Science.gov

Sample records for red galactic agb

  1. Galactic Sodium from AGB Stars

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.; Gibson, B. K.; Stancliffe, R. J.

    2007-11-01

    Galactic chemical evolution (GCE) models which include sodium from type II supernovae (SNe) alone underestimate the abundance of sodium in the interstellar medium by a factor of 2 to 3 over about 3 ridex in metallicity and predict a flat behavior in the evolution of riNafe at super-solar metallicities. Conversely, recent observations of stars with rifeh ˜ +0.4 suggest that riNafe increases at high metallicity. We have combined stellar evolution models of asymptotic giant branch (AGB) and Wolf-Rayet (WR) stars with the latest SN yields in an attempt to resolve these problems dots and have created many more.

  2. Rb and Zr abundances in massive Galactic AGB stars revisited

    NASA Astrophysics Data System (ADS)

    Pérez-Mesa, V.; Zamora, O.; García-Hernández, D. A.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.

    2016-07-01

    We report new abundances of Rb and Zr in a sample of massive Galactic asymptotic giant branch (AGB) stars that were previously studied with hydrostatic models by using more realistic dynamical model atmospheres. We use a modified version of the spectral synthesis code Turbospectrum, and consider the presence of a circumstellar envelope and a radial wind in the modelling of these Galactic AGB stars. The Rb and Zr are determined from the 7800 Å Rb I resonant line and the 6474 Å ZrO bandhead, respectively, and they are compared with the AGB nucleosynthesis theoretical predictions. The derived Rb abundances are much lower (∼⃒1-2 dex) with the new dynamical models, while the Zr abundances, however, are closer to the hydrostatic values. The new model atmospheres can help to resolve the problem of the mismatch between the observations and the nucleosynthesis theoretical predictions of massive AGB stars.

  3. AGB yields and Galactic Chemical Evolution: last updated

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Travaglio, C.; Wiescher, M.; Gallino, R.; Köppeler, F.; Straniero, O.; Cristallo, S.; Imbriani, G.; Görres, J.; deBoer, R. J.

    2016-01-01

    We study the s-process abundances at the epoch of the Solar-system formation as the outcome of nucleosynthesis occurring in AGB stars of various masses and metallicities. The calculations have been performed with the Galactic chemical evolution (GCE) model presented by [1, 2]. With respect to previous works, we used updated solar meteoritic abundances, a neutron capture cross section network that includes the most recent measurements, and we implemented the s-process yields with an extended range of AGB initial masses. The new set of AGB yields includes a new evaluation of the 22Ne(α, n)25Mg rate, which takes into account the most recent experimental information.

  4. Sodium abundances of AGB and RGB stars in Galactic globular clusters. I. Analysis and results of NGC 2808

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.; Van der Swaelmen, M.; Bono, G.; Chantereau, W.; Zhao, G.

    2016-07-01

    Context. Galactic globular clusters (GC) are known to have multiple stellar populations and be characterised by similar chemical features, e.g. O-Na anti-correlation. While second-population stars, identified by their Na overabundance, have been found from the main sequence turn-off up to the tip of the red giant branch (RGB) in various Galactic GCs, asymptotic giant branch (AGB) stars have rarely been targeted. The recent finding that NGC 6752 lacks an Na-rich AGB star has thus triggered new studies on AGB stars in GCs, since this result questions our basic understanding of GC formation and stellar evolution theory. Aims: We aim to compare the Na abundance distributions of AGB and RGB stars in Galactic GCs and investigate whether the presence of Na-rich stars on the AGB is metallicity-dependent. Methods: With high-resolution spectra obtained with the multi-object high-resolution spectrograph FLAMES on ESO/VLT, we derived accurate Na abundances for 31 AGB and 40 RGB stars in the Galactic GC NGC 2808. Results: We find that NGC 2808 has a mean metallicity of -1.11 ± 0.08 dex, in good agreement with earlier analyses. Comparable Na abundance dispersions are derived for our AGB and RGB samples, with the AGB stars being slightly more concentrated than the RGB stars. The ratios of Na-poor first-population to Na-rich second-population stars are 45:55 in the AGB sample and 48:52 in the RGB sample. Conclusions: NGC 2808 has Na-rich second-population AGB stars, which turn out to be even more numerous - in relative terms - than their Na-poor AGB counterparts and the Na-rich stars on the RGB. Our findings are well reproduced by the fast rotating massive stars scenario and they do not contradict the recent results that there is not an Na-rich AGB star in NGC 6752. NGC 2808 thus joins the larger group of Galactic GCs for which Na-rich second-population stars on the AGB have recently been found. Based on observations made with ESO telescopes at the La Silla Paranal Observatory

  5. AGB Stars in Galactic Globular Clusters: Are They Really Chemically Distinct from Their Fellow RGB and HB Stars?

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.; Stancliffe, R. J.; Lattanzio, J. C.; Angelou, G. C.; Grundahl, F.; Sneden, C.

    2011-09-01

    The handful of available observations of asymptotic giant branch (AGB) stars in Galactic globular clusters (GCs) suggest that the globular cluster AGB populations are dominated by cyanogen-weak (CN-weak) stars. This contrasts strongly with the distributions on the red giant branch (RGB) and other populations, which often show a 50:50 bimodality in CN band strength. If this is true then it presents a serious problem for low metallicity stellar evolution theory, since such a surface abundance change going from the RGB to AGB is not predicted by stellar models. However this is only a tentative conclusion, since it is based on very small AGB sample sizes. To test whether this problem really exists we have carried out an observational campaign targeting AGB stars in globular clusters. We have obtained medium resolution spectra for about 250 AGB stars across 9 Galactic globular clusters (NGC 1851, NGC 288, NGC 362, NGC 6752, M2, M4, M5, M10, and 47 Tuc) using the multi-object spectrograph on the Anglo-Australian Telescope (2df/AAOmega). In this contribution we present some preliminary findings of the study, in particular for the second-parameter pair NGC 288 and NGC 362.

  6. The Case of the Missing Cyanogen-rich AGB Stars in Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.; Stancliffe, R. J.; Lattanzio, J. C.; Angelou, G. C.; Grundahl, F.; Sneden, C.

    2012-08-01

    The handful of available observations of AGB stars in Galactic Globular Clusters suggest that the GC AGB populations are dominated by cyanogen-weak stars (eg. Norris et al. 1981; Sneden et al. 2000). This contrasts strongly with the distributions on the RGB (and other) populations, which generally show a 50:50 bimodality in CN band strength. If this is a real difference then it presents a serious problem for low metallicity stellar evolution theory - since such a surface abundance change going from the RGB to AGB is not predicted by stellar models. However this is only a tentative conclusion, since it is based on very small AGB sample sizes. To test whether this problem really exists we have carried out an observational campaign targeting AGB stars in GCs. Our preliminary results indicate there is indeed a lack of CN-strong AGB stars.

  7. Silicate features in Galactic and extragalactic post-AGB discs

    NASA Astrophysics Data System (ADS)

    Gielen, C.; Bouwman, J.; van Winckel, H.; Lloyd Evans, T.; Woods, P. M.; Kemper, F.; Marengo, M.; Meixner, M.; Sloan, G. C.; Tielens, A. G. G. M.

    2011-09-01

    Aims: In this paper we study the Spitzer and TIMMI2 infrared spectra of post-AGB disc sources, both in the Galaxy and the LMC. Using the observed infrared spectra we determine the mineralogy and dust parameters of the discs, and look for possible differences between the Galactic and extragalactic sources. Methods: Modelling the full spectral range observed allows us to determine the dust species present in the disc and different physical parameters such as grain sizes, dust abundance ratios, and the dust and continuum temperatures. Results: We find that all the discs are dominated by emission features of crystalline and amorphous silicate dust. Only a few sample sources show features due to CO2 gas or carbonaceous molecules such as PAHs and C60 fullerenes. Our analysis shows that dust grain processing in these discs is strong, resulting in large average grain sizes and a very high crystallinity fraction. However, we do not find any correlations between the derived dust parameters and properties of the central source. There also does not seem to be a noticeable difference between the mineralogy of the Galactic and LMC sources. Even though the observed spectra are very similar to those of protoplanetary discs around young stars, showing similar mineralogy and strong grain processing, we do find evidence for differences in the physical and chemical processes of the dust processing. Based on observations obtained at the European Southern Observatory (ESO), La Silla, observing program 072.D-0263 and 077.D-0555, and on observations made with the Spitzer Space Telescope (program id 3274 and 50092), which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.Appendix A is available in electronic form at http://www.aanda.org

  8. Lithium and zirconium abundances in massive Galactic O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; García-Lario, P.; Plez, B.; Manchado, A.; D'Antona, F.; Lub, J.; Habing, H.

    2007-02-01

    Lithium and zirconium abundances (the latter taken as representative of s-process enrichment) are determined for a large sample of massive Galactic O-rich AGB stars, for which high-resolution optical spectroscopy has been obtained (R˜ 40 000{-}50 000). This was done by computing synthetic spectra based on classical hydrostatic model atmospheres for cool stars and using extensive line lists. The results are discussed in the framework of "hot bottom burning" (HBB) and nucleosynthesis models. The complete sample is studied for various observational properties such as the position of the stars in the IRAS two-colour diagram ([ 12] - [25] vs. [ 25] - [60] ), Galactic distribution, expansion velocity (derived from the OH maser emission), and period of variability (when available). We conclude that a considerable fraction of these sources are actually massive AGB stars (M>3{-}4 M⊙) experiencing HBB, as deduced from the strong Li overabundances we found. A comparison of our results with similar studies carried out in the past for the Magellanic Clouds (MCs) reveals that, in contrast to MC AGB stars, our Galactic sample does not show any indication of s-process element enrichment. The differences observed are explained as a consequence of metallicity effects. Finally, we discuss the results obtained in the framework of stellar evolution by comparing our results with the data available in the literature for Galactic post-AGB stars and PNe. Based on observations at the 4.2 m William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofisica de Canarias. Also based on observations with the ESO 3.6 m telescope at La Silla Observatory (Chile). Tables [see full text]-[see full text] are only available in electronic form at http://www.aanda.org

  9. VizieR Online Data Catalog: Galactic and MC O-AGBs and RSGs stars (Jones+, 2012)

    NASA Astrophysics Data System (ADS)

    Jones, O. C.; Kemper, F.; Sargent, B. A.; McDonald, I.; Gielen, C.; Woods, P. M.; Sloan, G. C.; Boyer, M. L.; Zijlstra, A. A.; Clayton, G. C.; Kraemer, K. E.; Srinivasan, S.; Ruffle, P. M. E.

    2015-11-01

    Our sample contains 69 oxygen-rich AGB stars (O-AGB) and 76 RSG stars in the Magellanic Clouds which were observed spectroscopically with Spitzer, and 131 Galactic field O-AGBs and RSGs observed with either Spitzer or ISO. The Spitzer spectra cover a wavelength range of 5.2-37.2um, while ISO spectra cover the 2.38-45.2um part of the spectrum. We combine this sample with 39 spectra from 14 GGCs to extend the low end of the metallicity range. (5 data files).

  10. AKARI All Sky Survey: contribution from AGB stars to the far infrared flux from the Milky Way related to point sources outside the Galactic plane

    NASA Astrophysics Data System (ADS)

    Pollo, A.; Takeuchi, T. T.; Rybka, P.

    2011-10-01

    Using data from the FIS AKARI All-Sky Survey, we make a first step towards the estimation of the contribution from Asymptotic Giant Branch (AGB) stars to the far-infrared (FIR) flux from the Milky Way. We estimate the contribution from the AGB, and post-AGB, stars to the total flux generated by point sources outside the Galactic plane. Additionally, we present the positions of different types of AGB, and post-AGB, stars in the FIR color-color diagrams. Our main conclusion is that there is a high contribution from AGB stars, and particularly post-AGB stars, to the FIR flux coming from point sources in the outer parts of the Milky Way and possibly other Milky Way-type galaxies. FIR colors of different types of AGB stars remain similar but post-AGB stars are redder in the FIR and, as a result, contribute more to the total Galaxy flux density at longer FIR wavelengths.

  11. Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Uttenthaler, S.; Blommaert, J. A. D. L.; Wood, P. R.; Lebzelter, T.; Aringer, B.; Schultheis, M.; Ryde, N.

    2015-08-01

    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12C/13C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff ≈ 3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly subsolar mean metallicity and only few stars with supersolar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O < 1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.

  12. A Luminous Yellow Post-AGB Star in the Galactic Globular Cluster M79

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.; Ciardullo, Robin; Siegel, Michael H.

    2016-02-01

    We report the discovery of a luminous F-type post-asymptotic-giant-branch (PAGB) star in the Galactic globular cluster (GC) M79 (NGC 1904). At visual apparent and absolute magnitudes of V=12.20 and {M}V=-3.46, this “yellow” PAGB star is by a small margin the visually brightest star known in any GC. It was identified using CCD observations in the uBVI photometric system, which is optimized to detect stars with large Balmer discontinuities, indicative of very low surface gravities. Follow-up observations with the SMARTS 1.3 and 1.5 m telescopes show that the star is not variable in light or radial velocity, and that its velocity is consistent with cluster membership. Near- and mid-infrared observations with 2MASS and WISE show no evidence for circumstellar dust. We argue that a sharp upper limit to the luminosity function exists for yellow PAGB stars in old populations, making them excellent candidates for Population II standard candles, which are four magnitudes brighter than RR Lyrae variables. Their luminosities are consistent with the stars being in a PAGB evolutionary phase, with core masses of ˜ 0.53 {M}⊙ . We also detected four very hot stars lying above the horizontal branch (“AGB-manqué” stars); along with the PAGB star, they are the brightest objects in M79 in the near-ultraviolet. In the Appendix, we give periods and light curves for five variables in M79: three RR Lyrae stars, a Type II Cepheid, and a semiregular variable. Based in part on observations with the 1.3 and 1.5 m telescopes operated by the SMARTS Consortium at Cerro Tololo Interamerican Observatory.

  13. Exploring the Onset of the Contribution of the First AGB Stars to the Galactic Chemical Enrichment using Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    Goswami, A.

    2015-08-01

    There is uncertainty over the time at which the first intermediate and low-mass stars reach the AGB phase and begin to influence their environments with the products of nucleosynthesis. While some studies have indicated that enrichment from AGB stars sets in at a time corresponding to -2.4 < [Fe/H] < -2.1, others suggest a time as early as [Fe/H] ≍ -2.75. These suggestions come from observations of s-process heavy elements in old metal-poor stars. Measurements of stellar isotopic ratios, such as the Mg isotope ratios, can also be a useful probe to explore the contribution of AGB stars to the Galactic chemical inventory. However, measurements of isotopic ratios require spectra with high resolution (R > 90 000) and high S/N ratios (> 200) which require very long exposure times with the existing observing facilities. Upcoming large telescopes of 25 to 42-m size equipped with high resolution spectrographs will provide the resolution and sensitivity required for measurements of isotopic ratios that are fundamental indicators of nucleosynthesis.

  14. Detailed homogeneous abundance studies of 14 Galactic s-process enriched post-AGB stars: In search of lead (Pb)

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A. I.; Manick, R.

    2016-03-01

    Context. This paper is part of a larger project in which we systematically study the chemical abundances of Galactic and extragalactic post-asymptotic giant branch (post-AGB) stars. The goal at large is to provide improved observational constraints to the models of the complex interplay between the AGB s-process nucleosynthesis and the associated mixing processes. Aims: Lead (Pb) is the final product of the s-process nucleosynthesis and is predicted to have large overabundances with respect to other s-process elements in AGB stars of low metallicities. However, Pb abundance studies of s-process enriched post-AGB stars in the Magellanic Clouds show a discrepancy between observed and predicted Pb abundances. The determined upper limits based on spectral studies are much lower than what is predicted. In this paper, we focus specifically on the Pb abundance of 14 Galactic s-process enhanced post-AGB stars to check whether the same discrepancy is present in the Galaxy as well. Among these 14 objects, two were not yet subject to a detailed abundance study in the literature. We apply the same method to obtain accurate abundances for the 12 others. Our homogeneous abundance results provide the input of detailed spectral synthesis computations in the spectral regions where Pb lines are located. Methods: We used high-resolution UVES and HERMES spectra for detailed spectral abundance studies of our sample of Galactic post-AGB stars. None of the sample stars display clear Pb lines, and we only deduced upper limits of the Pb abundance by using spectrum synthesis in the spectral ranges of the strongest Pb lines. Results: We do not find any clear evidence of Pb overabundances in our sample. The derived upper limits are strongly correlated with the effective temperature of the stars with increasing upper limits for increasing effective temperatures. We obtain stronger Pb constraints on the cooler objects. Moreover, we confirm the s-process enrichment and carbon enhancement of two

  15. Detailed homogeneous abundance studies of 14 Galactic s-process enriched post-AGB stars: In search of lead (Pb)

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A. I.; Manick, R.

    2016-03-01

    Context. This paper is part of a larger project in which we systematically study the chemical abundances of Galactic and extragalactic post-asymptotic giant branch (post-AGB) stars. The goal at large is to provide improved observational constraints to the models of the complex interplay between the AGB s-process nucleosynthesis and the associated mixing processes. Aims: Lead (Pb) is the final product of the s-process nucleosynthesis and is predicted to have large overabundances with respect to other s-process elements in AGB stars of low metallicities. However, Pb abundance studies of s-process enriched post-AGB stars in the Magellanic Clouds show a discrepancy between observed and predicted Pb abundances. The determined upper limits based on spectral studies are much lower than what is predicted. In this paper, we focus specifically on the Pb abundance of 14 Galactic s-process enhanced post-AGB stars to check whether the same discrepancy is present in the Galaxy as well. Among these 14 objects, two were not yet subject to a detailed abundance study in the literature. We apply the same method to obtain accurate abundances for the 12 others. Our homogeneous abundance results provide the input of detailed spectral synthesis computations in the spectral regions where Pb lines are located. Methods: We used high-resolution UVES and HERMES spectra for detailed spectral abundance studies of our sample of Galactic post-AGB stars. None of the sample stars display clear Pb lines, and we only deduced upper limits of the Pb abundance by using spectrum synthesis in the spectral ranges of the strongest Pb lines. Results: We do not find any clear evidence of Pb overabundances in our sample. The derived upper limits are strongly correlated with the effective temperature of the stars with increasing upper limits for increasing effective temperatures. We obtain stronger Pb constraints on the cooler objects. Moreover, we confirm the s-process enrichment and carbon enhancement of two

  16. VizieR Online Data Catalog: Linelist of 14 Galactic post-AGB stars (De Smedt+, 2016)

    NASA Astrophysics Data System (ADS)

    de Smedt, K.; van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A. I.; Manick, R.

    2015-11-01

    We used the UVES spectrograph mounted on the Very Large Telescope (VLT) at the European Southern Observatory (ESO), and the HERMES spectrograph mounted on the 1.2m Mercator telescope to obtain high-resolution spectra with high signal-to-noise (S/N) of 14 Galactic post-AGB stars of the Large Magellanic Cloud. We perform an extensive detailed abundance analysis on the basis of these spectra. Here we provide the linelists of all objects with the same layour: the identification is given by the proton-number of the chemical element. For lines coming from ionised lines, we add 0.1 to the proton number; the wavelength is given in rest in air in Angstrom units; the excitation potential (eV); the used oscillator strength and finally the measured equivalent width (mÅ). We also provide the normalised spectra obtained with UVES and with HERMES in fits format. (17 data files).

  17. Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Sloan, G. C.; Soszyński, I.; Petersen, E. A.

    2009-11-01

    Context: Mass loss is one of the fundamental properties of Asymptotic Giant Branch (AGB) stars, and through the enrichment of the interstellar medium, AGB stars are key players in the life cycle of dust and gas in the universe. However, a quantitative understanding of the mass-loss process is still largely lacking, particularly its dependence on metallicity. Aims: To investigate the relation between mass loss, luminosity and pulsation period for a large sample of evolved stars in the Small and Large Magellanic Cloud. Methods: Dust radiative transfer models are presented for 101 carbon stars and 86 oxygen-rich evolved stars in the Magellanic Clouds for which 5-35 μm Spitzer IRS spectra are available. The spectra are complemented with available optical and infrared photometry to construct the spectral energy distribution. A minimisation procedure is used to fit luminosity, mass-loss rate and dust temperature at the inner radius. Different effective temperatures and dust content are also considered. Periods from the literature and from new OGLE-III data are compiled and derived. Results: We derive (dust) mass-loss rates and luminosities for the entire sample. Based on luminosities, periods and amplitudes and colours, the O-rich stars are classified as foreground objects, AGB stars and Red Super Giants. For the O-rich stars silicates based on laboratory optical constants are compared to “astronomical silicates”. Overall, the grain type by Volk & Kwok (1988, ApJ, 331, 435) fits the data best. However, the fit based on laboratory optical constants for the grains can be improved by abandoning the small-particle limit. The influence of grain size, core-mantle grains and porosity are explored. A computationally convenient method that seems to describe the observed properties in the 10 μm window are a distribution of hollow spheres with a large vacuum fraction (typically 70%), and grain size of about 1 μm. Relations between mass-loss rates and luminosity and pulsation

  18. Manganese abundances in Galactic bulge red giants

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; Hill, V.; Zoccali, M.; Minniti, D.; Renzini, A.; Ortolani, S.; Gómez, A.; Trevisan, M.; Dutra, N.

    2013-11-01

    Context. Manganese is mainly produced in type II SNe during explosive silicon burning, in incomplete Si-burning regions, and depends on several nucleosynthesis environment conditions, such as mass cut between the matter ejected and falling back onto the remnant, electron and neutron excesses, mixing fallback, and explosion energy. Manganese is also produced in type Ia SNe. Aims: The aim of this work is the study of abundances of the iron-peak element Mn in 56 bulge giants, among which 13 are red clump stars. Four bulge fields along the minor axis are inspected. The study of abundances of Mn-over-Fe as a function of metallicity in the Galactic bulge may shed light on its production mechanisms. Methods: High-resolution spectra were obtained using the FLAMES+UVES spectrograph on the Very Large Telescope. The spectra were obtained within a program to observe 800 stars using the GIRAFFE spectrograph, together with the present UVES spectra. Results: We aim at identifying the chemical evolution of manganese, as a function of metallicity, in the Galactic bulge. We find [Mn/Fe] ~ -0.7 at [Fe/H] ~ -1.3, increasing to a solar value at metallicities close to solar, and showing a spread around - 0.7 ≲ [Fe/H] ≲ -0.2, in good agreement with other work on Mn in bulge stars. There is also good agreement with chemical evolution models. We find no clear difference in the behaviour of the four bulge fields. Whereas [Mn/Fe] vs. [Fe/H] could be identified with the behaviour of the thick disc stars, [Mn/O] vs. [O/H] has a behaviour running parallel, at higher metallicities, compared to thick disc stars, indicating that the bulge enrichment might have proceeded differently from that of the thick disc. Observations collected at the European Southern Observatory, Paranal, Chile (ESO programmes 71.B-0617A, 73.B0074A, and GTO 71.B-0196).Tables 1-6 and Figs. 1-6 are available in electronic form at http://www.aanda.org

  19. VizieR Online Data Catalog: Galactic post-AGB stars distances (Vickers+, 2015)

    NASA Astrophysics Data System (ADS)

    Vickers, S. B.; Frew, D. J.; Parker, Q. A.; Bojicic, I. S.

    2015-07-01

    The Torun catalogue provides easy online access to processed photometric and spectroscopic data for the currently identified Galactic population of PAGB stars and related objects. The catalogue is divided into five categories: (i) very-likely PAGB stars, (ii) RV Tauri stars, (iii) R Coronae Borealis/extreme helium/late thermal pulse stars, (iv) possible PAGB stars and (v) unlikely PAGB objects. Hereafter, likely PAGB stars will be referred to simply as PAGB, R Coronae Borealis/extreme helium/late thermal pulse as R CrB/eHe/LTP, while the possible PAGB objects will be simply referred to as possible. We will present a distance catalogue of the R Tau and R CrB/eHe/LTP stars in a second paper (Vickers et al., in preparation), concentrating on the likely and possible PAGB objects in this work. (3 data files).

  20. Post-AGB Stars in the AKARI Survey

    NASA Astrophysics Data System (ADS)

    Siódmiak, N.; Cox, N.; Szczerba, R.; García-Lario, P.

    2009-12-01

    Obscured by their circumstellar dusty envelopes post-AGB stars emit a large fraction of their energy in the infrared and thus, infrared sky surveys like IRAS were essential for discoveries of post-AGBs in the past. Now, with the AKARI infrared sky survey we can extend our knowledge about the late stages of stellar evolution. The long-term goal of our work is to define new photometric criteria to distinguish new post-AGB candidates from the AKARI data. We have cross-correlated the Toruń catalogue of Galactic post-AGB and related objects with the AKARI/FIS All-Sky Survey Bright Source Catalogue (for simplicity, hereafter AKARI). The scientific and technical aspects of our work are presented here as well as our plans for the future. In particular, we found that only 9 post-AGB sources were detected in all four AKARI bands. The most famous objects like: Red Rectangle, Egg Nebula, Minkowski’s Footprint belong to this group. From the technical point of view we discuss positional accuracy by comparing (mostly) 2MASS coordinates of post-AGB objects with those given by AKARI; flux reliability by comparing IRAS 60 and 100 μm fluxes with those from AKARI -N65 and AKARI -90 bands, respectively; as well as completeness of the sample as a function of the IRAS fluxes.

  1. Heavy elements Ba, La, Ce, Nd, and Eu in 56 Galactic bulge red giants

    NASA Astrophysics Data System (ADS)

    Van der Swaelmen, M.; Barbuy, B.; Hill, V.; Zoccali, M.; Minniti, D.; Ortolani, S.; Gómez, A.

    2016-01-01

    Aims: The aim of this work is the study of abundances of the heavy elements Ba, La, Ce, Nd, and Eu in 56 bulge giants (red giant branch and red clump) with metallicities ranging from -1.3 dex to 0.5 dex. Methods: We obtained high-resolution spectra of our giant stars using the FLAMES-UVES spectrograph on the Very Large Telescope. We inspected four bulge fields along the minor axis. Results: We measure the chemical evolution of heavy elements, as a function of metallicity, in the Galactic bulge. Conclusions: The [Ba,La,Ce,Nd/Fe] vs. [Fe/H] ratios decrease with increasing metallicity, in which aspect they differ from disc stars. In our metal-poor bulge stars, La and Ba are enhanced relative to their thick disc counterpart, while in our metal-rich bulge stars La and Ba are underabundant relative to their disc counterpart. Therefore, this contrast between bulge and discs trends indicates that bulge and (solar neighbourhood) thick disc stars could behave differently. An increase in [La,Nd/Eu] with increasing metallicity, for metal-rich stars with [Fe/H] > 0 dex, may indicate that the s-process from AGB stars starts to operate at a metallicity around solar. Finally, [Eu/Fe] follows the [α/ Fe] behaviour, as expected, since these elements are produced by SNe type II. Observations collected at the European Southern Observatory, Paranal, Chile (ESO programmes 71.B-0617A, 73.B0074A, and GTO 71.B-0196)

  2. Hiding in plain sight - red supergiant imposters? Super-AGB stars - bridging the divide between low/intermediate-mass and high-mass stars

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn Louise; Gil-Pons, Pilar; Lattanzio, John; Siess, Lionel

    2015-08-01

    Super Asymptotic Giant Branch (Super-AGB) stars reside in the mass range ~ 6.5-10 M⊙ and bridge the divide between low/intermediate-mass and massive stars. They are characterised by off-centre carbon ignition prior to a thermally pulsing phase which can consist of many tens to even thousands of thermal pulses. With their high luminosities and very large, cool, red stellar envelopes, these stars appear seemingly identical to their slightly more massive red supergiant counterparts. Due to their similarities, super-AGB stars may therefore act as stellar imposters and contaminate red supergiant surveys. Super-AGB stars undergo relatively extreme nucleosynthetic conditions, with very efficient proton-capture nucleosynthesis occurring at the base of the convective envelope and also heavy element (s-process) production during the thermal pulse to be later mixed to the surface during third dredge-up events. The surface enrichment from these two processes may result in a clear nucleosynthetic signature to differentiate these two classes of star.The final fate of super-AGB stars is also quite uncertain and depends primarily on the competition between the core growth and mass-loss rates. If the stellar envelope is removed prior to the core reaching the Chandrasekhar mass, an O-Ne white dwarf will remain, otherwise the star will undergo an electron-capture supernova leaving behind a neutron star. We describe the factors which influence these different final fate channels, such as the efficiency of convection, the mass-loss rates, the third dredge-up efficiency and the Fe-peak opacity instability which may lead to expulsion of the entire remaining stellar envelope. We determine the relative fraction of super-AGB stars that end life as either an O-Ne white dwarf or as a neutron star, and provide a mass limit for the lowest mass supernova over a broad range of metallicities from the earliest time (Z=0) right through until today (Z~0.04).

  3. AGB sodium abundances in the globular cluster 47 Tucanae (NGC 104)

    SciTech Connect

    Johnson, Christian I.; McDonald, Iain; Zijlstra, Albert A. E-mail: iain.mcdonald-2@manchester.ac.uk; and others

    2015-02-01

    A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globular cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high-resolution spectra obtained with the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan–Clay 6.5 m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be 〈RV{sub helio.}〉 = −18.56 km s{sup −1} (σ = 10.21 km s{sup −1}) and 〈[Fe/H]〉 = −0.68 (σ = 0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction (≲20%) of Na-rich stars in 47 Tuc may fail to ascend the AGB, which is a similar result to that observed in M13. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. The contrasting behavior of Na-rich stars in 47 Tuc and NGC 6752 suggests that the RGB [Na/Fe] abundance alone is insufficient for predicting if a star will

  4. An extreme paucity of second population AGB stars in the `normal' globular cluster M4

    NASA Astrophysics Data System (ADS)

    MacLean, B. T.; Campbell, S. W.; De Silva, G. M.; Lattanzio, J.; D'Orazi, V.; Simpson, J. D.; Momany, Y.

    2016-07-01

    Galactic globular clusters (GCs) are now known to harbour multiple stellar populations, which are chemically distinct in many light element abundances. It is becoming increasingly clear that asymptotic giant branch (AGB) stars in GCs show different abundance distributions in light elements compared to those in the red giant branch (RGB) and other phases, skewing towards more primordial, field-star-like abundances, which we refer to as subpopulation one (SP1). As part of a larger programme targeting giants in GCs, we obtained high-resolution spectra for a sample of 106 RGB and 15 AGB stars in Messier 4 (NGC 6121) using the 2dF+HERMES facility on the Anglo-Australian Telescope. In this Letter, we report an extreme paucity of AGB stars with [Na/O] >-0.17 in M4, which contrasts with the RGB that has abundances up to [Na/O] =0.55. The AGB abundance distribution is consistent with all AGB stars being from SP1. This result appears to imply that all subpopulation two stars (SP2; Na-rich, O-poor) avoid the AGB phase. This is an unexpected result given M4's horizontal branch morphology - it does not have an extended blue horizontal branch. This is the first abundance study to be performed utilizing the HERMES spectrograph.

  5. An extreme paucity of second population AGB stars in the `normal' globular cluster M4

    NASA Astrophysics Data System (ADS)

    MacLean, B. T.; Campbell, S. W.; De Silva, G. M.; Lattanzio, J.; D'Orazi, V.; Simpson, J. D.; Momany, Y.

    2016-04-01

    Galactic Globular clusters (GCs) are now known to harbour multiple stellar populations, which are chemically distinct in many light element abundances. It is becoming increasingly clear that asymptotic giant branch (AGB) stars in GCs show different abundance distributions in light elements compared to those in the red giant branch (RGB) and other phases, skewing toward more primordial, field-star-like abundances, which we refer to as subpopulation one (SP1). As part of a larger program targeting giants in GCs, we obtained high-resolution spectra for a sample of 106 RGB and 15 AGB stars in Messier 4 (NGC 6121) using the 2dF+HERMES facility on the Anglo-Australian Telescope. In this Letter we report an extreme paucity of AGB stars with [Na/O] >-0.17 in M4, which contrasts with the RGB that has abundances up to [Na/O] =0.55. The AGB abundance distribution is consistent with all AGB stars being from SP1. This result appears to imply that all subpopulation two stars (SP2; Na-rich, O-poor) avoid the AGB phase. This is an unexpected result given M4's horizontal branch morphology - it does not have an extended blue horizontal branch. This is the first abundance study to be performed utilising the HERMES spectrograph.

  6. Using red clump stars to decompose the galactic magnetic field with distance

    SciTech Connect

    Pavel, Michael D.

    2014-09-01

    A new method for measuring the large-scale structure of the Galactic magnetic field is presented. The Galactic magnetic field has been probed through the Galactic disk with near-infrared starlight polarimetry; however, the distance to each background star is unknown. Using red clump stars as near-infrared standard candles, this work presents the first attempt to decompose the line-of-sight structure of the sky-projected Galactic magnetic field. Two example lines of sight are decomposed: toward a field with many red clump stars and toward a field with few red clump stars. A continuous estimate of magnetic field orientation over several kiloparsecs of distance is possible in the field with many red clump stars, while only discrete estimates are possible in the sparse example. Toward the outer Galaxy, there is a continuous field orientation with distance that shows evidence of perturbation by the Galactic warp. Toward the inner Galaxy, evidence for a large-scale change in the magnetic field geometry is consistent with models of magnetic field reversals, independently derived from Faraday rotation studies. A photo-polarimetric method for identifying candidate intrinsically polarized stars is also presented. The future application of this method to large regions of the sky will begin the process of mapping the Galactic magnetic field in a way never before possible.

  7. Using Red Clump Stars to Decompose the Galactic Magnetic Field with Distance

    NASA Astrophysics Data System (ADS)

    Pavel, Michael D.

    2014-09-01

    A new method for measuring the large-scale structure of the Galactic magnetic field is presented. The Galactic magnetic field has been probed through the Galactic disk with near-infrared starlight polarimetry; however, the distance to each background star is unknown. Using red clump stars as near-infrared standard candles, this work presents the first attempt to decompose the line-of-sight structure of the sky-projected Galactic magnetic field. Two example lines of sight are decomposed: toward a field with many red clump stars and toward a field with few red clump stars. A continuous estimate of magnetic field orientation over several kiloparsecs of distance is possible in the field with many red clump stars, while only discrete estimates are possible in the sparse example. Toward the outer Galaxy, there is a continuous field orientation with distance that shows evidence of perturbation by the Galactic warp. Toward the inner Galaxy, evidence for a large-scale change in the magnetic field geometry is consistent with models of magnetic field reversals, independently derived from Faraday rotation studies. A photo-polarimetric method for identifying candidate intrinsically polarized stars is also presented. The future application of this method to large regions of the sky will begin the process of mapping the Galactic magnetic field in a way never before possible.

  8. The Distance to the Galactic Center Derived from Infrared Photometry of Bulge Red Clump Stars

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo; Nagata, Tetsuya; Sato, Shuji; Kato, Daisuke; Nagayama, Takahiro; Kusakabe, Nobuhiko; Matsunaga, Noriyuki; Naoi, Takahiro; Sugitani, Koji; Tamura, Motohide

    2006-08-01

    On the basis of the near-infrared observations of bulge red clump stars near the Galactic center, we have determined the galactocentric distance to be R0=7.52+/-0.10 (stat) +/-0.35 (sys) kpc. We observed the red clump stars at |l|<~1.0d and 0.7d<~|b|<~1.0d with the IRSF 1.4 m telescope and the SIRIUS camera in the H and KS bands. After extinction and population corrections, we obtained (m-M)0=14.38+/-0.03 (stat) +/- 0.10 (sys). The statistical error is dominated by the uncertainty of the intrinsic local red clump stars' luminosity. The systematic error is estimated to be +/-0.10, including uncertainties in extinction and population correction, zero point of photometry, and the fitting of the luminosity function of the red clump stars. Our result, R0=7.52 kpc, is in excellent agreement with the distance determined geometrically with the star orbiting the massive black hole in the Galactic center. The recent result based on the spatial distribution of globular clusters is also consistent with our result. In addition, our study exhibits that the distance determination to the Galactic center with the red clump stars, even if the error of the population correction is taken into account, can achieve an uncertainty of about 5%, which is almost the same level as that in recent geometrical determinations.

  9. Uncertainties on near-core mixing in red-clump stars: effects on the period spacing and on the luminosity of the AGB bump

    NASA Astrophysics Data System (ADS)

    Bossini, Diego; Miglio, Andrea; Salaris, Maurizio; Pietrinferni, Adriano; Montalbán, Josefina; Bressan, Alessandro; Noels, Arlette; Cassisi, Santi; Girardi, Léo; Marigo, Paola

    2015-11-01

    Low-mass stars in the He-core-burning (HeCB) phase play a major role in stellar, galactic, and extragalactic astrophysics. The ability to predict accurately the properties of these stars, however, depends on our understanding of convection, which remains one of the key open questions in stellar modelling. We argue that the combination of the luminosity of the AGB bump (AGBb) and the period spacing of gravity modes (ΔΠ1) during the HeCB phase provides us with a decisive test to discriminate between competing models of these stars. We use the Modules for Experiments in Stellar Astrophysics (MESA), a Bag of Stellar Tracks and Isochrones (BaSTI), and PAdova & TRieste Stellar Evolution Code (PARSEC) stellar evolution codes to model a typical giant star observed by Kepler. We explore how various near-core-mixing scenarios affect the predictions of the above-mentioned constraints, and we find that ΔΠ1 depends strongly on the prescription adopted. Moreover we show that the detailed behaviour of ΔΠ1 shows the signature of sharp variations in the Brunt-Väisälä frequency, which could potentially give additional information about near-core features. We find evidence for the AGBb among Kepler targets, and a first comparison with observations shows that, even if standard models are able to reproduce the luminosity distribution, no standard model can account for satisfactorily the period spacing of HeCB stars. Our analysis allows us to outline a candidate model to describe simultaneously the two observed distributions: a model with a moderate overshooting region characterized by an adiabatic thermal stratification. This prescription will be tested in the future on cluster stars, to limit possible observational biases.

  10. Optically visible post-AGB stars, post-RGB stars and young stellar objects in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; Van Winckel, H.

    2015-12-01

    We have carried out a search for optically visible post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). First, we selected candidates with a mid-IR excess and then obtained their optical spectra. We disentangled contaminants with unique spectra such as M stars, C stars, planetary nebulae, quasi-stellar objects and background galaxies. Subsequently, we performed a detailed spectroscopic analysis of the remaining candidates to estimate their stellar parameters such as effective temperature, surface gravity (log g), metallicity ([Fe/H]), reddening and their luminosities. This resulted in a sample of 35 likely post-AGB candidates with late-G to late-A spectral types, low log g, and [Fe/H] < -0.5. Furthermore, our study confirmed the existence of the dusty post-red giant branch (post-RGB) stars, discovered previously in our Small Magellanic Cloud survey, by revealing 119 such objects in the LMC. These objects have mid-IR excesses and stellar parameters (Teff, log g, [Fe/H]) similar to those of post-AGB stars except that their luminosities (< 2500 L⊙), and hence masses and radii, are lower. These post-RGB stars are likely to be products of binary interaction on the RGB. The post-AGB and post-RGB objects show spectral energy distribution properties similar to the Galactic post-AGB stars, where some have a surrounding circumstellar shell, while some others have a surrounding stable disc similar to the Galactic post-AGB binaries. This study also resulted in a new sample of 162 young stellar objects, identified based on a robust log g criterion. Other interesting outcomes include objects with an UV continuum and an emission line spectrum; luminous supergiants; hot main-sequence stars; and 15 B[e] star candidates, 12 of which are newly discovered in this study.

  11. Investigation of Faint Galactic Carbon Stars from the First Byurakan Spectral sky Survey. Optical Variability. I. N-Type AGB Carbon Stars. K-band Absolute Magnitudes and Distances

    NASA Astrophysics Data System (ADS)

    Gigoyan, K. S.; Sarkissian, A.; Russeil, D.; Mauron, N.; Kostandyan, G.; Vartanian, R.; Abrahamyan, H. V.; Paronyan, G. M.

    2014-12-01

    The goal of this paper is to present an optical variability study of the comparatively faint carbon (C) stars which have been discovered by searching the First Byurakan Survey (FBS) low-resolution (lr) spectral plates at high Galactic latitudes using recent wide-area variability databases. The light curves from the Catalina Sky Survey (CSS) and Northern Sky Variability Survey (NSVS) databases were exploited to study theit variability nature. In this paper, first in this series, the variability classes are presented for 54 N-type Asymptotic Giant Branch (AGB) C stars. One finds that 9 stars belongs to the group of Mira-type, 43 are Semi-Regular (SR), and 2 stars are Irregular (Irr)-type variables. The variability types of 27 objects has been established for the first time. K-band absolute magnitudes, distances, and height from the Galactic plane were estimated for all of them. We aim to better understand the nature of the selected C stars through spectroscopy, 2MASS photometric colors, and variability data. Most of the tools used in this study are developed within the framework of the Astronomical Virtual Observatory.

  12. Chemical pollution from AGB Stars

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Straniero, O.; Gallino, R.; Piersanti, L.; Dominguez, I.

    Low mass AGB Stars are the main contributors to the Galactic s-process enrichment. We present new theoretical results obtained by adopting a full network from H to Bi coupled with the physical evolution of the stellar structure. We describe the formation of a 13C pocket as a consequence of H diffusion from the envelope into the He-rich intershell. Such 13C is burnt during the interpulse phase and provides the main neutron source in these stars. We computed two models with the same total mass (that is 2 M⊙) but two different initial chemical composition, namely (Y=0.269 - Z=0.015) and (Y=0.245 - Z=0.0001), representative of disk and halo stars respectively. We evaluate the differences in the final s-process surface composition and compare the results with the available observational data.

  13. THE SPLIT RED CLUMP OF THE GALACTIC BULGE FROM OGLE-III

    SciTech Connect

    Nataf, D. M.; Gould, A.; Stanek, K. Z.; Udalski, A.; Fouque, P. E-mail: gould@astronomy.ohio-state.ed

    2010-09-20

    The red clump (RC) is found to be split into two components along several sightlines toward the Galactic bulge. This split is detected with high significance toward the areas (-3.5 < l < 1, b < -5) and (l, b) = (0, + 5.2), i.e., along the bulge minor axis and at least 5 deg off the plane. The fainter (hereafter 'main') component is the one that more closely follows the distance-longitude relation of the bulge RC. The main component is {approx}0.5 mag fainter than the secondary component and with an overall approximately equal population. For sightlines further from the plane, the difference in brightness increases, and more stars are found in the secondary component than in the main component. The two components have very nearly equal (V - I) color.

  14. A new tool for post-AGB SED classification

    NASA Astrophysics Data System (ADS)

    Bendjoya, P.; Suarez, O.; Galluccio, L.; Michel, O.

    We present the results of an unsupervised classification method applied on a set of 344 spectral energy distributions (SED) of post-AGB stars extracted from the Torun catalogue of Galactic post-AGB stars. This method aims to find a new unbiased method for post-AGB star classification based on the information contained in the IR region of the SED (fluxes, IR excess, colours). We used the data from IRAS and MSX satellites, and from the 2MASS survey. We applied a classification method based on the construction of the dataset of a minimal spanning tree (MST) with the Prim's algorithm. In order to build this tree, different metrics have been tested on both flux and color indices. Our method is able to classify the set of 344 post-AGB stars in 9 distinct groups according to their SEDs.

  15. Evolution models from the AGB to the PNe and the rapid evolution of SAO 244567

    NASA Astrophysics Data System (ADS)

    Lawlor, Timothy M.; Sebzda, Steven; Peterson, Zach

    2015-08-01

    We present evolution calculations from the Asymptotic Giant Branch (AGB) to the Planetary Nebula (PNe) phase for models of mass 1 M⊙ over a range of metallicities from primordial, Z = 10-14, through near solar, Z = 0.02. Using our grid of models, we determine a central star mass dependence on initial metallicity. We also present a range of low masses for our low to very low metal models. The understanding of these objects is an important part of galactic evolution and the evolution of the composition of the universe over a broad range of red shits. For our low Z models, we find key differences in how they cross the HR diagram to the PNe phase, compared with models with higher initial Z. Some of our models experience the so called AGB Final Thermal Pulse (AFTP), which is a helium pulse that occurs while leaving the AGB and causes a rapid looping evolution while evolving between the AGB and PN phase. We use these models to make comparisons to the central star of the Stingray Nebula, SAO 244567. This object has been observed to be rapidly evolving (heating) over more than the last 50 years and is the central star of the youngest known planetary nebula. These two characteristics are similar to what is expected for AFTP models. It is a short lived phase that is related to, but different than, very late thermal pulse objects such as Sakurai’s Object, FG Sge, and V605 Aql. These objects experienced a similar thermal pulse, but later on the white dwarf cooling track.

  16. Wet disc contraction to galactic blue nuggets and quenching to red nuggets

    NASA Astrophysics Data System (ADS)

    Dekel, A.; Burkert, A.

    2014-02-01

    We study the origin of high-redshift, compact, quenched spheroids (red nuggets) through the dissipative shrinkage of gaseous discs into compact star-forming systems (blue nuggets). The discs, fed by cold streams, undergo violent disc instability that drives gas into the centre (along with mergers). The inflow is dissipative when its time-scale is shorter than the star formation time-scale. This implies a threshold of ˜0.28 in the cold-to-total mass ratio within the disc radius. For the typical gas fraction ˜0.5 at z ˜ 2, this threshold is traced back to a maximum spin parameter of ˜0.05, implying that ˜half the star-forming galaxies contract to blue nuggets, while the rest form extended stellar discs. Thus, the surface density of blue galaxies is expected to be bimodal about ˜109 M⊙ kpc-2, slightly increasing with mass. The blue nuggets are expected to be rare at low z when the gas fraction is low. The blue nuggets quench to red nuggets by complementary internal and external mechanisms. Internal quenching by a compact bulge, in a fast mode and especially at high z, may involve starbursts, stellar and active galactic nucleus feedback, or Q-quenching. Quenching due to hot-medium haloes above 1012 M⊙ provides maintenance and a slower mode at low redshift. These predictions are confirmed in simulations and are consistent with observations at z = 0-3.

  17. OGLE-III DETECTION OF THE ANOMALOUS GALACTIC BULGE RED GIANT BRANCH BUMP: EVIDENCE OF ENHANCED HELIUM ENRICHMENT

    SciTech Connect

    Nataf, D. M.; Gould, A.; Pinsonneault, M. H.; Udalski, A.

    2011-04-01

    We measure the red giant branch bump (RGBB) of the Galactic bulge, the most metal-rich RGBB ever detected. The RGBB luminosity function peaks at the expected brightness, but its number density is very low relative to Galactic globular cluster calibrations, implying the Galactic bulge has a higher helium enrichment parameter {Delta}Y/{Delta}Z {>=} 4.0 for Y {approx} 0.35 rather than the standard 2.0 with Y = 0.27, which we suggest may be a common feature of galactic spheroids. The RGBB is (0.71 {+-} 0.02) mag fainter than the red clump (RC) in I toward the densest stellar regions imaged by the OGLE-III Galactic bulge photometric survey, (|l| {<=} 4, 2 {approx}< |b| {<=} 4). The number density of RGBB stars is (12.7 {+-} 2.0)% that of RC stars. The brightness dispersion of the RGBB is significantly lower than that of the RC, a result that is difficult to explain as the RGBB luminosity is known to vary significantly with metallicity. Sight lines that have two RCs have two RGBBs with similar properties to one another, an expected outcome if the Milky Way's bulge is X-shaped. We also find preliminary evidence of the Galactic bulge asymptotic giant branch bump, at a brightness of {approx}1.06 mag brighter than the RC in I and with a number density {approx}1.5% that of the RC. Accounting for the RGBB has a small effect on the best-fit parameters of the RC, shifting its best-fit peak brightness and reducing its brightness dispersion by {approx}0.015 mag each.

  18. Can Star–Disk Collisions Explain the Missing Red Giants Problem in the Galactic Center?

    NASA Astrophysics Data System (ADS)

    Kieffer, T. Forrest; Bogdanović, Tamara

    2016-06-01

    Observations have revealed a relative paucity of red giant (RG) stars within the central 0.5 pc in the Galactic Center (GC). Motivated by this finding we investigate the hypothesis that collisions of stars with a fragmenting accretion disk are responsible for the observed dearth of evolved stars. We use three-dimensional hydrodynamic simulations to model a star with radius 10 R ⊙ and mass 1 M ⊙, representative of the missing population of RGs, colliding with high density clumps. We find that multiple collisions with clumps of column density ≳108 g cm‑2 can strip a substantial fraction of the star’s envelope and in principle render it invisible to observations. Simulations confirm that repeated impacts are particularly efficient in driving mass loss as partially stripped RGs expand and have increased cross sections for subsequent collisions. Because the envelope is unbound on account of the kinetic energy of the star, any significant amount of stripping of the RG population in the GC should be mirrored by a systematic decay of their orbits and possibly by their enhanced rotational velocity. To be viable, this scenario requires that the total mass of the fragmenting disk has been several orders of magnitude higher than that of the early-type stars which now form the stellar disk in the GC.

  19. Building the Galactic halo from globular clusters: evidence from chemically unusual red giants

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smolinski, J. P.; Beers, T. C.; Grebel, E. K.

    2011-10-01

    We present a spectroscopic search for halo field stars that originally formed in globular clusters. Using moderate-resolution SDSS-III/SEGUE-2 spectra of 561 red giants with typical halo metallicities (-1.8 ≤ [Fe/H] ≤ -1.0), we identify 16 stars, 3% of the sample, with CN and CH bandstrength behavior indicating depleted carbon and enhanced nitrogen abundances relative to the rest of the data set. Since globular clusters are the only environment known in which stars form with this pattern of atypical light-element abundances, we claim that these stars are second-generation globular cluster stars that have been lost to the halo field via normal cluster mass-loss processes. Extrapolating from theoretical models of two-generation globular cluster formation, this result suggests that globular clusters contributed significant numbers of stars to the construction of the Galactic halo: we calculate that a minimum of 17% of the present-day mass of the stellar halo was originally formed in globular clusters. The ratio of CN-strong to CN-normal stars drops with Galactocentric distance, suggesting that the inner-halo population may be the primary repository of these stars. Full Tables 1 and 3 are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A136

  20. Do Globular Clusters Care about AGB Stars? Metallicity Distribution of AGB and RGB Stars in NGC 2808

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.

    2015-08-01

    Galactic globular clusters are known to have multiple stellar populations with different scenarios being debated for their origin. In this context, the core of our project is to disentangle the first and second generation stars based on their chemical properties, in order to test different model predictions. Here we present a preliminary chemical analysis of a new sample of AGB stars in NGC 2808 observed at the VLT with FLAMES, in order to further investigate the recent finding that no Na-rich stars are found on the AGB.

  1. REVEALING PROBABLE UNIVERSAL FEATURES IN THE LOWER RED GIANT BRANCH LUMINOSITY FUNCTIONS OF GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Kravtsov, V. V.

    2009-06-15

    This paper aims at demonstrating, for the first time, very probable universal peculiarities of the evolution of stars in the lower red giant branch (RGB) of Galactic globular clusters (GCs), reflected in two corresponding dips in the luminosity functions (LFs). By relying on the database of Hubble Space Telescope photometry of GCs, we analyze the lower RGB LFs of a sample of 18 GCs in a wide metallicity range, {delta}[Fe/H] {approx} 1.9 dex. We first show that in the F555W-(F439W-F555W) color-magnitude diagrams (CMDs), the lower RGB of GCs, except for the most metal-poor of them, frequently shows an apparent 'knee'. It reveals itself as a fairly abrupt change of the RGB slope. At the same luminosity level, the RGB LFs show a feature in the form of a more or less pronounced dip. We find that the magnitude difference between the RGB base and the given feature is, on average, around {delta} F555W{sup dip} {sub base}{approx} 1.4 mag. It shows a marginal variation with metallicity, if any, comparable to the error. At the same time, the magnitude difference between the dip and the RGB bump, {delta} F555W{sup bump} {sub dip}, decreases with increasing metallicity and falls within the range 0.8 {approx}< {delta} F555W{sup bump} {sub dip} {approx}< 1.7 mag. Generalized LFs (GLFs) have been obtained for three subsamples of GCs within limited metallicity ranges and with different horizontal branch (HB) morphology. They reproduce the 'knee-related' dip that is statistically significant in two of the GLFs. This feature turns out to be more pronounced in the GLFs of GCs with either the blue or red HB morphology than with the intermediate one. The same GLFs also reveal an additional probable universal dip. It shows up below the RGB bump at {delta} F555W slightly increasing from {approx}0.3 to {approx}0.5 mag with increasing metallicity. Also, the statistical significance of this 'prebump' dip increases, on average, toward higher metallicity. Except for the well known RGB bump, no

  2. An Abundance Analysis of Red Giant Stars in the Retrograde Galactic Globular Cluster NGC 3201: Implications for Cluster Formation Scenarios

    NASA Astrophysics Data System (ADS)

    Simmerer, Jennifer A.; Ivans, I. I.

    2011-01-01

    Globular clusters have long been central to the study of Galactic Chemical Evolution. They serve as laboratories for stellar physics, evolution, and nucleosynthesis as well as representing fossil remnants of Galactic assembly processes. Our work addresses two recent areas of interest: globular clusters as accreted objects and globular clusters as hosts for multiple stellar populations. The globular cluster NGC 3201 is a curious object on a retrograde orbit. Some studies suggest that it contains stars of more than one metallicity, a property seen only in the peculiar globular cluster Omega Centauri. Both properties hint at an extra-Galactic origin. We present an elemental abundance pattern for NGC 3201 based on high resolution, high signal-to-noise spectra of red giant stars. We present abundance patterns of similar stars from the globular cluster M5 for comparison. Interpretation of our results is complicated by the discovery that at least two of our giants are variable stars. Though we can derive adequate stellar parameter solutions for both stars in every stage of variability and heavy element abundances do not change with the stellar phase, the abundances of the light elements O, Na, Mg, and Al are extremely unstable and vary greatly. Our inability to correctly model light element line formation in the atmosphere of variable red giant stars has significant implications for studies of star to star abundance variations in exactly these elements in globular clusters, which rely on stars at the same evolutionary stage as the variables in NGC 3201.

  3. Out on a Limb: Updates on the Search for X-ray Emission from AGB Stars

    NASA Astrophysics Data System (ADS)

    Montez, Rodolfo; Ramstedt, Sofia; Santiago-Boyd, Andrea; Kastner, Joel; Vlemmings, Wouter

    2016-01-01

    X-rays from asymptotic giant branch (AGB) stars are rarely detected, however, few modern X-ray observatories have targeted AGB stars. In 2012, we searched a list of 480 galactic AGB stars and found a total of 13 targeted or serendipitous observations with few detections (Ramstedt et al. 2012). Since this initial search new programs have successfully targeted and detected X-ray emission from a handful of AGB stars. The X-ray emission, when detected, reveals high temperature plasma (>= 10 MK). This plasma might be heated by a large-scale magnetic field or indicate the presence of accretion onto a compact companion. In this poster, we update our search for X-ray emission from AGB stars with a review of their characteristics, potential origins, and impact of X-ray emission in this late stage of stellar evolution.

  4. Characterizing AGB stars in Wide-field Infrared Survey Explorer (WISE) bands

    NASA Astrophysics Data System (ADS)

    Lian, Jianhui; Zhu, Qingfeng; Kong, Xu; He, Jinhua

    2014-04-01

    Aims: Since asymptotic giant branch (AGB) stars are bright and extended infrared objects, most Galactic AGB stars saturate the Wide-field Infrared Survey Explorer (WISE) detectors and therefore the WISE magnitudes that are restored by applying point-spread-function fitting need to be verified. Statistical properties of circumstellar envelopes around AGB stars are discussed on the basis of a WISE AGB catalog verified in this way. Methods: We cross-matched an AGB star sample with the WISE All-Sky Source Catalog and the Two Mircon All Sky Survey catalog. Infrared Space Observatory (ISO) spectra of a subsample of WISE AGB stars were also exploited. The dust radiation transfer code DUSTY was used to help predict the magnitudes in the W1 and W2 bands, the two WISE bands most affected by saturation, for calibration purpose, and to provide physical parameters of the AGB sample stars for analysis. Results: DUSTY is verified against the ISO spectra to be a good tool to reproduce the spectral energy distributions of these AGB stars. Systematic magnitude-dependent offsets have been identified in WISE W1 and W2 magnitudes of the saturated AGB stars, and empirical calibration formulas are obtained for them on the basis of 1877 (W1) and 1558 (W2) AGB stars that are successfully fit with DUSTY. According to the calibration formulas, the corrections for W1 at 5 mag and W2 at 4 mag are -0.383 and 0.217 mag, respectively. In total, we calibrated the W1/W2 magnitudes of 2390/2021 AGB stars. The model parameters from the DUSTY and the calibrated WISE W1 and W2 magnitudes are used to discuss the behavior of the WISE color-color diagrams of AGB stars. The model parameters also reveal that O-rich AGB stars with opaque circumstellar envelopes are much rarer than opaque C-rich AGB stars toward the anti-Galactic center direction, which we attribute to the metallicity gradient of our Galaxy. The synthetic photometry and input parameters for the model grid are only available at the CDS via

  5. Clear Evidence for the Presence of Second-generation Asymptotic Giant Branch Stars in Metal-poor Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Mészáros, Sz.; Monelli, M.; Cassisi, S.; Stetson, P. B.; Zamora, O.; Shetrone, M.; Lucatello, S.

    2015-12-01

    Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation (FG) with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generations are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiant branch, and the red giant branch (RGB)). The non detection of SG asymptotic giant branch (AGB) stars in several metal-poor ([Fe/H] < -1) GCs suggests that not all SG stars ascend the AGB phase, and that failed AGB stars may be very common in metal-poor GCs. This observation represents a serious problem for stellar evolution and GC formation/evolution theories. We report fourteen SG-AGB stars in four metal-poor GCs (M13, M5, M3, and M2) with different observational properties: horizontal branch (HB) morphology, metallicity, and age. By combining the H-band Al abundances obtained by the Apache Point Observatory Galactic Evolution Experiment survey with ground-based optical photometry, we identify SG Al-rich AGB stars in these four GCs and show that Al-rich RGB/AGB GC stars should be Na-rich. Our observations provide strong support for present, standard stellar models, i.e., without including a strong mass-loss efficiency, for low-mass HB stars. In fact, current empirical evidence is in agreement with the predicted distribution of FG and SG stars during the He-burning stages based on these standard stellar models.

  6. The origin of fluorine: abundances in AGB carbon stars revisited

    NASA Astrophysics Data System (ADS)

    Abia, C.; Cunha, K.; Cristallo, S.; de Laverny, P.

    2015-09-01

    Context. Revised spectroscopic parameters for the HF molecule and a new CN line list in the 2.3 μm region have recently become available, facilitating a revision of the F content in asymptotic giant branch (AGB) stars. Aims: AGB carbon stars are the only observationally confirmed sources of fluorine. Currently, there is no consensus on the relevance of AGB stars in its Galactic chemical evolution. The aim of this article is to better constrain the contribution of these stars with a more accurate estimate of their fluorine abundances. Methods: Using new spectroscopic tools and local thermodynamical equilibrium spectral synthesis, we redetermine fluorine abundances from several HF lines in the K-band in a sample of Galactic and extragalactic AGB carbon stars of spectral types N, J, and SC, spanning a wide range of metallicities. Results: On average, the new derived fluorine abundances are systematically lower by 0.33 dex with respect to previous determinations. This may derive from a combination of the lower excitation energies of the HF lines and the larger macroturbulence parameters used here as well as from the new adopted CN line list. Yet, theoretical nucleosynthesis models in AGB stars agree with the new fluorine determinations at solar metallicities. At low metallicities, an agreement between theory and observations can be found by handling the radiative/convective interface at the base of the convective envelope in a different way. Conclusions: New fluorine spectroscopic measurements agree with theoretical models at low and at solar metallicity. Despite this, complementary sources are needed to explain its observed abundance in the solar neighbourhood.

  7. VizieR Online Data Catalog: Torun catalog of post-AGB and related objects (Szczerba+, 2007)

    NASA Astrophysics Data System (ADS)

    Szczerba, R.; Siodmiak, N.; Stasinska, G.; Borkowski, J.

    2007-09-01

    With the ongoing AKARI infrared sky survey, of much greater sensitivity than IRAS, a wealth of post-AGB objects may be discovered. It is thus time to organize our present knowledge of known post-AGB stars in the galaxy with a view to using it to search for new post-AGB objects among AKARI sources. We searched the literature available on the NASA Astrophysics Data System up to 1 October 2006, and defined criteria for classifying sources into three categories: very likely, possible and disqualified post-AGB objects. The category of very likely post-AGB objects is made up of several classes. We have created an evolutionary, on-line catalogue of Galactic post-AGB objects, to be referred to as the Torun catalogue of Galactic post-AGB and related objects. The present version of the catalogue contains 326 very likely, 107 possible and 64 disqualified objects. For the very likely post-AGB objects, the catalogue gives the available optical and infrared photometry, infrared spectroscopy and spectral types, and links to finding charts and bibliography. (3 data files).

  8. SHALON observations of Active Galactic Nuclei at red shift from z = 0.0179 to z = 2.979

    NASA Astrophysics Data System (ADS)

    Sinitsyna, V. G.; Alaverdyan, A. Y.; Andreeva, M. S.; Balygin, K. A.; Borisov, S. S.; Ivanov, I. A.; Kirichenko, A. M.; Klimov, A. I.; Kozhukhova, I. P.; Mirzafatikhov, R. M.; Moseiko, N. I.; Nikolsky, S. I.; Ostashev, I. E.; Palamarchuk, A. I.; Sinitsyna, V. Y.; Volokh, I. G.

    2016-05-01

    The radio-loud active galactic nuclei having the radio emission arising from a core region rather than from lobes are often referred to as “blazars” and include Flat Spectrum Radio Quasars (FSRQ) and BL Lacertae (BL Lac) objects. During the period 1992 - 2015, SHALON has been used for observations of the metagalactic sources NGC1275, Mkn421, Mkn501, Mkn180, 3c382, 4c+31.63, OJ 287, 3c454.3, 4c+55.17, 1739+522. We present results of long term observations of FSRQ: among them are known object 3c454.3, high-red shifted quasar 1739+522 as well as BL Lac type objects. The observation results are presented with integral spectra, images and spectral energy distributions for each of sources at energies > 800 GeV. A number of variability periods in different wavelengths including VHE γ-rays were found.

  9. The Chemical Composition of Red Giant Branch Stars in the Galactic Globular Clusters NGC 6342 and NGC 6366

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Pilachowski, Catherine A.; Hsyu, Tiffany

    2016-07-01

    We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high-resolution (R ≳ 20,000) spectra obtained with the MMT–Hectochelle and WIYN–Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km s‑1 (σ = 8.6 km s‑1), NGC 6366 has a heliocentric radial velocity of ‑122.3 km s‑1 (σ = 1.5 km s‑1), and both clusters have nearly identical metallicities ([Fe/H] ≈ ‑0.55). NGC 6366 shows evidence of a moderately extended O–Na anti-correlation, but more data are needed for NGC 6342 to determine if this cluster also exhibits the typical O–Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC 6342 and NGC 6366 display α and Fe-peak element abundance patterns that are typical of other metal-rich ([Fe/H] > ‑1) inner Galaxy clusters. However, the median [La/Fe] abundance may vary from cluster-to-cluster.

  10. RED GIANT BRANCH BUMP BRIGHTNESS AND NUMBER COUNTS IN 72 GALACTIC GLOBULAR CLUSTERS OBSERVED WITH THE HUBBLE SPACE TELESCOPE

    SciTech Connect

    Nataf, David M.; Gould, Andrew P.; Pinsonneault, Marc H.; Udalski, Andrzej

    2013-04-01

    We present the broadest and most precise empirical investigation of red giant branch bump (RGBB) brightness and number counts ever conducted. We implement a new method and use data from two Hubble Space Telescope globular cluster (GC) surveys to measure the brightness and star counts of the RGBB in 72 GCs. The median measurement precision is 0.018 mag in the brightness and 31% in the number counts, respectively, reaching peak precision values of 0.005 mag and 10%. The position of the main-sequence turnoff and the number of horizontal branch stars are used as comparisons where appropriate. Several independent scientific conclusions are newly possible with our parameterization of the RGBB. Both brightness and number counts are shown to have second parameters in addition to their strong dependence on metallicity. The RGBBs are found to be anomalous in the GCs NGC 2808, 5286, 6388, and 6441, likely due to the presence of multiple populations. Finally, we use our empirical calibration to predict the properties of the Galactic bulge RGBB. The updated RGBB properties for the bulge are shown to differ from the GC-calibrated prediction, with the former having lower number counts, a lower brightness dispersion, and a brighter peak luminosity than would be expected from the latter. This discrepancy is well explained by the Galactic bulge having a higher helium abundance than expected from GCs, {Delta}Y {approx} +0.06 at the median metallicity.

  11. VizieR Online Data Catalog: Abundances of Galactic red giants (Alves-Brito+, 2010)

    NASA Astrophysics Data System (ADS)

    Alves-Brito, A.; Melendez, J.; Asplund, M.; Ramirez, I.; Yong, D.

    2010-01-01

    Line list and equivalent widths (EWs) of a sample of 80 giant stars in the Galactic bulge, halo, thin- and thick disk. The list includes lines of [OI], NaI, MgI, AlI, SiI, CaI, TiI, FeI and FeII. The adopted oscillator strengths (loggfs) and excitation potential (EP) are also listed. For the bulge stars, the EWs were taken from Fulbrigth et al. (2006, Cat. , 2007ApJ...661.1152F). Refer to the paper's text for more detail. (2 data files).

  12. Current hot questions on the s process in AGB stars

    NASA Astrophysics Data System (ADS)

    Lugaro, M.; Campbell, S. W.; D'Orazi, V.; Karakas, A. I.; Garcia-Hernandez, D. A.; Stancliffe, R. J.; Tagliente, G.; Iliadis, C.; Rauscher, T.

    2016-01-01

    Asymptotic giant branch (AGB) stars are a main site of production of nuclei heavier than iron via the s process. In massive (>4 M⊙) AGB stars the operation of the 22Ne neutron source appears to be confirmed by observations of high Rb enhancements, while the lack of Tc in these stars rules out 13C as a main source of neutrons. The problem is that the Rb enhancements are not accompanied by Zr enhancements, as expected by s-process models. This discrepancy may be solved via a better understanding of the complex atmospheres of AGB stars. Second- generation stars in globular clusters (GCs), on the other hand, do not show enhancements in any s-process elements, not even Rb. If massive AGB stars are responsible for the composition of these GC stars, they may have evolved differently in GCs than in the field. In AGB stars of lower masses, 13C is the main source of neutrons and we can potentially constrain the effects of rotation and proton-ingestion episodes using the observed composition of post-AGB stars and of stardust SiC grains. Furthermore, independent asteroseismology observations of the rotational velocities of the cores of red giants and of white dwarves will play a fundamental role in helping us to better constrain the effect of rotation. Observations of carbon-enhanced metal-poor stars enriched in both Ba and Eu may require a neutron flux in-between the s and the r process, while the puzzling increase of Ba as function of the age in open clusters, not accompanied by increase in any other element heavier than iron, require further observational efforts. Finally, stardust SiC provides us high-precision constraints to test nuclear inputs such as neutron-capture cross sections of stable and unstable isotopes and the impact of excited nuclear states in stellar environments.

  13. Wind Acceleration in AGB Stars: Solid Ground and Loose Ends

    NASA Astrophysics Data System (ADS)

    Höfner, S.

    2015-08-01

    The winds of cool luminous AGB stars are commonly assumed to be driven by radiative acceleration of dust grains which form in the extended atmospheres produced by pulsation-induced shock waves. The dust particles gain momentum by absorption or scattering of stellar photons, and they drag along the surrounding gas particles through collisions, triggering an outflow. This scenario, here referred to as Pulsation-Enhanced Dust-DRiven Outflow (PEDDRO), has passed a range of critical observational tests as models have developed from empirical and qualitative to increasingly self-consistent and quantitative. A reliable theory of mass loss is an essential piece in the bigger picture of stellar and galactic chemical evolution, and central for determining the contribution of AGB stars to the dust budget of galaxies. In this review, I discuss the current understanding of wind acceleration and indicate areas where further efforts by theorists and observers are needed.

  14. The hunt for red active galactic nuclei: a new infrared diagnostic

    NASA Astrophysics Data System (ADS)

    Fadda, Dario; Rodighiero, Giulia

    2014-10-01

    We introduce a new infrared diagnostic to separate galaxies on the basis of their dominant infrared emission: stellar or nuclear. The main novelty with respect to existing diagnostics is the use of a broad band encompassing at the same time the 9.7-μm silicate absorption feature and one of the adjacent broad polycyclic aromatic hydrocarbon (PAH) features. This provides a robust estimate of the near- to mid-infrared continuum slope and enables a clear distinction among different classes of galaxies up to a redshift z ˜ 2.5. The diagnostic can be applied to a wealth of archival data from the ISO, Spitzer and Akari surveys, as well as future James Webb Space Telescope surveys. Based on data in the Great Observatories Origins Deep Survey (GOODS), Lockman Hole and North Ecliptic Pole fields, we find that approximately 70 per cent of active galactic nuclei (AGNs) detected with X-ray and optical spectroscopy dominate the total mid-infrared emission. Finally, we estimate that AGNs contribute less than 30 per cent of the mid-infrared extragalactic integrated emission.

  15. Non-LTE sodium abundance in galactic thick- and thin-disk red giants

    NASA Astrophysics Data System (ADS)

    Alexeeva, S. A.; Pakhomov, Yu. V.; Mashonkina, L. I.

    2014-07-01

    The non-LTE sodium abundance has been determined from the Na I 6154 and 6161 Å lines for 38 thin-disk stars (15 of them are Ba II stars), 15 thick-disk stars, 13 Hercules-stream stars, and 13 stars that cannot be attributed neither to the thick Galactic disk nor to the thin one. The Na I model atom has been constructed using the most accurate present-day atomic data. For the Na I 6154 and 6161 Å lines, the non-LTEabundance corrections are from -0.06 to -0.24 dex, depending on the stellar parameters. No differences in [Na/Fe] abundance between the thick and thin disks have been detected; the derived ratios are close to the solar ones. The existence of a [Na/Fe] overabundance in the Ba II stars has been confirmed. The Hercules-stream stars exhibit nearly solar [Na/Fe] ratios. The results obtained can be used to test the sodium nucleosynthesis models.

  16. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate formulae

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Decin, L.; de Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M.

    2010-11-01

    Context. The evolution of intermediate and low-mass stars on the asymptotic giant branch is dominated by their strong dust-driven winds. More massive stars evolve into red supergiants with a similar envelope structure and strong wind. These stellar winds are a prime source for the chemical enrichment of the interstellar medium. Aims: We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of the asymptotic giant branch, red supergiant, and yellow hypergiant stars in our galactic sample. Methods: The rotationally excited lines of carbon monoxide (CO) are a classic and very robust diagnostic in the study of circumstellar envelopes. When sampling different layers of the circumstellar envelope, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the circumstellar envelopes of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. These expressions are applied to our extensive CO data set to estimate the mass-loss rates of 47 sample stars. Results: We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule and thencompare our results to those of previous studies. Our expressions account for line saturation and resolving of the envelope, thereby allowing accurate determination of very high mass-loss rates. We argue that, for estimates based on a single rotational line, the CO(2-1) transition provides the most reliable mass-loss rate. The mass-loss rates calculated for the asympotic giant branch stars range from 4 × 10-8 M⊙ yr-1 up to 8 × 10-5 M⊙ yr-1. For red supergiants they reach

  17. FUNDAMENTAL PARAMETERS, INTEGRATED RED GIANT BRANCH MASS LOSS, AND DUST PRODUCTION IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    McDonald, I.; Zijlstra, A. A.; Boyer, M. L.; Gordon, K.; Meixner, M.; Sewilo, M.; Shiao, B.; Whitney, B.; Van Loon, J. Th.; Hora, J. L.; Robitaille, T.; Babler, B.; Meade, M.; Block, M.; Misselt, K.

    2011-04-01

    Fundamental parameters and time evolution of mass loss are investigated for post-main-sequence stars in the Galactic globular cluster 47 Tucanae (NGC 104). This is accomplished by fitting spectral energy distributions (SEDs) to existing optical and infrared photometry and spectroscopy, to produce a true Hertzsprung-Russell diagram. We confirm the cluster's distance as d = 4611{sup +213}{sub -200} pc and age as 12 {+-} 1 Gyr. Horizontal branch models appear to confirm that no more red giant branch mass loss occurs in 47 Tuc than in the more metal-poor {omega} Centauri, though difficulties arise due to inconsistencies between the models. Using our SEDs, we identify those stars that exhibit infrared excess, finding excess only among the brightest giants: dusty mass loss begins at a luminosity of {approx}1000 L{sub sun}, becoming ubiquitous above L = 2000 L{sub sun}. Recent claims of dust production around lower-luminosity giants cannot be reproduced, despite using the same archival Spitzer imagery.

  18. THE FRAGMENTING PAST OF THE DISK AT THE GALACTIC CENTER: THE CULPRIT FOR THE MISSING RED GIANTS

    SciTech Connect

    Amaro-Seoane, Pau; Chen, Xian E-mail: Xian.Chen@aei.mpg.de

    2014-01-20

    Since 1996 we have known that the Galactic Center (GC) displays a core-like distribution of red giant branch (RGB) stars starting at ∼10'', which poses a theoretical problem because the GC should have formed a segregated cusp of old stars. This issue has been addressed invoking stellar collisions, massive black hole binaries, and infalling star clusters, which can explain it to some extent. Another observational fact, key to the work presented here, is the presence of a stellar disk at the GC. We postulate that the reason for the missing stars in the RGB is closely intertwined with the disk formation process, which initially was gaseous and went through a fragmentation phase to form the stars. Using simple analytical estimates, we prove that during fragmentation the disk developed regions with densities much higher than a homogeneous gaseous disk, i.e., ''clumps'', which were optically thick, and hence contracted slowly. Stars in the GC interacted with them and in the case of RGB stars, the clumps were dense enough to totally remove their outer envelopes after a relatively low number of impacts. Giant stars in the horizontal branch (HB), however, have much denser envelopes. Hence, the fragmentation phase of the disk must have had a lower impact on their distribution, because it was more difficult to remove their envelopes. We predict that future deeper observations of the GC should reveal less depletion of HB stars and that the released dense cores of RGB stars will still be populating the GC.

  19. Dusty Mass Loss from Galactic Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2016-06-01

    We are probing how mass loss from Asymptotic Giant Branch (AGB) stars depends upon their metallicity. Asymptotic giant branch (AGB) stars are evolved stars that eject large parts of their mass in outflows of dust and gas in the final stages of their lives. Our previous studies focused on mass loss from AGB stars in lower metallicity galaxies: the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In our present study, we analyze AGB star mass loss in the Galaxy, with special attention to the Bulge, to investigate how mass loss differs in an overall higher metallicity environment. We construct radiative transfer models of the spectral energy distributions (SEDs) of stars in the Galaxy identified as AGB stars from infrared and optical surveys. Our Magellanic Cloud studies found that the AGB stars with the highest mass loss rates tended to have outflows with carbon-rich dust, and that overall more carbon-rich (C-rich) dust than oxygen-rich (O-rich) was produced by AGB stars in both LMC and SMC. Our radiative transfer models have enabled us to determine reliably the dust chemistry of the AGB star from the best-fit model. For our Galactic sample, we are investigating both the dust chemistries of the AGB stars and their mass-loss rates, to compare the balance of C-rich dust to O-rich dust between the Galactic bulge and the Magellanic Clouds. We are also constructing detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs of Galactic AGB stars. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  20. A Complete Sample of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Landsman, W.; Moehler, S.; Napiwotzki, R.; Heber, U.; Sweigart, A.; Catelan, M.; Stecher, T.

    1999-01-01

    Ultraviolet images of globular clusters are often dominated by one or two "UV-bright" stars. The most luminous of these are believed to be post-AGB stars, which go through a luminous UV-bright phase as they leave the AGB and move rapidly across the HR diagram toward their final white dwarf state. During the two flights of the ASTRO observatory in 1990 and 1995, the Ultraviolet Imaging Telescope (UIT, Stecher 1997, PASP, 109, 584) was used to obtained ultraviolet (1600 A) images of 14 globular clusters. These images provide a complete census of hot (> 8000 K) post-AGB stars in the observed globular clusters, because the 40' field of view of UIT is large enough to image the entire population of most Galactic globulars, and because the dominant cool star population is suppressed in ultraviolet images, allowing UV-bright stars to be detected into the cluster core. We have begun a program of optical and STIS ultraviolet spectroscopy to determine the fundamental stellar parameters (\\log L, T_eff, \\log g) of all the hot post-AGB candidates discovered on the UIT images. Among the goals of our program are to test theoretical post-AGB lifetimes across the HR diagram, and to estimate the mass of the currently forming white dwarfs in globular clusters. Two trends are already apparent in our survey. First, the UV-selected sample has removed a bias against the detection of the hottest post-AGB stars, and resulted in the discovery of five cluster post-AGB stars with Teff > 50,000 K. Second, most of the new discoveries have been lower luminosity (2.5 $<$\\log L $<$ 3.0) than expected for stars which leave the AGB during the thermally pulsating phase.

  1. Low-Resolution Spectrum of the Diffuse Galactic Light and 3.3 μm PAH Emission with the AKARI InfraRed Camera

    NASA Astrophysics Data System (ADS)

    Tsumura, Kohji; Matsumoto, Toshio; Matsuura, Shuji; Sakon, Itsuki; Tanaka, Masahiro; Wada, Takehiko

    2013-12-01

    We first obtained the spectrum of the diffuse Galactic light (DGL) at general interstellar space in the 1.8-5.3μm wavelength region with the low-resolution prism spectroscopy mode of the AKARI Infra-Red Camera (IRC) NIR channel. The 3.3μm m PAH band is detected in the DGL spectrum at Galactic latitude |b| < 15˚, and its correlations with the Galactic dust and gas are confirmed. The correlation between the 3.3μm PAH band and the thermal emission from the Galactic dust is expressed not by a simple linear correlation, but by a relation with extinction. Using this correlation, the spectral shape of DGL at an optically thin region (5˚ < |b| < 15˚) was derived as a template spectrum. Assuming that the spectral shape of this template spectrum is uniform at any position, the DGL spectrum can be estimated by scaling this template spectrum using the correlation between the 3.3μm PAH band and the thermal emission from the Galactic dust.

  2. OPTICAL/NEAR-INFRARED SELECTION OF RED QUASI-STELLAR OBJECTS: EVIDENCE FOR STEEP EXTINCTION CURVES TOWARD GALACTIC CENTERS?

    SciTech Connect

    Fynbo, J. P. U.; Krogager, J.-K.; Vestergaard, M.; Geier, S.; Venemans, B.; Noterdaeme, P.; Moller, P.; Ledoux, C.

    2013-01-15

    We present the results of a search for red QSOs using a selection based on optical imaging from the Sloan Digital Sky Survey (SDSS) and near-infrared imaging from UKIDSS. Our main goal with the selection is to search for QSOs reddened by foreground dusty absorber galaxies. For a sample of 58 candidates (including 20 objects fulfilling our selection criteria that already have spectra in the SDSS), 46 (79%) are confirmed to be QSOs. The QSOs are predominantly dust-reddened except for a handful at redshifts z {approx}> 3.5. However, the dust is most likely located in the QSO host galaxies (and for two, the reddening is primarily caused by Galactic dust) rather than in the intervening absorbers. More than half of the QSOs show evidence of associated absorption (BAL absorption). Four (7%) of the candidates turned out to be late-type stars, and another four (7%) are compact galaxies. We could not identify the remaining four objects. In terms of their optical spectra, these QSOs are similar to the QSOs selected in the FIRST-2MASS Red Quasar Survey except they are on average fainter, more distant, and only two are detected in the FIRST survey. As per the usual procedure, we estimate the amount of extinction using the SDSS QSO template reddened by Small-Magellanic-Cloud-(SMC) like dust. It is possible to get a good match to the observed (rest-frame ultraviolet) spectra, but it is not possible to match the observed near-IR photometry from UKIDSS for nearly all the reddened QSOs. The most likely reasons are that the SDSS QSO template is too red at optical wavelengths due to contaminating host galaxy light and because the assumed SMC extinction curve is too shallow. Three of the compact galaxies display old stellar populations with ages of several Gyr and masses of about 10{sup 10} M{sub Sun} (based on spectral energy distribution modeling). The inferred stellar densities in these galaxies exceed 10{sup 10} M{sub Sun} kpc{sup -2}, which is among the highest measured for early

  3. Charged polycyclic aromatic hydrocarbon clusters and the galactic extended red emission

    PubMed Central

    Rhee, Young Min; Lee, Timothy J.; Gudipati, Murthy S.; Allamandola, Louis J.; Head-Gordon, Martin

    2007-01-01

    The species responsible for the broad extended red emission (ERE), discovered in 1975 and now known to be widespread throughout the Galaxy, still is unidentified. Spanning the range from ≈540 to 900 nm, the ERE is a photoluminescent process associated with a wide variety of different interstellar environments. Over the years, a number of plausible candidates have been suggested, but subsequent observations ruled them out. The objects that present the ERE also emit the infrared features attributed to free polycyclic aromatic hydrocarbon (PAH) molecules, suggesting that closely related materials are plausible ERE carriers. Here, we show that the peculiar spectra and unique properties of closed-shell cationic PAH dimers satisfy the existing observational constraints and suggest that emission from mixtures of charged PAH clusters accounts for much of the ERE. This work provides a view into the structures, stabilities, abundances, and ionization balance of PAH-related species in the emission zones, which, in turn, reflects physical conditions in the emission zones and sheds fundamental light on the nanoscale processes involved in carbon-particle nucleation and growth and carbonaceous dust evolution in the interstellar medium. PMID:17372209

  4. STROeMGREN PHOTOMETRY OF GALACTIC GLOBULAR CLUSTERS. II. METALLICITY DISTRIBUTION OF RED GIANTS IN omega CENTAURI

    SciTech Connect

    Calamida, A.; Hilker, M.; Bono, G. E-mail: mhilker@eso.or

    2009-12-01

    We present new intermediate-band Stroemgren photometry based on more than 300 u, v, b, y images of the Galactic globular cluster omega Cen. Optical data were supplemented with new multiband near-infrared (NIR) photometry (350 J, H, K{sub s} images). The final optical-NIR catalog covers a region of more than 20 x 20 arcmin squared across the cluster center. We use different optical-NIR color-color planes together with proper-motion data available in the literature to identify candidate cluster red-giant (RG) stars. By adopting different Stroemgren metallicity indices, we estimate the photometric metallicity for approx4000 RGs, the largest sample ever collected. The metallicity distributions show multiple peaks ([Fe/H]{sub phot} = -1.73 +- 0.08, -1.29 +- 0.03, -1.05 +- 0.02, -0.80 +- 0.04, -0.42 +- 0.12, and -0.07 +- 0.08 dex) and a sharp cutoff in the metal-poor (MP) tail ([Fe/H]{sub phot} approx< -2 dex) that agree quite well with spectroscopic measurements. We identify four distinct subpopulations, namely, MP ([Fe/H] <= -1.49), metal-intermediate (MI; -1.49 < [Fe/H] <= -0.93), metal-rich (MR; -0.95 < [Fe/H] <= -0.15), and solar metallicity ([Fe/H] approx 0). The last group includes only a small fraction of stars (approx8% +- 5%) and should be confirmed spectroscopically. Moreover, using the difference in metallicity based on different photometric indices, we find that the 19% +- 1% of RGs are candidate CN-strong stars. This fraction agrees quite well with recent spectroscopic estimates and could imply a large fraction of binary stars. The Stroemgren metallicity indices display a robust correlation with alpha-elements ([Ca+Si/H]) when moving from the MI to the MR regime ([Fe/H] approx> -1.7 dex).

  5. Cyanogen in NGC 1851 Red Giant Branch and Asymptotic Giant Branch Stars: Quadrimodal Distributions

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.; Stancliffe, R. J.; Lattanzio, J. C.; Angelou, G. C.; D'Orazi, V.; Martell, S. L.; Grundahl, F.; Sneden, C.

    2012-12-01

    The Galactic globular cluster NGC 1851 has raised much interest since Hubble Space Telescope photometry revealed that it hosts a double subgiant branch. Here we report on our homogeneous study into the cyanogen (CN) band strengths in the red giant branch (RGB) population (17 stars) and asymptotic giant branch (AGB) population (21 stars) using AAOmega/2dF spectra with R ~ 3000. We discover that NGC 1851 hosts a quadrimodal distribution of CN band strengths in its RGB and AGB populations. This result supports the merger formation scenario proposed for this cluster, such that the CN quadrimodality could be explained by the superposition of two "normal" bimodal populations. A small sample overlap with an abundance catalog allowed us to tentatively explore the relationship between our CN populations and a range of elemental abundances. We found a striking correlation between CN and [O/Na]. We also found that the four CN peaks may be paired—the two CN-weaker populations being associated with low Ba and the two CN-stronger populations with high Ba. If true, then s-process abundances would be a good diagnostic for disentangling the two original clusters in the merger scenario. More observations are needed to confirm the quadrimodality and also the relationship between the subpopulations. We also report CN results for NGC 288 as a comparison. Our relatively large samples of AGB stars show that both clusters have a bias toward CN-weak AGB populations.

  6. CYANOGEN IN NGC 1851 RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS: QUADRIMODAL DISTRIBUTIONS

    SciTech Connect

    Campbell, S. W.; Stancliffe, R. J.; Lattanzio, J. C.; Angelou, G. C.; D'Orazi, V.; Yong, D.; Wylie-de Boer, E. C.; Martell, S. L.; Grundahl, F.; Sneden, C. E-mail: david.yong@anu.edu.au

    2012-12-10

    The Galactic globular cluster NGC 1851 has raised much interest since Hubble Space Telescope photometry revealed that it hosts a double subgiant branch. Here we report on our homogeneous study into the cyanogen (CN) band strengths in the red giant branch (RGB) population (17 stars) and asymptotic giant branch (AGB) population (21 stars) using AAOmega/2dF spectra with R {approx} 3000. We discover that NGC 1851 hosts a quadrimodal distribution of CN band strengths in its RGB and AGB populations. This result supports the merger formation scenario proposed for this cluster, such that the CN quadrimodality could be explained by the superposition of two 'normal' bimodal populations. A small sample overlap with an abundance catalog allowed us to tentatively explore the relationship between our CN populations and a range of elemental abundances. We found a striking correlation between CN and [O/Na]. We also found that the four CN peaks may be paired-the two CN-weaker populations being associated with low Ba and the two CN-stronger populations with high Ba. If true, then s-process abundances would be a good diagnostic for disentangling the two original clusters in the merger scenario. More observations are needed to confirm the quadrimodality and also the relationship between the subpopulations. We also report CN results for NGC 288 as a comparison. Our relatively large samples of AGB stars show that both clusters have a bias toward CN-weak AGB populations.

  7. AGB stars and presolar grains

    SciTech Connect

    Busso, M.; Trippella, O.; Maiorca, E.; Palmerini, S.

    2014-05-09

    Among presolar materials recovered in meteorites, abundant SiC and Al{sub 2}O{sub 3} grains of AGB origins were found. They showed records of C, N, O, {sup 26}Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars [1, 2]. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called mainstream ones), we mention a large range of {sup 14}N/{sup 15}N ratios, extending below the solar value [3], and {sup 12}C/{sup 13}C ratios ≳ 30. Other classes of grains, instead, display low carbon isotopic ratios (≳ 10) and a huge dispersion for N isotopes, with cases of large {sup 15}N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al{sub 2}O{sub 3} crystals. Here, the oxygen isotopes and the content in {sup 26}Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.

  8. Post-AGB Stars in the Halos of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.

    1999-02-01

    The visually brightest members of Population II are post-AGB (PAGB) stars evolving through spectral types F and A. The aim of this proposal is to find such PAGB stars in the halos of three galaxies that lie just outside the Local Group: Sextans A, NGC 3109, and NGC 5237. The importance of PAGB stars is: (1) they can probe the structure of galactic halos, in the form of test particles much more numerous than planetary nebulae or globular clusters, with which we can look for features such as clumps or tidal streams; (2) the number counts will tell us the theoretically poorly known transition time from AGB to planetary nebula; and (3) we believe that PAGB stars will prove to be a superb new PRIMARY distance indicator, comparable to or better than Cepheids. PAGB stars of types F and A are easily recognized because of their large Balmer jumps. Our uBVI photometric system is optimal for revealing them in galactic halos, due to their unique u-B colors, and the method is extremely efficient in its telescope time requirements. Sextans A and NGC 3109 have Cepheid and TRGB distances, so they are excellent test beds for a confrontation with our proposed Pop II primary standard candles. NGC 5237 has an uncertain distance, which PAGB stars should considerably improve. The 0.9-m telescope will be used (1) to obtain uBVI calibrations of our fields, thus saving the 4-m BTC mosaic for the deep observations; and (2) to complete our survey of Milky Way globular clusters for PAGB stars to used as Galactic calibrators of their luminosities and metallicity dependence.

  9. The composition of freshly-formed dust in recent (post-)AGB thermal pulses

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak

    2013-01-01

    We recently discovered a candidate Asymptotic Giant Branch (AGB) star undergoing a thermal pulse (TP). WISE J1810--3305 is one of only two sources in the WISE sky survey which show very red WISE colors but a very blue 2MASS [K] vs. WISE [W1 (3.4 mu m)] color, and drastic brightening at 12 mu m since IRAS observation. This favours a scenario in which we have caught a massive dust ejection event during a TP that began only ~15 years ago. The other source is Sakurai's object, which also underwent a massive dust expulsion around the same time, but is in a later evolutionary (post-AGB) phase. Few firm constraints exist on the TP stage because of its brevity. These objects provide a unique opportunity for understanding TP evolution and dust production in real-time. Here we propose COMICS spectroscopy of WISE J1810--3305 in order to study the composition of the circumstellar dust. We will search for molecular bands, and identify whether the central object is an Oxygen or Carbon rich AGB star. We also propose identical spectroscopy of Sakurai's object in order to compare AGB with post-AGB evolution. These objects are presently brightest in the mid-IR, and COMICS is the only ground-based mid-IR camera with the requisite capability for observation.

  10. Phase-lag Distances of OH Masing AGB Stars

    NASA Astrophysics Data System (ADS)

    Engels, D.; Etoka, S.; Gérard, E.; Richards, A.

    2015-08-01

    Distances to AGB stars with optically thick circumstellar shells cannot be determined using optical parallaxes. However, for stars with OH 1612 MHz maser emission emanating from their circumstellar shells, distances can be determined by the phase-lag method. This method combines a linear diameter obtained from a phase-lag measurement with an angular diameter obtained from interferometry. The phase-lag of the variable emission from the back and front sides of the shells has been determined for 20 OH/IR stars in the galactic disk. These measurements are based on a monitoring program with the Nançay radio telescope ongoing for more than 6 years. The interferometric observations are continuing. We estimate that the uncertainties of the distance determination will be ˜20%.

  11. Post-AGB Stars in the Halos of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.

    1999-02-01

    The visually brightest members of Population II are post-AGB (PAGB) stars evolving through spectral types F and A. The aim of this proposal is to find such PAGB stars in the halos of Sextans A and B (two galaxies just outside the Local Group) and of NGC 4236 (a nearly edge-on spiral in the M81 Group). The importance of these stars is: (1) they will serve as probes of the structure of galactic halos, in the form of test particles much more numerous than planetary nebulae or globular clusters, with which we can look for features such as clumps or tidal streams; (2) the number counts will tell us the theoretically poorly known transition time from AGB to planetary nebula; and (3) we believe that PAGB stars will prove to be a superb new PRIMARY distance indicator, comparable to or better than Cepheids. PAGB stars of types F and A are easily recognized because of their large Balmer jumps. Our uBVI photometric system is optimal for revealing them in galactic halos, due to their unique u-B colors, and the method is extremely efficient in its telescope time requirements. In Sextans A and B PAGB stars will appear at V~eq22.3, and in NGC 4236 at V~eq24. Sextans A and B have Cepheid and TRGB distances, and NGC 4236 is a Tully-Fisher calibrator, so they are excellent test beds for a confrontation with our proposed Pop II primary standard candles. We will use the 0.9-m telescope for uBVI calibrations of our fields, saving the 4-m for the deep observations.

  12. Improving the distances of post-AGB objects in the Milky Way

    NASA Astrophysics Data System (ADS)

    Vickers, Shane B.; Frew, David J.; Owers, Matt S.; Parker, Quentin A.; Bojičič, Ivan S.

    2016-07-01

    Post-AGB (PAGB) stars are short-lived, low-intermediate mass objects transitioning from the asymptotic giant branch (AGB) to the white dwarf (WD) phase. These objects are characterised by a constant, core-mass dependent luminosity and a large infrared excess from the dusty envelope ejected at the top of the AGB. PAGB stars provide insights into the evolution of their direct descendants, planetary nebulae (PNe). Calculation of physical characteristics of PAGB are dependent on accurately determined distances scarcely available in the literature. Using the Torun catalogue for PAGB objects, supplemented with archival data, we have determined distances to the known population of Galactic PAGB stars. This is by modelling their spectral energy distributions (SED) with black bodies and numerically integrating over the entire wavelength range to determine the total integrated object flux. For most PAGB stars we assumed their luminosities are based on their positional characteristics and stellar evolution models. RV Tauri stars however are known to follow a period-luminosity relation (PLR) reminiscent of type-2 Cepheids. For these variable PAGB stars we determined their luminosities via the PLR and hence their distances. This allows us to overcome the biggest obstacle to characterising these poorly understood objects that play a vital part in Galactic chemical enrichment.

  13. Nucleosynthesis in Asymptotic Giant Branch Stars: Relevance for Galactic Enrichment and Solar System Formation

    NASA Astrophysics Data System (ADS)

    Busso, M.; Gallino, R.; Wasserburg, G. J.

    We present a review of nucleosynthesis in AGB stars outlining the development of theoretical models and their relationship to observations. We focus on the new high resolution codes with improved opacities, which recently succeeded in accounting for the third dredge-up. This opens the possibility of understanding low luminosity C stars (enriched in s-elements) as the normal outcome of AGB evolution, characterized by production of 12C and neutron-rich nuclei in the He intershell and by mass loss from strong stellar winds. Neutron captures in AGB stars are driven by two reactions: 13C([α],n)16O, which provides the bulk of the neutron flux at low neutron densities (Nn [<=] 107 n/cm3), and 22Ne([α],n)25Mg, which is mildly activated at higher temperatures and mainly affects the production of s-nuclei depending on reaction branchings. The first reaction is now known to occur in the radiative interpulse phase, immediately below the region previously homogenized by third dredge-up. The second reaction occurs during the convective thermal pulses. The resulting nucleosynthesis phenomena are rather complex and rule out any analytical approximation (exponential distribution of neutron fluences). Nucleosynthesis in AGB stars, modeled at different metallicities, account for several observational constraints, coming from a wide spectrum of sources: evolved red giants rich in s-elements, unevolved stars at different metallicities, presolar grains recovered from meteorites, and the abundances of s-process isotopes in the solar system. In particular, a good reproduction of the solar system main component is obtained as a result of Galactic chemical evolution that mixes the outputs of AGB stars of different stellar generations, born with different metallicities and producing different patterns of s-process nuclei. The main solar s-process pattern is thus not considered to be the result of a standard archetypal s-process occurring in all stars. Concerning the 13C neutron source, its

  14. Nucleosynthesis in Super-AGB Stars

    NASA Astrophysics Data System (ADS)

    Doherty, C. L.; Gil-Pons, P.; Lugaro, M.; Lau, H. H. B.; Lattanzio, J. C.; Siess, L.; Campbell, S. W.; Petermann, I.

    2015-08-01

    Super-AGB stars reside in the mass range ˜ 6.5-10 M⊙ and are characterised by off-center carbon ignition prior to a thermally pulsing super-AGB phase. These stars can undergo from many tens to even thousands of thermal pulses and experience extreme nucleosynthetic conditions, with temperatures both at the base of the convective envelope and within the helium-burning intershell regions far higher than in their lower-mass counterparts. This can result in interesting nucleosynthesis from extreme hot bottom burning and also different heavy-element distributions caused by the high neutron density generated within the thermal pulse, with this material later mixed to the surface during third dredge-up events. We discuss recent nucleosynthetic yield results for super-AGB stars over the range of metallicity Z = 0.02 × 10-5 ([Fe/H] ˜ 0 to -3.3), and present a small suite of heavy element super-AGB star yield predictions. We also apply our nucleosynthetic results to examine the possible role of super-AGB stars as polluters of the anomalous stars within globular clusters.

  15. The Contribution of TP-AGB Stars to the Mid-infrared Colors of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Chisari, Nora E.; Kelson, Daniel D.

    2012-07-01

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 μm. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  16. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    SciTech Connect

    Chisari, Nora E.; Kelson, Daniel D.

    2012-07-10

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 {mu}m. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  17. Evolution of thermally pulsing asymptotic giant branch stars. IV. Constraining mass loss and lifetimes of low mass, low metallicity AGB stars

    SciTech Connect

    Rosenfield, Philip; Dalcanton, Julianne J.; Weisz, Daniel; Williams, Benjamin F.; Marigo, Paola; Girardi, Léo; Gullieuszik, Marco; Bressan, Alessandro; Dolphin, Andrew; Aringer, Bernhard

    2014-07-20

    The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] ≲ –0.86) galaxies taken from the ACS Nearby Galaxy Survey Treasury sample, using Hubble Space Telescope (HST) photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and red giant branch (RGB) stars, N{sub TP-AGB}/N{sub RGB}, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass loss is important, since models that neglect pre-dust mass loss fail to explain the observed N{sub TP-AGB}/N{sub RGB} ratio or the luminosity functions. In contrast, models with more efficient pre-dust mass loss produce results consistent with observations. We find that for [Fe/H] ≲ –0.86, lower mass TP-AGB stars (M ≲ 1 M{sub ☉}) must have lifetimes of ∼0.5 Myr and higher masses (M ≲ 3 M{sub ☉}) must have lifetimes ≲ 1.2 Myr. In addition, assuming our best-fitting mass-loss prescription, we show that the third dredge-up has no significant effect on TP-AGB lifetimes in this mass and metallicity range.

  18. OT2_jalcolea_2: Additional Hpoint observations of large post-AGB sources from HIFIStars

    NASA Astrophysics Data System (ADS)

    Alcolea, J.

    2011-09-01

    One of the most spectacular phases in the evolution of intermediate mass stars takes place at the end of their lives. At the end of the AGB, the central star dashes across the HR diagram from the red giant to the blue dwarf region. At the same time, the spherically symmetric and slowly expanding circumstellar envelopes around AGB stars become planetary nebulae (PNe), displaying a large variety of shapes and structures far more complex. This transformation takes place at the very end of the AGB, and it is due to the interaction of fast and bipolar molecular winds with the fossil AGB circumstellar envelope. The origin of these post-AGB winds is still unclear, but we know that the resulting two-wind interactions are only active during a very short period of time, ~ 100 yr, but still they are able to strongly modify the kinematics of the nebulae and re-shape them. To better understand these processes we must study the warm molecular gas component of early post-AGB sources, both pre-planetary nebulae (pPNe) and young PNe. Herschel/HIFI is very well suited at this, because its spectral coverage, high velocity resolution, and superb sensitivity. For these reasons, 10 pPNe and young PNe were included in the KPGT HIFISTARS, were a large number of spectral lines are observed in a moderate number of frequency setups, but just at the central point. In many cases this is simply enough, since most post-AGB sources in HIFIStars are compact. However there are three cases in which the non spherically symmetric structures seen in the warm gas are larger than the telescope beam: OH231.8+4.2, NGC7027 and NGC6302. Therefore we propose to perform some additional points in these three sources in a selected sample of HIFISTARS frequency setups, were we have detected strong lines of CO, H2O, NH3 and OH. These observations are crucial to understand the kinematics and interactions traced by these warm gas probes, and gain insight in the intricate problem of the post-AGB dynamics.

  19. Shell and explosive hydrogen burning. Nuclear reaction rates for hydrogen burning in RGB, AGB and Novae

    NASA Astrophysics Data System (ADS)

    Boeltzig, A.; Bruno, C. G.; Cavanna, F.; Cristallo, S.; Davinson, T.; Depalo, R.; deBoer, R. J.; Di Leva, A.; Ferraro, F.; Imbriani, G.; Marigo, P.; Terrasi, F.; Wiescher, M.

    2016-04-01

    The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this paper, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions.

  20. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    SciTech Connect

    Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.; Meszaros, Szabolcs; Allende Prieto, Carlos; Bizyaev, Dmitry; Garcia Perez, Ana; Majewski, Steven R.; Schiavon, Ricardo; Holtzman, Jon; Johnson, Jennifer A.

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  1. Searching for dark clouds in the outer galactic plane. I. A statistical approach for identifying extended red(dened) regions in 2MASS

    NASA Astrophysics Data System (ADS)

    Frieswijk, W. W. F.; Shipman, R. F.

    2010-06-01

    Context. Most of what is known about clustered star formation to date comes from well studied star forming regions located relatively nearby, such as Rho-Ophiuchus, Serpens and Perseus. However, the recent discovery of infrared dark clouds may give new insights in our understanding of this dominant mode of star formation in the Galaxy. Though the exact role of infrared dark clouds in the formation process is still somewhat unclear, they seem to provide useful laboratories to study the very early stages of clustered star formation. Infrared dark clouds have been identified predominantly toward the bright inner parts of the galactic plane. The low background emission makes it more difficult to identify similar objects in mid-infrared absorption in the outer parts. This is unfortunate, because the outer Galaxy represents the only nearby region where we can study effects of different (external) conditions on the star formation process. Aims: The aim of this paper is to identify extended red regions in the outer galactic plane based on reddening of stars in the near-infrared. We argue that these regions appear reddened mainly due to extinction caused by molecular clouds and young stellar objects. The work presented here is used as a basis for identifying star forming regions and in particular the very early stages. An accompanying paper describes the cross-identification of the identified regions with existing data, uncovering more on the nature of the reddening. Methods: We use the Mann-Whitney U-test, in combination with a friends-of-friends algorithm, to identify extended reddened regions in the 2MASS all-sky JHK survey. We process the data on a regular grid using two different resolutions, 60´´ and 90´´. The two resolutions have been chosen because the stellar surface density varies between the crowded spiral arm regions and the sparsely populated galactic anti-center region. Results: We identify 1320 extended red regions at the higher resolution and 1589 in the

  2. 2011 AGB Survey of Higher Education Governance

    ERIC Educational Resources Information Center

    Association of Governing Boards of Universities and Colleges, 2011

    2011-01-01

    This report, the second of AGB's studies of higher education governance, documents the extent to which college and university boards are following good-governance practices. In addition, it takes a focused look at board engagement to determine the degree to which governing boards are actively, intellectually, and strategically involved with their…

  3. The Executive Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Legon, Richard D.

    2012-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  4. The Audit Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Staisloff, Richard L.

    2011-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  5. The creation of AGB fallback shells

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Frank, Adam; Blackman, Eric G.; Nordhaus, Jason

    2016-04-01

    The possibility that mass ejected during Asymptotic Giant Branch (AGB) stellar evolution phases falls back towards the star has been suggested in applications ranging from the formation of accretion discs to the powering of late-thermal pulses. In this paper, we seek to explicate the properties of fallback flow trajectories from mass-loss events. We focus on a transient phase of mass ejection with sub-escape speeds, followed by a phase of a typical AGB wind. We solve the problem using both hydrodynamic simulations and a simplified one-dimensional analytic model that matches the simulations. For a given set of initial wind characteristics, we find a critical shell velocity that distinguishes between `shell fallback' and `shell escape'. We discuss the relevance of our results for both single and binary AGB stars. In particular, we discuss how our results help to frame further studies of fallback as a mechanism for forming the substantial population of observed post-AGB stars with dusty discs.

  6. The Compensation Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Hyatt, Thomas K.

    2013-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  7. The Facilities Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Kaiser, Harvey H.

    2012-01-01

    This publication is part of an Association of Governing Boards of Universities and Colleges (AGB) series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices…

  8. The Investment Committee. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Yoder, Jay A.

    2011-01-01

    This publication is part of an AGB series devoted to strengthening the role of key standing committees of governing boards. While there is no optimum committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices included in this text support the objectives of board committees:…

  9. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    SciTech Connect

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaeel E-mail: iii@physics.utah.edu E-mail: patrick.francois@obspm.fr E-mail: richard.monier@unice.fr

    2013-02-10

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  10. Star-to-star Iron Abundance Variations in Red Giant Branch Stars in the Galactic Globular Cluster NGC 3201

    NASA Astrophysics Data System (ADS)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-02-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  11. Infrared photometry and evolution of mass-losing AGB stars. III. Mass loss rates of MS and S stars

    NASA Astrophysics Data System (ADS)

    Guandalini, R.

    2010-04-01

    Context. The asymptotic giant branch (AGB) phase marks the end of the evolution for low- and intermediate-mass stars, which are fundamental contributors to the mass return to the interstellar medium and to the chemical evolution of galaxies. The detailed understanding of mass loss processes is hampered by the poor knowledge of the luminosities and distances of AGB stars. Aims: In a series of papers we are trying to establish criteria permitting a more quantitative determination of luminosities for the various types of AGB stars, using the infrared (IR) fluxes as a basis. An updated compilation of the mass loss rates is also required, as it is crucial in our studies of the evolutionary properties of these stars. In this paper we concentrate our analysis on the study of the mass loss rates for a sample of galactic S stars. Methods: We reanalyze the properties of the stellar winds for a sample of galactic MS, S, SC stars with reliable estimates of the distance on the basis of criteria previously determined. We then compare the resulting mass loss rates with those previously obtained for a sample of C-rich AGB stars. Results: Stellar winds in S stars are on average less efficient than those of C-rich AGB stars of the same luminosity. Near-to-mid infrared colors appear to be crucial in our analysis. They show a good correlation with mass loss rates in particular for the Mira stars. We suggest that the relations between the rates of the stellar winds and both the near-to-mid infrared colors and the periods of variability improve the understanding of the late evolutionary stages of low mass stars and could be the origin of the relation between the rates of the stellar winds and the bolometric magnitudes.

  12. Evolution of Thermally Pulsing Asymptotic Giant Branch Stars. V. Constraining the Mass Loss and Lifetimes of Intermediate-mass, Low-metallicity AGB Stars

    NASA Astrophysics Data System (ADS)

    Rosenfield, Philip; Marigo, Paola; Girardi, Léo; Dalcanton, Julianne J.; Bressan, Alessandro; Williams, Benjamin F.; Dolphin, Andrew

    2016-05-01

    Thermally pulsing asymptotic giant branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass loss, and dust production can dramatically affect the chemical enrichment histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the Advanced Camera for Surveys Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by Rosenfield et al., in which two different wind regimes are active during the TP-AGB, significantly improves models of many galaxies that show evidence of recent star formation. This study extends previous efforts to constrain TP-AGB lifetimes to metallicities ranging ‑1.59 ≲ {{[Fe/H]}} ≲ ‑0.56 and initial TP-AGB masses up to ˜4 M ⊙, which include TP-AGB stars that undergo hot-bottom burning. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  13. Evolution of Thermally Pulsing Asymptotic Giant Branch Stars. V. Constraining the Mass Loss and Lifetimes of Intermediate-mass, Low-metallicity AGB Stars

    NASA Astrophysics Data System (ADS)

    Rosenfield, Philip; Marigo, Paola; Girardi, Léo; Dalcanton, Julianne J.; Bressan, Alessandro; Williams, Benjamin F.; Dolphin, Andrew

    2016-05-01

    Thermally pulsing asymptotic giant branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass loss, and dust production can dramatically affect the chemical enrichment histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the Advanced Camera for Surveys Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by Rosenfield et al., in which two different wind regimes are active during the TP-AGB, significantly improves models of many galaxies that show evidence of recent star formation. This study extends previous efforts to constrain TP-AGB lifetimes to metallicities ranging ‑1.59 ≲ {{[Fe/H]}} ≲ ‑0.56 and initial TP-AGB masses up to ∼4 M ⊙, which include TP-AGB stars that undergo hot-bottom burning. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  14. Transitory O-rich chemistry in heavily obscured C-rich post-AGB stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; García-Lario, P.; Cernicharo, J.; Engels, D.; Perea-Calderón, J. V.

    2016-07-01

    Spitzer/IRS spectra of eleven heavily obscured C-rich sources rapidly evolving from asymptotic giant branch (AGB) stars to Planetary Nebulae are presented. IRAM 30m observations for three of these post-AGBs are also reported. A few (3) of these sources are known to exhibit strongly variable maser emission of O-bearing molecules such as OH and H2 O, suggesting a transitory O-rich chemistry because of the quickly changing physical and chemical conditions in this short evolutionary phase. Interestingly, the Spitzer/IRS spectra show a rich circumstellar carbon chemistry, as revealed by the detection of small hydrocarbon molecules such as C2H2, C4H2, C6H2, C6H6, and HCN. Benzene is detected towards two sources, bringing up to three the total number of Galactic post-AGBs where this molecule has been detected. In addition, we report evidence for the possible detection of other hydrocarbon molecules like HC3N, CH3C2H, and CH3 in several of these sources. The available IRAM 30m data confirm that the central stars are C-rich - in despite of the presence of O-rich masers - and the presence of high velocity molecular outflows together with extreme AGB mass-loss rates (∼⃒10-4 Mʘ /yr). Our observations confirm the polymerization model of Cernicharo [1] that predicts a rich photochemistry in the neutral regions of these objects on timescales shorter than the dynamical evolution of the central HII region, leading to the formation of small C-rich molecules and a transitory O-rich chemistry.

  15. Lithium formation in massive AGB stars: new models

    NASA Astrophysics Data System (ADS)

    Mazzitelli, I.; D'Antona, F.; Ventura, P.

    We present new AGB models including full coupling of nuclear evolution and turbulent transport in a diffusive scheme (Ventura et al. 1998). The novelty of these computations resides in the use of a Full Spectrum of Turbulence (FST) convective model, which allows to compute not only the appropriate convective flux distribution of billions of eddy scales (opposed to the one-eddy Mixing Length approximation), but also the self consistent average turbulent velocity and convective scale length which enter in the computation of the diffusion coefficient. Thus this new model contains a smaller number of free parameters with respect to previous MLT based computations. The coupled diffusion scheme treats independently 14 elements from ^1H to 18O, and in particular treats the production and destruction of ^7Li in the Hot Bottom Burning phase, which the FST convective models naturally achieve for masses approximately greater than 4.5M_odot (D'Antona and Mazzitelli 1996). The dependence of Lithium production on the evolving stellar mass, on the mass loss rate and on the chemical composition is presented. Predictions are given on the role of this lithium production for the galactic chemical evolution (e.g. D'Antona and Matteucci 1991), and the complete project for the computations is outlined.

  16. AGB nucleosynthesis at low metallicity: What can we learn from Carbon- and s-elements-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Abate, C.; Pols, O. R.; Izzard, R. G.; Karakas, A. I.

    2013-02-01

    CEMP-s stars are very metal-poor stars with enhanced abundances of carbon and s-process elements. They form a significant proportion of the very metal-poor stars in the Galactic halo and are mostly observed in binary systems. This suggests that the observed chemical anomalies are due to mass accretion in the past from an asymptotic giant branch (AGB) star. Because CEMP-s stars have hardly evolved since their formation, the study of their observed abundances provides a way to probe our models of AGB nucleosynthesis at low metallicity. To this end we included in our binary evolution model the results of the latest models of AGB nucleosynthesis and we simulated a grid of 100 000 binary stars at metallicity Z = 0.0001 in a wide range of initial masses and separations. We compared our modelled stars with a sample of 60 CEMP-s stars from the SAGA database of metal-poor stars. For each observed CEMP-s star of the sample we found the modelled star that reproduces best the observed abundances. The result of this comparison is that we are able to reproduce simultaneously the observed abundance of the elements affected by AGB nucleosynthesis (e.g. C, Mg, s-elements) for about 60% of the stars in the sample.

  17. Asymmetries in AGB Stars: New Results from Aperture Masking Techniques

    NASA Astrophysics Data System (ADS)

    Lykou, F.; Hron, J.; Paladini, C.; Zijlstra, A. A.; Tuthill, P. G.; Norris, B.; Lagadec, E.

    2015-08-01

    Recent studies have shown that the extended circumstellar envelopes of AGB stars are not always spherical in shape. Moreover, the majority of post-AGB stars exhibit highly aspherical shapes, such as bipolar nebulae and equatorial waists in the form of dusty and gaseous disks and/or tori. As such, one should expect that the origin of the morphological changes seen in later evolutionary stages can be traced during the AGB phase. We now present a study of AGB stars using aperture masking interferometry to resolve such aspherical structures.

  18. Optically bright Post-AGB stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; Van Winckel, H.

    2014-04-01

    Post-AGB stars are low- to intermediate-mass stars in a rapid transition from the AGB phase to the Planetary Nebula (PN) phase. Post-AGB stars bear signatures of the structural and chemical composition changes that occur during the AGB phase of evolution and therefore can be used to constrain AGB models and also provide insight to the formation of PNes. In the Galaxy, the luminosities (and hence initial masses) of the diverse group of post-AGB candidates are badly affected by their unknown distances, making it difficult to use the observational characteristics of these interesting objects to throw light on the poorly-understood late stages of stellar evolution. In this talk, I will present the new results of a systematic search for post-AGB candidates in the Magellanic Clouds which became possible after the release of deep infrared surveys such as mid-infrared LMC and SMC Spitzer surveys. The catalog of post-AGB candidates in the Magellanic Clouds has been created firstly by selecting candidates based on the existence of a mid-infrared excess and secondly by obtaining low-resolution optical spectra. The optical spectra and broadband photometry were used to derive luminosities, effective temperatures and masses for the post-AGB candidates. Using a combination of colour criteria and SED analysis, we were able to classify between single and binary post-AGB objects. Binary post-AGB stars are likely to produce asymmetric PN (or bipolar PN). We also find that variability is displayed by several of the post-AGB candidates with the most common variability types being the Population II Cepheids (including RV-Tauri stars) and semi-regular variables. From the numbers of post-AGB candidates in the SMC and LMC, we were able to estimate evolutionary rates for the transient post-AGB phase. These catalogs of spectroscopically verified post-AGB candidates are a valuable resource for the study of late stages of single and binary star evolution as a function of initial mass and

  19. Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars

    NASA Astrophysics Data System (ADS)

    Lugaro, M.; Campbell, S. W.; Van Winckel, H.; De Smedt, K.; Karakas, A. I.; Käppeler, F.

    2015-11-01

    Aims: We explore modifications to the current scenario for the slow neutron-capture process (the s-process) in asymptotic giant branch (AGB) stars to account for the Pb deficiency observed in post-AGB stars of low metallicity ([Fe/H] ≃-1.2) and low initial mass (≃ 1-1.5 M⊙) in the Large and Small Magellanic Clouds. Methods: We calculated the stellar evolution and nucleosynthesis for a 1.3 M⊙ star with [Fe/H] = -1.3 and tested different amounts and distributions of protons leading to the production of the main neutron source within the 13C-pocket and proton ingestion scenarios. Results: No s-process models can fully reproduce the abundance patterns observed in the post-AGB stars. When the Pb production is lowered, the abundances of the elements between Eu and Pb, such as Er, Yb, W, and Hf, are also lowered to below those observed. Conclusions: Neutron-capture processes with neutron densities intermediate between the s and the rapid neutron-capture processes may provide a solution to this problem and be a common occurrence in low-mass, low-metallicity AGB stars.

  20. The 2014 AGB Survey of Higher Education Governance

    ERIC Educational Resources Information Center

    Hodge-Clark, Kristen

    2014-01-01

    "The 2014 AGB Survey of Higher Education Governance" is the fourth in AGB's studies of college and university governance. This report, based on survey responses from 592 public and independent boards, addresses a range of important governance topics that are receiving attention from boards and the news media, including presidential…

  1. Searching for heavily obscured post-AGB stars and planetary nebulae. II. Near-IR observations of IRAS sources

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, G.; Guerrero, M. A.; Suárez, O.; Miranda, L. F.; Gómez, J. F.

    2012-09-01

    The most massive AGB stars are expected to result in heavily obscured post-AGB stars, proto-PNe and PNe with highly axisymmetric morphologies. To investigate this evolutionary connection, we have selected a sample of 165 presumably obscured IRAS post-AGB star and PN candidates and obtained near-IR JHK images for 164 of them. These images, in conjunction with DSS, 2MASS, Spitzer GLIMPSE, MSX, AKARI, and IRAS archival data, have allowed us to identify the near-IR counterparts of 154 of these sources, providing reliable finding charts and coordinates. Near-IR narrow-band Brγ, H2, and K continuum images were acquired for 6 of these sources that were found to be resolved in near-IR JHK images. Among the extended post-AGB source and PN candidates, three are round and seven have bipolar morphologies. Five of the extended sources are ionized and may have thus entered the PN stage. We note that all extended sources with water maser emission have bipolar morphology. We have investigated the Galactic distribution of sources with the largest flux drop from the 9 μm AKARI band to the near-IR J band and found that the width of the distribution in Galactic latitude is consistent with those of bipolar PNe and DUPLEX (DUst-Prominent Longitudinally EXtended) sources. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (081.D-0812), observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and on observations with AKARI, a JAXA project with the participation of ESA.

  2. High resolution spectroscopy of the high latitude rapidly evolving post-AGB star SAO 85766 (= IRAS 18062+2410)

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; García-Lario, P.; Sivarani, T.; Manchado, A.; Sanz Fernández de Córdoba, L.

    2000-05-01

    SAO 85766 (b = +20o) is an IRAS source with far-infrared colours similar to planetary nebulae. According to the HDE catalogue, its spectrum in 1940 was that of an A5 star. The UV fluxes and colours derived from data obtained by the TD1 satellite in 1972 also indicate that SAO 85766 was an A-type supergiant at that epoch. However, high resolution spectra of SAO 85766 obtained in 1993 in the wavelength interval 4350Ä to 8820Ä shows that now it is similar to that of an early B type post-AGB supergiant. In addition to the absorptions lines typical of a B1I type star, the spectrum of SAO 85766 is found to show numerous permitted and forbidden emission lines of several elements, typically observed in the spectra of young high density low excitation planetary nebulae. From an analysis of the absorption lines we have estimated Teff=22000+/-500 K, log g=3.0+/-0.5, xi t=15+/-2km s-1 and [M/H]=-0.6. Carbon is found to be strongly underabundant ([C/Fe] = -1.0), similarly to what has been observed in other high galactic latitude hot post-AGB stars. The underabundance of carbon and metals, high galactic latitude, high radial velocity (46 km s-1), the presence of planetary nebula type detached cold circumstellar dust shell and also the presence of low excitation nebular emission lines in the spectrum indicate that SAO 85766 is a low mass star in the post-AGB stage of evolution. The above mentioned characteristics and the variations observed in the spectrum of SAO 85766 suggest that it has rapidly evolved during the past 50 years and it is now in the early stages of the planetary nebula phase. The central star may just have become hot enough to photoionize the circumstellar envelope ejected during the previous AGB phase. >From an analysis of the nebular emission lines we find Te=10000+/- 500K and Ne=2.5 104 cm-3. The nebula also shows an abundance pattern similar to that of the central star. The rapid post-AGB evolution of SAO 85766 appears to be similar to that observed in the

  3. Approaching a Physical Calibration of the AGB Phase

    NASA Astrophysics Data System (ADS)

    Marigo, Paola

    2015-08-01

    The widespread impact of Asymptotic Giant Branch (AGB) stars on the observed properties of galaxies is universally accepted. Despite their importance, severe uncertainties plague AGB models and propagate through to current population synthesis studies of galaxies, undermining the interpretation of a galaxy's basic properties (mass, age, chemical evolution, dust budget). The only reliable path forward is to apply a physically-sound calibration of AGB stellar models in which all main physical processes and their interplay are taken into account (e.g., mixing, mass loss, nucleosynthesis, pulsation, molecular chemistry, dust formation). In this context, I will review recent and ongoing efforts to calibrate the evolution of AGB stars, which combine an all-round theoretical approach anchored by stellar physics with exceptionally high quality data of resolved AGB stars in the Milky Way and nearby galaxies.

  4. New input data for synthetic AGB evolution

    NASA Astrophysics Data System (ADS)

    Wagenhuber, J.; Groenewegen, M. A. T.

    1998-12-01

    Analytic formulae are presented to construct detailed secular lightcurves of both early asymptotic giant branch (AGB) and thermally pulsing AGB stars. They are based on an extensive grid of evolutionary calculations, performed with an updated stellar evolution code. Basic input parameters are the initial mass MI i, 0.8 <= MI i/Msun <= 7, metallicity ZI i =0.0001, 0.008, 0.02, and the mixing length theory (MLT) parameter. The formulae allow for two important effects, namely that the first pulses do not reach the full amplitude, and hot bottom burning (HBB) in massive stars, which are both not accounted for by core mass - luminosity relations of the usual type. Furthermore, the dependence of the effective temperature and a few other quantities characterizing the conditions at the base of the convective envelope, which are relevant for HBB, are investigated as functions of luminosity, total and core mass for different formulations of the convection theory applied, MLT or Canuto & Mazzitelli's (\\cite{can:maz}) theory.

  5. Carbon dust particle size distributions around mass-losing AGB stars

    NASA Astrophysics Data System (ADS)

    Jura, M.

    1997-03-01

    Solids of presolar SiC and interstellar carbon have qualitatively similar relative size distribution for particles with radii, a, in the range 0.35 μmAGB stars such as the well studied IRC+10216 seem to be smaller than the interstellar or presolar particles. The close binary system, the Red Rectangle, appears to produce much larger grains than does IRC+10216, and we suggest that many of the interstellar and presolar particles with radii >0.35 μm are produced by interacting binary systems rather than single mass-losing stars.

  6. Evolution and mixing on the AGB

    SciTech Connect

    Lattanzio, J.C.

    1988-07-27

    It is now well known that Nature can make Carbon stars at lower luminosities than can (human) theorists. A number of workers, stimulated by this challenge, have been attracted to the problem. In this paper I review recent evolutionary models of relatively low mass AGB stars, with emphasis placed on the mixing of carbon to the stellar surface. In particular I discuss some recent improvements in the physics used to construct stellar models. These topics include: breathing pulses of the convective core found during exhaustion of the core helium supply; the effects of carbon recombination; the occurrence of semiconvection in the region between the two nuclear burning shells, and the importance of mass loss. It appears that different effects may operate at different stellar masses and abundances. Recent calculations have successfully produced models of low luminosity Carbon stars. The strengths and weaknesses of these models will be contrasted. 60 refs., 5 figs.

  7. Age Dating Merger Events in Early Type Galaxies via the Detection of AGB Light

    NASA Technical Reports Server (NTRS)

    Bothun, G.

    2005-01-01

    A thorough statistical analysis of the J-H vs. H-K color plane of all detected early type galaxies in the 2MASS catalog with velocities less than 5000 km/s has been performed. This all sky survey is not sensitive to one particular galactic environment and therefore a representative range of early type galaxy environments have been sampled. Virtually all N-body simulation so major mergers produces a central starburst due to rapid collection of gas. This central starburst is of sufficient amplitude to change the stellar population in the central regions of the galaxy. Intermediate age populations are given away by the presence of AGB stars which will drive the central colors redder in H-K relative to the J- H baseline. This color anomaly has a lifetime of 2-5 billion years depending on the amplitude of the initial starburst Employing this technique on the entire 2MASS sample (several hundred galaxies) reveals that the AGB signature occurs less than 1% of the time. This is a straightforward indication that virtually all nearby early type galaxies have not had a major merger occur within the last few billion years.

  8. The effects of rotation on the surface composition and yields of low mass AGB stars.

    NASA Astrophysics Data System (ADS)

    Cristallo, S.; Piersanti, L.; Straniero, O.

    Over the past 20 years, stellar evolutionary models have been strongly improved in order to reproduce with reasonable accuracy both photometric and spectroscopic observations. Notwithstanding, the majority of these models do not take into account macroscopic phenomena, like rotation and/or magnetic fields. Their explicit treatment could modify stellar physical and chemical properties. One of the most interesting problems related to stellar nucleosynthesis is the behavior of the s-process spectroscopic indexes ([hs/ls] and [Pb/hs]) in Asymptotic Giant Branch (AGB) stars. In this contribution we show that, for a fixed metallicity, rotation can lead to a spread in the [hs/ls] and [Pb/hs] in low-mass AGB stars. In particular, we demonstrate that the Eddington-Sweet and the Goldreich-Schubert-Fricke instabilities may have enough time to smear the 13C-pocket (the major neutron source) and the 14N-pocket (the major neutron poison). In fact, a different overlap between these pockets leads to a different neutrons-to-seeds ratio, with important consequences on the corresponding s-process distributions. Possible consequences on the chemical evolution of Galactic globular clusters are discussed.

  9. VizieR Online Data Catalog: Optical spectra of post-AGB stars (Bakker+ 1997)

    NASA Astrophysics Data System (ADS)

    Bakker, E. J.; van Dishoeck, E. F.; Waters, L. B. F. M.; Schoenmaker, T.

    1996-10-01

    We present optical high-resolution spectra of a sample of sixteen post-AGB stars and IRC +10216. Of the post-AGB stars, ten show C2 Phillips (A1{PI}u- X1{SIGMA}+g) and Swan (d3{PI}g-a3{PI}u) and CN Red System (A2{PI}-X2{SIGMA}+) absorption, one CH+ (A1{PI}-X1{SIGMA}+) emission, one CH+ absorption, and four without any molecules. We find typically Trot ~43-399, 155-202, and 18-50K, logN~14.90-15.57, 14.35, and 15.03-16.47cm-2 for C2, CH+, and CN respectively, and 0.6<=N(CN)/N(C2)<=11.2. We did not detect isotopic lines, which places a lower limit on the isotope ratio of 12C/13C>20. The presence of C2 and CN absorption is correlated with cold dust (Tdust<=300K) and the presence of CH+ with hot dust (Tdust>=300K). All objects with the unidentified 21μm emission feature exhibit C2 and CN absorption, but not all objects with C2 and CN detections exhibit a 21μm feature. The derived expansion velocity, ranging from 5 to 44km/s, is the same as that derived from CO millimeter line emission. This unambiguously proves that these lines are of circumstellar origin and are formed in the AGB ejecta (circumstellar shell expelled during the preceding AGB phase). Furthermore there seems to be a relation between the C2 molecular column density and the expansion velocity, which is attributed to the fact that a higher carbon abundance of the dust leads to a more efficient acceleration of the AGB wind. Using simple assumptions for the location of the molecular lines and molecular abundances, mass-loss rates have been derived from the molecular absorption lines and are comparable to those obtained from CO emission lines and the infrared excess. (6 data files).

  10. Ultraviolet Properties of Galactic Globular Clusters with GALEX. I. The Color-Magnitude Diagrams

    NASA Astrophysics Data System (ADS)

    Schiavon, Ricardo P.; Dalessandro, Emanuele; Sohn, Sangmo T.; Rood, Robert T.; O'Connell, Robert W.; Ferraro, Francesco R.; Lanzoni, Barbara; Beccari, Giacomo; Rey, Soo-Chang; Rhee, Jaehyon; Rich, R. Michael; Yoon, Suk-Jin; Lee, Young-Wook

    2012-05-01

    We present Galaxy Evolution Explorer (GALEX) data for 44 Galactic globular clusters (GCs) obtained during three GALEX observing cycles between 2004 and 2008. This is the largest homogeneous data set on the UV photometric properties of Galactic GCs ever collected. The sample selection and photometric analysis are discussed, and color-magnitude diagrams (CMDs) are presented. The blue and intermediate-blue horizontal branch is the dominant feature of the UV CMDs of old Galactic GCs. Our sample is large enough to display the remarkable variety of horizontal branch shapes found in old stellar populations. Other stellar types that are obviously detected are blue stragglers and post-core-He burning stars. The main features of UV CMDs of Galactic GCs are briefly discussed. We establish the locus of post-core-He burning stars in the UV CMD and present a catalog of candidate asymptotic giant branch (AGB), AGB-manqué, post early-AGB, and post-AGB stars within our cluster sample. The authors dedicate this paper to the memory of co-author Bob Rood, a pioneer in the theory of the evolution of low-mass stars, and a friend, who sadly passed away on 2011 November 2.

  11. VizieR Online Data Catalog: NGC 2808 AGB and RGB stars Na abundance (Wang+, 2016)

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Primas, F.; Charbonnel, C.; van der Swaelmen, M.; Bono, G.; Chantereau, W.; Zhao, G.

    2016-05-01

    The high-resolution spectra of our sample of AGB and RGB stars in the Galactic globular cluster NGC 2808 were obtained with the high-resolution multi-object spectrograph FLAMES, mounted on ESO/VLT-UT2. A combined mode was used where the brightest five objects was observed with UVES-fibre and the remaining targets with GIRAFFE/Medusa. The basic information of our sample stars are listed in Table 2, including the evolutionary phase, instrument used for observation, coordinates, photometry and barycentric radial velocity. Our Fe abundances were derived from the equivalent widths of Fe lines, while the Na abundances were determined with spectra synthesis. Both FeI and Na abundances have been corrected for the non-LTE effect. In Table 4 we show the derived stellar parameters of our sample stars, and the Na abundances are shown in Table 6. (3 data files).

  12. Spectroscopic survey of post-AGB star candidates

    NASA Astrophysics Data System (ADS)

    Pereira, C. B.; Miranda, L. F.

    2007-01-01

    Aims:Our goal is to establish the true nature of post-AGB star candidates and to identify new post-AGB stars. Methods: We used low resolution optical spectroscopy and we compared the spectra of the candidate post-AGB stars with those of stars in the library specta available in the literature and with spectra of "standard" post-AGB stars, and direct imaging in narrow-band filters. Results: Spectra were obtained for 16 objects: 14 objects have not been observed previously and 2 objects are already known post-AGB stars used as "standards" for identification. From the spectra we identify: six new post-AGB stars with spectral types between G5 and F5, two H ii regions the morphology of which is revealed in the direct images for the first time, a G giant with infrared emission, a young stellar object, a probable post-AGB star with emission lines and three objects for which the classification is still unclear. As a whole, our results provide new, reliable identifications for 10 objects among listed post-AGB star candidates. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and at the Observatorio de Sierra Nevada, which is operated by the Consejo Superior de Investigaciones Científicas through the Instituto de Astrofísica de Andalucía (Granada, Spain). Appendices A-D are only available in electronic form at http://www.aanda.org

  13. AGB Stars in the Large and Small Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Portman, Matthew; Sargent, Benjamin A.; Held, Leander; Kastner, Joel; SAGE Team

    2016-01-01

    Asymptotic giant branch (AGB) stars are evolved, pulsating variable stars that generate massive outflows of gas and dust, thereby enriching the interstellar medium (ISM) in the products of stellar nucleosynthesis. Recent studies find the dustiest, most extreme AGB stars contribute a disproportionately large amount of matter to their host galaxies; these extreme AGB stars are also the most variable, and they emit most of their energy at mid-infrared wavelengths. Therefore, using the Spitzer Space Telescope, we have imaged several target AGB stars identified in previous surveys of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Our aim is to obtain light curves at 3.6 and 4.5 microns wavelength for these extreme AGB stars. Using multiple epochs of data taken within the last 3 years by our survey and then further comparing this data to past surveys of the SMC and LMC with Spitzer, we were able to generate preliminary light curves for a sample of 30 extreme AGB stars, as well as for other stars found within the image fields. This research project was made possible by the Rochester Institute of Technology Center for Imaging Science Research Experience for Undergraduates program, funded by National Science Foundation grant PHY-1359361 to RIT.

  14. EFFECT OF HIGH-ENERGY RESONANCES ON THE {sup 18}O(p, {alpha}){sup 15}N REACTION RATE AT AGB AND POST-AGB RELEVANT TEMPERATURES

    SciTech Connect

    La Cognata, M.; Spitaleri, C.; Mukhamedzhanov, A. M.

    2010-11-10

    The {sup 18}O(p, {alpha}){sup 15}N reaction is of great importance in several astrophysical scenarios, as it influences the production of key isotopes such as {sup 19}F, {sup 18}O, and {sup 15}N. Fluorine is synthesized in the intershell region of asymptotic giant branch (AGB) stars, together with s-elements, by {alpha} radiative capture on {sup 15}N, which in turn is produced in the {sup 18}O proton-induced destruction. Peculiar {sup 18}O abundances are observed in R-Coronae Borealis stars, having {sup 16}O/{sup 18}O {approx}< 1, hundreds of times smaller than the galactic value. Finally, there is no definite explanation of the {sup 14}N/{sup 15}N ratio in pre-solar grains formed in the outer layers of AGB stars. Again, such an isotopic ratio is influenced by the {sup 18}O(p, {alpha}){sup 15}N reaction. In this work, a high accuracy {sup 18}O(p, {alpha}){sup 15}N reaction rate is proposed, based on the simultaneous fit of direct measurements and of the results of a new Trojan Horse experiment. Indeed, current determinations are uncertain because of the poor knowledge of the resonance parameters of key levels of {sup 19}F. In particular, we have focused on the study of the broad 660 keV 1/2{sup +} resonance corresponding to the 8.65 MeV level of {sup 19}F. Since {Gamma} {approx} 100-300 keV, it determines the low-energy tail of the resonant contribution to the cross section and dominates the cross section at higher energies. Here, we provide a reaction rate that is a factor of two larger above T {approx} 0.5 10{sup 9} K based on our new improved determination of its resonance parameters, which could strongly influence present-day astrophysical model predictions.

  15. SUPER-AGB-AGB EVOLUTION AND THE CHEMICAL INVENTORY IN NGC 2419

    SciTech Connect

    Ventura, Paolo; D'Antona, Francesca; Carini, Roberta; Di Criscienzo, Marcella; D'Ercole, Annibale; Vesperini, Enrico

    2012-12-20

    We follow the scenario of formation of second-generation stars in globular clusters by matter processed by hot bottom burning (HBB) in massive asymptotic giant branch (AGB) stars and super-AGB stars (SAGB). In the cluster NGC 2419 we assume the presence of an extreme population directly formed from the AGB and SAGB ejecta, so we can directly compare the yields for a metallicity Z = 0.0003 with the chemical inventory of the cluster NGC 2419. At such a low metallicity, the HBB temperatures (well above 10{sup 8} K) allow a very advanced nucleosynthesis. Masses {approx}6 M{sub Sun} deplete Mg and synthesize Si, going beyond Al, so this latter element is only moderately enhanced; sodium cannot be enhanced. The models are consistent with the observations, although the predicted Mg depletion is not as strong as in the observed stars. We predict that the oxygen abundance must be depleted by a huge factor (>50) in the Mg-poor stars. The HBB temperatures are close to the region where other p-capture reactions on heavier nuclei become possible. We show that high potassium abundance found in Mg-poor stars can be achieved during HBB by p-captures on the argon nuclei, if the relevant cross section(s) are larger than listed in the literature or if the HBB temperature is higher. Finally, we speculate that some calcium production is occurring owing to proton capture on potassium. We emphasize the importance of a strong effort to measure a larger sample of abundances in this cluster.

  16. Near-infrared and Brγ observations of post-AGB stars

    NASA Astrophysics Data System (ADS)

    Van de Steene, G. C.; van Hoof, P. A. M.; Wood, P. R.

    2000-10-01

    Brgamma emission originates in the post-Asymptotic Giant Branch (post-AGB) wind, and that the central star is not yet hot enough to ionize the AGB shell. We measured the J H K L magnitudes of the objects and present their infrared spectral energy distributions. They are typical for post-AGB stars according to the scheme of van der Veen et al. (\\cite{vdVeen89}). We also constructed various color-color diagrams using the near-infrared and IRAS magnitudes. No distinction can be made between the objects showing Brgamma in emission, absorption, or a flat spectrum in the near and far-infrared color-color diagrams. The near-infrared color-color diagrams show evidence for a very large range of extinction, which in part is of circumstellar origin. Near-infrared versus far-infrared color-color diagrams show trends that are consistent with the expected evolution of the circumstellar shell. This sample of post-AGB stars show a larger range in color and are generally redder and closer to the galactic plane than the ones known so far. The properties of most of these objects are fully consistent with the assumption that they are post-AGB stars that have not evolved far enough yet to ionize a significant fraction of their circumstellar material. Based on observations made at the European Southern Observatory, La Silla, Chile; the Australia Telescope Compact Array, which is funded by the Commonwealth of Australia for operations as a National Facility managed by CSIRO; Siding Spring Observatory.

  17. Ultraviolet emission from main-sequence companions of AGB stars

    NASA Astrophysics Data System (ADS)

    Ortiz, Roberto; Guerrero, Martín A.

    2016-09-01

    Although the majority of known binary asymptotic giant branch (AGB) stars are symbiotic systems (i.e. with a white dwarf as a secondary star), main-sequence companions of AGB stars can be more numerous, even though they are more difficult to find because the primary high luminosity hampers the detection of the companion at visual wavelengths. However, in the ultraviolet the flux emitted by a secondary with Teff > 5500 ˜ 6000 K may prevail over that of the primary, and then it can be used to search for candidates to binary AGB stars. In this work, theoretical atmosphere models are used to calculate the UV excess in the GALEX near- and far-UV bands due to a main-sequence companion. After analysing a sample of confirmed binary AGB stars, we propose as a criterium for binarity: (1) the detection of the AGB star in the GALEX far-UV band and/or (2) a GALEX near-UV observed-to-predicted flux ratio >20. These criteria have been applied to a volume-limited sample of AGB stars within 500 pc of the Sun; 34 out of the sample of 58 AGB stars (˜60 per cent) fulfill them, implying to have a main-sequence companion of spectral type earlier than K0. The excess in the GALEX near- and far-UV bands cannot be attributed to a single temperature companion star, thus suggesting that the UV emission of the secondary might be absorbed by the extended atmosphere and circumstellar envelope of the primary or that UV emission is produced in accretion flows.

  18. SMA Observations of CO J=2-1 Emission from Evolved Stars in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Patel, N. A.; Meixner, M.; Otsuka, M.; Riebel, D.; Srinivasan, S.

    2013-01-01

    Asymptotic Giant Branch (AGB) stars are in the final stages of their lives, in which they eject mass. The dust grains formed in these mass outflows experience radiation pressure from the star and push the gas in the star's outflow away with the dust. There is much infrared data available to determine AGB dust mass loss in, e.g., the Milky Way and the Magellanic Clouds (e.g., the Surveying the Agents of a Galaxy's Evolution Spitzer Space Telescope Legacy project; PI: M. Meixner). However, the dependence of gas-to-dust ratios on metallicity for AGB stars, of use in determining total mass loss rates from optical and infrared observations constraining dust mass loss rates, is not well known. To remedy this, we present results from our 1.3 mm Submillimeter Array observations of 8 evolved stars in the inner Galactic Bulge (about 8 kpc distant). The metallicities of these OH/IR and AGB stars have been measured by others. We detect CO J=2-1 emission from OH 359.943+0.260. We possibly detect CO J=2-1 emission from [SLO2003] A12, though this detection is heavily contaminated by surrounding extended emission. We do not detect CO J=2-1 emission from the rest of our sample. Combining these CO data and analysis with observations at infrared wavelengths constraining dust mass loss, we determine the gas-to-dust ratios of Galactic Bulge stars for which CO emission is detected, determining a value of 320 for OH 359.943+0.260 and an upper limit of < 260 for [SLO2003] A12. We discuss applications of this work to studies of mass loss from evolved stars elsewhere, such as AGB stars in the Magellanic Clouds. We also discuss prospects for future CO observations of OH/IR and AGB stars in the Galactic Bulge.

  19. Galactic dynamos

    NASA Astrophysics Data System (ADS)

    Moss, David

    There is a broad agreement between the predictions of galactic dynamo theory and observations; although there are still some unresolved difficulties, the theory appears to be robust. Now attention is turning from generic models to studies of particular features of the large-scale magnetic fields, and also to models for specific galaxies. The effects of noncircular flows, for example driven by the interaction of spiral arms and galactic bars with the dynamo, are of current interest.

  20. Super and massive AGB stars - III. Nucleosynthesis in metal-poor and very metal-poor stars - Z = 0.001 and 0.0001

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn L.; Gil-Pons, Pilar; Lau, Herbert H. B.; Lattanzio, John C.; Siess, Lionel; Campbell, Simon W.

    2014-06-01

    We present a new grid of stellar models and nucleosynthetic yields for super-AGB stars with metallicities Z = 0.001 and 0.0001, applicable for use within galactic chemical evolution models. Contrary to more metal-rich stars where hot bottom burning is the main driver of the surface composition, in these lower metallicity models the effect of third dredge-up and corrosive second dredge-up also have a strong impact on the yields. These metal-poor and very metal-poor super-AGB stars create large amounts of 4He, 13C, 14N and 27Al as well as the heavy magnesium isotopes 25Mg and 26Mg. There is a transition in yield trends at metallicity Z ≈ 0.001, below which we find positive yields of 12C, 16O, 15N and 28Si, which is not the case for higher metallicities. We explore the large uncertainties derived from wind prescriptions in super-AGB stars, finding ≈2 orders of magnitude difference in yields of 22Ne, 23Na, 24, 25, 26Mg, 27Al and our s-process proxy isotope g. We find inclusion of variable composition low-temperature molecular opacities is only critical for super-AGB stars of metallicities below Z ≈ 0.001. We analyse our results, and those in the literature, to address the question: Are super-AGB stars the polluters responsible for extreme population in the globular cluster NGC 2808? Our results, as well as those from previous studies, seem unable to satisfactorily match the extreme population in this globular cluster.

  1. Why Galaxies Care about AGB Stars: Setting the Stage

    NASA Astrophysics Data System (ADS)

    Renzini, A.

    2015-08-01

    In this introduction to the Third Congress of Vienna on asymptotic giant branch (AGB) stars, I first try to highlight why it is so hard to cope with the AGB evolutionary phase. This phase is indeed dominated by three main physical processes concerning bulk motions of matter inside/around stars, namely envelope convection, mixing, and mass loss. They are inextricably interlaced with each other in a circular sequence of reactions and counter-reactions which has so far undermined our attempts at calibrating such processes independent of one another. The second part of this introduction is focused on globular clusters, illustrating how they came to be a new frontier for AGB evolution and a new opportunity to understand it.

  2. Sensitivity study for s process nucleosynthesis in AGB stars

    NASA Astrophysics Data System (ADS)

    Koloczek, A.; Thomas, B.; Glorius, J.; Plag, R.; Pignatari, M.; Reifarth, R.; Ritter, C.; Schmidt, S.; Sonnabend, K.

    2016-03-01

    In this paper we present a large-scale sensitivity study of reaction rates in the main component of the s process. The aim of this study is to identify all rates, which have a global effect on the s process abundance distribution and the three most important rates for the production of each isotope. We have performed a sensitivity study on the radiative 13C-pocket and on the convective thermal pulse, sites of the s process in AGB stars. We identified 22 rates, which have the highest impact on the s-process abundances in AGB stars.

  3. Optically visible post-AGB/RGB stars and young stellar objects in the Small Magellanic Cloud: candidate selection, spectral energy distributions and spectroscopic examination

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; Van Winckel, H.

    2014-04-01

    We have carried out a search for optically visible post-asymptotic giant branch (post-AGB) candidates in the Small Magellanic Cloud (SMC). First, we used mid-IR observations from the Spitzer Space Telescope to select optically visible candidates with excess mid-IR flux and then we obtained low-resolution optical spectra for 801 of the candidates. After removing poor-quality spectra and contaminants, such as M-stars, C-stars, planetary nebulae, quasi-stellar objects and background galaxies, we ended up with a final sample of 63 high-probability post-AGB/RGB candidates of A-F spectral type. From the spectral observations, we estimated the stellar parameters: effective temperature (Teff), surface gravity (log g) and metallicity ([Fe/H]). We also estimated the reddening and deduced the luminosity using the stellar parameters combined with photometry. For the post-AGB/RGB candidates, we found that the metallicity distribution peaks at [Fe/H] ≈ -1.00 dex. Based on a luminosity criterion, 42 of these 63 sources were classified as post-red giant branch (post-RGB) candidates and the remaining 21 as post-AGB candidates. From the spectral energy distributions, we were able to infer that 6 of the 63 post-AGB/RGB candidates have a surrounding circumstellar shell suggesting that they are single stars, while 27 of the post-AGB/RGB candidates have a surrounding disc, suggesting that they lie in binary systems. For the remaining 30 post-AGB/RGB candidates the nature of the circumstellar environment was unclear. Variability is displayed by 38 of the 63 post-AGB/RGB candidates with the most common variability types being the Population II Cepheids (including RV-Tauri stars) and semiregular variables. This study has also revealed a new RV Tauri star in the SMC, J005107.19-734133.3, which shows signs of s-process enrichment. From the numbers of post-AGB/RGB stars in the SMC, we were able to estimate evolutionary rates. We find that the number of post-AGB and post-RGB candidates that

  4. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  5. CN and CH Abundance Analysis in a Sample of Eight Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Smolinski, Jason P.; Lee, Y.; Beers, T. C.; Martell, S. L.; An, D.; Sivarani, T.

    2011-01-01

    Galactic globular clusters exhibit star-to-star variations in their light element abundances that are not predicted by formation and evolution models involving single stellar generations. Recently it has been suggested that internal pollution from early supernovae and AGB winds may have played important roles in forming a second generation of enriched stars. We present updated results of a CN and CH abundance analysis of stars from the base to the tip of the red giant branch, and in some cases down onto the main sequence, for eight globular clusters with available photometric and spectroscopic data from SDSS-I and SDSS-II/SEGUE. These results include a discussion of the radial distribution of CN enrichment and how this may impact the current paradigm. Funding for SDSS-I and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. This work was supported in part by grants PHY 02-16783 and PHY 08-22648: Physics Frontiers Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation.

  6. Galactic Winds

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain

    Galactic winds have become arguably one of the hottest topics in extragalactic astronomy. This enthusiasm for galactic winds is due in part to the detection of winds in many, if not most, high-redshift galaxies. Galactic winds have also been invoked by theorists to (1) suppress the number of visible dwarf galaxies and avoid the "cooling catastrophe" at high redshift that results in the overproduction of massive luminous galaxies, (2) remove material with low specific angular momentum early on and help enlarge gas disks in CDM + baryons simulations, (3) reduce the dark mass concentrations in galaxies, (4) explain the mass-metallicity relation of galaxies from selective loss of metal-enriched gas from smaller galaxies, (5) enrich and "preheat" the ICM, (6) enrich the IGM without disturbing the Lyαforest significantly, and (7) inhibit cooling flows in galaxy clusters with active cD galaxies. The present paper highlights a few key aspects of galactic winds taken from a recent ARAA review by Veilleux, Cecil, &Bland-Hawthorn (2005; herafter VCBH). Readers interested in a more detailed discussion of this topic are encouraged to refer to the original ARAA article.

  7. Winds of Binary AGB Stars as Observed by Herschel

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Jorissen, A.; Kerschbaum, F.; Ottensamer, R.; Mečina, M.; Paladini, C.; Cox, N. L. J.; Nowotny, W.; Aringer, B.; Pourbaix, D.; Mohamed, S.; Siopis, C.; Groenewegen, M. A. T.

    2015-08-01

    We present Herschel/PACS observations of the large-scale environments of binary AGB stars as part of the Mass-loss of Evolved StarS (MESS) sample. From the literature we found 18 of the objects to be members of physically bound multiple systems. Several show a large-scale far-IR emission which differs significantly from spherical symmetry. A probable cause is the gravitational force of the companion on the stellar AGB wind and the mass-losing star itself. A spiral pattern is thereby imprinted in the dusty stellar wind. The most remarkable structures are found around o Ceti, W Aquilæ, R Aquarii, and π1 Gruis. The environments of o Cet and W Aql show a spiral pattern while the symbiotic nature of R Aqr is revealed as two opposing arms which reflect a nova outburst. The emission around π1 Gru is dominated by two structures, a disk and an arc, which are presumably not caused by the same companion. We found evidence that π1 Gru is a hierarchical triple system in which a close companion attracts the AGB wind onto the orbital plane and the outer companion forms a spiral arm. These far-IR observations underline the role of a companion as a major external influence in creating asymmetric winds in the AGB phase, even before the star becomes a planetary nebula (PN).

  8. The Governance Committee: Independent Institutions. AGB Effective Committee Series

    ERIC Educational Resources Information Center

    Wilson, E. B.; Lanier, James L.

    2013-01-01

    This publication is part of an AGB series devoted to strengthening the role of key standing committees of governing boards. While there is no optimal committee system for institutions of higher education, certain principles, practices, and procedures prevail. The best practices outlined in this publication support the objectives of board…

  9. Spectroscopic and photometric monitoring of southern post-AGB stars

    NASA Astrophysics Data System (ADS)

    Pooley, D. J.; Cottrell, P. L.; Pollard, K. R.; Albrow, M. D.

    2004-05-01

    We present the results of contemporaneous photometric and spectroscopic monitoring of 20 post-AGB stars from Mt John University Observatory. Photometric measures were carried our suing Johnson BV and Cousins RI filters, and the radial velocity measurements were acquired using spectra from an echelle spectrograph. Our program spanned five years and the stars covered a range of spectral types from B to K in order to investigate the behavior of post-AGB stars as they evolve away from the AGB. A number of stars proved to be variable inways incompatible with post-AGB models and are reclassified. Periodicities are presented for a number of stars. Photometrically, HD 70379 was found to be pulsating in two modes with periods of 85 and 97 d. The radial velocities also varied, with the peak amplitude occurring when the photometry was also changing most. AI CMi presented three different types of spectra associated with photometric brightness, with varying strengths of narrow emission lines and molecular bandheads. The Hα profiles in almost all of the stars show evidence of emission which varies on time scales of days to months. The Na D line profiles are generally complex showing between 4 and 7 components due to both circumstellar and interstellar material.

  10. From Nuclei to Dust Grains: How the AGB Machinery Works

    NASA Astrophysics Data System (ADS)

    Gobrecht, D.; Cristallo, S.; Piersanti, L.

    2015-12-01

    With their circumstellar envelopes AGB stars are marvelous laboratories to test our knowledge of microphysics (opacities, equation of state), macrophysics (convection, rotation, stellar pulsations, magnetic fields) and nucleosynthesis (nuclear burnings, slow neutron capture processes, molecules and dust formation). Due to the completely different environments those processes occur, the interplay between stellar interiors (dominated by mixing events like convection and dredge-up episodes) and stellar winds (characterized by dust formation and wind acceleration) is often ignored. We intend to develop a new approach involving a transition region, taking into consideration hydrodynamic processes which may drive AGB mass-loss. Our aim is to describe the process triggering the mass-loss in AGB stars with different masses, metallicities and chemical enrichments, possibly deriving a velocity field of the outflowing matter. Moreover, we intend to construct an homogeneous theoretical database containing detailed abundances of atomic and molecular species produced by these objects. As a long term goal, we will derive dust production rates for silicates, alumina and silicon carbides, in order to explain laboratory measurements of isotopic ratios in AGB dust grains.

  11. Examining the Impact of Early AGB Nucleosynthesis on the Apparent Cosmological Variation in the Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Ashenfelter, Timothy; Mathews, Grant; Olive, Keith

    2004-10-01

    Evidence from a large sample of quasar absorption-line spectra in damped Lyman-α systems has shown potential cosmological variation of the fine structure constant α. The most statistically significant portion of this sample involves the comparison of Mg and Fe wavelength shifts using the many-multiplet (MM) method. However, this method is sensitive to the heavy isotopes, especially in Mg. We implement recent yields of intermediate mass (IM) stars, which evolve beyond the CNO cycle, to show that the ensuing isotope distribution of Mg can account for the observed variation in α provided early star-formation was particularly rich in IM stars. During the Asymptotic Giant Branch (AGB) phase of IM stars, heavy Mg isotopes are robustly produced via hot-bottom burning and thermal pulsing in helium burning shell. We incorporate these recently appreciated processes in the galactic chemical evolution models of these damped Lyman-α systems (early galaxies) and delve into the consequences of this chemical evolution alternative to an α variation. We find that this analysis adds to the mounting evidence that the low-metallicity Universe was strongly influenced by IM stars beyond the standard power law distribution of stellar masses. Because these AGB stars have a significant influence on other abundances, especially nitrogen, we use measurements of N, Si Fe, C, and O to constrain our models. In this way, we obtain an alternative explanation of the α variation that is consistent with observations.

  12. The red/infrared evolution in galaxies - Effect of the stars on the asymptotic giant branch

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Wright, Edward L.

    1987-01-01

    The effect of including the asymptotic giant branch (AGB) population in a spectral synthesis model of galaxy evolution is examined. Stars on the AGB are luminous enough and also evolve rapidly enough to affect the evolution of red and infrared colors in galaxies. The validity of using infrared colors as distance indicators to galaxies is then investigated in detail. It is found that for z of 1 or less infrared colors of model galaxies behave linearly with redshift.

  13. Milky Way Red Dwarfs in the BoRG Survey; Galactic Scale-height and the Distribution of Dwarf Stars in WFC3 Imaging

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Trenti, M.; Clarkson, W.; Sahu, K.; Bradley, L.; Stiavelli, M.; Pirzkal, N.; De Marchi, G.; Andersen, M.; Bouwens, R.; Ryan, R.

    2014-06-01

    of M-dwarfs however will make them ideal tracers of Galactic halo substructure with EUCLID and reference stars for James Webb Space Telescope observations.

  14. Milky Way red dwarfs in the BoRG survey; galactic scale-height and the distribution of dwarf stars in WFC3 imaging

    SciTech Connect

    Holwerda, B. W.; Bouwens, R.; Trenti, M.; Clarkson, W.; Sahu, K.; Bradley, L.; Stiavelli, M.; Pirzkal, N.; Ryan, R.; De Marchi, G.; Andersen, M.

    2014-06-10

    -redshift galaxies. The relative ubiquity of M-dwarfs however will make them ideal tracers of Galactic halo substructure with EUCLID and reference stars for James Webb Space Telescope observations.

  15. A Photometric and Spectroscopic Survey of AGB Stars in M31

    NASA Astrophysics Data System (ADS)

    Brewer, James P.

    1996-04-01

    Asymptotic giant-branch (AGB) stars are identified and classified in five 7' X 7' fields spaced along M31's SW semi-major axis using a four band photometric system. An investigation of the AGB luminosity functions and red giant-branch widths reveals significant differences between the star forming histories of the five fields. The distance modulus of M31 is derived using carbon stars (C-stars) and found to be consistent with both a value obtained from Cepheids and with values in the literature. The ratio of AGB C- to M-stars (C/M ratio) in the five fields is found to increase with galactocentric distance and it is shown that photometric incompleteness is not responsible for this effect. This is the first clear demonstration of a varying C/M ratio in an external galaxy. The C/M ratios appear to be insensitive to star-forming history differences but sensitive to metallicity differences between the fields. Previous observations are used to define a relationship between the C/M ratio and metallicity, and this is used to obtain estimates of the field metallicities. These estimates are found to be consistent with a previous measurement of M31's metallicity gradient. The C/M ratios measured in M31 indicate that the composition of M31's interstellar medium may be position dependent, and evidence is cited in favour of this. Follow up spectroscopy was obtained in two of the five fields, and is used to show that the photometric system did an excellent job of discriminating between M-, S- and C-stars. Of the 48 C-stars for which spectra were obtained, 7 have strongly enhanced 13C bands (J-stars), 2 have strong H-alpha emission, while 3 are found to exhibit enhanced Li absorption (Li-stars). Both the J- and Li-stars are fainter than predicted by current theoretical models, while the colours of the H-alpha stars suggest they may be in the terminal phases of their evolution. The C_2 and CN bandstrengths of the C-stars are measured, and no correlation between these bandstrengths

  16. A Photometric and Spectroscopic Survey of AGB Stars in M31

    NASA Astrophysics Data System (ADS)

    Brewer, James Philip

    1996-01-01

    Asymptotic giant-branch (AGB) stars are identified and classified in five 7^'times7 ^' fields spaced along M31's SW semi-major axis using a four band photometric system. An investigation of the AGB luminosity functions and red giant -branch widths reveals significant differences between the star forming histories of the five fields. The distance modulus of M31 is derived using carbon stars (C-stars) and found to be consistent with both a value obtained from Cepheids and with values in the literature. The ratio of AGB C- to M-stars (C/M ratio) in the five fields is found to increase with galactocentric distance and it is shown that photometric incompleteness is not responsible for this effect. This is the first clear demonstration of a varying C/M ratio in an external galaxy. The C/M ratios appear to be insensitive to star -forming history differences but sensitive to metallicity differences between the fields. Previous observations are used to define a relationship between the C/M ratio and metallicity, and this is used to obtain estimates of the field metallicities. These estimates are found to be consistent with a previous measurement of M31's metallicity gradient. The C/M ratios measured in M31 indicate that the composition of M31's interstellar medium may be position dependent, and evidence is cited in favour of this. Follow up spectroscopy was obtained in two of the five fields, and is used to show that the photometric system did an excellent job of discriminating between M -, S- and C-stars. Of the 48 C-stars for which spectra were obtained, 7 have strongly enhanced ^ {13}C bands (J-stars), 2 have strong H alpha emission, while 3 are found to exhibit enhanced Li absorption (Li-stars). Both the J- and Li-stars are fainter than predicted by current theoretical models, while the colours of the Hα stars suggest they may be in the terminal phase of their evolution. The C_2 and CN bandstrengths of the C-stars are measured, and no correlation between these

  17. Starlight and Sandstorms: Mass Loss Mechanisms on the AGB

    NASA Astrophysics Data System (ADS)

    Höfner, S.

    2011-09-01

    There are strong observational indications that the dense slow winds of cool luminous AGB stars are driven by radiative pressure on dust grains which form in the extended atmospheres resulting from pulsation-induced shocks. For carbon stars, detailed models of outflows driven by amorphous carbon grains show good agreement with observations. Some still existing discrepancies may be due to a simplified treatment of cooling in shocks, drift of the grains relative to the gas, or effects of giant convection cells or dust-induced pattern formation. For stars with C/O < 1, recent models indicate that absorption by silicate dust is probably insufficient to drive their winds. A possible alternative is scattering by Fe-free silicate grains with radii of a few tenths of a micron. In this scenario one should expect less circumstellar reddening for M- and S-type AGB stars than for C-stars with comparable stellar parameters and mass loss rates.

  18. Nucleosynthesis in Low Mass Very Metal Poor AGB Stars

    NASA Astrophysics Data System (ADS)

    Serenelli, A.

    The evolution of a 1.5 M⊙, Z= 10-5 stellar model has been followed starting at the ZAMS up to the thermally pulsating asymptotic giant branch (TP-AGB) phase. Calculations were done using the LPCODE [1], to which some changes were done. The most important and relevant to this work is the incorporation of a full nuclear network from H to Po, comprising about 525 isotopes and 910 nuclear reactions, appropriate for the computation of the s-process occurring in AGB stars. Convection is treated according to the mixing length theory (λMLT = 1.7) and convective mixing as a diffusive process. Diffusive overshooting is also included according to [2] and the free parameter f adopted is 0.015. Mass loss is given by the Reimers formula, with the parameter η = 1.

  19. Nucleosynthesis in AGB Stars Traced by Oxygen Isotopic Ratios

    NASA Astrophysics Data System (ADS)

    De Nutte, R.; Decin, L.; Olofsson, H.; de Koter, A.; Lombaert, R.; Milam, S.; Ramstedt, S.

    2015-08-01

    Isotopic ratios are by far the best diagnostic tracers of the stellar origin of elements, as they are very sensitive to the precise conditions in the nuclear burning regions. They allow us to give direct constraints on stellar evolution models and on the progenitor mass. However, up to now different isotopic ratios have been well constrained for only a handful of Asymptotic Giant Branch (AGB) stars. We present new data on isotopologue lines of a well-selected sample of AGB stars, covering the three spectral classes of C-, S- and M-type stars. We report on the first efforts made in determining accurate isotopologue fractions, focusing on oxygen isotopes which are a crucial tracer of the poorly constrained extra mixing processes in stellar atmospheres.

  20. Optical Spectroscopy of the Post-AGB Star HD 89353

    NASA Astrophysics Data System (ADS)

    Mohamad-Yob, S.-J.; Gopir, G. K.; Malasan, H. L.; Anwar, R.

    2009-08-01

    Using the compact spectrograph at 600 lines/mm, and the 50.8 cm telescope at the Langkawi National Observatory, we obtained moderate resolution spectra of the post-AGB star HD 89353. The objective is to measure carbon and nitrogen abundances as a test of nucleosynthesis in AGB stars. The wavelength covered is between 4800-5600, 6467-7276, and 7035-7840 Å. A preliminary analysis showed the presence of the CI lines: 4932.00, 5039.05, 6586.269, 7108.934, 7111.480, 7113.178, 7115.182, 7116.991 and 7119.656 Å, and the NI lines: 7442.28 and 7423.63 Å. There was also emission line of H-alpha. We measured the equivalent widths of the C and N lines for future abundance calculation.

  1. Probing the Mass Loss History of AGB Stars with Herschelfootnotemark

    NASA Astrophysics Data System (ADS)

    Kerschbaum, F.; Mecina, M.; Ottensamer, R.; Luntzer, A.; Groenewegen, M. A. T.; Blommaert, J. A. D. L.; Decin, L.; Royer, P.; Vandenbussche, B.; Waelkens, C.; Barlow, M.; Lim, T.

    2011-09-01

    An overview is given of AGB stars imaged with the PACS and SPIRE instruments on-board the Herschel Space Observatory in the framework of the MESS Guaranteed Time Key Programme. The objects AQ And, U Ant, W Aql, U Cam, RT Cap, Y CVn, TT Cyg, UX Dra, W Ori, AQ Sgr, and X TrA all show detached or extended circumstellar emission.

  2. Magnetic fields around AGB stars and Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.

    2014-08-01

    Stars with a mass up to a few solar masses are one of the main contributors to the enrichment of the interstellar medium in dust and heavy elements. However, while significant progress has been made, the process of the mass-loss responsible for this enrichment is still not exactly known and forces beyond radiation pressure might be required. Often, the mass lost in the last phases of the stars life will become a spectacular planetary nebula. The shaping process of often strongly a-spherical PNe is equally elusive. Both binaries and magnetic fields have been suggested to be possible agents although a combination of both might also be a natural explanation. Here I review the current evidence for magnetic fields around AGB and post-AGB stars pre-Planetary Nebulae and PNe themselves. Magnetic fields appear to be ubiquitous in the envelopes of apparently single stars, challenging current ideas on its origin, although we have found that binary companions could easily be hidden from view. There are also strong indications of magnetically collimated outflows from post-AGB/pre-PNe objects supporting a significant role in shaping the circumstellar envelope.

  3. Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Totten, E. J.; Irwin, M. J.

    1996-04-01

    A byproduct of the APM high redshift quasar survey (Irwin et al. 1991) was the discovery of ~ 20 distant (20-100kpc) cool AGB carbon stars (all N-type) at high Galactic latitude. In August we used the INT+IDS to survey the rest of the high latitude SGC sky visible from La Palma and found 10 more similar carbon stars. Before this work there were only a handful of published faint high latitude cool carbon stars known (eg. Margon et al., 1984, Mould et al., 1985) and there has been speculation as to their origin (eg. Sanduleak, 1980, van den Bergh & Lafontaine, 1984). Intermediate age carbon stars (3 -- 7 Gyrs) seem unlikely to have formed in the halo in isolation from other star forming regions so how did they get there ? One possiblity that we are investigating, is that they arise from either the disruption of tidally captured dSph galaxies or are a manifestion of the long sought after optical component of the Magellanic Stream. Lack of proper motion rules out the possibility of them being dwarf carbon stars (eg. Warren et al., 1992); indeed no N-type carbon stars have been found to be dwarf carbon stars. Our optical spectroscopy confirms their carbon star type (they are indistinguishable from cool AGB carbon stars in nearby dwarf galaxies) and hence probable large distances. We are extending our survey to the NGC region, obtaining radial velocities and good S:N fluxed spectra for all the carbon stars. This will enable us to investigate their kinematics, true spatial distribution and hence their origin. Even, in the event that these objects are somehow an integral part of the Galactic halo, then their velocities and large distances will enable direct studies of the velocity ellipsoid and rotation of the outer halo (eg. Green et al., 1994).

  4. S-process nucleosynthesis in AGB stars with the full spectrum of turbulence scheme for convection.

    NASA Astrophysics Data System (ADS)

    Yagüe, A.; García-Hernández, D. A.; Ventura, P.; Lugaro, M.

    2016-07-01

    The chemical evolution of asymptotic giant branch (AGB) stars models depends greatly on the input physics (e.g. convective model, mass loss recipe). Variations of hot bottom burning (HBB) strength, or third dredge-up (TDU) efficiency are among the main consequences of adopting different input physics in the AGB models. The ATON evolutionary code stands apart from others in that it uses the Full Spectrum of Turbulence convective model. Here we present the first results of a newly developed s-process nucleosynthesis module for ATON AGB models. Our results are compared also with observations and theoretical predictions of present AGB nucleosynthesis models using different input physics.

  5. Post Asymptotic Giant Branch and Central Stars of Planetary Nebulae in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Weston, Simon

    2012-01-01

    Post asymptotic giant branch (post-AGB) stars, central stars of planetary nebulae (CSPNe) and planetary nebulae (PNe) are important phases of stellar evolution as the material they feedback is the seed of subsequent star formation in a galaxy. The majority of low and intermediate mass stars are expected to evolve through these channels, however, it is uncertain how many actually do, and at what rate. The Galactic halo, with its older population, provides a direct test of evolutionary models for low mass stars. Birthrate estimates of PNe are uncertain and worse still, are in contradiction with accepted white dwarf (WD) birthrate estimates. Much of the uncertainty stems from the lack of complete samples and poorly determined distance estimates. New surveys such as the Sloan Digital Sky Survey (SDSS), Galaxy Evolutionary Explorer (GALEX) and the INT Photometric Ha Survey (IPHAS) have discovered many new PNe and have observed the far edges of the Galaxy. Improved methods of determining distances to CSPNe are presented here, using model atmospheres, evolutionary tracks and high resolution reddening maps utilising these revolutionary surveys. Locating the CSPN is non-trivial particularly for evolved PNe, as they are extended with their central star often displaced from the centre of the nebula. Therefore, photometric criteria are required to locate the CSPN in the nebula's field. Synthetic photometry of the CSPNe is derived from spectral energy distributions (SEDs) computed from a grid of model atmospheres covering the parameter range of CSPNe. The SEDs are convolved with filter transmission curves to compute synthetic magnitudes for a given photometric system which are then calibrated with standard stars and WDs. A further project borne out of a search for luminous central stars of faint PNe, resulted in a systematic search for post-AGB stars in the Galactic halo. In this work, new candidate halo post-AGB stars are discovered from a search through the SDSS spectroscopic

  6. Great Galactic Buddies

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on image for poster [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] 8.15 Billion Lightyears8.59 Billion Lightyears8.98 Billion Lightyears 9.09 Billion Lightyears

    Like great friends, galaxies stick together. Astronomers using NASA's Spitzer Space Telescope have spotted a handful of great galactic pals bonding back when the universe was a mere 4.6 billion years old. The universe is believed to be 13.7 billion years old.

    Collectively, these great galactic buddies are called galaxy clusters. A typical galaxy cluster can contain hundreds of galaxies and trillions of stars.

    In this false-color composite, some of the oldest galaxy clusters in the universe pose for Spitzer's infrared array camera. The individual galaxies that make up the distant clusters are shown as red dots in all four images.

    The green blobs are Milky Way stars along the line of sight, and the blue specks are faint galaxies at various distances along the line of sight. The green and blue data are from a visible-light, ground-based telescope.

    The cluster at 9.1 billion light-years away (lower right panel) is currently the most distant galaxy cluster ever detected.

    These images are three-color composites, in which blue represents visible light with a wavelength of 0.4 microns, and green indicates visible light of 0.8 microns. The visible data were captured by the ground-based Mosaic I camera at the Kitt Peak National Observatory in Tucson, Ariz. Red represents infrared light of 4.5 microns, captured by Spitzer's infrared array camera.

  7. Galactic Evolution

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2013-04-01

    All galaxies began as spiral galaxies. The early universe began with sets of two or more pre-galactic arms orbiting each other. As gravitational attraction between the arms took effect, the fore-sections of the arms tangentially collided forming spiral galaxies when they attached with the orbital motion of the arms being converted to the rotational motion of the newly formed spiral galaxies or (Iφ)arm1+ (Iφ)arm2+ ...+ (Iφ)armn= (Iφ)galaxy. If the centripetal force on the arms is more than the gravitational force on the arms, the spiral galaxy remains a spiral galaxy i.e. mv^2/r>=Gmarmmgalaxy/r^2. If the galaxy is slowly rotating, the spiral arms collapse into the body of the galaxy because the gravitational force is greater than the centripetal force on the arms and an elliptical galaxy is formed i.e. mv^2/r < Gmarmsmgalaxy/r^2.

  8. Galactic planetary nebulae with precise nebular abundances as a tool to understand the evolution of asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; Di Criscienzo, M.; Yagüe, A.

    2016-06-01

    We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z⊙/4 < Z < 2Z⊙. They are compared to recent precise nebular abundances in a sample of Galactic planetary nebulae (PNe) that is divided among double-dust chemistry (DC) and oxygen-dust chemistry (OC) according to the infrared dust features. Unlike the similar subsample of Galactic carbon-dust chemistry PNe recently analysed by us, here the individual abundance errors, the higher metallicity spread, and the uncertain dust types/subtypes in some PNe do not allow a clear determination of the AGB progenitor masses (and formation epochs) for both PNe samples; the comparison is thus more focussed on a object-by-object basis. The lowest metallicity OC PNe evolve from low-mass (˜1 M⊙) O-rich AGBs, while the higher metallicity ones (all with uncertain dust classifications) display a chemical pattern similar to the DC PNe. In agreement with recent literature, the DC PNe mostly descend from high-mass (M ≥3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6~M⊙). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.

  9. Galactic planetary nebulae with precise nebular abundances as a tool to understand the evolution of asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; Di Criscienzo, M.; Yagüe, A.

    2016-09-01

    We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z⊙/4 < Z < 2 Z⊙. They are compared to recent precise nebular abundances in a sample of Galactic planetary nebulae (PNe) that is divided among double-dust chemistry (DC) and oxygen-dust chemistry (OC) according to the infrared dust features. Unlike the similar subsample of Galactic carbon-dust chemistry PNe recently analysed by us, here the individual abundance errors, the higher metallicity spread, and the uncertain dust types/subtypes in some PNe do not allow a clear determination of the AGB progenitor masses (and formation epochs) for both PNe samples; the comparison is thus more focused on a object-by-object basis. The lowest metallicity OC PNe evolve from low-mass (˜1 M⊙) O-rich AGBs, while the higher metallicity ones (all with uncertain dust classifications) display a chemical pattern similar to the DC PNe. In agreement with recent literature, the DC PNe mostly descend from high-mass (M ≥ 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6M⊙). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.

  10. Nonradial instability strips for post-AGB stars

    SciTech Connect

    Stanghellini, L. ); Cox, A.N. ); Starrfield, S.G. . Dept. of Physics and Astronomy Los Alamos National Lab., NM )

    1990-01-01

    We test several pre-degenerate (PNN and DO) and degenerate (DB) models for stability against nonradial oscillations. These models lie on the 0.6 M{sub {circle dot}} evolutionary track calculated by Iben. The post-AGB stars have a residual CO core with only a little surface hydrogen and helium. In order to match all the observed pulsators. We use three different surface compositions for the DO stars, and a pure helium surface for the DB white dwarfs. We find 3 DO and 1 DB instability strips that we compare to the available observations. 16 refs., 1 fig.

  11. HIRAS images of fossil dust shells around AGB stars

    NASA Technical Reports Server (NTRS)

    Waters, L. B. F. M.; Kester, Do J. M.; Bontekoe, Tj. Romke; Loup, C.

    1994-01-01

    We present high resolution HIRAS 60 and 100 micron images of AGB stars surrounded by fossil dust shells. Resolving the extended emission of the circumstellar dust allows a determination of the mass loss history of the star. We show that the geometry of the 60 micron emission surrounding HR 3126 agrees well with that of the optical reflection nebula. The emission around the carbon star U Hya is resolved into a central point source and a ring of dust, and the mass loss rate in the detached shell is 70 times higher than the current mass loss rate.

  12. Spitzer Light Curves of Dusty AGB Stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Meixner, Margaret; Riebel, David; Vijh, Uma; Hora, Joe; Boyer, Martha; Cook, Kem; Groenewegen, Martin; Whitelock, Patricia; Ita, Yoshifusa; Feast, Michael; Kemper, Ciska; Marengo, Massimo; Otsuka, Masaaki; Srinivasan, Sundar

    2014-12-01

    Asymptotic giant branch (AGB) variable stars are, together with supernovae, the main sources of enrichment of the interstellar medium (ISM) in processed material, particularly carbon, nitrogen and heavy s-process elements. The dustiest, extreme AGB stars contribute the largest enrichment per star. We propose to measure the first light curves for 32 of the dustiest AGB variable stars in the Small Magellanic Cloud (SMC) using the warm Spitzer mission's IRAC 3.6 and 4.5 micron imaging for monthly imaging measurements. We know most are variable based on dual-epoch observations from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) surveys of the SMC and ground-based near-infrared observations, but we have not observed these dusty SMC stars at the mid-infrared wavelengths available to Spitzer. Only Spitzer will be able to measure the light curve of this key phase of the AGB: the dustiest and indeed final stage of the AGB. Without this information, our developing picture of AGB evolution is decidedly incomplete. The observations we propose will test the validity of AGB evolution models, and, thus, their predictions of the return of mass and nucleosynthetic products to the ISM. A value-added component to this study is that we will obtain variability information on other AGB stars that lie within the fields of view of our observations. This proposal continues the studies we have begun with our Cycle 9 program (pid 90219) and our Cycle 10 program (pid 10154).

  13. What Is, Or Should Be, The AGB? A Report from the Membership.

    ERIC Educational Resources Information Center

    Davis, Junius A.; And Others

    This document presents the results of a survey of member presidents and trustees of the Association of Governing Boards (AGB). The questionnaire employed several strategies for determining member needs and interests, and their perception of the role that the AGB should play in serving those needs and interests. First, a number of frequent concerns…

  14. Observing the next galactic supernova

    SciTech Connect

    Adams, Scott M.; Kochanek, C. S.; Beacom, John F.; Stanek, K. Z.; Vagins, Mark R.

    2013-12-01

    No supernova (SN) in the Milky Way has been observed since the invention of the optical telescope, instruments for other wavelengths, neutrino detectors, or gravitational wave observatories. It would be a tragedy to miss the opportunity to fully characterize the next one. To aid preparations for its observations, we model the distance, extinction, and magnitude probability distributions of a successful Galactic core-collapse supernova (ccSN), its shock breakout radiation, and its massive star progenitor. We find, at very high probability (≅ 100%), that the next Galactic SN will easily be detectable in the near-IR and that near-IR photometry of the progenitor star very likely (≅ 92%) already exists in the Two Micron All Sky Survey. Most ccSNe (98%) will be easily observed in the optical, but a significant fraction (43%) will lack observations of the progenitor due to a combination of survey sensitivity and confusion. If neutrino detection experiments can quickly disseminate a likely position (∼3°), we show that a modestly priced IR camera system can probably detect the shock breakout radiation pulse even in daytime (64% for the cheapest design). Neutrino experiments should seriously consider adding such systems, both for their scientific return and as an added and internal layer of protection against false triggers. We find that shock breakouts from failed ccSNe of red supergiants may be more observable than those of successful SNe due to their lower radiation temperatures. We review the process by which neutrinos from a Galactic ccSN would be detected and announced. We provide new information on the EGADS system and its potential for providing instant neutrino alerts. We also discuss the distance, extinction, and magnitude probability distributions for the next Galactic Type Ia supernova (SN Ia). Based on our modeled observability, we find a Galactic ccSN rate of 3.2{sub −2.6}{sup +7.3} per century and a Galactic SN Ia rate of 1.4{sub −0.8}{sup +1.4} per

  15. Infrared spectroscopy of asymptotic giant branch stars in the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Golriz, S. S.; Blommaert, J. A. D. L.; Vanhollebeke, E.; Groenewegen, M. A. T.; Habing, H. J.; Kemper, F.; Schultheis, M.; Tielens, A. G. G. M.; Waters, L. B. F. M.; Wood, P. R.; Cami, J.

    2014-10-01

    We have selected a homogeneous sample of asymptotic giant branch (AGB) stars in the Galactic bulge population from the ISOGAL survey. Our target stars cover a wide range of mass-loss rates (˜10-8-10-4 M⊙ yr-1) and differ primarily by their age on the AGB. This homogeneous sample is thus ideally suited to study the dust formation process as a function of age on the AGB. We observed our sample with Spitzer-Infrared Spectrograph, and studied the overall properties of the infrared spectra of these targets. The analysis is complicated by the presence of strong and variable background emission, and the extracted infrared AGB star spectra are affected by interstellar extinction. Several stars in our sample have no detectable dust emission, and we used these `naked stars' to characterize the stellar and molecular contributions to the infrared spectra of our target stars. The resulting dust spectra of our targets do indeed show significant variety in their spectral appearance, pointing to differing dust compositions for the targets. We classify the spectra based on the shape of their 10-μm emission following the scheme by Sloan & Price. We find that the early silicate emission classes associated with oxide dust are generally under-represented in our sample due to extinction effects. We also find a weak 13-μm dust feature in two of our otherwise naked star spectra, suggesting that the carrier of this feature could potentially be the first condensate in the sequence of dust condensation.

  16. The pathways of C: from AGB stars, to the Interstellar Medium, and finally into the protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, J. M.; Garcia-Hernandez, D. A.

    2011-05-01

    The origin, and role of C in the formation of first solar system aggregates is described. Stellar grains evidence demonstrates that Asymptotic Giant Branch (AGB) stars were nearby to the solar nebula at the time of solar system formation. Such stars continue to burn H and He in shells that surround the C-O core. During their evolution, flashes occur in the He shell and the C, and O produced are eventually dredged up into the star's envelop and then to the stellar surface, and finally masively ejected to the interstellar medium (IM). Once in a molecular cloud, the electrophilicity of C makes this element reactable with the surrounding gas to produce different molecular species. Primitive meteorites, particularly these known as chondrites, preserved primeval materials of the disk. The abundances of short-lived radionuclides (SLN), inferred to have been present in the early solar system (ESS), are a constraint on the birth and early evolution of the solar system as their relatively short half lives do not allow the observed abundances to be explained by galactic chemical evolution processes. We present a model of a 6.5 solar masses star of solar metallicity that simultaneously match the abundances of SLNs inferred to have been present in the ESS by using a dilution factor of 1 part of AGB material per 300 parts of original solar nebula material, and taking into account a time interval between injection of SLNs and consolidation of chondrites equal to 0.53 Myr [2]. Such a polluting source does not overproduce 53Mn, as supernova models do, and only marginally affects isotopic ratios of stable elements. The AGB stars released O- and C-rich gas with important oxidizing implications to first solar system materials as recently detected in circumstellar environments [3]. REF: [1] Lada C.J. and Lada E.A. 2003. Ann. Rev. A&A. 41: 57; [2] Trigo-Rodriguez J.M. et al. 2009. MAPS 44: 627; [3] Decin L. et al. 2010. Nature 467: 64.

  17. New observations and models of circumstellar CO line emission of AGB stars in the Herschel SUCCESS programme

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; Teyssier, D.; Justtanont, K.; Olofsson, H.; Cerrigone, L.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Castro-Carrizo, A.; García-Lario, P.; Marston, A.

    2015-09-01

    Context. Asymptotic giant branch (AGB) stars are in one of the latest evolutionary stages of low to intermediate-mass stars. Their vigorous mass loss has a significant effect on the stellar evolution, and is a significant source of heavy elements and dust grains for the interstellar medium. The mass-loss rate can be well traced by carbon monoxide (CO) line emission. Aims: We present new Herschel/HIFI and IRAM 30 m telescope CO line data for a sample of 53 galactic AGB stars. The lines cover a fairly large range of excitation energy from the J = 1 → 0 line to the J = 9 → 8 line, and even the J = 14 → 13 line in a few cases. We perform radiative transfer modelling for 38 of these sources to estimate their mass-loss rates. Methods: We used a radiative transfer code based on the Monte Carlo method to model the CO line emission. We assume spherically symmetric circumstellar envelopes that are formed by a constant mass-loss rate through a smoothly accelerating wind. Results: We find models that are consistent across a broad range of CO lines for most of the stars in our sample, i.e., a large number of the circumstellar envelopes can be described with a constant mass-loss rate. We also find that an accelerating wind is required to fit, in particular, the higher-J lines and that a velocity law will have a significant effect on the model line intensities. The results cover a wide range of mass-loss rates (~10-8 to 2 × 10-5 M⊙ yr-1) and gas expansion velocities (2 to 21.5 km s-1) , and include M-, S-, and C-type AGB stars. Our results generally agree with those of earlier studies, although we tend to find slightly lower mass-loss rates by about 40%, on average. We also present "bonus" lines detected during our CO observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based on observations carried out with the IRAM 30 m Telescope. IRAM is

  18. AGB stars in Leo P and their use as metallicity probes

    NASA Astrophysics Data System (ADS)

    Lee ( ), Chien-Hsiu

    2016-09-01

    Leo P is the most metal-poor yet star-forming galaxy in the local volume, and has the potential to serve as a local counterpart to interpret the properties of distant galaxies in the early universe. We present a comprehensive search of asymptotic giant branch (AGB) stars in Leo P using deep infrared imaging. AGB stars are the major dust contributors; the metal poor nature of Leo P can help to shed light on the dust formation process in very low-metallicity environments, similar to the early Universe. We select and classify oxygen-rich and carbon-rich candidate AGB stars using J - K versus K colour-magnitude diagram. To filter out contaminations from background galaxies, we exploit the high-resolution Hubble Space Telescope imaging and identify 9 oxygen-rich AGBs and 13 carbon-rich AGB stars in Leo P. We then use the ratio of carbon-rich and oxygen-rich AGB stars (C/M ratio) as an indicator of on-site metallicity and derive the global metallicity [Fe/H] = -1.8 dex for Leo P, in good agreement with previous studies using isochrone fitting. Follow-up observations of these Leo P AGB stars in the mid-infrared [e.g. Spitzer, James Webb Space Telescope (JWST)] will be invaluable to measure the dust formation rates using Spectral energy distribution (SED) fitting.

  19. High resolution spectroscopy of the hot post-AGB stars IRAS 13266-5551 (CPD-55 5588) and IRAS 17311-4924 (Hen3-1428)

    NASA Astrophysics Data System (ADS)

    Sarkar, G.; Parthasarathy, M.; Reddy, B. E.

    2005-03-01

    High resolution spectra covering the wavelength range 4900 Å to 8250 Å of the hot post-AGB stars IRAS 13266-5551 (CPD-55 5588) and IRAS 17311-4924 (Hen3-1428) reveal absorption lines of C II, N II, O II, Al III, Si III and Fe III and a rich emission line spectrum consisting of H I, He I, C II, N I, O I, Mg II, Al II, Si II, V I, Mn I, Fe III, [Fe II] and [Cr II]. The presence of [N II] and [O I] lines and absence of [O III] indicate low excitation nebulae around these stars. The components of Na I absorption lines indicate the presence of neutral circumstellar envelopes in addition to the low excitation nebulae around these two hot post-AGB stars. The Hα lines show P-Cygni profiles indicating ongoing post-AGB mass loss. From the absorption lines we derived heliocentric radial velocities of 65.31 ± 0.34 km s-1 and 27.55 ± 0.74 km s-1 for IRAS 13266-5551 and IRAS 17311-4924 respectively. The high Galactic latitude and large radial velocity of IRAS 13266-5551 indicate that it belongs to the old disk population. Preliminary estimates for the CNO abundances in IRAS 13266-5551 are obtained. Based on observations made with the Victor M. Blanco 4m telescope of the Cerro Tololo Inter-American Observatory, Chile. Appendices and Tables [see full text], [see full text], [see full text] and [see full text] are only available in electronic form at http://www.edpsciences.org

  20. Herschel and ALMA observations of AGB star envelopes

    NASA Astrophysics Data System (ADS)

    Katrien Els Decin, Leen

    2015-08-01

    The stellar winds of evolved (super)giant stars are known to be the prime birthplaces for the interstellar material in our galaxy. Fusion in the stellar interiors creates carbon, nitrogen, oxygen, and for more massive stars elements such as magnesium, sulphur etc. are synthesized. Thanks to dredge-ups in the stellar atmosphere and subsequent extensive mass loss through a stellar wind this material is injected into the interstellar medium (ISM).These stellar winds are really unique chemical laboratories in which various gas-phase and gas-dust processes create and destroy gas and dust species and hence manufacture the pristine building blocks of the ISM. The efficiency and working of these various chemical processes is ultimately linked to the dynamical processes which establish the morpho-kinematical structure of the wind. Unraveling the intriguing coupling between these macro-scale dynamical and micro-scale chemical processes is a real challenge to which recent advances in instrumentation, theoretical modeling, and laboratory experiments have contributed a lot. Thanks to their unprecedented sensitivity, spatial resolution and wavelength coverage, Herschel and ALMA have proven to be two key instruments in solving some enigmas related to AGB stellar winds. In this talk, I will give a review of some of the most recent results in the field of AGB stellar winds based on Herschel and ALMA data and I will discuss some open questions that I hope will be answered in the next decade thanks to a combined effort between instrumentation and laboratory specialists and theoretical astrophysicists.

  1. Erratum: “Milky Way Red Dwarfs in the Borg Survey; Galactic Scale-Height and the Distribution of Dwarfs Stars in WFC3 Imaging" (2014, ApJ, 788, 77)

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Trenti, M.; Clarkson, W.; Sahu, K.; Bradley, L.; Stiavelli, M.; Pirzkal, N.; De Marchi, G.; Andersen, M.; Bouwens, R.; Ryan, R.; van Vledder, I.; van der Vlugt, D.

    2016-07-01

    In the catalog of M-dwarfs presented in Holwerda et al. (2014, H14 hereafter), there is an issue with the conversion from celestial coordinates to Galactic ones, done with pyephem a wrapper around a trusted and vetted library ephermis. Here we present the corrected coordinates (using AstroPy) and distances based on AB magnitudes. We have amended the tables and figures accordingly. The relation between vertical scale-height (z0) and M- dwarf subtype found in H14 is no longer present. We find a scale-height of 600 pc for all types, in part due to the presence of a second Galactic structural component.

  2. Constraining Mass Loss and Lifetimes of Low Mass, Low Metallicity AGB Stars

    NASA Astrophysics Data System (ADS)

    Rosenfield, P.; Marigo, P.; Girardi, L.; Dalcanton, J. J.; Bressan, A.; Gullieuszik, M.; Weisz, D. R.; Williams, B. F.; Dolphin, A.; Aringer, B.

    2015-08-01

    The evolution and lifetimes of thermally pulsing asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. We present a detailed framework for constraining model luminosity functions of TP-AGB stars using resolved stellar populations. We show an example of this method that compares various TP-AGB mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). We find that models with more efficient pre-dust driven mass loss produce results consistent with observations, as opposed to more canonical mass-loss models. Efficient pre-dust driven mass-loss predicts, for [Fe/H] ≲ -1.2, that lower mass TP-AGB stars (M≲ 1 M⊙) must have lifetimes less than about 1.2 Myr.

  3. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    2011-03-01

    in the halo; 32. Baade-Wesselink analyses of field vs. cluster RR lyrae variables; 33. The rotation of population II A stars; 34. Horizontal branch stars and possibly related objects; 35. A new group of post-AGB objects - the hot carbon-poor stars; 36. MK classifications of hot stars in the halo 37. Photometry of XX Virginis and V716 Ophiuchi and the period luminosity relations of type II cepheids; 38. Rotation and oxygen line strengths in blue horizontal branch stars; Part V. Miscellaneous: 39. UBV CCd photometry of the halo of M31; 40. Can stars still form in the galactic halo?; 41. The ultraviolet imaging telescope on the Astro -1 and Astro -2 missions; 42. Are analogues of hot subdwarf stars responsible for the UVX phenomenon in galaxy nucleli; 43. A survey for field BHB stars outside the solar circle; 44. Post-AGB A and F supergiants as standard candles; 45. The extended horizontal-branch: a challenge for stellar evolution theory; 46. Astronomical patterns in fractals: the work of A. G. Davis Philip on the Mandelbrot Set; Part VI. Summary: 47. Final remarks; Author index; Subject index.

  4. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    1994-08-01

    in the halo; 32. Baade-Wesselink analyses of field vs. cluster RR lyrae variables; 33. The rotation of population II A stars; 34. Horizontal branch stars and possibly related objects; 35. A new group of post-AGB objects - the hot carbon-poor stars; 36. MK classifications of hot stars in the halo 37. Photometry of XX Virginis and V716 Ophiuchi and the period luminosity relations of type II cepheids; 38. Rotation and oxygen line strengths in blue horizontal branch stars; Part V. Miscellaneous: 39. UBV CCd photometry of the halo of M31; 40. Can stars still form in the galactic halo?; 41. The ultraviolet imaging telescope on the Astro -1 and Astro -2 missions; 42. Are analogues of hot subdwarf stars responsible for the UVX phenomenon in galaxy nucleli; 43. A survey for field BHB stars outside the solar circle; 44. Post-AGB A and F supergiants as standard candles; 45. The extended horizontal-branch: a challenge for stellar evolution theory; 46. Astronomical patterns in fractals: the work of A. G. Davis Philip on the Mandelbrot Set; Part VI. Summary: 47. Final remarks; Author index; Subject index.

  5. Where Galactic Snakes Live

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a 'snake' (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the 'snake's belly' may be harboring beastly stars in the process of forming.

    The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the 'belly' of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars.

    The red ball at the bottom left is a 'supernova remnant,' the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake.

    Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky!

    Spitzer's new view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope

  6. The Galactic disc distribution of planetary nebulae with warm dust emission features - II

    NASA Astrophysics Data System (ADS)

    Casassus, S.; Roche, P. F.

    2001-02-01

    We address the question of whether the distribution of warm-dust compositions in IR-bright Galactic disc PNe (Paper I, Casassus et al.) can be linked to the underlying stellar population. The PNe with warm dust emission represent a homogeneous population, which is presumably young and minimally affected by a possible dependence of PN lifetime on progenitor mass. The sample in Paper I thus allows testing of the predictions of single-star evolution, through a comparison with synthetic distributions and under the assumption that tip-of-the-AGB and PN statistics are similar. We construct a schematic model for AGB evolution (adapted from Groenewegen & de Jong), the free parameters of which are calibrated with the luminosity function (LF) of C stars in the LMC, the initial-final mass relation and the range of PN compositions. The observed metallicity gradient and distribution of star-forming regions with Galactocentric radius (Bronfman et al.) allow us to synthesize the Galactic disc PN progenitor population. We find that the fraction of O-rich PNe, f(0), is a tight constraint on AGB parameters. For our best model, a minimum PN progenitor mass Mmin=1 M⊙ predicts that about 50per cent of all young PNe should be O-rich, compared with an observed fraction of 22per cent; thus Mmin=1.2 M⊙, at a 2σ confidence level Mmin=1.3 M⊙ at 1σ). By contrast, current AGB models for single stars can account neither for the continuous range of N enrichment (Leisy & Dennefeld) nor for the observation that the majority of very C-rich PNe have Peimbert type I (Paper I). f(O) is thus an observable quantity much easier to model. The decrease in f(O) with Galactocentric radius, as reported in Paper I, is a strong property of the synthetic distribution, independent of Mmin. This trend reflects the sensitivity of the surface temperature of AGB stars and of the core mass at the first thermal pulse to the Galactic metallicity gradient.

  7. The Distances of the Galactic Novae

    NASA Astrophysics Data System (ADS)

    Özdönmez, Aykut; Güver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-06-01

    Utilising the unique location of red clump giants on colour-magnitude diagrams obtained from various near-IR surveys, we derived specific reddening-distance relations towards 119 Galactic novae for which independent reddening measurements are available. Using the derived distance-extinction relation and the independent measurements of reddening we calculated the most likely distances for each system. We present the details of our distance measurement technique and the results of this analysis, which yielded the distances of 73 Galactic novae and allowed us to set lower limits on the distances of 46 systems. We also present the data of reddening-distance relations derived for each nova, which may be useful to analyze the different Galactic components present in the line of sight.

  8. The distances of the Galactic novae

    NASA Astrophysics Data System (ADS)

    Özdönmez, Aykut; Güver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-09-01

    Utilizing the unique location of red clump giants on colour-magnitude diagrams obtained from various near-infrared surveys, we derived specific reddening-distance relations towards 119 Galactic novae for which independent reddening measurements are available. Using the derived distance-extinction relation and the independent measurements of reddening we calculated the most likely distances for each system. We present the details of our distance measurement technique and the results of this analysis, which yielded the distances of 73 Galactic novae and allowed us to set lower limits on the distances of 46 systems. We also present the reddening-distance relations derived for each nova, which may be useful to analyse the different Galactic components present in the line of sight.

  9. SAO 244567 - A post-AGB star which has turned into a planetary nebula within the last 40 years

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; Garcia-Lario, P.; Pottasch, S. R.; Manchado, A.; Clavel, J.; de Martino, D.; van de Steene, G. C. M.; Sahu, K. C.

    1993-01-01

    SAO 244567 (Hen 1357 = CPD -59 deg 6926 = IRAS 17119-5926) is an IRAS source with far infrared colors and flux distribution similar to those of planetary nebulae. The IUE ultraviolet spectra obtained in July 1988 and April 1992 show nebular emission lines, and also the changes in the spectra suggest the formation of the planetary nebula and the rapid evolution of the central star. The optical spectrum of this star obtained by Henize around 1950 shows only the H-alpha line in emission, while the most recent one, obtained in 1990 shows strong forbidden emission lines corresponding to a low excitation and young planetary nebula. The IUE ultraviolet spectra show evidence for the presence of stellar wind and mass loss. The stellar lines show P-Cygni type profiles and the terminal velocity of the stellar wind is about - 3000 km/s. The spectral type of the central star is O8 V. The presence of a detached cold dust shell (125 K), high galactic latitude and abundances suggest that SAO 244567 has recently evolved from a low or intermediate mass progenitor star which has ejected its outer envelope during the AGB stage of evolution and is rapidly evolving towards hotter spectral types.

  10. AKARI All-Sky Survey: Contribution from AGB Stars to the Far Infrared Flux of the Milky Way

    NASA Astrophysics Data System (ADS)

    Pollo, A.; Rybka, P.; Takeuchi, T. T.

    2011-09-01

    Using the data from the AKARI FIS All-Sky Survey, we estimate the contribution from AGB stars to the far-infrared (FIR) flux from the Milky Way. We check the positions of different types of AGB stars in FIR color-color diagrams. Our conclusion is a large contribution from AGB stars, and particularly post-AGB stars, to the FIR flux in the outer regions of the Milky Way, and possibly other similar galaxies. FIR colors of different types of AGB stars are similar, with a large scatter, but post-AGB stars seem to be significantly redder and, as a result, contribute more to the total Galaxy flux at longer FIR wavelengths.

  11. Integrated Properties of AGB Stars in Resolved and Unresolved Stellar Populations: Simple Stellar Populations and Star Clusters

    NASA Astrophysics Data System (ADS)

    Lançon, A.

    2011-09-01

    The evolution of AGB stars is notoriously complex. The confrontation of AGB population models with observed stellar populations is a useful alternative to the detailed study of individual stars in efforts to converge towards a reliable evolution theory. I review here the impact of studies of star clusters on AGB models and AGB population synthesis, deliberately leaving out any more complex stellar populations. Over the last 10 years, despite much effort, the absolute uncertainties in the predictions of the light emitted by intermediate-age populations have not been reduced to a satisfactory level. Observational sample definitions, as well as the combination of the natural variance in AGB properties with small number statistics, are largely responsible for this situation. There is hope that the constraints may soon become strong enough, thanks to large unbiased surveys of star clusters, resolved colour-magnitude diagrams, and new analysis methods that can account for the stochastic nature of AGB populations in clusters.

  12. Molecular processes from the AGB to the PN stage

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. Anibal

    2012-08-01

    Many complex organic molecules and inorganic solid-state compounds have been observed in the circumstellar shell of stars (both C-rich and O-rich) in the transition phase between Asymptotic Giant Branch (AGB) stars and Planetary Nebulae (PNe). This short (~102-104 years) phase of stellar evolution represents a wonderful laboratory for astrochemistry and provides severe constraints on any model of gas-phase and solid-state chemistry. One of the major challenges of present day astrophysics and astrochemistry is to understand the formation pathways of these complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene in the case of a C-rich chemistry and oxides and crystalline silicates in O-rich environments) in space. In this review, I present an observational review of the molecular processes in the late stages of stellar evolution with a special emphasis on the first detections of fullerenes and graphene in PNe.

  13. Dust clouds around red giant stars - Evidence of sublimating comet disks?

    NASA Astrophysics Data System (ADS)

    Matese, J. J.; Whitmire, D. P.; Reynolds, R. T.

    1989-09-01

    The dust production by disk comets around intermediate mass stars evolving into red giants is studied, focusing on AGB supergiants. The model of Iben and Renzini (1983) is used to study the observed dust mass loss for AGB stars. An expression is obtained for the comet disk net dust production rate and values of the radius and black body temperature corresponding to peak sublimation are calculated for a range of stellar masses. Also, the fractional amount of dust released from a cometesimal disk during a classical nova outburst is estimated.

  14. Discovery in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    In our efforts to map our galaxys structure, one region has remained very difficult to probe: the galactic center. A new survey, however, uses infrared light to peer through the gas and dust in the galactic plane, searching for variable stars in the bulge of the galaxy. This study has discovered a population of very young stars in a thin disk in the galactic center, providing clues to the star formation history of the Milky Way over the last 100 million years.Obscured CenterThe center of the Milky Way is dominated by a region known as the galactic bulge. Efforts to better understand this region in particular, its star formation history have been hindered by the stars, gas, and dust of the galactic disk, which prevent us from viewing the galactic bulge at low latitudes in visible light.The positions of the 35 classical Cepheids discovered in VVV data, projected onto an image of the galactic plane. Click for a better look! The survey area is bounded by the blue lines, and the galactic bar is marked with a red curve. The bottom panel shows the position of the Cepheids overlaid on the VVV bulge extinction map. [Dkny et al. 2015]Infrared light, however, can be used to probe deeper through the dust than visible-light searches. A new survey called VISTA Variables in the Via Lactea (VVV) uses the VISTA telescope in Chile to search, in infrared, for variable stars in the inner part of the galaxy. The VVV survey area spans the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high.Led by Istvn Dkny, a researcher at the Millennium Institute of Astrophysics and the Pontifical Catholic University of Chile, a team has now used VVV data to specifically identify classical Cepheid variable stars in the bulge. Why? Cepheids are pulsating stars with a very useful relation between their periods and luminosities that allows them to be used as distance indicators. Moreover, classical Cepheids are indicators of young stellar populations which can

  15. High rotational CO lines in post-AGB stars and PNe

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Tielens, Alexander G. G. M.; Skinner, C. J.; Haas, Michael R.

    1995-01-01

    A significant fraction of a star's initial mass is lost while it is on the Asymptotic Giant Branch (AGB). Mass loss rates range from 10(exp -7) solar mass/yr for early AGB stars to a few 10(exp -4) solar mass/yr for stars at the tip of the AGB. Dust grains condense from the outflow as the gas expands and form a dust shell around the central star. A superwind (approximately 10(exp -4) to 10(exp -3) solar mass/yr) is thought to terminate the AGB phase. In the post-AGB phase, the star evolves to a higher effective temperature, the mass loss decreases (approximately 10(exp -8) solar mass/yr), but the wind velocity increases (approximately 1000 km/s). During this evolution, dust and gas are exposed to an increasingly harsher radiation field and when T(sub eff) reaches about 30,000 K, the nebula is ionized and becomes a planetary nebula (PN). Photons from the central star can create a photodissociation region (PDR) in the expanding superwind. Gas can be heated through the photoelectric effect working on small grains and polycyclic aromatic hydrocarbons (PAH's). This gas can cool via the atomic fine structure lines of O I (63 microns and 145 microns) and C II (158 microns), as well as the rotational lines of CO. In the post-AGB phase, the fast wind from the central star will interact with the material ejected during the AGB phase. The shock caused by this interaction will dissociate and heat the gas. This warm gas will cool through atomic fine structure lines of O I and the rotational lines of (newly formed) CO.

  16. Wide-field Monitoring of the Galactic Plane in the K- and the H-band

    NASA Astrophysics Data System (ADS)

    Yanagisawa, K.; Nakada, Y.; Izumiura, H.; Watanabe, E.; Shimizu, Y.; Okada, N.; Okita, K.; Norimoto, K.; Okata, T.; Koyano, H.; Yoshida, M.

    The Okayama Astrophysical Observatory of NAOJ started the monitoring program of mass-losing AGB stars using an imaging camera named Okayama Astrophysical Observatory Wide Field Camera. The fast optics yields a field of view of 1¡ß1 deg2 and the pixel resolution of 2 arcsec at the focus of the 91-cm telescope. A HAWAII2 array will be installed inside the camera reaching the limiting magnitude of K=13 with a 45-s exposure. In 2003 the monitoring will start covering the Galactic plane from l=0 to 270 deg every three weeks.

  17. Multiple populations in more metal-rich galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Cordero, Maria J.

    In this thesis we present chemical abundances for bright stars in the intermediate metallicity globular cluster (GC) M5, and the relatively metal-rich GCs M71 and 47 Tuc with the goal of improving the understanding of chemical evolution in the metallicity regime sampled by these three GCs. The first chapter presents a brief historical overview in light element abundance variations in globular clusters. In the second chapter we present the results obtained for 47 Tuc, the most-metal rich cluster of my sample. 47 Tuc is an ideal target to study chemical evolution and GC formation in massive more metal-rich GCs since it is the closest massive GC. Chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu were determined for 164 red giant branch (RGB) stars in 47 Tuc using spectra obtained with both the Hydra multi-fiber spectrograph at the Blanco 4-m telescope and the FLAMES multi-object spectrograph at the ESO Very Large Telescope. The average [Fe/H]= --0.79+/-0.09 dex is consistent with literature values, as well as over-abundances of alpha-elements ([alpha/Fe] ~ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r-process dominated ([Eu/La]=+0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anti-correlation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ~ --0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A KS-test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of AGB nucleosynthesis yields

  18. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  19. Constraints on Galactic Center Activity: A Search for Enhanced Galactic Center Lithium and Boron

    NASA Astrophysics Data System (ADS)

    Lubowich, D. A.; Turner, B. E.; Hobbs, L. M.

    1998-12-01

    The abundances of lithium and boron provide important information about big bang nucleosynthesis, Galactic chemical evolution, stellar evolution, and cosmic-ray spallation reactions. We conducted the first search for the ground-state hyperfine-structure transitions of Li I (2S1/2; F = 2-1 803 MHz) and B I (2P1/2; F = 2-1 732 MHz). We used the 43 m NRAO radio telescope to search for enhanced Galactic center (GC) Li and B expected from models of Galactic activity. We did not detect Li I or B I and obtained upper limits of N(Li I) < 1.9 × 1016 cm-2, (Li/H) < 3.9 × 10-8, N(B I) < 2.2 × 1018 cm-2, and (B/H) < 9.2 × 10-6 for the dense 20 km s-1 Sgr A molecular cloud where our largest sources of uncertainties are Li I/Li, B I/B, and N(H). Our observations imply (Li/H)GC < 22 (Li/H)disk, (Li/H)GC < 39 (Li/H)disk-spallation, (B/H)GC < 1.2 × 104 (B/H)disk, (B/H)GC < 1.5 × 104 (B/H)disk-spallation. For a simple model combining mass loss from AGB stars (only for Li), spallation reactions, and SN ν-nucleosynthesis, we estimate (Li/H)GC = 1.3 × 10-8 (13 times enhancement) and (B/H)GC = 7.4 × 10-9 (10 times enhancement). If Li is primarily produced via spallation reactions from a cosmic-ray proton flux φp(t) with the same energy and trapping as in the disk, then [\\smallint φp(t)dt]GC < 13[\\smallint φp(t)dt]disk. Comparing our results to AGN models, we conclude that the GC has not had an extended period of AGN activity containing a large cosmic-ray flux (LCR <= 1044 ergs s-1 for 108 yr), a large low-energy cosmic-ray flux (less than 100 times the disk flux), or a large γ-ray flux (Lγ < 1042 ergs s-1 for 109 yr). Furthermore, since any Galactic deuterium production will significantly enhance the abundances of Li and B, our results imply that there are no sources of D in the GC or Galaxy. Therefore, all the Galactic D originated from the infall of primordial matter with the current D/H reduced by astration and mixing.

  20. FUV Emission from AGB Stars: Modeling Accretion Activity Associated with a Binary Companion

    NASA Technical Reports Server (NTRS)

    Stevens, Alyx Catherine; Sahai, Raghvendra

    2012-01-01

    It is widely believed that the late stages of evolution for Asymptotic Giant Branch (AGB) stars are influenced by the presence of binary companions. Unfortunately, there is a lack of direct observational evidence of binarity. However, more recently, strong indirect evidence comes from the discovery of UV emission in a subsample of these objects (fuvAGB stars). AGB stars are comparatively cool objects (< or =3000 K), thus their fluxes falls off drastically for wavelengths 3000 Angstroms and shorter. Therefore, ultraviolet observations offer an important, new technique for detecting the binary companions and/or associated accretion activity. We develop new models of UV emission from fuvAGB stars constrained by GALEX photometry and spectroscopy of these objects. We compare the GALEX UV grism spectra of the AGB M7 star EY Hya to predictions using the spectral synthesis code Cloudy, specifically investigating the ultraviolet wavelength range (1344-2831 Angstroms). We investigate models composed of contributions from a photoionized "hot spot" due to accretion activity around the companion, and "chromospheric" emission from collisionally ionized plasma, to fit the UV observations.

  1. Galactic evolution of 7Li

    NASA Astrophysics Data System (ADS)

    Matteucci, Francesca

    2010-04-01

    Lithium represents a key element in cosmology, as it is one of the few nuclei synthesized during the Big Bang. The primordial abundance of 7Li allows us to impose constraints on the primordial nucleosynthesis and on the baryon density of the universe. However, 7Li is not only produced during the Big Bang but also during galactic evolution: measures of stellar Li in our Galaxy suggest an almost constant Li abundance (the so-called Spite plateau) at low metallicities and a subsequent increase in the disk stars, leading to a Li abundance in Population I stars higher by a factor of ten than in Population II stars. This means that there must exist several possible stellar sources of 7Li: asymptotic giant branch stars, supernovae, novae, red giant stars. 7Li is also partly produced in spallation processes while 6Li is entirely produced by such processes. All of these sources have been included in galactic chemical evolution models and constraints have been derived on the primordial 7Li and its evolution, as well on stellar models. I will review these models and their results and what we have learned about 7Li evolution. Some still open problems, such as the disagreement between the primordial 7Li abundance as derived by WMAP and as measured in Population II stars, and the uncertainties about the main sources of stellar 7Li will be discussed.

  2. The nebula around the post-AGB star 89 Herculis

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; van Winckel, H.; Neri, R.; Alcolea, J.; Castro-Carrizo, A.; Deroo, P.

    2007-06-01

    Aims:We aim to study the structure of the nebula around the post-AGB, binary star 89 Her. The presence of a rotating disk around this star had been proposed but not been yet confirmed by observations. Methods: We present high-resolution PdBI maps of CO J=2-1 and 1-0. Properties of the nebula are directly derived from the data and model fitting. We also present N-band interferometric data on the extent of the hot dust emission, obtained with the VLTI. Results: Two nebular components are found: (a) an extended hour-glass-like structure, with expansion velocities of 7 km s-1 and a total mass 3× 10-3 M{⊙}, and (b) an unresolved very compact component, smaller than 0.4 arcsec and with a low total velocity dispersion of 5 km s-1. We cannot determine the velocity field in the compact component, but we argue that it can hardly be in expansion, since this would require too recent and too sudden an ejection of mass. On the other hand, assuming that this component is a Keplerian disk, we derive disk properties that are compatible with expectations for such a structure; in particular, the size of the rotating gas disk should be very similar to the extent of the hot dust component from our VLTI data. Assuming that the equator of the extended nebula coincides with the binary orbital plane, we provide new results on the companion star mass and orbit. Based on observations carried out with the IRAM Plateau de Bure Interferometer, as well as on observations of the Belgian Guaranteed time on VISA (ESO). IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  3. Optical Properties of Amorphous Alumina Dust in the Envelopes around O-Rich AGB Stars

    NASA Astrophysics Data System (ADS)

    Suh, Kyung-Won

    2016-08-01

    We investigate optical properties of amorphous alumina (Al_2O_3) dust grains in the envelopes around O-rich asymptotic giant branch (AGB) stars using laboratory measured optical data. We derive the optical constants of amorphous alumina over a wide wavelength range that satisfy the Kramers-Kronig relation and reproduce the laboratory data. Using the amorphous alumina and silicate dust, we compare the radiative transfer model results with the observed spectral energy distributions. Comparing the theoretical models with observations on various IR two-color diagrams for a large sample of O-rich AGB stars, we find that the amorphous alumina dust (about 10-40%) mixed with amorphous silicate better models the observed points for the O-rich AGB stars with thin dust envelopes.

  4. Dust in the Early Universe and the Contribution of AGB Stars

    NASA Astrophysics Data System (ADS)

    Schneider, R.; Valiante, R.; Ventura, P.; dell'Agli, F.; di Criscienzo, M.

    2015-08-01

    We review the role of AGB stars in early dust enrichment in light of new theoretical dust yields for stars with mass 1-8 M⊙ and metallicity 3×10-4≥ Z ≥0.008, obtained with models that follow stellar evolution from the pre-main sequence phase until the almost complete ejection of the stellar mantle. The models have been shown to reproduce the measured dust production rates by carbon-rich and oxygen-rich AGB stars in the Small and Large Magellanic Clouds, as well as the observed colors of the so-called extreme stars in the LMC. We discuss the relative role of AGB stars and SNe in early dust enrichment and the impact of these two classes of stellar sources on the nature and composition of the first dust.

  5. Winds of M- and S-type AGB stars: an unorthodox suggestion for the driving mechanism

    NASA Astrophysics Data System (ADS)

    Höfner, S.; Andersen, A. C.

    2007-04-01

    Context: Current knowledge suggests that the dust-driven wind scenario provides a realistic framework for understanding mass loss from C-rich AGB stars. For M-type objects, however, recent detailed models demonstrate that radiation pressure on silicate grains is not sufficient to drive the observed winds, contrary to previous expectations. Aims: In this paper, we suggest an alternative mechanism for the mass loss of M-type AGB stars, involving the formation of both carbon and silicate grains due to non-equilibrium effects, and we study the viability of this scenario. Methods: We model the dynamical atmospheres and winds of AGB stars by solving the coupled system of frequency-dependent radiation hydrodynamics and time-dependent dust formation, using a parameterized description of non-equilibrium effects in the gas phase. This approach allows us to assess under which circumstances it is possible to drive winds with small amounts of carbon dust and to get silicate grains forming in these outflows at the same time. Results: The properties of the resulting wind models, such as mass-loss rates and outflow velocities, are well within the observed limits for M-type AGB stars. Furthermore, according to our results, it is quite unlikely that significant amounts of silicate grains will condense in a wind driven by a force totally unrelated to dust formation, as the conditions in the upper atmosphere and wind acceleration region put strong constraints on grain growth. Conclusions: .The proposed scenario provides a natural explanation for the observed similarities in wind properties of M-type and C-type AGB stars and implies a smooth transition for stars with increasing carbon abundance, from solar-composition to C-rich AGB stars, possibly solving the longstanding problem of the driving mechanism for stars with a C/O close to one.

  6. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Sanz-Forcada, Jorge; Sánchez Contreras, Carmen

    2016-07-01

    Almost all of our current understanding of the late evolutionary stages of (1 — 8) Mʘ stars is based on single-star models. However, binarity can drastically affect late stellar evolution, producing dramatic changes in the history and geometry of mass loss that occurs in stars as they evolve off the AGB to become planetary nebulae (PNe). A variety of binary models have been proposed, which can lead to the generation of accretion disks and magnetic fields, which in turn produce the highly collimated jets that have been proposed as the primary agents for the formation of bipolar and multipolar PNe. However, observational evidence of binarity in AGB stars is sorely lacking simply these stars are very luminous and variable, invalidating standard techniques for binary detection. Using an innovative technique of searching for UV emission from AGB stars with GALEX, we have identified a class of AGB stars with far- ultraviolet excesses (fuvAGB stars), that are likely candidates for active accretion associated with a binary companion. We have carried out a pilot survey for X-ray emission from fuvAGB stars. The X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations show similar variations in the UV fluxes. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a main-sequence companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  7. VizieR Online Data Catalog: Obscured AGB in Magellanic Clouds. I. (Loup+ 1997)

    NASA Astrophysics Data System (ADS)

    Loup, C.; Zijlstra, A. A.; Waters, L. B. F. M.; Groenewegen, M. A. T.

    1997-02-01

    We have selected 198 IRAS sources in the Large Magellanic Cloud, and 11 in the Small Magellanic Cloud, which are the best candidates to be mass-loosing AGB stars (or possibly post-AGB stars). We used the catalogues of Schwering & Israel (1990, Cat. ) and Reid et al. (1990, Cat. ). They are based on the IRAS pointed observations and have lower detection limits than the Point Source Catalogue. We also made cross-identifications between IRAS sources and optical catalogues. (8 data files).

  8. Fermi Galactic Center Zoom

    NASA Video Gallery

    This animation zooms into an image of the Milky Way, shown in visible light, and superimposes a gamma-ray map of the galactic center from NASA's Fermi. Raw data transitions to a view with all known...

  9. Red supergiants as type II supernova progenitors

    NASA Astrophysics Data System (ADS)

    Negueruela, Ignacio; Dorda, Ricardo; González-Fernández, Carlos; Marco, Amparo

    2015-08-01

    Recent searches for supernova IIp progenitors in external galaxies have led to the identification of red objects with magnitudes and colours indicative of red supergiants, in most cases implying quite low luminosities and hence masses well below 10Msol. Stellar models, on the other hand, do not predict explosions from objects below 9 Msol. What does our knowledge of local red supergiants tells us about the expected properties of such objects?We have carried out a comprehensive spectroscopic and photometric study of a sample of hundreds of red supergiants in the Milky Way and both Magellanic Clouds. We have explored correlations between different parameters and the position of stars in the HR diagrams of open clusters. At solar metallicty, there is strong evidence for a phase of very heavy mass loss at the end of the red supergiant phase, but the existence of such a phase is still not confirmed at SMC metallicities. Objects of ~ 7Msol, on the other hand, become very dusty in the SMC, and appear as very luminous Miras.Among Milky Way clusters, we find a surprising lack of objects readily identifiable as the expected 7 to 10 Msol red supergiants or AGB stars. We are carrying out an open cluster survey aimed at filling this region of the HR diagram with reliable data. Finally, we will discuss the implications of all this findings for the expected properties of supernova progenitors, as it looks unlikely that typical red supergiants may explode without undergoing further evolution.

  10. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  11. Near infrared photographic sky survey. 1: Catalog of red stellar objects

    NASA Technical Reports Server (NTRS)

    Craine, E. R.; Duerr, R. E.; Horner, V. M.; Imhoff, C. L.; Routsis, D. E.; Swihart, D. L.; Turnshek, D. A.

    1979-01-01

    Red stellar objects for which V-1 was greater than a value of about 2 (supm). 5 were extracted from photographs of 23 program fields. Tabular data for each field show the object name; the 1950 epoch right ascension, declination, galactic longitude, galactic latitude; radial distance from field venter in decimal degrees; color classes; and objects ordered by redness.

  12. Sublimating comets as the source of nucleation seeds for grain condensation in the gas outflow from AGB stars

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Matese, John J.; Reynolds, R. T.

    1989-01-01

    A growing amount of observational and theoretical evidence suggests that most main sequence stars are surrounded by disks of cometary material. The dust production by comets in such disks is investigated when the central stars evolve up the red giant and asymptotic giant branch (AGB). Once released, the dust is ablated and accelerated by the gas outflow and the fragments become the seeds necessary for condensation of the gas. The origin of the requisite seeds has presented a well known problem for classical nucleation theory. This model is consistent with the dust production observed in M giants and supergiants (which have increasing luminosities) and the fact that earlier supergiants and most WR stars (whose luminosities are unchanging) do not have significant dust clouds even though they have significant stellar winds. Another consequence of the model is that the spatial distribution of the dust does not, in general, coincide with that of the gas outflow, in contrast to the conventional condensation model. A further prediction is that the condensation radius is greater that that predicted by conventional theory which is in agreement with IR interferometry measurements of alpha-Ori.

  13. A Distinct Structure inside the Galactic Bar

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo; Nagata, Tetsuya; Baba, Daisuke; Haba, Yasuaki; Kadowaki, Ryota; Kato, Daisuke; Kurita, Mikio; Nagashima, Chie; Nagayama, Takahiro; Murai, Yuka; Nakajima, Yasushi; Tamura, Motohide; Nakaya, Hidehiko; Sugitani, Koji; Naoi, Takahiro; Matsunaga, Noriyuki; Tanabé, Toshihiko; Kusakabe, Nobuhiko; Sato, Shuji

    2005-03-01

    We present the result of a near-infrared (JHKs) survey along the Galactic plane, -10.5d<=l<=10.5d and b=+1deg, with the IRSF 1.4 m telescope and the SIRIUS camera. Ks versus H-Ks color-magnitude diagrams reveal a well-defined population of red clump stars whose apparent magnitude peak changes continuously along the Galactic plane, from Ks=13.4 at l=-10deg to Ks=12.2 at l=10deg after dereddening. This variation can be explained by the barlike structure found in previous studies, but we find an additional inner structure at |l|<~4deg, where the longitude-apparent magnitude relation is distinct from the outer bar and where the apparent magnitude peak changes by only ~0.1 mag over the central 8°. The exact nature of this inner structure is as yet uncertain.

  14. AKARI All-Sky Far-Infrared Survey: Where to Look for AGB Stars?

    NASA Astrophysics Data System (ADS)

    Rybka, P.; Pollo, A.; Takeuchi, T. T.

    2011-09-01

    We selected a sample of 5,176 far-infrared sources from the FIS AKARI All-Sky Survey. Searching public databases, we identified their counterparts observed at other wavelengths and derived a method to separate stars from galaxies. The sample of stars is dominated by AGB-related objects.

  15. FUV and Optical Spectroscopy of Hot Post-AGB Stars in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Dixon, William V.

    2004-01-01

    The goal of this program was to determine the atmospheric parameters (effective temperature and surface gravity) and abundances of the hot, post-AGB (PAGB) stars in globular clusters observed with the Hopkins Ultraviolet Telescope (HUT) on the Astro-l and 2 missions.

  16. The LF of TP-AGB stars in the LMC/SMC

    NASA Technical Reports Server (NTRS)

    Bruzual, Gustavo; Charlot, Stephane; GonzalezLopezlira, Rosa; Srinivasan, Sundar; Boyer, Martha L.

    2013-01-01

    We show that Monte Carlo simulations of the TP-AGB stellar population in the LMC and SMC galaxies using the CB. models produce LF and color distributions that are in closer agreement with observations than those obtained with the BC03 and CB07 models. This is a progress report of work that will be published elsewhere.

  17. AGB Statement on Board Responsibility for the Oversight of Educational Quality

    ERIC Educational Resources Information Center

    Association of Governing Boards of Universities and Colleges, 2011

    2011-01-01

    This "Statement on Board Responsibility for the Oversight of Educational Quality," approved by the Board of Directors of the Association of Governing Boards (AGB) in March 2011, urges institutional administrators and governing boards to engage fully in this area of board responsibility. The seven principles in this statement offer suggestions to…

  18. AGB stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Gallino, R.; Busso, M.; Raiteri, C. M.

    1993-01-01

    The purpose is to estimate the possible contribution of some short-lived nuclei to the early solar nebula from asymptotic giant branch (AGB) sources. Low mass (1 to 3 solar mass) AGB stars appear to provide a site for synthesis of the main s process component for solar system material with an exponential distribution of neutron irradiations varies as exp(-tau/tau(sub 0)) (where tau is the time integrated neutron flux with a mean neutron exposure tau(sub 0)) for solar abundances with tau(sub 0) = 0.28 mb(sup -1). Previous workers estimated the synthesis of key short-lived nuclei which might be produced in AGB stars. While these calculations exhibit the basic characteristics of nuclei production by neutron exposure, there is need for a self-consistent calculation that follows AGB evolution and takes into account the net production from a star and dilution with the cloud medium. Many of the general approaches and the conclusions arrived at were presented earlier by Cameron. The production of nuclei for a star of 1.5 solar mass during the thermal pulsing of the AGB phase was evaluated. Calculations were done for a series of thermal pulses with tau(sub 0) = 0.12 and 0.28 mb(sup -1). These pulses involve s nucleosynthesis in the burning shell at the base of the He zone followed by the ignition of the H burning shell at the top of the He zone. After about 10-15 cycles the abundances of the various nuclei in the He zone become constant. Computations of the abundances of all nuclei in the He zone were made following Gallino. The mass of the solar nebula was considered to consist of some initial material of approximately solar composition plus some contributions from AGB stars. The ratios of the masses required from the AGB He burning zone to the ISM necessary to produce the observed value of Pd-107/Pd-108 in the early solar system were calculated and this dilution factor was applied to all other relevant nuclei.

  19. VizieR Online Data Catalog: C2 Phillips and CN Red bands in HD 56126 (Bakker+,

    NASA Astrophysics Data System (ADS)

    Bakker, E. J.; Waters, L. B. F. M.; Lamers, H. J. G. L. M.; Trams, N. R.; van der Wolf, F. L. A.

    1996-03-01

    We present the detection of molecular absorption lines in the optical spectrum of the post-AGB star HD 56126. The C2 Phillips A1{PI}u- X1{SIGMA}+g(1,0), (2,0), and (3,0); Swan d3{PI}g-a3{PI}u(0,0) and (1,0); and CN Red system A2{PI}-X2{SIGMA}+ (1,0), (2,0), (3,0), and (4,0) bands have been identified. From the identification of the molecular bands we find an expansion velocity of 8.5+/-0.6km/s independent of excitation condition or molecular specie. On the basis of the expansion velocity, rotational temperatures, and molecular column densities we argue that the line-forming region is the AGB remnant. This is in agreement with the expansion velocity derived from the CO lines. We find column densities of logNC2=15.3+/-0.3cm-2 and logNCN=15.5+/-0.3cm-2, and rotational temperatures of Trot=242+/-20K and Trot=24+/-5K respectively for C2 and CN. By studying molecular line absorption in optical spectra of post-AGB stars we have found a new tracer of the AGB remnant. From comparison with the results of CO and IR observations it is possible to obtain information on non-spherical behavior of the AGB remnant. Using different molecules with different excitation conditions it should be possible to study the AGB remnant as a function of the distance to the star, and thus as a function of the evolutionary status of the star on the AGB. (6 data files).

  20. On the interior properties of red giants

    NASA Astrophysics Data System (ADS)

    Iben, I., Jr.

    The interior evolution of red giants is focused on, the major emphasis being on the evolution of stars during the double shell-burning stage. The evolutionary course during the first and second ascent up the red giant branch of the H-R diagram are discussed for stars that vary with respect to certain critical masses, and the thermal pulse phase is also treated. Core, envelope, and surface phenomena are explained along with the process of development into white dwarfs or supernovas. The interplay of internal forces caused by various fuel-burning processes, electron-degeneracy pressure, and gravity are detailed, and phenomena such as core dredge-up, relaxed oscillations, and AGB stars are explained. Numbers are given for the properties of H-burning and convective shells, and detailed comparisons with observations are made.

  1. RELICS OF ANCIENT POST-AGB STARS IN A PRIMITIVE METEORITE

    SciTech Connect

    Jadhav, M.; Huss, G. R.; Pignatari, M.; Herwig, F.; Zinner, E.; Gallino, R.

    2013-11-10

    Graphite is one of the many presolar circumstellar condensate species found in primitive meteorites. While the isotopic compositions of low-density graphite grains indicate an origin in core-collapse supernovae, some high-density grains have extreme isotopic anomalies in C, Ca, and Ti, which cannot be explained by envelope predictions of asymptotic giant branch (AGB) stars or theoretical supernova models. The Ca and Ti isotopic anomalies, however, match the predictions of He-shell abundances in AGB stars. In this study, we show that the C, Ca, and Ti isotopic anomalies are consistent with nucleosynthesis predictions of the H-ingestion phase during a very late thermal pulse (VLTP) event in post-AGB stars. The low {sup 12}C/{sup 13}C isotopic ratios in these grains are a result of abundant {sup 12}C efficiently capturing the protons that are being ingested during the VLTP. Very high neutron densities of ∼10{sup 15} cm{sup –3}, typical of the i-process, are achieved during this phase in post-AGB stars. The large {sup 42,43,44}Ca excesses in some graphite grains are indicative of neutron capture nucleosynthesis during VLTP. The comparison of VLTP nucleosynthesis calculations to the graphite data also indicate that apparent anomalies in the Ti isotopic ratios are due to large contributions from {sup 46,48}Ca, which cannot be resolved from the isobars {sup 46,48}Ti during the measurements. We conclude that presolar graphite grains with moderate to extreme Ca and Ti isotopic anomalies originate in post-AGB stars that suffer a VLTP.

  2. Relics of Ancient Post-AGB Stars in a Primitive Meteorite

    NASA Astrophysics Data System (ADS)

    Jadhav, M.; Pignatari, M.; Herwig, F.; Zinner, E.; Gallino, R.; Huss, G. R.

    2013-11-01

    Graphite is one of the many presolar circumstellar condensate species found in primitive meteorites. While the isotopic compositions of low-density graphite grains indicate an origin in core-collapse supernovae, some high-density grains have extreme isotopic anomalies in C, Ca, and Ti, which cannot be explained by envelope predictions of asymptotic giant branch (AGB) stars or theoretical supernova models. The Ca and Ti isotopic anomalies, however, match the predictions of He-shell abundances in AGB stars. In this study, we show that the C, Ca, and Ti isotopic anomalies are consistent with nucleosynthesis predictions of the H-ingestion phase during a very late thermal pulse (VLTP) event in post-AGB stars. The low 12C/13C isotopic ratios in these grains are a result of abundant 12C efficiently capturing the protons that are being ingested during the VLTP. Very high neutron densities of ~1015 cm-3, typical of the i-process, are achieved during this phase in post-AGB stars. The large 42, 43, 44Ca excesses in some graphite grains are indicative of neutron capture nucleosynthesis during VLTP. The comparison of VLTP nucleosynthesis calculations to the graphite data also indicate that apparent anomalies in the Ti isotopic ratios are due to large contributions from 46, 48Ca, which cannot be resolved from the isobars 46, 48Ti during the measurements. We conclude that presolar graphite grains with moderate to extreme Ca and Ti isotopic anomalies originate in post-AGB stars that suffer a VLTP.

  3. X-ray Observations of AGB Stars with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Kastner, J. H.; Soker, N.

    2003-12-01

    We report the preliminary results of an XMM-Newton observing program to determine the X-ray emission properties of a sample of well-studied AGB stars. Our goal is to set constraints on magnetic (dynamo) activity during mass-losing AGB evolutionary stages, and thereby test models wherein AGB star magnetic fields influence mass loss geometry and shape planetary nebulae. We detected X-ray emission from the Mira system, with a total EPIC count rate of ˜0.11 s-1. This emission may be due to accretion or magnetic activity associated with Mira B, a companion of uncertain nature located only 0.6" from the mass-losing AGB star. The X-ray spectrum of the Mira system displays emission from highly ionized Ne, and initial (single-component) spectral fits suggest a characteristic emission region temperature ˜10 MK, intervening absorbing column ˜3×1021 cm-2, and an intrinsic X-ray luminosity of ˜2×1029 ergs s-1. The (apparently single) star T Cas is undetected in X-rays. At the meeting, we will also report on results from observations of TX Cam, an AGB star for which the presence of relatively strong (5-10 G at ˜3 R⋆ ) magnetic fields has been inferred from maser polarization measurements in the radio. This research is partly supported via NASA/GSFC grant NAG5--13158 (XMM-Newton Guest Observer program) to the Center for Imaging Science at Rochester Institute of Technology.

  4. Photodissociation and chemistry of N2 in the circumstellar envelope of carbon-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Millar, Tom J.; Walsh, Catherine; Heays, Alan N.; van Dishoeck, Ewine F.

    2014-08-01

    Context. The envelopes of asymptotic giant branch (AGB) stars are irradiated externally by ultraviolet photons; hence, the chemistry is sensitive to the photodissociation of N2 and CO, which are major reservoirs of nitrogen and carbon, respectively. The photodissociation of N2 has recently been quantified by laboratory and theoretical studies. Improvements have also been made for CO photodissociation. Aims: For the first time, we use accurate N2 and CO photodissociation rates and shielding functions in a model of the circumstellar envelope of the carbon-rich AGB star, IRC +10216. Methods: We use a state-of-the-art chemical model of an AGB envelope, the latest CO and N2 photodissociation data, and a new method for implementing molecular shielding functions in full spherical geometry with isotropic incident radiation. We compare computed column densities and radial distributions of molecules with observations. Results: The transition of N2→ N (also, CO → C → C+) is shifted towards the outer envelope relative to previous models. This leads to different column densities and radial distributions of N-bearing species, especially those species whose formation/destruction processes largely depend on the availability of atomic or molecular nitrogen, for example, CnN (n = 1, 3, 5), CnN- (n = 1, 3, 5), HCnN (n = 1, 3, 5, 7, 9), H2CN and CH2CN. Conclusions: The chemistry of many species is directly or indirectly affected by the photodissociation of N2 and CO, especially in the outer shell of AGB stars where photodissociation is important. Thus, it is important to include N2 and CO shielding in astrochemical models of AGB envelopes and other irradiated environments. In general, while differences remain between our model of IRC +10216 and the observed molecular column densities, better agreement is found between the calculated and observed radii of peak abundance.

  5. Abundances of presolar graphite and SiC from supernovae and AGB stars in the Murchison meteorite

    SciTech Connect

    Amari, Sachiko; Zinner, Ernst; Gallino, Roberto

    2014-05-02

    Pesolar graphite grains exhibit a range of densities (1.65 – 2.20 g/cm{sup 3}). We investigated abundances of presolar graphite grains formed in supernovae and in asymptotic giant branch (AGB) stars in the four density fractions KE3, KFA1, KFB1 and KFC1 extracted from the Murchison meteorite to probe dust productions in these stellar sources. Seventy-six and 50% of the grains in the low-density fractions KE3 and KFA1, respectively, are supernova grains, while only 7.2% and 0.9% of the grains in the high-density fractions KFB1 and KFC1 have a supernova origin. Grains of AGB star origin are concentrated in the high-density fractions KFB1 and KFC1. From the C isotopic distributions of these fractions and the presence of s-process Kr with {sup 86}Kr/{sup 82}Kr = 4.43±0.46 in KFC1, we estimate that 76% and 80% of the grains in KFB1 and KFC1, respectively, formed in AGB stars. From the abundance of graphite grains in the Murchison meteorite, 0.88 ppm, the abundances of graphite from supernovae and AGB stars are 0.24 ppm and 0.44 ppm, respectively: the abundances of graphite in supernovae and AGB stars are comparable. In contrast, it has been known that 1% of SiC grains formed in supernovae and 95% formed in AGB stars in meteorites. Since the abundance of SiC grains is 5.85 ppm in the Murchison meteorite, the abundances of SiC from supernovae and AGB stars are 0.063 ppm and 5.6 ppm, respectively: the dominant source of SiC grains is AGB stars. Since SiC grains are harder and likely to survive better in space than graphite grains, the abundance of supernova graphite grains, which is higher than that of supernova SiC grains, indicates that supernovae proficiently produce graphite grains. Graphite grains from AGB stars are, in contrast, less abundant that SiC grains from AGB stars (0.44 ppm vs. 5.6 ppm). It is difficult to derive firm conclusions for graphite and SiC formation in AGB stars due to the difference in susceptibility to grain destruction. Metallicity of

  6. Induction and characterization of suppressor T cells and soluble factors with modified timothy grass pollen AgB.

    PubMed

    Malley, A; Deppe, L B; Brandt, C J

    1981-01-01

    Previous studies demonstrated that antigen B (AgB), a major antigen of timothy grass pollen, modified by photooxidation (Ox-AgB) does not react with rabbit, human, or mouse antibodies directed against AgB and does not induce antibodies reactive with either native or modified AgB. However, immunization of mice with Ox-AgB in alum induces significant T helper cell activity. In this review, we describe the conditions and kinetics for Ox-AgB induction of T suppressor cells, the secretion of AgB-specific T suppressor factor (TSF), and the partial purification of AgB-specific TSF. PMID:6453098

  7. Abundances of presolar graphite and SiC from supernovae and AGB stars in the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Amari, Sachiko; Zinner, Ernst; Gallino, Roberto

    2014-05-01

    Pesolar graphite grains exhibit a range of densities (1.65 - 2.20 g/cm3). We investigated abundances of presolar graphite grains formed in supernovae and in asymptotic giant branch (AGB) stars in the four density fractions KE3, KFA1, KFB1 and KFC1 extracted from the Murchison meteorite to probe dust productions in these stellar sources. Seventy-six and 50% of the grains in the low-density fractions KE3 and KFA1, respectively, are supernova grains, while only 7.2% and 0.9% of the grains in the high-density fractions KFB1 and KFC1 have a supernova origin. Grains of AGB star origin are concentrated in the high-density fractions KFB1 and KFC1. From the C isotopic distributions of these fractions and the presence of s-process Kr with 86Kr/82Kr = 4.43±0.46 in KFC1, we estimate that 76% and 80% of the grains in KFB1 and KFC1, respectively, formed in AGB stars. From the abundance of graphite grains in the Murchison meteorite, 0.88 ppm, the abundances of graphite from supernovae and AGB stars are 0.24 ppm and 0.44 ppm, respectively: the abundances of graphite in supernovae and AGB stars are comparable. In contrast, it has been known that 1% of SiC grains formed in supernovae and 95% formed in AGB stars in meteorites. Since the abundance of SiC grains is 5.85 ppm in the Murchison meteorite, the abundances of SiC from supernovae and AGB stars are 0.063 ppm and 5.6 ppm, respectively: the dominant source of SiC grains is AGB stars. Since SiC grains are harder and likely to survive better in space than graphite grains, the abundance of supernova graphite grains, which is higher than that of supernova SiC grains, indicates that supernovae proficiently produce graphite grains. Graphite grains from AGB stars are, in contrast, less abundant that SiC grains from AGB stars (0.44 ppm vs. 5.6 ppm). It is difficult to derive firm conclusions for graphite and SiC formation in AGB stars due to the difference in susceptibility to grain destruction. Metallicity of the parent AGB stars of

  8. Spitzer Digs Up Galactic Fossil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    [figure removed for brevity, see original site] Figure 2

    This false-color image taken by NASA's Spitzer Space Telescope shows a globular cluster previously hidden in the dusty plane of our Milky Way galaxy. Globular clusters are compact bundles of old stars that date back to the birth of our galaxy, 13 or so billion years ago. Astronomers use these galactic 'fossils' as tools for studying the age and formation of the Milky Way.

    Most clusters orbit around the center of the galaxy well above its dust-enshrouded disc, or plane, while making brief, repeated passes through the plane that each last about a million years. Spitzer, with infrared eyes that can see into the dusty galactic plane, first spotted the newfound cluster during its current pass. A visible-light image (inset of Figure 1) shows only a dark patch of sky.

    The red streak behind the core of the cluster is a dust cloud, which may indicate the cluster's interaction with the Milky Way. Alternatively, this cloud may lie coincidentally along Spitzer's line of sight.

    Follow-up observations with the University of Wyoming Infrared Observatory helped set the distance of the new cluster at about 9,000 light-years from Earth - closer than most clusters - and set the mass at the equivalent of 300,000 Suns. The cluster's apparent size, as viewed from Earth, is comparable to a grain of rice held at arm's length. It is located in the constellation Aquila.

    Astronomers believe that this cluster may be one of the last in our galaxy to be uncovered.

    This image composite was taken on April 21, 2004, by Spitzer's infrared array camera. It is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

    Galactic Fossil Found Behind Curtain of Dust In Figure 2, the image mosaic shows the same patch of sky in various wavelengths of light. While the

  9. The UKIDSS Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Lucas, P. W.; Hoare, M. G.; Longmore, A.; Schröder, A. C.; Davis, C. J.; Adamson, A.; Bandyopadhyay, R. M.; de Grijs, R.; Smith, M.; Gosling, A.; Mitchison, S.; Gáspár, A.; Coe, M.; Tamura, M.; Parker, Q.; Irwin, M.; Hambly, N.; Bryant, J.; Collins, R. S.; Cross, N.; Evans, D. W.; Gonzalez-Solares, E.; Hodgkin, S.; Lewis, J.; Read, M.; Riello, M.; Sutorius, E. T. W.; Lawrence, A.; Drew, J. E.; Dye, S.; Thompson, M. A.

    2008-11-01

    The UKIDSS Galactic Plane Survey (GPS) is one of the five near-infrared Public Legacy Surveys that are being undertaken by the UKIDSS consortium, using the Wide Field Camera on the United Kingdom Infrared Telescope. It is surveying 1868 deg2 of the northern and equatorial Galactic plane at Galactic latitudes -5° < b < 5° in the J, H and K filters and a ~200-deg2 area of the Taurus-Auriga-Perseus molecular cloud complex in these three filters and the 2.12 μm (1-0) H2 filter. It will provide data on ~2 × 109 sources. Here we describe the properties of the data set and provide a user's guide for its exploitation. We also present brief Demonstration Science results from DR2 and from the Science Verification programme. These results illustrate how GPS data will frequently be combined with data taken in other wavebands to produce scientific results. The Demonstration Science comprises six studies. (1) A GPS-Spitzer-GLIMPSE cross-match for the star formation region G28.983-0.603 to identify YSOs. This increases the number of YSOs identified by a factor of 10 compared to GLIMPSE alone. (2) A wide-field study of the M17 nebula, in which an extinction map of the field is presented and the effect of source confusion on luminosity functions in different subregions is noted. (3) H2 emission in the ρ Ophiuchi dark cloud. All the molecular jets are traced back to a single active clump containing only a few protostars, which suggests that the duration of strong jet activity and associated rapid accretion in low-mass protostars is brief. (4) X-ray sources in the nuclear bulge. The GPS data distinguishes local main-sequence counterparts with soft X-ray spectra from nuclear bulge giant counterparts with hard X-ray spectra. (5) External galaxies in the zone of avoidance. The galaxies are clearly distinguished from stars in fields at longitudes l > 90°. (6) IPHAS-GPS optical-infrared spectrophotometric typing. The (i' - J) versus (J - H) diagram is used to distinguish A-F type

  10. Asteroseismology and Galactic Archaeology

    NASA Astrophysics Data System (ADS)

    Chiappini, C.

    2015-02-01

    Galactic Archeology is a coined term to describe the fact that the Milky Way's history is encoded both in the amounts of various chemical elements seen in the spectra of stellar atmospheres (abundances), and in stellar motions. One of the pillars of Galactic Archaeology is the use of stellar abundance ratios as an indirect age estimator, which although imprecise, has been proved useful in providing relative ages between the different galactic components. The lack of more precise age determination for large samples of field stars is one of the main reasons why different scenarios for the formation of our Galaxy can still be accommodated to current observational constraints, thus preventing a clear picture of the Milky Way's assembling history. Another difficulty is that most of the available information (especially on ages) has been confined to a region close to the Sun. These two main obstacles can now start to be overcome thanks to a) large spectroscopic and photometric surveys covering larger portions of the Milky Way, and b) the combination of the photometric and spectroscopic information with that coming from asteroseismology. The latter promises a breakthrough in the field of Galactic Archaeology, as it brings the opportunity to, for the first time, measure ages for large samples of distant field giant stars, which cover a large age-baseline. When combining this information with that soon available from Gaia, the field of Galactic Archaeology will be shaken and modelers will certainly have less flexibility in finding models that comply to these precious new observational constraints. The goal of these short lectures is to put Asteroseismology in the context of Galactic Archaeology.

  11. Production and Recycling of Carbon in the Early Galactic Halo

    NASA Astrophysics Data System (ADS)

    Andersen, Johannes; Thidemann Hansen, Terese; Nordström, Birgitta

    2015-08-01

    Extremely metal-poor (EMP) stars - [Fe/H] below ~ -3 - are fossil records of the conditions in the early halo. High-resolution 8m-class spectroscopy has shown that the detailed abundance pattern of EMP giant stars is surprisingly uniform and essentially Solar (e.g. Bonifacio+ 2012), apart from the usual α-enhancement in the halo. In the simplest picture, iron is a proxy for both overall metallicity and time, so the EMP stars should form before the oldest and most metal-poor Galactic globular clusters, notably at the lowest metallicities ([Fe/H] ≲ -3.5).It is thus striking that 20-40% of the EMP giants are strongly enhanced in carbon - the CEMP stars (Lucatello+ 2006). This is conventionally ascribed to mass transfer from a former AGB binary companion, and from a limited compilation of data, Lucatello+ (2005) concluded that most or all CEMP stars are indeed binaries, similar to the classical Ba and CH stars (e.g. Jorissen+ 1998). However, most of the sample was of the inner-halo CEMP-s variety (C and s-process elements both enhanced), while CEMP-no stars dominate the outer halo (Carollo+ 2014). Our precise radial velocity monitoring for CEMP stars over 8 years shed light on this issue.Our data suggest a normal binary frequency for the CEMP-no stars; i.e. the C was not produced in a binary companion, but in sites at interstellar distances, e.g. ‘faint’ SNe, and imprinted on the natal clouds of the low-mass stars we observe. This has immediate implications for the formation of dust in primitive, high-redshift galaxies (Watson+ 2015) and the origin of C-enhanced DLAs (Cooke+ 2011, 2012). The CEMP-s binary orbits are also revealing, with periods up to several decades and generally low amplitudes and eccentricities, suggesting that EMP AGB stars have very large radii, facilitating extensive mass loss. More work on faint SNe and EMP AGB envelopes is needed!

  12. Galactic Conformity Beyond the Virial Radius in Observations and Simulations

    NASA Astrophysics Data System (ADS)

    Bray, Aaron D.; Primus Team, Illustris Team

    2016-01-01

    We report on the presence of galactic conformity at distances out to 10 Mpc in the Illustris suite of simulations, as well as on a search for conformity in the PRIMUS redshift survey. Galactic conformity, where red galaxies preferentially surround other red galaxies at fixed mass, is used as a probe of galaxy assembly bias — the picture in which environmental factors and assembly history, other than dark matter halo mass, are necessary to understand the halo occupation statistics of galaxies. Using the Illustris suite of simulations, we demonstrate how a galactic conformity signal at z = 0 can arise from a combination of the underlying dark matter clustering as a function of halo formation age and a galaxy color-halo age relation. With observations from the PRIMUS redshift survey, we probe the deprojected 3D galactic conformity signal as a function of redshift over the range 0.2 < z < 1. Together, these results motivate further observations to discern the effect size of to discern the effect size of the galactic conformity signal, its variation in redshift, and what baryonic processes, such as feedback or accretion, play a dominant role in its creation.

  13. The Hubble Space TelescopeUV Legacy Survey of Galactic Globular Clusters - V. Constraints on formation scenarios

    NASA Astrophysics Data System (ADS)

    Renzini, A.; D'Antona, F.; Cassisi, S.; King, I. R.; Milone, A. P.; Ventura, P.; Anderson, J.; Bedin, L. R.; Bellini, A.; Brown, T. M.; Piotto, G.; van der Marel, R. P.; Barbuy, B.; Dalessandro, E.; Hidalgo, S.; Marino, A. F.; Ortolani, S.; Salaris, M.; Sarajedini, A.

    2015-12-01

    We build on the evidence provided by our Legacy Survey of Galactic globular clusters (GC) to submit to a crucial test four scenarios currently entertained for the formation of multiple stellar generations in GCs. The observational constraints on multiple generations to be fulfilled are manifold, including GC specificity, ubiquity, variety, predominance, discreteness, supernova avoidance, p-capture processing, helium enrichment and mass budget. We argue that scenarios appealing to supermassive stars, fast rotating massive stars and massive interactive binaries violate in an irreparable fashion two or more among such constraints. Also the scenario appealing to asymptotic giant branch (AGB) stars as producers of the material for next generation stars encounters severe difficulties, specifically concerning the mass budget problem and the detailed chemical composition of second-generation stars. We qualitatively explore ways possibly allowing one to save the AGB scenario, specifically appealing to a possible revision of the cross-section of a critical reaction rate destroying sodium, or alternatively by a more extensive exploration of the vast parameter space controlling the evolutionary behaviour of AGB stellar models. Still, we cannot ensure success for these efforts and totally new scenarios may have to be invented to understand how GCs formed in the early Universe.

  14. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Manchado, A.

    2016-07-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  15. Eye redness

    MedlinePlus

    Bloodshot eyes; Red eyes; Scleral infection; Conjunctival infection ... There are many causes of a red eye or eyes. Some are medical emergencies and some are a cause for concern, but not an emergency. Others are nothing to worry about. ...

  16. Red Clover

    MedlinePlus

    ... 17):2057–2071. Red clover. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on July 22, 2009. Red clover ( Trifolium pratense ). Natural Standard Database Web site. Accessed at www.naturalstandard.com on July ...

  17. Red clover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover (Trifolium pratense L.) is an important forage legume grown on approximately 4 million hectares worldwide. An estimated 2.8 million kg of red clover seed per year was produced worldwide in 2005-2007. This amount of seed would be enough to maintain approximately 4 million hectares of red...

  18. Red Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  The Red Sea     View Larger Image ... Imaging SpectroRadiometer (MISR) image of the Red Sea was acquired on August 13, 2000. Located between the East African coast and the Saudi Arabian peninsula, the Red Sea got its name because the blooms of a type of algae,  Trichodesmium ...

  19. A chemically peculiar post-AGB star in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Van Winckel, H.; De Smedt, K.; Wood, P. R.

    2016-07-01

    Post-Asymptotic Giant Branch (post-AGB) stars bear signatures of the entire chemical and morphological changes that occur prior to and during the AGB phase of evolution. These objects also provide vital clues on the ultimate fate of the star. Detailed chemical abundance studies of some of these objects have shown that they are chemically much more diverse than anticipated. As expected, some are the most s-process enriched objects known to date while others are not s-process enriched. Our recent study has revealed a star in the Small Magellanic Cloud, J005252.87-722842.9, which displays a peculiar chemical signature that does not correspond to the expected chemical diversity observed in these objects. This unique object reveals the possibility of a new stellar evolutionary channel where the star evolves without any third dredge-up episodes or during its evolution becomes devoid of its nucleosynthetic history.

  20. The Impact of FUSE on our Understanding of Stellar Post-AGB Evolution

    SciTech Connect

    Rauch, T.; Werner, K.; Ziegler, M.; Koesterke, L.; Kruk, J. W.; Oliveira, C. M.

    2009-05-24

    State-of-the-art non-LTE spectral analysis requires high-resolution and high-S/N observations of strategic metal lines in order to achieve reliable photospheric parameters like, e.g., effective temperature, surface gravity, and element abundances.Hot stars with effective temperatures higher than about 40 000 K exhibit their metal-line spectrum arising from highly ionized species predominantly in the (far) ultraviolet wavelength range.FUSE observations of hot, compact stars provided the necessary data. With these, it has been, e.g., possible to identify fluorine for the first time in observations of post-AGB stars. The evaluation of ionization equilibria of highly ionized neon, phosphorus, sulfur, and argon provides a new sensitive tool to determine effective temperatures of the hottest stars precisely. Moreover, abundance determinations have put constraints on stellar evolutionary models which, in turn, have improved greatly our picture of post-AGB evolution.

  1. An ALMA view of the post-AGB object HD 101584

    NASA Astrophysics Data System (ADS)

    Olofsson, H.; Vlemmings, W.; Maercker, M.; Humphreys, E.; Lindqvist, M.; Nyman, L.; Ramstedt, S.

    2016-07-01

    ALMA cycles 1 and 3 observations of CO isotopologues and 1.3mm continuum are used in a study of the circumstellar environment of the binary HD 101584, a post-AGB star and a low-mass companion that is most likely a post-common-envelope-evolution system. These data are supplemented with new information from OH maser emission. It is inferred that the large- scale circumstellar medium has a bipolar hour-glass structure, seen almost pole-on, formed by an energetic, ≥⃒ 150 km s-1, jet. Significant amount of material still resides in the central region. It is proposed that the circumstellar morphology is related to an event which took place ≤⃒ 500 yr ago, possibly a capture event where the companion spiralled in towards the AGB star. Several observed features remain to be explained, and may hint to a more complicated scenario.

  2. An ALMA View of the Complex Circumstellar Environment of the Post-AGB Object HD 101584

    NASA Astrophysics Data System (ADS)

    Olofsson, H.; Vlemmings, W.; Maercker, M.; Humphreys, E.; Lindqvist, M.; Nyman, L.; Ramstedt, S.

    2015-12-01

    We use 12CO, 13CO, and C18O J = 2-1 lines and 1.3 mm continuum ALMA observations to study the circumstellar evolution of the binary HD 101584, a post-AGB star and a low-mass companion, which is most likely a post-common-envelope-evolution system. It is inferred that the circumstellar medium has a bipolar hour-glass structure, seen almost pole-on, formed by an energetic, ≍ 150 km s-1, jet. Significant amount of material resides in an unresolved central region. It is proposed that the circumstellar morphology is related to an event which took place ≍ 500 yr ago, possibly a capture event where the companion spiraled in towards the AGB star. However, the kinetic energy of the accelerated gas exceeds the released orbital energy. Hence, the observed phenomenon does not match current common-envelope scenarios, and another process must augment, or even dominate, the ejection process.

  3. Large-scale environments of binary AGB stars probed by Herschel. I. Morphology statistics and case studies of R Aquarii and W Aquilae

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Jorissen, A.; Kerschbaum, F.; Ottensamer, R.; Nowotny, W.; Cox, N. L. J.; Aringer, B.; Blommaert, J. A. D. L.; Decin, L.; van Eck, S.; Gail, H.-P.; Groenewegen, M. A. T.; Kornfeld, K.; Mecina, M.; Posch, Thomas; Vandenbussche, B.; Waelkens, C.

    2013-01-01

    The Mass loss of Evolved StarS (MESS) sample offers a selection of 78 asymptotic giant branch (AGB) stars and red supergiants (RSGs) observed with the PACS photometer on-board Herschel at 70 μm and 160 μm. For most of these objects, the dusty AGB wind is not spherically symmetric and the wind shape can be subdivided into four classes. In the present paper we concentrate on the influence of a companion on the morphology of the stellar wind. Literature was searched to find binaries in the MESS sample, which were subsequently linked to their wind-morphology class to assert that the binaries are not distributed equally among the classes. In the second part of the paper we concentrate on the circumstellar environment of the two prominent objects R Aqr and W Aql. Each shows a characteristic signature of a companion interaction with the stellar wind. For the symbiotic star R Aqr, PACS revealed two perfectly opposing arms that in part reflect the previously observed ring-shaped nebula in the optical. However, from the far-IR there is evidence that the emitting region is elliptical rather than circular. The outline of the wind of W Aql seems to follow a large Archimedean spiral formed by the orbit of the companion but also shows strong indications of an interaction with the interstellar medium. We investigated the nature of the companion of W Aql and found that the magnitude of the orbital period supports the size of the spiral outline. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  4. Evolved stars in the Local Group galaxies - I. AGB evolution and dust production in IC 1613

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Boyer, M. L.; García-Hernández, D. A.

    2016-08-01

    We used models of thermally-pulsing asymptotic giant branch (AGB) stars, that also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows a nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition, and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1-1.25Msun objects of metallicity Z=0.001 and from 1.5-2.5Msun stars with Z=0.002. Oxygen-rich stars constitute the majority of the sample (65%), mainly low mass stars (<2Msun) that produce a negligible amount of dust (<10^{-7}Msun/yr). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be 6x10^{-7}Msun/yr with an uncertainty of 30%. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.

  5. Surprising detection of an equatorial dust lane on the AGB star IRC+10216

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Min, M.; Waters, L. B. F. M.; Canovas, H.; Pols, O. R.; Rodenhuis, M.; de Juan Ovelar, M.; Keller, C. U.; Decin, L.

    2014-12-01

    Aims: Understanding the formation of planetary nebulae remains elusive because in the preceding asymptotic giant branch (AGB) phase these stars are heavily enshrouded in an optically thick dusty envelope. Methods: To further understand the morphology of the circumstellar environments of AGB stars we observe the closest carbon-rich AGB star IRC+10216 in scattered light. Results: When imaged in scattered light at optical wavelengths, IRC+10216 surprisingly shows a narrow equatorial density enhancement, in contrast to the large-scale spherical rings that have been imaged much further out. We use radiative transfer models to interpret this structure in terms of two models: firstly, an equatorial density enhancement, commonly observed in the more evolved post-AGB stars, and secondly, in terms of a dust rings model, where a local enhancement of mass-loss creates a spiral ring as the star rotates. Conclusions: We conclude that both models can be used to reproduce the dark lane in the scattered light images, which is caused by an equatorially density enhancement formed by dense dust rather than a bipolar outflow as previously thought. We are unable to place constraints on the formation of the equatorial density enhancement by a binary system. Final reduced images (FITS) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A3Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  6. Detailed Modelling of the Circumstellar Envelope of the S-type AGB Star W Aquilae

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; Bergman, P.; Justtanont, K.; Lombaert, R.; Maercker, M.; Olofsson, H.; Ramstedt, S.; Royer, P.

    2015-08-01

    We present new Herschel HIFI (de Graauw et al. 2010) and PACS (Poglitsch et al. 2010) sub-millimeter and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances.

  7. The Transformation of an AGB Star to a Planetary Nebula: How the Journey Begins

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Blumenfeld, C.; Morris, M.; S'anchez Contreras, C.; Claussen, M.

    2010-01-01

    We report the results from an HST imaging survey of a sample of late AGB stars with a detected history of extensive past mass-loss, i.e., those in which this process has now come to an end. The goal of this survey is to identify and characterise the earliest stages of the process that transforms these objects, first into bipolar or multipolar pre-planetary nebulae (PPNe), and then into similarly-shaped planetary nebulae. Since the cessation of mass-loss leads to the lack of hot dust close to the star, their thermal emission at short ( 25 micron) wavelengths, is expected to be lower than that for typical AGB stars. We have therefore used the IRAS 25 to 12 micron flux ratio, F25/F12 > 0.33 (but < 0.67 in order to exclude PPNe), to select a list of 60 such ``nascent pre-planetary nebulae" (or nPPNe); 48 were imaged in our SNAPshot imaging program. We found compact, but non-stellar, morphologies in about a quarter of our observed sample. The remaining objects are either unresolved, or only marginally resolved. Aspherical structure is seen in the resolved objects. The aspherical structure in nPPNe is different from that observed in PPNe, which generally show limb-brightened, roughly equal-sized lobes on both sides of the center. In contrast, only one-sided structures are seen in our survey nPPNe. In some objects, a diffuse, round, halo is also seen, representing the undisturbed AGB mass-loss envelope. A few sources show discrete circular (partial) arc-like features. The discovery of the one-side collimated features, together with detailed earlier studies of a few nPPNe (e.g. V Hya, IRC+10216), supports the hypothesis that the mechanism for creating the large-scale density inhomogeneties are high velocity outflows carving the AGB mass-loss envelope from the inside out.

  8. A Pilot Deep Survey for X-Ray Emission from fuvAGB Stars

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Sanz-Forcada, J.; Sánchez Contreras, C.; Stute, M.

    2015-09-01

    We report the results of a pilot survey for X-ray emission from a newly discovered class of AGB stars with far-ultraviolet excesses (fuvAGB stars) using XMM-Newton and Chandra. We detected X-ray emission in three of six fuvAGB stars observed—the X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long timescales, and simultaneous UV observations using the Optical Monitor on XMM for these sources show similar variations in the UV flux. These data, together with previous studies, show that X-ray emission is found only in fuvAGB stars. From modeling the spectra, we find that the observed X-ray luminosities are ˜(0.002-0.2) L⊙ and the X-ray-emitting plasma temperatures are ˜(35-160) × 106 K. The high X-ray temperatures argue against the emission arising in stellar coronae, or directly in an accretion shock, unless it occurs on a WD companion. However, none of the detected objects is a known WD-symbiotic star, suggesting that if WD companions are present, they are relatively cool (<20,000 K). In addition, the high X-ray luminosities specifically argue against emission originating in the coronae of main-sequence companions. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  9. Evolved stars in the Local Group galaxies. I. AGB evolution and dust production in IC 1613

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Boyer, M. L.; García-Hernández, D. A.

    2016-05-01

    We used models of thermally-pulsing asymptotic giant branch (AGB) stars, that also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows a nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition, and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1 - 1.25M⊙ objects of metallicity Z = 10-3 and from 1.5 - 2.5M⊙ stars with Z = 2 × 10-3. Oxygen-rich stars constitute the majority of the sample (˜65%), mainly low mass stars (<2M⊙) that produce a negligible amount of dust (≤10-7M⊙/yr). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be ˜6 × 10-7M⊙/yr with an uncertainty of 30%. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.

  10. On the nature of the most obscured C-rich AGB stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Ventura, P.; Karakas, A. I.; Dell'Agli, F.; García-Hernández, D. A.; Boyer, M. L.; Di Criscienzo, M.

    2016-04-01

    The stars in the Magellanic Clouds with the largest degree of obscuration are used to probe the highly uncertain physics of stars in the asymptotic giant branch (AGB) phase of evolution. Carbon stars in particular provide key information on the amount of third dredge-up and mass-loss. We use two independent stellar evolution codes to test how a different treatment of the physics affects the evolution on the AGB. The output from the two codes is used to determine the rates of dust formation in the circumstellar envelope, where the method used to determine the dust is the same for each case. The stars with the largest degree of obscuration in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are identified as the progeny of objects of initial mass 2.5-3 M⊙ and ˜1.5 M⊙, respectively. This difference in mass is motivated by the difference in the star formation histories of the two galaxies, and offers a simple explanation of the redder infrared colours of C-stars in the LMC compared to their counterparts in the SMC. The comparison with the Spitzer colours of C-rich AGB stars in the SMC shows that a minimum surface carbon mass fraction X(C) ˜ 5 × 10-3 must have been reached by stars of initial mass around 1.5 M⊙. Our results confirm the necessity of adopting low-temperature opacities in stellar evolutionary models of AGB stars. These opacities allow the stars to obtain mass-loss rates high enough (≳10-4 M⊙ yr-1) to produce the amount of dust needed to reproduce the Spitzer colours.

  11. Evolved stars in the Local Group galaxies - I. AGB evolution and dust production in IC 1613

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Boyer, M. L.; García-Hernández, D. A.

    2016-08-01

    We used models of thermally pulsing asymptotic giant branch (AGB) stars, which also describe the dust-formation process in the wind, to interpret the combination of near- and mid-infrared photometric data of the dwarf galaxy IC 1613. This is the first time that this approach is extended to an environment different from the Milky Way and the Magellanic Clouds (MCs). Our analysis, based on synthetic population techniques, shows nice agreement between the observations and the expected distribution of stars in the colour-magnitude diagrams obtained with JHK and Spitzer bands. This allows a characterization of the individual stars in the AGB sample in terms of mass, chemical composition and formation epoch of the progenitors. We identify the stars exhibiting the largest degree of obscuration as carbon stars evolving through the final AGB phases, descending from 1-1.25 M⊙ objects of metallicity Z = 10-3 and from 1.5-2.5 M⊙ stars with Z = 2 × 10-3. Oxygen-rich stars constitute the majority of the sample (˜65 per cent), mainly low-mass stars (<2 M⊙) that produce a negligible amount of dust (≤10-7 M⊙ yr-1). We predict the overall dust-production rate from IC 1613, mostly determined by carbon stars, to be ˜6 × 10-7 M⊙ yr-1 with an uncertainty of 30 per cent. The capability of the current generation of models to interpret the AGB population in an environment different from the MCs opens the possibility to extend this kind of analysis to other Local Group galaxies.

  12. ALMA reveals sunburn: CO dissociation around AGB stars in the globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.; Lagadec, E.; Sloan, G. C.; Boyer, M. L.; Matsuura, M.; Smith, R. J.; Smith, C. L.; Yates, J. A.; van Loon, J. Th.; Jones, O. C.; Ramstedt, S.; Avison, A.; Justtanont, K.; Olofsson, H.; Blommaert, J. A. D. L.; Goldman, S. R.; Groenewegen, M. A. T.

    2015-11-01

    Atacama Large Millimetre Array observations show a non-detection of carbon monoxide around the four most luminous asymptotic giant branch (AGB) stars in the globular cluster 47 Tucanae. Stellar evolution models and star counts show that the mass-loss rates from these stars should be ˜1.2-3.5 × 10-7 M⊙ yr-1. We would naïvely expect such stars to be detectable at this distance (4.5 kpc). By modelling the ultraviolet radiation field from post-AGB stars and white dwarfs in 47 Tuc, we conclude that CO should be dissociated abnormally close to the stars. We estimate that the CO envelopes will be truncated at a few hundred stellar radii from their host stars and that the line intensities are about two orders of magnitude below our current detection limits. The truncation of CO envelopes should be important for AGB stars in dense clusters. Observing the CO (3-2) and higher transitions and targeting stars far from the centres of clusters should result in the detections needed to measure the outflow velocities from these stars.

  13. VLT/NACO Imaging of the Nearest AGB Star, L2 Puppis

    NASA Astrophysics Data System (ADS)

    Montargès, M.; Kervella, P.; Ridgway, S. T.; Perrin, G.; Chesneau, O.

    2015-08-01

    AGB stars are the most important contributors to the chemical enrichment of the Galaxy. During their later evolutionary stages they experience intense pulsations and eject most of their layers as they become planetary nebulae (PNe). The process leading to the formation of bipolar PNe remains poorly understood. It is assumed that the circumstellar disk of an AGB star could collimate the stellar wind to form a bipolar PN, yet very few of these disks have been observed. Using the adaptive-optics system of the VLT/NACO instrument at the Paranal Observatory and a "lucky imaging" technique, our team obtained near-infrared diffraction-limited images of the nearest AGB star, L2 Puppis. The deconvolved images reveal a dark structure in front of the star whose morphology and photometry match a dusty edge-on disk of olivine and pyroxene modeled with a Monte-Carlo radiative transfer code. The L band images also show a loop structure, possibly the signature of an interacting hidden companion.

  14. Variability Studies in Two Hypergiants and a Post-AGB Object

    NASA Astrophysics Data System (ADS)

    Freund, Stephen; Hrivnak, Bruce J.; Lu, Wenxian

    2016-01-01

    In the course of long-term photometric monitoring of post-AGB stars at the Valparaiso University campus observatory, we have also observed some objects of uncertain evolutionary state. This includes two objects that have some of the characteristics of post-AGB stars, such as large IR excesses and F-G spectral types. The weight of recent evidence suggests that two of these, IRAS 19114+0002 (AFGL 2343) and IRAS 19244+1115 (IRC+10 420), are instead hypergiants, objects of very high luminosity arising from evolved high-mass progenitors. A third object, IRAS 20004+2955 (V1027 Cyg), appears to be a cool post-AGB star evolving from a low or intermediate-mass progenitor. We have light and color curves from 1994-2007, along with some radial velocity data from 1991-1995. These three objects display complex light and color curves with evidence of periodicity in the range of 100 to 300 days. We will present the results of these studies. This research is supported by grants from the National Science Foundation (most recently AST 1413660), the Indiana Space Grant Consortium, and Valparaiso University.

  15. Winds, Bubbles, ...but Magnetized: Solutions for High Speed Post-AGB Winds and Their Extreme Collimation

    NASA Astrophysics Data System (ADS)

    García-Segura, G.; López, J. A.; Franco, J.

    2003-01-01

    This paper provides solutions for the origin of post-AGB winds, their acceleration up to high speed, and the subsequent formation of extremely collimated proto-planetary nebulae. Several wind models with terminal velocities from a few tens of km/s up to 10^3km/s are calculated, which produce proto-planetary nebulae with linear momenta in the range 10^36 to 10^40gcm/s and with kinetic energies in the range 10^42 to 10^47 erg. These results match available observations of proto-planetary nebulae. In the present simplistic scheme, the driver of the wind is just the magnetic pressure at the stellar surface. Other forces are not taken into account in this study, except gravity. We conclude that mass-loss rates of post-AGB stars and transition times from late AGB up to planetary nebula central stars could be directly linked with the production of magnetic field at the stellar core. As an example, mass-loss rates as large as 8×10^-5 M[ sun ]/yr and transition times as short as 5000 years are predicted.

  16. Stellar Dust Production in Chemically Primitive Environments: Infrared Lightcurves and Mass Loss in Extremely Metal-poor AGB Stars

    NASA Astrophysics Data System (ADS)

    Sonneborn, George

    In their final stage of evolution, asymptotic giant branch (AGB) stars inject a substantial amount of dust into the surrounding interstellar medium, potentially dominating the total stellar dust budgets of their host galaxies. However, stellar models conflict over whether metal-poor AGB stars can condense enough dust to drive a strong stellar wind, so it is unclear what role AGB stars play in the early Universe compared to other dust sources, e.g., in high-redshift quasars that show evidence for massive dust reservoirs. Empirically, AGB stars that are massive enough to contribute in the early Universe are only well studied in the Milky Way and the nearby Magellanic Clouds; all three environments are relatively metal-rich and thus unlikely to be representative of high-redshift AGB stars. This lack of observations of metal-poor AGB stars motivated the survey of DUST in Nearby Galaxies with Spitzer (DUSTiNGS), which imaged 50 nearby dwarf galaxies in the infrared and identified 526 dusty "extreme" AGB stars. The DUSTiNGS stars confirm that dust can form at metallicities as low as 0.008 solar, more than an order of magnitude lower than had been previously observed. However, very little is known about the DUSTiNGS stars; among the unknowns are the photospheric chemistries, stellar masses, temperatures, luminosities, pulsation periods and amplitudes, dust-production rates, and even their statuses as bona fide AGB stars. To eliminate these unknowns, we were awarded 56 hours of Priority 1 observing time in Spitzer's cycle 11 to obtain 6 new epochs of imaging for a subset of the DUSTiNGS variables over an 18 month baseline. These will be the first infrared light curves of metal-poor, dust-producing AGB stars, allowing us to study the influence of metallicity on pulsation and dust production. Combined with additional archival data, our cycle-11 Spitzer program will allow estimates of all of the parameters listed above, enabling the first direct comparisons to models of AGB

  17. The Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Barbuy, B.

    2016-06-01

    The Galactic bulge is the least studied component of our Galaxy. Yet, its formation and evolution are key to understand the formation of the Galaxy itself. Studies on the Galactic bulge have increased significantly in the last years, but still there are many points of controversy. This volume contains several contributions from experts in different aspects of the bulge. Issues discussed include the following: the presence of an old spheroidal bulge, or identification of its old stellar population with the thick disk or halo; fraction of stars younger than 10 Gyr is estimated to be of < 5 to 22% depending on method and authors; multiple populations or only a metal-poor and a metal-rich ones; spheroidal or ellipsoidal distribution of RR Lyrae; formation of the bulge from early mergers or from secular evolution of the bar; different methods of mapping extinction; selection and identification of bulge globular clusters.

  18. Simulations of Galactic Dynamos

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel

    We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observational basis for such results in terms of rotation measure analysis. Next, we discuss nonlinear theory, the role of magnetic helicity conservation and magnetic helicity fluxes. This leads to the possibility that galactic magnetic fields may be bi-helical, with opposite signs of helicity and large and small length scales. We discuss their observational signatures and close by discussing the possibilities of explaining the origin of primordial magnetic fields.

  19. Galactic-scale civilization

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.

    1980-01-01

    Evolutionary arguments are presented in favor of the existence of civilization on a galactic scale. Patterns of physical, chemical, biological, social and cultural evolution leading to increasing levels of complexity are pointed out and explained thermodynamically in terms of the maximization of free energy dissipation in the environment of the organized system. The possibility of the evolution of a global and then a galactic human civilization is considered, and probabilities that the galaxy is presently in its colonization state and that life could have evolved to its present state on earth are discussed. Fermi's paradox of the absence of extraterrestrials in light of the probability of their existence is noted, and a variety of possible explanations is indicated. Finally, it is argued that although mankind may be the first occurrence of intelligence in the galaxy, it is unjustified to presume that this is so.

  20. Topics in galactic dynamics

    NASA Astrophysics Data System (ADS)

    Little, Frank Blane

    1989-01-01

    The distant satellites of the Milky Way Galaxy are used to probe the distribution of dark matter in the Galactic halo. A new method of statistical analysis based on Bayes' theorem was devised, which directly yields confidence intervals for the mass of the Galaxy once the eccentricity distribution of the satellites is specified. Assuming an isotropic velocity distribution for 10 objects at distances of 50 to 140 kiloparsecs, mass results suggest that the Galaxy's massive dark halo extends to approximately less than 50 kiloparsecs from the Galactic center. A model galaxy with an artificial bar is used to explore the effect of dynamical friction on a galactic bar. An analytic formula is provided which correctly predicts angular momentum changes for a bar in interaction with a non self-gravitating disk. N-body simulations further show that disk self-gravity tends to make a bar without inner Lindblad resonances spin down more rapidly, and tends to make a bar dominated by inner Lindblad resonances spin up less rapidly. The long-term dynamical evolution of galactic bars is investigated using fully self gravitating bar-unstable disk-halo models. The models develop rapidly rotating bars which then slow down through transfers of angular momentum both to the outer disk and to the halo. The models suggest that the distance between the end of a bar and its corotation circle is proportional to the bar's age, and an approximate formula is presented which expresses this relationship. It is also concluded that the average tangential velocity within a barlike object drops by a factor of about 2 over approximately 45 initial rotation periods.

  1. Chemical abundance study of two strongly s-process enriched post-AGB stars in the LMC: J051213.81-693537.1 and J051848.86-700246.9

    NASA Astrophysics Data System (ADS)

    De Smedt, K.; Van Winckel, H.; Kamath, D.; Wood, P. R.

    2015-11-01

    Context. This paper is part of a larger project in which we systematically study the chemical abundances of extra-galactic post-asymptotic giant branch (post-AGB) stars. The aim of our programme is to derive chemical abundances of stars covering a large range in luminosity and metallicity with the ultimate goal of testing, constraining, and improving our knowledge of the poorly understood AGB phase, especially the third dredge-up mixing processes and associated s-process nucleosynthesis. Aims: Post-AGB photospheres are dominated by atomic lines and indicate the effects of internal chemical enrichment processes over the entire stellar lifetime. In this paper, we study two carefully selected post-AGB stars: J051213.81-693537.1 and J051848.86-700246.9 in the Large Magellanic Cloud (LMC). Both objects show signs of s-process enhancement. The combination of favourable atmospheric parameters for detailed abundance studies and their known distances (and hence luminosities and initial masses) make these objects ideal probes of the AGB third dredge-up and s-process nucleosynthesis in that they provide observational constraints for theoretical AGB models. Methods: We use high-resolution optical UVES spectra to determine accurate stellar parameters and subsequently perform detailed elemental abundance studies of post-AGB stars. Additionally, we use available photometric data covering optical and IR bands to construct spectral energy distributions for reddening and luminosity determinations. We then estimate initial masses from theoretical post-AGB tracks. Results: We obtained accurate atmospheric parameters for J051213.81-693537.1 (Teff = 5875 ± 125 K, log g = 1.00 ± 0.25 dex, [Fe/H] = -0.56 ± 0.16 dex) and J051848.86-700246.9 (Teff = 6000 ± 125 K, log g = 0.50 ± 0.25 dex, [Fe/H] = -1.06 ± 0.17 dex). Both stars show extreme s-process enrichment associated with relatively low C/O ratios of 1.26 ± 0.40 and 1.29 ± 0.30 for J051213-693537.1 and J051848

  2. Galactic Diffuse Emissions

    SciTech Connect

    Digel, Seth W.; /SLAC

    2007-10-25

    Interactions of cosmic rays with interstellar nucleons and photons make the Milky Way a bright, diffuse source of high-energy {gamma}-rays. Observationally, the results from EGRET, COMPTEL, and OSSE have now been extended to higher energies by ground-based experiments, with detections of diffuse emission in the Galactic center reported by H.E.S.S. in the range above 100 GeV and of diffuse emission in Cygnus by MILAGRO in the TeV range. In the range above 100 keV, INTEGRAL SPI has found that diffuse emission remains after point sources are accounted for. I will summarize current knowledge of diffuse {gamma}-ray emission from the Milky Way and review some open issues related to the diffuse emission -- some old, like the distribution of cosmic-ray sources and the origin of the 'excess' of GeV emission observed by EGRET, and some recently recognized, like the amount and distribution of molecular hydrogen not traced by CO emission -- and anticipate some of the advances that will be possible with the Large Area Telescope on GLAST. We plan to develop an accurate physical model for the diffuse emission, which will be useful for detecting and accurately characterizing emission from Galactic point sources as well as any Galactic diffuse emission from exotic processes, and for studying the unresolved extragalactic emission.

  3. Galactic oscillator symmetry

    NASA Technical Reports Server (NTRS)

    Rosensteel, George

    1995-01-01

    Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.

  4. Galactic diffuse gamma rays from galactic plane

    NASA Astrophysics Data System (ADS)

    Tateyama, N.; Nishimura, J.

    2001-08-01

    The dominant part of the diffuse gamma rays from the Galactic plane, with energy greater than 1TeV, has been thought as due to the inverse Compton scattering of the interstellar photons with the high-energy cosmic electrons. In these energy regions, the diffuse gamma-ray observation gives us unique infor-mation on the energy spectrum of the high-energy electrons in the interstellar space, since we cannot observe those electrons directly. This provides us information on the cosmicray source, production mechanism and propagation in the Galaxy. We discuss the implication of our results by comparing with the work of Porter and Protheroe, and also compare with the data observed by the most recent extensive air showers. It is also pointed out that the patchy structure of gammaray distribution will appear at high-energy side, if we observe the distribution with a higher angular resolution of a few arc degrees. This patchy structure will become clear beyond 10TeV of IC gamma rays, where the number of contributing sources of parent decrease and the diffusion distance of the electrons become smaller.

  5. The abundance of HCN in circumstellar envelopes of AGB stars of different chemical type

    NASA Astrophysics Data System (ADS)

    Schöier, F. L.; Ramstedt, S.; Olofsson, H.; Lindqvist, M.; Bieging, J. H.; Marvel, K. B.

    2013-02-01

    Aims: A multi-transition survey of HCN (sub-) millimeter line emission from a large sample of asymptotic giant branch (AGB) stars of different chemical type is presented. The data are analysed and circumstellar HCN abundances are estimated. The sample stars span a large range of properties such as mass-loss rate and photospheric C/O-ratio. The analysis of the new data allows for more accurate estimates of the circumstellar HCN abundances and puts new constraints on chemical models. Methods: In order to constrain the circumstellar HCN abundance distribution a detailed non-local thermodynamic equilibrium (LTE) excitation analysis, based on the Monte Carlo method, is performed. Effects of line overlaps and radiative excitation from dust grains are included. Results: The median values for the derived abundances of HCN (with respect to H2) are 3 × 10-5, 7 × 10-7 and 10-7 for carbon stars (25 stars), S-type AGB stars (19 stars) and M-type AGB stars (25 stars), respectively. The estimated sizes of the HCN envelopes are similar to those obtained in the case of SiO for the same sample of sources and agree well with previous results from interferometric observations, when these are available. Conclusions: We find that there is a clear dependence of the derived circumstellar HCN abundance on the C/O-ratio of the star, in that carbon stars have about two orders of magnitude higher abundances than M-type AGB stars, on average. The derived HCN abundances of the S-type AGB stars have a larger spread and typically fall in between those of the two other types, however, slightly closer to the values for the M-type AGB stars. For the M-type stars, the estimated abundances are much higher than what would be expected if HCN is formed in thermal equilibrium. However, the results are also in contrast to predictions from recent non-LTE chemical models, where very little difference is expected in the HCN abundances between the various types of AGB stars. This publication is based on data

  6. Characteristics of convection and overshooting in RGB and AGB stars

    NASA Astrophysics Data System (ADS)

    Lai, Xiang-Jun; Li, Yan

    2011-10-01

    Based on the turbulent convection model (TCM) of Li & Yang, we have studied the characteristics of turbulent convection in the envelopes of 2 and 5Modot stars at the red giant branch and asymptotic giant branch phases. The TCM has been successfully applied over the entire convective envelopes, including the convective unstable zone and the overshooting regions. We find that the convective motions become progressively stronger when the stellar models are located farther up along the Hayashi line. In the convective unstable zone, we find that the turbulent correlations are proportional to functions of a common factor (∇ - ∇ad)T¯, which explains similar distributions in those correlations. For the TCM we find that if the obtained stellar temperature structure is close to that of the mixing length theory (MLT), the convective motion will have a much larger velocity and thus be more violent. However, if the turbulent velocity is adjusted to be close to that of the MLT, the superadiabatic convection zone would be much more extended inward, which would lead to a lower effective temperature of the stellar model. For the overshooting distance, we find that the e-folding lengths of the turbulent kinetic energy k in both the top and bottom overshooting regions decrease as the stellar model is progressively located farther up along the Hayashi line, but both the extents of the decrease are not obvious. The overshooting distances of the turbulent correlation are almost the same for the different stellar models with the same set of TCM parameters. For the decay modes of the kinetic energy k, we find that they are very similar for different stellar models based on the same set of TCM parameters, and there is a nearly linear relationship between lg k and ln P for different stellar models. When Cs or α increases while the other parameters are fixed, the obtained linearly decaying distance will become longer.

  7. Yields from low metallicity, intermediate mass AGB stars:. Their role for the CNO and lithium abundances in Globular Cluster stars

    NASA Astrophysics Data System (ADS)

    Ventura, P.; D'Antona, F.; Mazzitelli, I.

    2002-10-01

    We present the results of extensive computation of the Thermal Pulse phase AGB evolution of stars of metallicities in mass fraction 2 x 10-4 <= Z <= 0.01, for those masses in the range 2.5 <= M/Msun <= 6, which suffer the Hot Bottom Burning (HBB) phase. The evolution is fully computed, by assuming a mass loss rate consistent with the observations of the Magellanic Clouds lithium-rich stars, and modelling convection with the Full Spectrum of Turbulence model by Canuto and Mazzitelli. The results are discussed in the framework of their importance for the evolution of proto-Globular Clusters, whose spectra show that the stars are very probably formed from matter contaminated by the ejecta of these stars, or have accreted it after formation. The main results we find are the following: 1) for metallicities Z <= 10-3, masses above ~ 4 Msun suffer complete CNO cycling in HBB, so that they show at the surface the result of this process, and the oxygen abundance is reduced; 2) most models suffer the third dredge up. Although carbon is processed to nitrogen by HBB, the oxygen burning is so strong in the lowest metallicities (2 x 10-4) that carbon becomes more abundant than oxygen: in other words, low-metallicity intermediate mass stars may show up as carbon stars due to the drastic oxygen burning; 3) if Globular Cluster stars are contaminated by matter processed through these phases, we must expect a non negligible helium enhancement in their composition: from a Big Bang abundance Y=0.24, e.g., we might expect an abundance Y=0.28. This may have no practical consequences if pollution concerns only the external parts of the stars, but is very important if the stars formed as a whole from a helium rich environment. 4) The lithium yields, although not important for galactic chemical evolution, are very interestingly close to the initial Big Bang abundance: processing by HBB is the only way in which we can obtain substantial amounts of gas which have gone through full CNO burning

  8. Searching for OH maser emission towards the MIPSGAL compact Galactic bubbles

    NASA Astrophysics Data System (ADS)

    Ingallinera, A.; Trigilio, C.; Leto, P.; Umana, G.; Buemi, C.; Cerrigone, L.; Agliozzo, C.

    2015-11-01

    We conducted radio observations searching for OH 18-cm maser emission from a sample of 169 unclassified MIPSGAL compact Galactic bubbles. These sources are thought to be the circumstellar envelopes of different kinds of evolved stars. Our observations were aimed at shedding light on the nature of MIPSGAL bubbles, since their characterization is a fundamental aid for the development of accurate physical models of stellar and Galaxy evolution. The maser emission is observationally linked to the last stages of the life of low- and intermediate-mass stars, which may constitute a significant fraction of the MIPSGAL bubbles. In particular OH masers are usually observed towards post-asymptotic giant branch (post-AGB) stars. Our observations were performed with the Green Bank Telescope and, for each source, produced spectra around the four OH 18-cm transitions. The observations were compared with archive interferometer data in order to exclude possible contamination from nearby sources. The main result is that the OH maser emission is not a common feature among the MIPSGAL bubbles, with only one certain detection. We conclude that among the MIPSGAL bubbles the post-AGB stars could be very rare.

  9. GALACTIC S STARS: INVESTIGATIONS OF COLOR, MOTION, AND SPECTRAL FEATURES

    SciTech Connect

    Otto, Elizabeth; Green, Paul J.; Gray, Richard O.

    2011-09-01

    Known bright S stars, recognized as such by their enhanced s-process abundances and C/O ratio, are typically members of the asymptotic giant branch (AGB) or the red giant branch. Few modern digital spectra for these objects have been published, from which intermediate resolution spectral indices and classifications could be derived. For published S stars, we find accurate positions using the Two-Micron All Sky Survey (2MASS), and use the FAST spectrograph of the Tillinghast reflector on Mt. Hopkins to obtain the spectra of 57 objects. We make available a digital S star spectral atlas consisting of 14 spectra of S stars with diverse spectral features. We define and derive basic spectral indices that can help distinguish S stars from late-type (M) giants and carbon stars. We convolve all our spectra with the Sloan Digital Sky Survey bandpasses, and employ the resulting gri magnitudes together with 2MASS JHK{sub s} mags to investigate S star colors. These objects have colors similar to carbon and M stars, and are therefore difficult to distinguish by color alone. Using near- and mid-infrared colors from IRAS and Akari, we identify some of the stars as intrinsic (AGB) or extrinsic (with abundances enhanced by past mass transfer). We also use V band and 2MASS magnitudes to calculate a temperature index for stars in the sample. We analyze the proper motions and parallaxes of our sample stars to determine upper and lower limit absolute magnitudes and distances, and confirm that most are probably giants.

  10. THE INNER GALACTIC BULGE: EVIDENCE FOR A NUCLEAR BAR?

    SciTech Connect

    Gerhard, Ortwin; Martinez-Valpuesta, Inma

    2012-01-15

    Recent data from the VVV survey have strengthened evidence for a structural change in the Galactic bulge inward of |l| {<=} 4 Degree-Sign . Here we show with an N-body barred galaxy simulation that a boxy bulge formed through the bar and buckling instabilities effortlessly matches measured bulge longitude profiles for red clump stars. The same simulation snapshot was earlier used to clarify the apparent boxy bulge-long bar dichotomy, for the same orientation and scaling. The change in the slope of the model longitude profiles in the inner few degrees is caused by a transition from highly elongated to more nearly axisymmetric isodensity contours in the inner boxy bulge. This transition is confined to a few degrees from the Galactic plane; thus the change of slope is predicted to disappear at higher Galactic latitudes. We also show that the nuclear star count map derived from this simulation snapshot displays a longitudinal asymmetry similar to that observed in the Two Micron All Sky Survey (2MASS) data, but is less flattened to the Galactic plane than the 2MASS map. These results support the interpretation that the Galactic bulge originated from disk evolution and question the evidence advanced from star count data for the existence of a secondary nuclear bar in the Milky Way.