic replacement of tritium contained in each of the weapons in the nuclear weapons stockpile because the radioactive decay of tritium reduces its quantity by about 5.5 percent per year. The Tritium Recycling Plant (TRP) performs the activities necessary to recover, purify, and recycle tritium returned from the field. Tritium is contained in vessels called reservoirs. The TRP also has the capability to conduct environmental tests to ensure the reliability and quality of the reservoirs. Currently, the U.S. has no source of new tritium. The proposed new TRP is an option the U.S. Department of Energy (U.S. DOE) is considering that could be collocated with the new Tritium Supply Plant if it is built at Oak Ridge, Pantex, Nevada Test Site, or Idaho National Engineering Laboratory. It will comply with applicable environment, safety and health, (ES&H) regulations and orders. If the new Tritium Supply Plant is built at the Savannah River Site, the existing TRP would be upgraded, as necessary. 3 refs., 4 figs.

  15. Recycling Decisions and Green Design.

    ERIC Educational Resources Information Center

    Lave, Lester B.; And Others

    1994-01-01

    Explores the facts and perceptions regarding recycling, what can be done to make products more environmentally compatible, and how to think about recycling decisions in a more helpful way. (Contains 39 references.) (MDH)

  16. Helium-Recycling Plant

    NASA Technical Reports Server (NTRS)

    Cook, Joseph

    1996-01-01

    Proposed system recovers and stores helium gas for reuse. Maintains helium at 99.99-percent purity, preventing water vapor from atmosphere or lubricating oil from pumps from contaminating gas. System takes in gas at nearly constant low back pressure near atmospheric pressure; introduces little or no back pressure into source of helium. Concept also extended to recycling of other gases.

  17. Recycled Insect Models

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Meyer, Mary Ann

    2007-01-01

    This article presents an engaging activity in which high school students use a dichotomous key to guide the creation and classification of model insects from recycled plastic lids and containers. Besides teaching the use of a dichotomous key and the effect of evolutionary descent upon groupings of organisms, this activity focuses on an…

  18. RECYCLABILITY INDEX FOR AUTOMOBILES

    EPA Science Inventory

    The project's purpose is to create a rating system for the ecological impacts of vehicles at the end of their life based on recyclability, toxic material content, and ultimate disposal. Each year, 10-11 million vehicles are retired from service in the United States. The vehi...

  19. Fuels from Recycling Systems

    ERIC Educational Resources Information Center

    Tillman, David A.

    1975-01-01

    Three systems, operating at sufficient scale, produce fuels that may be alternatives to oil and gas. These three recycling systems are: Black Clawson Fiberclaim, Franklin, Ohio; Union Carbide, South Charleston, West Virginia; and Union Electric, St. Louis, Missouri. These produce a wet fuel, a pyrolytic gas, and a dry fuel, respectively. (BT)

  20. Recycling Study Guide.

    ERIC Educational Resources Information Center

    Hallowell, Anne; And Others

    This study guide was designed to help teachers and students understand the problems surrounding solid wastes. It includes an overview of solid waste and recycling, a glossary, suggested activities and a list of resource publications, audiovisual materials and organizations. There are 19 activity suggestions included in this guide designed for use…

  1. The Recycle Team.

    ERIC Educational Resources Information Center

    Scott, Roger; And Others

    This guide provides lessons that enable students to learn how important it is for each of us to take care of the environment by minimizing the problems caused by too much trash. In the 10 lessons included here, students and their families learn how they can be part of the solution by practicing source reduction and by reusing, recycling, and…

  2. Reclamation of automotive batteries: Assessment of health impacts and recycling technology. Task 1: Assessment of recycling technology. Final report

    SciTech Connect

    Unnasch, S.; Montano, M.; Franklin, P.; Nowell, G.; Martin, C.

    1995-03-01

    Approximately ten different candidate EV battery technologies were examined based on their performance and recyclability, and were ranked based on these examinations. The batteries evaluated were lead-acid (all types), nickel-cadmium, nickel-iron, nickel-metal hydride, sodium-sulfur, sodium-nickel chloride, lithium-iron disulfide, lithium-ion, lithium polymer, and zinc (zinc-air and zinc-bromine). Locations of present recycling facilities were identified. Markets for recycled products were assessed: the value of recycled materials were found too unstable to fully support recycling efforts. All these batteries exhibit the characteristic of hazardous waste in California, and are therefore subject to strict regulations (finalization of the new EPA Universal Waste Rule could change this).

  3. Recycling Behavior: A Multidimensional Approach

    ERIC Educational Resources Information Center

    Meneses, Gonzalo Diaz; Palacio, Asuncion Beerli

    2005-01-01

    This work centers on the study of consumer recycling roles to examine the sociodemographic and psychographic profile of the distribution of recycling tasks and roles within the household. With this aim in mind, an empirical work was carried out, the results of which suggest that recycling behavior is multidimensional and comprises the undertaking…

  4. Recycling of the #5 polymer.

    PubMed

    Xanthos, Marino

    2012-08-10

    Polypropylene (PP) is a widely used plastic with consumer applications ranging from food packaging to automotive parts, including car battery casings. To differentiate it from other recyclable plastics, it is designated as #5. Here, the factors contributing to PP recycling rates are briefly reviewed. Considerations include collection and separation efficiency, processing chemistry, and market dynamics for the products derived from recyclates. PMID:22879510

  5. Processing solid propellants for recycling

    SciTech Connect

    Whinnery, L.L.; Griffiths, S.K.; Handrock, J.L.; Lipkin, J.

    1994-05-01

    Rapid evolution in the structure of military forces worldwide is resulting in the retirement of numerous weapon systems. Many of these systems include rocket motors containing highly energetic propellants based on hazardous nitrocellulose/nitroglycerin (NC/NG) mixtures. Even as the surplus quantities of such material increases, however, current disposal methods -- principally open burning and open detonation (OB/OD) -- are coming under close scrutiny from environmental regulators. Environmentally conscious alternatives to disposal of propellant and explosives are thus receiving renewed interest. Recycle and reuse alternatives to OB/OD appear particularly attractive because some of the energetic materials in the inventories of surplus weapon systems represent potentially valuable resources to the commercial explosives and chemical industries. The ability to reclaim such resources is therefore likely to be a key requirement of any successful technology of the future in rocket motor demilitarization. This document consists of view graphs from the poster session.

  6. Marine shale and the Hazwaste recycling debate

    SciTech Connect

    Bishop, J.

    1988-10-01

    This paper reports that Marine Shale Processors, Inc. (St. Rose, La.), and the Hazardous Waste Treatment Council (Washington, D.C.), an industry trade association, are at the focus of a controversy whose resolution has significant implications for the respective definitions, concepts and legal statuses of hazardous-waste incineration and recycling. Marine Shale Processors (MSP) claims it recycles hazardous wastes from a variety of government and commercial sources by blending it and treating it thermally in a large rotary kiln to produce non-hazardous aggregate material, which is sold for construction, road-building or other purposes. The Hazardous Waste Treatment Council (HWTC) and others allege that, under the provisions of the Resource Conservation and Recovery Act (RCRA), MSP is operating an unpermitted hazardous-waste incinerator. According to HWTC officials, MSP's identification as a recycler is inappropriate and has allowed the company unfairly to avoid permitting costs and formal compliance with RCRA standards and regulations. Recently, the Louisiana legislature passed laws declaring that hazardous-waste recyclers in the state must meet the same standards as permitted hazardous-waste incinerators. At press time, a hearing before the Louisiana Department of Environmental Quality to determine MSP's status as a recycler under the new laws was set for Sept. 29. Since all parties in the debate over Marine Shale's industry role appear to agree that the controversy is central to the emerging issue of establishing clear distinctions between recycling and hazardous-waste destruction, this article describes the arguments on both sides as these stood in mid-September.

  7. Qualitative and quantitative analysis of endocytic recycling.

    PubMed

    Reineke, James B; Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    Endocytosis, which encompasses the internalization and sorting of plasma membrane (PM) lipids and proteins to distinct membrane-bound intracellular compartments, is a highly regulated and fundamental cellular process by which eukaryotic cells dynamically regulate their PM composition. Indeed, endocytosis is implicated in crucial cellular processes that include proliferation, migration, and cell division as well as maintenance of tissue homeostasis such as apical-basal polarity. Once PM constituents have been taken up into the cell, either via clathrin-dependent endocytosis (CDE) or clathrin-independent endocytosis (CIE), they typically have two fates: degradation through the late-endosomal/lysosomal pathway or returning to the PM via endocytic recycling pathways. In this review, we will detail experimental procedures that allow for both qualitative and quantitative assessment of endocytic recycling of transmembrane proteins internalized by CDE and CIE, using the HeLa cervical cancer cell line as a model system. PMID:26360033

  8. COPPER CABLE RECYCLING TECHNOLOGY

    SciTech Connect

    Chelsea Hubbard

    2001-05-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D&D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D&D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness of separating

  9. Comparison of the recyclability of flame-retarded plastics.

    PubMed

    Imai, Takaretu; Hamm, Stephan; Rothenbacher, Klaus P

    2003-02-01

    Mechanical recycling of plastics from waste from electrical and electronical equipment (WEEE) is increasingly expected by regulators and demanded by original equipment manufacturers (CEMs); however, mechanical recycling is generally recognized to be the most economically costly and technically challenging method of recovering WEEE plastics. With 12% of WEEE plastics requiring the use of flame-retardants in order to ensure appropriate levels of consumer fire safety, there is a distinct need for data from comparative tests on recyclability of various flame-retarded plastics. Ten commercially available flame-retarded plastic grades commonly used in electronic equipment (eight "halogen-free" grades and two grades containing brominated flame-retardants (BFRs)) were subjected to two different recycling scenarios. A standard recycling scenario was carried out by repeatedly extruding the materials and an accelerated hydrolysis scenario was carried out to study the influence of humidity from air during use on the process. Both, virgin and recycled materials were tested for a potential formation of polybrominated dibenzodioxins/furans (PBDD/Fs), their mechanical properties were assessed and the fire safety rating was determined. Results indicate that none of the tested materials showed a potential to form the PBDD/Fs regulated by the German Chemicals Banning Ordinance. The halogen-free plastic grades showed a significant deterioration of mechanical properties after recycling, whereas those plastics containing BFRs were able to pass all test criteria, thus maintaining their original properties. With respect to the fire safety rating, none of the eight tested halogen-free plastic grades could maintain their fire safety rating after five recycling loops, whereas both BFR plastics continued to achieve their fire safety ratings. Therefore the tested BFR containing plastic materials showed superior recycling properties compared to the tested halogen-free plastic grades with

  10. Municipal solid waste recycling issues

    SciTech Connect

    Lave, L.B.; Hendrickson, C.T.; Conway-Schempf, N.M.; McMichael, F.C.

    1999-10-01

    Municipal solid waste (MSW) recycling targets have been set nationally and in many states. Unfortunately, the definitions of recycling, rates of recycling, and the appropriate components of MSW vary. MSW recycling has been found to be costly for most municipalities compared to landfill disposal. MSW recycling policy should be determined by the cost to the community and to society more generally. In particular, recycling is a good policy only if environmental impacts and the resources used to collect, sort, and recycle a material are less than the environmental impacts and resources needed to provide equivalent virgin material plus the resources needed to dispose of the postconsumer material safely. From a review of the existing economic experience with recycling and an analysis of the environmental benefits (including estimation of external social costs), the authors find that, for most communities, curbside recycling is only justifiable for some postconsumer waste, such as aluminum and other metals. They argue that alternatives to curbside recycling collection should be explored, including product takeback for products with a toxic content (such as batteries) or product redesign to permit more effective product remanufacture.

  11. Recycling in the major metal industries: Trends, developments, and regulatory impacts. Information circular/1994

    SciTech Connect

    Foster, R.J.

    1994-01-01

    Public awareness of, and involvement in, recycling has increased significantly in recent years. The actual magnitude and scope of metals recycling in the United States have gone virtually unnoticed. Over time, both the quantitative and qualitative aspects of secondary metals recovery and reuse have changed substantially, while the attendant regulations have become increasingly stringent. This U.S. Bureau of Mines report examines trends and developments in major metal demand and recycling, and analyzes the possible impacts of regulations with regard to recycling activities.

  12. Understanding recycling behavior in Kentucky: Who recycles and why

    NASA Astrophysics Data System (ADS)

    Morgan, Fred W.; Hughes, Margaret V.

    2006-08-01

    Recycling behavior and the motivations behind recycling are being analyzed in a collaborative study between the Sloan Industry Center for a Sustainable Aluminum Industry, the Center for Aluminum Technology, Secat, and the Gatton College of Business and Economics at the University of Kentucky in Lexington. The goals of this study are to determine why people recycle and to find ways to motivate people to recycle more, using Fayette County, Kentucky, as a sample study. It is hoped that the information gathered through educational and motivational efforts in this county can be used on a larger scale in communities throughout the United States.

  13. Why recycle? A comparison of recycling motivations in four communities

    NASA Astrophysics Data System (ADS)

    Vining, Joanne; Linn, Nancy; Burdge, Rabel J.

    1992-11-01

    Four Illinois communities with different sociode-mographic compositions and at various stages of planning for solid waste management were surveyed to determine the influence of sociodemographic variables and planning stages on the factors that motivate recycling behavior. A factor analysis of importance ratings of reasons for recycling and for not recycling yielded five factors interpreted as altruism, personal inconvenience, social influences, economic incentives, and household storage. The four communities were shown to be significantly different in multivariate analyses of the five motivational factors. However, attempts to explain these community differences with regression analyses, which predicted the motivational factors with dummy codes for planning stages, a measure of self-reported recycling behavior, and sociodemographic measures were unsatisfactory. Contrary to expectation, the solid waste management planning stages of the cities (curbside pickup, recycling dropoff center, and planning in progress) contributed only very slightly to the prediction of motivational factors for recycling. Community differences were better explained by different underlying motivational structures among the four communities. Altruistic reasons for recycling (e.g., conserving resources) composed the only factor which was similar across the four communities. This factor was also perceived to be the most important reason for recycling by respondents from all four communities. The results of the study supported the notion that convenient, voluntary recycling programs that rely on environmental concern and conscience for motivation are useful approaches to reducing waste.

  14. Recycling Endosomes and Viral Infection

    PubMed Central

    Vale-Costa, Sílvia; Amorim, Maria João

    2016-01-01

    Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition. PMID:27005655

  15. Waste-paper recycling. January 1980-December 1991 (Citations from the NTIS Data Base). Rept. for Jan 80-Dec 91

    SciTech Connect

    Not Available

    1991-11-01

    The bibliography contains citations concerning the recycling of wastepaper fibers for the production of new paper products. The development of the recycling industry, flotation processes, recycled fiber properties and improvement methods, and the installation, operation and maintenance of paper recycling systems are among the topics discussed. Applications, markets, economics, regulations, production statistics, and wastepaper salvaging are considered. (Contains 133 citations with title list and subject index.)

  16. Recycler barrier RF buckets

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  17. PFC concentration and recycle

    SciTech Connect

    Tom, G.M.; McManus, J.; Knolle, W.; Stoll, I.

    1994-12-31

    The semiconductor industry uses PFC gases such as CF{sub 4} and C{sub 2}F{sub 6} as etchant and cleaning gases during plasma processes. The gases do not fully react within the reactor chamber. The unused gases enter the atmosphere through the process effluent. These gases have long persistence in the atmosphere and absorb infrared radiation. The PFC gases are, therefore, potential global warming gases. A method is described that will recover and recycle PFC gases. The method that the authors have employed to trap and concentrate the PFC gases is based on a dual bed adsorber. The adsorption material is activated carbon.

  18. Recycled rubber roads

    SciTech Connect

    Not Available

    1989-02-01

    The paper describes several innovative approaches for recycling old tires in the construction of roads. In one, 18 inches of shredded tire chips (2 X 2 inches) were used on top of 6-8 inches of small stone to construct a road across a sanitary landfill. No compacting or linders were needed. In another application, sidewall mats linked together with steel strapping were used as a sub-base for a road across a swampy area. A third application uses 1/2 inch bits of groundup rubber tires as a replacement for aggregate in an asphalt road base.

  19. Recycling`s regulatory burden: A case study -- the Modesto Tire Disposal Project

    SciTech Connect

    Tomeo, E.

    1995-12-31

    The Modesto Tire Disposal Project is a 14 MW electric power generating facility in Westley, CA fueled on whole waste tires. A by-product of the incineration process is a zinc-rich fly ash which contains low concentrations of lead and cadmium. The project`s preferred disposition for the fly ash is recycling through reclamation of its valuable metals. Under California regulation, the fly ash is considered a hazardous waste, and its handling and transportation is severely restricted. Federal regulation doe snot impose such restrictions. The fly ash from the project was recycled for years. However, internal regulatory review and subsequent conference with regulators determined that the environmentally sound transportation practices that had been utilized were not regulatorily compliant. As a result of compliance initiatives, the valuable fly ash had to be disposed of in class 1 landfills for the past year. The return to a recycle option remains elusive. This presentation reviews some of the regulatory hurdles and the economic harm done to the project in order to maintain strict compliance with California hazardous waste regulations.

  20. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-05-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio (w/c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  1. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  2. TOMATO CLEANING AND WATER RECYCLE

    EPA Science Inventory

    A full-scale dump tank water recycle system was developed and demonstrated. A false bottom-ejector transport system removed soil from the water. Clarified water was either recycled back to the dump tank or discharged to the sewer. A vacuum belt was developed for dewatering the mu...

  3. Garbage project on recycling behavior

    SciTech Connect

    McGuire, R.H.; Hughes, W.W.; Rathje, W.L.

    1982-02-01

    Results are presented of a study undertaken to determine the factors which are most effective in motivating different socio-economic groups to change their recycling behaviors and participate in recycling programs. Four types of data were collected and analyzed in Tucson: (1) purchase data from local recyclers, (2) traditional interview-survey data on recycling behavior, (3) long-term and short-term household refuse data, and (4) combined interview-garbage data. Findings reveal that disposal patterns for newspapers and aluminum cans are tuse data, and (4) combined interview-garbage data. Findings reveal that disposal patterns for newspapers and aluminum cans are the same across census tracts with significantly different socio-economic characteristics. Further, analysis of interview and garbage data matched by household reaffirm that what people say about recycling and how they dispose of recyclable materials are two different things. Thus, interview reports of newspaper recycling correlate with higher income informants, but their interview reports do not correlate with what is thrown into their garbage cans. Money is concluded to be the most powerful incentive toward recycling.

  4. The Dynamic Earth: Recycling Naturally!

    ERIC Educational Resources Information Center

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  5. Information Sources on Rural Recycling.

    ERIC Educational Resources Information Center

    Notess, Greg; Kuske, Jodee

    1992-01-01

    Provides resources for rural recycling operations with the principle aim of assisting rural government officials, planners, residents, and educators to encourage recycling as an integral part of an individual's or community's solid waste management plan. Sources range from bibliographies, directories, and government documents to case studies. (49…

  6. American Art of Conspicuous Recycling.

    ERIC Educational Resources Information Center

    Gomez, Aurelia

    1999-01-01

    Characterizes the use of recycling "junk" as a means for creating art by exploring various recycling traditions that are present in the United States. Demonstrates to students that "junk" can be fashioned into beautiful works of art. Offers four works of art and provides discussion questions and project ideas for each artwork. (CMK)

  7. Recycling Study Guide [Resource Packet].

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    This resource packet contains six documents developed by the Wisconsin Department of Natural Resources in order to help teachers infuse the environmental education topics of recycling and solid waste into social studies, art, English, health, mathematics, science, and environmental education classes. "Recycling Study Guide" contains 19 activities…

  8. Recycling Solid Waste in Chattanooga

    ERIC Educational Resources Information Center

    Vredeveld, Ruth; Martin, Robin

    1973-01-01

    Students undertook a group project in collaboration with city officials to study garbage types in the community and possibilities of recycling solid wastes. Data collected from various sources revealed that public attitude was favorable for recycling efforts and that it was feasible economically. (PS)

  9. Training Governments to Buy Recycled.

    ERIC Educational Resources Information Center

    Keller, Richard

    1995-01-01

    Describes a program developed by the Northeast Maryland Waste Disposal Authority to teach government buyers how to buy recycled materials. The program consists of a hands-on training seminar and a manual that offers step-by-step instructions for setting up a buy-recycled purchasing program. (LZ)

  10. Is recycling worth the trouble

    SciTech Connect

    Boltz, C.M.

    1995-03-01

    A panel of waste industry experts met recently at a Washington, DC, conference to discuss and debate the costs, benefits, and economics of recycling solid waste. The nearly unanimous conclusion from some of the speakers--that recycling, as it is implemented today, has costs that far outweigh its benefits--is evidence of a growing backlash among solid waste officials against a recycling movement they feel has been grossly over-inflated by environmental groups as a solution to a non-existent problem known as the garbage crisis. The public should not place such a strong emphasis on recycling as a cure-all for environmental problems, according to the panel of four waste management policy analysts at The State of Garbage'' session held in mid-January at the 1995 US/Canadian Federation Solid Waste Management Conference. Moreover, some panel members said, recycling should take place only if it makes economic sense.

  11. Expanded recycling at Los Alamos National Laboratory

    SciTech Connect

    Betschart, J.F.; Malinauskas, L.; Burns, M.

    1996-07-01

    The Pollution Prevention Program Office has increased recycling activities, reuse, and options to reduce the solid waste streams through streamlining efforts that applied best management practices. The program has prioritized efforts based on volume and economic considerations and has greatly increased Los Alamos National Laboratory`s (LANL`s) recycle volumes. The Pollution Prevention Program established and chairs a Solid Waste Management Solutions Group to specifically address and solve problems in nonradioactive, Resource Conservation and Recovery Act (RCRA), state-regulated, and sanitary and industrial waste streams (henceforth referred to as sanitary waste in this paper). By identifying materials with recycling potential, identifying best management practices and pathways to return materials for reuse, and introducing the concept and practice of {open_quotes}asset management,{open_quotes} the Group will divert much of the current waste stream from disposal. This Group is developing procedures, agreements, and contracts to stage, collect, sort, segregate, transport and process materials, and is also garnering support for the program through the involvement of upper management, facility managers, and generators.

  12. Synaptic vesicle recycling: steps and principles

    PubMed Central

    Rizzoli, Silvio O

    2014-01-01

    Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle. PMID:24596248

  13. 48 CFR 52.204-4 - Printed or Copied Double-Sided on Recycled Paper.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Printed or Copied Double... Provisions and Clauses 52.204-4 Printed or Copied Double-Sided on Recycled Paper. As prescribed in 4.303, insert the following clause: Printed or Copied Double-Sided on Recycled Paper (AUG 2000) (a)...

  14. 7 CFR 2902.53 - Expanded polystyrene (EPS) foam recycling products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Expanded polystyrene (EPS) foam recycling products. 2902.53 Section 2902.53 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF... FEDERAL PROCUREMENT Designated Items § 2902.53 Expanded polystyrene (EPS) foam recycling products....

  15. 7 CFR 3201.53 - Expanded polystyrene (EPS) foam recycling products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Expanded polystyrene (EPS) foam recycling products. 3201.53 Section 3201.53 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF... FOR FEDERAL PROCUREMENT Designated Items § 3201.53 Expanded polystyrene (EPS) foam recycling...

  16. 7 CFR 3201.53 - Expanded polystyrene (EPS) foam recycling products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Expanded polystyrene (EPS) foam recycling products. 3201.53 Section 3201.53 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF... FOR FEDERAL PROCUREMENT Designated Items § 3201.53 Expanded polystyrene (EPS) foam recycling...

  17. 7 CFR 3201.53 - Expanded polystyrene (EPS) foam recycling products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Expanded polystyrene (EPS) foam recycling products. 3201.53 Section 3201.53 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF... FOR FEDERAL PROCUREMENT Designated Items § 3201.53 Expanded polystyrene (EPS) foam recycling...

  18. Closed loop recycling of lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bied-Charreton, B.

    The traditional lead/acid battery is a recycleable product, irrespective whether it is of an automotive, traction or standby design. The product benefits from the traditional lead metallurgy that has been developed for both primary (mines) and secondary (recycling) smelting. Secondary smelting accounts for 60% of total lead production in Europe, and this market lead the most effectively metal. In secondary smelters, scrapped batteries are crushed and smelted. The polypropylene from the boxes is recycled to produce secondary plastic for battery, automotive, or other miscellaneous uses. The lead metal is refined to be re-used in the battery industry. The acid is retreated. Recycling requires a collection network. The lead/acid battery benefits from the traditional collection network that has been established for scrap-iron and non-ferrous metal scrap. In Western Europe, the recycling rate for scrapped batteries is estimated to be 80 to 90%. All participants in the battery recycling loop agree that the process must be a clean cycle for it to be credible. The collection organization is improving the quality of storage and transportation, especially with regard to the acid that can only be neutralized in correctly-controlled facilities, generally located at the smelters. The smelters themselves tend, through local regulations, to run at the optimum level of protection of the environment.

  19. Plastics recycling: challenges and opportunities

    PubMed Central

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  20. Plastics recycling: challenges and opportunities.

    PubMed

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  1. Coal liquefaction with preasphaltene recycle

    DOEpatents

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  2. Recycling and Life Cycle Issues

    SciTech Connect

    Das, Sujit

    2010-01-01

    This chapter addresses recycling and life cycle considerations related to the growing use of lightweight materials in vehicles. The chapter first addresses the benefit of a life cycle perspective in materials choice, and the role that recycling plays in reducing energy inputs and environmental impacts in a vehicle s life cycle. Some limitations of life cycle analysis and results of several vehicle- and fleet-level assessments are drawn from published studies. With emphasis on lightweight materials such as aluminum, magnesium, and polymer composites, the status of the existing recycling infrastructure and technological challenges being faced by the industry also are discussed.

  3. Cross-cultural comparison of concrete recycling decision-making and implementation in construction industry.

    PubMed

    Tam, Vivian W Y; Tam, Leona; Le, Khoa N

    2010-02-01

    Waste management is pressing very hard with alarming signals in construction industry. Concrete waste constituents major proportions of construction and demolition waste of 81% in Australia. To minimize concrete waste generated from construction activities, recycling concrete waste is one of the best methods to conserve the environment. This paper investigates concrete recycling implementation in construction. Japan is a leading country in recycling concrete waste, which has been implementing 98% recycling and using it for structural concrete applications. Hong Kong is developing concrete recycling programs for high-grade applications. Australia is making relatively slow progress in implementing concrete recycling in construction. Therefore, empirical studies in Australia, Hong Kong, and Japan were selected in this paper. A questionnaire survey and structured interviews were conducted. Power spectrum was used for analysis. It was found that "increasing overall business competitiveness and strategic business opportunities" was considered as the major benefit for concrete recycling from Hong Kong and Japanese respondents, while "rising concrete recycling awareness such as selecting suitable resources, techniques and training and compliance with regulations" was considered as the major benefit from Australian respondents. However, "lack of clients' support", "increase in management cost" and "increase in documentation workload, such as working documents, procedures and tools" were the major difficulties encountered from Australian, Hong Kong, and Japanese respondents, respectively. To improve the existing implementation, "inclusion of concrete recycling evaluation in tender appraisal" and "defining clear legal evaluation of concrete recycling" were major recommendations for Australian and Hong Kong, and Japanese respondents, respectively. PMID:19854634

  4. PHOSPHORUS FEEDING AND MANURE NUTRIENT RECYCLING ON WISCONSIN DAIRY FARMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management regulations for livestock operations are focused on a farm¿s ability to recycle the phosphorus (P) contained in manure. Most efforts to improve dairy manure management emphasize manure handling, storage, and land application techniques. Little is known about relationships betwee...

  5. Impact of increased electric vehicle use on battery recycling infrastructure

    SciTech Connect

    Vimmerstedt, L.; Hammel, C.; Jungst, R.

    1996-12-01

    State and Federal regulations have been implemented that are intended to encourage more widespread use of low-emission vehicles. These regulations include requirements of the California Air Resources Board (CARB) and regulations pursuant to the Clean Air Act Amendments of 1990 and the Energy Policy Act. If the market share of electric vehicles increases in response to these initiatives, corresponding growth will occur in quantities of spent electric vehicle batteries for disposal. Electric vehicle battery recycling infrastructure must be adequate to support collection, transportation, recovery, and disposal stages of waste battery handling. For some battery types, such as lead-acid, a recycling infrastructure is well established; for others, little exists. This paper examines implications of increasing electric vehicle use for lead recovery infrastructure. Secondary lead recovery facilities can be expected to have adequate capacity to accommodate lead-acid electric vehicle battery recycling. However, they face stringent environmental constraints that may curtail capacity use or new capacity installation. Advanced technologies help address these environmental constraints. For example, this paper describes using backup power to avoid air emissions that could occur if electric utility power outages disable emissions control equipment. This approach has been implemented by GNB Technologies, a major manufacturer and recycler of lead-acid batteries. Secondary lead recovery facilities appear to have adequate capacity to accommodate lead waste from electric vehicles, but growth in that capacity could be constrained by environmental regulations. Advances in lead recovery technologies may alleviate possible environmental constraints on capacity growth.

  6. Progress reported in PET recycling

    SciTech Connect

    Not Available

    1989-06-01

    The Goodyear Polyester Division has demonstrated its ability to break down polyethylene terephthalate (PET) from recycled plastic soft drink bottles and remanufacture the material into PET suitable for containers. Most people are familiar with PET in the form of lightweight, shatter resistant beverage bottles. About 20 percent of these beverage containers currently are being recycled. The recycled PET is currently used in many applications such as carpeting, pillow stuffing, sleeping bag filling, insulation for water heaters and non-food containers. This is the first step of Goodyear's increased efforts to recycle PET from containers into a material suitable for food packing. The project is extremely complex, involving sophisticated understanding of the chemical reactions involved, PET production and the technology testing protocols necessary to design a process that addresses all the technical, safety, and regulatory concerns. The research conducted so far indicated that additional processing beyond simply cleaning the shredded material, called flake, will be required to assure a quality polymer.

  7. New approaches to recycling tires

    SciTech Connect

    Spencer, R.

    1991-03-01

    Steel-belted radial tires are potentially one of the most recyclable products created by modern industry, although the potential has been barely tapped. Discarded tires pile up at an astonishing rate each year - 234 million in the US and 26 million passenger tire equivalents in Canada. They represent a mother lode of raw material waiting for modern day miners to transform them into recycled rubber, steel, fiber and energy. The tremendous increase in use of steel belted radials since the early 1970s has complicated their recyclability compared to the bias ply tire, but it has also accomplished waste reduction by tripling tire service life. Part one of this report describes processes being developed to convert tires to crumb rubber, as well as some potential uses of recycled rubber. Part two, to appear next month, will examine such uses as rubberized athletic tracks and highway asphalt.

  8. Operating A Recycling Program: A Citizen's Guide.

    ERIC Educational Resources Information Center

    Mulligan, Kevin; Powell, Jerry

    Presented are recycling program alternatives, procedures for handling and marketing recyclable materials, and suggestions for financing and publicizing a recycling operation. This publication offers a general overview of the possibilities and potential pitfalls of recycling efforts, thereby serving as a catalyst and guide for organizations wishing…

  9. You're a "What"? Recycling Coordinator

    ERIC Educational Resources Information Center

    Torpey, Elka Maria

    2011-01-01

    Recycling coordinators supervise curbside and dropoff recycling programs for municipal governments or private firms. Today, recycling is mandatory in many communities. And advancements in collection and processing methods have helped to increase the quantity of materials for which the recycling coordinator is responsible. In some communities,…

  10. The Three Rs: Reduce, Reuse, Recycle.

    ERIC Educational Resources Information Center

    Science Activities, 1991

    1991-01-01

    A student hand-out for a recycling unit defines the terms reduce, recycle, and reuse as they relate to solid waste management. Presents the characteristics of recyclable items such as yard wastes, metals, glass, and paper. Lists organizations through which more information about recycling can be obtained. (MCO)

  11. NECAP2 controls clathrin coat recruitment to early endosomes for fast endocytic recycling.

    PubMed

    Chamberland, John P; Antonow, Lauren T; Dias Santos, Michel; Ritter, Brigitte

    2016-07-01

    Endocytic recycling returns receptors to the plasma membrane following internalization and is essential to maintain receptor levels on the cell surface, re-sensitize cells to extracellular ligands and for continued nutrient uptake. Yet, the protein machineries and mechanisms that drive endocytic recycling remain ill-defined. Here, we establish that NECAP2 regulates the endocytic recycling of EGFR and transferrin receptor. Our analysis of the recycling dynamics revealed that NECAP2 functions in the fast recycling pathway that directly returns cargo from early endosomes to the cell surface. In contrast, NECAP2 does not regulate the clathrin-mediated endocytosis of these cargos, the degradation of EGFR or the recycling of transferrin along the slow, Rab11-dependent recycling pathway. We show that protein knockdown of NECAP2 leads to enlarged early endosomes and causes the loss of the clathrin adapter AP-1 from the organelle. Through structure-function analysis, we define the protein-binding interfaces in NECAP2 that are crucial for AP-1 recruitment to early endosomes. Together, our data identify NECAP2 as a pathway-specific regulator of clathrin coat formation on early endosomes for fast endocytic recycling. PMID:27206861

  12. Corporate America urges consumers to buy recycled

    SciTech Connect

    Rabasca, L.

    1995-04-01

    The National Recycling Coalition`s (NRC, Washington, DC) buy Recycled Business Alliance (BRBA), the US EPA`s WasteWi$e program, and the US Conference of Mayors` (Washington, DC) buy-recycled program are just a few of the national groups that have formed since 1990 to encourage the purchase of products made from recyclables. Indeed, corporate America and governments are buying recycled. More than $1 billion worth of recycled-content products have been bought by McDonald`s Corp. since 1990. The nearly 950 members of the BRBA reported spending $9.1 billion on recycled-content products in 1993. State governments reported in 1993 that they had spent more than $600 million on recycled products. Several states, cities, and counties have adopted buy-recycled executive orders. Now, many of these companies and government officials are urging consumers to use their own purchasing power to spur markets for recyclables.

  13. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service

    PubMed Central

    Keys, Patrick W.; Wang-Erlandsson, Lan; Gordon, Line J.

    2016-01-01

    An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized

  14. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service.

    PubMed

    Keys, Patrick W; Wang-Erlandsson, Lan; Gordon, Line J

    2016-01-01

    An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized

  15. Flotation separation of waste plastics for recycling-A review.

    PubMed

    Wang, Chong-qing; Wang, Hui; Fu, Jian-gang; Liu, You-nian

    2015-07-01

    The sharp increase of plastic wastes results in great social and environmental pressures, and recycling, as an effective way currently available to reduce the negative impacts of plastic wastes, represents one of the most dynamic areas in the plastics industry today. Froth flotation is a promising method to solve the key problem of recycling process, namely separation of plastic mixtures. This review surveys recent literature on plastics flotation, focusing on specific features compared to ores flotation, strategies, methods and principles, flotation equipments, and current challenges. In terms of separation methods, plastics flotation is divided into gamma flotation, adsorption of reagents, surface modification and physical regulation. PMID:25869841

  16. Deep Recycling of Carbon

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.

    2012-12-01

    While most of the subducted H2O is recycled at shallow and subarc depths, carbon is less readily mobilized and susceptive to complex redox processes involving CO2 in solids, fluids and melts, elemental carbon, Fe- and Si- carbides, and methane. Here I review the various ways of recycling carbon during subduction and present a spectrum of possible reaction products in the mantle. Metamorphic reactions liberate <20% of the subducted CO2 to the subarc region (Connolly 2005, EPSL). Larger amounts might be mobilized through (sediment) melting. Although the wet pelite solidus is only shifted by 30-50 oC (at 3 GPa) with carbonates, the latter remain stable with melts that are saturated in a H2O+CO2-fluid. Complete dissolution of carbonates requires temperatures above any predicted subduction geotherm. Carbonated sediments yield CO2-rich phonolites to 5 GPa but carbonatites at higher pressures. The silicate melts become increasingly potassic with pressure, while the alkali-rich carbonatites have their highest K/Na at 8 GPa, slightly decreasing to 13 GPa and become sodic with the disappearance of residual cpx at ~16 GPa. What may happen when carbonated pelite derived melts migrate into the mantle is illustrated in Central Italy: in this case, it can be experimentally demonstrated that hybridization of ultrapotassic phonolitic melts with ~2 wt% H2O and ~6 wt% CO2 in the mantle results in the primitive parents of the ultrapotassic kamafugite suites which have ~43 wt% SiO2. Hence, despite a crustal isotopic signature of C, O, and Sr in these rocks, the CO2 of the Italian magmatism does not stem from assimilation in the crust but from melts derived from subducted marine carbonates mixed with pelagic clays and then reacted in the mantle. The migration of CO2-bearing fluids and melts into the mantle may lead to a redox-shock. Where high liquid/mantle ratios prevail, carbonatites rest in their oxidized form and may only freeze in relatively cold lithospheric keels where they form

  17. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  18. Recycling concepts for thermoplastic composites

    SciTech Connect

    Lochem, J.H. van; Henriksen, C.; Lund, H.H.

    1995-10-01

    Thermoplastic short fiber composite materials are increasingly being used as insulating materials in electricity distribution. Economically they possess good opportunities for material recycling and reuse due to the high virgin price. To investigate the recycling potential of post-consumer components, PPS40%GF and PBT30%GF, representing commonly used insulating materials, have been artificially aged and recycled. To simulate 10 years of service life, injection molded tensile bars have been aged in different environments varying temperature, humidity and pH. After accelerated aging, the aging state has been characterized by tensile and impact strength, viscoelastic behavior (DMTA), molecular weight, crystallinity (DSC) and fracture behavior (SEM). These properties have been compared to virgin material. The aged materials have been recycled by regranulation and compounds with different ratios virgin/aged material and different coupling agents to repair the glass-matrix interface. Injection molded compounds were characterized by short and long term properties. Recompounding PBT30%GF with virgin material and no added coupling agents results in a partial recovery of the fiber-matrix adhesion. Based on the first short-term characterizations PBT30%GF seems not very suitable for reuse in primary applications. PPS40%GF seems more suitable for reuse in primary applications after recycling. Although the short-term mechanical properties of the aged batches do not recover after recycling, the fiber-matrix adhesion improves especially when adding coupling agents. Further long-term testing in creep and humid environments during the remaining part of this project will show whether the improved interface properties make recycled materials valuable for reuse in various industrial applications.

  19. How to recycle asbestos containing materials (ACM)

    SciTech Connect

    Jantzen, C.M.

    2000-04-11

    The current disposal of asbestos containing materials (ACM) in the private sector consists of sealing asbestos wetted with water in plastic for safe transportation and burial in regulated land fills. This disposal methodology requires large disposal volumes especially for asbestos covered pipe and asbestos/fiberglass adhering to metal framework, e.g. filters. This wrap and bury technology precludes recycle of the asbestos, the pipe and/or the metal frameworks. Safe disposal of ACM at U.S. Department of Energy (DOE) sites, likewise, requires large disposal volumes in landfills for non-radioactive ACM and large disposal volumes in radioactive burial grounds for radioactive and suspect contaminated ACM. The availability of regulated disposal sites is rapidly diminishing causing recycle to be a more attractive option. Asbestos adhering to metal (e.g., pipes) can be recycled by safely removing the asbestos from the metal in a patented hot caustic bath which prevents airborne contamination /inhalation of asbestos fibers. The dissolution residue (caustic and asbestos) can be wet slurry fed to a melter and vitrified into a glass or glass-ceramic. Palex glasses, which are commercially manufactured, are shown to be preferred over conventional borosilicate glasses. The Palex glasses are alkali magnesium silicate glasses derived by substituting MgO for B{sub 2}O{sub 3} in borosilicate type glasses. Palex glasses are very tolerant of the high MgO and high CaO content of the fillers used in forming asbestos coverings for pipes and found in boiler lashing, e.g., hydromagnesite (3MgCO{sub 3} Mg(OH){sub 2} 3H{sub 2}O) and plaster of paris, gypsum (CaSO{sub 4}). The high temperate of the vitrification process destroys the asbestos fibers and renders the asbestos non-hazardous, e.g., a glass or glass-ceramic. In this manner the glass or glass-ceramic produced can be recycled, e.g., glassphalt or glasscrete, as can the clean metal pipe or metal framework.

  20. 50 Simple Things Kids Can Do To Recycle. California Edition.

    ERIC Educational Resources Information Center

    Javna, John

    This book provides 50 recycling ideas for children and features Recycle Rex, the state of California's "spokesdinosaur" for recycling. An introduction contains recycling background information on waste disposal options and reducing, reusing, and recycling. Recycling suggestions are divided into nine sections: (1) "Learn What You Can Recycle"…

  1. Status of antiproton accumulation and cooling at Fermilab's Recycler

    SciTech Connect

    Prost, L.R.; Bhat, C.M.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Crisp, J.; Derwent, P.; Eddy, N.; Gattuso, C.; Hu, M.; Pruss, S.; /Fermilab

    2009-08-01

    The Recycler ring is an 8 GeV permanent magnet storage ring where antiprotons are accumulated and prepared for Fermilab's Tevatron Collider program. With the goal of maximizing the integrated luminosity delivered to the experiments, storing, cooling and extracting antiprotons with high efficiency has been pursued. Over the past two years, while the average accumulation rate doubled, the Recycler continued to operate at a constant level of performance thanks to changes made to the Recycler Electron Cooler (energy stability and regulation, electron beam optics), RF manipulations and operating procedures. In particular, we discuss the current accumulation cycle in which {approx} 400 x 10{sup 10} antiprotons are accumulated and extracted to the Tevatron every {approx}15 hours.

  2. ReClaim finds success in recycling roofs

    SciTech Connect

    Rabasca, L.

    1994-05-01

    Without the support of the New Jersey state legislature, ReClaim, Inc. (Tampa, Fla.), would not be successful, says James Hagen, the company's president and CEO. ReClaim recycles asphalt-based roofing scrap into a cold-mix patching material-known as RePave[trademark] -- which is used to repair potholes. The company has found that the key to its success is working closely with state legislators to develop state regulations. ReClaim uses a proprietary, mechanical process to recycle roofing material into RePave[trademark] and ReActs HMA, a multi-functional, hot-mixed asphalt modifier. Through a series of reduction machines, the roofing material is reduced in size to anywhere from [1/4]-inch to talcum-powder-sized material. There is no waste and no byproduct, and asphalt-based roofing material is 99.9% recyclable.

  3. PRESENT CONDITION OF FOOD WASTE RECYCLING LOOP BASED ON RECYCLING PROJECT CERTIFICATION OF THE FOOD WASTE RECYCLING LAW

    NASA Astrophysics Data System (ADS)

    Kita, Tomoko; Kanaya, Ken

    Purpose of this research is to clear present condition of food waste recycling loops based on recycling project certification of the Food Waste Recycling Law. Method of this research is questionnaire survey to companies constituting the loops. Findings of this research are as follows: 1. Proponents of the loop is most often the recycling companies. 2. Food waste recycling rate is 61% for the food retailing industry and 81% for the food service industry. These values are higher than the national average in 2006. The effect of the revision of recycling project certification is suggested.

  4. DWPF Recycle Evaporator Simulant Tests

    SciTech Connect

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  5. What can Recycling in Thermal Reactors Accomplish?

    SciTech Connect

    Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

    2007-09-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives.

  6. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations. PMID:7883556

  7. Recycling readiness of advanced batteries for electric vehicles

    SciTech Connect

    Jungst, R.G.

    1997-09-01

    Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.

  8. Recycling Expensive Medication: Why Not?

    PubMed Central

    Pomerantz, Jay M

    2004-01-01

    New (and proposed) advances in packaging, preserving, labeling, and verifying product integrity of individual tablets and capsules may allow for the recycling of certain expensive medicines. Previously sold, but unused, medication, if brought back to special pharmacies for resale or donation, may provide a low-cost source of patent-protected medicines. Benefits of such a program go beyond simply providing affordable medication to the poor. This article suggests that medicine recycling may be a possibility (especially if manufacturers are mandated to blister-package and bar-code individual tablets and capsules). This early discussion of medication recycling identifies relevant issues, such as: need, rationale, existing programs, available supplies, expiration dates, new technology for ensuring safety and potency, environmental impact, public health benefits, program focus, program structure, and liability. PMID:15266231

  9. Recycling expensive medication: why not?

    PubMed

    Pomerantz, Jay M

    2004-01-01

    New (and proposed) advances in packaging, preserving, labeling, and verifying product integrity of individual tablets and capsules may allow for the recycling of certain expensive medicines. Previously sold, but unused, medication, if brought back to special pharmacies for resale or donation, may provide a low-cost source of patent-protected medicines. Benefits of such a program go beyond simply providing affordable medication to the poor. This article suggests that medicine recycling may be a possibility (especially if manufacturers are mandated to blister-package and bar-code individual tablets and capsules). This early discussion of medication recycling identifies relevant issues, such as: need, rationale, existing programs, available supplies, expiration dates, new technology for ensuring safety and potency, environmental impact, public health benefits, program focus, program structure, and liability. PMID:15266231

  10. The Recycling Endosome of Madin-Darby Canine Kidney Cells Is a Mildly Acidic Compartment Rich in Raft Components

    PubMed Central

    Gagescu, Raluca; Demaurex, Nicolas; Parton, Robert G.; Hunziker, Walter; Huber, Lukas A.; Gruenberg, Jean

    2000-01-01

    We present a biochemical and morphological characterization of recycling endosomes containing the transferrin receptor in the epithelial Madin-Darby canine kidney cell line. We find that recycling endosomes are enriched in molecules known to regulate transferrin recycling but lack proteins involved in early endosome membrane dynamics, indicating that recycling endosomes are distinct from conventional early endosomes. We also find that recycling endosomes are less acidic than early endosomes because they lack a functional vacuolar ATPase. Furthermore, we show that recycling endosomes can be reached by apically internalized tracers, confirming that the apical endocytic pathway intersects the transferrin pathway. Strikingly, recycling endosomes are enriched in the raft lipids sphingomyelin and cholesterol as well as in the raft-associated proteins caveolin-1 and flotillin-1. These observations may suggest that a lipid-based sorting mechanism operates along the Madin-Darby canine kidney recycling pathway, contributing to the maintenance of cell polarity. Altogether, our data indicate that recycling endosomes and early endosomes differ functionally and biochemically and thus that different molecular mechanisms regulate protein sorting and membrane traffic at each step of the receptor recycling pathway. PMID:10930469

  11. Process to recycle shredder residue

    DOEpatents

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.

    2001-01-01

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  12. Polymer recycling: opportunities and limitations.

    PubMed Central

    Stein, R S

    1992-01-01

    The disposal of polymer solid waste by means other than landfilling is necessary. The various approaches-source reduction, incineration, degradation, composting, and recycling-all have their roles and must be employed in an integrated manner. Where appropriate, recycling has ecological advantages, but its application is dependent upon the feasibility of collection, sorting, and/or compatibilization of resulting mixtures to produce economically viable products. The practice should be encouraged by societal or legislative pressure which recognizes that the cost of disposal should be a factor in determining the cost of a product. PMID:11607263

  13. Recycler short kicker beam impedance

    SciTech Connect

    Crisp, Jim; Fellenz, Brian; /Fermilab

    2009-07-01

    Measured longitudinal and calculated transverse beam impedance is presented for the short kicker magnets being installed in the Fermilab Recycler. Fermi drawing number ME-457159. The longitudinal impedance was measured with a stretched wire and the Panofsky equation was used to estimate the transverse impedance. The impedance of 3319 meters (the Recycler circumference) of stainless vacuum pipe is provided for comparison. Although measurements where done to 3GHz, impedance was negligible above 30MHz. The beam power lost to the kicker impedance is shown for a range of bunch lengths. The measurements are for one kicker assuming a rotation frequency of 90KHz. Seven of these kickers are being installed.

  14. Recycled Materials Affirmative Procurement Tracking System (RMAPTS). Software user`s manual

    SciTech Connect

    Not Available

    1994-07-01

    RMAPTS is designed to interact with other computer systems. This system can upload or download data from other RMAPTS systems. RMAPTS also complies with Federal Acquisition Regulations (FARs). Section 6002 of the Resource Conservation of Recovery Act (RCRA), Title 40 Part 247-25 of the Code of Federal Regulations, and Executive Order 12780 present mandates and guidelines to the Department of Energy (DOE) and its contractors for the procurement of products containing recycled materials. These regulations promote cost-effective waste reduction and recovery of reusable materials from Federally generated waste; promote environmentally sound and economically efficient waste reduction and recycling of the nation`s resources; and stimulate private sector markets through preferential procurement of designated items. On August 4, 1992, the Deputy Secretary of the Department of Energy requested DOE to show its commitment to Executive Order 12780, Federal Agency Recycling and Procurement Policy. This software was developed in response to this request. RMAPTS will allow users to track and report specific data concerning the procurement of products that contain recycled material and the quantity of recycled material contained in each product. This system provides greater detail, improved accuracy, and less time spent on year-end reporting. Users can quickly check the year-to-date status of recycled material purchases and recycled material contents of products at any time.

  15. A Guide to Running a Recycling Project. [Includes Recycling Handbook].

    ERIC Educational Resources Information Center

    Oregon Recycling Information and Organizing Network, Portland.

    This guide, designed for both students and adults, is intended for individuals who feel they might be interested in establishing a recycling depot. The guide includes such pertinent information as deciding how to set up a depot, markets and transportation, preparation of materials, where to place the depot and when to operate it, publicity and…

  16. The Recycling Solution: How I Increased Recycling on Dilworth Road

    ERIC Educational Resources Information Center

    Keller, J. Jacob

    2010-01-01

    The grandson of Fred Keller, one of the founders of behavior analysis, Jacob was 10 years old when he conducted the project for his elementary school science fair. We recently contacted Jacob to learn more about his project. He told us the inspiration came from a class field trip to the county recycling center, which included seeing video footage…

  17. The recycling and disposal of electrical and electronic waste in China-legislative and market responses

    SciTech Connect

    Hicks, C. . E-mail: charlotte@eecz.org; Dietmar, R. . E-mail: dietmar@eecz.org; Eugster, M. . E-mail: martin.eugster@empa.ch

    2005-07-15

    The development of new legislation on collection, recycling and disposal of waste electrical and electronic equipment (WEEE) as well as the scaling-up and privatisation of the WEEE processing industry, are indications of major changes for WEEE management in China. However, China's attempts to regulate the industry and establish a financially viable, environmentally benign and safe WEEE management system are facing significant challenges. The existence of an extensive informal sector, combined with a lack of environmental awareness among WEEE collectors, recyclers and consumers, are contributing to China's difficulties in developing a financially and environmentally sound recycling and disposal system. This paper discusses the current status of WEEE recycling and disposal in China, and its impacts on the environment, human health, and the economy. It also examines the legislative and market responses to the WEEE issue, and how these will be affected by Chinese attitudes and practices towards WEEE recycling.

  18. Recycling of used perfluorosulfonic acid membranes

    DOEpatents

    Grot, Stephen; Grot, Walther

    2007-08-14

    A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

  19. Food Service Recycling: Whose Responsibility Is It?

    ERIC Educational Resources Information Center

    Settanni, Barbara

    1990-01-01

    The food service department at a Pennsylvania school district recycles polystyrene "styrofoam" cups, plates, and food trays. In addition, the department recycles glass, aluminum, and paper. Offers advice on how to set up a school program. (MLF)

  20. Household-battery recycling plant

    SciTech Connect

    Weber, A.; Antenen, A.

    1995-12-31

    Batrec operates a plant for the recycling of used dry batteries with a capacity of 3,000 tons per year. The plant is situated in a tourist area of Switzerland and has complied with all the strict emission restrictions. The process yields four products: FeMn, Zn, Hg and slag. No hazardous waste is produced. All types of batteries can be treated.

  1. Recycling, Thermodynamics and Environmental Thrift

    ERIC Educational Resources Information Center

    Berry, R. Stephen

    1972-01-01

    Compares the cost, in terms of thermodynamic potential, of manufacturing automobiles from raw mineral resources or from recycled vehicles, and of the production of extended-life products. Uses this as an example for arguing that new technologies, with efficiencies closer to the theoretical themodynamic minima, are needed if a society is to…

  2. Recycling: Activities for the Classroom.

    ERIC Educational Resources Information Center

    Bowman, Mary Lynne, Comp.; Coon, Herbert L., Comp.

    This publication provides 80 classroom activities for the teacher. These activities are designed for elementary through high school students and are action-oriented for participation in the school community. Each activity is classified according to appropriate grade level, subject matter, and recycling concept involved. In addition, each activity…

  3. Chemical recycling of scrap composites

    NASA Technical Reports Server (NTRS)

    Allred, Ronald E.; Salas, Richard M.

    1994-01-01

    There are no well-developed technologies for recycling composite materials other than grinding to produce fillers. New approaches are needed to reclaim these valuable resources. Chemical or tertiary recycling, conversion of polymers into low molecular weight hydrocarbons for reuse as chemicals or fuels, is emerging as the most practical means for obtaining value from waste plastics and composites. Adherent Technologies is exploring a low-temperature catalytic process for recycling plastics and composites. Laboratory results show that all types of plastics, thermosets as well as thermoplastics, can be converted in high yields to valuable hydrocarbon products. This novel catalytic process runs at 200 C, conversion times are rapid, the process is closed and, thus, nonpolluting, and no highly toxic gas or liquid products have been observed so no negative environmental impact will result from its implementation. Tests on reclamation of composite materials show that epoxy, imide, and engineering thermoplastic matrices can be converted to low molecular weight hydrocarbons leaving behind the reinforcing fibers for reuse as composite reinforcements in secondary, lower-performance applications. Chemical recycling is also a means to dispose of sensitive or classified organic materials without incineration and provides a means to eliminate or reduce mixed hazardous wastes containing organic materials.

  4. Status of the Fermilab Recycler

    SciTech Connect

    Derwent, P.F.; /Fermilab

    2007-09-01

    The author presents the current operational status of the Fermilab Recycler Ring. Using a mix of stochastic and electron cooling, we prepare antiproton beams for the Fermilab Tevatron Collider program. Included are discussion of stashing and cooling performance, operational scenarios, and collider performance.

  5. NATURAL SURFACTANTS IN PAPER RECYCLING

    EPA Science Inventory

    The objective of this project is to introduce new types of surfactants based on renewable materials (sugar surfactants) for use in ink removal from recycled paper. By applying green chemistry approaches we not only will solve an important industry and environmental problem but...

  6. Recycled Water Poses Disinfectant Problem

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses the possible health hazards resulting from released nucleic acid of inactivated viruses, chlorinated nonliving organic molecules, and overestimated reliability of waste treatment standards. Suggests the recycle system use a dual disinfectant such as chlorine and ozone in water treatment. (CC)

  7. How to Succeed in Recycling

    ERIC Educational Resources Information Center

    Ross, Mark

    1973-01-01

    A detailed manual for the establishment and maintenance of a recycling center. Presented in steps, it covers the following: Start Up; Operation (glass, paper, aluminum cans, etc., troubles and recommendations); and Key Addresses of organizations able to supply helpful information. (LK)

  8. Recycling at Penn State's Beaver Stadium. "Recycle on the Go" Success Story

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    With a 13-year-old recycling program, The Pennsylvania State University's (Penn State) Beaver Stadium in the past diverted nearly 30 tons of recyclables per year from local landfills. A new initiative to promote recycling in the stadium's tailgating area has helped Penn State more than triple its old recycling record, collecting 112 tons in 2008.…

  9. Mercury recycling in the United States in 2000

    USGS Publications Warehouse

    Brooks, William E.; Matos, Grecia R.

    2005-01-01

    Reclamation and recycling of mercury from used mercury- containing products and treatment of byproduct mercury from gold mining is vital to the continued, though declining, use of this metal. Mercury is reclaimed from mercury-containing waste by treatment in multistep high-temperature retorts-the mercury is volatized and then condensed for purification and sale. Some mercury-containing waste, however, may be landfilled, and landfilled material represents loss of a recyclable resource and a threat to the environment. Related issues include mercury disposal and waste management, toxicity and human health, and regulation of mercury releases in the environment. End-users of mercury-containing products may face fines and prosecution if these products are improperly recycled or not recycled. Local and State environmental regulations require adherence to the Resource Conservation and Recovery Act and the Comprehensive Environmental Response, Compensation, and Liability Act to regulate generation, treatment, and disposal of mercury-containing products. In the United States, several large companies and a number of smaller companies collect these products from a variety of sources and then reclaim and recycle the mercury. Because mercury has not been mined as a principal product in the United States since 1992, mercury reclamation from fabricated products has become the main source of mercury. Principal product mercury and byproduct mercury from mining operations are considered to be primary materials. Mercury may also be obtained as a byproduct from domestic or foreign gold-processing operations. In the early 1990s, U.S. manufacturers used an annual average that ranged from 500 to 600 metric tons of recycled and imported mercury for fabrication of automobile convenience switches, dental amalgam, fluorescent lamps, medical uses and thermometers, and thermostats. The amount now used for fabrication is estimated to be 200 metric tons per year or less. Much of the data on

  10. Ames Lab 101: Rare-Earth Recycling

    SciTech Connect

    Ryan Ott

    2012-09-05

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  11. Recycled Office Paper: Why It Costs More.

    ERIC Educational Resources Information Center

    Usherson, Judy

    1992-01-01

    Discusses obstacles to making recycled office paper cheaper. Explains how the economics of recycled office paper discourages recycling by commodity mills. Includes discussion of integrated and nonintegrated mills, commodity and specialty mills, specialty printing and writing mills, postconsumer material, supply and demand, and economic…

  12. Recycling Technology: Can It Be Taught?

    ERIC Educational Resources Information Center

    Clum, James A.; Loper, Carl R., Jr.

    This paper describes the content of a seminar-type engineering course dealing with materials reutilization (recycling). The course, consisting of lecture and discussion by various faculty and outside experts as well as student presentations of research papers on recycling topics, is intended to investigate current areas in which recycling of…

  13. Fermilab Recycler Stochastic Cooling for Luminosity Production

    SciTech Connect

    Broemmelsiek, D.; Gattuso, C.

    2006-03-20

    The Fermilab Recycler began regularly delivering antiprotons for Tevatron luminosity operations in 2005. Methods for tuning the Recycler stochastic cooling system are presented. The unique conditions and resulting procedures for minimizing the longitudinal phase space density of the Recycler antiproton beam are outlined.

  14. Textile Recycling, Convenience, and the Older Adult.

    ERIC Educational Resources Information Center

    Domina, Tanya; Koch, Kathryn

    2001-01-01

    Results of a study to examine the recycling practices and needs of older adults (n=217) indicated that older adults do recycle traditional materials, but need accommodations for physical limitations. They report textile recycling as time consuming and difficult and used donations to religious organizations as their principal means of textile…

  15. Communication and Recycling in Park Campgrounds.

    ERIC Educational Resources Information Center

    Ham, Sam H.

    1984-01-01

    Evaluated the effectiveness of the Canby Washington State Park campground recycling program by determining whether campers (N=147) read and followed the provided instructions when disposing of garbage, understood the sorting and disposal instructions, and arrived at the park equipped with receptacles for recyclables and non-recyclables.…

  16. School Recycling Programs: A Handbook for Educators.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This brochure describes some of the many recycling program options that schools can implement in their communities. It focuses on implementing actual recycling projects as a way of teaching the importance and benefits of recycling. The text examines the solid waste crisis and why Americans cannot continue to possess a disposable mentality. It…

  17. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema

    Ryan Ott

    2013-06-05

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  18. Materials Recycling: The Virtue of Necessity. Worldwatch Paper 56.

    ERIC Educational Resources Information Center

    Chandler, William U.

    This report focuses on the necessity and advantages of recycling. Following an introduction, the report is divided into five sections, addressing respectively: the necessity of recycling; waste paper recycling; aluminum recycling; iron and steel recycling; and three steps to a "recycling society." These steps include: (1) requiring that consumers…

  19. Wastepaper recycling. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations concerning the recycling of wastepaper fibers for the production of new paper products. The technology and development of the recycling industry; flotation processes; recycled fiber properties and improvement methods; and the installation, operation, and maintenance of paper recycling systems are among the topics discussed. The citations also examine applications, markets, new products, environmental impact, governmental policies, economics, regulations, production statistics, and wastepaper salvaging. Business information on new papermills, investments, and acquisitions is also included. De-inking of wastepaper is examined in a separate bibliography. (Contains a minimum of 130 citations and includes a subject term index and title list.)

  20. Reuse, replace, recycle

    PubMed Central

    McMurray, Michael A.; Thorner, Jeremy W.

    2015-01-01

    Septins are guanine nucleotide-binding proteins that form hetero-oligomeric complexes, which assemble into filaments and higher-order structures at sites of cell division and morphogenesis in eukaryotes. Dynamic changes in the organization of septin-containing structures occur concomitantly with progression through the mitotic cell cycle and during cell differentiation. Septins also undergo stage-specific post-translational modifications, which have been implicated in regulating their dynamics, in some cases via purported effects on septin turnover. In our recent study, the fate of two of the five septins expressed in mitotic cells of budding yeast (Saccharomyces cerevisiae) was tracked using two complementary fluorescence-based methods for pulse-chase analysis. During mitotic growth, previously-made molecules of both septins (Cdc10 and Cdc12) persisted through multiple successive divisions and were incorporated equivalently with newly synthesized molecules into hetero-oligomers and higher-order structures. Similarly, in cells undergoing meiosis and the developmental program of sporulation, pre-existing copies of Cdc10 were incorporated into new structures. In marked contrast, Cdc12 was irreversibly excluded from septin complexes and replaced by another septin, Spr3. Here, we discuss the broader implications of these results and related findings with regard to how septin dynamics is coordinated with the mitotic cell cycle and in the yeast life cycle, and how these observations may relate to control of the dynamics of other complex multi-subunit assemblies. PMID:19164941

  1. Recycling Trends in the Plastics Manufacturing and Recycling Companies in Malaysia

    NASA Astrophysics Data System (ADS)

    Wahab, D. A.; Abidin, A.; Azhari, C. H.

    This study presents the findings from a study on the consumption of recycled materials and recycling practices in the plastics manufacturing industry and recycling companies in Malaysia. The findings were obtained from a survey conducted in twenty plastic manufacturing companies and detailed case studies in three recycling companies. The survey conducted in the plastic manufacturing companies` shows that the consumption rate for poly-olefins (PP and PE) is the highest among the resin types and the industrial sector that consumes the most plastic materials is the electrical and electronics sector. The consumption of recycled materials is high among the local manufacturing companies (80%) which are largely due to cost savings; about 20% of these companies conducted in-house recycling. The study has also shown that the medium scale industry consumes the most recycled materials as compared to the large and small scale industry. The rate of disposal for plastic materials in the local industry is approximately 5%. The detailed case studies conducted in the recycling companies have successfully identified the main processes involved in plastic recycling namely manual sorting, cleaning, drying, meshing/pelletising and packaging. These recycling companies obtained recycled materials from various sources including industrial scrap, dumping sites, local producers as well as imported sources. Pricing of recycled materials were based on classification according to grade and quality of the recycled materials. The study has reflected the extent of in-house recycling trends in the local plastic manufacturing companies and their dependency on the supply from the local recycling companies.

  2. An overview of recycling refractory materials

    SciTech Connect

    Bennett, James P.; Kwong, Kyei-Sing

    2004-09-01

    Refractory materials must be disposed of or recycled when removed from service. Off-specification or reject material has been reused by the refractory industry for a number of years, with small percentages of these materials added as a part of refractory formulations. Historically, limed reuse of spent refractory materials in other applications has occurred. Environmental legislation, stewardship programs, and other forces encouraged some businesses to recycle spent refractories. Reuse of spent refractory material varies considerably among different industries and with the location of the industrial user. Efforts to recycle, the driving forces for recycling, and issues and steps to be taken into account initiating a recycling program will be discussed.

  3. Carambola optics for recycling of light

    NASA Astrophysics Data System (ADS)

    Leutz, Ralf; Fu, Ling; Ries, Harald

    2006-04-01

    Recycling of light allows the luminance (radiance) emitted by a light source to be increased at the cost of reducing the total luminous flux (radiant power). Recycling of light means returning part of the emitted light to the source, where part of it will escape absorption. An optical design that is suitable for multiple and controlled recycling is described. Carambola optics is named for its resemblance to star fruit. Several pairs of mirrors or prisms redirect light repeatedly onto the source, thus achieving multiple transits of the light through the source. This recycled light exits the carambola in the same phase space as light directly emitted and not recycled.

  4. Composite material from recycled polyester for recyclable automobile structures

    SciTech Connect

    Lertola, J.G.

    1995-12-31

    DuPont has developed a compression-moldable composite made from the thermoplastic polyester PET and long glass fibers. This material, XTC{trademark}, is part of the class of materials known as GMT`s, or glass-mat thermoplastics. The PET content in XTC{trademark} allows the use of a wide variety of recycled material that might otherwise end up in landfills and incinerators. DuPont has succeeded in using 100% post-consumer polyester, from bottles, film, or fibers, in the composite. Since processing involves heating the material to the melt in air, the main technical issues are hydrolysis and oxidative degradation. Impurities in the recycled material must be carefully monitored, as they often increase the extent of degradation. The product itself, used to mold shaped structures and body panels for automobiles, may be recycled after its useful life. Depending on the needed purity level, processes ranging from injection molding to methanolysis can turn ground XTC{trademark} parts back into new, useful products.

  5. Cost effectiveness of recycling: A systems model

    SciTech Connect

    Tonjes, David J.; Mallikarjun, Sreekanth

    2013-11-15

    Highlights: • Curbside collection of recyclables reduces overall system costs over a range of conditions. • When avoided costs for recyclables are large, even high collection costs are supported. • When avoided costs for recyclables are not great, there are reduced opportunities for savings. • For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.

  6. High performance polyester concrete using recycled PET

    SciTech Connect

    Rebeiz, K.S.

    1995-10-01

    Recycled polyethylene terephthalate (PET) plastic wastes could be used in production of unsaturated polyester resins. In turn, these resins could be mixed with inorganic aggregates to produce polymer concrete (PC). Unsaturated polyesters based on recycled PET might be a potentially lower source cost of resins for producing useful PC based-products. The advantage of recycling PET in PC is that the PET materials do not have to be purified, including removal of colors, to the same extent as other PET recycling applications, which should facilitate the recycling operation and minimize its cost. The recycling of PET in PC could also help save energy and allow the long term disposal of the PET waste, an important advantage in recycling applications.

  7. Vanadium recycling for fusion reactors

    SciTech Connect

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ``hands-on`` refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided.

  8. DWPF recycle minimization: Brainstorming session

    SciTech Connect

    Jacobs, R.A.; Poirier, M.R.

    1993-10-12

    The recycle stream from the DWPF constitutes a major source of water addition to the High Level Waste evaporator system. As now designed, the entire flow of 3.5 to 6.5 gal/min (@ 25% and 75% attainment, respectively), or 2 gal/min during idling, flow to the 2H evaporator system (Tank 43). Substantial improvement in the HLW water balance and tank volume management is expected if the DWPF recycle to the HLW evaporator system can be significantly reduced. A task team has been appointed to study alternatives for reducing the flow to the HLW evaporator system and make recommendations for implementation and/or further study and evaluation. The brainstorming session detailed in this report was designed to produce the first cut options for the task team to further evaluate.

  9. Occupational exposure in the fluorescent lamp recycling sector in France.

    PubMed

    Zimmermann, François; Lecler, Marie-Thérèse; Clerc, Frédéric; Chollot, Alain; Silvente, Eric; Grosjean, Jérome

    2014-07-01

    The fluorescent lamp recycling sector is growing considerably in Europe due to increasingly strict regulations aimed at inciting the consumption of low energy light bulbs and their end-of-life management. Chemical risks were assessed in fluorescent lamp recycling facilities by field measurement surveys in France, highlighting that occupational exposure and pollutant levels in the working environment were correlated with the main recycling steps and processes. The mean levels of worker exposure are 4.4 mg/m(3), 15.4 μg/m(3), 14.0 μg/m(3), 247.6 μg/m(3), respectively, for total inhalable dust, mercury, lead and yttrium. The mean levels of airborne pollutants are 3.1mg/m(3), 9.0 μg/m(3), 9.0 μg/m(3), 219.2 μg/m(3), respectively, for total inhalable dust, mercury, lead and yttrium. The ranges are very wide. Surface samples from employees' skin and granulometric analysis were also carried out. The overview shows that all the stages and processes involved in lamp recycling are concerned by the risk of hazardous substances penetrating into the bodies of employees, although exposure of the latter varies depending on the processes and tasks they perform. The conclusion of this study strongly recommends the development of a new generation of processes in parallel with more information sharing and regulatory measures. PMID:24768515

  10. Odin (ANKS1A) Modulates EGF Receptor Recycling and Stability

    PubMed Central

    Tong, Jiefei; Sydorskyy, Yaroslav; St-Germain, Jonathan R.; Taylor, Paul; Tsao, Ming S.; Moran, Michael F.

    2013-01-01

    The ANKS1A gene product, also known as Odin, was first identified as a tyrosine-phosphorylated component of the epidermal growth factor receptor network. Here we show that Odin functions as an effector of EGFR recycling. In EGF-stimulated HEK293 cells tyrosine phosphorylation of Odin was induced prior to EGFR internalization and independent of EGFR-to-ERK signaling. Over-expression of Odin increased EGF-induced EGFR trafficking to recycling endosomes and recycling back to the cell surface, and decreased trafficking to lysosomes and degradation. Conversely, Odin knockdown in both HEK293 and the non-small cell lung carcinoma line RVH6849, which expresses roughly 10-fold more EGF receptors than HEK293, caused decreased EGFR recycling and accelerated trafficking to the lysosome and degradation. By governing the endocytic fate of internalized receptors, Odin may provide a layer of regulation that enables cells to contend with receptor cell densities and ligand concentration gradients that are physiologically and pathologically highly variable. PMID:23825523

  11. Slag recycling of irradiated vanadium

    SciTech Connect

    Gorman, P.K.

    1995-04-05

    An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium.

  12. Ozone bleaching of recycled paper

    SciTech Connect

    Muguet, M.; Kogan, J. )

    1993-11-01

    Chlorinated bleaching chemicals, notably chlorine and hypochlorite, are still being used to bleach deinked, woodfree pulps. Increasing environmental concern about the use of these chemicals--coupled with the industry's efforts to increase the use of recycled fibers--highlight the need to develop better techniques for producing high-quality deinked pulp. Results presented in this report suggest that deinked fibers can be treated with ozone followed by a peroxide bleaching stage to produce a high-quality pulp.

  13. From wastewater to fertilisers--Technical overview and critical review of European legislation governing phosphorus recycling.

    PubMed

    Hukari, Sirja; Hermann, Ludwig; Nättorp, Anders

    2016-01-15

    The present paper is based on an analysis of the EU legislation regulating phosphorus recovery and recycling from wastewater stream, in particular as fertiliser. To recover phosphorus, operators need to deal with market regulations, health and environment protection laws. Often, several permits and lengthy authorisation processes for both installation (e.g. environmental impact assessment) and the recovered phosphorus (e.g. End-of-Waste, REACH) are required. Exemptions to certain registration processes for recoverers are in place but rarely applied. National solutions are often needed. Emerging recovery and recycling sectors are affected by legislation in different ways: Wastewater treatment plants are obliged to remove phosphorus but may also recover it in low quantities for operational reasons. Permit processes allowing recovery and recycling operations next to water purification should thus be rationalised. In contrast, the fertiliser industry relies on legal quality requirements, ensuring their market reputation. For start-ups, raw-material sourcing and related legislation will be the key. Phosphorus recycling is governed by fragmented decision-making in regional administrations. Active regulatory support, such as recycling obligation or subsidies, is lacking. Legislation harmonisation, inclusion of recycled phosphorus in existing fertiliser regulations and support of new operators would speed up market penetration of novel technologies, reduce phosphorus losses and safeguard European quality standards. PMID:26596788

  14. Aircraft de-icer: Recycling can cut carbon emissions in half

    SciTech Connect

    Johnson, Eric P.

    2012-01-15

    Flight-safety regulations in most countries require aircraft to be ice-free upon takeoff. In icy weather, this means that the aircraft usually must be de-iced (existing ice is removed) and sometimes anti-iced (to protect against ice-reformation). For both processes, aircraft typically are sprayed with an 'antifreeze' solution, consisting mainly of glycol diluted with water. This de/anti-icing creates an impact on the environment, of which environmental regulators have grown increasingly conscious. The US Environmental Protection Agency (EPA), for example, recently introduced stricter rules that require airports above minimum size to collect de-icing effluents and send them to wastewater treatment. De-icer collection and treatment is already done at most major airports, but a few have gone one step further: rather than putting the effluent to wastewater, they recycle it. This study examines the carbon savings that can be achieved by recycling de-icer. There are two key findings. One, recycling, as opposed to not recycling, cuts the footprint of aircraft de-icing by 40-50% - and even more, in regions where electricity-generation is cleaner. Two, recycling petrochemical-based de-icer generates a 15-30% lower footprint than using 'bio' de-icer without recycling. - Highlights: Black-Right-Pointing-Pointer Carbon footprint of aircraft de-icing can be measured. Black-Right-Pointing-Pointer Recycling aircraft de-icer cuts the footprint of aircraft de-icing by 40-50%. Black-Right-Pointing-Pointer Recycling 'fossil' de-icer is lower carbon than not recycling 'bio' de-icer.

  15. Deep water recycling through time

    PubMed Central

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2014-01-01

    We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity (vs), slab age (a) and mantle temperature (Tm). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×105 kg/m2), as a function of vs (cm/yr), a (Myrs), and Tm (°C):. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×105 kg/m2 of H2O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×108 Tg/Myr of H2O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5–3.7 × 108 Tg/Myr of H2O could still be recycled in the mantle at 2.8 Ga. Key Points Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H2O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern PMID:26321881

  16. Management options for recycling radioactive scrap metals

    SciTech Connect

    Dehmel, J.C.; MacKinney, J.; Bartlett, J.

    1997-02-01

    The feasibility and advantages of recycling radioactive scrap metals (RSM) have yet to be assessed, given the unique technical, regulatory, safety, and cost-benefit issues that have already been raised by a concerned recycling industry. As is known, this industry has been repeatedly involved with the accidental recycling of radioactive sources and, in some cases, with costly consequences. If recycling were deemed to be a viable option, it might have to be implemented with regulatory monitoring and controls. Its implementation may have to consider various and complex issues and address the requirements and concerns of distinctly different industries. There are three basic options for the recycling of such scraps. They are: (1) recycling through the existing network of metal-scrap dealers and brokers, (2) recycling directly and only with specific steelmills, or (3) recycling through regional processing centers. Under the first option, scrap dealers and brokers would receive material from RSM generators and determine at which steelmills such scraps would be recycled. For the second option, RSM generators would deal directly with selected steelmills under specific agreements. For the third option, generators would ship scraps only to regional centers for processing and shipment to participating steelmills. This paper addresses the potential advantages of each option, identifies the types of arrangements that would need to be secured among all parties, and attempts to assess the receptivity of the recycling industry to each option.

  17. Occupational exposure in the fluorescent lamp recycling sector in France

    SciTech Connect

    Zimmermann, François Lecler, Marie-Thérèse; Clerc, Frédéric; Chollot, Alain; Silvente, Eric; Grosjean, Jérome

    2014-07-15

    Highlights: • Chemical risks were assessed in the five fluorescent lamp recycling facilities. • The main hazardous agents are mercury vapors and dust containing lead and yttrium. • Exposure and pollutant levels were correlated with steps and processes. • All the stages and processes are concerned by worrying levels of pollutants. • We suggest recommendations to reduce chemical risk. - Abstract: The fluorescent lamp recycling sector is growing considerably in Europe due to increasingly strict regulations aimed at inciting the consumption of low energy light bulbs and their end-of-life management. Chemical risks were assessed in fluorescent lamp recycling facilities by field measurement surveys in France, highlighting that occupational exposure and pollutant levels in the working environment were correlated with the main recycling steps and processes. The mean levels of worker exposure are 4.4 mg/m{sup 3}, 15.4 μg/m{sup 3}, 14.0 μg/m{sup 3}, 247.6 μg/m{sup 3}, respectively, for total inhalable dust, mercury, lead and yttrium. The mean levels of airborne pollutants are 3.1 mg/m{sup 3}, 9.0 μg/m{sup 3}, 9.0 μg/m{sup 3}, 219.2 μg/m{sup 3}, respectively, for total inhalable dust, mercury, lead and yttrium. The ranges are very wide. Surface samples from employees’ skin and granulometric analysis were also carried out. The overview shows that all the stages and processes involved in lamp recycling are concerned by the risk of hazardous substances penetrating into the bodies of employees, although exposure of the latter varies depending on the processes and tasks they perform. The conclusion of this study strongly recommends the development of a new generation of processes in parallel with more information sharing and regulatory measures.

  18. Uncovering the Recycling Potential of "New" WEEE in China.

    PubMed

    Zeng, Xianlai; Gong, Ruying; Chen, Wei-Qiang; Li, Jinhui

    2016-02-01

    Newly defined categories of WEEE have increased the types of China's regulated WEEE from 5 to 14. Identification of the amounts and valuable-resource components of the "new" WEEE generated is critical to solving the e-waste problem, for both governmental policy decisions and recycling enterprise expansions. This study first estimates and predicts China's new WEEE generation for the period of 2010-2030 using material flow analysis and the lifespan model of the Weibull distribution, then determines the amounts of valuable resources (e.g., base materials, precious metals, and rare-earth minerals) encased annually in WEEE, and their dynamic transfer from in-use stock to waste. Main findings include the following: (i) China will generate 15.5 and 28.4 million tons WEEE in 2020 and 2030, respectively, and has already overtaken the U.S. to become the world's leading producer of e-waste; (ii) among all the types of WEEE, air conditioners, desktop personal computers, refrigerators, and washing machines contribute over 70% of total WEEE by weight. The two categories of EEE-electronic devices and electrical appliances-each contribute about half of total WEEE by weight; (iii) more and more valuable resources have been transferred from in-use products to WEEE, significantly enhancing the recycling potential of WEEE from an economic perspective; and (iv) WEEE recycling potential has been evolving from ∼16 (10-22) billion US$ in 2010, to an anticipated ∼42 (26-58) billion US$ in 2020 and ∼73.4 (44.5-103.4) billion US$ by 2030. All the obtained results can improve the knowledge base for closing the loop of WEEE recycling, and contribute to governmental policy making and the recycling industry's business development. PMID:26709550

  19. INEEL Lead Recycling in a Moratorium Environment

    SciTech Connect

    Kooda, Kevin Evan; Mc Cray, Casey William; Aitken, Darren William; Galloway, Kelly

    2003-02-01

    Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

  20. INEEL Lead Recycling in a Moratorium Environment

    SciTech Connect

    Kooda, K. E.; Galloway, K.; McCray, C. W.; Aitken, D. W.

    2003-02-26

    Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

  1. Xerox's closed recycling loop still contains kinks

    SciTech Connect

    Not Available

    1995-02-01

    Xerox Corp. has established a recycling loop for plastics screw-top toner bottles and dry-ink containers used in most of the company's high-volume copiers. However, a severe shortage of post-consumer recycled plastic has been short-circuiting Xerox's good intentions. Last year, the Stamford, Conn.-based company stopped manufacturing toner containers from virgin plastics and instead began using recycled raw materials, such as discarded milk and water jugs collected from municipal curbside recycling programs. The bottles are ground and remolded into such products as air filters for vacuum cleaners, plastic lumber, compost bins, landscape ties, benches and fence posts. However, what sounds like a win-win situation actually is costing too much money. Contrary to popular belief, post-consumer recycled plastic costs more than virgin plastic. Despite the added expense, Xerox will continue to use recycled plastics when possible.

  2. Minerals yearbook, 1992: Materials recycling. Annual report

    SciTech Connect

    Tanner, A.O.

    1992-01-01

    A large variety of materials are recycled by different sectors of our society. The materials recycling that is mainly addressed in this writing is from waste that is generated after manufacturing and use. Included is recycling that is generally more obvious to the public: the collection, reprocessing, and remanufacture of materials into new products from post-consumer UBC's, scrap metal, glass containers, paper goods, increasingly plastics, as well as rubber tires and other used goods.

  3. Influenza A virus recycling revisited.

    PubMed Central

    Dowdle, W. R.

    1999-01-01

    Current textbooks link influenza pandemics to influenza A virus subtypes H2 (1889-91), H3 (1990), H1 (1918-20), H2 (1957-58) and H3 (1968), a pattern suggesting subtype recycling in humans. Since H1 reappeared in 1977, whatever its origin, some workers feel that H2 is the next pandemic candidate. This report reviews the publications on which the concept of influenza A virus subtype recycling is based and concludes that the data are inconsistent with the purported sequence of events. The three influenza pandemics prior to 1957-58 were linked with subtypes through retrospective studies of sera from the elderly, or through seroarchaeology. The pandemic seroarchaeological model for subtype H1 has been validated by the recent recovery of swine virus RNA fragments from persons who died from influenza in 1918. Application of the model to pre-existing H3 antibody among the elderly links the H3 subtype to the pandemic of 1889-91, not that of 1900 as popularly quoted. Application of the model to pre-existing H2 antibody among the elderly fails to confirm that this subtype caused a pandemic in the late 1800's, a finding which is consistent with age-related excess mortality patterns during the pandemics of 1957 (H2) and 1968 (H3). H2 variants should be included in pandemic planning for a number of reasons, but not because of evidence of recycling. It is not known when the next pandemic will occur or which of the 15 (or more) haemagglutinin subtypes will be involved. Effective global surveillance remains the key to influenza preparedness. PMID:10593030

  4. Recycling of auto shredder residue.

    PubMed

    Nourreddine, Menad

    2007-01-31

    Currently, about 75% of end-of-life vehicle's (ELV) total weight is recycled in EU countries. The remaining 25%, which is called auto shredder residues (ASR) or auto fluff, is disposed of as landfill because of its complexity. It is a major challenge to reduce this percentage of obsolete cars. The European draft directive states that by the year 2006, only 15% of the vehicle's weight can be disposed of at landfill sites and by 2015, this will be reduced to 5%. The draft directive states that a further 10% can be incinerated. The quantities of shredder fluff are likely to increase in the coming years. This is because of the growing number of cars being scrapped, coupled with the increase in the amount of plastics used in cars. In Sweden, some current projects are focusing on recycling of ASR material. In this paper some different alternatives for using this material are reported. The hypothetical injection of ASR into a blast furnace concentrating on ASR's effect to some blast furnace (BF) parameters has been completed using a blast furnace mass balance model. As a result, in principle, ASR can be used as reducing agent in the BF process if certain conditions are met. The particle size of ASR material must be controlled to ensure optimal gasification of the material in the raceway. Regarding the chemical composition of ASR, the non-ferrous content can affect the pig iron quality, which is difficult to rectify at a later point. The most attractive recycling alternative is to use the products obtained from pyrolysis of ASR in appropriate metallurgical processes. PMID:16600493

  5. BP details new recycling process

    SciTech Connect

    Chynoweth, E.

    1992-04-22

    BP Chemicals (London) is developing a preprocessing thermal cracker for recycling mixed plastics waste as an add-on to existing petrochemicals or refinery complexes. The company is currently discussing the technology with other plastic producers to {open_quotes}move forward together,{close_quotes} say Serge Huybrechts, branch R&D manager at BP Chemicals at Grangemouth. He says the unit would be able to deliver an intermediate feed of similar composition to chemical naphtha for chemical or refinery processes including steam cracking, catalytic cracking, coking, gasification, and hydrocracking. In comparison, pyrolysis gives a range of products, from light gas to heavy aromatics, that are difficult to integrate into existing equipment.

  6. Precipitation recycling in the Amazon basin

    NASA Technical Reports Server (NTRS)

    Eltahir, E. A. B.; Bras, R. L.

    1994-01-01

    Precipitation recycling is the contribution of evaporation within a region to precipitation in that same region. The recycling rate is a diagnostic measure of the potential for interactions between land surface hydrology and regional climate. In this paper we present a model for describing the seasonal and spatial variability of the recycling process. The precipitation recycling ratio, rho, is the basic variable in describing the recycling process. Rho is the fraction of precipitation at a certain location and time which is contributed by evaporation within the region under study. The recycling model is applied in studyiing the hydrologic cycle in the Amazon basin. It is estimated that about 25% of all the rain that falls in the Amazon basin is contributed by evaporation within the basin. This estimate is based on analysis of a data set supplied by the European Centre for Medium-range Weather Forecasts (ECMWF). The same analysis is repeated using a different data set from the Geophysical Fluid Dynamics Laboratory (GFDL). Based on this data set, the recycling ratio is estimated to be 35%. The seasonal variability of the recycling ratio is small compared with the yearly average. The new estimates of the recycling ratio are compared with results of previous studies, and the differences are explained.

  7. Gold recycling; a materials flow study

    USGS Publications Warehouse

    Amey, Earle B.

    2000-01-01

    This materials flow study includes a description of trends in consumption, loss, and recycling of gold-containing materials in the United States in 1998 in order to illustrate the extent to which gold is presently being recycled and to identify recycling trends. The quantity of gold recycled, as a percent of the apparent supply of gold, was estimated to be about 30 percent. Of the approximately 446 metric tons of gold refined in the United States in 1998, the fabricating and industrial use losses were 3 percent.

  8. Fermilab recycler stochastic cooling commissioning and performance

    SciTech Connect

    D. Broemmelsiek; Ralph Pasquinelli

    2003-06-04

    The Fermilab Recycler is a fixed 8 GeV kinetic energy storage ring located in the Fermilab Main Injector tunnel near the ceiling. The Recycler has two roles in Run II. First, to store antiprotons from the Fermilab Antiproton Accumulator so that the antiproton production rate is no longer compromised by large numbers of antiprotons stored in the Accumulator. Second, to receive antiprotons from the Fermilab Tevatron at the end of luminosity periods. To perform each of these roles, stochastic cooling in the Recycler is needed to preserve and cool antiprotons in preparation for transfer to the Tevatron. The commissioning and performance of the Recycler stochastic cooling systems will be reviewed.

  9. Cell surface recycling in yeast: mechanisms and machineries.

    PubMed

    MacDonald, Chris; Piper, Robert C

    2016-04-15

    Sorting internalized proteins and lipids back to the cell surface controls the supply of molecules throughout the cell and regulates integral membrane protein activity at the surface. One central process in mammalian cells is the transit of cargo from endosomes back to the plasma membrane (PM) directly, along a route that bypasses retrograde movement to the Golgi. Despite recognition of this pathway for decades we are only beginning to understand the machinery controlling this overall process. The budding yeastSaccharomyces cerevisiae, a stalwart genetic system, has been routinely used to identify fundamental proteins and their modes of action in conserved trafficking pathways. However, the study of cell surface recycling from endosomes in yeast is hampered by difficulties that obscure visualization of the pathway. Here we briefly discuss how recycling is likely a more prevalent process in yeast than is widely appreciated and how tools might be built to better study the pathway. PMID:27068957

  10. NORM regulations

    SciTech Connect

    Gray, P.

    1997-02-01

    The author reviews the question of regulation for naturally occuring radioactive material (NORM), and the factors that have made this a more prominent concern today. Past practices have been very relaxed, and have often involved very poor records, the involvment of contractors, and the disposition of contaminated equipment back into commercial service. The rationale behind the establishment of regulations is to provide worker protection, to exempt low risk materials, to aid in scrap recycling, to provide direction for remediation and to examine disposal options. The author reviews existing regulations at federal and state levels, impending legislation, and touches on the issue of site remediation and potential liabilities affecting the release of sites contaminated by NORM.

  11. Energy return on investment of used nuclear fuel recycling

    Energy Science and Technology Software Center (ESTSC)

    2011-08-31

    N-EROI calculates energy return on investment (EROI) for recycling of used nublear fuel in four scenarios: one-pass recycle in light water reactors; two-pass recycle in light water reactors; mulit-pass recycle in burner fast reactora; one-pass recycle in breeder fast reactors.

  12. Sorting Recycled Trash: An Activity for Earth Day 2007

    ERIC Educational Resources Information Center

    Harris, Mary E.; Harris, Harold H.

    2007-01-01

    Middle or high school students celebrate Earth Day on April 22, 2007 by participating in the activity to separate commingled recyclable trash to simulate sorting in a recycling center. Students would gain an appreciation for recyclable trash, after it is taken to a recycling center and learn about properties of recyclables.

  13. Network of coregulated spliceosome components revealed by zebrafish mutant in recycling factor p110

    PubMed Central

    Trede, Nikolaus S.; Medenbach, Jan; Damianov, Andrey; Hung, Lee-Hsueh; Weber, Gerhard J.; Paw, Barry H.; Zhou, Yi; Hersey, Candace; Zapata, Agustin; Keefe, Matthew; Barut, Bruce A.; Stuart, Andrew B.; Katz, Tammisty; Amemiya, Chris T.; Zon, Leonard I.; Bindereif, Albrecht

    2007-01-01

    The spliceosome cycle consists of assembly, catalysis, and recycling phases. Recycling of postspliceosomal U4 and U6 small nuclear ribonucleoproteins (snRNPs) requires p110/SART3, a general splicing factor. In this article, we report that the zebrafish earl grey (egy) mutation maps in the p110 gene and results in a phenotype characterized by thymus hypoplasia, other organ-specific defects, and death by 7 to 8 days postfertilization. U4/U6 snRNPs were disrupted in egy mutant embryos, demonstrating the importance of p110 for U4/U6 snRNP recycling in vivo. Surprisingly, expression profiling of the egy mutant revealed an extensive network of coordinately up-regulated components of the spliceosome cycle, providing a mechanism compensating for the recycling defect. Together, our data demonstrate that a mutation in a general splicing factor can lead to distinct defects in organ development and cause disease. PMID:17416673

  14. DGKθ Catalytic Activity Is Required for Efficient Recycling of Presynaptic Vesicles at Excitatory Synapses.

    PubMed

    Goldschmidt, Hana L; Tu-Sekine, Becky; Volk, Lenora; Anggono, Victor; Huganir, Richard L; Raben, Daniel M

    2016-01-12

    Synaptic transmission relies on coordinated coupling of synaptic vesicle (SV) exocytosis and endocytosis. While much attention has focused on characterizing proteins involved in SV recycling, the roles of membrane lipids and their metabolism remain poorly understood. Diacylglycerol, a major signaling lipid produced at synapses during synaptic transmission, is regulated by diacylglycerol kinase (DGK). Here, we report a role for DGKθ in the mammalian CNS in facilitating recycling of presynaptic vesicles at excitatory synapses. Using synaptophysin- and vGlut1-pHluorin optical reporters, we found that acute and chronic deletion of DGKθ attenuated the recovery of SVs following neuronal stimulation. Rescue of recycling kinetics required DGKθ kinase activity. Our data establish a role for DGK catalytic activity at the presynaptic nerve terminal in SV recycling. Altogether, these data suggest that DGKθ supports synaptic transmission during periods of elevated neuronal activity. PMID:26748701

  15. DGKθ Catalytic Activity is Required for Efficient Recycling of Presynaptic Vesicles at Excitatory Synapses

    PubMed Central

    Goldschmidt, Hana L.; Tu-Sekine, Becky; Volk, Lenora; Anggono, Victor; Huganir, Richard L.; Raben, Daniel M.

    2015-01-01

    Summary Synaptic transmission relies on coordinated coupling of synaptic vesicle (SV) exocytosis and endocytosis. While much attention has focused on characterizing proteins involved in SV recycling, the roles of membrane lipids and their metabolism remain poorly understood. Diacylglycerol, a major signaling lipid produced at synapses during synaptic transmission, is regulated by diacylglycerol kinase (DGK). Here we report a role for DGKθ in the mammalian central nervous system in facilitating recycling of presynaptic vesicles at excitatory synapses. Using synaptophysin- and vGlut1-pHluorin optical reporters, we found that acute and chronic deletion of DGKθ attenuated the recovery of SVs following neuronal stimulation. Rescue of recycling kinetics required DGKθ kinase activity. Our data establish a role for DGK catalytic activity and its byproduct, phosphatidic acid, at the presynaptic nerve terminal in SV recycling. Together these data suggest DGKθ supports synaptic transmission during periods of elevated neuronal activity. PMID:26748701

  16. Recycle Alaska: Reduce, Reuse, Recycle. Activities Handbook, Teacher's Guide, and Student Worksheets.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    Recycling is a very important aspect of conserving the environment for future generations. This guide addresses the topic of litter prevention for the Alaskan environment and contains 42 activities. Activity topics covered include Natural Cycles, Human Interruption of Natural Cycles, Reduce, Reuse, Recycle and Recycled Classroom. Grade level,…

  17. Estimation of continental precipitation recycling

    NASA Technical Reports Server (NTRS)

    Brubaker, Kaye L.; Entekhabi, Dara; Eagleson, P. S.

    1993-01-01

    The total amount of water that precipitates on large continental regions is supplied by two mechanisms: 1) advection from the surrounding areas external to the region and 2) evaporation and transpiration from the land surface within the region. The latter supply mechanism is tantamount to the recycling of precipitation over the continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. Gridded data on observed wind and humidity in the global atmosphere are used to determine the convergence of atmospheric water vapor over continental regions. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. The results indicate that the contribution of regional evaporation to regional precipitation varies substantially with location and season. For the regions studied, the ratio of locally contributed to total monthly precipitation generally lies between 0. 10 and 0.30 but is as high as 0.40 in several cases.

  18. Nanochannel Based Single Molecule Recycling

    PubMed Central

    Lesoine, John F.; Venkataraman, Prahnesh A.; Maloney, Peter C.; Dumont, Mark

    2012-01-01

    We present a method for measuring the fluorescence from a single molecule hundreds of times without surface immobilization. The approach is based on the use of electroosmosis to repeatedly drive a single target molecule in a fused silica nanochannel through a stationary laser focus. Single molecule fluorescence detected during the transit time through the laser focus is used to repeatedly reverse the electrical potential controlling the flow direction. Our method does not rely on continuous observation and therefore is less susceptible to fluorescence blinking than existing fluorescence-based trapping schemes. The variation in the turnaround times can be used to measure the diffusion coefficient on a single molecule level. We demonstrate the ability to recycle both proteins and DNA in nanochannels and show that the procedure can be combined with single-pair Förster energy transfer. Nanochannel-based single molecule recycling holds promise for studying conformational dynamics on the same single molecule in solution and without surface tethering. PMID:22662745

  19. Integrated Recycling Test Fuel Fabrication

    SciTech Connect

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  20. Recycling of typical supercapacitor materials.

    PubMed

    Vermisoglou, Eleni C; Giannouri, Maria; Todorova, Nadia; Giannakopoulou, Tatiana; Lekakou, Constantina; Trapalis, Christos

    2016-04-01

    A simple, facile and low-cost method for recycling of supercapacitor materials is proposed. This process aims to recover some fundamental components of a used supercapacitor, namely the electrolyte salt tetraethyl ammonium tetrafluoroborate (TEABF4) dissolved in an aprotic organic solvent such as acetonitrile (ACN), the carbonaceous material (activated charcoal, carbon nanotubes) purified, the current collector (aluminium foil) and the separator (paper) for further utilization. The method includes mechanical shredding of the supercapacitor in order to reduce its size, and separation of aluminium foil and paper from the carbonaceous resources containing TEABF4 by sieving. The extraction of TEABF4 from the carbonaceous material was based on its solubility in water and subsequent separation through filtering and distillation. A cyclic voltammetry curve of the recycled carbonaceous material revealed supercapacitor behaviour allowing a potential reutilization. Furthermore, as BF4(-) stemming from TEABF4 can be slowly hydrolysed in an aqueous environment, thus releasing F(-) anions, which are hazardous, we went on to their gradual trapping with calcium acetate and conversion to non-hazardous CaF2. PMID:26862148

  1. Recycling Today Makes for a Better Tomorrow.

    ERIC Educational Resources Information Center

    Raze, Robert E., Jr.

    1992-01-01

    Today's children must be educated about solid waste management and recycling to reduce the amount of waste that goes into landfills. The article describes what can be recycled (newspapers, corrugated cardboard, paper, glass, aluminum, textiles, motor oil, organic wastes, appliances, steel cans, and plastics). It also lists student environment…

  2. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    EPA Science Inventory

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. wo processing technologies were used to prepare wood-plastic composites: air-laying and melt-...

  3. Argonne National Laboratory's Recycling Pilot Plant

    SciTech Connect

    Spangenberger, Jeff; Jody, Sam

    2009-01-01

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  4. Idea Notebook: Recycling with an Educational Purpose.

    ERIC Educational Resources Information Center

    Gerth, Tom; Wilson, David A.

    1986-01-01

    Four students at St. Louis University High School developed a project to clean up the environment while saving energy and natural resources. Aluminum and steel cans were recycled and the money was used to buy and plant trees. Students learned about recycling, organization, money management, and improving the environment. (JMM)

  5. Economic feasibility of recycling radioactive scrap steel

    SciTech Connect

    Balhiser, B.C.; Rosholt, D.L.; Nichols, F.A.

    1995-12-31

    Radioactive scrap metal has traditionally been disposed of by burial in low-level waste repositories, an option that will become increasingly unattractive if burial costs rise as projected. This paper will examine recycling opportunities that may arise from two divergent economic trends: (1) escalating burial costs, and (2) historically flat product costs from state-of-the-art metal recycle operations. Emphasis will be placed on recycling the radioactive scrap steel (RSS) that will arise from D&D of Government and commercial nuclear facilities in the western United States. An effort is underway to compare processes for recycling RSS at least cost to the generator, least impact to the environment, and minimum worker exposure to radionuclide hazards. An experienced industry team with expertise in radioactive metals recycling, commercial steel recycling, and state-of-the-art metal recycle facilities design has been assembled under subcontract for this purpose. Methods for evaluating process options to arrive at an optimized solution will be discussed in the paper. An analysis of burial versus recycle costs for RSS will also be presented.

  6. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema

    Spangenberger, Jeff; Jody, Sam;

    2013-04-19

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  7. Sustainability and the Recycling of Words

    ERIC Educational Resources Information Center

    Miller, Donna L.; Nilsen, Alleen Pace

    2011-01-01

    With the mention of "sustainability" and "recycling," most people think about reusing paper, plastic, metal, and glass, but what the authors discovered when they embarked on a word-study unit is that the sustainability movement has also brought about the recycling of words. The authors were team-teaching a language awareness class taken by…

  8. COMPOSITES FROM RECYCLED WOOD AND PLASTICS

    EPA Science Inventory

    The ultimate goal of this research was to develop technology to convert recycled wood fiber and plastics into durable products that are recyclable and otherwise environmentally friendly. Two processing technologies were used to prepare wood-plastic composites: air-laying and melt...

  9. Pedagogical Recycling: How Colleagues Change Colleagues' Minds

    ERIC Educational Resources Information Center

    O'Donnell-Allen, Cindy

    2005-01-01

    A teacher-researcher uses the metaphor of recycling along a continuum to describe how teachers adapt the ideas of their colleagues with varying degrees of change based on their different contexts. The objective of recycling is not only to reduce waste but also to extend use and the key to lasting changes in mind is sustained participation in…

  10. Recycling Primer: Getting Back to Basics.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Environmental Protection, Hartford.

    The disposal of garbage is a complex issue. Four strategies have been developed to attack the problem. They deal with: (1) waste reduction; (2) recycling; (3) energy recovery; and (4) land filling. This handbook emphasizes recycling as a method of handling the problem of dealing with solid wastes. Included are a list of the categories and uses of…

  11. FLY ASH RECYCLE IN DRY SCRUBBING

    EPA Science Inventory

    The paper describes the effects of fly ash recycle in dry scrubbing. (Previous workers have shown that the recycle of product solids improves the utilization of slaked lime--Ca(OH)2--for sulfur dioxide (SO2) removal by spray dryers with bag filters.) In laboratory-scale experimen...

  12. RECYCLING OF WATER IN POULTRY PROCESSING PLANTS

    EPA Science Inventory

    Studies were conducted on recycling chiller water in a poultry processing plant. The recycling system must be provided with the capability of removing solids and controlling the microbial population. UV was used to control the microbial population. For this control to be effectiv...

  13. 75 FR 71003 - America Recycles Day, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... thirty-fifth. (Presidential Sig.) [FR Doc. 2010-29455 Filed 11-18-10; 11:15 am] Billing code 3195-W1-P ... Documents#0;#0; ] Proclamation 8601 of November 15, 2010 America Recycles Day, 2010 By the President of the... Recycles Day, we celebrate the individuals, communities, local governments, and businesses that...

  14. 77 FR 69729 - America Recycles Day, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... States of America the two hundred and thirty-seventh. (Presidential Sig.) [FR Doc. 2012-28387 Filed 11-19... November 20, 2012 Part IV The President Proclamation 8905--America Recycles Day, 2012 #0; #0; #0... Recycles Day, 2012 By the President of the United States of America A Proclamation For 15 years,...

  15. 76 FR 71861 - America Recycles Day, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... United States of America the two hundred and thirty-sixth. (Presidential Sig.) [FR Doc. 2011-30068 Filed... November 18, 2011 Part VII The President Proclamation 8754--America Recycles Day, 2011 #0; #0; #0... Recycles Day, 2011 By the President of the United States of America A Proclamation As Americans, we have...

  16. Utility of Recycled Bedding for Laboratory Rodents

    PubMed Central

    Miyamoto, Toru; Li, Zhixia; Kibushi, Tomomi; Okano, Shinya; Yamasaki, Nakamichi; Kasai, Noriyuki

    2009-01-01

    Animal facilities generate a large amount of used bedding containing excrement as medical waste. We developed a recycling system for used bedding that involves soft hydrothermal processing. In this study, we examined the effects of bedding type on growth, hematologic and serum biochemical values, and organ weights of female and male mice reared on either recycled or fresh bedding from 3 to 33 wk of age. Neither growth nor physiology differed between mice housed on recycled bedding compared with fresh bedding. When 14-wk-old mice were bred, litter size and total number of weaned pups showed no significant differences between animals raised on recycled or fresh bedding. Because bedding type influences the environment within cages and animal rooms, we evaluated particulate and ammonia data from cages and animal rooms. Values were significantly lower from cages and rooms that used recycled bedding than from those using fresh bedding, thus indicating that recycled bedding has the potential to improve the environment within both cages and animal rooms. Overall, this study revealed that recycled bedding is an excellent material for use in housing laboratory rodents. Specifically, recycled bedding may reduce medical waste and maintain healthy environments within cages and animal rooms. PMID:19653951

  17. ON-SITE WASTE INK RECYCLING

    EPA Science Inventory

    Recycling ink has good potential as a way to reduce waste and promote long-term cost avings. he evaluation summarized here addresses the product quality, waste reduction nd economic issues involved in recycling printing ink in a facility such as THE ARFORD COURANT newspaper in Ha...

  18. MOBILE ON-SITE RECYCLING OF METALWORKING FLUIDS

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling metalworking fluids through a mobile recycling unit. The specific recycling unit evaluated is based on the technology of filtration, pasteurization, and centrifugation. Metal...

  19. Looking North at Uranium recovery Recycle Tanks in Red Room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking North at Uranium recovery Recycle Tanks in Red Room in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  20. Building a Recycling Program: A Case Study in Success.

    ERIC Educational Resources Information Center

    Sabol, Laurie

    1992-01-01

    Presents the development and ongoing operation of a library recycling program established at Bowling Green State University in Ohio. Discusses the initiation and projects of the library recycling committee, logistics, and future projections for library recycling operations. (two references) (MCO)

  1. Cu(II)-mediated atom transfer radical polymerization of methyl methacrylate via a strategy of thermo-regulated phase-separable catalysis in a liquid/liquid biphasic system: homogeneous catalysis, facile heterogeneous separation, and recycling.

    PubMed

    Pan, Jinlong; Zhang, Bingjie; Jiang, Xiaowu; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2014-09-01

    A strategy of thermo-regulated phase-separable catalysis (TPSC) is applied to the Cu(II)-mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in a p-xylene/PEG-200 biphasic system. Initiators for continuous activator regeneration ATRP (ICAR ATRP) are used to establish the TPSC-based ICAR ATRP system using water-soluble TPMA as a ligand, EBPA as an initiator, CuBr2 as a catalyst, and AIBN as a reducing agent. By heating to 70 °C, unlimited miscibility of both solvents is achieved and the polymerization can be carried out under homogeneous conditions; then on cooling to 25 °C, the mixture separates into two phases again. As a result, the catalyst complex remains in the PEG-200 phase while the obtained polymers stay in the p-xylene phase. The catalyst can therefore be removed from the resultant polymers by easily separating the two different layers and can be reused again. It is important that well-defined PMMA with a controlled molecular weight and narrow molecular weight distribution could be obtained using this TPSC-based ICAR ATRP system. PMID:25155655

  2. Establishing a comprehensive recycling process at KCD

    SciTech Connect

    Beauchamp, B.

    1993-04-01

    An effort is being undertaken at the Kansas City Division to enhance its over-all recycling program by establishing a comprehensive recycling process. The objective of this recycling process is to optimize the use of our resources of people, equipment, time, and money as we search for ways to minimize the amount of waste generated and disposed of at our facility. The comprehensive recycling process which is being developed consists of a checklist which will help the user identify all the steps needed to take a recycling opportunity from initial concept to completed program in a manner which is effective and efficient. The purpose of this presentation is to address the efforts which have been, and are now being, made to achieve this objective.

  3. Dust recycling technology in Kimitsu Works

    NASA Astrophysics Data System (ADS)

    Oda, Hiroshi; Ibaraki, Tetsuharu

    Dust recycling technology by the rotary hearth furnace has been applied at Nippon Steel‧s Kimitsu Works since 2000. The dust and sludge with iron oxide and carbon are agglomerated into shaped articles and the iron oxide is reduced in a high temperature atmosphere. Zinc and other impurities in the dust and sludge are expelled and exhausted into off gas. The DRI pellets made from the dust and sludge have 70% metallization and are strong enough for being recycled to the blast furnaces. No.1 plant, which was constructed in May 2000 and has an agglomeration method of pelletizing, recycles mainly dry dusts. No.2 plant, which was constructed in December 2002 and has an agglomeration method of extrusion, recycles mainly sludge. The combination of the two plants is a solution for recycling various kinds of dusts and sludge emitted in a large scale steel works as Kimitsu Works

  4. Preconceptual Design Description for Caustic Recycle Facility

    SciTech Connect

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

    2008-04-12

    The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

  5. Is Municipal Solid Waste Recycling Economically Efficient?

    NASA Astrophysics Data System (ADS)

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  6. Recycling production designs: the value of coordination and flexibility in aluminum recycling operations

    NASA Astrophysics Data System (ADS)

    Brommer, Tracey H.

    The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an intermediate recycling facility that can reprocess the secondary materials into a liquid product Two downstream aluminum remelters will incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges persist because of the energy cost to maintain the liquid. Further coordination challenges result from the necessity to establish a long term recycling production plan in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses? A methodology is presented to calculate the optimal recycling center production parameters including 1) the number of recycled products, 2) the volume of recycled products, 3) allocation of recycled materials across recycled products, 4) allocation of recycled products across finished alloys, 4) the level of flexibility for the recycling center to operate. The methods implemented include, 1) an optimization model to describe the long term operations of the recycling center, 2) an uncertainty simulation tool, 3) a simulation optimization method, 4) a dynamic simulation tool with four embedded daily production optimization models of varying degrees of flexibility. This methodology is used to quantify the performance of several recycling center production designs of varying levels of coordination and flexibility. This analysis allowed the identification of the optimal recycling

  7. Issues in recycling galvanized scrap

    SciTech Connect

    Koros, P.J.; Hellickson, D.A.; Dudek, F.J.

    1995-02-10

    The quality of the steel used for most galvanizing (and tinplate) applications makes scrap derived from their production and use a premier solid charge material for steelmaking. In 1989 the AISI created a Task Force to define the issues and to recommend technologically and economically sound approaches to assure continued, unhindered recyclability of the growing volume of galvanized scrap. The AISI program addressed the treatment of full-sized industrial bales of scrap. The current, on-going MRI (US)--Argonne National Laboratory program is focused on ``loose`` scrap from industrial and post-consumer sources. Results from these programs, issues of scrap management from source to steel melting, the choices for handling zinc in iron and steelmaking and the benefits/costs for removal of zinc (and lead) from scrap prior to melting in BOF and foundry operations are reviewed in this paper.

  8. Polymer thermolysis for plastics recycling

    SciTech Connect

    Madras, G.; Smith, J.M.; McCoy, B.J.

    1996-12-31

    One approach to plastics recycling is the thermolytic degradation of polymer in solution to simpler molecules. We have investigated fundamental aspects of polymer thermolysis in a steady-state flow reactor operated at low temperatures (relative to pyrolysis) and at pressures high enough to maintain a liquid solution. The molecular-weight distributions (MWDs) of the feed and effluent at each condition were examined by gel permeation chromatography (GPC) as a function of residence time. In general the polymers are degraded by either random chain scission, and/or by depolymerization to specific low molecular-weight compounds (e.g., monomers, dimers,...). The experimental data for MWDs were interpreted with rate expressions based on continuous kinetics, and rate coefficients and activation energies were determined for the specific and random degradation processes. Experimental results are described for poly(styrene-allyl alcohol), poly(x-methyl styrene), and poly(methyl methacrylate). 10 refs.

  9. Recycled rubber in cement composites

    SciTech Connect

    Raghavan, D.; Tratt, K.; Wool, R.P.

    1994-12-31

    Disposal of 200 million waste tires in the US each year has become a major problem. An environmentally sound innovative technology of recycling rubber in cement matrix was examined. Using silane coupling agent the rubber was bonded to the hydrating cement making a lighter composite, which absorbed more energy than ordinary Portland cement. The bonding information was obtained by peel strength analysis. SEM was used to understand the mode of fracture in pure cement paste, cement bonded rubber composite and rubber filled cement paste. It was found that cracks propagate through the rubber particle in rubber bonded cement composite while in unbonded rubber cement mix, the cracks propagate around the interface. The density and shrinkage measurements are also discussed.

  10. Generalized Teleportation and Entanglement Recycling

    NASA Astrophysics Data System (ADS)

    Strelchuk, Sergii; Horodecki, Michał; Oppenheim, Jonathan

    2013-01-01

    We introduce new teleportation protocols which are generalizations of the original teleportation protocols that use the Pauli group and the port-based teleportation protocols, introduced by Hiroshima and Ishizaka, that use the symmetric permutation group. We derive sufficient conditions for a set of operations, which in general need not form a group, to give rise to a teleportation protocol and provide examples of such schemes. This generalization leads to protocols with novel properties and is needed to push forward new schemes of computation based on them. Port-based teleportation protocols and our generalizations use a large resource state consisting of N singlets to teleport only a single qubit state reliably. We provide two distinct protocols which recycle the resource state to teleport multiple states with error linearly increasing with their number. The first protocol consists of sequentially teleporting qubit states, and the second teleports them in a bulk.

  11. Generalized teleportation and entanglement recycling.

    PubMed

    Strelchuk, Sergii; Horodecki, Michał; Oppenheim, Jonathan

    2013-01-01

    We introduce new teleportation protocols which are generalizations of the original teleportation protocols that use the Pauli group and the port-based teleportation protocols, introduced by Hiroshima and Ishizaka, that use the symmetric permutation group. We derive sufficient conditions for a set of operations, which in general need not form a group, to give rise to a teleportation protocol and provide examples of such schemes. This generalization leads to protocols with novel properties and is needed to push forward new schemes of computation based on them. Port-based teleportation protocols and our generalizations use a large resource state consisting of N singlets to teleport only a single qubit state reliably. We provide two distinct protocols which recycle the resource state to teleport multiple states with error linearly increasing with their number. The first protocol consists of sequentially teleporting qubit states, and the second teleports them in a bulk. PMID:23383769

  12. Minor Actinides Recycling in PWRs

    SciTech Connect

    Delpech, M.; Golfier, H.; Vasile, A.; Varaine, F.; Boucher, L.; Greneche, D.

    2006-07-01

    Recycling of minor actinides in current and near future PWR is considered as one of the options of the general waste management strategy. This paper presents the analysis of this option both from the core physics and fuel cycle point of view. A first indicator of the efficiency of different neutron spectra for transmutation purposes is the capture to fission cross sections ratio which is less favourable by a factor between 5 to 10 in PWRs compared to fast reactors. Another indicator presented is the production of high ranking isotopes like Curium, Berkelium or Californium in the thermal or epithermal spectrum conditions of PWR cores by successive neutron captures. The impact of the accumulation of this elements on the fabrication process of such PWR fuels strongly penalizes this option. The main constraint on minor actinides loadings in PWR (or fast reactors) fuels are related to their direct impact (or the impact of their transmutation products) on the reactivity coefficients, the reactivity control means and the core kinetics parameters. The main fuel cycle physical parameters like the neutron source, the alpha decay power, the gamma and neutrons dose rate and the criticality aspects are also affected. Recent neutronic calculations based on a reference core of the Evolutionary Pressurized Reactor (EPR), indicates typical maximum values of 1 % loadings. Different fuel design options for minor actinides transmutation purposes in PWRs are presented: UOX and MOX, homogeneous and heterogeneous assemblies. In this later case, Americium loading is concentrated in specific pins of a standard UOX assembly. Recycling of Neptunium in UOX and MOX fuels was also studied to improve the proliferation resistance of the fuel. The impact on the core physics and penalties on Uranium enrichment were underlined in this case. (authors)

  13. Heterogeneous Recycling in Fast Reactors

    SciTech Connect

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  14. Regional or global WEEE recycling. Where to go?

    SciTech Connect

    Li, Jinhui; Lopez N, Brenda N.; Liu, Lili; Zhao, Nana; Yu, Keli; Zheng, Lixia

    2013-04-15

    Highlights: ► Source and Destination countries involved in the movement of WEEE have been studied. ► Legislation, facilities and EPR are presented in Source and Destination countries. ► Mostly Destination countries do not have EPR established and have informal facilities. ► Source countries: good technology, EPR established and mostly WEEE regulation enacted. ► Regional WEEE recycling should be under global standards for Sources and Destinations. - Abstract: If we consider Waste Electrical and Electronic Equipment (WEEE) management, we can see the development of different positions in developed and developing countries. This development started with the movement of WEEE from developed countries to the developing countries. However, when the consequences for health and the environment were observed, some developing countries introduced a ban on the import of this kind of waste under the umbrella of the Basel Convention, while some developed countries have been considering a regional or global WEEE recycling approach. This paper explores the current movements between Source and Destination countries, or the importers and exporters, and examines whether it is legal and why illegal traffic is still rife; how global initiatives could support a global WEEE management scheme; the recycling characteristics of the source an destination countries and also to ascertain whether the principle of Extended Producer Responsibility (EPR) has been established between the different stakeholders involved in WEEE management. Ultimately, the Full Extended Producer Responsibility is presented as a possible solution because the compensation of the environmental capacity for WEEE recycling or treatment could be made by the contribution of extra responsibility; and also generating an uniform standard for processing WEEE in an environmentally sound manner could support the regional or international solution of WEEE and also improve the performance of the informal sector.

  15. Inactivation of Caenorhabditis elegans aminopeptidase DNPP-1 restores endocytic sorting and recycling in tat-1 mutants

    PubMed Central

    Li, Xin; Chen, Baohui; Yoshina, Sawako; Cai, Tanxi; Yang, Fuquan; Mitani, Shohei; Wang, Xiaochen

    2013-01-01

    In Caenorhabditis elegans, the P4-ATPase TAT-1 and its chaperone, the Cdc50 family protein CHAT-1, maintain membrane phosphatidylserine (PS) asymmetry, which is required for membrane tubulation during endocytic sorting and recycling. Loss of tat-1 and chat-1 disrupts endocytic sorting, leading to defects in both cargo recycling and degradation. In this study, we identified the C. elegans aspartyl aminopeptidase DNPP-1, loss of which suppresses the sorting and recycling defects in tat-1 mutants without reversing the PS asymmetry defect. We found that tubular membrane structures containing recycling cargoes were restored in dnpp-1 tat-1 double mutants and that these tubules overlap with RME-1–positive recycling endosomes. The restoration of the tubular structures in dnpp-1 tat-1 mutants requires normal functions of RAB-5, RAB-10, and RME-1. In tat-1 mutants, we observed alterations in membrane surface charge and targeting of positively charged proteins that were reversed by loss of dnpp-1. DNPP-1 displays a specific aspartyl aminopeptidase activity in vitro, and its enzymatic activity is required for its function in vivo. Our data reveal the involvement of an aminopeptidase in regulating endocytic sorting and recycling and suggest possible roles of peptide signaling and/or protein metabolism in these processes. PMID:23427264

  16. Recycling of Acetylcholine Receptors at Ectopic Postsynaptic Clusters Induced by Exogenous Agrin in Living Rats

    PubMed Central

    Brenner, Hans Rudolf; Akaaboune, Mohammed

    2014-01-01

    During the development of the neuromuscular junction, motor axons induce the clustering of acetylcholine receptors (AChRs) and increase their metabolic stability in the muscle membrane. Here, we asked whether the synaptic organizer agrin might regulate the metabolic stability and density of AChRs by promoting the recycling of internalized AChRs, which would otherwise be destined for degradation, into synaptic sites. We show that at nerve-free AChR clusters induced by agrin in extrasynaptic membrane, internalized AChRs are driven back into the ectopic synaptic clusters where they intermingle with pre-existing and new receptors. The extent of AChR recycling depended on the strength of the agrin stimulus, but not on the development of junctional folds, another hallmark of mature postsynaptic membranes. In chronically denervated muscles, in which both AChR stability and recycling are significantly decreased by muscle inactivity, agrin maintained the amount of recycled AChRs at agrin-induced clusters at a level similar to that at denervated original endplates. In contrast, AChRs did not recycle at agrin-induced clusters in C2C12 or primary myotubes. Thus, in muscles in vivo, but not in cultured myotubes, neural agrin promotes the recycling of AChRs and thereby increases their metabolic stability. PMID:25093969

  17. Occurrence and fate of acrylamide in water-recycling systems and sludge in aggregate industries.

    PubMed

    Junqua, Guillaume; Spinelli, Sylvie; Gonzalez, Catherine

    2015-05-01

    Acrylamide is a hazardous substance having irritant and toxic properties as well as carcinogen, mutagen, and impaired fertility possible effects. Acrylamide might be found in the environment as a consequence of the use of polyacrylamides (PAMs) widely added as a flocculant for water treatment. Acrylamide is a monomer used to produce polyacrylamide (PAM) polymers. This reaction of polymerization can be incomplete, and acrylamide molecules can be present as traces in the commercial polymer. Thus, the use of PAMs may generate a release of acrylamide in the environment. In aggregate industries, PAM is widely involved in recycling process and water reuse (aggregate washing). Indeed, these industries consume large quantities of water. Thus, European and French regulations have favored loops of recycling of water in order to reduce water withdrawals. The main goal of this article is to study the occurrence and fate of acrylamide in water-recycling process as well as in the sludge produced by the flocculation treatment process in aggregate production plants. Moreover, to strengthen the relevance of this article, the objective is also to demonstrate if the recycling system leads to an accumulation effect in waters and sludge and if free acrylamide could be released by sludge during their storage. To reach this objective, water sampled at different steps of recycling water process has been analyzed as well as different sludge corresponding to various storage times. The obtained results reveal no accumulation effect in the water of the water-recycling system nor in the sludge. PMID:24840357

  18. Ventilation systems for a spent LWR fuel recycle complex

    SciTech Connect

    Not Available

    1981-01-01

    A conceptual design study has been made of a facility to recycle spent Light Water Reactor fuel. This study was based on coprocessing of plutonium and uranium where plutonium is never available as a separate material. The design of the fuel reprocessing facilities is based on remote operation and remote maintenance. The experience of many years of safe and dependable operation of government fuel processing facilities at Savannah River and Hanford was used in the design. A requirement of the study was that the facilities be licensable under Title 10 and Title 40 of the Code of Federal Regulations.

  19. Cost effectiveness of recycling: a systems model.

    PubMed

    Tonjes, David J; Mallikarjun, Sreekanth

    2013-11-01

    Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets. PMID:23816311

  20. Optical Properties of Polypropylene upon Recycling

    PubMed Central

    2013-01-01

    In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites. PMID:24288478

  1. Crustal recycling and the aleutian arc

    SciTech Connect

    Kay, R.W.; Kay, S.M. )

    1988-06-01

    Two types of crustal recycling transfer continental crust back into its mantle source. The first of these, upper crustal recycling, involves elements that have been fractionated by the hydrosphere-sediment system, and are subducted as a part of the oceanic crust. The subduction process (S-process) then fractionates these elements, and those not removed at shallow tectonic levels and as excess components of arc magmas are returned to the mantle. Newly determined trace element composition of Pacific oceanic sedimants are variable and mixing is necessary during the S-process, if sediment is to provide excess element in the ratios observed in Aleutian arc magmas. Only a small fraction of the total sediment subducted at the Aleutian trench is required to furnish the excess elements in Aleutian arc magmas. Ba and {sub 10}Be data indicate that this small fraction includes a contribution from the youngest subducted sediment. The second type of recycling, lower crustal recycling, involves crystal cumulates of both arc and oceanic crustal origin, and residues from crustal melting within arc crust. Unlike the silicic sediments, recycled lower crust is mafic to ultramafic in composition. Trace element analyses of xenoliths representing Aleutian arc lower crust are presented. Recycling by delamination of lower crust and attached mantle lithosphere may occur following basalt eclogite phase transformations that are facilitated by terrane suturing events that weld oceanic island arcs to the continents. The relative importance of upper and lower crustal recycling exerts a primary control on continental crustal composition.

  2. Recyclability Evaluation Method Considering Material Combination and Degradation

    NASA Astrophysics Data System (ADS)

    Oyasato, Naohiko; Kobayashi, Hideki

    A new method of recyclability evaluation is proposed. The recyclability of a product is given by summing up recyclability of all units to which the product is manually disassembled. The recyclability of a unit is calculated if all names and amounts of materials of which the unit is composed are known. The recyclability of a disassembled unit consisting of multiple materials is judged on the grounds of removability of impurities, miscibility and marketability of polymer blends. Recyclability of a long-lifetime product can be estimated from recyclability of units, which are modeled as probabilistically distributed degradation of materials. The proposed method is applied to recyclability evaluation for a refrigerator with several scenarios of disassembly levels. The practical disassembly scenarios limit the maximum recyclability rate of the product. Therefore, recyclability rates calculated based on the proposed method are considerably lower than those of the recyclable materials of which the product consisted.

  3. Economic feasibility of radioactive scrap steel recycling

    SciTech Connect

    Balhiser, R.; Rosholt, D.; Nichols, F.

    1995-12-31

    The goal of MSE`s Radioactive Scrap Steel (RSS) Recycle Program is to develop practical methods for recycling RSS into useful product. This paper provides interim information about ongoing feasibility investigations that are scheduled for completion by September 1995. The project approach, major issues, and cost projections are outlined. Current information indicates that a cost effective RSS Recycling Facility can be designed, built, and in operation by 1999. The RSS team believes that high quality steel plate can be made from RSS at a conversion cost of $1500 per ton or less.

  4. Zircon Recycling in Arc Intrusions

    NASA Astrophysics Data System (ADS)

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.

    2008-12-01

    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]<150 ppm) and thus low calculated zircon saturation temperatures (Tzrnsat). Within the Half Dome and Cathedral Peak, TzrnTi values are predominantly at or below average Tzrnsat, and there is no apparent correlation between age and TzrnTi. At temperatures appropriate for granodiorite/tonalite melt generation (at or above biotite dehydration; >825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically <200 ppm and frequently 100-150 ppm for individual large intrusions or intrusive suites). We infer from this that [Zr] in anatectic melts is probably not limited by zircon supply and is primarily controlled by melting parameters. Comparison of the data from TIS with one of these intrusions, the smaller but otherwise

  5. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration

    PubMed Central

    Fan, Steven Hung-Yi; Numata, Yuka; Numata, Masayuki

    2016-01-01

    Increased recycling and elevated cell surface expression of receptors serve as a mechanism for persistent receptor-mediated signaling. We show that the neuron-enriched Na+/H+ exchanger NHE5 is abundantly expressed in C6 glioma cells and plays an important part in regulating cell surface expression of the receptor tyrosine kinases MET and EGF receptor. NHE5 is associated with transferrin receptor (TfR)- and Rab11-positive recycling endosomal membranes, and NHE5 knockdown by short hairpin RNA significantly elevates pH of TfR-positive recycling endosomes. We present evidence that NHE5 facilitates MET recycling to the plasma membrane, protects MET from degradation, and modulates HGF-induced phosphatidylinositol-3-kinase and mitogen-activated protein kinase signaling. Moreover, NHE5 depletion abrogates Rac1 and Cdc42 signaling and actin cytoskeletal remodeling. We further show that NHE5 knockdown impairs directed cell migration and causes loss of cell polarity. Our study highlights a possible role of recycling endosomal pH in regulating receptor-mediated signaling through vesicular trafficking. PMID:26700318

  6. Constitutive Endocytic Recycling and Protein Kinase C-mediated Lysosomal Degradation Control KATP Channel Surface Density*

    PubMed Central

    Manna, Paul T.; Smith, Andrew J.; Taneja, Tarvinder K.; Howell, Gareth J.; Lippiat, Jonathan D.; Sivaprasadarao, Asipu

    2010-01-01

    Pancreatic ATP-sensitive potassium (KATP) channels control insulin secretion by coupling the excitability of the pancreatic β-cell to glucose metabolism. Little is currently known about how the plasma membrane density of these channels is regulated. We therefore set out to examine in detail the endocytosis and recycling of these channels and how these processes are regulated. To achieve this goal, we expressed KATP channels bearing an extracellular hemagglutinin epitope in human embryonic kidney cells and followed their fate along the endocytic pathway. Our results show that KATP channels undergo multiple rounds of endocytosis and recycling. Further, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate significantly decreases KATP channel surface density by reducing channel recycling and diverting the channel to lysosomal degradation. These findings were recapitulated in the model pancreatic β-cell line INS1e, where activation of PKC leads to a decrease in the surface density of native KATP channels. Because sorting of internalized channels between lysosomal and recycling pathways could have opposite effects on the excitability of pancreatic β-cells, we propose that PKC-regulated KATP channel trafficking may play a role in the regulation of insulin secretion. PMID:20026601

  7. Coal liquefaction with preasphaltene recycle

    SciTech Connect

    Weimer, R.F.; Miller, R.N.

    1986-09-02

    A process is described for solvent refining coal to yield an asphaltene-rich product stream by forming a slurry of finely divided coal and a process solvent therefor, which process comprises the steps of: (1) contacting the slurry with a hydrogen-rich gas; (2) heating the slurry in the presence of the hydrogen-rich gas. (3) permitting the heated slurry to react and to dissolve at least some of the coal. (4) adding fresh hydrogen as required to form a liquefied coal slurry; (5) passing the liquefied coal slurry to a separator in which a vapor product stream and a condensed product stream are separated; (6) passing the condensed product stream to a vacuum distillation still; (7) removing from the vacuum distillation still a residual bottoms product, wherein the residual bottoms product from the still is mixed with a suitable extractions solvent and is passed to supercritical extraction system to separate an asphaltene-rich stream comprised of pentane solubles and benzene solubles from a preasphaltene-rich stream which includes solids residue material, the preasphaltene-rich stream comprised of benzene insolubles, pyridine solubles, pyridine insolubles and ash; (8) recycling at least a portion of the preasphaltene-rich stream together with the solid residue material as process solvent, with less than 10 percent of the process solvent comprising asphaltenes; (9) withdrawing the asphaltene-rich stream and passing the asphaltene-rich stream to a solvent recovery system to yield an asphaltene-rich product stream and an extraction solvent stream.

  8. Waste tire recycling by pyrolysis

    SciTech Connect

    Not Available

    1992-10-01

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  9. A mechanism for crustal recycling on Venus

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.; Bindschadler, D. L.

    1993-01-01

    Entrainment of lower crust by convective mantle downflows is proposed as a crustal recycling mechanism on Venus. The mechanism is characterized by thin sheets of crust being pulled into the mantle by viscous flow stresses. Finite element models of crust/mantle interaction are used to explore tectonic conditions under which crustal entrainment may occur. The recycling scenarios suggested by the numerical models are analogous to previously studied problems for which analytic and experimental relationships assessing entrainment rates have been derived. We use these relationships to estimate crustal recycling rates on Venus. Estimated rates are largely determined by (1) strain rate at the crust/mantle interface (higher strain rate leads to greater entrainment); and (2) effective viscosity of the lower crust (viscosity closer to that of mantle lithosphere leads to greater entrainment). Reasonable geologic strain rates and available crustal flow laws suggest entrainment can recycle approximately equal 1 cu km of crust per year under favorable conditions.

  10. Design and optimization of photovoltaics recycling infrastructure.

    PubMed

    Choi, Jun-Ki; Fthenakis, Vasilis

    2010-11-15

    With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States. PMID:20886824

  11. Fermilab Recycler damper requirements and design

    SciTech Connect

    Crisp, J.; Hu, M.; Tupikov, V.; /Fermilab

    2005-05-01

    The design of transverse dampers for the Fermilab Recycler storage ring is described. An observed instability and analysis of subsequent measurements where used to identify the requirements. The digital approach being implemented is presented.

  12. Technology development for lunar base water recycling

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Sauer, Richard L.

    1992-01-01

    This paper will review previous and ongoing work in aerospace water recycling and identify research activities required to support development of a lunar base. The development of a water recycle system for use in the life support systems envisioned for a lunar base will require considerable research work. A review of previous work on aerospace water recycle systems indicates that more efficient physical and chemical processes are needed to reduce expendable and power requirements. Development work on biological processes that can be applied to microgravity and lunar environments also needs to be initiated. Biological processes are inherently more efficient than physical and chemical processes and may be used to minimize resupply and waste disposal requirements. Processes for recovering and recycling nutrients such as nitrogen, phosphorus, and sulfur also need to be developed to support plant growth units. The development of efficient water quality monitors to be used for process control and environmental monitoring also needs to be initiated.

  13. Evaluation of radioactive scrap metal recycling

    SciTech Connect

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  14. Recycle device for circulating fluidized bed boilers

    SciTech Connect

    Wang, Q.; Luo, Z.Y.; Li, X.T.; Cheng, F.; Ni, M.J.; Cen, K.

    1997-12-31

    Because the pressure at the outlet of a separator is lower than that at an inlet of a furnace, a recycle device is one of the most important components of circulating fluidized bed boilers for handling circulating ash. Although it has been extensively used in circulating fluidized bed boilers, its properties have not yet been well understood. Many experiments have been conducted for a kind of recycle device and the operational properties were obtained. The experimental results show that the structure of the recycle device and aeration conditions have a strong influence on the solid flow rate and operational stability of the recycle device. The authors will discuss the effect of the major parameters, such as opening and aeration air at different locations, on solids flow rate. The operational considerations will be given in this paper.

  15. Recycle with Heating: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foord, A.; Mason, G.

    1985-01-01

    Describes an apparatus (built from domestic plumbing pipes and fittings) that uses only water and electricity (as consumables) to investigate basic mass and heat balances in a system with recycle. Also describes experiments using the apparatus. (JN)

  16. BWR Assembly Optimization for Minor Actinide Recycling

    SciTech Connect

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  17. Plastics waste trashes German recycling scheme

    SciTech Connect

    Chynoweth, E.

    1993-06-30

    Plastics waste is causing a major headache for Duales System Deutschland (DSD: Bonn), one of Europe`s groundbreaking national packaging recycling programs. Five of Germany`s states have threatened to withdraw from the plan mainly because of the lack of plastics recycling capacity, says a DSD spokeswoman. {open_quotes}The pace of establishing recycling capacity does not meet the zeal in collection.{close_quotes} she notes. In addition, the organization has been crippled by a lack of funds. It claims that up to half the subscribers to the scheme - who pay a fee to display a green dot on packaging - are either irregular payers or not paying fees in proportion to their use of the green dot. The cost of setting up and paying for plastics recycling - not originally part of DSD`s responsibility - is also hurting the organization.

  18. Aluminum: Recycling of Aluminum Dross/Saltcake

    SciTech Connect

    Blazek, S.

    1999-01-29

    As this NICE3 publication details, the objective of this project is to commercialize the process technology to eliminate all landfill waste associated with black dross and saltcake generated from aluminum recycling in the United States.

  19. 16 CFR 260.12 - Recyclable claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... suggested in § 260.12(b)(2). Example 5: Foam polystyrene cups are advertised as “Recyclable in the few communities with facilities for foam polystyrene cups.” A half-dozen major metropolitan areas have...

  20. 16 CFR 260.12 - Recyclable claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... suggested in § 260.12(b)(2). Example 5: Foam polystyrene cups are advertised as “Recyclable in the few communities with facilities for foam polystyrene cups.” A half-dozen major metropolitan areas have...

  1. Solid waste recycling in Rajshahi city of Bangladesh.

    PubMed

    Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul

    2012-11-01

    Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns. PMID:22749721

  2. RECYCLE OF MODIFIED FLY ASH FROM FURNACE SORBENT INJECTION

    EPA Science Inventory

    The paper discusses technical and economic studies to assess the impact of recycle on the furnace sorbent injection process. Levelized costs of various recycle schemes were compared to baseline (non-recycle) costs using the EPA LIMB Cost Model and the LIMB Recycle Model. Laborato...

  3. Pavement recycling. Executive summary and report

    SciTech Connect

    1995-10-01

    The Federal Highway Administration (FHWA) initiated Demonstration Project 39 (DP 39) Recycling Asphalt Pavements in June 1976. The project showed that asphalt pavement recycling was a technically viable rehabitation technique, and it was estimated that the use of reclaimed asphalt pavement (RAP) would amount to approximately 15 percent of the total hot-mix asphalt (HMA) production by the mid-1980s. It was expected that most of the asphalt pavement removed would be reused in new pavement construction or overlays.

  4. Paper recycling: ERI rolls with the punches

    SciTech Connect

    Lieb, K.

    1993-10-01

    At a time when many independent recycling companies are struggling to survive, Environmental Recycling, Inc. (ERI) maintains more than 600 accounts and is making a profit. ERI, an intermediate processor in Alexandria, Virginia combines elements of hauling and dealing. Paper is collected from mail houses, municipality contracts, federal contracts, and routine pick-ups and drop-offs in several municipalities around Virginia, Washington D.C., and Maryland. Creative marketing allows the company to stay afloat, and even thrive.

  5. Plastic Recycling Experiments in Materials Education

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  6. New approaches for MOX multi-recycling

    SciTech Connect

    Gain, T.; Bouvier, E.; Grosman, R.; Senentz, G.H.; Lelievre, F.; Bailly, F.; Brueziere, J.; Murray, P.

    2013-07-01

    Due to its low fissile content after irradiation, Pu from used MOX fuel is considered by some as not recyclable in LWR (Light Water Reactors). The point of this paper is hence to go back to those statements and provide a new analysis based on AREVA extended experience in the fields of fissile and fertile material management and optimized waste management. This is done using the current US fuel inventory as a case study. MOX Multi-recycling in LWRs is a closed cycle scenario where U and Pu management through reprocessing and recycling leads to a significant reduction of the used assemblies to be stored. The recycling of Pu in MOX fuel is moreover a way to maintain the self-protection of the Pu-bearing assemblies. With this scenario, Pu content is also reduced repetitively via a multi-recycling of MOX in LWRs. Simultaneously, {sup 238}Pu content decreases. All along this scenario, HLW (High-Level Radioactive Waste) vitrified canisters are produced and planned for deep geological disposal. Contrary to used fuel, HLW vitrified canisters do not contain proliferation materials. Moreover, the reprocessing of used fuel limits the space needed on current interim storage. With MOX multi-recycling in LWR, Pu isotopy needs to be managed carefully all along the scenario. The early introduction of a limited number of SFRs (Sodium Fast Reactors) can therefore be a real asset for the overall system. A few SFRs would be enough to improve the Pu isotopy from used LWR MOX fuel and provide a Pu-isotopy that could be mixed back with multi-recycled Pu from LWRs, hence increasing the Pu multi-recycling potential in LWRs.

  7. Antiproton Cooling in the Fermilab Recycler Ring

    SciTech Connect

    Nagaitsev, S.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Gattuso, C.; Hu, M.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G.; Schmidt, C. W.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Bolshakov, A.; Zenkevich, P.; Kazakevich, G.

    2006-03-20

    The 8.9-GeV/c Recycler antiproton storage ring is equipped with both stochastic and electron cooling systems. These cooling systems are designed to assist accumulation of antiprotons for the Tevatron collider operations. In this paper we report on an experimental demonstration of electron cooling of high-energy antiprotons. At the time of writing this report, the Recycler electron cooling system is routinely used in collider operations. It has helped to set recent peak luminosity records.

  8. Antiproton cooling in the Fermilab Recycler Ring

    SciTech Connect

    Nagaitsev, S.; Bolshakov, A.; Broemmelsiek, D.; Burov, Alexey V.; Carlson, K.; Gattuso, C.; Hu, M.; Kazakevich, G.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G; Schmidt, C.W.; Seletskiy, S.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Zenkevich, P.; /Fermilab /Moscow, ITEP /Novosibirsk, IYF /Rochester U.

    2005-12-01

    The 8.9-GeV/c Recycler antiproton storage ring is equipped with both stochastic and electron cooling systems. These cooling systems are designed to assist accumulation of antiprotons for the Tevatron collider operations. In this paper we report on an experimental demonstration of electron cooling of high-energy antiprotons. At the time of writing this report, the Recycler electron cooling system is routinely used in collider operations. It has helped to set recent peak luminosity records.

  9. The value and feasibility of proactive recycling

    NASA Astrophysics Data System (ADS)

    Fthenakis, V. M.; Moskowitz, P. D.

    1999-03-01

    Photovoltaics (PV) technology has definite environmental advantages over competing electricity generation technologies, and so far these advantages have driven market penetration. The PV industry follows a pro-active approach to preserve its safe and environmentally friendly nature. Industrial ecology considerations raise the issue of what to do with the PV modules at the end of their useful life. One option is recycling. This paper discusses the value of proactive recycling and compares several alternatives.

  10. Auditing Operating Room Recycling: A Management Case Report.

    PubMed

    McGain, Forbes; Jarosz, Katherine Maria; Nguyen, Martin Ngoc Hoai Huong; Bates, Samantha; O'Shea, Catherine Jane

    2015-08-01

    Much waste arises from operating rooms (ORs). We estimated the practical and financial feasibility of an OR recycling program, weighing all waste from 6 ORs in Melbourne, Australia. Over 1 week, 237 operations produced 1265 kg in total: general waste 570 kg (45%), infectious waste 410 kg (32%), and recyclables 285 kg (23%). The achieved recycling had no infectious contamination. The achieved recycling/potential recycling rate was 285 kg/517 kg (55%). The average waste disposal costs were similar for general waste and recycling. OR recycling rates of 20%-25% total waste were achievable without compromising infection control or financial constraints. PMID:26230308

  11. Utility Plastic Recycling, Inc.: Closing the loop in-house

    SciTech Connect

    Harrison, S.

    1995-07-01

    Despite current favorable markets, ``closing the loop`` in recycling can remain a vexing problem. New York City`s Utility Plastic Recycling, Inc., has eliminated some of the guesswork by manufacturing recycled products on the premises of its materials recovery facility (MRF). Utility Plastic is a member of the Waste Management of New York (WMNY) family of companies that also includes JLJ Recycling, Commercial Recycling Technology, and Evergreen Recycling. The company is a third-generation firm that began commercially recycling glass and cardboard collected from the Knickerbocker Brewery in 1928. WMNY`s service in every aspect of recycling -- including program planning and implementation, collection, processing, manufacturing, and marketing -- makes them one of the first true close-loop recyclers. Processing almost half of the recyclables in New York City`s residential program, in addition to materials collected from several suburban communities and thousands of commercial contracts, also makes them one of the largest.

  12. Isotopic constraints on crustal growth and recycling

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.

    1988-01-01

    The Sm-Nd isotopic data on clastic and chemical sediments are used with the present-day age distribution of continental crustal rocks to estimate the rates of crustal accretion, growth and recycling throughout earth's history. A new method for interpreting Nd model ages on both chemical and clastic sediments is proposed. A general relationship is derived between the mean crustal residence time of material recycled from the crust to the mantle (i.e., sediments), the mean age of the crust, and the crustal growth and recycling rates. This relationship takes into account the fact that the age distribution of material in the continental crust is generally different from the age distribution of material recycled into the mantle. The episodic nature of the present-day age distribution in crustal rocks results in similar episodicity in the accretion and recycling rates. The results suggest that by about 3.8 Ga ago, about 40 percent of the present continental volume was present. Recycling rates were extremely high 3-4 Ga ago and declined rapidly to an insignificant value of about 0.1 cu km/a during most of the Phanerozoic. The Nd model age pattern on sediments suggests a fairly high rate of growth during the Phanerozoic.

  13. Paper recycling framework, the "Wheel of Fiber".

    PubMed

    Ervasti, Ilpo; Miranda, Ruben; Kauranen, Ilkka

    2016-06-01

    At present, there is no reliable method in use that unequivocally describes paper industry material flows and makes it possible to compare geographical regions with each other. A functioning paper industry Material Flow Account (MFA) that uses uniform terminology and standard definitions for terms and structures is necessary. Many of the presently used general level MFAs, which are called frameworks in this article, stress the importance of input and output flows but do not provide a uniform picture of material recycling. Paper industry is an example of a field in which recycling plays a key role. Additionally, terms related to paper industry recycling, such as collection rate, recycling rate, and utilization rate, are not defined uniformly across regions and time. Thus, reliably comparing material recycling activity between geographical regions or calculating any regional summaries is difficult or even impossible. The objective of this study is to give a partial solution to the problem of not having a reliable method in use that unequivocally describes paper industry material flows. This is done by introducing a new material flow framework for paper industry in which the flow and stage structure supports the use of uniform definitions for terms related to paper recycling. This new framework is termed the Detailed Wheel of Fiber. PMID:26994970

  14. Economic Feasibility of Recycling Photovoltaic Modules

    SciTech Connect

    Choi, J.K.; Fthenakis, V.

    2010-12-01

    The market for photovoltaic (PV) electricity generation has boomed over the last decade, and its expansion is expected to continue with the development of new technologies. Taking into consideration the usage of valuable resources and the generation of emissions in the life cycle of photovoltaic technologies dictates proactive planning for a sound PV recycling infrastructure to ensure its sustainability. PV is expected to be a 'green' technology, and properly planning for recycling will offer the opportunity to make it a 'double-green' technology - that is, enhancing life cycle environmental quality. In addition, economic feasibility and a sufficient level of value-added opportunity must be ensured, to stimulate a recycling industry. In this article, we survey mathematical models of the infrastructure of recycling processes of other products and identify the challenges for setting up an efficient one for PV. Then we present an operational model for an actual recycling process of a thin-film PV technology. We found that for the case examined with our model, some of the scenarios indicate profitable recycling, whereas in other scenarios it is unprofitable. Scenario SC4, which represents the most favorable scenario by considering the lower bounds of all costs and the upper bound of all revenues, produces a monthly profit of $107,000, whereas the least favorable scenario incurs a monthly loss of $151,000. Our intent is to extend the model as a foundation for developing a framework for building a generalized model for current-PV and future-PV technologies.

  15. Recycling in the states: 1993 update

    SciTech Connect

    Miller, C.

    1994-03-01

    1993 was a slow year for recycling legislation. As in 1992, most states only tinkered with previously enacted laws. On the national level, Congress didn't even tinker and no new recycling laws were passed. Most state action in 1993 focused on market development. While markets remain weak, none of the states have repealed their existing recycling rate mandates, despite the high cost of recycling. Recycling's biggest boost in 1993 came from President Clinton's Executive Order establishing recycled content levels for federal purchases of printing and writing paper. Released on October 20, the order directs every federal agency to purchase printing and writing paper containing 20% post-consumer material by the end of 1994 and 30% post-consumer material by the end of 1998. The order does, however, allow sawdust to be counted as post-consumer material. President Clinton also required federal agencies to use re-refined oil and to replace virgin tires with retreads. Perhaps most importantly, the order requires federal agencies to revise their procurement specifications and standards so that recovered materials can be used to make federally bought products.

  16. Quality requirements for reclaimed/recycled water

    NASA Technical Reports Server (NTRS)

    Janik, Daniel S.; Sauer, Richard L.; Pierson, Duane L.; Thorstenson, Yvonne R.

    1987-01-01

    Water used during current and previous space missions has been either carried or made aloft. Future human space endeavors will require some form of water reclamation and recycling. There is little experience in the U.S. space program with this technology. Water reclamation and recycling constitute engineering challenges of the broadest nature that will require an intensive research and development effort if this technology is to mature in time for practical use on the proposed U.S. Space Station. In order for this to happen, reclaimed/recycled water specifications will need to be devised to guide engineering development. Present NASA Potable Water Specifications are not applicable to reclaimed or recycled water. Adequate specifications for ensuring the quality of the reclaimed or recycled potable water system is reviewed, limitations of present water specifications are examined, world experience with potable water reclamation/recycling systems and systems analogs is reviewed, and an approach to developing pertinent biomedical water specifications for spacecraft is presented. Space Station water specifications should be designed to ensure the health of all likely spacecraft inhabitants including man, animals, and plants.

  17. Perspectives on recycling centres and future developments.

    PubMed

    Engkvist, I-L; Eklund, J; Krook, J; Björkman, M; Sundin, E

    2016-11-01

    The overall aim of this paper is to draw combined, all-embracing conclusions based on a long-term multidisciplinary research programme on recycling centres in Sweden, focussing on working conditions, environment and system performance. A second aim is to give recommendations for their development of new and existing recycling centres and to discuss implications for the future design and organisation. Several opportunities for improvement of recycling centres were identified, such as design, layout, ease with which users could sort their waste, the work environment, conflicting needs and goals within the industry, and industrialisation. Combining all results from the research, which consisted of different disciplinary aspects, made it possible to analyse and elucidate their interrelations. Waste sorting quality was recognized as the most prominent improvement field in the recycling centre system. The research identified the importance of involving stakeholders with different perspectives when planning a recycling centre in order to get functionality and high performance. Practical proposals of how to plan and build recycling centres are given in a detailed checklist. PMID:26826952

  18. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    SciTech Connect

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first major recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream

  19. Molybdenum recycling in the United States in 1998

    USGS Publications Warehouse

    Blossom, John W.

    2002-01-01

    This report describes the flow of molybdenum in the United States in 1998 with emphasis on the extent to which molybdenum was recycled. Molybdenum was mostly recycled from products of molybdenum-bearing steels and superalloys, with some molybdenum products recovered specifically for their high molybdenum content. In 1998, 8,000 metric tons (t) of molybdenum was estimated to have been recycled, and the recycling rate was calculated to be 33 percent, with recycling efficiency at about 30 percent.

  20. Electroless nickel recycling via electrodialysis

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-04-01

    Electroless nickel is widely used in the metal finishing industry as a coating. It plates evenly on a variety of surfaces and replicates or enhances the surface finish. It has high hardness and good corrosion resistance and machinability. However, its bath life is limited and it has a tendency to spontaneously plate out on the tank and associated equipment. These problems add to the cost per unit component plated. Also, expensive waste treatment is required before users can dispose of the spent solution. Electroless nickel`s limited bath life is inherent in its chemical make-up. Using hypophosphite as the reducing agent for the nickel ion generates by-products of nickel metal and orthophosphite. When the level of orthophosphite in the solution reaches a high concentration, the reaction slows and finally stops. The bath must be disposed of, and its treatment and replacement costs are high. Metal salts have a tendency to plate out because of the dissolved solids present, and this also makes it necessary to discard the bath. Lawrence Livermore National Laboratory (LLNL) has conducted a study of an electrodialysis process that can reduce both chemical purchases and disposal costs. Electrodialysis employs a membrane, deionized water, and an electromotive potential to separate the orthophosphite and other dissolved solids from the nickel ions. With the aid of the electromotive potential, the dissolved solids migrate across the membrane from the process solution into the water in the recycling unit`s holding cell. This migration lowers the total dissolved solids (TDS) in the process solution and improves plating performance. The dialysis process makes it possible to reuse the bath many times without disposal.

  1. Recycling of treated wood poles

    SciTech Connect

    Fansham, P.

    1995-11-01

    There are approximately 150 million utilities poles in service in North America. Of the 3 million poles removed from service each year, many poles still contain a sound and structurally intact core and only the outer layer has deteriorated. Since most of the old poles are treated with either pentachlorophenol or creosote there are limited disposal options available to pole users. The practice of giving old poles away to farmers or other interested parties in falling into disfavour since this practice does not absolve the utility of the environmental liability associated with the treated wood. TWT has commercialised a thermolysis (Pyrolysis) based process capable of removing oil based preservatives from treated wood. The patented process involves: the shaving of the weathered pole exterior; the rapid distillation of oil based preservatives in an oxygen depleted environment; condensation of the vapours; and separation of liquids. TWT has constructed a 30,000 pole per year facility east of Calgary and has provided recycled poles for the construction of two power lines now in use by TransAlta Utilities Corporation, Canada`s largest investor owned electric utility. TWT has tested two thermolysis (Pyrolysis) technologies and has determined that contact thermolysis using a heated auger design performed better and with less plugging than a fast fluid bed reactor. The fluid bed reactor is prone to coke formation and contamination of the oil by fine char particles. Residual PCP concentration in the shavings was reduced from 9500 ppm to 10 ppm. Leachate testing on the char yielded a PCP concentration of 1.43 ppm in the Leachate, well below the EPA standard maximum of 100 ppm.

  2. Waste tire recycling by pyrolysis

    SciTech Connect

    Not Available

    1992-10-01

    This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  3. Entropy, recycling and macroeconomics of water resources

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  4. Energy implications of recycling packaging materials

    SciTech Connect

    Gaines, L.L.; Stodolsky, F.

    1994-03-01

    In 1992, Congress sought to rewrite the United States comprehensive solid waste legislation -- the Resource Conservation and Recovery Act (RCRA). Commodity-specific recycling rates were proposed for consumer-goods packaging materials and newsprint We compare the impacts on energy, materials use, and landfill volume of recycling at those rates to the impacts for alternative methods of material disposition to determine the optimum for each material. After products have served their intended uses, there are several alternative paths for material disposition. These include reuse, recycling to the same product, recycling to a lower-valued product, combustion for energy recovery, incineration without energy recovery, and landfill. Only options considered to be environmentally sound are Included. Both houses of Congress specifically excluded combustion for energy recovery from counting towards the recovery goats, probably because combustion is viewed as a form of disposal and is therefore assumed to waste resources and have n environmental effects. However, co-combustion in coal-fired plants or combustion in appropriately pollution-controlled waste-to-energy plants Is safe, avoids landfill costs, and can displace fossil fuels. In some cases, more fossil fuels can be displaced by combustion than by recycling. We compare the alternative life-cycle energies to the energies for producing the products from virgin materials. Results depend on the material and on the objective to be achieved. There are trade-offs among possible goals. For instance, paper packaging recycling conserves trees but may require greater fossil-fuel input than virgin production. Therefore, the objectives for proposed legislation must be examined to see whether they can most effectively be achieved by mandated recycling rates or by other methods of disposition. The optimal choices for the United States may not necessarily be the same as those for Europe and other parts of the world.

  5. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan.

    PubMed

    Asari, Misuzu; Fukui, Kazuki; Sakai, Shin-Ichi

    2008-04-01

    We summarized the mercury flow of mercury-containing products from their manufacture to their disposal in Japan and discussed the current management of mercury-containing hazardous household waste (HHW). The mercury flow originating from these products was estimated to be about 10-20 tonnes annually, about 5 tonnes of which was attributable to fluorescent lamps, the major mercury-containing product in Japan. The recent rapid increase in digital home electronics with liquid crystal displays (e.g.,televisions, personal computers, mobile phones, and digital cameras) has led to a marked increase in the production of backlights, which are also fluorescent and contain mercury. Most of the annual flow was disposed of as waste, with only 0.6 tonnes Hg recovered. The mercury flow for end-of-life fluorescent lamps (excluding backlights) was analyzed under three scenarios for Kyoto, Japan for 2003: the present condition scenario, the improved recycling scenario, and the complete recycling scenario. Under the present condition scenario, mercury flow was calculated to be 34 kg Hg for incineration, 21 kg Hg for landfill, and only 4 kg Hg for recycling. The complete recycling scenario shows a simple flow, with all mercury recycled. Under this scenario for Kyoto, we calculated that a cyclic system having 47 kg of mercury (3.5 tonnes Hg in Japan) could be established if all fluorescent lamps (excluding those stored in residences) were collected and recycled. Mercury is a HHW priority chemical, and we need to limit its use and establish a closed-loop system. There are currently no regulations to achieve this, and the management of most HHWs is left to local governments. Therefore, products are disposed of in landfills or incinerated, except for some that are voluntarily collected and recycled. In order to recycle all of the waste fluorescent lamps, we must have a complete recycling system that has a high rate of public participation in collection. We also must have a closed

  6. Distinguishing Potential Recyclers from Nonrecyclers: A Basis for Developing Recycling Strategies.

    ERIC Educational Resources Information Center

    Lansana, Florence M.

    1992-01-01

    Examines the characteristics of recycling behavior for aid in strategy development to stimulate participation in community recycling programs. Suggests strategies that focus on the specific needs and problems of participating households, accommodate community variations, use appropriate information channels, and consider the relevance of operation…

  7. Cell phone recycling experiences in the United States and potential recycling options in Brazil.

    PubMed

    Silveira, Geraldo T R; Chang, Shoou-Yuh

    2010-11-01

    This paper presents an overview of cell phone recycling programs currently available in the United States. At the same time, it also provides analyses of the current recycling situation and possible recycling alternatives for Brazil. Although there are several recycling options in the United States, collection rates are still only 10% of all potential devices because customers are not aware of these possibilities. The whole system is financially based on reselling refurbished cell phones and recycled materials to developing countries which represent an effective and strong market. Several recyclers offer funds to collection partners who are either charities or who work with charities while obtaining the materials that they need in order to run their operations. A mobile phone recycling system for Brazil considering the United States experience and the Extended Producer Responsibility (EPR) principle is suggested. A deposit/refund/advance-recycling fee is proposed which might be implemented as a voluntary industrial initiative managed by PRO Brazil, a producer responsibility organization. One widespread public-private agreement will integrate all mobile phone stakeholders, and environmental education actions and promotional events will promote citizen's participation. PMID:20554440

  8. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells

    PubMed Central

    Perez Bay, Andres E.; Schreiner, Ryan; Benedicto, Ignacio; Paz Marzolo, Maria; Banfelder, Jason; Weinstein, Alan M.; Rodriguez-Boulan, Enrique J.

    2016-01-01

    The basolateral recycling and transcytotic pathways of epithelial cells were previously defined using markers such as transferrin (TfR) and polymeric IgA (pIgR) receptors. In contrast, our knowledge of the apical recycling pathway remains fragmentary. Here we utilize quantitative live-imaging and mathematical modelling to outline the recycling pathway of Megalin (LRP-2), an apical receptor with key developmental and renal functions, in MDCK cells. We show that, like TfR, Megalin is a long-lived and fast-recycling receptor. Megalin enters polarized MDCK cells through segregated apical sorting endosomes and subsequently intersects the TfR and pIgR pathways at a perinuclear Rab11-negative compartment termed common recycling endosomes (CRE). Whereas TfR recycles to the basolateral membrane from CRE, Megalin, like pIgR, traffics to subapical Rab11-positive apical recycling endosomes (ARE) and reaches the apical membrane in a microtubule- and Rab11-dependent manner. Hence, Megalin defines the apical recycling pathway of epithelia, with CRE as its apical sorting station. PMID:27180806

  9. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells.

    PubMed

    Perez Bay, Andres E; Schreiner, Ryan; Benedicto, Ignacio; Paz Marzolo, Maria; Banfelder, Jason; Weinstein, Alan M; Rodriguez-Boulan, Enrique J

    2016-01-01

    The basolateral recycling and transcytotic pathways of epithelial cells were previously defined using markers such as transferrin (TfR) and polymeric IgA (pIgR) receptors. In contrast, our knowledge of the apical recycling pathway remains fragmentary. Here we utilize quantitative live-imaging and mathematical modelling to outline the recycling pathway of Megalin (LRP-2), an apical receptor with key developmental and renal functions, in MDCK cells. We show that, like TfR, Megalin is a long-lived and fast-recycling receptor. Megalin enters polarized MDCK cells through segregated apical sorting endosomes and subsequently intersects the TfR and pIgR pathways at a perinuclear Rab11-negative compartment termed common recycling endosomes (CRE). Whereas TfR recycles to the basolateral membrane from CRE, Megalin, like pIgR, traffics to subapical Rab11-positive apical recycling endosomes (ARE) and reaches the apical membrane in a microtubule- and Rab11-dependent manner. Hence, Megalin defines the apical recycling pathway of epithelia, with CRE as its apical sorting station. PMID:27180806

  10. Is recycling the best policy option? Insights from life cycle analysis

    SciTech Connect

    Gaines, L.L.; Stodolsky, F.

    1996-03-01

    The public perceives that the more we recycle, the better off we are. However, both the concept of recycling and the benefits to be achieved from recycling are somewhat vague. To determine the best option for disposition of a material at the end of its first use, we need to first define the available options and then clarify the possible goals that can be achieved by them. The best option will depend on the material, goals to be achieved, and location-dependent factors, such as costs, resources, and regulations. This paper presents the results of a life-cycle energy analysis of kraft paper and newsprint by Argonne National Laboratory. They indicate that under some circumstances, the option of fiber-energy recovery will maximize the benefits that can. be realized from the U.S. used paper resource.

  11. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    SciTech Connect

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  12. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 2, Battery recycling and disposal

    SciTech Connect

    Corbus, D

    1992-09-01

    Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

  13. Progress in recycling of automobile shredder residue

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Pomykala, J.A. Jr.

    1996-03-01

    At Argonne National Laboratory, we have been developing a potentially economical process to recycle automobile shredder residue (ASR). We identified three potentially marketable materials that can be recovered from ASR and developed technologies to recover and upgrade these materials. We build and tested a field-demonstration plant for recycling polyurethane foam and produced about 2000 lb of recycled foam. Several 300-lb samples were sent for evaluation and were found to be of marketable quality. We are also preparing for a large-scale test in which about 200 tons of ASR-derived fines will be used as a raw material in cement making. A major cement company has evaluated small samples of fines prepared in the laboratory and found that they meet its requirements as a substitute for iron ore or mill scale. We also produced about 50 lb of recycled acrylonitrile butadiene styrene (ABS) from obsolete automobiles and found that it has properties that could be readily upgraded to meet the specifications of the automotive industry. In this paper, we briefly discuss the process as a whole and summarize the results obtained from the field work on foam and fines recycling.

  14. Recycling of electric-arc-furnace dust

    SciTech Connect

    Sresty, G.C.

    1990-05-01

    Electric arc furnace (EAF) dust is one of the largest solid waste streams produced by steel mills, and is classified as a waste under the Resource Conservation and Recovery Act (RCRA) by the U.S. Environmental Protection Agency (EPA). Successful recycle of the valuable metals (iron, zinc, and lead) present in the dust will result in resource conservation while simultaneously reducing the disposal problems. Technical feasibility of a novel recycling method based on using hydrogen as the reductant was established under this project through laboratory experiments. Sponge iron produced was low in zinc, cadmium, and lead to permit its recycle, and nontoxic to permit its safe disposal as an alternative to recycling. Zinc oxide was analyzed to contain 50% to 58% zinc by weight, and can be marketed for recovering zinc and lead. A prototype system was designed to process 2.5 tons per day (600 tons/year) of EAF dust, and a preliminary economic analysis was conducted. The cost of processing dust by this recycling method was estimated to be comparable to or lower than existing methods, even at such low capacities.

  15. Recycler lattice for Project X at Fermilab

    SciTech Connect

    Xiao, Meiqin; Johnson, David E.; /Fermilab

    2009-09-01

    Project X is an intense proton source that provides beam for various physics programs. The source consists of an 8 GeV H- superconducting linac that injects into the Fermilab Recycler where H- are converted to protons. Protons are provided to the Main Injector and accelerated to desired energy (in the range 60-120 GeV) or extracted from the Recycler for the 8 GeV program. A long drift space is needed to accommodate the injection chicane with stripping foils. The Recycler is a fixed 8 GeV kinetic energy storage ring using permanent gradient magnets. A phase trombone straight section is used to control the tunes. In this paper, the existing FODO lattice in RR10 straight section being converted into doublet will be described. Due to this change, the phase trombone straight section has to be modified to bring the tunes to the nominal working point. A toy lattice of recycler ring is designed to simulate the end-shim effects of each permanent gradient magnet to add the flexibility to handle the tune shift to the lattice during the operation of 1.6E14 with KV distribution of the proton beam to give {approx}0.05 of space charge tune shift. The comparison or the combinations of the two modification ways for the Recycler ring lattice will be presented also in this paper.

  16. Energy implications of glass-container recycling

    SciTech Connect

    Gaines, L L; Mintz, M M

    1994-03-01

    This report addresses the question of whether glass-container recycling actually saves energy. Glass-container production in 1991 was 10{sup 7} tons, with cullet making up about 30% of the input to manufacture. Two-thirds of the cullet is postconsumer waste; the remainder is in-house scrap (rejects). Most of the glass recycled is made into new containers. Total primary energy consumption includes direct process-energy use by the industry (adjusted to account for the efficiency of fuel production) plus fuel and raw-material transportation and production energies; the grand total for 1991 is estimated to be about 168 {times} 10{sup 12} Btu. The total primary energy use decreases as the percent of glass recycled rises, but the maximum energy saved is only about 13%. If distance to the landfill is kept fixed and that to the recovery facility multiplied by about eight, to 100 mi, a break-even point is reached, and recycling saves no energy. Previous work has shown that to save energy when using glass bottles, reuse is the clear choice. Recycling of glass does not save much energy or valuable raw material and does not reduce air or water pollution significantly. The most important impacts are the small reduction of waste sent to the landfill and increased production rates at glass plants.

  17. INEL metal recycle annual report, FY-94

    SciTech Connect

    Bechtold, T.E.

    1994-09-01

    In 1992, the mission of the Idaho Chemical Processing Plant was changed from reprocessing of spent nuclear fuels to development of technologies for conditioning of spent nuclear fuels and other high-level wastes for disposal in a geologic repository. In addition, the Department of Energy (DOE) directed Idaho National Engineering Laboratory (INEL) to develop a program plan addressing the management of radioactive contaminated scrap metal (RSM) within the DOE complex. Based on discussions with the EM-30 organization, the INEL Metal Recycle program plan was developed to address all issues of RSM management. Major options considered for RSM management were engineered interim storage, land disposal as low-level waste, and beneficial reuse/recycle. From its inception, the Metal Recycle program has emphasized avoidance of storage and disposal costs through beneficial reuse of RSM. The Metal Recycle program plan includes three major activities: Site-by-site inventory of RSM resources; validation of technologies for conversion of RSM to usable products; and identification of parties prepared to participate in development of a RSM recycle business.

  18. Software recycling at the Hanford Site

    SciTech Connect

    HINKELMAN, K.C.

    1999-11-03

    The Hanford Site was the first Department of Energy (DOE) complex to recycle excess software rather than dispose of it in the landfill. This plan, which took over a year to complete, was reviewed for potential legal conflicts, which could arise from recycling rather than disposal of software. It was determined that recycling was an approved method of destruction and therefore did not conflict with any of the licensing agreements that Hanford had with the software manufacturers. The Hanford Recycling Program Coordinator combined efforts with Pacific Northwest National Laboratory (PNNL) to recycle all Hanford software through a single contract, which went out for bid in January 1995. It was awarded to GreenDisk, Inc. located in Woodinville Washington and implemented in March 1995. The contract was later re-bid and awarded to EcoDisWGreenDisk in December 1998. The new contract included materials such as; software manuals, diskettes, tyvek wrapping, cardboard & paperboard packaging, compact disks (CDs), videotapes, reel-to-reel tapes, magnetic tapes, audio tapes, and many other types of media.

  19. Analysis of chromium and sulphate origins in construction recycled materials based on leaching test results.

    PubMed

    Del Rey, I; Ayuso, J; Galvín, A P; Jiménez, J R; López, M; García-Garrido, M L

    2015-12-01

    Twenty samples of recycled aggregates from construction and demolition waste (CDW) with different compositions collected at six recycling plants in the Andalusia region (south of Spain) were characterised according to the Landfill Directive criteria. Chromium and sulphate were identified as the most critical compounds in the leachates. To detect the sources of these two pollutant constituents in recycled aggregate, environmental assessments were performed on eight construction materials (five unused ceramic materials, two old crushed concretes and one new mortar manufactured in the laboratory). The results confirmed that leached sulphate and Cr were mainly released by the ceramic materials (bricks and tiles). To predict the toxicological consequences, the oxidation states of Cr (III) and Cr (VI) were measured in the leachates of recycled aggregates and ceramic materials classified as non-hazardous. The bricks and tiles mainly released total Cr as Cr (III). However, the recycled aggregates classified as non-hazardous according to the Landfill Directive criteria mainly released Cr (VI), which is highly leachable and extremely toxic. The obtained results highlight the need for legislation that distinguishes the oxidative state in which chromium is released into the environment. Leaching level regulations must not be based solely on total Cr, which can lead to inaccurate predictions. PMID:26257054

  20. Mutations in exocyst complex subunit SEC6 gene impaired polar auxin transport and PIN protein recycling in Arabidopsis primary root.

    PubMed

    Tan, Xiaoyun; Feng, Yihong; Liu, Yulong; Bao, Yiqun

    2016-09-01

    Polar auxin transport, which is critical for land plant pattern formation and directional growth, is largely depended on asymmetric distribution of PIN proteins at the plasma membrane (PM). Endocytosis and recycling processes play important roles in regulating PIN protein distribution and abundance at the PM. Two subunits (SEC8, EXO70A1) of exocyst, an octameric vesicle-tethering complex, have been reported to be involved in PIN protein recycling in Arabidopsis. However, the function of exocyst complex in PIN protein recycling and polar auxin transport remains incompletely understood. In this study, we utilized two SEC6 down-regulation mutants (PRsec6-1 and PRsec6-2) to investigate the role of exocyst subunit SEC6 in the primary root development, polar auxin transport and PIN proteins recycling. We found that in PRsec6 mutants: 1. Primary root growth was retarded, and lateral root initiation were compromised. 2. Primary roots were sensitive to exogenous auxin 1-napthalene acetic acid (NAA) but not 2,4-dichlorophenoxy (2.4-D). 3. Recycling of PIN1 and PIN2 proteins from the Brefeldin A (BFA) compartment to the PM was delayed. 4. Vesicles accumulated in the primary root tip cells, especially accumulated in the cytosol closed to the PM. These results further demonstrated that the exocyst complex plays an important role in PIN protein recycling and polar auxin transport in Arabidopsis primary root. PMID:27457987

  1. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens.

    PubMed

    Domínguez-Gil, Teresa; Molina, Rafael; Alcorlo, Martín; Hermoso, Juan A

    2016-09-01

    Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway. PMID:27620957

  2. Antimony recycling in the United States in 2000

    USGS Publications Warehouse

    Carlin, James F.

    2006-01-01

    The importance of recycling has become more obvious as concerns about the environment and import dependence have grown in recent years. When materials are recycled, fewer natural resources are consumed, and less waste products go to landfills or pollute the water and air. This study, one of a series of reports on metals recycling in 2000, discusses the flow of antimony from mining through its uses and disposal with emphasis on recycling. In 2000, the recycling efficiency for antimony was estimated to be 89 percent, and the recycling rate was about 20 percent.

  3. Recycling of used aluminum beverage cans in Japan

    SciTech Connect

    Itou, Tatsuo

    1995-12-31

    Both sales volume of aluminum cans and the recycling rate are remarkably increasing in Japan. In 1993, recycled can volume was 11.78 billion cans (116,258 metric tons) and its recycling rate 57.8 percent. Mitsubishi Materials Corporation, the leading manufacturer of aluminum cans in Japan, and their affiliated companies are very deeply involved in recycling used beverage cans (U.B.C) and recycling them back to can stock. In this paper, the author presents the following: (1) recent trends of beverage can consumption in Japan; (2) trend of aluminum cans and recycling rate in Japan; and (3) future of the aluminum can business in Japan.

  4. New developments in RTR fuel recycling

    SciTech Connect

    Lelievre, F.; Brueziere, J.; Domingo, X.; Valery, J.F.; Leroy, J.F.; Tribout-Maurizi, A.

    2013-07-01

    As most utilities in the world, Research and Test Reactors (RTR) operators are currently facing two challenges regarding the fuel, in order to comply with local safety and waste management requirements as well as global non-proliferation obligation: - How to manage used fuel today, and - How fuel design changes that are currently under development will influence used fuel management. AREVA-La-Hague plant has a large experience in used fuel recycling, including traditional RTR fuel (UAl). Based on that experience and deep knowledge of RTR fuel manufacturing, AREVA is currently examining possible options to cope with both challenges. This paper describes the current experience of AREVA-La-Hague in UAl used fuels recycling and its plan to propose recycling for various types of fuels such as U{sub 3}Si{sub 2} fuel or UMo fuel on an industrial scale. (authors)

  5. Characterization of DWPF recycle condensate materials

    SciTech Connect

    Bannochie, C. J.; Adamson, D. J.; King, W. D.

    2015-04-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to understand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF the Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here.

  6. Recycling and reuse: Are they the answer

    SciTech Connect

    Not Available

    1994-11-01

    At a time when reuse is widely recognized as a partial solution to the US mounting waste problem, it comes as no surprise that drinking water suppliers are giving thought to reclaiming residuals. This reuse may occur within the treatment plant, for example, by recovering alum from sludge or recycling waste streams, or outside the plant, where endeavors such as controlled land application return components of sludge to the soil. By nature, sludges and other residuals likely contain contaminants that have been removed from the water--e.g., Giardia and Cryptosporidium, trihalomethane precursors, and heavy metals. Recycling waste flows has the potential to disturb the treatment process or to affect the quality of finished water. Proper treatment and monitoring of waste streams can render them acceptable for recycling.

  7. Impacts of EV battery production and recycling

    SciTech Connect

    Gaines, L.; Singh, M.

    1996-06-01

    Electric vehicles batteries use energy and produce environmental residuals when they are produced and recycled. This study estimates, for four selected battery types (sodium-sulfur, nickel-metal hydride, nickel-cadmium, and advanced lead-acid), the impacts of production and recycling of the materials used in electric vehicle batteries. These impacts are compared, with special attention to the locations of the emissions. It is found that the choice among batteries for electric vehicles involves tradeoffs among impacts. Nickel-cadmium and nickel-metal hydride batteries are similar, for example, but energy requirements for the production of cadmium electrodes may be higher than those for metal hydride electrodes, while the latter may be more difficult to recycle.

  8. Applying decision-making tools to national e-waste recycling policy: an example of Analytic Hierarchy Process.

    PubMed

    Lin, Chun-Hsu; Wen, Lihchyi; Tsai, Yue-Mi

    2010-05-01

    As policy making is in essence a process of discussion, decision-making tools have in many cases been proposed to resolve the differences of opinion among the different parties. In our project that sought to promote a country's performance in recycling, we used the Analytic Hierarchy Process (AHP) to evaluate the possibilities and determine the priority of the addition of new mandatory recycled waste, also referred to as Due Recycled Wastes, from candidate waste appliances. The evaluation process started with the collection of data based on telephone interviews and field investigations to understand the behavior of consumers as well as their overall opinions regarding the disposal of certain waste appliances. With the data serving as background information, the research team then implemented the Analytic Hierarchy Process using the information that formed an incomplete hierarchy structure in order to determine the priority for recycling. Since the number of objects to be evaluated exceeded the number that the AHP researchers had suggested, we reclassified the objects into four groups and added one more level of pair-wise comparisons, which substantially reduced the inconsistency in the judgment of the AHP participants. The project was found to serve as a flexible and achievable application of AHP to the environmental policy-making process. In addition, based on the project's outcomes derived from the project as a whole, the research team drew conclusions regarding the government's need to take back 15 of the items evaluated, and suggested instruments that could be used or recycling regulations that could be changed in the future. Further analysis on the top three items recommended by the results of the evaluation for recycling, namely, Compact Disks, Cellular Phones and Computer Keyboards, was then conducted to clarify their concrete feasibility. After the trial period for recycling ordered by the Taiwan Environmental Protection Administration, only Computer

  9. Chemical and mechanical recycling of shredder fluff

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Shoemaker, E.L.

    1992-12-01

    Each year, the secondary metals industry recovers about 55--60 million tons of prompt and obsolete scrap which is used in the production of finished steel products. The single largest source of this scrap is the obsolete automobile. The shredder industry recovers about 10--12 million ton/yr of ferrous scrap, most of which is from shredded automobiles. However, for each ton of steel recovered, over 500 lb of fluff are produced. Shredder fluff is comprised of the nonmetallic content of the automobile and other shredded materials, such as refrigerators, dryers, and dishwashers, which are commonly called white goods. The plastics content of shredder fluff is typically about 15--20% by weight and is expected to increase over the next decade due to the significant increase in the use of automotive plastics over the past 10--15 years. At present, shredder fluff is landfilled. The rapidly escalating landfilling cost, along with environmental concerns over the fate of this waste, poses a significant cost and liability to the shredder industry. Research is being carried out to identify and develop recycling technologies that will reduce the volume and the mass of shredder fluff going to landfills and to minimize its cost impact on the recycling of secondary metals. Previous research has focused on exploiting the plastics content of shredder fluff and other hydrocarbons present in fluff for secondary recycling (e.g., production of wood-products substitutes) and for quaternary recycling (e.g., energy generation). Limited work was also conducted on tertiary recycling (e.g., pyrolysis and gasification). Although the previous research has established the technical feasibility of most, if not all, of the alternatives that were examined, none have proven to be cost-effective. This paper describes some research at Argonne National Laboratory (ANL) to develop a process to recycle some of the fluff content, primarily the thermoplastics.

  10. Chemical and mechanical recycling of shredder fluff

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Shoemaker, E.L.

    1992-01-01

    Each year, the secondary metals industry recovers about 55--60 million tons of prompt and obsolete scrap which is used in the production of finished steel products. The single largest source of this scrap is the obsolete automobile. The shredder industry recovers about 10--12 million ton/yr of ferrous scrap, most of which is from shredded automobiles. However, for each ton of steel recovered, over 500 lb of fluff are produced. Shredder fluff is comprised of the nonmetallic content of the automobile and other shredded materials, such as refrigerators, dryers, and dishwashers, which are commonly called white goods. The plastics content of shredder fluff is typically about 15--20% by weight and is expected to increase over the next decade due to the significant increase in the use of automotive plastics over the past 10--15 years. At present, shredder fluff is landfilled. The rapidly escalating landfilling cost, along with environmental concerns over the fate of this waste, poses a significant cost and liability to the shredder industry. Research is being carried out to identify and develop recycling technologies that will reduce the volume and the mass of shredder fluff going to landfills and to minimize its cost impact on the recycling of secondary metals. Previous research has focused on exploiting the plastics content of shredder fluff and other hydrocarbons present in fluff for secondary recycling (e.g., production of wood-products substitutes) and for quaternary recycling (e.g., energy generation). Limited work was also conducted on tertiary recycling (e.g., pyrolysis and gasification). Although the previous research has established the technical feasibility of most, if not all, of the alternatives that were examined, none have proven to be cost-effective. This paper describes some research at Argonne National Laboratory (ANL) to develop a process to recycle some of the fluff content, primarily the thermoplastics.

  11. Household demand for waste recycling services.

    PubMed

    Palatnik, Ruslana; Ayalon, Ofira; Shechter, Mordechai

    2005-02-01

    Municipalities everywhere are coping with increasing amounts of solid waste and need urgently to formulate efficient and sustainable solutions to the problem. This study examines the use of economic incentives in municipal waste management. Specifically, we address the issue of recycling, if and when this waste management option is-on social welfare grounds-a preferred solution.A number of studies have recently assessed the monetary value of the externalities of alternative solid waste management options. In the present context, these subsidies could be interpreted as the implicit value of the benefits from reducing environmental externalities associated with landfilling as perceived by local government authorities. We surmise that the difference between mean households' willingness to pay (WTP) for recycling services, via the purchase of a subsidized waste disposal facility, and the above (proxy) value of externalities reflects the difference between private and public perception regarding the negative externality associated with landfilling. We believe that this information is useful in determining the level of subsidization needed (if at all) to sustain any recycling program.The study is unique in the sense that its conclusions are based on revealed household behavior when faced with increased disposal costs, as well as information on WTP responses in hypothetical but related (and, therefore, familiar) scenarios. The article also explores the influence of the subsidization schemes on recycling rates. It was found that with low levels of effort needed to participate in a curbside recycling program, households' participation rates are mainly influenced by economic variables and age, and households are willing to pay a higher price for the recycling scheme. When the required effort level is relatively high, however, households would pay a lower price, and the rate is influenced mainly by their environmental commitment and by economic considerations. We found that

  12. Economic analysis of recycling contaminated concrete

    SciTech Connect

    Stephen, A.; Ayers, K.W.; Boren, J.K.; Parker, F.L.

    1997-02-01

    Decontamination and Decommissioning activities in the DOE complex generate large volumes of radioactively contaminated and uncontaminated concrete. Currently, this concrete is usually decontaminated, the contaminated waste is disposed of in a LLW facility and the decontaminated concrete is placed in C&D landfills. A number of alternatives to this practice are available including recycling of the concrete. Cost estimates for six alternatives were developed using a spreadsheet model. The results of this analysis show that recycling alternatives are at least as economical as current practice.

  13. Methanation process utilizing split cold gas recycle

    DOEpatents

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  14. Self-protection in dry recycle technologies

    SciTech Connect

    Hannum, W.H.; Wade, D.; Stanford, G.

    1995-12-01

    In response to the INFCE conclusions, the U.S. undertook development of a new dry fuel cycle. Dry recycle processes have been demonstrated to be feasible. Safeguarding such fuel cycles will be dramatically simpler than the PUREX fuel cycle. At every step of the processes, the materials meet the {open_quotes}spent-fuel standard.{close_quotes} The scale is compatible with collocation of power reactors and their recycle facility, eliminating off-site transportation and storage of plutonium-bearing materials. Material diverted either covertly or overtly would be difficult (relative to material available by other means) to process into weapons feedstock.

  15. The value of recycling on water conservation.

    SciTech Connect

    Ludi-Herrera, Katlyn D.

    2013-07-01

    Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, ceiling tiles, compost, and plastic. It will be discussed the use of water in the process of manufacturing these materials and the amount of water that is used. The way that water is conserved will be reviewed. From the stand point of SNL it will be discussed the amount of material that has been accumulated from 2010 to the first two quarters of 2013 and how much water this material has saved.

  16. Recycling Pulsars: spins, masses and ages

    NASA Astrophysics Data System (ADS)

    Tauris, T. M.; Kramer, M.; Langer, N.

    2013-03-01

    Although the first millisecond pulsars (MSPs) were discovered 30 years ago we still do not understand all details of their formation process. Here, we present new results from Tauris, Langer & Kramer (2012) on the recycling scenario leading to radio MSPs with helium or carbon-oxygen white dwarf companions via evolution of low- and intermediate mass X-ray binaries (LMXBs, IMXBs). We discuss the location of the spin-up line in the PṖ-diagram and estimate the amount of accreted mass needed to obtain a given spin period and compare with observations. Finally, we constrain the true ages of observed recycled pulsars via calculated isochrones in the PṖ-diagram.

  17. Recovering valuable metals from recycled photovoltaic modules.

    PubMed

    Yi, Youn Kyu; Kim, Hyun Soo; Tran, Tam; Hong, Sung Kil; Kim, Myong Jun

    2014-07-01

    Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (> 99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be -$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply > 88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a > 99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520 degrees C using CaO-CaF2-SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce > 99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules. Implications: The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its "green" image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future. PMID:25122953

  18. Impact of San Diego`s mandatory recycling ordinance on meeting the California 50% recycling goal

    SciTech Connect

    Anthony, R.V.; Worrell, W.A.

    1998-12-31

    When AB 939, The Integrated Waste Management Act of 1989, was chaptered into law, the Statewide recycling rate was 12%. The year 1990 was set as the base year. 1995 was a set as a target for the first 25% of the resources to be diverted. The year 2000 is the date for the 50% target. Today the Statewide average is around 30%. In San Diego, one reason landfill tonnage`s are down is that most of the cities have attained 40% diversions and beyond. The County Recycling Plan, initiated by then Supervisor Susan Golding in 1988, called for a 30% diversion of resources from County Landfills. One aspect of this plan was to use landfill fees to pay for trucks and bins. The County granted these to the cities and their contractors to begin the first residential and commercial recyclable materials` collections. The County put a ban on the burial of designated recyclables at County Landfills into effect in 1992. Wasted resources disposed at County Landfills dropped from 2.4 million tons in 1990 to 1.3 million tons in 1993, more than 45%. This program was recognized in 1990, by the California Department of Conservation, Division of Recycling as the best in the State, and by the National Recycling Coalition in 1993 as the best in the nation. The public sees recycling as a resource management issue. In some cities, the public has voted to pay for the opportunity to recycle discarded resources. The increased availability of these recovered materials has created thousands of new jobs and businesses. This is a hundred times more jobs than the number of jobs supported by the landfilling of these resources. These businesses have been started to provide the collection, processing, transportation, and remanufacturing of products related to the recovered metal, glass, fiber, plastic and organics. Most people who recycle think they can diminish the impact on the planet by putting back some of what they have used.

  19. Scribble1/AP2 complex coordinates NMDA receptor endocytic recycling.

    PubMed

    Piguel, Nicolas H; Fievre, Sabine; Blanc, Jean-Michel; Carta, Mario; Moreau, Maïté M; Moutin, Enora; Pinheiro, Vera L; Medina, Chantal; Ezan, Jerome; Lasvaux, Léa; Loll, François; Durand, Christelle M; Chang, Kai; Petralia, Ronald S; Wenthold, Robert J; Stephenson, F Anne; Vuillard, Laurent; Darbon, Hervé; Perroy, Julie; Mulle, Christophe; Montcouquiol, Mireille; Racca, Claudia; Sans, Nathalie

    2014-10-23

    The appropriate trafficking of glutamate receptors to synapses is crucial for basic synaptic function and synaptic plasticity. It is now accepted that NMDA receptors (NMDARs) internalize and are recycled at the plasma membrane but also exchange between synaptic and extrasynaptic pools; these NMDAR properties are also key to governing synaptic plasticity. Scribble1 is a large PDZ protein required for synaptogenesis and synaptic plasticity. Herein, we show that the level of Scribble1 is regulated in an activity-dependent manner and that Scribble1 controls the number of NMDARs at the plasma membrane. Notably, Scribble1 prevents GluN2A subunits from undergoing lysosomal trafficking and degradation by increasing their recycling to the plasma membrane following NMDAR activation. Finally, we show that a specific YxxR motif on Scribble1 controls these mechanisms through a direct interaction with AP2. Altogether, our findings define a molecular mechanism to control the levels of synaptic NMDARs via Scribble1 complex signaling. PMID:25310985

  20. Brazilian policy on battery disposal and its practical effects on battery recycling

    NASA Astrophysics Data System (ADS)

    Crocce Romano Espinosa, Denise; Moura Bernardes, Andréa; Alberto Soares Tenório, Jorge

    The disposal of batteries is a problem that has grown in the last few years, due to the increase in the use of portable devices. Batteries may contain toxic metals such as cadmium, mercury and lead, so their disposal must be controlled. Brazil was the first country in Latin America to regulate the disposal and treatment of batteries. Limits were established on the concentration of heavy metals within batteries, so that they could be disposed along with domestic waste. Since batteries are products used broadly, it is very difficult to control their disposal. In order to have an efficient collection, the population must be engaged, and that can only happen if they are informed about the laws and regulations regarding the subject, as well as the importance of disposing of batteries with higher concentrations of heavy metals or toxic substances separately from domestic garbage. Around the world, there are some long-established recycling processes for batteries. In Brazil, automotive (lead-acid) batteries have been recycled for several years, whereas the recycling of other types of batteries is just starting. This work does an analysis of the Brazilian law for battery recycling and presents some suggestions and examples of the initiatives of other countries, in order to manage of this kind of dangerous waste.

  1. Atmospheric water vapor transport and recycling in Equatorial Central Africa through NCEP/NCAR reanalysis data

    NASA Astrophysics Data System (ADS)

    Pokam, Wilfried M.; Djiotang, Lucie A. Tchotchou; Mkankam, François K.

    2012-05-01

    The characteristics of the main components of the water cycle over Equatorial Central Africa (ECA) were analysed using the 32-year period, spanning from 1968 to 2000, of the National Centers for Environmental Prediction-National Censearch (NCEP-) reanalysis project database. A special emphasis was given to identifying the causes of annual and interannual variability of water vapor flux and precipitation recycling. The results suggest that the first maximum of moisture convergence, during the rainy season MAM, comes from upper level moisture flux, related to the north component of the African Easterly Jet (AEJ-N). The second, and greatest, maximum in SON is found to be a consequence of low level moisture advection from the Atlantic Ocean. AEJ-N also drive the seasonal spatial pattern of moisture flux. The interannual variability of moisture flux is contributed mainly by the low level moisture advected from the Atlantic Ocean, underlying its crucial role for the regional climate. Studying the recycling ratio in ECA as a whole shows a low annual cycle whereas subregional scale analysis reveals high amplitude of the seasonal variation. Seasonal variability of the spatial gradient of precipitation recycling is regulated by both moisture flux direction and strength. The annual cycles of recycling ratio in the North and the South of ECA are regulated by both moisture transport and evapotranspiration.

  2. Microbial carbon recycling: an underestimated process controlling soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.

    2015-07-01

    The mean residence times (MRT) of different compound classes of soil organic matter (SOM) do not match their inherent recalcitrance to decomposition. One reason for this is the stabilisation within the soil matrix, but recycling, i.e. the reuse of "old" organic material to form new biomass may also play a role as it uncouples the residence times of organic matter from the lifetime of discrete molecules in soil. We analysed soil sugar dynamics in a natural 30 years old labelling experiment after a~wheat-maize vegetation change to determine the extent of recycling and stabilisation in plant and microbial derived sugars: while plant derived sugars are only affected by stabilisation processes, microbial sugars may be subject to both, stabilisation and recycling. To disentangle the dynamics of soil sugars, we separated different density fractions (free particulate organic matter (fPOM), light occluded particulate organic matter (≤1.6 g cm-3; oPOM1.6), dense occluded particulate organic matter (≤2 g cm-3; oPOM2) and mineral-associated organic matter (>2 g cm-3; Mineral)) of a~silty loam under long term wheat and maize cultivation. The isotopic signature of sugars was measured by high pressure liquid chromatography coupled to isotope ratio mass spectrometry (HPLC/IRMS), after hydrolysis with 4 M Trifluoroacetic acid (TFA). While apparent mean residence times (MRT) of sugars were comparable to total organic carbon in the bulk soil and mineral fraction, the apparent MRT of sugars in the oPOM fractions were considerably lower than those of the total carbon of these fractions. This indicates that oPOM formation was fuelled by microbial activity feeding on new plant input. In the bulk soil, mean residence times of the mainly plant derived xylose (xyl) were significantly lower than those of mainly microbial derived sugars like galactose (gal), rhamnose (rha), fucose (fuc), indicating that recycling of organic matter is an important factor regulating organic matter dynamics

  3. EVALUATION OF FILTRATION AND DISTILLATION METHODS FOR RECYCLING AUTOMOTIVE COOLANT

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive engine coolants at a New Jersey Department of Transportation garage. he specific recycling units evaluated are based on the technologies of filtration and distilla...

  4. EVALUATION OF RECYCLED PLASTIC LUMBER FOR MARINE APPLICATIONS

    EPA Science Inventory

    This report presents an evaluation of the recycled plastic materials (RPM) produced by California Recycling Company (CRC). This evaluation is performed under the Municipal Waste Innovative Technology Evaluation (MITE) Program of the U.S. EPA, Risk Reduction Engineering Laboratory...

  5. Aluminum recycling in the United States in 2000

    USGS Publications Warehouse

    Plunkert, Patricia A.

    2006-01-01

    As one of a series of reports on metals recycling, this report discusses the flow of aluminum from production through its uses with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap) in 2000. This materials flow study includes a description of aluminum supply and demand factors for the United States to illustrate the extent of aluminum recycling and to identify recycling trends. Understanding the system of materials flow from source to ultimate disposition can assist in improving the management of natural resources in a manner that is compatible with sound environmental practices. In 2000, the old scrap recycling efficiency for aluminum was estimated to be 42 percent. Almost 60 percent of the aluminum that was recycled in 2000 came from new scrap, and the recycling rate was estimated to be 36 percent. The principal source of old scrap was recycled aluminum beverage cans.

  6. Manganese recycling in the United States in 1998

    USGS Publications Warehouse

    Jones, Thomas S.

    2001-01-01

    This report describes the flow and processing of manganese within the U.S. economy in 1998 with emphasis on the extent to which manganese is recycled. Manganese was used mostly as an alloying agent in alloys in which it was a minor component. Manganese was recycled mostly within scrap of iron and steel. A small amount was recycled within aluminum used beverage cans. Very little manganese was recycled from materials being recovered specifically for their manganese content. For the United States in 1998, 218,000 metric tons of manganese was estimated to have been recycled from old scrap, of which 96% was from iron and steel scrap. Efficiency of recycling was estimated as 53% and recycling rate as 37%. Metallurgical loss of manganese was estimated to be about 1.7 times that recycled. This loss was mostly into slags from iron and steel production, from which recovery of manganese has yet to be shown economically feasible.

  7. EVALUATION OF RECYCLED PLASTIC LUMBER FOR MARINE APPLICATIONS

    EPA Science Inventory

    This report presents an evaluation of the recycled plastic materials (RPM) produced by California Recycling Company (CRC). his evaluation is performed under the Municipal Waste Innovative Technology Evaluation (MITE) Program of the U.S. EPA, Risk Reduction Engineering Laboratory....

  8. MOBILE AIR-CONDITIONING RECYCLING MANUAL

    EPA Science Inventory

    The report gives guidelines on the recovery and recycle of the chlorofluorocarbon (CFC), dichlorodifluoromethane (CFC-12), from mobile air conditions. It is intended for wide distribution internationally and is especially for use by developing countries and the World Bank to ass...

  9. Biomass recycling heat technology and energy products

    NASA Astrophysics Data System (ADS)

    Tabakaev, R. B.; Gergelizhiu, P. S.; Kazakov, A. V.; Zavorin, A. S.

    2014-10-01

    Relevance is determined by necessity of utilizing of local low-grade fuels by energy equpment. Most widespread Tomsk oblast (Russian Federation region) low-grade fuels are described and listed. Capability of utilizing is analysed. Mass balances of heat-technology conversion materials and derived products are described. As a result, recycling capability of low-grade fuels in briquette fuel is appraised.

  10. RECOVERY, REUSE, AND RECYCLE OF INDUSTRIAL WASTE

    EPA Science Inventory

    The major goal of this work is to produce a document useful in planning efforts aimed at elimination of industrial wastes through the application of recycle, recovery, and reuse technology. The pollutants considered in this study are basically organic and inorganic by-products fr...

  11. Colleges Organize Campuswide Efforts to Recycle Wastes.

    ERIC Educational Resources Information Center

    Magner, Denise K.

    1989-01-01

    Spurred by soaring garbage-disposal costs and the closings of local landfills, colleges and universities are organizing campus wide recycling programs. The Association of Physical Plant Administrators of Universities and Colleges will soon be adding the subject to its computerized list of information available to member colleges. (MLW)

  12. Woody biomass production in waste recycling systems

    SciTech Connect

    Rockwood, D.L.; Snyder, G.H.; Sprinkle, R.R.

    1994-12-31

    Combining woody biomass production with waste recycling offers many mutual advantages, including increased tree growth and nutrient and water reclamation. Three biomass/recycling studies collectively involving Eucalyptus amplifolia, E. camaldulensis, and E. grandis, rapidly growing species potentially tolerant of high water and nutrient levels, are (1) evaluating general potential for water/nutrient recycling systems to enhance woody biomass production and to recycle water and nutrients, (2) documenting Eucalyptus growth, water use, and nutrient uptake patterns, and (3) identifying Eucalyptus superior for water and nutrient uptake in central and southern Florida. In a 1992-93 study assessing the three Eucalyptus species planted on the outside berms of sewage effluent holding ponds, position on the berms (top to bottom) and genotypes influenced tree size. The potential of the trees to reduce effluent levels in the ponds was assessed. In a stormwater holding pond planted in 1993, these Eucalyptus genotypes varied significantly for tree size but not for survival. E. camaldulensis appears generally superior when flooded with industrial stormwater. Potential sizes of ponds needed for different stormwater applications were estimated. Prolonged flooding of 4- and 5-year-old E. camaldulensis with agricultural irrigation runoff has had no observable effects on tree growth or survival. Younger E. camaldulensis, E. amplifolia, and E. grandis were assessed for water use and nutrient uptake during a Summer 1994 flooding.

  13. Transverse instability at the recycler ring

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2004-10-01

    Sporadic transverse instabilities have been observed at the Fermilab Recycler Ring leading to increase in transverse emittances and beam loss. The driving source of these instabilities has been attributed to the resistive-wall impedance with space-charge playing an important role in suppressing Landau damping. Growth rates of the instabilities are computed. Remaining problems are discussed.

  14. WINCO Metal Recycle annual report, FY 1993

    SciTech Connect

    Bechtold, T.E.

    1993-12-01

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

  15. The ideomotor recycling theory for language.

    PubMed

    Badets, Arnaud

    2016-01-01

    For language acquisition and processing, the ideomotor theory predicts that the comprehension and the production of language are functionally based on their expected perceptual effects (i.e., linguistic events). This anticipative mechanism is central for action-perception behaviors in human and nonhuman animals, but a recent ideomotor recycling theory has emphasized a language account throughout an evolutionary perspective. PMID:27561952

  16. Recycle/Reuse: Utilizing New Technology.

    ERIC Educational Resources Information Center

    Vaglia, John S.

    In the early 1990s, efforts were initiated to help countries move toward a solution of the global pollution problem. Technology education classrooms and laboratories are among the best places for bring the concepts of recycling/reuse and waste management to students' attention. Important concepts about pollution, waste prevention, and recycling…

  17. Recycling the office - Walls and all

    SciTech Connect

    Tilsner, J.

    1993-04-26

    As the keeper of any office-supply closet can tell you, the work-place is a very wasteful environment but now, as America prepares to celebrate the 23rd Earth Day, on April 22, businesses are discovering that the three R's - recycling, reusing, and reducing - apply to a lot more than copy paper and cans from the vending machine. Today, offices use items that couldn't be recycled a few years ago. Take toner cartridges for laser printers and copiers. Even in this electronic age, paper copies are a must, so most offices go through boxloads of cartridges, which cost $100 to $130 each. But you can prevent those spent cartridges from clogging landfills and cut costs. The trick to substantially reducing waste in your office may be expanding your notion of what recycling means. For example, several companies refit, repaint, and repair old chairs, cubicles, panels, and partitions. The resulting products cost 30% to 50% less than equivalent new equipment. Obsolete computers, telephones, and other equipment that you no longer need can still be recycled. There's also a brisk secondary market for old telephone systems.

  18. Rethinking Recycling: An Oregon Waste Reduction Curriculum.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Environmental Quality, Portland.

    This updated curriculum guide is designed to provide teachers of elementary school science with a set of activities on recycling and waste reduction. The curriculum has three sections: (1) Grades K-3 Lessons; (2) Grades 4-5 Lessons; and (3) Teacher's Resource Guide. It is designed to take students from an introduction to natural resources and…

  19. Bond strength of thermally recycled metal brackets.

    PubMed

    Wheeler, J J; Ackerman, R J

    1983-03-01

    Bracket recycling has emerged concurrently with the practice of direct bonding. This study was undertaken to determine the effect of recycling on the retention of mesh-backed stainless steel brackets. Mesh strand diameter was measured on forty new brackets. These brackets were bonded to recently extracted human premolar teeth, and the tensile force required to fracture each bond was recorded. The brackets were then reconditioned by a thermal process. The mesh strand size was remeasured and the tensile test was repeated. It was found that (1) mesh strand diameter decreased 7 percent during the reconditioning process (93.89 microns +/- 3.17 S.D. compared to 87.07 microns +/- 4.76 S.D., z = 17.62, P less than 1 X 10(-5) ), (2) new bracket bonds were 6 percent stronger than recycled bracket bonds (43.88 pounds +/- 7.98 S.D. bond strength), and (3) reduction in mesh strand diameter during the reconditioning process did not correlate with changes in bond strength between initial and recycled bonding (Pearson r = 0.038). PMID:6338725

  20. Recycling Lithium Carbonate/Lithium Hydroxide Waste

    NASA Technical Reports Server (NTRS)

    Flowers, J.; Flowers, J.

    1983-01-01

    Hazardous waste disposal problem eliminated by regeneration. Li2CO3/ LiOH recycling process relies on low solubility of alkali carbonates in corresponding hydroxides. Li2CO3 precipitate calcined to LI2O, then rehydrated LiOH. Regeneration eliminates need to dispose caustic waste and uses less energy than simple calcination of entire waste mass.

  1. Selective purge for hydrogenation reactor recycle loop

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  2. Systems for recycling water in poultry processing

    SciTech Connect

    Carawan, R.E.; Sheldon, B.W.

    1988-12-31

    The study was conducted to identify effective and economical water treatments, including disinfection, to meet the U.S. Department of Agriculture`s standards for the recycling of poultry chiller water. Reconditioned chiller water meeting these criteria was used to chill hot broiler carcasses, and the quality of the chilled carcasses was then evaluated.

  3. Correction magnets for the Fermilab Recycler Ring

    SciTech Connect

    James T Volk et al.

    2003-05-27

    In the commissioning of the Fermilab Recycler ring the need for higher order corrector magnets in the regions near beam transfers was discovered. Three types of permanent magnet skew quadrupoles, and two types of permanent magnet sextupoles were designed and built. This paper describes the need for these magnets, the design, assembly, and magnetic measurements.

  4. Recycling, production and use of reprocessed rubbers

    SciTech Connect

    Klingensmith, B. )

    1991-03-01

    This article examines the various methods used to produce recycled rubber and to compare their characteristics and application. The topics discussed include reclaiming by chemical digestion, devulcanization by the severing of sulfur bonds, ambient temperature and cryogenically ground rubber, processing and mixing of ground rubber, and properties of reclaimed rubbers by reclamation method.

  5. Optimization of electron cooling in the Recycler

    SciTech Connect

    Shemyakin, A.; Burov, A.; Carlson, K.; Prost, L.R.; Sutherland, M.; Warner, A.; /Fermilab

    2009-04-01

    Antiprotons in Fermilab's Recycler ring are cooled by a 4.3 MeV, 0.1A DC electron beam (as well as by a stochastic cooling system). The paper describes electron cooling improvements recently implemented: adjustments of electron beam line quadrupoles to decrease the electron angles in the cooling section and better stabilization and control of the electron energy.

  6. Recycling used lubricating oil at the deep space stations

    NASA Technical Reports Server (NTRS)

    Koh, J. L.

    1981-01-01

    A comparison is made of the lubricating oil recycling methods used in the Deep Space Station 43 test and the basic requirements which could favor recycling of oil for continuous reuse. The basic conditions for successful recycling are compared to the conditions that exist in the Deep Space Network (DSN). This comparison shows that to recycle used oil in the DSN would not only be expensive but also nonproductive.

  7. Recycling light metals from end-of-life vehicle

    NASA Astrophysics Data System (ADS)

    Gesing, A.; Wolanski, R.

    2001-11-01

    The amount of aluminum used in cars and light trucks is growing steadily. However, without new developments in aluminum recycling technologies, sheet from automotive aluminum could eventually flood all current markets for recycled aluminum. This article summarizes the use of light metals and different alloys in transportation applications, the current auto recycling system, and new developments in the sorting of light metals by the metal recycling industry and by Huron Valley Steel Corporation, the world’s largest non-ferrous scrap sorter.

  8. Phonon Recycling for Ultrasensitive Kinetic Inductance Detectors

    NASA Astrophysics Data System (ADS)

    Zmuidzinas, Jonas

    Initially proposed (Day et al. 2003; Zmuidzinas 2012) in 1999 by our Caltech/JPL group, and thanks to strong support from NASA, the superconducting (microwave) kinetic inductance detector (MKID or KID) technology continues to develop rapidly as it transitions into applications. The development effort worldwide is intensifying and NASA's continued support of KID development is essential in order to keep pace. Here we propose to investigate and demonstrate a new, low-TRL concept, which we call phonon recycling, that promises to open broad new avenues in KID design and performance. Briefly, phonon recycling allows the detector designer to tailor the responsivity and sensitivity of a KID to match the needs of the application by using geometry to restrict the rate at which recombination phonons are allowed to escape from the detector. In particular, phonon recycling should allow very low noise-equivalent power (NEP) to be achieved without requiring very low operating tem- peratures. Phonon recycling is analogous to the use of micromachined suspension legs to control the flow of heat in a bolometer, as measured by the thermal conductivity G. However, phonon recycling exploits the non-thermal distribution of recombination phonons as well as their very slow decay in crystals at low temperatures. These properties translate to geometrical and mechanical requirements for a phonon-recycled KID that are considerably more relaxed than for a bolometer operating at the same temperature and NEP. Our ultimate goal is to develop detector arrays suitable for a far-infrared (FIR) space mission, which will impose strict requirements on the array sensitivity, yield, uniformity, multiplexing density, etc. Through previous NASA support under the Strategic Astrophysics Technology (SAT) program, we have successfully demonstrated the MAKO submillimeter camera at the Caltech Submillimeter Observatory and have become familiar with these practical issues. If our demonstration of phonon recycling

  9. Commitment Approach to Motivating Community Recycling: New Zealand Curbside Trial.

    ERIC Educational Resources Information Center

    Bryce, Wendy J.; And Others

    1997-01-01

    In a New Zealand community, 200 households made commitment to recycle and 201 did not; 198 were asked to pay for recycling bins, 203 were not. A control group received only recycling information. Verbal commitment significantly increased participation. Difficulties in administering the financial incentive made it impossible to determine effect on…

  10. Recycling: Surviving and thriving through the down times

    SciTech Connect

    Heumann, J.M.

    1997-09-01

    Over the past year, since the decrease in market value of recyclable materials, recycling`s detractors have been coming out of the woodwork. Critics of recycling, through newspaper and magazine articles, policy papers, and other venues, have used many arguments to discredit current recycling efforts. Their arguments range from claiming that recycling is not a cost-effective waste management option, to saying recycling is a panacea by which people feel they can ignore larger environmental problems. Recyclables collection programs have had periods where they were considerably more cost-effective than they are today. During the summer and fall of 1995, the market prices paid by processors and end users for recovered materials reached new heights unseen before--and unseen since. Recycling programs have felt the heat of criticism over the past year. Yet, at the same time, state recycling rates continue to increase, states put more programs in place, and recycling overall continues to thrive. This article examines why recycling programs are still successful, and how they can live up to their potential.

  11. Ideas and Activities for Recycling Education for Grades K-12.

    ERIC Educational Resources Information Center

    Ayers, Jerry B., Ed.; Olberding, April H., Ed.

    In June 1997, Tennessee Technological University's Center for Manufacturing Research conducted a one-week program on plastics recycling for science teachers. The purpose of the program was to increase the teachers' basic knowledge about the importance of recycling plastics and to better prepare the teachers for teaching recycling in the classroom.…

  12. A tale of five cities: Using recycling frameworks to analyse inclusive recycling performance.

    PubMed

    Scheinberg, Anne; Simpson, Michael

    2015-11-01

    'Recycling' is a source of much confusion, particularly when comparing solid waste systems in high-income countries with those in low- and middle-income countries. Few analysts can explain why the performance and structure of recycling appears to be so different in rich countries from poor ones, nor why well-meaning efforts to implement recycling so often fail. The analysis of policy drivers, and the Integrated Sustainable Waste Management (ISWM) framework, come close to an explanation.This article builds on these earlier works, focusing in on five cities profiled in the 2010 UN-Habitat publication (Scheinberg A, Wilson DC and Rodic L (2010) Solid Waste Management in the World's Cities. UN-Habitat's Third Global Report on the State of Water and Sanitation in the World's Cities. Newcastle-on-Tyne, UK: Earthscan Publications). Data from these cities and others provides the basis for developing a new tool to analyse inclusive recycling performance. The points of departure are the institutional and economic relationships between the service chain, the public obligation to remove waste, pollution, and other forms of disvalue, and the value chain, a system of private enterprises trading valuable materials and providing markets for recyclables. The methodological innovation is to use flows of materials and money as indicators of institutional relationships, and is an extension of process flow diagramming.The authors are using the term 'recycling framework analysis' to describe this new form of institutional analysis. The diagrams increase our understanding of the factors that contribute to high-performance inclusive recycling. By focusing on institutional relationships, the article seeks to improve analysis, planning, and ultimately, outcomes, of recycling interventions. PMID:26416850

  13. Analyzing effective municipal solid waste recycling programs: the case of county-level MSW recycling performance in Florida, USA.

    PubMed

    Park, Seejeen; Berry, Frances S

    2013-09-01

    Municipal solid waste (MSW) recycling performance, both nationally and in Florida, USA, has shown little improvement during the past decade. This research examines variations in the MSW recycling program performance in Florida counties in an attempt to identify effective recycling programs. After reviewing trends in the MSW management literature, we conducted an empirical analysis using cross-sectional multiple regression analysis. The findings suggest that the convenience-based hypothesis was supported by showing that curbside recycling had a positive effect on MSW recycling performance. Financial (cost-saving) incentive-based hypotheses were partially supported meaning that individual level incentives can influence recycling performance. Citizen environmental concern was found to positively affect the amount of county recycling, while education and political affiliation yielded no significant results. In conclusion, this article discusses the implications of the findings for both academic research and practice of MSW recycling programs. PMID:23836103

  14. Polymer recycling: potential application of radiation technology

    NASA Astrophysics Data System (ADS)

    Burillo, Guillermina; Clough, Roger L.; Czvikovszky, Tibor; Guven, Olgun; Le Moel, Alain; Liu, Weiwei; Singh, Ajit; Yang, Jingtian; Zaharescu, Traian

    2002-04-01

    Management of solid waste is an important problem, which is becoming progressively worse as a byproduct of continuing economic growth and development. Polymeric materials (plastics and rubbers) comprise a steadily increasing proportion of the municipal and industrial waste going into landfill. Development of technologies for reducing polymeric waste, which are acceptable from the environmental standpoint, and which are cost-effective, has proven to be a difficult challenge due to complexities inherent in the reuse of polymers. Establishing optimal processes for the reuse/recycling of polymeric materials thus remains a worldwide challenge as we enter the new century. Due to the ability of ionizing radiation to alter the structure and properties of bulk polymeric materials, and the fact that it is applicable to essentially all polymer types, irradiation holds promise for impacting the polymer waste problem. The three main possibilities for use of radiation in this application are: (1) enhancing the mechanical properties and performance of recovered materials or material blends, principally through crosslinking, or through surface modification of different phases being combined; (2) treatment causing or enhancing the decomposition of polymers, particularly through chain scission, leading to recovery of either low molecular weight mixtures, or powders, for use as chemical feedstocks or additives; (3) production of advanced polymeric materials designed for environmental compatibility. This paper provides an overview of the polymer recycling problem, describes the major technological obstacles to the implementation of recycling technologies, and outlines some of the approaches being taken. A review of radiation-based recycling research is then provided, followed by a discussion of future directions where irradiation may be relevant to the problems currently inhibiting the widespread recycling of polymeric materials.

  15. Recycling research progress at the forest products laboratory. Forest Service general technical report

    SciTech Connect

    1995-09-01

    This document summarizes accomplishments of USDA Forest Service researchers in the area of recycling. Specifically, it describes work in economic assessment paper recycling, recycled housing and industrial applications of recycle materials, other recycled applications, and technology transfer. The literature list includes the references cited in the text and additional publications regarding Forest Service recycling research.

  16. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  17. Beryllium recycling in the United States in 2000

    USGS Publications Warehouse

    Cunningham, Larry D.

    2004-01-01

    This report describes the flow of beryllium in the United States in 2000 with emphasis on the extent to which beryllium was either recycled or reused. Beryllium was recycled mostly from new scrap that was generated during the manufacture of beryllium-related components. In 2000, about 35 metric tons of beryllium was either recycled or reused, about 14 percent of which was derived from old scrap. The beryllium recycling rate was calculated to be about 10 percent, and beryllium scrap recycling efficiency, about 7 percent.

  18. Platinum recycling in the United States in 1998

    USGS Publications Warehouse

    Hilliard, Henry E.

    2001-01-01

    In the United States, catalytic converters are the major source of secondary platinum for recycling. Other sources of platinum scrap include reforming and chemical process catalysts. The glass industry is a small but significant source of platinum scrap. In North America, it has been estimated that in 1998 more than 20,000 kilograms per year of platinum-group metals from automobile catalysts were available for recycling. In 1998, an estimated 7,690 kilograms of platinum were recycled in the United States. U.S. recycling efficiency was calculated to have been 76 percent in 1998; the recycling rate was estimated at 16 percent.

  19. Beryllium Recycling in the United States in 2000

    USGS Publications Warehouse

    Cunningham, Larry D.

    2003-01-01

    This report describes the flow of beryllium in the United States in 2000 with emphasis on the extent to which beryllium was either recycled or reused. Beryllium was recycled mostly from new scrap that was generated during the manufacture of beryllium-related components. In 2000, about 35 metric tons of beryllium was either recycled or reused, about 14 percent of which was derived from old scrap. The beryllium recycling rate was calculated to be about 10 percent, and beryllium scrap recycling efficiency, about 7 percent.

  20. Germanium recycling in the United States in 2000

    USGS Publications Warehouse

    Jorgenson, John D.

    2006-01-01

    This report describes the recycling flow of germanium in the United States in 2000, as well as other germanium material flow streams. Germanium was recycled mostly from new scrap that was generated during the manufacture of germanium-containing fiber optic cables and from new and old scrap products of germanium-containing infrared imaging devices. In 2000, about 11.5 metric tons of germanium was recycled, about 40 percent of which was derived from old scrap. The germanium recycling rate was estimated to be 50 percent, and germanium scrap recycling efficiency, 76 percent.

  1. Columbium (niobium) recycling in the United States in 1998

    USGS Publications Warehouse

    Cunningham, Larry D.

    2001-01-01

    This report describes the flow of columbium in the United States in 1998 with emphasis on the extent to which columbium (niobium) was recycled/reused. Columbium was mostly recycled from products of columbium-bearing steels and superalloys; little was recovered from products specifically for their columbium content. In 1998, about 1,800 metric tons of columbium was recycled/reused, with about 55% derived from old scrap. The columbium recycling rate was calculated to be 22%, and columbium scrap recycling efficiency, 50%.

  2. Tantalum recycling in the United States in 1998

    USGS Publications Warehouse

    Cunningham, Larry D.

    2001-01-01

    This report describes the flow of tantalum in the United States in 1998 with emphasis on the extent to which tantalum was recycled/reused. Tantalum was mostly recycled from new scrap that was generated during the manufacture of tantalum-related electronic components and new and old scrap products of tantalum-containing cemented carbides and superalloys. In 1998, about 210 metric tons of tantalum was recycled/reused, with about 43% derived from old scrap. The tantalum recycling rate was calculated to be 21%, and tantalum scrap recycling efficiency, 35%.

  3. Model institutional infrastructures for recycling of photovoltaic modules

    SciTech Connect

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

  4. Recycling of aluminum salt cake

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Karvelas, D.E.

    1991-12-01

    The secondary aluminum industry generates more than 110 {times} 10{sup 3} tons of salt-cake waste every year. This waste stream contains about 3--5% aluminum, 15--30% aluminum oxide, 30--40% sodium chloride, and 20--30% potassium chloride. As much as 50% of the content of this waste is combined salt (sodium and potassium chlorides). Salt-cake waste is currently disposed of in conventional landfills. In addition, over 50 {times} 10{sup 3} tons of black dross that is not economical to reprocess a rotary furnace for aluminum recovery ends up in landfills. The composition of the dross is similar to that of salt cake, except that it contains higher concentrations of aluminum (up to 20%) and correspondingly lower amounts of salts. Because of the high solubility of the salts in water, these residues, when put in landfills, represent a potential source of pollution to surface-water and groundwater supplies. The increasing number of environmental regulations on the generation and disposal of industrial wastes are likely to restrict the disposal of these salt-containing wastes in conventional landfills. Processes exist that employ the dissolution and recovery of the salts from the waste stream. These wet-processing methods are economical only when the aluminum concentration in that waste exceeds about 10%. Argonne National Laboratory (ANL) conducted a study in which existing technologies were reviewed and new concepts that are potentially more cost-effective than existing processes were developed and evaluated. These include freeze crystallization, solvent/antisolvent extraction, common-ion effect, high-pressure/high-temperature process, and capillary-effect systems. This paper presents some of the technical and economic results of the aforementioned ANL study.

  5. 40 CFR 403.2 - Objectives of general pretreatment regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTION § 403.2 Objectives of general pretreatment regulations. By establishing the responsibilities of... with such works; and (c) To improve opportunities to recycle and reclaim municipal and...

  6. Evaluation of Recycle Grinding Performance in Flour Milling

    NASA Astrophysics Data System (ADS)

    Mazlina Mustapa Kamal, Siti; Webb, Colin

    A typical flour milling process is a very linear operation that is almost entirely void of recycled streams where separate fractions from each operation go ahead as new streams to the next operation. In some cases, there are opportunities for combining some streams, for recycling particles that have been insufficiently broken to go back to the same roller mill. This study introduces this recycle concept in flour milling process at second break system. The recycle grinding assessment was made using a Satake STR-100 test roller mill. The recycle process was started after the second break system and the number of recycle grinding was up to 7 regrinds. The particle size distribution and ash analysis were produced to describe the behaviour of the recycle grinding performance. The material release was sifted on a range of sieves and the ash content was analysed using a laboratory furnace. The performance for each recycle stage was investigated. It was determined that it is possible for some coarse particles that contain only bran to keep being recycled in the recycle circuit. A purging operation was recommended to be included in the recycle system, to separate the unwanted particles.

  7. Sustaining the environment through recycling: an empirical study.

    PubMed

    Ramayah, T; Lee, Jason Wai Chow; Lim, Shuwen

    2012-07-15

    This paper examines the determinants of recycling behaviour among 200 university students from the perspective of the theory of planned behaviour (TPB). Data was analysed using Structural Equation Modelling technique. Findings indicate that environmental awareness was significantly related to attitude towards recycling, whilst attitude and social norms had significant impact on recycling behaviour. However, convenience and cost of recycling were not significant reasons for recycling. The study has enhanced the understanding of the determinants of recycling behaviour and has implications for schools and governmental agencies in educating and encouraging positive recycling behaviour. It also confirms the appropriateness of the TPB in examining studies of this nature. Further suggestions for future research are offered. PMID:22446140

  8. Magnesium recycling in the United States in 1998

    USGS Publications Warehouse

    Kramer, Deborah A.

    2001-01-01

    As concern for the environment has grown in recent years, the importance of recycling has become more evident. The more materials that are recycled, the fewer natural resources will be consumed and the fewer waste products will end up in landfills, in the water, and in the air. As one of a series of reports on metals recycling, this report discusses the 1998 flow of magnesium from extraction through its uses with particular emphasis on recycling. In 1998, the recycling rate for magnesium was estimated to be 33 percent?almost 60 percent of the magnesium that was recycled came from new scrap, primarily waste from diecasting operations. The principal source of old scrap was recycled aluminum beverage cans.

  9. Magnesium recycling in the United States in 1998

    USGS Publications Warehouse

    Kramer, Deborah A.

    2002-01-01

    As concern for the environment has grown in recent years, the importance of recycling has become more evident. The more materials that are recycled, the fewer natural resources will be consumed and the fewer waste products will end up in landfills, the water, and the air. As one of a series of reports on metals recycling, this report discusses the 1998 flow of magnesium in the United States from extraction through its uses with particular emphasis on recycling. In 1998, the recycling efficiency for magnesium was estimated to be 33 percent--almost 60 percent of the magnesium that was recycled came from new scrap, primarily waste from die-casting operations. The principal source of old scrap was recycled aluminum beverage cans.

  10. Recycling legislation: A balanced approach for opening biomass energy opportunities

    SciTech Connect

    Easterly, J.L.

    1995-09-01

    State recycling legislation represents one of the barriers to using wood wastes for energy. Although many states are setting recycling goals that often mandate a significant portion of the waste stream be recycled, legislation in the same states specifically excludes wood-to-energy as a recycling option. A significant supply of yard waste and wood waste could be available for biomass power generation of recycling legislation credited the use of wood-to-energy as an acceptable recycling alternative. This article discusses in some detail the approach Florida legislation has pursued. It could be a model for other innovative recycling programs. It provides checks and balances as well as reasonable compromises that help to avoid or minimize objections by the environmental community.

  11. Evaluation of engine coolant recycling processes: Part 2

    SciTech Connect

    Bradley, W.H.

    1999-08-01

    Engine coolant recycling continues to provide solutions to both economic and environmental challenges often faced with the disposal of used engine coolant. General Motors` Service Technology Group (STG), in a continuing effort to validate the general practice of recycling engine coolants, has conducted an in-depth study on the capabilities of recycled coolants. Various recycling processes ranging from complex forms of fractional distillation to simple filtration were evaluated in this study to best represent the current state of coolant recycling technology. This study incorporates both lab and (limited) fleet testing to determine the performance capabilities of the recycled coolants tested. While the results suggest the need for additional studies in this area, they reveal the true capabilities of all types of engine coolant recycling technologies.

  12. Recycling behaviour in healthcare: waste handling at work.

    PubMed

    Vogt, Joachim; Nunes, Katia R A

    2014-01-01

    This article reviews the motivational factors for environmental behaviour in general, presenting a case study on recycling disposable plastics in hospitals. Results show that 90% of over 600 employees from six analysed hospitals in Germany reported that the recycling of disposable plastics on the wards makes sense from an environmental and economic point of view. The case study reports an assessment of recycling attitudes and problems of hospital staff, mainly nurses. Employees in eco-certified hospitals were much more satisfied and reported fewer problems with the recycling system. The gender effect was significant only for saving energy, while age correlated with nearly all reported pro-environmental behaviour at home. At work, the mere introduction of a recycling system was insufficient to achieve good recycling results. Based on the study findings, recommendations are given aimed at improving the safety and sustainability of the recycling system. PMID:24617848

  13. Dynamics and control of recycle systems. 4. Ternary systems with one or two recycle streams

    SciTech Connect

    Tyreus, B.D. ); Luyben, W.L. . Department of Chemical Engineering)

    1993-06-01

    This paper is the fourth in a series of papers that explore the challenging problems associated with the dynamics and control of recycle systems. The reactions considered in previous papers were fairly simple. Only first-order reactions were considered, so there was only one fresh feed stream. In this paper, second-order kinetics are considered with two fresh-feed makeup streams. Two cases are considered: (1) instantaneous and complete one-pass conversion of one of the two components in the reactor so there is an excess of only one component that must be recycled and (2) incomplete conversion per pass so there are two recycle streams. It is shown that the generic liquid-recycle rule proposed by Luyben applies in both of these cases: snowballing is prevented by fixing the flow rate somewhere in the recycle system. An additional generic rule is proposed: fresh feed makeup of any component cannot be fixed unless the component undergoes complete single-pass conversion. In the complete one-pass conversion case, throughput can be set by fixing the flow rate of the limiting reactant. The makeup of the other reactant should be set by level control in the reflux drum of the distillation column. In the incomplete conversion case, two workable schemes were found: (1) Both recycle flow rates are fixed and both fresh-feed makeups are brought in on level control. Throughput is controlled by changing either the reactor temperature or the recycle flow rates. (2) One fresh-feed makeup controls reactor level and the other controls the composition in the reactor. Throughput is controlled by setting reactor temperature or reactor effluent flow rate.

  14. Correlation analysis between sulphate content and leaching of sulphates in recycled aggregates from construction and demolition wastes.

    PubMed

    Barbudo, Auxi; Galvín, Adela P; Agrela, Francisco; Ayuso, Jesús; Jiménez, Jose Ramón

    2012-06-01

    In some recycled aggregates applications, such as component of new concrete or roads, the total content of soluble sulphates should be measured and controlled. Restrictions are usually motivated by the resistance or stability of the new structure, and in most cases, structural concerns can be remedied by the use of techniques such as sulphur-resistant cements. However, environmental risk assessment from recycling and reuse construction products is often forgotten. The purpose of this study is to analyse the content of soluble sulphate on eleven recycled aggregates and six samples prepared in laboratory by the addition of different gypsum percentages. As points of reference, two natural aggregates were tested. An analysis of the content of the leachable amount of heavy metals regulated by European regulation was included. As a result, the correlation between solubility and leachability data allow suggest a limiting gypsum amount of 4.4% on recycled aggregates. This limit satisfies EU Landfill Directive criteria, which is currently used as reference by public Spanish Government for recycled aggregates in construction works. PMID:22410435

  15. Argonne explains nuclear recycling in 4 minutes

    SciTech Connect

    2012-01-01

    Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

  16. Transverse Instabilities in the Fermilab Recycler

    SciTech Connect

    Prost, L.R.; Burov, A.; Shemyakin, A.; Bhat, C.M.; Crisp, J.; Eddy, N.; /Fermilab

    2011-07-01

    Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly lowered for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.

  17. Imaging and quantification of recycled KATP channels.

    PubMed

    Cockcroft, Christopher J

    2013-01-01

    This chapter describes immunochemistry-based methods to investigate recycling of membrane proteins at the cell surface. Two methods are described, one qualitative and the other quantitative. Both methods consist of two rounds of extracellular antibody capture. Firstly, a primary antibody is captured by an extracellular epitope presented by the target membrane protein and is subsequently internalized. Secondly, the primary antibody-labelled protein is recycled back to the membrane where it is captured by a probe--conjugated secondary antibody. In the qualitative assay, the probe is a fluorophore, which can be imaged by fluorescence microscopy. In the quantitative assay, the probe is horse-radish peroxidase (HRP) and enzyme activity can be assayed by chemiluminescence. PMID:23529434

  18. Argonne explains nuclear recycling in 4 minutes

    ScienceCinema

    None

    2013-04-19

    Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

  19. Probe for contamination detection in recyclable materials

    DOEpatents

    Taleyarkhan, Rusi

    2003-08-05

    A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.

  20. Recovering recyclable materials from shredder residue

    NASA Astrophysics Data System (ADS)

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.; Brockmeier, Norman F.

    1994-02-01

    Each year, about 11 million tons of metals are recovered in the United States from about 10 million discarded automobiles. The recovered metals account for about 75 percent of the total weight of the discarded vehicles. The balance of the material, known as shredder residue, amounts to about three million tons annually and is currently landfilled. The residue contains a diversity of potentially recyclable materials, including polyurethane foams, iron oxides, and certain thermoplastics. This article discusses a process under development at Argonne National Laboratory to separate and recover the recyclable materials from this waste stream. The process consists essentially of two stages. First, a physical separation is used to recover the foams and the metal oxides, followed by a chemical process to extract certain thermoplastics. The status of the technology and the process economics are reviewed here.

  1. Recycling scheme for twin BWRs reactors

    SciTech Connect

    Ramirez-Sanchez, J. R.; Perry, R. T.; Gustavo Alonso, V.; Javier Palacios, H.

    2006-07-01

    To asses the advantages of reprocess and recycle the spent fuel from nuclear power reactors, against a once through policy, a MOX fuel design is proposed to match a generic scenario for twin BWRs and establish a fuel management scheme. Calculations for the amount of fuel that the plants will use during 40 years of operation were done, and an evaluation of costs using constant money method for each option applying current prices for uranium and services were made. Finally a comparison between the options was made, resulting that even the current high prices of uranium, still the recycling option is more expensive that the once through alternative. But reprocessing could be an alternative to reduce the amount of spent fuel stored in the reactor pools. (authors)

  2. Recovery of recyclable materials from shredder residue

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Brockmeier, N.F.

    1994-01-01

    Each year, about 11 million tons of metals (ferrous and nonferrous) are recovered in the US from about 10 million discarded automobiles. The recovered metals account for about 75% of the total weight of the discarded vehicles. The balance of the material or shredder residue, which amounts to about 3 million tons annually, is currently landfilled. The residue contains a diversity of potentially recyclable materials, including polyurethane foams, iron oxides, and certain thermoplastics. This paper discusses a process under development at Argonne National Laboratory to separate and recover the recyclable materials from this waste stream. The process consists essentially of two-stages. First, a physical separation is used to recover the foams and the metal oxides, followed by a chemical process to extract certain thermoplastics. Status of the technology is discussed and process economics reviewed.

  3. Photon recycling and Shockley's diode equation

    NASA Astrophysics Data System (ADS)

    Martí, A.; Balenzategui, J. L.; Reyna, R. F.

    1997-10-01

    The Shockley's diode equation predicts a current-voltage characteristic different from that used by Shockley and Queisser to compute the limiting efficiency of photovoltaic energy conversion under the assumptions of the detailed balance theory. The reasons for such discrepancy are discussed being the neglect of photon recycling effects in Shockley's diode equation the main cause. This interpretation is crucial to understand the fundamentals on which the computation of the limiting efficiency of solar cells is based. Without photon recycling effects, it can be concluded that the limiting efficiency (one sun) of a gallium arsenide solar cell is 26.8% (with the sun assumed as blackbody at 6000 K) while the true figure is 30.7%, 38.7% as long as the angle of emission of photons from the cell is fully restricted.

  4. The endocytic recycling compartment maintains cargo segregation acquired upon exit from the sorting endosome

    PubMed Central

    Xie, Shuwei; Bahl, Kriti; Reinecke, James B.; Hammond, Gerald R. V.; Naslavsky, Naava; Caplan, Steve

    2016-01-01

    The endocytic recycling compartment (ERC) is a series of perinuclear tubular and vesicular membranes that regulates recycling to the plasma membrane. Despite evidence that cargo is sorted at the early/sorting endosome (SE), whether cargo mixes downstream at the ERC or remains segregated is an unanswered question. Here we use three-dimensional (3D) structured illumination microscopy and dual-channel and 3D direct stochastic optical reconstruction microscopy (dSTORM) to obtain new information about ERC morphology and cargo segregation. We show that cargo internalized either via clathrin-mediated endocytosis (CME) or independently of clathrin (CIE) remains segregated in the ERC, likely on distinct carriers. This suggests that no further sorting occurs upon cargo exit from SE. Moreover, 3D dSTORM data support a model in which some but not all ERC vesicles are tethered by contiguous “membrane bridges.” Furthermore, tubular recycling endosomes preferentially traffic CIE cargo and may originate from SE membranes. These findings support a significantly altered model for endocytic recycling in mammalian cells in which sorting occurs in peripheral endosomes and segregation is maintained at the ERC. PMID:26510502

  5. Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes

    SciTech Connect

    Moskowitz, P.D.; Zweibel, K.

    1992-01-01

    Since the development of the first silicon based photovoltaic cell in the 1950's, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

  6. Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes. A workshop report

    SciTech Connect

    Moskowitz, P.D.; Zweibel, K.

    1992-10-01

    Since the development of the first silicon based photovoltaic cell in the 1950`s, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

  7. A Preferentially Segregated Recycling Vesicle Pool of Limited Size Supports Neurotransmission in Native Central Synapses

    PubMed Central

    Marra, Vincenzo; Burden, Jemima J.; Thorpe, Julian R.; Smith, Ikuko T.; Smith, Spencer L.; Häusser, Michael; Branco, Tiago; Staras, Kevin

    2012-01-01

    Summary At small central synapses, efficient turnover of vesicles is crucial for stimulus-driven transmission, but how the structure of this recycling pool relates to its functional role remains unclear. Here we characterize the organizational principles of functional vesicles at native hippocampal synapses with nanoscale resolution using fluorescent dye labeling and electron microscopy. We show that the recycling pool broadly scales with the magnitude of the total vesicle pool, but its average size is small (∼45 vesicles), highly variable, and regulated by CDK5/calcineurin activity. Spatial analysis demonstrates that recycling vesicles are preferentially arranged near the active zone and this segregation is abolished by actin stabilization, slowing the rate of activity-driven exocytosis. Our approach reveals a similarly biased recycling pool distribution at synapses in visual cortex activated by sensory stimulation in vivo. We suggest that in small native central synapses, efficient release of a limited pool of vesicles relies on their favored spatial positioning within the terminal. PMID:23141069

  8. Waste recycling issues in bioregenerative life support

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Wang, D.

    1989-01-01

    Research and technology development issues centering on the recycling of materials within a bioregenerative life support system are reviewed. The importance of recovering waste materials for subsequent use is emphasized. Such material reclamation will substantially decrease the energy penalty paid for bioregenerative life support systems, and can potentially decrease the size of the system and its power demands by a significant amount. Reclamation of fixed nitrogen and the sugars in cellulosic materials is discussed.

  9. Alternative Approaches to Recycling Nuclear Wastes

    NASA Astrophysics Data System (ADS)

    Hannum, William H.

    2007-04-01

    Nuclear power exists, and as the demand for non-fossil electricity generation increases, many more nuclear plants are being planned and built. The result is growing inventories of spent nuclear fuel containing plutonium that -- in principle, at least -- can be used to make nuclear explosives. There are countries and organizations that are believed to want nuclear weapons, posing a knotty proliferation problem that calls for realistic control of nuclear materials. Phasing out nuclear power and sequestering all dangerous materials in guarded storage or in geological formations would not be a realistic approach. Plutonium from commercial spent fuel is very hard to make into a weapon. However, a rogue nation could operate a power plant so as to produce plutonium with weapons-quality isotopics, and then chemically purify it. IAEA safeguards are designed to discourage this, but the only enforcement is referral to the United Nations General Assembly. The traditional reprocessing method, PUREX, produces plutonium that has the chemical purity needed for weapons. However, there are alternative approaches that produce only highly radioactive blends of fissionable materials and fission products. Recycle offers a market for spent nuclear fuel, promoting more rigorous accounting of these materials. Unlike PUREX, the new technologies permit the recycle and consumption of essentially all of the high-hazard transuranics, and will reduce the required isolation time for the waste to less than 500 years. Facilities for recovering recyclable materials from LWR spent fuel will be large and expensive. Only a very few such plants will be needed, leading to appropriate concentration of safeguards measures. Plants for recycling the spent fuel from fast burner reactors can be collocated with the power plants and share the safeguards.

  10. Correction of unevenness in recycler beam profile

    SciTech Connect

    Crisp, J.; Hu, M.; Ng, K.Y.; /Fermilab

    2006-05-01

    A beam confined between two rf barriers in the Fermilab Recycler Ring exhibits very uneven longitudinal profile. This leads to the consequence that the momentum-mined antiproton bunches will have an intolerable variation in bunch intensity. The observed profile unevenness is the result of a tiny amount of rf imperfection and rf beam-loading. The profile unevenness can be flattened by feeding back the uneven rf fan-back gap voltage to the low-level rf.

  11. Ferrite insertion at Recycler Flying Wire System

    SciTech Connect

    K.Y. Ng

    2004-02-27

    Ferrite rods are installed inside the flying-wire cavity of the Recycler Ring and at entrance and exit beam pipes in order to absorb high-frequency electromagnetic waves excited by the beam. However, these rods may also deteriorate the vacuum pressure of the ring. An investigation is made to analyze the necessity of the ferrite rods at the entrance and exit beam pipes.

  12. PLA recycling by hydrolysis at high temperature

    NASA Astrophysics Data System (ADS)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari; Fausto, Gironi

    2016-05-01

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  13. Recycling of Advanced Batteries for Electric Vehicles

    SciTech Connect

    JUNGST,RUDOLPH G.

    1999-10-06

    The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

  14. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination.

    PubMed

    Oracz, Krystyna; Stawska, Marlena

    2016-01-01

    Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant's photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the

  15. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination

    PubMed Central

    Oracz, Krystyna; Stawska, Marlena

    2016-01-01

    Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant’s photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the

  16. Water recycling at the Millennium Dome.

    PubMed

    Hills, S; Smith, A; Hardy, P; Birks, R

    2001-01-01

    Thames Water is working with the New Millennium Experience Company to provide a water recycling system for the Millennium Dome which will supply 500 m3/d of reclaimed water for WC and urinal flushing. The system will treat water from three sources: rainwater--from the Dome roof greywater--from handbasins in the toilet blocks groundwater--from beneath the Dome site The treatment technologies will range from "natural" reedbeds for the rainwater, to more sophisticated options, including biological aerated filters and membranes for the greywater and groundwater. Pilot scale trials were used to design the optimum configuration. In addition to the recycling system, water efficient devices will be installed in three of the core toilet blocks as part of a programme of research into the effectiveness of conservation measures. Data on water usage and customer behaviour will be collected via a comprehensive metering system. Information from the Dome project on the economics and efficiency of on-site recycling at large scale and data on water efficient devices, customer perception and behaviour will be of great value to the water industry. For Thames Water, the project provides vital input to the development of future water resource strategies. PMID:11436793

  17. Recyclable Waste Paper Sorting Using Template Matching

    NASA Astrophysics Data System (ADS)

    Osiur Rahman, Mohammad; Hussain, Aini; Scavino, Edgar; Hannan, M. A.; Basri, Hassan

    This paper explores the application of image processing techniques in recyclable waste paper sorting. In recycling, waste papers are segregated into various grades as they are subjected to different recycling processes. Highly sorted paper streams will facilitate high quality end products, and save processing chemicals and energy. Since 1932 to 2009, different mechanical and optical paper sorting methods have been developed to fill the demand of paper sorting. Still, in many countries including Malaysia, waste papers are sorted into different grades using manual sorting system. Due to inadequate throughput and some major drawbacks of mechanical paper sorting systems, the popularity of optical paper sorting systems is increased. Automated paper sorting systems offer significant advantages over human inspection in terms of fatigue, throughput, speed, and accuracy. This research attempts to develop a smart vision sensing system that able to separate the different grades of paper using Template Matching. For constructing template database, the RGB components of the pixel values are used to construct RGBString for template images. Finally, paper object grade is identified based on the maximum occurrence of a specific template image in the search image. The outcomes from the experiment in classification for White Paper, Old Newsprint Paper and Old Corrugated Cardboard are 96%, 92% and 96%, respectively. The remarkable achievement obtained with the method is the accurate identification and dynamic sorting of all grades of papers using simple image processing techniques.

  18. Environmentally sound technologies for recycling secondary lead

    NASA Astrophysics Data System (ADS)

    Andrews, D.; Raychaudhuri, A.; Frias, C.

    Advances in hydrometallurgy are providing increasingly simple means for controlling the entire lead chain from concentrate to recycled lead. Used in parallel with pyrometallurgy, these processes allow furnace temperatures to be reduced to the minimum, which is essential for casting or alloying. Fumes and atmospheric pollution are minimized, furnace slags are digested, and most residues (other than purification cements) are non-toxic and convertible into marketable products. These new processes provide the cleanest and healthiest practicable means for recycling lead from batteries. By substituting melting for smelting, the heat requirement and cycle time per charge are reduced by more than half. A new hydrometallurgical plant could be installed alongside an existing pyrometallurgical plant without interference, doubling its potential capacity when operational (and more, if electrowinning is used). Over 99.5% of the lead originally present is recovered in tests of a combined PLACID-pyro plant. The average purity of electrowon PLACID lead is 99.995%. Results from the PLINT process should be similar. The purity of the lead chain can thereby be sustained through recycling. Perfect solid/paste separation is not mandatory, and PLINT-type plant units can be of any size. Such processes constitute a good basis for development of clean processes, which are suitable for use in Asian societies.

  19. Stainless steel recycle FY94 progress report

    SciTech Connect

    Imrich, K.J.

    1994-10-28

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft{sup 3}) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program.

  20. Compression Molding of Composite of Recycled HDPE and Recycled Tire Particles

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.; Chen, Zhengyu; Li, Yanze; Peng, Linda

    1996-01-01

    Plastic and rubber recycling is an effective means of reducing solid waste to the environment and preserving natural resources. A project aimed at developing a new composite material from recycled high density polyethylene (HDPE) and recycled rubber is currently being conducted at Eastern Illinois University. The recycled plastic pellets with recycled rubber particles are extruded into some HDPE/rubber composite strands. The strand can be further cut into pellets that can be used to fabricate other material forms or products. This experiment was inspired by the above-mentioned research activity. In order to measure Durometer hardness of the extruded composite, a specimen with relatively large dimensions was needed. Thus, compression molding was used to form a cylindrical specimen of 1 in. diameter and 1 in. thickness. The initial poor quality of the molded specimen prompted a need to optimize the processing parameters such as temperature, holding time, and pressure. Design of experiment (DOE) was used to obtain optimum combination of the parameters.