Science.gov

Sample records for red giants ii

  1. Period spacings in red giants. II. Automated measurement

    NASA Astrophysics Data System (ADS)

    Vrard, M.; Mosser, B.; Samadi, R.

    2016-04-01

    Context. The space missions CoRoT and Kepler have provided photometric data of unprecedented quality for asteroseismology. A very rich oscillation pattern has been discovered for red giants, including mixed modes that are used to decipher the red giants' interiors. They carry information on the radiative core of red giant stars and bring strong constraints on stellar evolution. Aims: Since more than 15 000 red giant light curves have been observed by Kepler, we have developed a simple and efficient method for automatically characterizing the mixed-mode pattern and measuring the asymptotic period spacing. Methods: With the asymptotic expansion of the mixed modes, we have revealed the regularity of the gravity-mode pattern. The stretched periods were used to study the evenly space periods with a Fourier analysis and to measure the gravity period spacing, even when rotation severely complicates the oscillation spectra. Results: We automatically measured gravity period spacing for more than 6100 Kepler red giants. The results confirm and extend previous measurements made by semi-automated methods. We also unveil the mass and metallicity dependence of the relation between the frequency spacings and the period spacings for stars on the red giant branch. Conclusions: The delivery of thousands of period spacings combined with all other seismic and non-seismic information provides a new basis for detailed ensemble asteroseismology. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A87

  2. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. II. Spectral line formation in the atmosphere of a giant located near the RGB tip

    NASA Astrophysics Data System (ADS)

    Kučinskas, A.; Steffen, M.; Ludwig, H.-G.; Dobrovolskas, V.; Ivanauskas, A.; Klevas, J.; Prakapavičius, D.; Caffau, E.; Bonifacio, P.

    2013-01-01

    Aims: We investigate the role of convection in the formation of atomic and molecular lines in the atmosphere of a red giant star. For this purpose we study the formation properties of spectral lines that belong to a number of astrophysically important tracer elements, including neutral and singly ionized atoms (Li I, N I, O I, Na I, Mg I, Al I, Si I, Si II, S I, K I, Ca I, Ca II, Ti I, Ti II, Cr I, Cr II, Mn I, Fe I, Fe II, Co I, Ni I, Zn I, Sr II, Ba II, and Eu II), and molecules (CH, CO, C2, NH, CN, and OH). Methods: We focus our investigation on a prototypical red giant located close to the red giant branch (RGB) tip (Teff = 3660 K, log g = 1.0, [M/H] = 0.0). We used two types of model atmospheres, 3D hydrodynamical and classical 1D, calculated with the CO5BOLD and LHD stellar atmosphere codes, respectively. Both codes share the same atmospheric parameters, chemical composition, equation of state, and opacities, which allowed us to make a strictly differential comparison between the line formation properties predicted in 3D and 1D. The influence of convection on the spectral line formation was assessed with the aid of 3D-1D abundance corrections, which measure the difference between the abundances of chemical species derived with the 3D hydrodynamical and 1D classical model atmospheres. Results: We find that convection plays a significant role in the spectral line formation in this particular red giant. The derived 3D-1D abundance corrections rarely exceed ± 0.1 dex when lines of neutral atoms and molecules are considered, which is in line with the previous findings for solar-metallicity red giants located on the lower RGB. The situation is different with lines that belong to ionized atoms, or to neutral atoms with high ionization potential. In both cases, the corrections for high-excitation lines (χ > 8 eV) may amount to Δ3D-1D ~ -0.4 dex. The 3D-1D abundance corrections generally show a significant wavelength dependence; in most cases they are smaller in

  3. Red giants seismology

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Samadi, R.; Belkacem, K.

    2013-11-01

    The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.

  4. The Ca II triplet in red giant spectra: [Fe/H] determinations and the role of [Ca/Fe

    NASA Astrophysics Data System (ADS)

    Da Costa, G. S.

    2016-01-01

    Measurements are presented and analysed of the strength of the Ca II triplet lines in red giants in Galactic globular and open clusters, and in a sample of red giants in the LMC disc that have significantly different [Ca/Fe] abundance ratios to the Galactic objects. The Galactic objects are used to generate a calibration between Ca II triplet line strength and [Fe/H], which is then used to estimate [Fe/H]CaT for the LMC stars. The values are then compared with the [Fe/H]spec determinations from high-dispersion spectroscopy. After allowance for a small systematic offset, the two abundance determinations are in excellent agreement. Further, as found in earlier studies, the difference is only a very weak function of the [Ca/Fe] ratio. For example, changing [Ca/Fe] from +0.3 to -0.2 causes the Ca II-based abundance to underestimate [Fe/H]spec by only ˜0.15 dex, assuming a Galactic calibration. Consequently, the Ca II triplet approach to metallicity determinations can be used without significant bias to study stellar systems that have substantially different chemical evolution histories.

  5. VizieR Online Data Catalog: Abundances of 4 metal-poor red giants in BooII (Ji+, 2016)

    NASA Astrophysics Data System (ADS)

    Ji, A. P.; Frebel, A.; Simon, J. D.; Geha, M.

    2016-04-01

    A total of 16 Boo II member stars were identified with Keck/DEIMOS observations (M. Geha et al. 2015, in preparation). We selected the four brightest members on the red giant branch sample for high-resolution follow-up (see Figure 1). The four target stars were observed with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph on the Clay telescope in the full optical wavelength range from 3500 to 9000Å in March 2010, 2011 and 2014 and in June 2015 (see table 1). (4 data files).

  6. Red giant stars from the Sloan digital sky survey. II. Distances

    SciTech Connect

    Tan, Kefeng; Chen, Yuqin; Carrell, Kenneth; Zhao, Jingkun; Zhao, Gang

    2014-10-10

    We present distance determinations for a large and clean sample of red giant branch stars selected from the ninth data release of the Sloan Digital Sky Survey. The distances are calculated based on both observational cluster fiducials and theoretical isochrones. Distributions of distances from the two methods are very similar with peaks at about 10 kpc and tails extending to more than 70 kpc. We find that distances from the two methods agree well for the majority of the sample stars; though, on average, distances based on isochrones are 10% higher than those based on fiducials. We test the accuracy of our distance determinations using 332 stars from 10 Galactic globular and open clusters. The average relative deviation from the literature cluster distances is 4% for the fiducial-based distances and 8% for the isochrone-based distances, both of which are within the uncertainties. We find that the effective temperature and surface gravity derived from low-resolution spectra are not accurate enough to essentially improve the performance of distance determinations. However, for stars with significant extinction, effective temperature may help to better constrain their distances to some extent. We make our sample stars and their distances available from an online catalog. The catalog comprises 17,941 stars with reasonable distance estimations reaching to more than 70 kpc, which is suitable for the investigation of the formation and evolution of the Galaxy, especially the Galactic halo.

  7. The chemical composition of red giants in 47 Tucanae. II. Magnesium isotopes and pollution scenarios

    NASA Astrophysics Data System (ADS)

    Thygesen, A. O.; Sbordone, L.; Ludwig, H.-G.; Ventura, P.; Yong, D.; Collet, R.; Christlieb, N.; Melendez, J.; Zaggia, S.

    2016-04-01

    Context. The phenomenon of multiple populations in globular clusters is still far from understood, with several proposed mechanisms to explain the observed behaviour. The study of elemental and isotopic abundance patterns are crucial for investigating the differences among candidate pollution mechanisms. Aims: We derive magnesium isotopic ratios for 13 stars in the globular cluster 47 Tucanae (NGC 104) to provide new, detailed information about the nucleosynthesis that has occurred within the cluster. For the first time, the impact of 3D model stellar atmospheres on the derived Mg isotopic ratios is investigated. Methods: Using both tailored 1D atmospheric models and 3D hydrodynamical models, we derive magnesium isotopic ratios from four features of MgH near 5135 Å in 13 giants near the tip of the red giant branch, using high signal-to-noise, high-resolution spectra. Results: We derive the magnesium isotopic ratios for all stars and find no significant offset of the isotopic distribution between the pristine and the polluted populations. Furthermore, we do not detect any statistically significant differences in the spread in the Mg isotopes in either population. No trends were found between the Mg isotopes and [Al/Fe]. The inclusion of 3D atmospheres has a significant impact on the derived 25Mg/24Mg ratio, increasing it by a factor of up to 2.5, compared to 1D. The 26Mg/24Mg ratio, on the other hand, essentially remains unchanged. Conclusions: We confirm the results seen from other globular clusters, where no strong variation in the isotopic ratios is observed between stellar populations, for observed ranges in [Al/Fe]. We see no evidence for any significant activation of the Mg-Al burning chain. The use of 3D atmospheres causes an increase of a factor of up to 2.5 in the fraction of 25Mg, resolving part of the discrepancy between the observed isotopic fraction and the predictions from pollution models. Based on observations made with the ESO Very Large Telescope

  8. On the Progenitors of Local Group Novae. II. The Red Giant Nova Rate of M31

    NASA Astrophysics Data System (ADS)

    Williams, S. C.; Darnley, M. J.; Bode, M. F.; Shafter, A. W.

    2016-02-01

    In our preceding paper, Liverpool Telescope data of M31 novae in eruption were used to facilitate a search for their progenitor systems within archival Hubble Space Telescope data, with the aim of detecting systems with red giant secondaries (RG-novae) or luminous accretion disks. From an input catalog of 38 spectroscopically confirmed novae with archival quiescent observations, likely progenitors were recovered for 11 systems. Here we present the results of the subsequent statistical analysis of the original survey, including possible biases associated with the survey and the M31 nova population in general. As part of this analysis, we examine the distribution of optical decline times (t2) of M31 novae, how the likely bulge and disk nova distributions compare, and how the M31 t2 distribution compares to that of the Milky Way. Using a detailed Monte Carlo simulation, we determine that {30}-10+13% of all M31 nova eruptions can be attributed to RG-nova systems, and at the 99% confidence level, \\gt 10% of all M31 novae are RG-novae. This is the first estimate of a RG-nova rate of an entire galaxy. Our results also imply that RG-novae in M31 are more likely to be associated with the M31 disk population than the bulge; indeed, the results are consistent with all RG-novae residing in the disk. If this result is confirmed in other galaxies, it suggests that any Type Ia supernovae that originate from RG-nova systems are more likely to be associated with younger populations and may be rare in old stellar populations, such as early-type galaxies.

  9. On the cosmic ray spectrum from type II Supernovae expanding in their red giant presupernova wind

    NASA Astrophysics Data System (ADS)

    Cardillo, Martina

    2015-12-01

    While from the energetic point of view SNRs are viable sources of Galactic CRs, the issue of whether they can accelerate protons up to PeV remains unsolved. Here we discuss particle acceleration at the forward shock of SN and discuss the possibility that the escaping particle current may excite a non-resonant instability that in turn leads to the formation of resonant modes confining particles close to the shock and increasing the maximum energy. This mechanism works throughout the expansion of the SN explosion, from the ejecta dominated (ED) to the Sedov-Taylor (ST) phase. Because of their higher explosion rate,we focus on type II SNae expanding in the slow, dense red supergiant wind. When the explosion occurs in such winds, the transition between the ED and the ST phase is likely to take place within a few tens of years. As a result, the spectrum of accelerated particles shows a break in the slope, at the maximum energy (EM) achieved at the beginning of the ST phase. Above this energy, the spectrum becomes steeper but remains a power law than developing an exponential cutoff. We show that for type II SNae typical parameters, proton EM can easily reach PeV energies, confirming that type II SNRs are the best candidate sources for CRs at the knee. We have tried to fit KASCADE-Grande, ARGO -YBJ and YAC1-Tibet Array data with our model but we could not find any parameter combination that could explain all data sets. Indeed the recent measurement of the proton and helium spectra in the knee region, with the ARGO-YBJ and YAC1-Tibet Array, has made the situation very confused. These measurements suggest that the knee in the light component is at 650 TeV, appreciably below the overall spectrum knee. This finding would resolve the problem of reaching very high energies in SNae, but, on the other hand, it would open a critical issue in the transition region between Galactic and extragalactic CRs.

  10. Ca II Triplet Spectroscopy of Small Magellanic Cloud Red Giants. III. Abundances and Velocities for a Sample of 14 Clusters

    NASA Astrophysics Data System (ADS)

    Parisi, M. C.; Geisler, D.; Clariá, J. J.; Villanova, S.; Marcionni, N.; Sarajedini, A.; Grocholski, A. J.

    2015-05-01

    We obtained spectra of red giants in 15 Small Magellanic Cloud (SMC) clusters in the region of the Ca ii lines with FORS2 on the Very Large Telescope. We determined the mean metallicity and radial velocity with mean errors of 0.05 dex and 2.6 km s-1, respectively, from a mean of 6.5 members per cluster. One cluster (B113) was too young for a reliable metallicity determination and was excluded from the sample. We combined the sample studied here with 15 clusters previously studied by us using the same technique, and with 7 clusters whose metallicities determined by other authors are on a scale similar to ours. This compilation of 36 clusters is the largest SMC cluster sample currently available with accurate and homogeneously determined metallicities. We found a high probability that the metallicity distribution is bimodal, with potential peaks at -1.1 and -0.8 dex. Our data show no strong evidence of a metallicity gradient in the SMC clusters, somewhat at odds with recent evidence from Ca ii triplet spectra of a large sample of field stars. This may be revealing possible differences in the chemical history of clusters and field stars. Our clusters show a significant dispersion of metallicities, whatever age is considered, which could be reflecting the lack of a unique age-metallicity relation in this galaxy. None of the chemical evolution models currently available in the literature satisfactorily represents the global chemical enrichment processes of SMC clusters.

  11. Non-LTE effects on the ionization equilibrium of Fe I/Fe II: Application to the red giants of Carina dSph Galaxy

    NASA Astrophysics Data System (ADS)

    Merle, T.; Fabrizio, M.; Thévenin, F.; Nonino, M.; Bono, G.

    2012-12-01

    In the context of the Carina Project, we re-analyze the iron abundances of 44 red giants of the Carina dSph galaxy to derive its metallicity distribution function. The abundance analyses were performed with the LTE spectrum synthesis fitting method using ESO/VLT high resolution spectra. Using {Fe I} lines, we obtained stellar metallicities of ˜0.1 dex lower than using {Fe II} lines. This discrepancy is classically interpreted as an error on the surface gravity (based on photometry and evolutionary tracks) which is removed by changing gravity until {Fe I} abundances match {Fe II} ones. However, the NLTE mechanism of over-ionization regarding LTE can also explain this discrepancy in giant stars. To support this idea, we performed NLTE computations with a {Fe I}/II model atom and show that this discrepancy is well reproduced. NLTE computations also highlight large discrepancies in individual lines of {Fe I} and {Fe II}.

  12. Far-ultraviolet fluorescence of carbon monoxide in the red giant Arcturus. II - Analysis of high-dispersion IUE spectra

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.

    1986-01-01

    Faint, diffuse emissions near 1380 A in deeply exposed IUE spectrograms of the red giant Arcturus very likely are associated with bands of the A-X fourth-positive system of carbon monoxide, fluoresced by multiplet UV2 of neutral oxygen near 1305 A. Numerical simulations indicate that the strength of the CO bands is exceedingly sensitive, in the best available one-dimensional model of the chromosphere of Arcturus, to a delicate balance between the rapid inward attenuation of the oxygen radiation field and the rapid outward decline of the molecular absorptivity. The fortuitous character of the overlap region in the single-component model argues that one should also consider the possibility that the pumping occurs in a highly inhomogeneous chromosphere, of the type proposed in previous studies of Arcturus based on observations of the infrared absorption bands of CO.

  13. A BAYESIAN APPROACH TO LOCATING THE RED GIANT BRANCH TIP MAGNITUDE. II. DISTANCES TO THE SATELLITES OF M31

    SciTech Connect

    Conn, A. R.; Parker, Q. A.; Zucker, D. B.; Ibata, R. A.; Martin, N. F.; Lewis, G. F.; McConnachie, A. W.; Irwin, M. J.; Chapman, S. C.; Tanvir, N.; Fardal, M. A.; Ferguson, A. M. N.; Valls-Gabaud, D.

    2012-10-10

    In 'A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (Part I)', a new technique was introduced for obtaining distances using the tip of the red giant branch (TRGB) standard candle. Here we describe a useful complement to the technique with the potential to further reduce the uncertainty in our distance measurements by incorporating a matched-filter weighting scheme into the model likelihood calculations. In this scheme, stars are weighted according to their probability of being true object members. We then re-test our modified algorithm using random-realization artificial data to verify the validity of the generated posterior probability distributions (PPDs) and proceed to apply the algorithm to the satellite system of M31, culminating in a three-dimensional view of the system. Further to the distributions thus obtained, we apply a satellite-specific prior on the satellite distances to weight the resulting distance posterior distributions, based on the halo density profile. Thus in a single publication, using a single method, a comprehensive coverage of the distances to the companion galaxies of M31 is presented, encompassing the dwarf spheroidals Andromedas I-III, V, IX-XXVII, and XXX along with NGC 147, NGC 185, M33, and M31 itself. Of these, the distances to Andromedas XXIV-XXVII and Andromeda XXX have never before been derived using the TRGB. Object distances are determined from high-resolution tip magnitude posterior distributions generated using the Markov Chain Monte Carlo technique and associated sampling of these distributions to take into account uncertainties in foreground extinction and the absolute magnitude of the TRGB as well as photometric errors. The distance PPDs obtained for each object both with and without the aforementioned prior are made available to the reader in tabular form. The large object coverage takes advantage of the unprecedented size and photometric depth of the Pan-Andromeda Archaeological Survey. Finally, a

  14. A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude. II. Distances to the Satellites of M31

    NASA Astrophysics Data System (ADS)

    Conn, A. R.; Ibata, R. A.; Lewis, G. F.; Parker, Q. A.; Zucker, D. B.; Martin, N. F.; McConnachie, A. W.; Irwin, M. J.; Tanvir, N.; Fardal, M. A.; Ferguson, A. M. N.; Chapman, S. C.; Valls-Gabaud, D.

    2012-10-01

    In "A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (Part I)," a new technique was introduced for obtaining distances using the tip of the red giant branch (TRGB) standard candle. Here we describe a useful complement to the technique with the potential to further reduce the uncertainty in our distance measurements by incorporating a matched-filter weighting scheme into the model likelihood calculations. In this scheme, stars are weighted according to their probability of being true object members. We then re-test our modified algorithm using random-realization artificial data to verify the validity of the generated posterior probability distributions (PPDs) and proceed to apply the algorithm to the satellite system of M31, culminating in a three-dimensional view of the system. Further to the distributions thus obtained, we apply a satellite-specific prior on the satellite distances to weight the resulting distance posterior distributions, based on the halo density profile. Thus in a single publication, using a single method, a comprehensive coverage of the distances to the companion galaxies of M31 is presented, encompassing the dwarf spheroidals Andromedas I-III, V, IX-XXVII, and XXX along with NGC 147, NGC 185, M33, and M31 itself. Of these, the distances to Andromedas XXIV-XXVII and Andromeda XXX have never before been derived using the TRGB. Object distances are determined from high-resolution tip magnitude posterior distributions generated using the Markov Chain Monte Carlo technique and associated sampling of these distributions to take into account uncertainties in foreground extinction and the absolute magnitude of the TRGB as well as photometric errors. The distance PPDs obtained for each object both with and without the aforementioned prior are made available to the reader in tabular form. The large object coverage takes advantage of the unprecedented size and photometric depth of the Pan-Andromeda Archaeological Survey. Finally, a

  15. Red Giant Plunging Through Space

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version

    This image from NASA's Spitzer Space Telescope (left panel) shows the 'bow shock' of a dying star named R Hydrae, or R Hya, in the constellation Hydra.

    Bow shocks are formed where the stellar wind from a star are pushed into a bow shape (illustration, right panel) as the star plunges through the gas and dust between stars. Our own Sun has a bow shock, but prior to this image one had never been observed around this particular class of red giant star.

    R Hya moves through space at approximately 50 kilometers per second. As it does so, it discharges dust and gas into space. Because the star is relatively cool, that ejecta quickly assumes a solid state and collides with the interstellar medium. The resulting dusty nebula is invisible to the naked eye but can be detected using an infrared telescope. This bow shock is 16,295 astronomical units from the star to the apex and 6,188 astronomical units thick (an astronomical unit is the distance between the sun and Earth). The mass of the bow shock is about 400 times the mass of the Earth.

    The false-color Spitzer image shows infrared emissions at 70 microns. Brighter colors represent greater intensities of infrared light at that wavelength. The location of the star itself is drawn onto the picture in the black 'unobserved' region in the center.

  16. Chromospheric Activity in Red Giants of M67

    NASA Astrophysics Data System (ADS)

    Dupree, A. K.; Whitney, B. A.; Pasquini, L.

    1994-12-01

    Red giants in the old open cluster M67 present a well-studied, homogeneous group of 1.27Msun stars with which to determine the evolution of chromospheric activity and mass loss. Echelle spectra of the Ca II H and K line region (lambda 3950) have been obtained with the 4-m telescope at KPNO, the MMT of the F. L. Whipple Observatory (K only), and the 3.6-m ESO telescope at La Silla, Chile. Spectra of 16 red giant stars down to V ~ 11 were obtained; five of the sample are identified as clump giants. The flux of the emission reversal in the Ca II K core has been calibrated using normalization based on the narrow-band absolute spectrophotometry of Gunn &\\ Stryker (1983, ApJS, 52, 121). A new spectral synthesis of the Calcium line region for radiative models of the M67 giants based on Kurucz atmospheres provides the correction necessary to extract the chromospheric component of the flux. The Ca K emission reversals display asymmetries indicative of outward motions for giants more luminous than M_V ~ +0.5. The chromospheric emission flux in Ca II K decreases with increasing stellar luminosity. Clump giants, which are thought to be in a core-helium burning stage, show Ca II emission comparable to the stars on the red giant branch. Evidence for chromospheric variability is found from multiple observations of several objects. Implications of these results upon the evolution of chromospheres and presence of mass loss in giants will be discussed.

  17. STROeMGREN PHOTOMETRY OF GALACTIC GLOBULAR CLUSTERS. II. METALLICITY DISTRIBUTION OF RED GIANTS IN omega CENTAURI

    SciTech Connect

    Calamida, A.; Hilker, M.; Bono, G. E-mail: mhilker@eso.or

    2009-12-01

    We present new intermediate-band Stroemgren photometry based on more than 300 u, v, b, y images of the Galactic globular cluster omega Cen. Optical data were supplemented with new multiband near-infrared (NIR) photometry (350 J, H, K{sub s} images). The final optical-NIR catalog covers a region of more than 20 x 20 arcmin squared across the cluster center. We use different optical-NIR color-color planes together with proper-motion data available in the literature to identify candidate cluster red-giant (RG) stars. By adopting different Stroemgren metallicity indices, we estimate the photometric metallicity for approx4000 RGs, the largest sample ever collected. The metallicity distributions show multiple peaks ([Fe/H]{sub phot} = -1.73 +- 0.08, -1.29 +- 0.03, -1.05 +- 0.02, -0.80 +- 0.04, -0.42 +- 0.12, and -0.07 +- 0.08 dex) and a sharp cutoff in the metal-poor (MP) tail ([Fe/H]{sub phot} approx< -2 dex) that agree quite well with spectroscopic measurements. We identify four distinct subpopulations, namely, MP ([Fe/H] <= -1.49), metal-intermediate (MI; -1.49 < [Fe/H] <= -0.93), metal-rich (MR; -0.95 < [Fe/H] <= -0.15), and solar metallicity ([Fe/H] approx 0). The last group includes only a small fraction of stars (approx8% +- 5%) and should be confirmed spectroscopically. Moreover, using the difference in metallicity based on different photometric indices, we find that the 19% +- 1% of RGs are candidate CN-strong stars. This fraction agrees quite well with recent spectroscopic estimates and could imply a large fraction of binary stars. The Stroemgren metallicity indices display a robust correlation with alpha-elements ([Ca+Si/H]) when moving from the MI to the MR regime ([Fe/H] approx> -1.7 dex).

  18. Mass loss in red giants and supergiants

    NASA Technical Reports Server (NTRS)

    Sanner, F.

    1975-01-01

    The circumstellar envelopes surrounding late-type giants and supergiants were studied using high resolution, photoelectric scans of strong optical resonance lines. A method for extracting the circumstellar from the stellar components of the lines allowed a quantitative determination of the physical conditions in the envelopes and the rates of mass loss at various positions in the red giant region of the HR diagram. The observed strengthening of the circumstellar spectrum with increasing luminosity and later spectral type is probably caused by an increase in the mass of the envelopes. The mass loss rate for individual stars is proportional to the visual luminosity; high rates for the supergiants suggest that mass loss is important in their evolution. The bulk of the mass return to the interstellar medium in the red giant region comes from the normal giants, at a rate comparable to that of planetary nebulae.

  19. Angular momentum redistribution by mixed modes in evolved low-mass stars. II. Spin-down of the core of red giants induced by mixed modes

    NASA Astrophysics Data System (ADS)

    Belkacem, K.; Marques, J. P.; Goupil, M. J.; Mosser, B.; Sonoi, T.; Ouazzani, R. M.; Dupret, M. A.; Mathis, S.; Grosjean, M.

    2015-07-01

    The detection of mixed modes in subgiants and red giants by the CoRoT and Kepler space-borne missions allows us to investigate the internal structure of evolved low-mass stars, from the end of the main sequence to the central helium-burning phase. In particular, the measurement of the mean core rotation rate as a function of the evolution places stringent constraints on the physical mechanisms responsible for the angular momentum redistribution in stars. It showed that the current stellar evolution codes including the modelling of rotation fail to reproduce the observations. An additional physical process that efficiently extracts angular momentum from the core is thus necessary. Our aim is to assess the ability of mixed modes to do this. To this end, we developed a formalism that provides a modelling of the wave fluxes in both the mean angular momentum and the mean energy equations in a companion paper. In this article, mode amplitudes are modelled based on recent asteroseismic observations, and a quantitative estimate of the angular momentum transfer is obtained. This is performed for a benchmark model of 1.3 M⊙ at three evolutionary stages, representative of the evolved pulsating stars observed by CoRoT and Kepler. We show that mixed modes extract angular momentum from the innermost regions of subgiants and red giants. However, this transport of angular momentum from the core is unlikely to counterbalance the effect of the core contraction in subgiants and early red giants. In contrast, for more evolved red giants, mixed modes are found efficient enough to balance and exceed the effect of the core contraction, in particular in the hydrogen-burning shell. Our results thus indicate that mixed modes are a promising candidate to explain the observed spin-down of the core of evolved red giants, but that an other mechanism is to be invoked for subgiants and early red giants.

  20. On the interior properties of red giants

    NASA Astrophysics Data System (ADS)

    Iben, I., Jr.

    The interior evolution of red giants is focused on, the major emphasis being on the evolution of stars during the double shell-burning stage. The evolutionary course during the first and second ascent up the red giant branch of the H-R diagram are discussed for stars that vary with respect to certain critical masses, and the thermal pulse phase is also treated. Core, envelope, and surface phenomena are explained along with the process of development into white dwarfs or supernovas. The interplay of internal forces caused by various fuel-burning processes, electron-degeneracy pressure, and gravity are detailed, and phenomena such as core dredge-up, relaxed oscillations, and AGB stars are explained. Numbers are given for the properties of H-burning and convective shells, and detailed comparisons with observations are made.

  1. Variable Red Giants--The MACHO View

    SciTech Connect

    Keller, S C; Cook, K H

    2003-01-03

    The authors present a study of the MACHO red variable population in the Large Magellanic Cloud. This study reveals six period-luminosity relations among the red variable population. Only two of these were known prior to MACHO. The results are consistent with Mira pulsation in the fundamental mode. A sequence comprising 26% of the red variable population can not be explained by pulsation. They propose a dust {kappa}-mechanism in the circumstellar environment is responsible for the long period variation of these objects. The luminosity function of the variables shows a sharp edge at the tip of the red giant branch (TRGB). This is the first clear indication of a population of variable stars within the immediate vicinity of the TRGB. The results indicate this population amounts to 8% of the RGB population near the TRGB.

  2. The kinematics of halo red giants

    NASA Astrophysics Data System (ADS)

    Carney, B. W.; Latham, D. W.

    1986-07-01

    The authors have obtained 337 radial velocities with typical accuracies of ± 0.7 km s-1 for 85 metal-poor field red giants, selected from the kinematically unbiased samples of Bond (1980) and Bidelman and MacConnell (1973). The multiply observed stars suggest the field halo giant binary fraction exceeds 10%. Using their own velocities and those published by others, the authors have a sample of 174 red giants with [Fe/H] ≤ -1.5. Their mean motion with respect to the local standard of rest is >V< = -206±23 km s-1, and the velocity dispersions are σR = 154±18 km s-1, σθ = 102±27 km s-1, and σφ = 107±15 km s-1. Using photometrically derived absolute magnitudes and published proper motions, the authors compute orbital eccentricities for 72 stars not already considered in a similar study of southern stars by Norris, Bessell, and Pickles (1985). They find a few (5% - 8%) stars with e < 0.4.

  3. Sizing Up Red-Giant Twins

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    In KIC 9246715, two red-giant stars twins in nearly every way circle each other in a 171-day orbit. This binary pair may be a key to learning about masses and radii of stars with asteroseismology, the study of oscillations in the interiors of stars.Two Ways to MeasureIn order to understand a stars evolution, it is critical that we know its mass and radius. Unfortunately, these quantities are often difficult to pin down!One of the few cases in which we can directly measure stars masses and radii is in eclipsing binaries, wherein two stars eclipse each other as they orbit. If we have a well-sampled light curve for the binary, as well as radial velocities for both stars, then we can determine the stars complete orbital information, including their masses and radii.But there may be another way to obtain stellar mass and radius: asteroseismology. In asteroseismology, oscillations inside stars are used to characterize the stellar interiors. Conveniently, if a star with a convective envelope exhibits solar-like oscillations, these oscillations can be directly compared to those of the Sun. Mass and radius scaling relations which use the Sun as a benchmark and scale based on the stars temperature can then be used to derive the mass and radius of the star.Test Subjects from KeplerSolar-like oscillations from KIC 9246715 are shown in red across different resonant frequencies. The oscillations of a single red-giant star with similar properties are shown upside down in grey for reference. [Rawls et al. 2016]Of course, scaling relations are only useful if we can test them! A team of scientists including Meredith Rawls (New Mexico State University) has identified 18 red-giant eclipsing binaries in the Kepler field of view that also exhibit solar-like oscillations perfect for testing the scaling relations.In a recent study led by Rawls, the team analyzed the first of these binaries, KIC 9246715. Using the Kepler light curves in addition to radial velocity measurements from high

  4. Manganese abundances in Galactic bulge red giants

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; Hill, V.; Zoccali, M.; Minniti, D.; Renzini, A.; Ortolani, S.; Gómez, A.; Trevisan, M.; Dutra, N.

    2013-11-01

    Context. Manganese is mainly produced in type II SNe during explosive silicon burning, in incomplete Si-burning regions, and depends on several nucleosynthesis environment conditions, such as mass cut between the matter ejected and falling back onto the remnant, electron and neutron excesses, mixing fallback, and explosion energy. Manganese is also produced in type Ia SNe. Aims: The aim of this work is the study of abundances of the iron-peak element Mn in 56 bulge giants, among which 13 are red clump stars. Four bulge fields along the minor axis are inspected. The study of abundances of Mn-over-Fe as a function of metallicity in the Galactic bulge may shed light on its production mechanisms. Methods: High-resolution spectra were obtained using the FLAMES+UVES spectrograph on the Very Large Telescope. The spectra were obtained within a program to observe 800 stars using the GIRAFFE spectrograph, together with the present UVES spectra. Results: We aim at identifying the chemical evolution of manganese, as a function of metallicity, in the Galactic bulge. We find [Mn/Fe] ~ -0.7 at [Fe/H] ~ -1.3, increasing to a solar value at metallicities close to solar, and showing a spread around - 0.7 ≲ [Fe/H] ≲ -0.2, in good agreement with other work on Mn in bulge stars. There is also good agreement with chemical evolution models. We find no clear difference in the behaviour of the four bulge fields. Whereas [Mn/Fe] vs. [Fe/H] could be identified with the behaviour of the thick disc stars, [Mn/O] vs. [O/H] has a behaviour running parallel, at higher metallicities, compared to thick disc stars, indicating that the bulge enrichment might have proceeded differently from that of the thick disc. Observations collected at the European Southern Observatory, Paranal, Chile (ESO programmes 71.B-0617A, 73.B0074A, and GTO 71.B-0196).Tables 1-6 and Figs. 1-6 are available in electronic form at http://www.aanda.org

  5. Planetary Motion in the Atmospheres of Red Giants

    NASA Astrophysics Data System (ADS)

    Volobueva, M. I.; Tarakanov, P. A.

    2015-09-01

    When a star reaches the red giant stage in the course of its evolution, its closest planets are in its atmosphere. Numerical gas dynamic models are constructed for hypersonic flow around planets by matter in the atmosphere of a red giant. The results are compared with analytic models for the motion of planets in the atmospheres of stars.

  6. Quantifying Irregularity in Pulsating Red Giants

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Esteves, S.; Lin, A.; Menezes, C.; Wu, S.

    2009-12-01

    Hundreds of red giant variable stars are classified as “type L,” which the General Catalogue of Variable Stars (GCVS) defines as “slow irregular variables of late spectral type...which show no evidence of periodicity, or any periodicity present is very poorly defined....” Self-correlation (Percy and Muhammed 2004) is a simple form of time-series analysis which determines the cycle-to-cycle behavior of a star, averaged over all the available data. It is well suited for analyzing stars which are not strictly periodic. Even for non-periodic stars, it provides a “profile” of the variability, including the average “characteristic time” of variability. We have applied this method to twenty-three L-type variables which have been measured extensively by AAVSO visual observers. We find a continuous spectrum of behavior, from irregular to semiregular.

  7. Sizing Up Red Giants Using Bayes’ Rule

    NASA Astrophysics Data System (ADS)

    Aufdenberg, Jason P.; Parsotan, Tyler

    2014-06-01

    Using the general-purpose stellar atmosphere code PHOENIX, we have constructed a grid of spherical stellar atmosphere models for comparison to cool giant star spectral energy distributions(SEDs). The models are not only parametrized by effective temperature (3500 Kto 3700 K) and surface gravity (log(g) = -0.5 to 1.0), but also by mass (7 Msun to 21 Msun), a required parameter for spherical model atmospheres. The shapes of the synthetic spectral energy distributions are sensitive to a change in mass at fixed values for the effective temperature and surface gravity. At our lowest surface gravity, differences in mass of a factor of two can yield up to 20% flux differences in the shape of the SED between 400 nm and 900 nm.Also, for a fixed mass, differences in the surface gravity of a factor of 10 can yield up to 100% flux differences in the shape of the SED below 450 nm. We are investigating whether the mass-dependence of the model SED shape may be used to constrain single star masses. One of our target stars is the supergiant Betelgeuse which has a poorly constrained mass: published estimates differ by a factor of two. To aid in our analysis, we have developed a method to extract Bayesian posterior distributions for four model parameters (effective temperature, surface gravity, mass, and angular size) from thecomparison of the synthetic SED grid to individual observed SEDs of red giants.

  8. Long Secondary Periods in variable red giants

    NASA Astrophysics Data System (ADS)

    Nicholls, C. P.; Wood, P. R.; Cioni, M.-R. L.; Soszyński, I.

    2009-11-01

    We present a study of a sample of Large Magellanic Cloud red giants exhibiting Long Secondary Periods (LSPs). We use radial velocities obtained from VLT spectral observations and MACHO and OGLE light curves to examine properties of the stars and to evaluate models for the cause of LSPs. This sample is much larger than the combined previous studies of Hinkle et al. and Wood, Olivier & Kawaler. Binary and pulsation models have enjoyed much support in recent years. Assuming stellar pulsation, we calculate from the velocity curves that the typical fractional radius change over an LSP cycle is greater than 30 per cent. This should lead to large changes in Teff that are not observed. Also, the small light amplitude of these stars seems inconsistent with the radius amplitude. We conclude that pulsation is not a likely explanation for the LSPs. The main alternative, physical movement of the star - binary motion - also has severe problems. If the velocity variations are due to binary motion, the distribution of the angle of periastron in our large sample of stars has a probability of 1.4 × 10-3 that it comes from randomly aligned binary orbits. In addition, we calculate a typical companion mass of 0.09Msolar. Less than 1 per cent of low-mass main-sequence stars have companions near this mass (0.06-0.12Msolar) whereas ~25-50 per cent of low-mass red giants end up with LSPs. We are unable to find a suitable model for the LSPs and conclude by listing their known properties.

  9. Properties of Red Giant Branches of Star Clusters in the Magellanic Clouds and Their Relation with Cluster Metallicity. II. Mean Photometric Colors of Cluster RGBs

    NASA Astrophysics Data System (ADS)

    Kučinskas, A.; Dobrovolskas, V.; Lazauskaitė, R.; Tanabé, T.

    We derive new calibrations that relate the mean J-Ks photometric colors of red giant branch (RGB) stars at MKs=-5.5 and -5.0 with cluster metallicity. The new calibrations are derived using a sample of intermediate age (1--8 Gyr) clusters in the Large and Small Magellanic Clouds, with the JHKs photometry taken from the SIRIUS photometric survey of the Magellanic Clouds. Cluster metallicities are literature data, obtained either from the high resolution or infrared calcium triplet spectroscopy of individual RGB stars. We find systematic differences between the RGB color vs. metallicity relations derived in this work and those determined by Valenti et al. (2004), the latter ones obtained for a sample of old Galactic globular clusters. In terms of age, this discrepancy corresponds to ˜ 5 Gyr and therefore can be attributed to the age difference between the two cluster samples used in the derivation of the corresponding RGB color vs. metallicity relations.

  10. THE TIP OF THE RED GIANT BRANCH DISTANCES TO TYPE Ia SUPERNOVA HOST GALAXIES. II. M66 AND M96 IN THE LEO I GROUP

    SciTech Connect

    Lee, Myung Gyoon; Jang, In Sung E-mail: isjang@astro.snu.ac.kr

    2013-08-10

    M66 and M96 in the Leo I Group are nearby spiral galaxies hosting Type Ia supernovae (SNe Ia). We estimate the distances to these galaxies from the luminosity of the tip of the red giant branch (TRGB). We obtain VI photometry of resolved stars in these galaxies from F555W and F814W images in the Hubble Space Telescope archive. From the luminosity function of these red giants, we find the TRGB I-band magnitude to be I{sub TRGB} = 26.20 {+-} 0.03 for M66 and 26.21 {+-} 0.03 for M96. These values yield distance modulus (m - M){sub 0} = 30.12 {+-} 0.03(random) {+-} 0.12(systematic) for M66 and (m - M){sub 0} = 30.15 {+-} 0.03(random) {+-} 0.12(systematic) for M96. These results show that they are indeed the members of the same group. With these results we derive absolute maximum magnitudes of two SNe (SN 1989B in M66 and SN 1998bu in M96). V-band magnitudes of these SNe Ia are {approx}0.2 mag fainter than SN 2011fe in M101, one of the nearest recent SNe Ia. We also derive near-infrared magnitudes for SN 1998bu. Optical magnitudes of three SNe Ia (SN 1989B, SN 1998bu, and SN 2011fe) based on TRGB analysis yield a Hubble constant, H{sub 0} = 68.4 {+-} 2.6(random) {+-} 3.7(systematic) km s{sup -1} Mpc{sup -1}. This value is similar to the values derived from recent WMAP9 results, H{sub 0} = 69.32 {+-} 0.80 km s{sup -1} Mpc{sup -1}, and from Planck results, H{sub 0} = 67.3 {+-} 1.2 km s{sup -1} Mpc{sup -1}, but smaller than other recent determinations based on Cepheid calibration for SNe Ia luminosity, H{sub 0} = 74 {+-} 3 km s{sup -1} Mpc{sup -1}.

  11. Carbon and nitrogen abundance variations in globular cluster red giants

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2008-06-01

    This dissertation describes investigations into two of the persistent questions of elemental abundances in Galactic globular clusters: the phenomenon of deep mixing, observed through the progressive depletion of surface carbon abundance as stars evolve along the red giant branch, and abundance bimodality, a phenomenon observed only in globular clusters, in which a subset of stars in a given globular cluster have a distinctive pattern of elemental enhancements and depletions relative to the Solar pattern. The first chapter gives an introduction to the history of globular cluster abundance studies, with particular focus on low-resolution spectroscopy. For both deep mixing and abundance bimodality, the leading theoretical models and the data which support and challenge them are laid out. Each section ends with a description of presently-unanswered questions; these are the motivation for the various projects contained in this dissertation. The second chapter describes the use of molecular handstrengths for determining elemental abundances from low-resolution spectra, and introduces a new CH bandstrength index that is designed to be sensitive to carbon abundance and insensitive to nitrogen abundance in Pop. II red giants over a wide range of metallicity. Various CH indices defined elsewhere in the literature are also discussed, and are shown to have comparable accuracy to the new index only over a limited range of stellar properties. Carbon abundances determined using the new CH index are compared to literature abundances for a few stars, and general concordance with published abundances is found. The third chapter contains a large-scale application of the new CH index: a survey of present-day carbon abundances and calculated carbon depletion rates in bright red giants belonging to eleven Galactic globular clusters spanning the full metallicity range of halo globular clusters. Targets were selected with similar evolutionary states, were observed with one instrument on

  12. Ca II Triplet Spectroscopy of Small Magellanic Cloud Red Giants. IV. Abundances for a Large Sample of Field Stars and Comparison with the Cluster Sample

    NASA Astrophysics Data System (ADS)

    Parisi, M. C.; Geisler, D.; Carraro, G.; Clariá, J. J.; Villanova, S.; Gramajo, L. V.; Sarajedini, A.; Grocholski, A. J.

    2016-09-01

    This paper represents a major step forward in the systematic and homogeneous study of Small Magellanic Cloud (SMC) star clusters and field stars carried out by applying the calcium triplet technique. We present in this work the radial velocity and metallicity of approximately 400 red giant stars in 15 SMC fields, with typical errors of about 7 km s‑1 and 0.16 dex, respectively. We added to this information our previously determined metallicity values for 29 clusters and approximately 350 field stars using the identical techniques. Using this enlarged sample, we analyze the metallicity distribution and gradient in this galaxy. We also compare the chemical properties of the clusters and of their surrounding fields. We find a number of surprising results. While the clusters, taken as a whole, show no strong evidence for a metallicity gradient (MG), the field stars exhibit a clear negative gradient in the inner region of the SMC, consistent with the recent results of Dobbie et al. For distances to the center of the galaxy less than 4°, field stars show a considerably smaller metallicity dispersion than that of the clusters. However, in the external SMC regions, clusters and field stars exhibit similar metallicity dispersions. Moreover, in the inner region of the SMC, clusters appear to be concentrated in two groups: one more metal-poor and another more metal-rich than field stars. Individually considered, neither cluster group presents an MG. Most surprisingly, the MG for both stellar populations (clusters and field stars) appears to reverse sign in the outer regions of the SMC. The difference between the cluster metallicity and the mean metallicity of the surrounding field stars turns out to be a strong function of the cluster metallicity. These results could be indicating different chemical evolution histories for these two SMC stellar populations. They could also indicate variations in the chemical behavior of the SMC in its internal and external regions.

  13. Companions to peculiar red giants: HR 363 and HR 1105

    NASA Technical Reports Server (NTRS)

    Ake, Thomas B., III; Johnson, Hollis R.; Perry, Benjamin F., Jr.

    1988-01-01

    Recent IUE observations of two Tc-deficient S-type peculiar red giants that are also spectroscopic binaries, HR 363 and HR 1105 are reported. A 675 min SWP exposure of HR 363 shows emission lines of O I 1304 and Si II 1812 and a trace of continuum. Compared to the M giants, the far UV flux may be relatively larger, indicating a possible contribution from a white dwarf companion, but no high temperature emission lines are seen to indicate that this is an interacting system where mass-transfer recently occurred. However, HR 1105 appears to have a highly variable UV companion. In 1982, no UV flux was discerned for this system, but by 1986 C IV was strong, increasing by a factor of 3 in 1987 with prominent lines of Si III, C III, O III, Si IV, and N V. Using orbital parameters, these observations are consistent with high activity occuring when the side of the S-star primary illuminated by the companion faces the Earth, but since the IUE data were taken over 3 orbits, a secular change in the UV component cannot be excluded.

  14. Asteroseismology of 1523 misclassified red giants using Keplerdata

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Huber, Daniel; Bedding, Timothy R.; Stello, Dennis; Murphy, Simon J.; Xiang, Maosheng; Bi, Shaolan; Li, Tanda

    2016-08-01

    We analysed solar-like oscillations in 1523 Keplerred giants which have previously been misclassified as subgiants, with predicted νmaxvalues (based on the Kepler Input Catalogue) between 280 μHzto 700 μHz. We report the discovery of 626 new oscillating red giants in our sample, in addition to 897 oscillators that were previously characterized by Hekker et al. (2011) from one quarter of Keplerdata. Our sample increases the known number of oscillating low-luminosity red giants by 26% (up to ˜ 1900 stars). About three quarters of our sample are classified as ascending red-giant-branch stars, while the remainder are red-clump stars. A novel scheme was applied to determine Δνfor 108 stars with νmaxclose to the Nyquist frequency (240 μHz < νmax < 320 μHz). Additionally, we identified 47 stars oscillating in the super-Nyquist frequency regime, up to 387μHz, using long-cadence light curves. We show that the misclassifications are most likely due to large uncertainties in KIC surface gravities, and do not result from the absence of broadband colors or from different physical properties such as reddening, spatial distribution, mass or metallicity. The sample will be valuable to study oscillations in low-luminosity red giants and to characterize planet candidates around those stars.

  15. The Double Red Giant Binary With Odd Oscillations

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Orosz, Jerome A.; Latham, David W.; Jackiewicz, Jason

    2015-01-01

    Red giants in eclipsing binaries are excellent tools for studying the interplay among stellar evolution, binarity, and solar-like oscillations. We present a detailed look at one unique system composed of two red giants, KIC 9246715. One of the stars exhibits solar-like oscillations that are weaker than expected, and the other shows none at all. To address this oddity, we combine four years of Kepler light curves, radial velocity curves for both stars, and stellar atmosphere models for each star's extracted spectrum. Our final, well-constrained photodynamic model yields new physical insights for both stars in the binary, puts asteroseismology to the test, and paves the way for detailed studies of other red giant eclipsing binaries with main-sequence companions. This work summarizes the main results of a new paper by Rawls et al.

  16. The Optical Gravitational Lensing Experiment. Ellipsoidal Variability of Red Giants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Pietrzynski, G.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.; Dziembowski, W. A.

    2004-12-01

    We used the OGLE-II and OGLE-III photometry of red giants in the Large Magellanic Cloud to select and study objects revealing ellipsoidal variability. We detected 1546 candidates for long period ellipsoidal variables and 121 eclipsing binary systems with clear ellipsoidal modulation. The ellipsoidal red giants follow a period--luminosity (PL) relationship (sequence E), and the scatter of the relation is correlated with the amplitude of variability: the larger the amplitude, the smaller the scatter. We note that some of the ellipsoidal candidates exhibit simultaneously OGLE Small Amplitude Red Giants pulsations. Thus, in some cases the Long Secondary Period (LSP) phenomenon can be explained by the ellipsoidal modulation. We also select about 1600 red giants with distinct LSP, which are not ellipsoidal variables. We discover that besides the sequence D in the PL diagram known before, the LSP giants form additional less numerous sequence for longer periods. We notice that the PL sequence of the ellipsoidal candidates is a direct continuation of the LSP sequence toward fainter stars, what might suggest that the LSP phenomenon is related to binarity but there are strong arguments against such a possibility. About 10% of the presented light curves reveal clear deformation by the eccentricity of the system orbits. The largest estimated eccentricity in our sample is about 0.4. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive.

  17. Coordinated observations of interacting peculiar red giant binaries, 1

    NASA Technical Reports Server (NTRS)

    Ake, T.

    1995-01-01

    IUE Observations were begun for a two-year program to monitor the UV variability of three interacting peculiar red giant (PRG) binaries, HD 59643 (C6,s) HD 35155 (S3/2), and HR 1105 (S3.5/2.5). All of these systems were suspected to involve accretion of material from the PRG to a white-dwarf secondary, based mainly on previous IUE investigations. From our earlier surveys of PRG's, they were primary candidates to test the hypothesis that Tc-poor PRG's are formed as a result of mass transfer from a secondary component rather than from internal thermal pulsing while on the asymptotic red giant branch.

  18. Magnetic braking of stellar cores in red giants and supergiants

    SciTech Connect

    Maeder, André; Meynet, Georges E-mail: georges.meynet@unige.ch

    2014-10-01

    Magnetic configurations, stable on the long term, appear to exist in various evolutionary phases, from main-sequence stars to white dwarfs and neutron stars. The large-scale ordered nature of these fields, often approximately dipolar, and their scaling according to the flux conservation scenario favor a fossil field model. We make some first estimates of the magnetic coupling between the stellar cores and the outer layers in red giants and supergiants. Analytical expressions of the truncation radius of the field coupling are established for a convective envelope and for a rotating radiative zone with horizontal turbulence. The timescales of the internal exchanges of angular momentum are considered. Numerical estimates are made on the basis of recent model grids. The direct magnetic coupling of the core to the extended convective envelope of red giants and supergiants appears unlikely. However, we find that the intermediate radiative zone is fully coupled to the core during the He-burning and later phases. This coupling is able to produce a strong spin down of the core of red giants and supergiants, also leading to relatively slowly rotating stellar remnants such as white dwarfs and pulsars. Some angular momentum is also transferred to the outer convective envelope of red giants and supergiants during the He-burning phase and later.

  19. Evidence for extended chromospheres surrounding red giant stars

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.

    1982-01-01

    Observational evidence and theoretical arguments are summarized which indicate that regions of partially ionized hydrogen extending several stellar radii are an important feature of red giant and supergiant stars. The implications of the existence of extended chromospheres are examined in terms of the nature of the other atmospheres of, and mass loss from cool stars.

  20. Spectroscopic determination of masses (and implied ages) for red giants

    NASA Astrophysics Data System (ADS)

    Ness, Melissa; Hogg, David W.; Rix, Hans-Walter; Martig, Marie; Ho, Anna

    2016-01-01

    The mass of a star is arguably its most fundamental parameter and for red giant stars it implies a stellar evolution age. Stellar masses and ages have never been derived directly from spectra of red giants. However, using the APOGEE Kepler sample of stars, (the APOKASC sample), with high-quality spectra and astroseismic masses, we can build a data-driven spectral model using THE CANNON (arXiv:1501.07604) to infer stellar mass and therefore age from stellar spectra. We determine stellar masses to 0.07 dex from APOGEE DR12 spectra of red giants; these imply age estimates accurate to 0.2 dex (40 percent). THE CANNON constrains the ages foremost from spectral regions with particular absorption lines, elements whose surface abundances reflect mass-dependent dredge-up. We deliver an unprecedented catalog of 85,000 giants (including 20,000 red-clump stars) with mass and age estimates, spanning the entire disk (from the Galactic center to R ˜ 20 kpc). Such stellar age constraints across the Milky Way open up new avenues in Galactic archeology.

  1. Pulsation Properties of Carbon and Oxygen Red Giants

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Huang, D. J.

    2015-07-01

    We have used up to 12 decades of AAVSO visual observations, and the AAVSO VSTAR software package to determine new and/or improved periods of 5 pulsating biperiodic carbon (C-type) red giants, and 12 pulsating biperiodic oxygen (M-type) red giants. We have also determined improved periods for 43 additional C-type red giants, in part to search for more biperiodic C-type stars, and also for 46 M-type red giants. For a small sample of the biperiodic C-type and M-type stars, we have used wavelet analysis to determine the time scales of the cycles of amplitude increase and decrease. The C-type and M-type stars do not differ significantly in their period ratios (first overtone to fundamental). There is a marginal difference in the lengths of their amplitude cycles. The most important result of this study is that, because of the semiregularity of these stars, and the presence of alias, harmonic, and spurious periods, the periods which we and others derive for these stars—especially the smaller-amplitude ones—must be determined and interpreted with great care and caution. For instance: spurious periods of a year can produce an apparent excess of stars, at that period, in the period distribution.

  2. Spectroscopic Determination of Masses (and Implied Ages) for Red Giants

    NASA Astrophysics Data System (ADS)

    Ness, M.; Hogg, David W.; Rix, H.-W.; Martig, M.; Pinsonneault, Marc H.; Ho, A. Y. Q.

    2016-06-01

    The mass of a star is arguably its most fundamental parameter. For red giant stars, tracers luminous enough to be observed across the Galaxy, mass implies a stellar evolution age. It has proven to be extremely difficult to infer ages and masses directly from red giant spectra using existing methods. From the Kepler and apogee surveys, samples of several thousand stars exist with high-quality spectra and asteroseismic masses. Here we show that from these data we can build a data-driven spectral model using The Cannon, which can determine stellar masses to ∼0.07 dex from apogee dr12 spectra of red giants; these imply age estimates accurate to ∼0.2 dex (40%). We show that The Cannon constrains these ages foremost from spectral regions with CN absorption lines, elements whose surface abundances reflect mass-dependent dredge-up. We deliver an unprecedented catalog of 70,000 giants (including 20,000 red clump stars) with mass and age estimates, spanning the entire disk (from the Galactic center to R∼ 20 kpc). We show that the age information in the spectra is not simply a corollary of the birth-material abundances {{[Fe/H]}} and [α /{Fe}], and that, even within a monoabundance population of stars, there are age variations that vary sensibly with Galactic position. Such stellar age constraints across the Milky Way open up new avenues in Galactic archeology.

  3. Spectroscopic Determination of Masses (and Implied Ages) for Red Giants

    NASA Astrophysics Data System (ADS)

    Ness, M.; Hogg, David W.; Rix, H.-W.; Martig, M.; Pinsonneault, Marc H.; Ho, A. Y. Q.

    2016-06-01

    The mass of a star is arguably its most fundamental parameter. For red giant stars, tracers luminous enough to be observed across the Galaxy, mass implies a stellar evolution age. It has proven to be extremely difficult to infer ages and masses directly from red giant spectra using existing methods. From the Kepler and apogee surveys, samples of several thousand stars exist with high-quality spectra and asteroseismic masses. Here we show that from these data we can build a data-driven spectral model using The Cannon, which can determine stellar masses to ˜0.07 dex from apogee dr12 spectra of red giants; these imply age estimates accurate to ˜0.2 dex (40%). We show that The Cannon constrains these ages foremost from spectral regions with CN absorption lines, elements whose surface abundances reflect mass-dependent dredge-up. We deliver an unprecedented catalog of 70,000 giants (including 20,000 red clump stars) with mass and age estimates, spanning the entire disk (from the Galactic center to R˜ 20 kpc). We show that the age information in the spectra is not simply a corollary of the birth-material abundances {{[Fe/H]}} and [α /{Fe}], and that, even within a monoabundance population of stars, there are age variations that vary sensibly with Galactic position. Such stellar age constraints across the Milky Way open up new avenues in Galactic archeology.

  4. Sulfur and zinc abundances of red giant stars

    NASA Astrophysics Data System (ADS)

    Takeda, Yoichi; Omiya, Masashi; Harakawa, Hiroki; Sato, Bun'ei

    2016-08-01

    Sulfur and zinc are chemically volatile elements, which play significant roles as depletion-free tracers in studying galactic chemical evolution. However, regarding red giants having evolved off the main sequence, reliable abundance determinations of S and Zn seem to be difficult, despite the several studies that have been reported so far. Given this situation, we tried to establish the abundances of these elements for an extensive sample of 239 field GK giants ( - 0.8 ≲ [Fe/H] ≲ +0.2), by applying the spectrum-fitting technique to S I 8694-5, S I 6757, and Zn I 6362 lines and by taking into account the non-LTE effect. Besides, similar abundance analysis was done for 160 FGK dwarfs to be used for comparison. The non-LTE corrections for the S and Zn abundances derived from these lines turned out to be ≲ 0.1(-0.2) dex for most cases and not very significant. It revealed that the S I 6757 feature is more reliable as an abundance indicator than S I 8694-5 for the case of red giants, because the latter suffers blending of unidentified lines. The finally resulting [S/Fe]-[Fe/H] and [Zn/Fe]-[Fe/H] relations for GK giants were confirmed to be in good agreement with those for FGK dwarfs, indicating that S and Zn abundances of red giants are reliably determinable from the S I 6757 and Zn I 6362 lines. Accordingly, not only main-sequence stars but also evolved red giant stars are usable for tracing the chemical evolution history of S and Zn in the regime of disk metallicity by using these lines.

  5. The Penn State - Toruń Centre for Astronomy Planet Search stars. II. Lithium abundance analysis of the red giant clump sample

    NASA Astrophysics Data System (ADS)

    Adamów, M.; Niedzielski, A.; Villaver, E.; Wolszczan, A.; Nowak, G.

    2014-09-01

    Context. Standard stellar evolution theory does not predict existence of Li-rich giant stars. Several mechanisms for Li-enrichment have been proposed to operate at certain locations inside some stars. The actual mechanism operating in real stars is still unknown. Aims: Using the sample of 348 stars from the Penn State - Toruń Centre for Astronomy Planet Search, for which uniformly determined atmospheric parameters are available, with chemical abundances and rotational velocities presented here, we investigate various channels of Li enrichment in giants. We also study Li-overabundant giants in more detail in search for origin of their peculiarities. Methods: Our work is based on the Hobby-Eberly Telescope spectra obtained with the High Resolution Spectrograph, which we use for determination of abundances and rotational velocities. The Li abundance was determined from the 7Li λ670.8 nm line, while we use a more extended set of lines for α-elements abundances. In a series of Kolmogorov-Smirnov tests, we compare Li-overabundant giants with other stars in the sample. We also use available IR photometric and kinematical data in search for evidence of mass-loss. We investigate properties of the most Li-abundant giants in more detail by using multi-epoch precise radial velocities. Results: We present Li and α-elements abundances, as well as rotational velocities for 348 stars. We detected Li in 92 stars, of which 82 are giants. Eleven of them show significant Li abundance A(Li)NLTE> 1.4 and seven of them are Li-overabundant objects, according to common criterion of A(Li) > 1.5 and their location on HR diagram, including TYC 0684-00553-1 and TYC 3105-00152-1, which are two giants with Li abundances close to meteoritic level. For another 271 stars, upper limits of Li abundance are presented. We confirmed three objects with increased stellar rotation. We show that Li-overabundant giants are among the most massive stars from our sample and show larger than average

  6. Red Giants in Eclipsing Binaries as a Benchmark for Asteroseismology

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.

    2016-04-01

    Red giants with solar-like oscillations are astrophysical laboratories for probing the Milky Way. The Kepler Space Telescope revolutionized asteroseismology by consistently monitoring thousands of targets, including several red giants in eclipsing binaries. Binarity allows us to directly measure stellar properties independently of asteroseismology. In this dissertation, we study a subset of eight red giant eclipsing binaries observed by Kepler with a range of orbital periods, oscillation behavior, and stellar activity. Two of the systems do not show solar-like oscillations at all. We use a suite of modeling tools to combine photometry and spectroscopy into a comprehensive picture of each star's life. One noteworthy case is a double red giant binary. The two stars are nearly twins, but have one main set of solar-like oscillations with unusually low-amplitude, wide modes, likely due to stellar activity and modest tidal forces acting over the 171 day eccentric orbit. Mixed modes indicate the main oscillating star is on the secondary red clump (a core-He-burning star), and stellar evolution modeling supports this with a coeval history for a pair of red clump stars. The other seven systems are all red giant branch stars (shell-H-burning) with main sequence companions. The two non-oscillators have the strongest magnetic signatures and some of the strongest lifetime tidal forces with nearly-circular 20–34 day orbits. One system defies this trend with oscillations and a 19 day orbit. The four long-period systems (>100 days) have oscillations, more eccentric orbits, and less stellar activity. They are all detached binaries consistent with coevolution. We find the asteroseismic scaling laws are approximately correct, but fail the most for stars that are least like the Sun by systematically overestimating both mass and radius. Strong magnetic activity and tidal effects often occur in tandem and act to suppress solar-like oscillations. These red giant binaries offer an

  7. DO GIANT PLANETS SURVIVE TYPE II MIGRATION?

    SciTech Connect

    Hasegawa, Yasuhiro; Ida, Shigeru E-mail: ida@geo.titech.ac.jp

    2013-09-10

    Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r {approx}> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems.

  8. Spectroscopy of Six Red Giants in the Draco Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.; Siegel, Michael H.; Shetrone, Matthew D.; Winnick, Rebeccah

    2006-10-01

    Keck Observatory LRIS-B (Low Resolution Imaging Spectrometer) spectra are reported for six red giant stars in the Draco dwarf spheroidal galaxy and several comparison giants in the globular cluster M13. Indexes that quantify the strengths of the Ca II H and K lines, the λ3883 and λ4215 CN bands, and the λ4300 G band have been measured. These data confirm evidence of metallicity inhomogeneity within Draco obtained by previous authors. The four brightest giants in the sample have absolute magnitudes in the range -2.6giants and that some giants have higher [C/Fe] ratios than is typical of giants in the globular clusters M13 and M92. Several suggestions are made as to why some Draco stars may have higher [C/Fe] ratios than globular cluster red giants: deep mixing might be inhibited in these Draco stars, they may formerly have been mass-transfer binaries that acquired carbon from a more massive companion, or the Draco dwarf galaxy may have experienced relatively slow chemical evolution over a period of several billion years, allowing carbon-enhanced ejecta from intermediate-mass asymptotic giant branch stars to enrich the interstellar medium while star formation was still occurring. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  9. Coordinated observations of interacting peculiar red giant binaries, 2

    NASA Technical Reports Server (NTRS)

    Ake, T.

    1995-01-01

    IUE and H alpha observations continued on a two-year program to monitor the UV variability of three interacting peculiar red giant (PRG) binaries, HD 59643 (C6,s), HD 35155 (S3/2), and HR 1105 (S3.5/2.5). All of these systems were suspected to involve accretion of material from the PRG to a white-dwarf secondary, based mainly on previous IUE investigations. They were primary candidates from earlier surveys of PRG's to test the hypothesis that the Tc-poor PRG's are formed as a result of mass transfer from a secondary component rather than from internal thermal pulsing while on the asymptotic red giant branch.

  10. Re-inflated Warm Jupiters around Red Giants

    NASA Astrophysics Data System (ADS)

    Lopez, Eric D.; Fortney, Jonathan J.

    2016-02-01

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.

  11. Giants reveal what dwarfs conceal: Li abundance in lower red giant branch stars as diagnostic of the primordial Li

    NASA Astrophysics Data System (ADS)

    Mucciarelli, A.; Salaris, M.; Bonifacio, P.

    2012-01-01

    The discrepancy between cosmological Li abundance inferred from Population II dwarf stars and that derived from big bang nucleosynthesis calculations is still far from being satisfactorily solved. We investigated, as an alternative route, the use of Li abundances in Population II lower red giant branch stars as empirical diagnostic of the cosmological Li. Both theory and observations suggest that the surface Li abundance in metal-poor red giants after the completion of the first dredge-up and before the red giant branch bump is significantly less sensitive to the efficiency of atomic diffusion, compared with dwarf stars. The surface Li abundances in these objects - after the dilution caused by the first dredge-up - are predicted to be sensitive to the total Li content left in the star, i.e. they are affected only by the total amount of Li eventually burned during the previous main-sequence phase. Standard stellar models computed under different physical assumptions show that the inclusion of the atomic diffusion has an impact of about 0.07 dex in the determination of the primordial Li abundance - much smaller than the case of metal-poor main-sequence turnoff stars - and it is basically unaffected by reasonable variations of other parameters (overshooting, age, initial He abundance and mixing length). We have determined from spectroscopy the surface Li content of 17 halo lower red giant branch stars, in the metallicity range between [Fe/H] ˜- 3.4 and ˜- 1.4 dex, evolving before the extramixing episode that sets in at the red giant branch bump. The initial Li (customarily taken as estimate of the cosmological Li abundance A(Li)0) has then been inferred by accounting for the difference between initial and post-dredge-up Li abundances in the appropriate stellar models. It depends mainly on the Teff scale adopted in the spectroscopic analysis, and is only weakly sensitive to the efficiency of atomic diffusion in the models, so long as one neglects Li destruction

  12. Bipolar nebulae and mass loss from red giant stars

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1985-01-01

    Observations of several bipolar nebulae are used to learn something of the nature of mass loss from the probable red-giant progenitors of these nebulae. Phenomena discussed are: (1) probable GL 2688's optical molecular emissions; (2) newly discovered very high velocity knots along the axis of OH 0739 - 14, which reveal evidence for mass ejections of + or 300 km/s from the M9 III star embedded in this nebula; (3) the bipolar structure of three extreme carbon stars, and the evidence for periodic mass ejection in IRC + 30219, also at high speed (about 80 km/s); and (4) the curious cool TiO-rich region above Parsamian 13, which may represent the very recent shedding of photospheric material from a cool, oxygen-rich giant. Several general key questions about bipolar nebulae that relate to the process of mass loss from their progenitor stars are raised.

  13. Line Broadening in Field Metal-Poor Red Giant and Red Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Carney, Bruce W.; Latham, David W.; Stefanik, Robert P.; Laird, John B.

    2008-01-01

    We report 349 radial velocities for 45 metal-poor field red giant branch (RGB) and red horizontal branch (RHB) stars, with time coverage ranging from 1 to 21 years. We have identified one new spectroscopic binary, HD 4306, and one possible such system, HD 184711. We also provide 57 radial velocities for 11 of the 91 stars reported in our previous work. All but one of the 11 stars had been found to have variable radial velocities. New velocities for the long-period spectroscopic binaries BD-1 2582 and HD 108317 have extended the time coverage to 21.7 and 12.5 years, respectively, but in neither case have we yet completed a full orbital period. As was found in the previous study, radial velocity "jitter" is present in many of the most luminous stars. Excluding stars showing spectroscopic binary orbital motion, all 7 of the red giants with estimated MV values more luminous than -2.0 display jitter, as well as 3 of the 14 stars with -2.0 < MV <= -1.4. We have also measured the line broadening in all the new spectra, using synthetic spectra as templates. Comparison with results from high-resolution and higher signal-to-noise (S/N) spectra employed by other workers shows good agreement down to line-broadening levels of 3 km s-1, well below our instrumental resolution of 8.5 km s-1. As the previous work demonstrated, the majority of the most luminous red giants show significant line broadening, as do many of the red horizontal branch stars, and we briefly discuss possible causes. The line broadening appears related to velocity jitter, in that both appear primarily among the highest luminosity red giants.

  14. A Dozen Red Giant Stars That May Have Accreted Planets

    NASA Astrophysics Data System (ADS)

    Carlberg, Joleen K.; Cunha, K.; Smith, V. V.; Majewski, S. R.

    2011-09-01

    We have identified twelve red giant stars as candidates for having accreted a former planetary companion in a previous study aimed at understanding the role of planet accretion in creating the unusual red giant rapid rotators. Their planet accretion candidacy is based on the apparent replenishment of lithium in their atmospheres and (in some cases) enhanced rotation speeds, coupled with the difficulty of alternative Li-enhancement mechanisms working at these stars' evolutionary stages. The stellar mass estimates, however, are not precise enough to unambiguously describe the mass-dependent chemical processing (e.g., the degree of light element dilution) expected in these stars. In this study, we explore additional chemical signatures expected to be unique to planet accretion. For example, one hallmark of a planetary composition is a trend of increased abundance with condensation temperature, i.e., relative enhancement of refractory elements over volatiles. In main sequence stars, a relative enhancement of refractory elements in stellar atmospheres has been explored as a signature of the accretion of planetary material (e.g., Smith et al. 2001) while the opposite trend (depleted refractories in the Sun) has been suggested as a possible indicator that a star hosts terrestrial planets (Melendez et al. 2009). Here we explore whether condensation temperature dependent abundance patterns exist in our red giant planet-accretion candidates and the implications of the presence or absence of such a trend. Finally, we briefly highlight future experiments to further test our hypothesis that these stars have accreted planets, such as looking for changes in specific abundance ratios and the feasibility of radial velocity monitoring to look for unaccreted planets.

  15. Deep Mixing and Metallicity in Globular Cluster Red Giants

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2007-12-01

    We present results from a study of carbon depletion and deep mixing in globular cluster red giants across a wide range of metallicity. CH bandstrengths are measured from low-resolution (R 1000) spectra and converted to [C/Fe] abundances by comparisons with synthetic spectra. Although some models of deep mixing predict that its efficiency will be reduced at high metallicity, no sign of such a cutoff is seen in our data, which span the range -2.29 < [Fe/H] < -1.29.

  16. Radio Emission from Red-Giant Hot Jupiters

    NASA Technical Reports Server (NTRS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  17. Radio Emission from Red-giant Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  18. VizieR Online Data Catalog: Halo red giants from the SEGUE survey (Martell+, 2011)

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smolinski, J. P.; Beers, T. C.; Grebel, E. K.

    2011-09-01

    Table 1 lists SDSS identifiers, astrometry and photometry, stellar parameters and survey name for 2519 stars observed as part of the SDSS-II/SEGUE-1 and SDSS-III/SEGUE-2 surveys. The stars in this table were selected as red giants with halo-like metallicities (-1.8<[Fe/H]<-1.0) and reasonably clean spectra (mean S/N per pixel between 4000 and 4100A greater than 15). Table 3 lists SDSS identifiers, CN and CH bandstrength indices, CN bandstrength class, absolute r magnitudes, heliocentric and Galactocentric distances, and survey name, for the same stars as in Table 1. (2 data files).

  19. Far-ultraviolet fluorescence of carbon monoxide in the red giant Arcturus

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.; Moos, H. W.; Linsky, J. L.

    1981-01-01

    Evidence is presented that many of the weak features observed with International Ultraviolet Explorer (IUE) in the far-ultraviolet (1150-2000 A) spectrum of the archetype red giant Arcturus (K2 III) are A-X fourth positive bands of carbon monoxide excited by chromospheric emissions of O I, C I, and H I. The appearance of fluorescent CO bands near the wavelength of commonly used indicators of high-temperature (T greater than 20,000 K) plasma, such as C II at wavelength 1335 and C IV at wavelength 1548, introduces a serious ambiguity in diagnosing the presence of hot material in the outer atmospheres of the cool giants by means of low-dispersion IUE spectra.

  20. The chemical compositions and evolutionary status of red giants in the open cluster NGC 752

    NASA Astrophysics Data System (ADS)

    Böcek Topcu, G.; Afşar, M.; Schaeuble, M.; Sneden, C.

    2015-02-01

    We present detailed chemical compositions of 10 red giant star members of the Galactic (open) cluster NGC 752, derived from high-resolution (R ≈ 60 000), high signal-to-noise (S/N ≥ 140) spectra. We confirmed cluster memberships by measuring the stellar radial velocities, and by deriving model atmosphere parameters (Teff, log g, [Fe/H] and ξt) from equivalent widths of Fe I, Fe II, Ti I, and Ti II lines. The metallicity we obtained for NGC 752 ([Fe/H] = -0.02 ± 0.05) is in good agreement with previous studies. We derived abundances of α (Mg, Si, Ca), light odd-Z (Na, Al), Fe-group (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), n-capture (Y, La, Nd, Eu), and p-capture (Li, C, N, O) species for each star. Furthermore, we also derived abundances of the LiCNO p-capture element group and carbon isotopic ratios, using synthetic spectrum analyses of the Li I 6707 Å resonance doublet, the [O I] line at 6300 Å, the CH G-band features near 4311 and 4325 Å, the C2 bandheads at 5160 and 5631 Å, and 12,13CN red system lines in the 7995-8040 Å region. By applying recent isochrones to NGC 752 photometry, and comparing the colour-magnitude diagram information to our Li abundances and 12C/13C ratios, we suggest that the 10 observed red giants can be separated into three first-ascent, six red-clump and one red horizontal branch star.

  1. Type II Migration and Giant Planet Survival

    NASA Technical Reports Server (NTRS)

    Ward, William R.

    2003-01-01

    Type II migration, in which a newly formed large planet opens a gap in its precursor circumstellar nebula and subsequently evolves with it, has been implicated as a delivery mechanism responsible for close stellar companions. Large scale migration is possible in a viscously spreading disk of surface density sigma (r,t) when most of it is sacrificed to the primary in order to promote a small portion of the disk to much higher angular momentum orbits. Embedded planets generally follow its evolution unless their own angular momentum is comparable to that of the disk. The fraction of the starting disk mass, M (sub d) = 2pi integral rsigma(r,0)dr, that is consumed by the star depends on the distance at which material escapes the disk's outer boundary. If the disk is allowed to expand indefinitely, virtually all of the disk will fall into the primary in order to send a vanishingly small portion to infinity. For such a case, it is difficult to explain the survival of any giant planets, including Jupiter and Saturn. Realistically, however, there are processes that could truncate a disk at a finite distance, r(sub d). Recent numerical modeling has illustrated that planets can survive in this case. We show here that much of these results can be understood by simple conservation arguments.

  2. Induced nucleation of carbon dust in red giant stars

    NASA Technical Reports Server (NTRS)

    Cadwell, Brian J.; Wang, Hai; Feigelson, Eric D.; Frenklach, Michael

    1994-01-01

    This study quantitatively tests the proposed model of induced nucleation of carbonaceous grains in carbon-rich red giant stars. Induced nucleation is the process of grain growth initiated by the presence of reactive surfaces provided by seed particles. The numerical study was performed using a deailed chemical kinetic model of carbon deposition, grain coagulation, and homogeneous nucleation of polycyclic aromatic hydrocarbons (PAHs). The model uses a method of moments to keep track of developing grain population in the forming dust shell. We test the efficiency of grain formation for large ranges of dust shell parameters typical for carbon stars. Our model is capable of producing a range of optically thick and thin dust shells in carbon stars. Results are in accord with (IRAS) spectral classes of carbon stars. The resulting composite grains produced are consistent with those recently found in ancient meteorites. This model also provides a realistic explanation for high abundances of (PAHs) in the interstellar medium and some planetary nebulae.

  3. The Asteroseismic Signature of Magnetic Red Giant Cores

    NASA Astrophysics Data System (ADS)

    Cantiello, Matteo; Fuller, Jim

    2015-08-01

    The Kepler satellite has identified thousands of red giant branch (RGB) stars showing solar-like oscillations. These pulsation modes provide the opportunity to study the deep interiors of stars other than the Sun. We demonstrate that a strong magnetic field in the core of RGB stars can suppress the amplitude of dipolar oscillation modes. Suppressed dipolar modes are indeed observed in about 10% of ascending RGB stars, and we identify these as stars with strongly magnetized cores.The observed fraction and mass distribution of these stars suggests that they could be the descendants of magnetic Ap stars.For the first time, our work allows us to constrain the magnetic field in the deep interiors of a large population of stars. This paves the road for the study of stellar magnetic field evolution, and its role in transporting angular momentum and chemical species.

  4. HIPPARCOS CALIBRATION OF THE TIP OF THE RED GIANT BRANCH

    SciTech Connect

    Tabur, Vello; Kiss, Laszlo L.; Bedding, Timothy R.

    2009-09-20

    We have detected the tip of the red giant branch (TRGB) in the solar neighborhood using near-infrared photometry from the Two Micron All Sky Survey and DIRBE catalogs, and revised Hipparcos parallaxes. We confirm that the revised Hipparcos parallaxes are superior to the original ones, and that this improvement is necessary to detect the TRGB. We find a tip absolute magnitude of M{sub K} = -6.85 +- 0.03, in agreement with that expected from previous tip measurements of the Large Magellanic Cloud, Small Magellanic Cloud, and Bulge. This represents the first geometric calibration of the TRGB and extends previous calibrations, based on metal-poor globular clusters, to solar metallicities. We attempted to use the TRGB to confirm the presence of the Lutz-Kelker bias, with inconclusive results. Attempts to detect the tip in the I band also produced inconsistent results, due to a lack of precise, homogeneous photometry for these bright stars.

  5. MAGNESIUM ISOTOPE RATIOS IN {omega} CENTAURI RED GIANTS

    SciTech Connect

    Da Costa, G. S.; Norris, John E.; Yong, David

    2013-05-20

    We have used the high-resolution observations obtained at the Anglo-Australian Telescope with Ultra-High Resolution Facility (R {approx} 100,000) and at Gemini-S with b-HROS (R {approx} 150,000) to determine magnesium isotope ratios for seven {omega} Cen red giants that cover a range in iron abundance from [Fe/H] = -1.78 to -0.78 dex, and for two red giants in M4 (NGC 6121). The {omega} Cen stars sample both the ''primordial'' (i.e., O-rich, Na- and Al-poor) and the ''extreme'' (O-depleted, Na- and Al-rich) populations in the cluster. The primordial population stars in both {omega} Cen and M4 show ({sup 25}Mg, {sup 26}Mg)/{sup 24}Mg isotopic ratios that are consistent with those found for the primordial population in other globular clusters with similar [Fe/H] values. The isotopic ratios for the {omega} Cen extreme stars are also consistent with those for extreme population stars in other clusters. The results for the extreme population stars studied indicate that the {sup 26}Mg/{sup 24}Mg ratio is highest at intermediate metallicities ([Fe/H] < -1.4 dex), and for the highest [Al/Fe] values. Further, the relative abundance of {sup 26}Mg in the extreme population stars is notably higher than that of {sup 25}Mg, in contrast to model predictions. The {sup 25}Mg/{sup 24}Mg isotopic ratio in fact does not show any obvious dependence on either [Fe/H] or [Al/Fe] nor, intriguingly, any obvious difference between the primordial and extreme population stars.

  6. Formation of Hydrocarbons in the Outflows from Red Giants

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne; Kress, Monika; Tielens, Alexander G.

    1995-01-01

    The formation of hydrocarbons in the oxygen-rich outflows from red giants was studied. The existence of organic molecules in such outflows has been known for several years; however, their surprisingly high abundances has been a mystery since all of the carbon had been thought to be irretrievably locked up in CO, the most strongly bound molecule. CO is the first molecule to form from the atoms present in the star's extended atmosphere, and as strong stellar winds drive a cooling outflow, dust grains condense out. In oxygen-rich outflows, the dust is thought to be composed mainly of silicates and other metal oxides. Perhaps the noble metals can condense out in metallic form, in particular the relatively abundant transition metals iron and nickel. We proposed that perhaps the carbon reservoir held as CO can be accessed through a catalytic process involving the chemisorption of CO and H2 onto grains rich in metallic iron. CO and H2 are the two most abundant molecules in circumstellar outflows, and they both are known to dissociate on transition metal surfaces at elevated temperatures, freeing carbon to form organic molecules such as methane. We believe methane is a precursor molecule to the organics observed in oxygen-rich red giants. We have developed a nonequilibrium numerical model of a surface chemical (catalytic) process. Based on this model, we believe that methane can be formed under the conditions present in circumstellar outflows. Although the methane formation rates are exceptionally low under these conditions, over dynamical timescales, a significant amount of CO can be converted to methane and driven further out in the envelope, explaining the presence of organics there.

  7. Tests of two convection theories for red giant and red supergiant envelopes

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-Wen

    1995-01-01

    Two theories of stellar envelope convection are considered here in the context of red giants and red supergiants of intermediate to high mass: Boehm-Vitense's standard mixing-length theory (MLT) and Canuto & Mazzitelli's new theory incorporating the full spectrum of turbulence (FST). Both theories assume incompressible convection. Two formulations of the convective mixing length are also evaluated: l proportional to the local pressure scale height (H(sub P)) and l proportional to the distance from the upper boundary of the convection zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red zone (z). Applications to test both theories are made by calculating stellar evolutionary sequences into the red phase of core helium burning. Since the theoretically predicted effective temperatures for cool stars are known to be sensitive to the assigned value of the mixing length, this quantity has been individually calibrated for each evolutionary sequence. The calibration is done in a composite Hertzsprung-Russell diagram for the red giant and red supergiant members of well-observed Galactic open clusters. The MLT model requires the constant of proportionality for the convective mixing length to vary by a small but statistically significant amount with stellar mass, whereas the FST model succeeds in all cases with the mixing lenghth simply set equal to z. The structure of the deep stellar interior, however, remains very nearly unaffected by the choices of convection theory and mixing lenghth. Inside the convective envelope itself, a density inversion always occurs, but is somewhat smaller for the convectively more efficient MLT model. On physical grounds the FST model is preferable, and seems to alleviate the problem of finding the proper mixing length.

  8. DISCOVERY OF SUPER-Li-RICH RED GIANTS IN DWARF SPHEROIDAL GALAXIES

    SciTech Connect

    Kirby, Evan N.; Fu, Xiaoting; Deng, Licai; Guhathakurta, Puragra

    2012-06-10

    Stars destroy lithium (Li) in their normal evolution. The convective envelopes of evolved red giants reach temperatures of millions of kelvin, hot enough for the {sup 7}Li(p, {alpha}){sup 4}He reaction to burn Li efficiently. Only about 1% of first-ascent red giants more luminous than the luminosity function bump in the red giant branch exhibit A(Li) > 1.5. Nonetheless, Li-rich red giants do exist. We present 15 Li-rich red giants-14 of which are new discoveries-among a sample of 2054 red giants in Milky Way dwarf satellite galaxies. Our sample more than doubles the number of low-mass, metal-poor ([Fe/H] {approx}< -0.7) Li-rich red giants, and it includes the most-metal-poor Li-enhanced star known ([Fe/H] = -2.82, A(Li){sub NLTE} = 3.15). Because most of the stars have Li abundances larger than the universe's primordial value, the Li in these stars must have been created rather than saved from destruction. These Li-rich stars appear like other stars in the same galaxies in every measurable regard other than Li abundance. We consider the possibility that Li enrichment is a universal phase of evolution that affects all stars, and it seems rare only because it is brief.

  9. The chemical compositions and evolutionary status of red giants in the open cluster NGC 6940

    NASA Astrophysics Data System (ADS)

    Böcek Topcu, G.; Afşar, M.; Sneden, C.

    2016-08-01

    We present the high resolution (R ≈ 60 000), high signal-to-noise (S/N ≃ 120) spectroscopic analysis of 12 red giant members of the Galactic open cluster NGC 6940. We applied Yonsei-Yale isochrones to the colour-magnitude diagram, which suggested an age of 1.1 Gyr for the cluster with a turn-off mass of 2 M⊙. Atmospheric parameters (Teff, log g, [Fe/H] and ξt) were determined via equivalent widths of Fe I, Fe II, Ti I, and Ti II lines. Calculated mean metallicity of the cluster is <[Fe/H]> = 0.04 ± 0.02. We derived abundances of α (Mg, Si, Ca), Fe-group (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and n-capture (Y, La, Nd, Eu) elements to be about solar. Light odd-Z elements Na and Al are slightly enhanced in MMU 108 and MMU 152 by ˜0.34 dex and ˜0.16 dex, respectively. Abundances of light elements Li, C, N, O, and 12C/13C ratios were derived from spectrum syntheses of the Li I resonance doublet at 6707 Å, [O I] line at 6300 Å, C2 Swan bandheads at 5164 Å and 5635 Å, and strong 12, 13CN system lines in the 7995-8040 Å region. Most carbon isotopic ratios are similar to those found in other solar-metallicity giants, but MMU 152 has an unusual value of 12C/13C =6. Evaluation of the LiCNO abundances and 12C/13C ratios along with the present theoretical models suggests that all the red giants in our sample are core-helium-burning clump stars.

  10. Cyanogen in NGC 1851 Red Giant Branch and Asymptotic Giant Branch Stars: Quadrimodal Distributions

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.; Stancliffe, R. J.; Lattanzio, J. C.; Angelou, G. C.; D'Orazi, V.; Martell, S. L.; Grundahl, F.; Sneden, C.

    2012-12-01

    The Galactic globular cluster NGC 1851 has raised much interest since Hubble Space Telescope photometry revealed that it hosts a double subgiant branch. Here we report on our homogeneous study into the cyanogen (CN) band strengths in the red giant branch (RGB) population (17 stars) and asymptotic giant branch (AGB) population (21 stars) using AAOmega/2dF spectra with R ~ 3000. We discover that NGC 1851 hosts a quadrimodal distribution of CN band strengths in its RGB and AGB populations. This result supports the merger formation scenario proposed for this cluster, such that the CN quadrimodality could be explained by the superposition of two "normal" bimodal populations. A small sample overlap with an abundance catalog allowed us to tentatively explore the relationship between our CN populations and a range of elemental abundances. We found a striking correlation between CN and [O/Na]. We also found that the four CN peaks may be paired—the two CN-weaker populations being associated with low Ba and the two CN-stronger populations with high Ba. If true, then s-process abundances would be a good diagnostic for disentangling the two original clusters in the merger scenario. More observations are needed to confirm the quadrimodality and also the relationship between the subpopulations. We also report CN results for NGC 288 as a comparison. Our relatively large samples of AGB stars show that both clusters have a bias toward CN-weak AGB populations.

  11. CYANOGEN IN NGC 1851 RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS: QUADRIMODAL DISTRIBUTIONS

    SciTech Connect

    Campbell, S. W.; Stancliffe, R. J.; Lattanzio, J. C.; Angelou, G. C.; D'Orazi, V.; Yong, D.; Wylie-de Boer, E. C.; Martell, S. L.; Grundahl, F.; Sneden, C. E-mail: david.yong@anu.edu.au

    2012-12-10

    The Galactic globular cluster NGC 1851 has raised much interest since Hubble Space Telescope photometry revealed that it hosts a double subgiant branch. Here we report on our homogeneous study into the cyanogen (CN) band strengths in the red giant branch (RGB) population (17 stars) and asymptotic giant branch (AGB) population (21 stars) using AAOmega/2dF spectra with R {approx} 3000. We discover that NGC 1851 hosts a quadrimodal distribution of CN band strengths in its RGB and AGB populations. This result supports the merger formation scenario proposed for this cluster, such that the CN quadrimodality could be explained by the superposition of two 'normal' bimodal populations. A small sample overlap with an abundance catalog allowed us to tentatively explore the relationship between our CN populations and a range of elemental abundances. We found a striking correlation between CN and [O/Na]. We also found that the four CN peaks may be paired-the two CN-weaker populations being associated with low Ba and the two CN-stronger populations with high Ba. If true, then s-process abundances would be a good diagnostic for disentangling the two original clusters in the merger scenario. More observations are needed to confirm the quadrimodality and also the relationship between the subpopulations. We also report CN results for NGC 288 as a comparison. Our relatively large samples of AGB stars show that both clusters have a bias toward CN-weak AGB populations.

  12. Vertical velocities from proper motions of red clump giants

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; Abedi, H.; Garzón, F.; Figueras, F.

    2014-12-01

    Aims: We derive the vertical velocities of disk stars in the range of Galactocentric radii of R = 5 - 16 kpc within 2 kpc in height from the Galactic plane. This kinematic information is connected to dynamical aspects in the formation and evolution of the Milky Way, such as the passage of satellites and vertical resonance and determines whether the warp is a long-lived or a transient feature. Methods: We used the PPMXL survey, which contains the USNO-B1 proper motions catalog cross-correlated with the astrometry and near-infrared photometry of the 2MASS point source catalog. To improve the accuracy of the proper motions, the systematic shifts from zero were calculated by using the average proper motions of quasars in this PPMXL survey, and we applied the corresponding correction to the proper motions of the whole survey, which reduces the systematic error. From the color-magnitude diagram K versus (J - K) we selected the standard candles corresponding to red clump giants and used the information of their proper motions to build a map of the vertical motions of our Galaxy. We derived the kinematics of the warp both analytically and through a particle simulation to fit these data. Complementarily, we also carried out the same analysis with red clump giants spectroscopically selected with APOGEE data, and we predict the improvements in accuracy that will be reached with future Gaia data. Results: A simple model of warp with the height of the disk zw(R,φ) = γ(R - R⊙)sin(φ - φw) fits the vertical motions if dot {γ }/γ = -34±17 Gyr-1; the contribution to dot {γ } comes from the southern warp and is negligible in the north. If we assume this 2σ detection to be real, the period of this oscillation is shorter than 0.43 Gyr at 68.3% C.L. and shorter than 4.64 Gyr at 95.4% C.L., which excludes with high confidence the slow variations (periods longer than 5 Gyr) that correspond to long-lived features. Our particle simulation also indicates a probable abrupt decrease

  13. The Ionizing Star Clusters of Giant H II Regions in NGC 2403

    NASA Astrophysics Data System (ADS)

    Drissen, Laurent; Roy, Jean-René; Moffat, Anthony F. J.; Shara, Michael M.

    1999-03-01

    We present the results of a study on the massive star population down to about M_V~-3.1, or 12-15 M_solar, of the most luminous giant H II regions in the nearby spiral galaxy NGC 2403, based on Hubble Space Telescope images and ground-based spectrograms. Particular emphasis is placed on the distribution of the Wolf-Rayet and red supergiant stars and the information they provide about the recent star-forming history of these large complexes. We find direct evidence for the presence of Wolf-Rayet (WR) stars in five of the six giant H II regions investigated; 25-40 WR stars are inferred for the sole NGC 2403-I giant H II region. Red supergiant (RSG) stars are mainly distributed over a more extended halo, while the young blue stars and most WR stars are in or close to a compact core. One appears to be seeing young cores of O and WR stars surrounded by older halos containing red supergiants. We propose a scenario in which RSG stars belonging to an early phase of star formation were followed by a more recent burst corresponding to a very blue mean sequence. Delayed trigger with preheating over several 100 pc by the first generation of massive stars allowed the build-up of the required confinement for the production of parsec-scale cluster cores with luminosity up to a few times 10^6 L_solar. Finally, we present some interesting objects found in the field of NGC 2403 outside the giant H II regions, such as field WR stars, globular clusters and background galaxies.

  14. A compact system of small planets around a former red-giant star.

    PubMed

    Charpinet, S; Fontaine, G; Brassard, P; Green, E M; Van Grootel, V; Randall, S K; Silvotti, R; Baran, A S; Ostensen, R H; Kawaler, S D; Telting, J H

    2011-12-22

    Planets that orbit their parent star at less than about one astronomical unit (1 AU is the Earth-Sun distance) are expected to be engulfed when the star becomes a red giant. Previous observations have revealed the existence of post-red-giant host stars with giant planets orbiting as close as 0.116 AU or with brown dwarf companions in tight orbits, showing that these bodies can survive engulfment. What has remained unclear is whether planets can be dragged deeper into the red-giant envelope without being disrupted and whether the evolution of the parent star itself could be affected. Here we report the presence of two nearly Earth-sized bodies orbiting the post-red-giant, hot B subdwarf star KIC 05807616 at distances of 0.0060 and 0.0076 AU, with orbital periods of 5.7625 and 8.2293 hours, respectively. These bodies probably survived deep immersion in the former red-giant envelope. They may be the dense cores of evaporated giant planets that were transported closer to the star during the engulfment and triggered the mass loss necessary for the formation of the hot B subdwarf, which might also explain how some stars of this type did not form in binary systems. PMID:22193103

  15. CN and CH Bandstrengths in Bright Globular Cluster Red Giants

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.; Smith, G. H.

    2006-12-01

    We present preliminary results from a survey of CN and CH bandstrengths in bright red giant stars (MV -1.5) in Galactic globular clusters. Our cluster sample spans a wide metallicity range, from M92 ([Fe/H]=-2.28) to M71 ([Fe/H]=-0.73). The data were all taken using the Shane 120-inch telescope and the Kast spectrograph at Lick Observatory; the homogeneity of the sample makes it ideal for a comparative study of carbon depletion (and therefore deep mixing rate) as a function of stellar metallicity. Thus far we have measured molecular bandstrength indices for CH and CN, as well as indices for Ca and Mg lines; the task of converting the index measurements to carbon and nitrogen abundances will require comparisons with synthetic spectra. The molecular CN index behaves as expected from a study of the literature: within individual clusters, it varies significantly from star to star. The data also allow us to examine the dependence of the Ca and Mg indices on cluster metallicity at a given MV. The index MHK shows clear sensitivity to [Fe/H] across the full metallicity range of our sample. A similar study is also in progress involving analogous stars in the open clusters NGC 188, NGC 2158, NGC 6791, and NGC 7789 (-0.3 < [Fe/H] < +0.3).

  16. Heavy elements Ba, La, Ce, Nd, and Eu in 56 Galactic bulge red giants

    NASA Astrophysics Data System (ADS)

    Van der Swaelmen, M.; Barbuy, B.; Hill, V.; Zoccali, M.; Minniti, D.; Ortolani, S.; Gómez, A.

    2016-01-01

    Aims: The aim of this work is the study of abundances of the heavy elements Ba, La, Ce, Nd, and Eu in 56 bulge giants (red giant branch and red clump) with metallicities ranging from -1.3 dex to 0.5 dex. Methods: We obtained high-resolution spectra of our giant stars using the FLAMES-UVES spectrograph on the Very Large Telescope. We inspected four bulge fields along the minor axis. Results: We measure the chemical evolution of heavy elements, as a function of metallicity, in the Galactic bulge. Conclusions: The [Ba,La,Ce,Nd/Fe] vs. [Fe/H] ratios decrease with increasing metallicity, in which aspect they differ from disc stars. In our metal-poor bulge stars, La and Ba are enhanced relative to their thick disc counterpart, while in our metal-rich bulge stars La and Ba are underabundant relative to their disc counterpart. Therefore, this contrast between bulge and discs trends indicates that bulge and (solar neighbourhood) thick disc stars could behave differently. An increase in [La,Nd/Eu] with increasing metallicity, for metal-rich stars with [Fe/H] > 0 dex, may indicate that the s-process from AGB stars starts to operate at a metallicity around solar. Finally, [Eu/Fe] follows the [α/ Fe] behaviour, as expected, since these elements are produced by SNe type II. Observations collected at the European Southern Observatory, Paranal, Chile (ESO programmes 71.B-0617A, 73.B0074A, and GTO 71.B-0196)

  17. The fate of the earth in the red giant envelope of the sun

    NASA Technical Reports Server (NTRS)

    Goldstein, J.

    1987-01-01

    The effect on the earth of entering the red giant envelope of the future sun is studied. Employing a 30-zone red giant model, the earth orbital decay timescale, neglecting ablation/vaporization, is determined to be of the order of 200 years, rendering earth survival impossible. The effects of ablation/vaporization processes are found to increase the ballistic coefficient of earth, thereby setting the 200-year decay timescale as an upper limit.

  18. Mass-losing peculiar red giants - The comparison between theory and observations

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1989-01-01

    The mass loss from evolved red giants is considered. It seems that red giants on the Asymptotic Giant Branch (AGB) are losing between 0.0003 and 0.0006 solar mass/sq kpc yr in the solar neighborhood. If all the main sequence stars between 1 and 5 solar masses ultimately evolve into white dwarfs with masses of 0.7 solar mass, the predicted mass loss rate in the solar neighborhood from these stars is 0.0008 solar mass/sq kpc yr. Although there are still uncertainties, it appears that there is no strong disagreement between theory and observation.

  19. Lithium in Open Cluster Red Giants Hosting Substellar Companions

    NASA Astrophysics Data System (ADS)

    Carlberg, Joleen K.; Smith, Verne V.; Cunha, Katia; Carpenter, Kenneth G.

    2016-02-01

    We have measured stellar parameters, [Fe/H], lithium abundances, rotation, and 12C/13C in a small sample of red giants (RGs) in three open clusters that are each home to a RG star that hosts a substellar companion (SSC) (NGC 2423 3, NGC 4349 127, and BD+12 1917 in M67). Our goal is to explore whether the presence of SSCs influences the Li content. Both 12C/13C and stellar rotation are measured as additional tracers of stellar mixing. One of the companion hosts, NGC 2423 3, is found to be Li-rich with A(Li){}{{NLTE}} = 1.56 dex, and this abundance is significantly higher than the A(Li) of the two comparison stars in NGC 2423. All three SSC hosts have the highest A(Li) and 12C/13C when compared to the control RGs in their respective clusters; however, except for NGC 2423 3, at least one control star has similarly high abundances within the uncertainties. Higher A(Li) could suggest that the formation or presence of planets plays a role in the degree of internal mixing on or before the RG branch. However, a multitude of factors affect A(Li) during the RG phase, and when the abundances of our sample are compared with the abundances of RGs in other open clusters available in the literature, we find that they all fall well within a much larger distribution of A(Li) and 12C/13C. Thus, even the high Li in NGC 2423 3 cannot be concretely tied to the presence of the SSC.

  20. Lithium in Open Cluster Red Giants Hosting Substellar Companions

    NASA Technical Reports Server (NTRS)

    Carlberg, Joleen K.; Smith, Verne V.; Cunha, Katia; Carpenter, Kenneth G.

    2016-01-01

    We have measured stellar parameters, [Fe/H], lithium abundances, rotation, and (12)C/13C in a small sample of red giants (RGs) in three open clusters that are each home to a RG star that hosts a substellar companion (SSC) (NGC 2423 3, NGC 4349 127, and BD+12 1917 in M67). Our goal is to explore whether the presence of SSCs influences the Li content. Both (12)C/13C and stellar rotation are measured as additional tracers of stellar mixing. One of the companion hosts, NGC 2423?3, is found to be Li-rich with A(Li)(sub NLTE) = 1.56 dex, and this abundance is significantly higher than the A(Li) of the two comparison stars in NGC 2423. All three SSC hosts have the highest A(Li) and (12)C/13C when compared to the control RGs in their respective clusters; however, except for NGC 2423?3, at least one control star has similarly high abundances within the uncertainties. Higher A(Li) could suggest that the formation or presence of planets plays a role in the degree of internal mixing on or before the RG branch. However, a multitude of factors affect A(Li) during the RG phase, and when the abundances of our sample are compared with the abundances of RGs in other open clusters available in the literature, we find that they all fall well within a much larger distribution of A(Li) and (12)C/13C. Thus, even the high Li in NGC 2423 3 cannot be concretely tied to the presence of the SSC.

  1. DIRECT LABORATORY ANALYSIS OF SILICATE STARDUST FROM RED GIANT STARS

    SciTech Connect

    Vollmer, Christian; Hoppe, Peter; Brenker, Frank E.

    2009-07-20

    We performed combined focused ion beam/transmission electron microscopy studies to investigate the chemistry and structure of eight presolar silicate grains that were previously detected by NanoSIMS oxygen isotope mapping of the carbonaceous chondrite Acfer 094. The analyzed presolar silicates belong to the O isotope Groups I/II ({sup 17}O-enriched and {sup 18}O-depleted) and therefore come from 1-2.5 M{sub sun} asymptotic giant branch stars of close-to-solar or slightly lower-than-solar metallicity. Three grains are amorphous, Mg-rich, and show a variable, but more pyroxene-like composition. Most probably, these grains have formed under circumstellar low-temperature conditions below the crystallization temperature. Three grains are Fe-bearing glasses similar to the 'glass with embedded metal and sulfides' (GEMS) grains found in interplanetary dust particles. However, two of the meteorite GEMS grains from this study lack comparatively large ({approx}>20 nm) Fe-rich inclusions and have sulfur contents <1 at.%, which is different than observed for the majority of GEMS grains. These grains likely condensed under strong non-equilibrium conditions from an Si-enriched gas. One olivine is characterized by a crystalline core and an amorphous, more Fe-rich rim, which is probably the result of interstellar medium sputtering combined with Mg removal. The detection of another olivine with a relatively high Fe content (Mg no. 0.9) shows that circumstellar crystalline silicates are more Fe-rich than astrophysical models usually suggest. The overall predominance of olivine among the crystalline silicate stardust population compared to pyroxene indicates preferential formation or survival of this type of mineral. As pyroxene is indeed detected in circumstellar outflows, it remains to be seen how this result is compatible with astrophysical observations and experimental data.

  2. Li-enrichment in red giant rapid rotators: Planet engulfment versus extra mixing

    NASA Astrophysics Data System (ADS)

    Carlberg, J. K.; Cunha, K.; Smith, V. V.; Majewski, S. R.

    2013-02-01

    Low mass stars undergo dramatic changes during the post main sequence evolution as the nuclear energy source shifts from the stellar core to a thin shell of active hydrogen burning. The outer convection zones of these stars deepen, dredging up nuclear-processed material and altering the stellar surface abundances. Some light elements, such as lithium, are easily destroyed in the stellar interior, and dredge-up depletes the surface abundances of these elements. The red giant stars' expanding radii also pose a threat to the stability of close orbiting planets, which can be tidally engulfed by the star. Planet engulfment may be able to account for two of the well known classes of atypical red giant stars: the rapid rotators and Li-rich red giants. Alternatively, internal Li regeneration combined with ``extra-mixing'' in red giants may account for Li-rich giants, but this mechanism may not be able to explain rapid rotation. We have recently completed an observational study of field red giant stars, targeting both slow and rapid rotators, to compare the light element distribution between these two classes of rotators. We find that the rapid rotators have enriched Li abundances compared to the slow rotators; however, both classes of stars have similar distributions of 12C/13C - a proxy for mixing. Lower 12C/13C ratios are expected in stars that have regenerated Li internally. The peculiar red giant stars in our sample (both Li-rich and rapid rotators) are not easily explained with either planet engulfment or Li regeneration alone. Both processes are likely at work.

  3. Discovery of Super-Li-rich Red Giants in Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Fu, Xiaoting; Guhathakurta, Puragra; Deng, Licai

    2012-06-01

    Stars destroy lithium (Li) in their normal evolution. The convective envelopes of evolved red giants reach temperatures of millions of kelvin, hot enough for the 7Li(p, α)4He reaction to burn Li efficiently. Only about 1% of first-ascent red giants more luminous than the luminosity function bump in the red giant branch exhibit A(Li) > 1.5. Nonetheless, Li-rich red giants do exist. We present 15 Li-rich red giants—14 of which are new discoveries—among a sample of 2054 red giants in Milky Way dwarf satellite galaxies. Our sample more than doubles the number of low-mass, metal-poor ([Fe/H] <~ -0.7) Li-rich red giants, and it includes the most-metal-poor Li-enhanced star known ([Fe/H] = -2.82, A(Li)NLTE = 3.15). Because most of the stars have Li abundances larger than the universe's primordial value, the Li in these stars must have been created rather than saved from destruction. These Li-rich stars appear like other stars in the same galaxies in every measurable regard other than Li abundance. We consider the possibility that Li enrichment is a universal phase of evolution that affects all stars, and it seems rare only because it is brief. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud

    SciTech Connect

    Nie, J. D.; Wood, P. R. E-mail: peter.wood@anu.edu.au

    2014-12-01

    Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.

  5. On the red giant branch mass loss in 47 Tucanae: Constraints from the horizontal branch morphology

    NASA Astrophysics Data System (ADS)

    Salaris, Maurizio; Cassisi, Santi; Pietrinferni, Adriano

    2016-05-01

    We obtain stringent constraints on the actual efficiency of mass loss for red giant branch stars in the Galactic globular cluster 47 Tuc, by comparing synthetic modelling based on stellar evolution tracks with the observed distribution of stars along the horizontal branch in the colour-magnitude-diagram. We confirm that the observed, wedge-shaped distribution of the horizontal branch can only be reproduced by accounting for a range of initial He abundances, in agreement with inferences from the analysis of the main sequence, and a red giant branch mass loss with a small dispersion. We carefully investigated several possible sources of uncertainty that could affect the results of the horizontal branch modelling, stemming from uncertainties in both stellar model computations and cluster properties, such as heavy element abundances, reddening, and age. We determine a firm lower limit of ~0.17M⊙ for the mass lost by red giant branch stars, corresponding to horizontal branch stellar masses between ~0.65M⊙ and ~0.73M⊙ (the range driven by the range of initial helium abundances). We also derive that in this cluster the amount of mass lost along the asymptotic giant branch stars is comparable to the mass lost during the previous red giant branch phase. These results confirm, for this cluster, the disagreement between colour-magnitude-diagram analyses and inferences from recent studies of the dynamics of the cluster stars, which predict a much less efficient red giant branch mass loss. A comparison between the results from these two techniques applied to other clusters is required to gain more insights about the origin of this disagreement.

  6. GRANULATION IN RED GIANTS: OBSERVATIONS BY THE KEPLER MISSION AND THREE-DIMENSIONAL CONVECTION SIMULATIONS

    SciTech Connect

    Mathur, S.; Hekker, S.; Trampedach, R.; Ballot, J.; Kallinger, T.; Buzasi, D.; Garcia, R. A.; Jimenez, A.; Regulo, C.; Mosser, B.; Elsworth, Y.; Chaplin, W. J.; Hale, S. J.; De Ridder, J.; Kinemuchi, K.; Mullally, F.

    2011-11-10

    The granulation pattern that we observe on the surface of the Sun is due to hot plasma rising to the photosphere where it cools down and descends back into the interior at the edges of granules. This is the visible manifestation of convection taking place in the outer part of the solar convection zone. Because red giants have deeper convection zones than the Sun, we cannot a priori assume that their granulation is a scaled version of solar granulation. Until now, neither observations nor one-dimensional analytical convection models could put constraints on granulation in red giants. With asteroseismology, this study can now be performed. We analyze {approx}1000 red giants that have been observed by Kepler during 13 months. We fit the power spectra with Harvey-like profiles to retrieve the characteristics of the granulation (timescale {tau}{sub gran} and power P{sub gran}). We search for a correlation between these parameters and the global acoustic-mode parameter (the position of maximum power, {nu}{sub max}) as well as with stellar parameters (mass, radius, surface gravity (log g), and effective temperature (T{sub eff})). We show that {tau}{sub eff}{proportional_to}{nu}{sup -0.89}{sub max} and P{sub gran}{proportional_to}{nu}{sup -1.90}{sub max}, which is consistent with the theoretical predictions. We find that the granulation timescales of stars that belong to the red clump have similar values while the timescales of stars in the red giant branch are spread in a wider range. Finally, we show that realistic three-dimensional simulations of the surface convection in stars, spanning the (T{sub eff}, log g) range of our sample of red giants, match the Kepler observations well in terms of trends.

  7. CHEMICAL ABUNDANCE ANALYSIS OF A NEUTRON-CAPTURE ENHANCED RED GIANT IN THE BULGE PLAUT FIELD

    SciTech Connect

    Johnson, Christian I.; Rich, R. Michael; McWilliam, Andrew E-mail: rmr@astro.ucla.edu E-mail: andy@obs.carnegiescience.edu

    2013-09-20

    We present chemical abundances for 27 elements ranging from oxygen to erbium in the metal-poor ([Fe/H] = –1.67) bulge red giant branch star 2MASS 18174532-3353235. The results are based on equivalent width and spectrum synthesis analyses of a high-resolution (R ∼ 30, 000) spectrum obtained with the Magellan-MIKE spectrograph. While the light (Z ∼< 30) element abundance patterns match those of similar metallicity bulge and halo stars, the strongly enhanced heavy element abundances are more similar to 'r-II' halo stars (e.g., CS 22892-052) typically found at [Fe/H] ∼< – 2.5. We find that the heaviest elements (Z ≥ 56) closely follow the scaled-solar r-process abundance pattern. We do not find evidence supporting significant s-process contributions; however, the intermediate mass elements (e.g., Y and Zr) appear to have been produced through a different process than the heaviest elements. The light and heavy element abundance patterns of 2MASS 18174532-3353235 are in good agreement with the more metal-poor r-process enhanced stars CS 22892-052 and BD +17{sup o}3248. 2MASS 18174532-3353235 also shares many chemical characteristics with the similar metallicity but comparatively α-poor Ursa Minor dwarf galaxy giant COS 82. Interestingly, the Mo and Ru abundances of 2MASS 18174532-3353235 are also strongly enhanced and follow a similar trend recently found to be common in moderately metal-poor main-sequence turn-off halo stars.

  8. Surface activity and oscillation amplitudes of red giants in eclipsing binaries

    SciTech Connect

    Gaulme, P.; Jackiewicz, J.; Appourchaux, T.; Mosser, B.

    2014-04-10

    Among the 19 red-giant stars belonging to eclipsing binary systems that have been identified in Kepler data, 15 display solar-like oscillations. We study whether the absence of mode detection in the remaining 4 is an observational bias or possibly evidence of mode damping that originates from tidal interactions. A careful analysis of the corresponding Kepler light curves shows that modes with amplitudes that are usually observed in red giants would have been detected if they were present. We observe that mode depletion is strongly associated with short-period systems, in which stellar radii account for 16%-24% of the semi-major axis, and where red-giant surface activity is detected. We suggest that when the rotational and orbital periods synchronize in close binaries, the red-giant component is spun up, so that a dynamo mechanism starts and generates a magnetic field, leading to observable stellar activity. Pressure modes would then be damped as acoustic waves dissipate in these fields.

  9. A preliminary investigation of Giant red mustard (Brassica juncea) as a deterrent of silverleaf whitefly oviposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different pairs of plants planted in a single pot were tested in the greenhouse for oviposition preference by the silverleaf whitefly (Bemisia argentifolii Bellows & Perring [Homoptera: Aleyrodidae]). Treatments consisted of the following in single pots: 2 giant red mustard plants (Brassica juncea ...

  10. Multi-wavelength observations of the peculiar red giant HR 3126

    NASA Technical Reports Server (NTRS)

    Pesce, Joseph E.; Stencel, Robert E.; Walter, Frederick M.; Doggett, Jesse; Dachs, Joachim; Whitelock, Patricia A.; Mundt, Reinhard

    1988-01-01

    Ultraviolet observations of the red giant HR 3126 are combined with multi-wavelength data in order to provide a firmer basis for explaining the arc-minute sized nebula surrounding the object. Possibilities as to the location of HR 3126 on the Hertzsprung-Russel diagram, and to the formation mechanisms of the reflection nebula IC 2220 associated with it, are summarized.

  11. The circumstellar dust envelopes of red giant stars. I - M giant stars with the 10-micron silicate emission band

    NASA Technical Reports Server (NTRS)

    Hashimoto, O.; Nakada, Y.; Onaka, T.; Kamijo, F.; Tanabe, T.

    1990-01-01

    Spherical dust envelope models of red giant stars are constructed by solving the radiative transfer equations of the generalized two-stream Eddington approximation. The IRAS observations of M giant stars which show the 10-micron silicate emission band in IRAS LRS spectra are explained by the models with the dirty silicate grains with K proportional to lambda exp -1.5 for lambda greather than 28 microns. Under the assumption of steady mass flow in the envelope, this model analysis gives the following conclusions: (1) the strength of the silicate emission peak at 10 microns is a good indicator of the mass loss rate of the star, (2) no stars with the 10-microns silicate emission feature are observed in the range of mass loss rate smaller than 7 x 10 to the -8th solar mass/yr, and (3) the characteristic time of the mass loss process of M stars does not exceed a few 10,000 years.

  12. Rotation and Macroturbulence in Metal-Poor Field Red Giant and Red Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Carney, Bruce W.; Gray, David F.; Yong, David; Latham, David W.; Manset, Nadine; Zelman, Rachel; Laird, John B.

    2008-03-01

    We report the results for rotational velocities, Vrot sin i, and macroturbulence dispersions, ζRT, for 12 metal-poor field red giant branch (RGB) stars and 7 metal-poor field red horizontal branch (RHB) stars. The results are based on Fourier transform analyses of absorption line profiles from high-resolution (R ≈ 120,000), high-S/N (≈215 per pixel; ≈345 per resolution element) spectra obtained with the Gecko spectrograph at the Canada-France-Hawaii Telescope (CFHT). The stars were selected from the authors' previous studies of 20 RHB and 116 RGB stars, based primarily on larger-than-average line-broadening values. We find that ζRT values for the metal-poor RGB stars are very similar to those for metal-rich disk giants studied earlier by Gray and his collaborators. Six of the RGB stars have small rotational values, less than 2.0 km s-1, while five show significant rotation/enhanced line broadening, over 3 km s-1. We confirm the rapid rotation rate for RHB star HD 195636, found earlier by Preston. This star's rotation is comparable to that of the fastest known rotating blue horizontal branch (BHB) stars, when allowance is made for differences in radii and moments of inertia. The other six RHB stars have somewhat lower rotation but show a trend to higher values at higher temperatures (lower radii). Comparing our results with those for BHB stars from Kinman et al., we find that the fraction of rapidly rotating RHB stars is somewhat lower than is found among BHB stars. The number of rapidly rotating RHB stars is also smaller than we would have expected from the observed rotation of the RGB stars. We devise two empirical methods to translate our earlier line-broadening results into Vrot sin i for all the RGB and RHB stars they studied. Binning the RGB stars by luminosity, we find that most metal-poor field RGB stars show no detectable sign, on average, of rotation, which is not surprising given the stars' large radii. However, the most luminous stars, with MV

  13. Induction of giant cells by the synthetic food colorants viz. lemon yellow and orange red.

    PubMed

    Prajitha, V; Thoppil, John E

    2016-05-01

    Cytotoxicity and giant cell formation induced by lemon yellow and orange red synthetic food colorants were evaluated in the present study. The aqueous solutions of both the dye solutions were tested for cytotoxicity using Allium cepa assay. Frequency of giant cells were determined after treating the root tips with different concentrations of both food colorant solutions viz., 0.005, 0.01, 0.05, 0.1 % for varying time durations (1/2, 1, 2, 3 h). These colorants may cause giant cell formation primarily by interfering with the normal course of mitosis. Giant cells showing multiple aberrations viz. bridged and binucleate condition, cellular fragmentation, nuclear lesion, double and multiple nuclear lesions, double nuclear peaks and cellular breakage, elongated nucleus, nuclear budding, hyperchromasia, micronucleus, nuclear erosion, pulverized nucleus etc. were induced in root tips treated with both of the colorants. The synthetic food colorant treated cells showed inhibition of cell division and induction of giant cells. A dose dependant decrease in the mitotic index [88.20 % (c(-ve), 3h) to 81.54 % (Lx4, 3h) and 88.20 % (c(-ve), 3h) to 73.17 % (Ox4, 3h)] was observed. All mitotic phases show significant induction of giant cells when treated with both food colorants. Interphase stage shows higher percentage of giant cells, whereas in cytokinesis it was negligible. The orange red food colorant is observed to be more toxic because it recorded higher percentage of giant cell induction when compared with lemon yellow [27.93 % (Lx4, 3h) and 28.07 % (Ox4, 3h)]. PMID:25366067

  14. What Makes Red Giants Tick? Linking Tidal Forces, Activity, and Solar-Like Oscillations via Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Jackiewicz, Jason

    2016-01-01

    Thanks to advances in asteroseismology, red giants have become astrophysical laboratories for studying stellar evolution and probing the Milky Way. However, not all red giants show solar-like oscillations. It has been proposed that stronger tidal interactions from short-period binaries and increased magnetic activity on spotty giants are linked to absent or damped solar-like oscillations, yet each star tells a nuanced story. In this work, we characterize a subset of red giants in eclipsing binaries observed by Kepler. The binaries exhibit a range of orbital periods, solar-like oscillation behavior, and stellar activity. We use orbital solutions together with a suite of modeling tools to combine photometry and spectroscopy in a detailed analysis of tidal synchronization timescales, star spot activity, and stellar evolution histories. These red giants offer an unprecedented opportunity to test stellar physics and are important benchmarks for ensemble asteroseismology.

  15. HD 181068: a red giant in a triply eclipsing compact hierarchical triple system.

    PubMed

    Derekas, A; Kiss, L L; Borkovits, T; Huber, D; Lehmann, H; Southworth, J; Bedding, T R; Balam, D; Hartmann, M; Hrudkova, M; Ireland, M J; Kovács, J; Mezo, Gy; Moór, A; Niemczura, E; Sarty, G E; Szabó, Gy M; Szabó, R; Telting, J H; Tkachenko, A; Uytterhoeven, K; Benko, J M; Bryson, S T; Maestro, V; Simon, A E; Stello, D; Schaefer, G; Aerts, C; ten Brummelaar, T A; De Cat, P; McAlister, H A; Maceroni, C; Mérand, A; Still, M; Sturmann, J; Sturmann, L; Turner, N; Tuthill, P G; Christensen-Dalsgaard, J; Gilliland, R L; Kjeldsen, H; Quintana, E V; Tenenbaum, P; Twicken, J D

    2011-04-01

    Hierarchical triple systems comprise a close binary and a more distant component. They are important for testing theories of star formation and of stellar evolution in the presence of nearby companions. We obtained 218 days of Kepler photometry of HD 181068 (magnitude of 7.1), supplemented by ground-based spectroscopy and interferometry, which show it to be a hierarchical triple with two types of mutual eclipses. The primary is a red giant that is in a 45-day orbit with a pair of red dwarfs in a close 0.9-day orbit. The red giant shows evidence for tidally induced oscillations that are driven by the orbital motion of the close pair. HD 181068 is an ideal target for studies of dynamical evolution and testing tidal friction theories in hierarchical triple systems. PMID:21474755

  16. Three Red Giants With Substellar-Mass Companions

    NASA Astrophysics Data System (ADS)

    Niedzielski, A.; Wolszczan, A.; Nowak, G.; Adamów, M.; Kowalik, K.; Maciejewski, G.; Deka-Szymankiewicz, B.; Adamczyk, M.

    2015-04-01

    We present three giant stars from the ongoing Penn State-Toruń Planet Search with the Hobby-Eberly Telescope, which exhibit radial velocity (RV) variations that point to the presence of planetary-mass companions around them. BD+49 828 is a M=1.52+/- 0.22 {{M}⊙ } K0 giant with a m sin i=1.6-0.2+0.4 {{M}J} minimum mass companion in a = 4.2+0.32-0.2 AU (2590+300-180d), e = 0.35+0.24-0.10 orbit. HD 95127, a log L/{{L}⊙ }=2.28+/- 0.38, R=20+/- 9 {{R}⊙ }, M=1.20+/- 0.22 {{M}⊙ } K0 giant, has a m sin i = 5.01-0.44+0.61 {{M}J} minimum mass companion in a = 1.28+0.01-0.01 AU (482+5-5d), e = 0.11+0.15-0.06 orbit. Finally, HD 216536 is a M=1.36+/- 0.38 {{M}⊙ } K0 giant with a msin i=1.47-0.12+0.20 {{M}J} minimum mass companion in a=0.609-0.002+0.002 AU (148.6-0.7+0.7d), e = 0.38+0.12-0.10 orbit. Both HD 95127 b and HD 216536 b in their compact orbits are very close to the engulfment zone and hence prone to ingestion in the near future. BD+49 828 b is among the longest-period planets detected with the RV technique until now and it will remain unaffected by stellar evolution up to a very late stage of its host. We discuss general properties of planetary systems around evolved stars and planet survivability using existing data on exoplanets in more detail. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  17. A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude. I.

    NASA Astrophysics Data System (ADS)

    Conn, A. R.; Lewis, G. F.; Ibata, R. A.; Parker, Q. A.; Zucker, D. B.; McConnachie, A. W.; Martin, N. F.; Irwin, M. J.; Tanvir, N.; Fardal, M. A.; Ferguson, A. M. N.

    2011-10-01

    We present a new approach for identifying the tip of the red giant branch (TRGB) which, as we show, works robustly even on sparsely populated targets. Moreover, the approach is highly adaptable to the available data for the stellar population under study, with prior information readily incorporable into the algorithm. The uncertainty in the derived distances is also made tangible and easily calculable from posterior probability distributions. We provide an outline of the development of the algorithm and present the results of tests designed to characterize its capabilities and limitations. We then apply the new algorithm to three M31 satellites: Andromeda I, Andromeda II, and the fainter Andromeda XXIII, using data from the Pan-Andromeda Archaeological Survey (PAndAS), and derive their distances as 731(+ 5) + 18 (- 4) - 17 kpc, 634(+ 2) + 15 (- 2) - 14 kpc, and 733(+ 13) + 23 (- 11) - 22 kpc, respectively, where the errors appearing in parentheses are the components intrinsic to the method, while the larger values give the errors after accounting for additional sources of error. These results agree well with the best distance determinations in the literature and provide the smallest uncertainties to date. This paper is an introduction to the workings and capabilities of our new approach in its basic form, while a follow-up paper shall make full use of the method's ability to incorporate priors and use the resulting algorithm to systematically obtain distances to all of M31's satellites identifiable in the PAndAS survey area.

  18. Iron Abundances and Atmospheric Parameters of Red Giants in the Open Cluster IC 4756

    NASA Astrophysics Data System (ADS)

    Djordjevic, Julie O.

    Three red giants were investigated within the open cluster IC 4756 using observations taken from the McDonald Observatory's 2.1m Otto Struve Telescope and the Sandiford Cassegrain Echelle Spectrometer (SES). Iron abundances were calculated for each star based on the equivalent widths of Fe I and Fe II lines measured using the line lists of Bubar and King (2010) and Schuler et al. (2005). Also derived were the basic atmospheric parameters: effective temperature, surface gravity, metallicity, and microturbulence. Her 35, Her 85, and Her 249 were found to have corresponding [Fe I/H] of 0.06 +/- 0.04, -0.16 +/- 0.03, and -0.16 +/- 0.06 as derived from the neutral lines. These values, when compared to the results of other studies, suggest that the cluster has an overall metallicity within the solar to subsolar value. This would indicate IC 4756 as a slightly metal-poor object. The star Her 85 is also examined to determine if derived atmospheric parameters support the classification of more recent studies as a nonmember of the cluster. The studies base their decisions on its deviation in radial velocity from the cluster mean. It is concluded that there is little solid evidence to support the dismissal of Her 85 from metallicity studies of IC 4756 and present-day membership and proper motion studies with modern equipment are required to confirm or reject this theory.

  19. A CN Band Survey of Red Giants in the Globular Cluster M53

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smith, G. H.

    2004-12-01

    We investigate the star-to-star variations in λ 3883 CN bandstrength among red giant stars in the low-metallicity globular cluster M53 ([Fe/H] = --2.0). Our data were taken with the Kast spectrograph on the 3-meter Shane telescope at Lick Observatory in April 2001. Star-to-star variations in CN bandstrength are common in intermediate- and high-metallicity globular clusters ([Fe/H] ≥ --1.6). Our data were obtained to test whether that variation will also be present in a low-metallicity globular cluster, or whether it will be suppressed by the overall lack of metals in the stars. Our preliminary result is that the λ 3883 CN band is weak in our program stars, which span the brightest magnitude of the red giant branch. On visual inspection, the M53 giants appear to be similar in their CN bandstrength to the four CN-weak giants in NGC 6752 whose average spectrum is plotted in Fig. 4 of Norris et al. (1981, ApJ, 244, 205). This work is planned to form part of a larger study of the metallicity dependence of CN bandstrength and carbon abundance behavior on the upper giant branch of globular clusters. This work is supported by NSF grant AST 00-98453 and by an award from the ARCS foundation, Northern California Chapter.

  20. The evolution of the gut microbiota in the giant and the red pandas

    PubMed Central

    Li, Ying; Guo, Wei; Han, Shushu; Kong, Fanli; Wang, Chengdong; Li, Desheng; Zhang, Heming; Yang, Mingyao; Xu, Huailiang; Zeng, Bo; Zhao, Jiangchao

    2015-01-01

    The independent dietary shift from carnivore to herbivore with over 90% being bamboo in the giant and the red pandas is of great interests to biologists. Although previous studies have shown convergent evolution of the giant and the red pandas at both morphological and molecular level, the evolution of the gut microbiota in these pandas remains largely unknown. The goal of this study was to determine whether the gut microbiota of the pandas converged due to the same diet, or diverged. We characterized the fecal microbiota from these two species by pyrosequencing the 16S V1–V3 hypervariable regions using the 454 GS FLX Titanium platform. We also included fecal samples from Asian black bears, a species phylogenetically closer to the giant panda, in our analyses. By analyzing the microbiota from these 3 species and those from other carnivores reported previously, we found the gut microbiotas of the giant pandas are distinct from those of the red pandas and clustered closer to those of the black bears. Our data suggests the divergent evolution of the gut microbiota in the pandas. PMID:25985413

  1. The evolution of the gut microbiota in the giant and the red pandas.

    PubMed

    Li, Ying; Guo, Wei; Han, Shushu; Kong, Fanli; Wang, Chengdong; Li, Desheng; Zhang, Heming; Yang, Mingyao; Xu, Huailiang; Zeng, Bo; Zhao, Jiangchao

    2015-01-01

    The independent dietary shift from carnivore to herbivore with over 90% being bamboo in the giant and the red pandas is of great interests to biologists. Although previous studies have shown convergent evolution of the giant and the red pandas at both morphological and molecular level, the evolution of the gut microbiota in these pandas remains largely unknown. The goal of this study was to determine whether the gut microbiota of the pandas converged due to the same diet, or diverged. We characterized the fecal microbiota from these two species by pyrosequencing the 16S V1-V3 hypervariable regions using the 454 GS FLX Titanium platform. We also included fecal samples from Asian black bears, a species phylogenetically closer to the giant panda, in our analyses. By analyzing the microbiota from these 3 species and those from other carnivores reported previously, we found the gut microbiotas of the giant pandas are distinct from those of the red pandas and clustered closer to those of the black bears. Our data suggests the divergent evolution of the gut microbiota in the pandas. PMID:25985413

  2. A Study of the λ10830 He I Line Among Red Giants in Messier 13

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.; Dupree, Andrea K.; Strader, Jay

    2014-10-01

    Two properties of Messier 13 are pertinent to the study of mass loss among metal-poor stars and the chemical evolution of globular clusters: (1) an extended blue horizontal branch, which seems to demand mass loss from red giant progenitor stars and possibly an enhanced helium abundance, and (2) the presence of internal abundance inhomogeneities of elements in the mass range from C to Al. A popular explanation for this second phenomenon is that M13 was self-enriched by intermediate-mass asymptotic giant branch (IM-AGB) stars of a type that may also have been able to instigate helium enrichment. Spectra of the λ10830 absorption feature produced by He I have been obtained by using the NIRSPEC spectrometer on the Keck 2 telescope for seven red giants in M13 chosen to have a range in λ3883 CN band strengths, oxygen, and sodium abundances. Whereas these spectra do reveal the presence of fast winds among some M13 red giants, they provide little support for helium abundance differences of the type that might have been generated by a burst of IM-AGB star activity within the M13 protocluster. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  3. Resolved Stellar Halos of M87 and NGC 5128: Metallicities from the Red-Giant Branch

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.

    2016-08-01

    We have searched halo fields of two giant elliptical galaxies: M87, using HST images at 10 kpc from the galactic center, and NGC 5128 (Cen A), using VIMOS VLT images at 65 kpc from the center and archival HST data from 8 to 38 kpc from the center. We have resolved thousands of red-giant-branch (RGB) stars in these stellar halo fields using V and I filters, and, in addition, measured the metallicity using stellar isochrones. The metallicity distribution function (MDF) of the inner stellar halo of M87 is similar to that of NGC 5128's stellar halo.

  4. To be or not to be asymmetric? VLTI and the mass loss geometry of red giants

    NASA Astrophysics Data System (ADS)

    Paladini, Claudia; Klotz, Daniela; Sacuto, Stephane; Hron, Josef; Wittkowski, Markus; Lagadec, Eric; Verhoelst, Tijl; Jorissen, Alain; Richichi, Andrea; Groenewegen, Martin; Olofsson, Hans; Kerschbaum, Franz

    2012-07-01

    The mass-loss process is a key ingredient for our understanding in many fields of astrophysics, including stellar evolution and the enrichment of the interstellar medium (ISM) via stellar yields. We combined the capability of the VLTI/MIDI and VLT/VISIR instruments with very recent Herschel/PACS observations to characterize the geometry of mass loss from evolved red giants on the Asymptotic Giant Branch (AGB) at various scales. This paper describes the sample of objects, the observing strategy, the tool for the interpretation, and preliminary MIDI results for two targets: U Ant and θ Aps.

  5. ASTEROSEISMIC CLASSIFICATION OF STELLAR POPULATIONS AMONG 13,000 RED GIANTS OBSERVED BY KEPLER

    SciTech Connect

    Stello, Dennis; Bedding, Timothy R.; Benomar, Othman; White, Timothy R.; Huber, Daniel; Bildsten, Lars; Paxton, Bill; Elsworth, Yvonne P.; Gilliland, Ronald L.; Mosser, Benoit

    2013-03-10

    Of the more than 150,000 targets followed by the Kepler Mission, about 10% were selected as red giants. Due to their high scientific value, in particular for Galaxy population studies and stellar structure and evolution, their Kepler light curves were made public in late 2011. More than 13,000 (over 85%) of these stars show intrinsic flux variability caused by solar-like oscillations making them ideal for large-scale asteroseismic investigations. We automatically extracted individual frequencies and measured the period spacings of the dipole modes in nearly every red giant. These measurements naturally classify the stars into various populations, such as the red giant branch, the low-mass (M/M{sub Sun} {approx}< 1.8) helium-core-burning red clump, and the higher-mass (M/M{sub Sun} {approx}> 1.8) secondary clump. The period spacings also reveal that a large fraction of the stars show rotationally induced frequency splittings. This sample of stars will undoubtedly provide an extremely valuable source for studying the stellar population in the direction of the Kepler field, in particular when combined with complementary spectroscopic surveys.

  6. SOLAR-LIKE OSCILLATIONS IN LOW-LUMINOSITY RED GIANTS: FIRST RESULTS FROM KEPLER

    SciTech Connect

    Bedding, T. R.; Huber, D.; Stello, D.; Elsworth, Y. P.; Hekker, S.; Broomhall, A. M.; Chaplin, W. J.; Hale, S. J.; Kallinger, T.; Mathur, S.; Mosser, B.; Barban, C.; Preston, H. L.; Buzasi, D. L.; Ballot, J.; GarcIa, R. A.; De Ridder, J.; Frandsen, S.; Borucki, W. J.

    2010-04-20

    We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30 minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations ({delta}{nu}) and the frequency of maximum power ({nu}{sub max}). We focus on a sample of 50 low-luminosity stars ({nu}{sub max} > 100 {mu}Hz, L {approx}< 30 L {sub sun}) having high signal-to-noise ratios and showing the unambiguous signature of solar-like oscillations. These are H-shell-burning stars, whose oscillations should be valuable for testing models of stellar evolution and for constraining the star formation rate in the local disk. We use a new technique to compare stars on a single echelle diagram by scaling their frequencies and find well-defined ridges corresponding to radial and non-radial oscillations, including clear evidence for modes with angular degree l = 3. Measuring the small separation between l = 0 and l = 2 allows us to plot the so-called C-D diagram of {delta}{nu}{sub 02} versus {delta}{nu}. The small separation {delta}{nu}{sub 01} of l = 1 from the midpoint of adjacent l = 0 modes is negative, contrary to the Sun and solar-type stars. The ridge for l = 1 is notably broadened, which we attribute to mixed modes, confirming theoretical predictions for low-luminosity giants. Overall, the results demonstrate the tremendous potential of Kepler data for asteroseismology of red giants.

  7. Extended Stromgren Photometry of M22 Red Giants

    NASA Astrophysics Data System (ADS)

    Anthony-Twarog, B. J.; Craig, J. S.; Twarog, B. A.

    1994-05-01

    M22 is a low-latitude globular cluster with significant reddening (E(B-V) ~ 0.42, Crocker 1988) and evidence for a modest spread in extinction across the cluster field. It is also a cluster with some evidence for chemical inhomogeneity. We have applied extended Stromgren photometry (uvbyCa) to several fields in this cluster, focusing on a sample of ~ 300 giants, many of which have membership information from proper motions (Peterson & Cudworth 1994) and quite a number of which have spectroscopic measurements for Fe, Ca, Na, CN and CH abundances. Our results strengthen and support the findings of Lehnert et al. (1991) and Norris & Freeman (1983). Our photometric calcium index, which correlates well with spectroscopic indicators, shows a spread far larger than could be explained by differential reddening. The calcium metallicity index correlates well with the conventional Stromgren metal index m_1, and both are positively correlated with enhanced CN and CH as evidenced by S3839 and W(G) from Norris & Freeman. Although a significant spread in m_1 exists, the spread in iron it implies is nearly an order of magnitude larger than observed spectroscopically, and it is suggested that variations in CN play the largest role in the dispersion of m_1 indices. M22 appears to be a cluster with an unusual history that, unlike omega Cen, has led to enhancements of alpha --rich species with little variation in iron-peak elements.

  8. The Keck Aperture Masking Experiment: Dust Enshrouded Red Giants

    NASA Technical Reports Server (NTRS)

    Blasius, T. D.; Monnier, J. D.; Tuthill, P. G.; Danchi, W. C.; Anderson, M.

    2012-01-01

    While the importance of dusty asymptotic giant branch (AGB) stars to galactic chemical enrichment is widely recognised, a sophisticated understanding of the dust formation and wind-driving mechanisms has proven elusive due in part to the difficulty in spatially-resolving the dust formation regions themselves. We have observed twenty dust-enshrouded AGB stars as part of the Keck Aperture Masking Experiment, resolving all of them in multiple near-infrared bands between 1.5 m and 3.1 m. We find 45% of the targets to show measurable elongations that, when correcting for the greater distances of the targets, would correspond to significantly asymmetric dust shells on par with the well-known cases of IRC +10216 or CIT 6. Using radiative transfer models, we find the sublimation temperature of Tsub(silicates) = 1130 90K and Tsub(amorphous carbon) = 1170 60 K, both somewhat lower than expected from laboratory measurements and vastly below temperatures inferred from the inner edge of YSO disks. The fact that O-rich and C-rich dust types showed the same sublimation temperature was surprising as well. For the most optically-thick shells ( 2.2 m > 2), the temperature profile of the inner dust shell is observed to change substantially, an effect we suggest could arise when individual dust clumps become optically-thick at the highest mass-loss rates.

  9. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. IV. Oxygen diagnostics in extremely metal-poor red giants with infrared OH lines

    NASA Astrophysics Data System (ADS)

    Dobrovolskas, V.; Kučinskas, A.; Bonifacio, P.; Caffau, E.; Ludwig, H.-G.; Steffen, M.; Spite, M.

    2015-04-01

    Context. Although oxygen is an important tracer of Galactic chemical evolution, measurements of its abundance in the atmospheres of the oldest Galactic stars are still scarce and rather imprecise. This is mainly because only a few spectral lines are available for the abundance diagnostics. At the lowest end of the metallicity scale, oxygen can only be measured in giant stars and in most of cases such measurements rely on a single forbidden [O i] 630 nm line that is very weak and frequently blended with telluric lines. Although molecular OH lines located in the ultraviolet and infrared could also be used for the diagnostics, oxygen abundances obtained from the OH lines and the [O i] 630 nm line are usually discrepant to a level of ~ 0.3-0.4 dex. Aims: We study the influence of convection on the formation of the infrared (IR) OH lines and the forbidden [O i] 630 nm line in the atmospheres of extremely metal-poor (EMP) red giant stars. Our ultimate goal is to clarify whether a realistic treatment of convection with state-of-the-art 3D hydrodynamical model atmospheres may help to bring the oxygen abundances obtained using the two indicators into closer agreement. Methods: We used high-resolution (R = 50 000) and high signal-to-noise ratio (S/N ≈ 200-600) spectra of four EMP red giant stars obtained with the VLT CRIRES spectrograph. For each EMP star, 4-14 IR OH vibrational-rotational lines located in the spectral range of 1514-1548 and 1595-1632 nm were used to determine oxygen abundances by employing standard 1D local thermodynamic equilibrium (LTE) abundance analysis methodology. We then corrected the 1D LTE abundances obtained from each individual OH line for the 3D hydrodynamical effects, which was done by applying 3D-1D LTE abundance corrections that were determined using 3D hydrodynamical CO5BOLD and 1D hydrostatic LHD model atmospheres. Results: We find that the influence of convection on the formation of [O i] 630 nm line in the atmospheres of EMP giants

  10. Asteroseismology can reveal strong internal magnetic fields in red giant stars.

    PubMed

    Fuller, Jim; Cantiello, Matteo; Stello, Dennis; Garcia, Rafael A; Bildsten, Lars

    2015-10-23

    Internal stellar magnetic fields are inaccessible to direct observations, and little is known about their amplitude, geometry, and evolution. We demonstrate that strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields can manifest themselves via depressed dipole stellar oscillation modes, arising from a magnetic greenhouse effect that scatters and traps oscillation-mode energy within the core of the star. The Kepler satellite has observed a few dozen red giants with depressed dipole modes, which we interpret as stars with strongly magnetized cores. We find that field strengths larger than ~10(5) gauss may produce the observed depression, and in one case we infer a minimum core field strength of ≈10(7) gauss. PMID:26494754

  11. Overabundance of s-process elements in the atmosphere of the active red giant PZ Mon

    NASA Astrophysics Data System (ADS)

    Pakhomov, Yu. V.

    2015-11-01

    Based on high-resolution ( R = 60 000) spectra taken with the NES spectrograph (the 6-m BTA telescope, the Special Astrophysical Observatory of the Russian Academy of Sciences), we have determined the abundances of 26 elements, from lithium to europium, in the atmosphere of the active red giant PZ Mon, which belongs to the class of RS CVn variable stars, by the method of model stellar atmospheres. We have taken into account the hyperfine splitting, the isotopic shift, and the departure from local thermodynamic equilibrium. Analysis of our data has revealed an overabundance of lithium and neutron-capture elements compared to normal red giants. For lithium, this is explained by the activity of the star, while the overabundance of s-elements is presumably similar in nature to that inmild bariumstars.

  12. The red/infrared evolution in galaxies - Effect of the stars on the asymptotic giant branch

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Wright, Edward L.

    1987-01-01

    The effect of including the asymptotic giant branch (AGB) population in a spectral synthesis model of galaxy evolution is examined. Stars on the AGB are luminous enough and also evolve rapidly enough to affect the evolution of red and infrared colors in galaxies. The validity of using infrared colors as distance indicators to galaxies is then investigated in detail. It is found that for z of 1 or less infrared colors of model galaxies behave linearly with redshift.

  13. Internal Rotation of the Red-giant Star KIC 4448777 by Means of Asteroseismic Inversion

    NASA Astrophysics Data System (ADS)

    Di Mauro, M. P.; Ventura, R.; Cardini, D.; Stello, D.; Christensen-Dalsgaard, J.; Dziembowski, W. A.; Paternò, L.; Beck, P. G.; Bloemen, S.; Davies, G. R.; De Smedt, K.; Elsworth, Y.; García, R. A.; Hekker, S.; Mosser, B.; Tkachenko, A.

    2016-01-01

    We study the dynamics of the stellar interior of the early red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the dipole mixed modes obtained from Kepler observations. In order to overcome the complexity of the oscillation pattern typical of red-giant stars, we present a procedure to extract the rotational splittings from the power spectrum. We find not only that the core rotates from a minimum of 8 to a maximum of 17 times faster than the surface, confirming previous inversion results generated for other red giants (Deheuvels et al.), but we also estimate the variation of the angular velocity within the helium core with a spatial resolution of 0.001R and verify the hypothesis of a sharp discontinuity in the inner stellar rotation. The results show that the entire core rotates rigidly and provide evidence for an angular velocity gradient around the base of the hydrogen-burning shell; however, we do not succeed in characterizing the rotational slope, due to the intrinsic limits of the applied techniques. The angular velocity, from the edge of the core, appears to decrease with increasing distance from the center, reaching an average value in the convective envelope of 68 ± 22 nHz. We conclude that a set of data that includes only dipolar modes is sufficient to infer quite accurately the rotation of a red giant not only in the dense core but also, with a lower level of confidence, in part of the radiative region and in the convective envelope.

  14. An empirical mass-loss law for Population II giants from the Spitzer-IRAC survey of Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Origlia, L.; Ferraro, F. R.; Fabbri, S.; Fusi Pecci, F.; Dalessandro, E.; Rich, R. M.; Valenti, E.

    2014-04-01

    Aims: The main aim of the present work is to derive an empirical mass-loss (ML) law for Population II stars in first and second ascent red giant branches. Methods: We used the Spitzer InfraRed Array Camera (IRAC) photometry obtained in the 3.6-8 μm range of a carefully chosen sample of 15 Galactic globular clusters spanning the entire metallicity range and sampling the vast zoology of horizontal branch (HB) morphologies. We complemented the IRAC photometry with near-infrared data to build suitable color-magnitude and color-color diagrams and identify mass-losing giant stars. Results: We find that while the majority of stars show colors typical of cool giants, some stars show an excess of mid-infrared light that is larger than expected from their photospheric emission and that is plausibly due to dust formation in mass flowing from them. For these stars, we estimate dust and total (gas + dust) ML rates and timescales. We finally calibrate an empirical ML law for Population II red and asymptotic giant branch stars with varying metallicity. We find that at a given red giant branch luminosity only a fraction of the stars are losing mass. From this, we conclude that ML is episodic and is active only a fraction of the time, which we define as the duty cycle. The fraction of mass-losing stars increases by increasing the stellar luminosity and metallicity. The ML rate, as estimated from reasonable assumptions for the gas-to-dust ratio and expansion velocity, depends on metallicity and slowly increases with decreasing metallicity. In contrast, the duty cycle increases with increasing metallicity, with the net result that total ML increases moderately with increasing metallicity, about 0.1 M⊙ every dex in [Fe/H]. For Population II asymptotic giant branch stars, we estimate a total ML of ≤0.1 M⊙, nearly constant with varying metallicity. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory

  15. The asteroseismic signature of strong magnetic fields in the cores of red giant stars

    NASA Astrophysics Data System (ADS)

    Fuller, Jim; Cantiello, Matteo; Stello, Dennis; Garcia, Rafael; Bildsten, Lars

    2016-01-01

    Internal stellar magnetic fields are inaccessible to direct observations and little is known about their amplitude, geometry and evolution. I will discuss how strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields manifest themselves via depressed dipole stellar oscillation modes, which arises from a magnetic greenhouse effect that scatters and traps oscillation mode energy within the core of the star. Physically, the effect stems from magnetic tension forces created by sufficiently strong fields, which break the spherical symmetry of the wave propagation cavity. The loss of wave energy within the core reduces the mode visibility at the stellar surface, and we find that our predicted visibilities are in excellent agreement with a class of red giants exhibiting depressed dipole oscillation modes. The Kepler satellite has already observed hundreds of these red giants, which we identify as stars with strongly magnetized cores. Field strengths larger than roughly 10^5 G can produce the observed depression, and in one case we measure a core field strength of 10^7 G.

  16. Modelling the spectral energy distribution of the red giant in RS Ophiuchi: evidence for irradiation

    NASA Astrophysics Data System (ADS)

    Pavlenko, Ya. V.; Kaminsky, B.; Rushton, M. T.; Evans, A.; Woodward, C. E.; Helton, L. A.; O'Brien, T. J.; Jones, D.; Elkin, V.

    2016-02-01

    We present an analysis of optical and infrared spectra of the recurrent nova RS Oph obtained during between 2006 and 2009. The best fit to the optical spectrum for 2006 September 28 gives Teff = 3900 K for log g = 2.0, while for log g = 0.0 we find Teff = 4700 K, and a comparison with template stellar spectra provides Teff ˜ 4500 K. The observed spectral energy distribution (SED), and the intensities of the emission lines, vary on short (≲1 d) time-scales, due to disc variability. We invoke a simple one-component model for the accretion disc, and a model with a hot boundary layer, with high (˜3.9 × 10-6 M⊙ yr-1) and low (˜2 × 10-8 M⊙ yr-1) accretion rates, respectively. Fits to the accretion disc-extracted infrared spectrum (2008 July 15) yield effective temperatures for the red giant of {T_eff}= 3800 ± 100 K (log g = 2.0) and {T_eff}= 3700 ± 100 K (log g = 0.0). Furthermore, using a more sophisticated approach, we reproduced the optical and infrared SEDs of the red giant in the RS Oph system with a two-component model atmosphere, in which 90 per cent of the surface has Teff = 3600 K and 10 per cent has Teff = 5000 K. Such structure could be due to irradiation of the red giant by the white dwarf.

  17. A BAYESIAN APPROACH TO LOCATING THE RED GIANT BRANCH TIP MAGNITUDE. I

    SciTech Connect

    Conn, A. R.; Parker, Q. A.; Zucker, D. B.; Lewis, G. F.; Ibata, R. A.; McConnachie, A. W.; Martin, N. F.; Irwin, M. J.; Tanvir, N.; Fardal, M. A.; Ferguson, A. M. N.

    2011-10-20

    We present a new approach for identifying the tip of the red giant branch (TRGB) which, as we show, works robustly even on sparsely populated targets. Moreover, the approach is highly adaptable to the available data for the stellar population under study, with prior information readily incorporable into the algorithm. The uncertainty in the derived distances is also made tangible and easily calculable from posterior probability distributions. We provide an outline of the development of the algorithm and present the results of tests designed to characterize its capabilities and limitations. We then apply the new algorithm to three M31 satellites: Andromeda I, Andromeda II, and the fainter Andromeda XXIII, using data from the Pan-Andromeda Archaeological Survey (PAndAS), and derive their distances as 731{sup (+5)+18}{sub (-4)-17} kpc, 634{sup (+2)+15}{sub (-2)-14} kpc, and 733{sup (+13)+23}{sub (-11)-22} kpc, respectively, where the errors appearing in parentheses are the components intrinsic to the method, while the larger values give the errors after accounting for additional sources of error. These results agree well with the best distance determinations in the literature and provide the smallest uncertainties to date. This paper is an introduction to the workings and capabilities of our new approach in its basic form, while a follow-up paper shall make full use of the method's ability to incorporate priors and use the resulting algorithm to systematically obtain distances to all of M31's satellites identifiable in the PAndAS survey area.

  18. THE ROLE OF PLANET ACCRETION IN CREATING THE NEXT GENERATION OF RED GIANT RAPID ROTATORS

    SciTech Connect

    Carlberg, Joleen K.; Majewski, Steven R.; Arras, Phil E-mail: srm4n@virginia.edu

    2009-07-20

    Rapid rotation in field red giant stars is a relatively rare but well-studied phenomenon; here we investigate the potential role of planet accretion in spinning up these stars. Using Zahn's theory of tidal friction and stellar evolution models, we compute the decay of a planet's orbit into its evolving host star and the resulting transfer of angular momentum into the stellar convective envelope. This experiment assesses the frequency of planet ingestion and rapid rotation on the red giant branch (RGB) for a sample of 99 known exoplanet host stars. We find that the known exoplanets are indeed capable of creating rapid rotators; however, the expected fraction due to planet ingestion is only {approx} 10% of the total seen in surveys of present-day red giants. Of the planets ingested, we find that those with smaller initial semimajor axes are more likely to create rapid rotators because these planets are accreted when the stellar moment of inertia is smallest. We also find that many planets may be ingested prior to the RGB phase, contrary to the expectation that accretion would generally occur when the stellar radii expand significantly as giants. Finally, our models suggest that the rapid rotation signal from ingested planets is most likely to be seen on the lower RGB, which is also where alternative mechanisms for spin-up, e.g., angular momentum dredged up from the stellar core, do not operate. Thus, rapid rotators on the lower RGB are the best candidates to search for definitive evidence of systems that have experienced planet accretion.

  19. Kinematics and Metallicity of M31 Red Giants: The Giant Southern Stream and Discovery of a Second Cold Component at R=20 kpc

    NASA Astrophysics Data System (ADS)

    Kalirai, Jasonjot S.; Guhathakurta, Puragra; Gilbert, Karoline M.; Reitzel, David B.; Majewski, Steven R.; Rich, R. Michael; Cooper, Michael C.

    2006-04-01

    We present spectroscopic observations of red giant branch (RGB) stars in the Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck II 10 m telescope. The three fields targeted in this study are in the M31 spheroid, outer disk, and giant southern stream. In this paper, we focus on the kinematics and chemical composition of RGB stars in the stream field located at a projected distance of R=20 kpc from M31's center. A mix of stellar populations is found in this field. M31 RGB stars are isolated from Milky Way dwarf star contaminants using a variety of spectral and photometric diagnostics. The radial velocity distribution of RGB stars displays a clear bimodality-a primary peak centered at v¯1=-513 km s-1 and a secondary one at v¯2=-417 km s-1-along with an underlying broad component that is presumably representative of the smooth spheroid of M31. Both peaks are found to be dynamically cold with intrinsic velocity dispersions of σ(v)~16 km s-1. The mean metallicity and metallicity dispersion of stars in the two peaks is also found to be similar: <[Fe/H]>~-0.45 and σ([Fe/H])=0.2. The observed velocity of the primary peak is consistent with that predicted by dynamical models for the stream, but there is no obvious explanation for the secondary peak. The nature of the secondary cold population is unclear: it may represent (1) tidal debris from a satellite merger event that is superimposed on, but unrelated to, the giant southern stream; (2) a wrapped around component of the giant southern stream; or (3) a warp or overdensity in M31's disk at Rdisk>50 kpc (this component is well above the outward extrapolation of the smooth exponential disk brightness profile). Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the

  20. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    SciTech Connect

    Gaulme, P.; McKeever, J.; Rawls, M. L.; Jackiewicz, J.; Mosser, B.; Guzik, J. A.

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentially offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many

  1. PLANET ENGULFMENT BY {approx}1.5-3 M{sub sun} RED GIANTS

    SciTech Connect

    Kunitomo, M.; Ikoma, M.; Sato, B.; Ida, S.; Katsuta, Y.

    2011-08-20

    Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around {approx}1.5-3 M{sub sun} stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study, we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium-burning phases of host stars, including the effects of stellar tide and stellar mass loss. Then we derive the critical semimajor axis (or the survival limit) inside which planets are eventually engulfed by their host stars after tidal decay of their orbits. Specifically, we investigate the impact of stellar mass and other stellar parameters on the survival limit in more detail than previous studies. In addition, we make detailed comparisons with measured semimajor axes of planets detected so far, which no previous study has done. We find that the critical semimajor axis is quite sensitive to stellar mass in the range between 1.7 and 2.1 M{sub sun}, which suggests a need for careful comparison between theoretical and observational limits of the existence of planets. Our comparison demonstrates that all planets orbiting GK clump giants that have been detected are beyond the survival limit, which is consistent with the planet-engulfment hypothesis. However, on the high-mass side (>2.1M{sub sun}), the detected planets are orbiting significantly far from the survival limit, which suggests that engulfment by host stars may not be the main reason for the observed lack of short-period giant planets. To confirm our conclusion, the detection of more planets around clump giants, especially with masses {approx}> 2.5M{sub sun}, is required.

  2. The light curve shapes as a key to resolving the origin of long secondary periods in red giant stars

    SciTech Connect

    Soszyński, I.; Udalski, A. E-mail: udalski@astrouw.edu.pl

    2014-06-10

    We present a study of Optical Gravitational Lensing Experiment light curves of red giant stars exhibiting long secondary periods (LSPs)—an enigmatic phenomenon commonly observed in stars on the upper red giant branch and asymptotic giant branch. We show that the light curves of LSP stars are essentially identical to those of the spotted variables with one dark spot on their photospheres. Such behavior can be explained by the presence of a dusty cloud orbiting the red giant together with a low-mass companion in a close, circular orbit. We argue that the binary scenario is in agreement with most of the observational properties of LSP variables, including non-sinusoidal shapes of their radial velocity curves.

  3. THE CH(G) INDEX AS A NEW CRITERION FOR SELECTING RED GIANT STARS

    SciTech Connect

    Chen, Y. Q.; Zhao, G.; Carrell, K.; Zhao, J. K.; Tan, K. F.

    2013-03-10

    We have measured the CH G band (CH(G)) index for evolved stars in the globular cluster M3 based on the Sloan Digital Sky Survey (SDSS) spectroscopic survey. It is found that there is a useful way to select red giant branch (RGB) stars from the contamination of other evolved stars such as asymptotic giant branch (AGB) and red horizontal branch (RHB) stars by using the CH(G) index versus (g - r){sub 0} diagram if the metallicity is known from the spectra. When this diagram is applied to field giant stars with similar metallicity, we establish a calibration of CH(G) = 1.625(g - r){sub 0} - 1.174(g - r){sup 2}{sub 0} - 0.934. This method is confirmed by stars with [Fe/H] {approx} -2.3 where spectra of member stars in globular clusters M15 and M92 are available in the SDSS database. We thus extend this kind of calibration to every individual metallicity bin ranging from [Fe/H] {approx} -3.0 to [Fe/H] {approx} 0.0 by using field red giant stars with 0.4 {<=} (g - r){sub 0} {<=} 1.0. The metallicity-dependent calibrations give CH(G) = 1.625(g - r){sub 0} - 1.174(g - r){sup 2}{sub 0} + 0.060[Fe/H] - 0.830 for -3.0 < [Fe/H] {<=} -1.2 and CH(G) = 0.953(g - r){sub 0} - 0.655(g - r){sup 2}{sub 0} + 0.060[Fe/H] - 0.650 for -1.2 < [Fe/H] < 0.0. The calibrations are valid for the SDSS spectroscopic data set, and they cannot be applied blindly to other data sets. With the two calibrations, a significant number of the contaminating stars (AGB and RHB stars) were excluded and thus a clear sample of red giant stars is obtained by selecting stars within {+-}0.05 mag of the calibration. The sample is published online and it is expected that this large and clean sample of RGB stars will provide new information on the formation and evolution of the Galaxy.

  4. The inner halo of M 87: a first direct view of the red-giant population

    NASA Astrophysics Data System (ADS)

    Bird, S.; Harris, W. E.; Blakeslee, J. P.; Flynn, C.

    2010-12-01

    An unusually deep (V, I) imaging dataset for the Virgo supergiant M 87 with the Hubble Space Telescope ACS successfully resolves its brightest red-giant stars, reaching MI(lim) = -2.5. After assessing the photometric completeness and biasses, we use this material to estimate the metallicity distribution for the inner halo of M 87, finding that the distribution is very broad and likely to peak near [m/H] ≃ -0.4 and perhaps higher. The shape of the MDF strongly resembles that of the inner halo for the nearby giant E galaxy NGC 5128. As a byproduct of our study, we also obtain a preliminary measurement of the distance to M 87 with the TRGB (red-giant branch tip) method; the result is (m-M)0 = 31.12 ± 0.14 (d = 16.7 ± 0.9 Mpc). Averaging this result with three other recent techniques give a weighted mean d(M 87) = (16.4 ± 0.5) Mpc.

  5. Red giant masses and ages derived from carbon and nitrogen abundances

    NASA Astrophysics Data System (ADS)

    Martig, Marie; Fouesneau, Morgan; Rix, Hans-Walter; Ness, Melissa; Mészáros, Szabolcs; García-Hernández, D. A.; Pinsonneault, Marc; Serenelli, Aldo; Silva Aguirre, Victor; Zamora, Olga

    2016-03-01

    We show that the masses of red giant stars can be well predicted from their photospheric carbon and nitrogen abundances, in conjunction with their spectroscopic stellar labels log g, Teff, and [Fe/H]. This is qualitatively expected from mass-dependent post-main-sequence evolution. We here establish an empirical relation between these quantities by drawing on 1475 red giants with asteroseismic mass estimates from Kepler that also have spectroscopic labels from Apache Point Observatory Galactic Evolution Experiment (APOGEE) DR12. We assess the accuracy of our model, and find that it predicts stellar masses with fractional rms errors of about 14 per cent (typically 0.2 M⊙). From these masses, we derive ages with rms errors of 40 per cent. This empirical model allows us for the first time to make age determinations (in the range 1-13 Gyr) for vast numbers of giant stars across the Galaxy. We apply our model to ˜52 000 stars in APOGEE DR12, for which no direct mass and age information was previously available. We find that these estimates highlight the vertical age structure of the Milky Way disc, and that the relation of age with [α/M] and metallicity is broadly consistent with established expectations based on detailed studies of the solar neighbourhood.

  6. VLT/FLAMES spectroscopy of red giant branch stars in the Fornax dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; François, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.

    2014-12-01

    Context. Fornax is one of the most massive dwarf spheroidal galaxies in the Local Group. The Fornax field star population is dominated by intermediate age stars but star formation was going on over almost its entire history. It has been proposed that Fornax experienced a minor merger event. Aims: Despite recent progress, only the high metallicity end of Fornax field stars ([Fe/H] > -1.2 dex) has been sampled in larger number via high resolution spectroscopy. We want to better understand the full chemical evolution of this galaxy by better sampling the whole metallicity range, including more metal poor stars. Methods: We use the VLT-FLAMES multi-fibre spectrograph in high-resolution mode to determine the abundances of several α, iron-peak and neutron-capture elements in a sample of 47 individual red giant branch stars in the Fornax dwarf spheroidal galaxy. We combine these abundances with accurate age estimates derived from the age probability distribution from the colour-magnitude diagram of Fornax. Results: Similar to other dwarf spheroidal galaxies, the old, metal-poor stars of Fornax are typically α-rich while the young metal-rich stars are α-poor. In the classical scenario of the time delay between Type II (SNe II) and Type Ia Supernovae (SNe Ia), we confirm that SNe Ia started to contribute to the chemical enrichment at [Fe/H] between -2.0 and -1.8 dex. We find that the onset of SNe Ia took place between 12-10 Gyr ago. The high values of [Ba/Fe], [La/Fe] reflect the influence of SNe Ia and AGB stars in the abundance pattern of the younger stellar population of Fornax. Conclusions: Our findings of low [α/Fe] and enhanced [Eu/Mg] are compatible with an initial mass function that lacks the most massive stars and with star formation that kept going on throughout the whole history of Fornax. We find that massive stars kept enriching the interstellar medium in α-elements, although they were not the main contributor to the iron enrichment. Based on FLAMES

  7. Red supergiants as type II supernova progenitors

    NASA Astrophysics Data System (ADS)

    Negueruela, Ignacio; Dorda, Ricardo; González-Fernández, Carlos; Marco, Amparo

    2015-08-01

    Recent searches for supernova IIp progenitors in external galaxies have led to the identification of red objects with magnitudes and colours indicative of red supergiants, in most cases implying quite low luminosities and hence masses well below 10Msol. Stellar models, on the other hand, do not predict explosions from objects below 9 Msol. What does our knowledge of local red supergiants tells us about the expected properties of such objects?We have carried out a comprehensive spectroscopic and photometric study of a sample of hundreds of red supergiants in the Milky Way and both Magellanic Clouds. We have explored correlations between different parameters and the position of stars in the HR diagrams of open clusters. At solar metallicty, there is strong evidence for a phase of very heavy mass loss at the end of the red supergiant phase, but the existence of such a phase is still not confirmed at SMC metallicities. Objects of ~ 7Msol, on the other hand, become very dusty in the SMC, and appear as very luminous Miras.Among Milky Way clusters, we find a surprising lack of objects readily identifiable as the expected 7 to 10 Msol red supergiants or AGB stars. We are carrying out an open cluster survey aimed at filling this region of the HR diagram with reliable data. Finally, we will discuss the implications of all this findings for the expected properties of supernova progenitors, as it looks unlikely that typical red supergiants may explode without undergoing further evolution.

  8. Abundances in red giant stars - Carbon and oxygen isotopes in carbon-rich molecular envelopes

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.; Sahai, R.

    1987-01-01

    Millimeter-wave observations have been made of isotopically substituted CO toward the envelopes of 11 carbon-rich stars. In every case, C-13O was detected and model calculations were used to estimate the C-12/C-13 abundance ratio. C-17O was detected toward three, and possibly four, envelopes, with sensitive upper limits for two others. The CO-18 variant was detected in two envelopes. New results include determinations of oxygen isotopic ratios in the two carbon-rich protoplanetary nebulae CRL 26688 and CRL 618. As with other classes of red giant stars, the carbon-rich giants seem to be significantly, though variably, enriched in O-17. These results, in combination with observations in interstellar molecular clouds, indicate that current knowledge of stellar production of the CNO nuclides is far from satisfactory.

  9. "Giant" red and green core/shell quantum dots with high color purity and photostability

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Xu, Ruilin; Zhuo, Ningze; Zhang, Lei; Wang, Haibo; Cui, Yiping; Zhang, Jiayu

    2016-03-01

    "Giant" red CdSe/CdS and green CdSeS/ZnS core/shell quantum dots (QDs), whose color purity were ∼100% and 91%, respectively, were synthesized, and the color gamut could be more than 120% relative to the NTSC color space for the display utilizing these two kinds of QDs. Time-resolved photoluminescence (PL) measurement showed that the PL dynamics was evolved from tri-exponential decay to bi-exponential type with the increase of the shell thickness, and the PL decay characteristics of these giant QDs did not evidently change under long-term UV irradiation, indicating that the thick shell could isolate the effect of the surface's defects on the exciton's recombination within these QDs. Their high photostability could have an advantage in the application on display and white-light LEDs.

  10. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    SciTech Connect

    Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.; Meszaros, Szabolcs; Allende Prieto, Carlos; Bizyaev, Dmitry; Garcia Perez, Ana; Majewski, Steven R.; Schiavon, Ricardo; Holtzman, Jon; Johnson, Jennifer A.

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  11. On the oxygen abundances of M 67 stars from the turn-off point through the red giant branch†

    NASA Astrophysics Data System (ADS)

    Takeda, Yoichi; Honda, Satoshi

    2015-04-01

    With an aim to examine whether the surface oxygen composition suffers any appreciable change due to evolution-induced mixing of nuclear-processed material in the envelope of red giants, abundance determinations for O/Fe/Ni based on the synthetic spectrum-fitting method were performed by using the moderate-dispersion spectra in the 7770-7792 Å region (comprising O I 7771-5, Fe I 7780, and Ni I 7788 lines) for 16 stars of the old open cluster M 67 in various evolutionary stages from the turn-off point through the red giant branch. We could not find any meaningful difference in the oxygen abundances between the non-giant group (Teff > 5000 K) and the red-giant group (Teff < 5000 K), which are almost consistent with each other on average (despite that both have rather large dispersions of a few tenths dex caused by insufficient data quality), though only one giant star (S 1054) appears to show an exceptionally low O abundance and thus needs a more detailed study. This result may suggest that oxygen content in the stellar envelope is hardly affected (or any changes are insignificant) by the mixing of H-burning products in the red giant phase, as far as M 67 stars of low mass (˜ 1.3 M⊙) are concerned, which is consistent with the prediction from the conventional stellar evolution theory of first dredge-up.

  12. Dust clouds around red giant stars - Evidence of sublimating comet disks?

    NASA Astrophysics Data System (ADS)

    Matese, J. J.; Whitmire, D. P.; Reynolds, R. T.

    1989-09-01

    The dust production by disk comets around intermediate mass stars evolving into red giants is studied, focusing on AGB supergiants. The model of Iben and Renzini (1983) is used to study the observed dust mass loss for AGB stars. An expression is obtained for the comet disk net dust production rate and values of the radius and black body temperature corresponding to peak sublimation are calculated for a range of stellar masses. Also, the fractional amount of dust released from a cometesimal disk during a classical nova outburst is estimated.

  13. Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guo, Michelle; Zhang, Andrew J.; Deng, Michelle; Cohen, Judith G.; Guhathakurta, Puragra; Shetrone, Matthew D.; Lee, Young Sun; Rizzi, Luca

    2015-03-01

    We present carbon abundances of red giants in Milky Way (MW) globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log (L/{{L}})≃ 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of SNe Ia at higher metallicities. We also identified 11 very carbon-rich giants (eight previously known) in three dSphs. However, our selection biases preclude a detailed comparison to the carbon-enhanced fraction of the MW stellar halo. Nonetheless, the stars with [C/Fe]\\lt +1 in dSphs follow a different [C/Fe] track with [Fe/H] than the halo stars. Specifically, [C/Fe] in dSphs begins to decline at lower [Fe/H] than in the halo. The difference in the metallicity of the [C/Fe] “knee” adds to the evidence from [α/Fe] distributions that the progenitors of the halo had a shorter timescale for chemical enrichment than the surviving dSphs. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. The Lithium-, r- and s-Enhanced Metal-Poor Giant HK-II 17435-00532

    SciTech Connect

    Roederer, Ian U.; Prieto, Carlos Allende; Sneden, Christopher; Frebel, Anna; Shetrone, Matthew; Rhee, Jaehyon; Gallino, Roberto; Bisterzo, Sara; Beers, Timothy C.; Cowan, John J.

    2008-04-06

    We present the first detailed abundance analysis of the metal-poor giant HK-II 17435-00532. This star was observed as part of the University of Texas Long-Term Chemical Abundances of Stars in the Halo (CASH) Project. A spectrum was obtained with the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope with a resolving power of R{approx}15000. Our analysis reveals that this star may be located on the red giant branch, red horizontal branch, or early asymptotic giant branch. We find that this metal-poor ([Fe/H] = -2.2) star has an unusually high lithium abundance (log{epsilon}(Li) = +2.1), mild carbon ([C/Fe] = +0.7) and sodium ([Na/Fe] = +0.6) enhancement, as well as enhancement of both s-process ([Ba/Fe] = +0.8) and r-process ([Eu/Fe] = +0.5) material. The high Li abundance can be explained by self-enrichment through extra mixing mechanisms that connect the convective envelope with the outer regions of the H-burning shell. If so, HK-II 17435-00532 is the most metal-poor starin which this short-lived phase of Li enrichment has been observed. The r- and s-process material was not produced in this star but was either present in the gas from which HK-II 17435-00532 formed or was transferred to it from a more massive binary companion. Despite the current non-detection of radial velocity variations (over a time span of {approx}180 days), it is possible that HK-II 17435-00532 is in a long-period binary system, similar to other stars with both r and s enrichment.

  15. What does C II lambda 2325 A emission tell us about chromospheres of red supergiants? - A critical test using Zeta Aurigae-type K supergiants

    NASA Technical Reports Server (NTRS)

    Schroeder, K.-P.; Reimers, D.; Carpenter, K. G.; Brown, A.

    1988-01-01

    The limitations of the Carpenter et al. (1985) C II intercombination multiplet method of determining the density and geometric extent of red giant chromospheres are presently tested through observation of the C II 2325 A emission of two K-type supergiants whose empirical model chromospheres have been derived by high-resolution IUE observations at eclipse phases. While the observed C II emission fluxes are well reproduced, much of this emission originates in the high-density lower chromosphere.

  16. Start II, red ink, and Boris Yeltsin

    SciTech Connect

    Arbatov, A.

    1993-04-01

    Apart from the vulnerability implied by the START II treaty, it will bear the burden of the general political opposition to the Yeltsin administration. START II will be seen as part of an overall Yeltsin-Andrei Kozyrev foreign policy that is under fire for selling out Russian national interests in Yugoslavia, the Persian Gulf, and elsewhere. This article discusses public opinion concerning START II, the cost of its implementation, and the general purpose of the treaty.

  17. Pulsating red giants and supergiants as probes of galaxy formation and evolution

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Javadi, Atefeh; Khosroshahi, Habib; Rezaei, Sara; Golshan, Roya; Saberi, Maryam

    2015-08-01

    We have developed new techniques to use pulsating red giant and supergiants stars to reconstruct the star formation history of galaxies over cosmological time, as well as using them to map the dust production across their host galaxies. We describe the large programme on the Local Group spiral galaxy Triangulum (M33), which we have monitored at near-infrared wavelengths for several years using the United Kingdom InfraRed Telescope in Hawai'i. We outline the methodology and present the results for the central square kiloparsec (Javadi et al. 2011a,b, 2013) and - fresh from the press - the disc of M33 (Javadi et al. 2015, and in preparation). We also describe the results from our application of this new technique to other nearby galaxies: the Magellanic Clouds (published in Rezaei et al. 2014), the dwarf galaxies NGC 147 and 185 (Golshan et al. in preparation), and Centaurus A.

  18. KIC 9246715: The Double Red Giant Eclipsing Binary with Odd Oscillations

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Jackiewicz, Jason; Orosz, Jerome A.; Corsaro, Enrico; Beck, Paul G.; Mosser, Benoît; Latham, David W.; Latham, Christian A.

    2016-02-01

    We combine Kepler photometry with ground-based spectra to present a comprehensive dynamical model of the double red giant eclipsing binary KIC 9246715. While the two stars are very similar in mass ({M}1={2.171}-0.008+0.006 {M}⊙ , {M}2={2.149}-0.008+0.006 {M}⊙ ) and radius ({R}1={8.37}-0.07+0.03 {R}⊙ , {R}2={8.30}-0.03+0.04 {R}⊙ ), an asteroseismic analysis finds one main set of solar-like oscillations with unusually low-amplitude, wide modes. A second set of oscillations from the other star may exist, but this marginal detection is extremely faint. Because the two stars are nearly twins, KIC 9246715 is a difficult target for a precise test of the asteroseismic scaling relations, which yield M = 2.17 ± 0.14 M⊙ and R = 8.26 ± 0.18 R⊙. Both stars are consistent with the inferred asteroseismic properties, but we suspect the main oscillator is Star 2 because it is less active than Star 1. We find evidence for stellar activity and modest tidal forces acting over the 171 day eccentric orbit, which are likely responsible for the essential lack of solar-like oscillations in one star and weak oscillations in the other. Mixed modes indicate the main oscillating star is on the secondary red clump (a core-He-burning star), and stellar evolution modeling supports this with a coeval history for a pair of red clump stars. This system is a useful case study and paves the way for a detailed analysis of more red giants in eclipsing binaries, an important benchmark for asteroseismology.

  19. The Tip of the red giant branch distance to the perfect spiral galaxy M74 hosting three core-collapse supernovae

    SciTech Connect

    Sung Jang, In; Gyoon Lee, Myung E-mail: mglee@astro.snu.ac.kr

    2014-09-01

    M74 (NGC 628) is a famous face-on spiral galaxy, hosting three core-collapse supernovae (SNe): SN Ic 2002ap, SN II-P 2003gd, and SN II-P 2013ej. However, its distance is not well known. We present a distance estimation for this galaxy based on the Tip of the Red Giant Branch (TRGB) method. We obtain photometry of the resolved stars in the arm-free region of M74 from F555W and F814W images in the Hubble Space Telescope archive. The color-magnitude diagram of the resolved stars shows a dominant red giant branch (RGB) as well as blue main sequence stars, red helium burning stars, and asymptotic giant branch stars. The I-band luminosity function of the RGB stars shows the TRGB to be at I {sub TRGB} = 26.13 ± 0.03 mag, and T {sub RGB} = 25.97 ± 0.03. From this, we derive the distance modulus to M74 to be 30.04 ± 0.04 (random) ± 0.12 (systematic) (corresponding to a linear distance of 10.19 ± 0.14 ± 0.56 Mpc). With this distance estimate, we calibrate the standardized candle method for SNe II-P. From the absolute magnitudes of SN 2003gd, we derive a value of the Hubble constant, H {sub 0} = 72 ± 6 (random) ± 7 (systematic) km s{sup –1} Mpc{sup –1}. It is similar to recent estimates based on the luminosity calibration of Type Ia supernovae.

  20. DUST IS FORMING ALONG THE RED GIANT BRANCH OF 47 Tuc

    SciTech Connect

    Origlia, Livia; Fusi Pecci, Flavio; Rood, Robert T.; Fabbri, Sara; Ferraro, Francesco R.; Dalessandro, Emanuele; Rich, R. Michael E-mail: flavio.fusipecci@oabo.inaf.i E-mail: sara.fabbri@studio.unibo.i E-mail: emanuele.dalessandr2@unibo.i

    2010-07-20

    We present additional evidence that dust is really forming along the red giant branch (RGB) of 47 Tuc at luminosities ranging from above the horizontal branch to the RGB tip. The presence of dust had been inferred from an infrared excess in the (K - 8) color, with K measured from high spatial resolution ground-based near-IR photometry and '8' referring to Spitzer-Infrared Array Camera (IRAC) 8 {mu}m photometry. We show how (K - 8) is a far more sensitive diagnostic for detecting tiny circumstellar envelopes around warm giants than colors using only the Spitzer-IRAC bands, for example, the (3.6 - 8) color used by Boyer et al. In addition, we also show high-resolution Hubble Space Telescope Advanced Camera for Surveys I-band images of the giant stars that have (K - 8) color excess. These images clearly demonstrate that the Boyer et al. statement that our detections of color excess associated with stars below the RGB tip arise from blends and artifacts is simply not valid.

  1. Oscillations in g-mode period spacings in red giants as a way to determine their state of evolution

    NASA Astrophysics Data System (ADS)

    Cunha, M. S.; Stello, D.; Avelino, P. P.; Christensen-Dalsgaard, J.

    2015-09-01

    In this work we consider the sensitivity of gravity-mode period spacings to sharp changes in the inner structure of red giant stars, more specifically in the buoyancy frequency inside the g-mode propagation cavity. Based on a comparison between the solutions to the linear pulsation equations in the Cowling approximation for pure g-modes with results obtained with a full oscillation code we identify and correctly interpret the signature of the above-mentioned sharp variations in the period spacings. Two examples, of red giant models in different evolutionary phases, are discussed. Detection of these signatures in CoRoT, Kepler or future PLATO red-giant stars would pin down their evolutionary state in an unprecedented way.

  2. MODELING KEPLER OBSERVATIONS OF SOLAR-LIKE OSCILLATIONS IN THE RED GIANT STAR HD 186355

    SciTech Connect

    Jiang, C.; Jiang, B. W.; Christensen-Dalsgaard, J.; Frandsen, S.; Kjeldsen, H.; Karoff, C.; Bedding, T. R.; Stello, D.; Huber, D.; Mosser, B.; Demarque, P.; Fanelli, M. N.; Kinemuchi, K.; Mullally, F.

    2011-12-01

    We have analyzed oscillations of the red giant star HD 186355 observed by the NASA Kepler satellite. The data consist of the first five quarters of science operations of Kepler, which cover about 13 months. The high-precision time-series data allow us to accurately extract the oscillation frequencies from the power spectrum. We find that the frequency of the maximum oscillation power, {nu}{sub max}, and the mean large frequency separation, {Delta}{nu}, are around 106 and 9.4 {mu}Hz, respectively. A regular pattern of radial and non-radial oscillation modes is identified by stacking the power spectra in an echelle diagram. We use the scaling relations of {Delta}{nu} and {nu}{sub max} to estimate the preliminary asteroseismic mass, which is confirmed with the modeling result (M = 1.45 {+-} 0.05 M{sub Sun }) using the Yale Rotating stellar Evolution Code (YREC7). In addition, we constrain the effective temperature, luminosity, and radius from comparisons between observational constraints and models. A number of mixed l = 1 modes are also detected and taken into account in our model comparisons. We find a mean observational period spacing for these mixed modes of about 58 s, suggesting that this red giant branch star is in the shell hydrogen-burning phase.

  3. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes.

    PubMed

    Beck, Paul G; Montalban, Josefina; Kallinger, Thomas; De Ridder, Joris; Aerts, Conny; García, Rafael A; Hekker, Saskia; Dupret, Marc-Antoine; Mosser, Benoit; Eggenberger, Patrick; Stello, Dennis; Elsworth, Yvonne; Frandsen, Søren; Carrier, Fabien; Hillen, Michel; Gruberbauer, Michael; Christensen-Dalsgaard, Jørgen; Miglio, Andrea; Valentini, Marica; Bedding, Timothy R; Kjeldsen, Hans; Girouard, Forrest R; Hall, Jennifer R; Ibrahim, Khadeejah A

    2012-01-01

    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected 'mixed modes'. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior. PMID:22158105

  4. Survival of a brown dwarf after engulfment by a red giant star.

    PubMed

    Maxted, P F L; Napiwotzki, R; Dobbie, P D; Burleigh, M R

    2006-08-01

    Many sub-stellar companions (usually planets but also some brown dwarfs) orbit solar-type stars. These stars can engulf their sub-stellar companions when they become red giants. This interaction may explain several outstanding problems in astrophysics but it is unclear under what conditions a low mass companion will evaporate, survive the interaction unchanged or gain mass. Observational tests of models for this interaction have been hampered by a lack of positively identified remnants-that is, white dwarf stars with close, sub-stellar companions. The companion to the pre-white dwarf AA Doradus may be a brown dwarf, but the uncertain history of this star and the extreme luminosity difference between the components make it difficult to interpret the observations or to put strong constraints on the models. The magnetic white dwarf SDSS J121209.31 + 013627.7 may have a close brown dwarf companion but little is known about this binary at present. Here we report the discovery of a brown dwarf in a short period orbit around a white dwarf. The properties of both stars in this binary can be directly observed and show that the brown dwarf was engulfed by a red giant but that this had little effect on it. PMID:16885979

  5. Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system.

    PubMed

    Maxted, Pierre F L; Serenelli, Aldo M; Miglio, Andrea; Marsh, Thomas R; Heber, Ulrich; Dhillon, Vikram S; Littlefair, Stuart; Copperwheat, Chris; Smalley, Barry; Breedt, Elmé; Schaffenroth, Veronika

    2013-06-27

    Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars or as probes of the extreme environments in which low-mass white dwarfs form cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes. PMID:23803845

  6. Asteroseismology of 19 low-luminosity red giant stars from Kepler

    NASA Astrophysics Data System (ADS)

    Pérez Hernández, F.; García, R. A.; Corsaro, E.; Triana, S. A.; De Ridder, J.

    2016-06-01

    Context. Frequencies of acoustic and mixed modes in red giant stars are now determined with high precision thanks to the long continuous observations provided by the NASA's Keplermission. Here we consider the eigenfrequencies of nineteen low-luminosity red giant stars selected in a recent publication for a detailed peak-bagging analysis. Aims: Our objective is to obtain stellar parameters by using individual mode frequencies and spectroscopic information. Methods: We use a forward modelling technique based on a minimization procedure combining the frequencies of the p-modes, the period spacing of the dipolar modes, and the spectroscopic data. Results: Consistent results between the forward modelling technique and values derived from the seismic scaling relations are found but the errors derived using the former technique are lower. The average error for log g is 0.002 dex, compared to 0.011 dex from the frequency of maximum power, νmax, and 0.10 dex from the spectroscopic analysis. Relative errors in the masses and radii are on average 2% and 0.5% respectively, compared to 3% and 2% derived from the scaling relations. No reliable determination of the initial helium abundances and the mixing length parameters could be made. Finally, for our grid of models with given input physics, we found that low-mass stars require higher values of the overshooting parameter.

  7. TESTING CONVECTIVE-CORE OVERSHOOTING USING PERIOD SPACINGS OF DIPOLE MODES IN RED GIANTS

    SciTech Connect

    Montalban, J.; Noels, A.; Dupret, M.-A.; Scuflaire, R.; Miglio, A.; Ventura, P.

    2013-04-01

    Uncertainties on central mixing in main-sequence (MS) and core He-burning (He-B) phases affect key predictions of stellar evolution such as late evolutionary phases, chemical enrichment, ages, etc. We propose a test of the extension of extra-mixing in two relevant evolutionary phases based on period spacing ({Delta}P) of solar-like oscillating giants. From stellar models and their corresponding adiabatic frequencies (respectively, computed with ATON and LOSC codes), we provide the first predictions of the observable {Delta}P for stars in the red giant branch and in the red clump (RC). We find (1) a clear correlation between {Delta}P and the mass of the helium core (M{sub He}); the latter in intermediate-mass stars depends on the MS overshooting, and hence it can be used to set constraints on extra-mixing during MS when coupled with chemical composition; and (2) a linear dependence of the average value of the asymptotic period spacing (({Delta}P){sub a}) on the size of the convective core during the He-B phase. A first comparison with the inferred asymptotic period spacing for Kepler RC stars also suggests the need for extra-mixing during this phase, as evinced from other observational facts.

  8. Carbon and Nitrogen Abundance Variations Among Red Giant Branch Stars in M10

    NASA Astrophysics Data System (ADS)

    Gerber, Jeffrey M.; Friel, Eileen D.; Vesperini, Enrico

    2016-06-01

    We present analysis of the CN and CH molecular band strengths derived for red giants in M10 as part of a first pilot study in the WIYN Indiana Northern Globular Survey (WINGS). This survey plans to use a combination of low-resolution spectroscopy taken with Hydra and wide-field SDSS filter photometry taken with the newly upgraded ODI to study the multiple populations and dynamics of a sample of Milky Way globular clusters. Our sample comes from the first in a series of observation runs conducted in Aug. 2014 using Hydra on the WIYN 3.5m telescope. CN and CH bands are measured for ~100 red giant branch stars and used to characterize the distribution in band strength and to derive carbon and nitrogen abundances by comparing observed band strengths to synthetic spectra produced by the Synthetic Spectrum Generator (SSG), which makes use of MARCS model atmospheres. Band strengths and CN abundances are used to investigate the distribution of stars in nitrogen normal and enhanced populations and to compare these to other ways of characterizing multiple stellar populations with other light elements (such as Na and O).

  9. Confirmation of Flickering Red Giants in the Ursa Minor Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Franz, M. L.; Mighell, K. J.

    2005-12-01

    Confirmation of Flickering Red Giants in the Ursa Minor Dwarf Spheroidal Galaxy M.L. Franz (NOAO/U. Florida), K.J. Mighell (NOAO) The discovery by Mighell & Roederer last year of flickering red giants (FRGs) in the Ursa Minor dwarf spheroidal galaxy has been confirmed through the analysis of four archival HST WFPC2 observations in that galaxy. Many new FRG candidates were found that exhibit low-amplitude brightness fluctuations (at the few percent level) over timescales ranging from minutes to hours. We describe the conservative non-constancy statistical test used to detect these new variable stars and present many detailed light curves which have a much better time resolution than the observations analyzed by Mighell & Roederer. M.L.F, was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program, which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF. K.J.M was supported by a grant from the National Aeronautics and Space Administration (NASA), Interagency Order No. NNG05EB61I, which was awarded by the Applied Information Systems Research (AISR) Program of NASA's Science Mission Directorate.

  10. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    PubMed

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch. PMID:19630504

  11. IMPLICATIONS OF RAPID CORE ROTATION IN RED GIANTS FOR INTERNAL ANGULAR MOMENTUM TRANSPORT IN STARS

    SciTech Connect

    Tayar, Jamie; Pinsonneault, Marc H.

    2013-09-20

    Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ({sup O}tto{sup )} and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In the case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.

  12. Implications of Rapid Core Rotation in Red Giants for Internal Angular Momentum Transport in Stars

    NASA Astrophysics Data System (ADS)

    Tayar, Jamie; Pinsonneault, Marc H.

    2013-09-01

    Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ("Otto") and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In the case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.

  13. An Extremely Lithium-rich Bright Red Giant in the Globular Cluster M3

    NASA Astrophysics Data System (ADS)

    Kraft, Robert P.; Peterson, Ruth C.; Guhathakurta, Puragra; Sneden, Christopher; Fulbright, Jon P.; Langer, G. Edward

    1999-06-01

    We have serendipitously discovered an extremely lithium-rich star on the red giant branch of the globular cluster M3 (NGC 5272). An echelle spectrum obtained with the Keck I High-Resolution Echelle Spectrograph reveals a Li I λ6707 resonance doublet of 520 mÅ equivalent width, and our analysis places the star among the most Li-rich giants known: logε(Li)~=+3.0. We determine the elemental abundances of this star, IV-101, and three other cluster members of similar luminosity and color and conclude that IV-101 has abundance ratios typical of giants in M3 and M13 that have undergone significant mixing. We discuss mechanisms by which a low-mass star may be so enriched in Li, focusing on the mixing of material processed by the hydrogen-burning shell just below the convective envelope. While such enrichment could conceivably happen only rarely, it may in fact regularly occur during giant-branch evolution but be rarely detected because of rapid subsequent Li depletion. Based on observations obtained with the Keck I Telescope of the W. M. Keck Observatory, which is operated by the California Association for Research in Astronomy (CARA), Inc., on behalf of the University of California and the California Institute of Technology. This Letter is dedicated to the memory of our beloved colleague Ed Langer, who died after a brief illness on February 16, 1999. Ed brought a unique theoretical perspective to our globular cluster abundance studies. His career truly embodied the academic ideals of inspiration in both teaching and research. He made friends wherever he traveled, and was an inspiration to students. We will miss him greatly.

  14. HD 16771: A lithium-rich giant in the red-clump stage

    NASA Astrophysics Data System (ADS)

    Reddy, Arumalla B. S.; Lambert, David L.

    2016-05-01

    Aims: We report the discovery of a young lithium rich giant, HD 16771, in the core-helium burning phase that does not seem to fit existing proposals of Li synthesis near the luminosity function bump or during He-core flash. We aim to understand the nature of Li enrichment in the atmosphere of HD 16771 by exploring various Li enhancement scenarios. Methods: We have collected high-resolution echelle spectra of HD 16771 and derived stellar parameters and chemical abundances for 27 elements by either line equivalent widths or synthetic spectrum analyses. Results: HD 16771 is a Li-rich (log ɛ(Li) = + 2.67 ± 0.10 dex) intermediate mass giant star (M = 2.4 ± 0.1 M⊙) with age ~ 0.76 ± 0.13 Gyr and located at the red giant clump. Kinematics and chemical compositions are consistent with HD 16771 being a member of the Galactic thin disk population. The non-detection of 6Li (<3%), a low carbon isotopic ratio (12C/13C = 12 ± 2), and the slow rotation (vsin i = 2.8 km s-1) all suggest that lithium might have been synthesized in this star. On the contrary, HD 16771 with a mass of 2.4 M⊙ has no chance of encountering luminosity function bump and He-core flash where the possibility of fast deep-mixing for Li enrichment in K giants has been suggested previously. Conclusions: Based of the evolutionary status of this star, we discuss the possibility that 7Li synthesis in HD 16771 is triggered by the engulfment of close-in planet(s) during the RGB phase.

  15. Five Groups of Red Giants with Distinct Chemical Composition in the Globular Cluster NGC 2808

    NASA Astrophysics Data System (ADS)

    Carretta, Eugenio

    2015-09-01

    The chemical composition of multiple populations in the massive globular cluster (GC) NGC 2808 is addressed with the homogeneous abundance reanalysis of 140 red giant branch stars. UVES spectra for 31 stars and GIRAFFE spectra for the other giants were analyzed with the same procedures used for about 2500 giants in 23 GCs in our FLAMES survey, deriving abundances of Fe, O, Na, Mg, Si, Ca, Ti, Sc, Cr, Mn, and Ni. Iron, elements from α capture, and those in the Fe group do not show intrinsic scatter. On our UVES scale, the metallicity of NGC 2808 is [Fe/H] =\\-1.129+/- 0.005+/- 0.034 (± statistical ± systematic error) with σ = 0.030 (31 stars). The main features related to proton-capture elements are retrieved, but the improved statistics and the smaller associated internal errors allow us to uncover five distinct groups of stars along the Na-O anticorrelation. We observe large depletions in Mg, anticorrelated with enhancements of Na and also Si, suggestive of unusually high temperatures for proton captures. About 14% of our sample is formed by giants with solar or subsolar [Mg/Fe] ratios. Using the [Na/Mg] ratios, we confirm the presence of five populations with different chemical compositions that we call P1, P2, I1, I2, and E in order of decreasing Mg and increasing Na abundances. Statistical tests show that the mean ratios in any pair of groups cannot be extracted from the same parent distribution. The overlap with the five populations recently detected from UV photometry is good but not perfect, confirming that more distinct components probably exist in this complex GC. Based on data collected at the ESO telescopes under program 072.D-0507 and during the FLAMES Science Verification program.

  16. HD 16771: A lithium-rich giant in the red-clump stage

    NASA Astrophysics Data System (ADS)

    Reddy, Arumalla B. S.; Lambert, David L.

    2016-04-01

    Aims: We report the discovery of a young lithium rich giant, HD 16771, in the core-helium burning phase that does not seem to fit existing proposals of Li synthesis near the luminosity function bump or during He-core flash. We aim to understand the nature of Li enrichment in the atmosphere of HD 16771 by exploring various Li enhancement scenarios. Methods: We have collected high-resolution echelle spectra of HD 16771 and derived stellar parameters and chemical abundances for 27 elements by either line equivalent widths or synthetic spectrum analyses. Results: HD 16771 is a Li-rich (log ɛ(Li) = + 2.67 ± 0.10 dex) intermediate mass giant star (M = 2.4 ± 0.1 M⊙) with age ~ 0.76 ± 0.13 Gyr and located at the red giant clump. Kinematics and chemical compositions are consistent with HD 16771 being a member of the Galactic thin disk population. The non-detection of 6Li (<3%), a low carbon isotopic ratio (12C/13C = 12 ± 2), and the slow rotation (vsin i = 2.8 km s-1) all suggest that lithium might have been synthesized in this star. On the contrary, HD 16771 with a mass of 2.4 M⊙ has no chance of encountering luminosity function bump and He-core flash where the possibility of fast deep-mixing for Li enrichment in K giants has been suggested previously. Conclusions: Based of the evolutionary status of this star, we discuss the possibility that 7Li synthesis in HD 16771 is triggered by the engulfment of close-in planet(s) during the RGB phase.

  17. Five Groups of Red Giants with Distinct Chemical Composition in the Globular Cluster NGC 2808

    NASA Astrophysics Data System (ADS)

    Carretta, Eugenio

    2015-09-01

    The chemical composition of multiple populations in the massive globular cluster (GC) NGC 2808 is addressed with the homogeneous abundance reanalysis of 140 red giant branch stars. UVES spectra for 31 stars and GIRAFFE spectra for the other giants were analyzed with the same procedures used for about 2500 giants in 23 GCs in our FLAMES survey, deriving abundances of Fe, O, Na, Mg, Si, Ca, Ti, Sc, Cr, Mn, and Ni. Iron, elements from α capture, and those in the Fe group do not show intrinsic scatter. On our UVES scale, the metallicity of NGC 2808 is [Fe/H] =\\-1.129+/- 0.005+/- 0.034 (± statistical ± systematic error) with σ = 0.030 (31 stars). The main features related to proton-capture elements are retrieved, but the improved statistics and the smaller associated internal errors allow us to uncover five distinct groups of stars along the Na–O anticorrelation. We observe large depletions in Mg, anticorrelated with enhancements of Na and also Si, suggestive of unusually high temperatures for proton captures. About 14% of our sample is formed by giants with solar or subsolar [Mg/Fe] ratios. Using the [Na/Mg] ratios, we confirm the presence of five populations with different chemical compositions that we call P1, P2, I1, I2, and E in order of decreasing Mg and increasing Na abundances. Statistical tests show that the mean ratios in any pair of groups cannot be extracted from the same parent distribution. The overlap with the five populations recently detected from UV photometry is good but not perfect, confirming that more distinct components probably exist in this complex GC. Based on data collected at the ESO telescopes under program 072.D-0507 and during the FLAMES Science Verification program.

  18. The Giant Branch of omega Centauri. IV. Abundance Patterns Based on Echelle Spectra of 40 Red Giants

    NASA Astrophysics Data System (ADS)

    Norris, John E.; Da Costa, G. S.

    1995-07-01

    Abundances of some 20 elements have been determined for a (biased) sample of 40 red giants having Mv < -1.5 in the chemically inhomogeneous globular cluster ω Centauri. The results are based on high-resolution, high signal-to-noise echelle spectra and permit one to examine the roles of primordial enrichment and stellar evolutionary mixing effects in the cluster. Our basic conclusions are as follows (1) There is an abundance range -1.8 < [Fe/H] < -0.8, and even more metal rich stars may exist in the cluster. (2) For the α (Mg, Si, Ca, Ti) and iron peak (Cr, Ni) elements and Sc and V, [metal/Fe] is flat as a function of [Fe/H] and is consistent with primordial enrichment from stars having mass greater than 10 Msun, as has been found for field halo stars. (3) There is a large scatter in the abundances of C, N, and 0. The bulk of the stars have -0.9 < [C/Fe] < -0.3 and [O/Fe] ˜ 0.3, as is found at the red giant branch tip in other "normal" (showing no spread in [Fe/H]) clusters of similar abundance, while there also exists a group of CN-strong stars having [C/Fe] ˜ -0.7 and [O/Fe] ˜ -0.5. Nitrogen appears to be enhanced in all of these carbon-depleted stars. These results are most readily explained in terms of evolutionary mixing effects not predicted by standard stellar evolution calculations and are consistent with the earlier suggestions of Cohen & Bell (1986) and Paltoglou & Norris (1989) concerning processing in both the CN and ON cycles in the stars being observed. In contrast, the group of CO-strong stars first identified by Persson et al. (1980) has [C/Fe] ˜ 0.0, [O/Fe] ˜ 0.4, and [N/Fe] ˜ 0.4 (or 0.9 if the nitrogen scale of Brown and Wallerstein is correct) and is suggestive of primordial enrichment of carbon and/or nitrogen from intermediate- and possibly low-mass stars, tempered by later stellar evolutionary effects. (4) [Na/Fe] and [Al/Fe] are anticorrelated with [O/Fe], and there is a positive correlation between [Na/Fe] and [Al/Fe], all of which

  19. VizieR Online Data Catalog: Abundances of Galactic red giants (Alves-Brito+, 2010)

    NASA Astrophysics Data System (ADS)

    Alves-Brito, A.; Melendez, J.; Asplund, M.; Ramirez, I.; Yong, D.

    2010-01-01

    Line list and equivalent widths (EWs) of a sample of 80 giant stars in the Galactic bulge, halo, thin- and thick disk. The list includes lines of [OI], NaI, MgI, AlI, SiI, CaI, TiI, FeI and FeII. The adopted oscillator strengths (loggfs) and excitation potential (EP) are also listed. For the bulge stars, the EWs were taken from Fulbrigth et al. (2006, Cat. , 2007ApJ...661.1152F). Refer to the paper's text for more detail. (2 data files).

  20. Multi-wavelength Radio Continuum Emission Studies of Dust-free Red Giants

    NASA Technical Reports Server (NTRS)

    O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander; Dranke, Stephen; Richards, Anita M. S.

    2013-01-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for alpha Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of alpha Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For alpha Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of alpha Boo. Finally, we develop a simple analytical wind model for alpha Boo based on our new long-wavelength flux measurements.

  1. MULTI-WAVELENGTH RADIO CONTINUUM EMISSION STUDIES OF DUST-FREE RED GIANTS

    SciTech Connect

    O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander; Drake, Stephen; Richards, Anita M. S.

    2013-10-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (α Boo: K2 III) and Aldebaran (α Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for α Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of α Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For α Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of α Boo. Finally, we develop a simple analytical wind model for α Boo based on our new long-wavelength flux measurements.

  2. Condensation onto grains in the outflows from mass-losing red giants

    NASA Technical Reports Server (NTRS)

    Jura, M.; Morris, M.

    1985-01-01

    In the outflows from red giants, grains are formed which are driven by radiation pressure. For the development of a model of the outflows, a detailed understanding of the interaction between the gas and dust is critical. The present investigation is concerned with condensation processes which occur after the grains nucleate near the stars. A physical process considered results from the cooling of the grains as they flow away from the star. Molecules which initially do not condense onto the grains can do so far from the star. It is shown that for some species this effect can be quite important in determining their gas-phase abundances in the outer circumstellar envelope. One of the major motivations of this investigation was provided by the desire to understand the physical conditions and molecular abundances in the outflows from the considered stars.

  3. IS DUST FORMING ON THE RED GIANT BRANCH IN 47 Tuc?

    SciTech Connect

    Boyer, Martha L.; Gordon, Karl D.; Meixner, Margaret; Sewilo, Marta; Shiao, Bernie; Van Loon, Jacco Th.; McDonald, Iain; Babler, Brian; Bracker, Steve; Meade, Marilyn; Block, Miwa; Engelbracht, Charles; Misselt, Karl; Hora, Joe; Indebetouw, Remy; Whitney, Barbara

    2010-03-10

    Using Spitzer Infrared Array Camera (IRAC) observations from the SAGE-SMC Legacy program and archived Spitzer IRAC data, we investigate dust production in 47 Tuc, a nearby massive Galactic globular cluster. A previous study detected infrared excess, indicative of circumstellar dust, in a large population of stars in 47 Tuc, spanning the entire red giant branch (RGB). We show that those results suffered from effects caused by stellar blending and imaging artifacts and that it is likely that no stars below {approx}1 mag from the tip of the RGB are producing dust. The only stars that appear to harbor dust are variable stars, which are also the coolest and most luminous stars in the cluster.

  4. Deep genetic divergence in giant red shrimp Aristaeomorpha foliacea (Risso, 1827) across a wide distributional range

    NASA Astrophysics Data System (ADS)

    Fernández, M. V.; Heras, S.; Maltagliati, F.; Roldán, M. I.

    2013-02-01

    The giant red shrimp, Aristaeomorpha foliacea, is a commercially important species in the Mediterranean Sea (MED), Mozambique Channel (MOZ), and north western Australia (AUS). 685 bp of the mitochondrial COI gene was sequenced in 317 individuals from six Mediterranean and two Indian Ocean localities. Genetic diversity estimates of Indian Ocean samples were higher than those of MED counterparts. AMOVA, phylogenetic tree, haplotype network and Bayesian assignment analyses detected three haplogroups, corresponding to MED, MOZ and AUS, separated by three and 38 mutational steps, respectively. Within MED shallow genetic divergence between populations was dependent on local oceanographical characteristics. Mismatch distribution analysis and neutrality tests provided a consistent indication of past population expansion in each region considered. Our results provide the first evidence of genetic structure in A. foliacea and suggest a scenario of allopatric speciation within the Indian Ocean that, however needs deeper examination.

  5. Molecular rotational line profiles from oxygen-rich red giant winds

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Skinner, C. J.; Tielens, A. G. G. M.

    1994-01-01

    We have developed a radiative transfer model of the dust and gas envelopes around late-type stars. The gas kinetic temperature for each star is calculated by solving equations of motion and the energy balance simultaneously. The main processes include viscous heating and adiabatic and radiative cooling. Heating is dominated by viscosity as the grains stream outward through the gas, with some contribution in oxygen-rich stars by near-IR pumping of H2O followed by collisional de-excitation in the inner envelope. For O-rich stars, rotational H2O cooling is a dominant mechanism in the middle part of the envelope, with CO cooling being less significant. We have applied our model to three well-studied oxygen-rich red giant stars. The three stars cover a wide range of mass-loss rates, and hence they have different temperature structures. The derived temperature structures are used in calculating CO line profiles for these objects. Comparison of the dust and gas mass-loss rates suggests that mass-loss rates are not constant during the asymptotic giant branch phase. In particular, the results show that the low CO 1-0 antenna temperatures of OH/IR stars reflect an earlier phase of much lower mass-loss rate.

  6. A newly discovered stellar type: dusty post-red giant branch stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Kamath, D.; Wood, P. R.; Van Winckel, H.; Nie, J. D.

    2016-02-01

    Context. We present a newly discovered class of low-luminosity, dusty, evolved objects in the Magellanic Clouds. These objects have dust excesses, stellar parameters, and spectral energy distributions similar to those of dusty post-asymptotic giant branch (post-AGB) stars. However, they have lower luminosities and hence lower masses. We suggest that they have evolved off the red giant branch (RGB) instead of the AGB as a result of binary interaction. Aims: In this study we aim to place these objects in an evolutionary context and establish an evolutionary connection between RGB binaries (such as the sequence E variables) and our new sample of objects. Methods: We compared the theoretically predicted birthrates of the progeny of RGB binaries to the observational birthrates of the new sample of objects. Results: We find that there is order-of-magnitude agreement between the observed and predicted birthrates of post-RGB stars. The sources of uncertainty in the birthrates are discussed; the most important sources are probably the observational incompleteness factor and the post-RGB evolution rates. We also note that mergers are relatively common low on the RGB and that stars low on the RGB with mid-IR excesses may recently have undergone a merger. Conclusions: Our sample of dusty post-RGB stars most likely provides the first observational evidence for a newly discovered phase in binary evolution: post-RGB binaries with circumstellar dust.

  7. On 7LI Enrichment by Low-Mass Metal-Poor Red Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    de la Reza, Ramiro; da Silva, Licio; Drake, Natalia A.; Terra, Marco A.

    2000-06-01

    First-ascent red giants with strong and very strong Li lines have just been discovered in globular clusters. Using the stellar internal prompt 7Li enrichment-mass-loss scenario, we explore the possibility of 7Li enrichment in the interstellar matter of the globular cluster M3 produced by these Li-rich giants. We found that enrichment as large as 70% or more compared to the initial 7Li content of M3 can be obtained during the entire life of this cluster. However, because M3 will cross into the Galactic plane several times, the new 7Li will be very probably removed by ram pressure into the disk. Globular clusters appear then as possible new sources of 7Li in the Galactic disk. It is also suggested that the known Na/Al variations in stars of globular clusters could be somehow related to the 7Li variations and that the cool bottom process mixing mechanism acting in the case of 7Li could also play a role in the case of Na and Al surface enrichments.

  8. Digging in the coronal graveyard - A Rosat observation of the red giant Arcturus

    NASA Technical Reports Server (NTRS)

    Ayres, Thomas R.; Fleming, Thomas A.; Schmitt, Juergen H. M. M.

    1991-01-01

    A deep exposure of the bright star Arcturus (Alpha Bootis: K1 III) with the Roentgensatellit (Rosat) failed to detect soft X-ray emission from the archetype 'noncoronal' red giant. The 3-sigma upper limit in the energy band 0.1-2.4 keV corresponds to an X-ray luminosity of less than 3 x 10 to the 25th erg/s, equivalent to a coronal surface flux density of less than 0.0001 solar. The nondetection safely eliminates coronal irradiation as a possible mechanism to produce the highly variable He I 10830 feature and emphasizes the sharp decline in solarlike coronal activity that accompanies the evolution of low-mass single stars away from the main sequence. While the most conspicuous object in the Rosat field of view was not visible in X-rays, at least one fainter star is among the about 60 sources recorded: the Sigma Sct variable CN Boo, an A8 giant in the UMa Stream.

  9. Kepler-432 b: a massive planet in a highly eccentric orbit transiting a red giant

    NASA Astrophysics Data System (ADS)

    Ciceri, S.; Lillo-Box, J.; Southworth, J.; Mancini, L.; Henning, Th.; Barrado, D.

    2015-01-01

    We report the first disclosure of the planetary nature of Kepler-432 b (aka Kepler object of interest KOI-1299.01). We accurately constrained its mass and eccentricity by high-precision radial velocity measurements obtained with the CAFE spectrograph at the CAHA 2.2-m telescope. By simultaneously fitting these new data and Kepler photometry, we found that Kepler-432 b is a dense transiting exoplanet with a mass of Mp = 4.87 ± 0.48MJup and radius of Rp = 1.120 ± 0.036RJup. The planet revolves every 52.5 d around a K giant star that ascends the red giant branch, and it moves on a highly eccentric orbit with e = 0.535 ± 0.030. By analysing two near-IR high-resolution images, we found that a star is located at 1.1'' from Kepler-432, but it is too faint to cause significant effects on the transit depth. Together with Kepler-56 and Kepler-91, Kepler-432 occupies an almost-desert region of parameter space, which is important for constraining the evolutionary processes of planetary systems. RV data (Table A.1) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/L5

  10. Retrovirus Epidemiology Donor Study-II (REDS-II)

    ClinicalTrials.gov

    2016-04-14

    Acquired Immunodeficiency Syndrome; Blood Donors; Blood Transfusion; HIV Infections; HIV-1; HIV-2; HTLV-I; HTLV-II; Retroviridae Infections; Hepatitis, Viral, Human; Hepatitis B; Hepacivirus; West Nile Virus

  11. Ransom, Religion, and Red Giants: C.S. Lewis and Fred Hoyle

    NASA Astrophysics Data System (ADS)

    Larsen, Kristine

    2010-01-01

    Famed fantasy writer C.S. Lewis (1898-1963) was known to friends as a well-read astronomy aficionado. However, this medieval scholar and Christian apologist embraced a pre-Copernican universe (with its astrological overtones) in his Chronicles of Narnia series and defended the beauty and relevance of the geocentric model in his final academic work, "The Discarded Image". In the "Ransom Trilogy” ("Out of the Silent Planet", "Perelandra", and "That Hideous Strength") philologist Ransom (loosely based on Lewis's close friend J.R.R. Tolkien) travels to Lewis's visions of Mars and Venus, where he interacts with intelligent extraterrestrials, battles with evil scientists, and aids in the continuation of extraterrestrial Christian values. In the final book, Ransom is joined by a handful of colleagues in open warfare against the satanic N.I.C.E. (National Institute for Coordinated Experiments). Geneticist and evolutionary biologist J.B.S. Haldane criticized Lewis for his scientifically inaccurate descriptions of the planets, and his disdain for the scientific establishment. Lewis responded to the criticism in essays of his own. Another of Lewis's favorite scientific targets was atheist Fred Hoyle, whom he openly criticized for anti-Christian statements in Hoyle's BBC radio series. Writer and Lewis friend Dorothy L. Sayers voiced her own criticism of Hoyle. In a letter, Lewis dismissed Hoyle as "not a great philosopher (and none of my scientific colleagues think much of him as a scientist.” Given Lewis's lack of respect for Hoyle, and use of creative license in describing the planets, and the flat-earth, "geocentric” Narnia, it is surprising that Lewis very carefully includes an astronomically correct description of red giants in two novels in the Narnia series ("The Magician's Nephew" and "The Last Battle"). This inclusion is even more curious given that Fred Hoyle is well-known as one of the pioneers in the field of stellar death and the properties of red giants.

  12. Red giants in the outer halo of the elliptical galaxy NGC 5128/Centaurus A

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.; Flynn, Chris; Harris, William E.; Valtonen, Mauri

    2015-03-01

    We used VIMOS on VLT to perform V and I band imaging of the outermost halo of NGC 5128/Centaurus A ((m - M)0 = 27.91±0.08), 65 kpc from the galaxy's center and along the major axis. The stellar population has been resolved to I0 ≈ 27 with a 50% completeness limit of I0 = 24.7, well below the tip of the red-giant branch (TRGB), which is seen at I0 ≈ 23.9. The surface density of NGC 5128 halo stars in our fields was sufficiently low that dim, unresolved background galaxies were a major contaminant in the source counts. We isolated a clean sample of red-giant-branch (RGB) stars extending to ≈0.8 mag below the TRGB through conservative magnitude and color cuts, to remove the (predominantly blue) unresolved background galaxies. We derived stellar metallicities from colors of the stars via isochrones and measured the density falloff of the halo as a function of metallicity by combining our observations with HST imaging taken of NGC 5128 halo fields closer to the galaxy center. We found both metal-rich and metal-poor stellar populations and found that the falloff of the two follows the same de Vaucouleurs' law profiles from ≈8 kpc out to ≈70 kpc. The metallicity distribution function (MDF) and the density falloff agree with the results of two recent studies of similar outermost halo fields in NGC 5128. We found no evidence of a "transition" in the radial profile of the halo, in which the metal-rich halo density would drop rapidly, leaving the underlying metal-poor halo to dominate by default out to greater radial extent, as has been seen in the outer halo of two other large galaxies. If NGC 5128 has such a transition, it must lie at larger galactocentric distances.

  13. GRANULATION SIGNATURES IN THE SPECTRUM OF THE VERY METAL-POOR RED GIANT HD 122563

    SciTech Connect

    RamIrez, I.; Collet, R.; Asplund, M.; Lambert, D. L.; Allende Prieto, C.

    2010-12-20

    A very high resolution (R = {lambda}/{Delta}{lambda} = 200, 000), high signal-to-noise ratio (S/N {approx_equal} 340) blue-green spectrum of the very metal-poor ([Fe/H] {approx_equal} -2.6) red giant star HD 122563 has been obtained by us at McDonald Observatory. We measure the asymmetries and core wavelengths of a set of unblended Fe I lines covering a wide range of line strength. Line bisectors exhibit the characteristic C-shape signature of surface convection (granulation) and they span from about 100 m s{sup -1} in the strongest Fe I features to 800 m s{sup -1} in the weakest ones. Core wavelength shifts range from about -100 to -900 m s{sup -1}, depending on line strength. In general, larger blueshifts are observed in weaker lines, but there is increasing scatter with increasing residual flux. Assuming local thermodynamic equilibrium (LTE), we synthesize the same set of spectral lines using a state-of-the-art three-dimensional (3D) hydrodynamic simulation for a stellar atmosphere of fundamental parameters similar to those of HD 122563. We find good agreement between model predictions and observations. This allows us to infer an absolute zero point for the line shifts and radial velocity. Moreover, it indicates that the structure and dynamics of the simulation are realistic, thus providing support to previous claims of large 3D-LTE corrections to elemental abundances and fundamental parameters of very metal-poor red giant stars obtained with standard 1D-LTE spectroscopic analyses, as suggested by the hydrodynamic model used here.

  14. Synthetic photometry for carbon-rich giants. II. The effects of pulsation and circumstellar dust

    NASA Astrophysics Data System (ADS)

    Nowotny, W.; Aringer, B.; Höfner, S.; Lederer, M. T.

    2011-05-01

    Context. Red giant stars approaching the end of the evolutionary phase of the asymptotic giant branch (AGB) are, inter alia, characterised by (i) pulsations of the stellar interiors; and (ii) the development of dusty stellar winds. Therefore, such very evolved objects cannot be adequately described with hydrostatic dust-free model atmospheres. Aims: By using self-consistent dynamic model atmospheres which simulate pulsation-enhanced dust-driven winds we studied in detail the influence of the above mentioned two effects on the spectral appearance of long period variables with carbon-rich atmospheric chemistry. While the pulsations lead to large-amplitude photometric variability, the dusty envelopes (resulting from the outflows which contain dust particles composed of amorphous carbon) cause pronounced circumstellar reddening. Methods: Based on one selected dynamical model which is representative of C-type Mira variables with intermediate mass loss rates, we calculated synthetic spectra and photometry for standard broad-band filters (Johnson-Cousins-Glass system) from the visual to the near-infrared. The synthetic photometry was subsequently compared with observational results. Results: Our modelling allows to investigate in detail the substantial effect of circumstellar dust on the resultant photometry. The pronounced absorption of amorphous carbon dust grains (increasing towards shorter wavelengths; Qabs/a ∝ λ - β with β ≈ 1), leads to colour indices which are significantly redder than the corresponding ones based on hydrostatic dust-free models. Only if we account for this circumstellar reddening we get synthetic colours that are comparable to observations of evolved AGB stars. The photometric variations of the dynamical model were compared to observed lightcurves of the C-type Mira RU Vir which appears to be quite similar to the model (although the model is not a dedicated fit). We found good agreement concerning the principal behaviour of the BVRIJHKL

  15. The Segue K giant survey. II. A catalog of distance determinations for the Segue K giants in the galactic halo

    SciTech Connect

    Xue, Xiang-Xiang; Rix, Hans-Walter; Ma, Zhibo; Morrison, Heather L.; Harding, Paul; Beers, Timothy C.; Ivans, Inese I.; Jacobson, Heather R.; Johnson, Jennifer; Lee, Young Sun; Lucatello, Sara; Rockosi, Constance M.; Yanny, Brian; Zhao, Gang; Allende Prieto, Carlos

    2014-04-01

    We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g – r){sub 0} color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes, and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25 mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125 kpc from the Galactic center, with 283 stars beyond 50 kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.

  16. Evidence for enhanced mixing on the super-meteoritic Li-rich red giant HD 233517

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Carroll, T. A.; Weber, M.; Granzer, T.

    2015-02-01

    Context. HD 233517 is among the most Li-rich stars in the sky. It is a rapidly rotating, single K giant thought to be on its first ascent on the red giant branch. The star has also the highest known infrared excess among any of the known first-ascent giants. Aims: We revisit the physical parameters of the system and aim to map its surface temperature distribution. Methods: New time-series photometry and high-resolution spectroscopy were obtained with our robotic facilities STELLA and Amadeus Automatic Photoelectric Telescope (APT) in 2007-2011. Inverse line-profile modelling is performed on a total of 167 échelle spectra and six Doppler images are presented. Results: Light and radial-velocity variations suggest a stellar rotation period of 47.6±0.3 d. The atmospheric parameters agree with previous studies and verify a super-meteoritic log 7Li abundance of 4.29±0.10 with undetected 6Li, while the metals are generally deficient by -0.4 dex with respect to the Sun. We determine a lower than normal isotopic carbon ratio of 12C/13C = 9+4-2. Our Doppler images indicate warm and cool spots with an average temperature contrast of just ±65 K with respect to the effective temperature. Doppler maps from Li i 670.78 reveal practically identical surface morphology, with a higher average contrast of ±160 K and errors that are five times larger. Reconstructions with simultaneously 1617 and 3007 spectral lines showed both a signal degradation with respect to our 56-line final image. An error analysis indicates an average temperature error per surface pixel of just ±4 K. Conclusions: HD 233517 appears to be an old (≈10-Gyr) single 0.95-M⊙ giant currently undergoing mild mass loss in the form of a wind. The cool and warm photospheric features are interpreted to be merely locations of suppressed and enhanced convection, respectively, probably intermingled by a yet undetected weak magnetic field. The low carbon-isotope ratio is indicative of extra mixing rather than of an

  17. The Tip of the Red Giant Branch Distance to NGC 1316 Hosting Four Type Ia Supernova and the Hubble Constant

    NASA Astrophysics Data System (ADS)

    Jang, In Sung; Lee, M.

    2014-01-01

    Type Ia supernovae (SNe Ia) are known to be a powerful standard candle so that play an important role in cosmic distance scale research. Since the discovery of the cosmic acceleration, the need for more accurate calibration of SNe Ia luminosity is increasing. So far, the luminosity calibrations of SNe Ia have been done mainly using a population I distance indicator, the Cepehid variables. However, current calibrations of SNe Ia peak luminosity show a sizable scatter. We started the luminosity calibration of SNe Ia using the population II distance indicator the tip of the red giant branch (TRGB). We present the estimation of the TRGB distance to NGC 1316 which is one of the most prolific producers of SNe Ia, hosting four SNe Ia. We obtain VI photometry of resolved stars in the halo of this galaxy from archival Hubble Space Telescope image data. We derive absolute maximum magnitudes of 3 normal SNe Ia (SN 1980N, SN 1981D, and SN 2006dd) in this galaxy. By combining this result and our previous luminosity calibrations based on TRGB analysis for 3 additional SNe Ia (SN 1989B in M66, SN 1998bu in M96, and SN 2011fe in M101), we derive a value of the Hubble constant. We discuss the implication of our results in relation with the calibration of optical and near-infrared maximum magnitudes of SN Ia and the Hubble constant.

  18. AMPLITUDES OF SOLAR-LIKE OSCILLATIONS: CONSTRAINTS FROM RED GIANTS IN OPEN CLUSTERS OBSERVED BY KEPLER

    SciTech Connect

    Stello, Dennis; Huber, Daniel; Bedding, Timothy R.; Benomar, Othman; Kallinger, Thomas; Basu, Sarbani; Mosser, BenoIt; Hekker, Saskia; Mathur, Savita; GarcIa, Rafael A.; Gilliland, Ronald L.; Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne P.; Meibom, Soeren; Molenda-Zakowicz, Joanna; Szabo, Robert

    2011-08-10

    Scaling relations that link asteroseismic quantities to global stellar properties are important for gaining understanding of the intricate physics that underpins stellar pulsations. The common notion that all stars in an open cluster have essentially the same distance, age, and initial composition implies that the stellar parameters can be measured to much higher precision than what is usually achievable for single stars. This makes clusters ideal for exploring the relation between the mode amplitude of solar-like oscillations and the global stellar properties. We have analyzed data obtained with NASA's Kepler space telescope to study solar-like oscillations in 100 red giant stars located in either of the three open clusters, NGC 6791, NGC 6819, and NGC 6811. By fitting the measured amplitudes to predictions from simple scaling relations that depend on luminosity, mass, and effective temperature, we find that the data cannot be described by any power of the luminosity-to-mass ratio as previously assumed. As a result we provide a new improved empirical relation which treats luminosity and mass separately. This relation turns out to also work remarkably well for main-sequence and subgiant stars. In addition, the measured amplitudes reveal the potential presence of a number of previously unknown unresolved binaries in the red clump in NGC 6791 and NGC 6819, pointing to an interesting new application for asteroseismology as a probe into the formation history of open clusters.

  19. THE SUPER LITHIUM-RICH RED GIANT RAPID ROTATOR G0928+73.2600: A CASE FOR PLANET ACCRETION?

    SciTech Connect

    Carlberg, Joleen K.; Majewski, Steven R.; Rood, Robert T.; Smith, Verne V.; Cunha, Katia

    2010-11-01

    We present the discovery of a super lithium-rich K giant star, G0928+73.2600. This red giant (T {sub eff} = 4885 K and log g = 2.65) is a fast rotator with a projected rotational velocity of 8.4 km s{sup -1} and an unusually high lithium abundance of A(Li) = 3.30 dex. Although the lack of a measured parallax precludes knowing the exact evolutionary phase, an isochrone-derived estimate of its luminosity places the star on the Hertzsprung-Russell diagram in a location that is not consistent with either the red bump on the first ascent of the red giant branch or with the second ascent on the asymptotic giant branch, the two evolutionary stages where lithium-rich giant stars tend to cluster. Thus, even among the already unusual group of lithium-rich giant stars, G0928+73.2600 is peculiar. Using {sup 12}C/{sup 13}C as a tracer for mixing-more mixing leads to lower {sup 12}C/{sup 13}C-we find {sup 12}C/{sup 13}C = 28, which is near the expected value for standard first dredge-up mixing. We can therefore conclude that 'extra' deep mixing has not occurred. Regardless of the ambiguity of the evolutionary stage, the extremely large lithium abundance and the rotational velocity of this star are unusual, and we speculate that G0928+73.2600 has been enriched in both lithium and angular momentum from a sub-stellar companion.

  20. The dynamic atmospheres of red giant stars. Spectral synthesis in high resolution

    NASA Astrophysics Data System (ADS)

    Nowotny, W.

    2005-11-01

    Light is the only source of information we have to study distant stars. Our knowledge about the state of the matter inside stars has been gathered by analysing star light (photometry, spectroscopy, interferometry, polarimetry, etc.). Of central importance in this context are stellar atmospheres, which are the transition regions from the optically thick stellar interiors where the electromagnetic radiation is generated to the optically thin outer layers from where the photons can leave the star. However, the atmosphere of a star is not only the region where most of the observable radiation is emitted or in other words the layers which are "visible from outside". The atmosphere also leaves an imprint on the stellar spectrum as the radiation passes through, most of the line spectrum is formed there. Thus, the light serves as a probe for the physical processes within stellar atmospheres, especially spectroscopy is one of the major tools in stellar astrophysics. Applying the underlying physical principles in numerical simulations (model atmospheres, synthetic spectra) is the second -- complementary and necessary -- step towards a deeper understanding of stellar atmospheres and for deriving stellar parameters (e.g. T_eff, L, log g, chemical composition) of observed objects. This thesis is dedicated to the outer layers of Asymptotic Giant Branch (AGB) stars, which have rather remarkable properties compared to atmospheres of most other types of stars. AGB stars represent low- to intermediate mass stars at a late stage of their evolution. Forming a sub-group among all red giants, they exhibit large extensions, low effective temperatures and high luminosities. The evolutionary phase of the AGB -- complex but decisive for stellar evolution -- is characterised by several important phenomena as for example nucleo-synthesis in explosively burning shells (thermal pulses), convective processes (dredge up), large-amplitude pulsations with long periods or a pronounced mass loss. Red

  1. Structural Glitches near the Cores of Red Giants Revealed by Oscillations in g-mode Period Spacings from Stellar Models

    NASA Astrophysics Data System (ADS)

    Cunha, M. S.; Stello, D.; Avelino, P. P.; Christensen-Dalsgaard, J.; Townsend, R. H. D.

    2015-06-01

    With recent advances in asteroseismology it is now possible to peer into the cores of red giants, potentially providing a way to study processes such as nuclear burning and mixing through their imprint as sharp structural variations—glitches—in the stellar cores. Here we show how such core glitches can affect the oscillations we observe in red giants. We derive an analytical expression describing the expected frequency pattern in the presence of a glitch. This formulation also accounts for the coupling between acoustic and gravity waves. From an extensive set of canonical stellar models we find glitch-induced variation in the period spacing and inertia of non-radial modes during several phases of red giant evolution. Significant changes are seen in the appearance of mode amplitude and frequency patterns in asteroseismic diagrams such as the power spectrum and the échelle diagram. Interestingly, along the red giant branch glitch-induced variation occurs only at the luminosity bump, potentially providing a direct seismic indicator of stars in that particular evolution stage. Similarly, we find the variation at only certain post-helium-ignition evolution stages, namely, in the early phases of helium core burning and at the beginning of helium shell burning, signifying the asymptotic giant branch bump. Based on our results, we note that assuming stars to be glitch-free, while they are not, can result in an incorrect estimate of the period spacing. We further note that including diffusion and mixing beyond classical Schwarzschild could affect the characteristics of the glitches, potentially providing a way to study these physical processes.

  2. NUMERICAL SIMULATIONS OF A ROTATING RED GIANT STAR. I. THREE-DIMENSIONAL MODELS OF TURBULENT CONVECTION AND ASSOCIATED MEAN FLOWS

    SciTech Connect

    Brun, A. S. E-mail: palacios@graal.univ-montp2.fr

    2009-09-10

    With the development of one-dimensional stellar evolution codes including rotation and the increasing number of observational data for stars of various evolutionary stages, it becomes more and more possible to follow the evolution of the rotation profile and angular momentum distribution in stars. In this context, understanding the interplay between rotation and convection in the very extended envelopes of giant stars is very important considering that all low- and intermediate-mass stars become red giants after the central hydrogen burning phase. In this paper, we analyze the interplay between rotation and convection in the envelope of red giant stars using three-dimensional numerical experiments. We make use of the Anelastic Spherical Harmonics code to simulate the inner 50% of the envelope of a low-mass star on the red giant branch. We discuss the organization and dynamics of convection, and put a special emphasis on the distribution of angular momentum in such a rotating extended envelope. To do so, we explore two directions of the parameter space, namely, the bulk rotation rate and the Reynolds number with a series of four simulations. We find that turbulent convection in red giant stars is dynamically rich, and that it is particularly sensitive to the rotation rate of the star. Reynolds stresses and meridional circulation establish various differential rotation profiles (either cylindrical or shellular) depending on the convective Rossby number of the simulations, but they all agree that the radial shear is large. Temperature fluctuations are found to be large and in the slowly rotating cases, a dominant l = 1 temperature dipole influences the convective motions. Both baroclinic effects and turbulent advection are strong in all cases and mostly oppose one another.

  3. GIANT CONVECTION CELL TURNOVER AS AN EXPLANATION OF THE LONG SECONDARY PERIODS IN SEMIREGULAR RED VARIABLE STARS

    SciTech Connect

    Stothers, Richard B.

    2010-12-10

    Giant convection cells in the envelopes of massive red supergiants turn over in a time comparable in order of magnitude with the observed long secondary periods in these stars, according to a theory proposed some years ago by Stothers and Leung. This idea is developed further here by using improved theoretical data, especially a more accurate convective mixing length and a simple calculation of the expected radial-velocity variations at the stellar surface. The theory is applied to the two best-observed red supergiants, Betelgeuse and Antares, with more success than in the earlier study. The theory can also explain the long secondary periods seen in the low-mass red giants, thus providing a uniform and coherent picture for all of the semiregular red variables. How the turnover of a giant convection cell might account for the observed slow light and radial-velocity variations, their relative phasing, and the absence of these variations in certain stars is discussed here in a qualitative way, but follows naturally from the theory.

  4. Ernst Öpik's Fundamental Ideas on the Structure of Red Giants

    NASA Astrophysics Data System (ADS)

    Pustylnik, I.

    As early as in 1932 Estonian astronomer E. Öpik in his pioneering investigation indicated that the only source of stellar radiative energy capable of sustaining the observed stellar luminosities for billions of years must be the process of nuclear fusion transforming in stellar cores hydrogen into helium, carbon and so forth up to iron. He was the first to introduce in 1938 the so-called compound unmixed stellar models with stellar convective core consisting of helium and hydrogen envelope in radiative equilibrium lying on the top of it. Contrary to the universally adopted view of A. Eddington who firmly believed that rotationally induced convection would inevitably lead to full mixing up of the stellar matter, calculations of E. Öpik confirmed the viability of compound models and indicated that upon the exhaustion of hydrogen fuel the core will start contracting whereas the hydrogen envelope will expand. In this way the structural differences between the giant and main sequence stars were interpreted and in broad features stellar evolution along the H-R diagram explained (for earlier discussions see, for instance, J. Einasto and M. Joeveer 1975, J. Einasto 1994). E. Öpik was ahead of F. Hoyle and K. Schwarzschild who reached similar conclusions only 15 years afterwards. In our report we analyze various implications of E. Öpik's research dedicated to the internal structure of red giants for the treatment of the advanced stages of stellar evolution. It took almost half a century before the priority of this discovery by the Estonian astrophysicist found a deserved recognition. We discuss the reasons behind it and summarize briefly also other fundamental accomplishments of E. Öpik from the pre-war period in Tartu observatory where he founded Tartu school of astrophysics and stellar astronomy.

  5. Surprising Rapid Collapse of Sirius B from Red Giant to White Dwarf Through Mass Transfer to Sirius a

    NASA Astrophysics Data System (ADS)

    Yousef, Shahinaz; Ali, Ola

    2013-03-01

    Sirius was observed in antiquity as a red star. In his famous astronomy textbook the Almagest written 140 AD, Ptolemy described the star Sirius as fiery red. He curiously depicted it as one of six red-colored stars. The other five are class M and K stars, such as Arcturus and Betelgeuse. Apparent confirmation in ancient Greek and Roman sources are found and Sirius was also reported red in Europe about 1400 years ago. Sirius must have changed to a white dwarf in the night of Ascension. The star chapter in the Quran started with "by the star as it collapsed (1) your companion have not gone astray nor being misled (2), and in verse 49 which is the rotation period of the companion Sirius B around Sirius A, it is said" He is the Lord of Sirius (49). If Sirius actually was red what could have caused it to change into the brilliant bluish-white star we see today? What the naked eye perceives as a single star is actually a binary star system, consisting of a white main sequence star of spectral type A1V, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B. The red color indicates that the star seen then was a red giant. It looks that what they have seen in antiquity was Sirius B which was then a red giant and it collapsed to form a white dwarf. Since there is no evidence of a planetary nebula, then the red Sirius paradox can be solved in terms of stellar evolution with mass transfer. Sirius B was the most massive star which evolved to a red giant and filled the Roche lobe. Mass transfer to Sirius A occurred through the Lagrangian point. Sirius A then became more massive while Sirius B lost mass and shrank. Sirius B then collapsed abruptly into a white dwarf. In the case of Algol, Ptolmy observed it as white star but it was red at the time of El sufi. At present it is white. The rate of mass transfer from Sirius B to Sirius A, and from Algol B to A is estimated from observational data of colour change from red to bullish white to be 0

  6. The Nature of the Red Giant Branches in the Ursa Minor and Draco Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Shetrone, Matthew D.; Côté, Patrick; Stetson, Peter B.

    2001-09-01

    Spectra for stars located redward of the fiducial red giant branches (RGBs) of the Ursa Minor and Draco dwarf spheroidal galaxies have been obtained with the Hobby-Eberly telescope and the Marcario Low Resolution Spectrometer. From a comparison of our radial velocities with those reported in previous medium-resolution studies, we find an average difference of 10 km s-1 with a standard deviation of 11 km s-1. On the basis of these radial velocities, we confirm the membership of five stars in Ursa Minor and find two others to be nonmembers. One of the confirmed members is a known carbon star that lies redward of the RGB; three others are previously unidentified carbon stars. The fifth star is a red giant that was found previously by Shetrone and coworkers to have [Fe/H]=-1.68+/-0.11 dex. In Draco, we find eight nonmembers, confirm the membership of one known carbon star, and find two new members. One of these stars is a carbon star, while the other shows no evidence for C2 bands or strong atomic bands, although the signal-to-noise ratio of the spectrum is low. Thus, we find no evidence for a population of stars more metal-rich than [Fe/H]~=-1.45 dex in either of these galaxies. Indeed, our spectroscopic survey suggests that every candidate suspected of having a metallicity in excess of this value based on its position in the color-magnitude diagram is, in actuality, a carbon star. Based on the census of 13 known carbon stars in these two galaxies, we estimate the carbon star specific frequency to be ɛdSph~=2.4×10-5 L-1V,solar, 25-100 times higher than that of Galactic globular clusters. This work is based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, Pennsylvania State University, Stanford University, Ludwig-Maximillians-Universität München, and Georg-August-Universität Göttingen.

  7. VizieR Online Data Catalog: The SEGUE K giant survey. II. Distances of 6036 stars (Xue+, 2014)

    NASA Astrophysics Data System (ADS)

    Xue, X.-X.; Ma, Z.; Rix, H.-W.; Morrison, H. L.; Harding, P.; Beers, T. C.; Ivans, I. I.; Jacobson, H. R.; Johnson, J.; Lee, Y. S.; Lucatello, S.; Rockosi, C. M.; Sobeck, J. S.; Yanny, B.; Zhao, G.; Allende Prieto, C.

    2016-08-01

    SDSS and its extensions use a dedicated 2.5m telescope to obtain ugriz imaging and resolution (defined as R=λ/Δλ)~2000 spectra for 640 (SDSS spectrograph) or 1000 (BOSS spectrograph) objects over a 7deg2 field. Sloan Extension for Galactic Understanding and Exploration (SEGUE), one of the key projects executed during SDSS-II and SDSS-III, obtained some 360000 spectra of stars in the Galaxy, selected to explore the nature of stellar populations from 0.5kpc to 100kpc (Yanny et al. 2009, cat. J/AJ/137/4377; and C. M. Rockosi et al., in preparation). Data from SEGUE is a significant part of the ninth SDSS public data release (DR9; Ahn et al. 2012, cat. V/139). The SEGUE project obtained spectra for a large number of different stellar types: 18 for SEGUE-1 (see Yanny et al. 2009, cat. J/AJ/137/4377, for details) and 11 for SEGUE-2 (C. M. Rockosi et al. in preparation). Three of these target types were specifically designed to detect K giants: these are designated "l-color K giants", "red K giants", and "proper-motion K giants." The K-giant targets from these three categories all have 0.5<(g-r)0<1.3, 0.5<(u-g)0<3.5, and proper motions smaller than 11mas/yr. We present a catalog containing the distance moduli, observed information, and SEGUE Stellar Parameter Pipeline (SSPP) atmospheric parameters for 6036 SEGUE K giants (see Table4). For each object in the catalog, we also list some of the basic observables such as (R.A., decl.), extinction-corrected apparent magnitudes and dereddened colors, as well as the information obtained from the spectra--heliocentric radial velocities plus SSPP atmospheric parameters. In addition, we provide the Bayesian estimates of the distance moduli, distances to the Sun, Galactocentric distances, the absolute magnitudes and their uncertainties, along with the distance moduli at (5%, 16%, 50%, 84%, 95%) confidence of L(DM). (2 data files).

  8. Sperm of the giant grouper: cryopreservation, physiological and morphological analysis and application in hybridizations with red-spotted grouper.

    PubMed

    Tian, Yongsheng; Jiang, Jing; Wang, Na; Qi, Wenshan; Zhai, Jieming; Li, Bo; Liang, You; Chen, Youming; Yang, Chuanjun; Chen, Songlin

    2015-01-01

    In order to develop excellent germplasm resources for giant grouper (Epinephelus lanceolatus), cryopreservation of giant grouper sperm was examined in the present study. Firstly, 13 kinds of sperm dilution (ELS1-3, EM1-2, TS-2, MPRS, ELRS0-6) were prepared with physiological salt, sucrose, glucose and fetal bovine serum. The physiological parameters of ELRS3 (ratio of fast motion, ratio of slow motion, time of fast motion, time of slow motion, lifespan and motility) and ELS3 (sperm ratio of slow motion, time of slow motion and motility) were significantly higher than those of the other dilutions (P < 0.05). Secondly, after adding 15% DMSO and 10% FBS to ELRS3 and ELS3, most physiological parameters of frozen sperm were also significantly higher than the other gradients (P < 0.05), and sperm motility was as high as 63.68 ± 4.16% to74.75 ± 12.71% (fresh sperm motility, 80.70 ± 1.37% to 80.71 ± 1.49%). Mixed with the above dilutions, a final volume of 105 ml semen was cryopreserved. Finally, the sperm of giant grouper cryopreserved with cryoprotectants (ELRS3 + 15% DMSO + 10% FBS) was used for electron-microscopic observation and crossbreeding with red-spotted groupers (Epinephelus akaara). The electron-microscopic observation revealed that part of the frozen-thawed sperm was cryodamaged, e.g., flagellum fracturing and mitochondria falling out, while the ultrastructure of sperm membrane, mitochondria and flagellum remained intact. Also, the fertilization and hatchability rates of giant grouper frozen sperm and red-spotted grouper eggs were as high as 94.56% and 75.56%, respectively. Thus, a technique for cryopreservation of giant grouper sperm was successfully developed and applied to crossbreeding with red-spotted grouper eggs. PMID:25985804

  9. Sperm of the giant grouper: cryopreservation, physiological and morphological analysis and application in hybridizations with red-spotted grouper

    PubMed Central

    TIAN, Yongsheng; JIANG, Jing; WANG, Na; QI, Wenshan; ZHAI, Jieming; LI, Bo; LIANG, You; CHEN, Youming; YANG, Chuanjun; CHEN, Songlin

    2015-01-01

    In order to develop excellent germplasm resources for giant grouper (Epinephelus lanceolatus), cryopreservation of giant grouper sperm was examined in the present study. Firstly, 13 kinds of sperm dilution (ELS1-3, EM1-2, TS-2, MPRS, ELRS0-6) were prepared with physiological salt, sucrose, glucose and fetal bovine serum. The physiological parameters of ELRS3 (ratio of fast motion, ratio of slow motion, time of fast motion, time of slow motion, lifespan and motility) and ELS3 (sperm ratio of slow motion, time of slow motion and motility) were significantly higher than those of the other dilutions (P < 0.05). Secondly, after adding 15% DMSO and 10% FBS to ELRS3 and ELS3, most physiological parameters of frozen sperm were also significantly higher than the other gradients (P < 0.05), and sperm motility was as high as 63.68 ± 4.16% to74.75 ± 12.71% (fresh sperm motility, 80.70 ± 1.37% to 80.71 ± 1.49%). Mixed with the above dilutions, a final volume of 105 ml semen was cryopreserved. Finally, the sperm of giant grouper cryopreserved with cryoprotectants (ELRS3 + 15% DMSO + 10% FBS) was used for electron-microscopic observation and crossbreeding with red-spotted groupers (Epinephelus akaara). The electron-microscopic observation revealed that part of the frozen-thawed sperm was cryodamaged, e.g., flagellum fracturing and mitochondria falling out, while the ultrastructure of sperm membrane, mitochondria and flagellum remained intact. Also, the fertilization and hatchability rates of giant grouper frozen sperm and red-spotted grouper eggs were as high as 94.56% and 75.56%, respectively. Thus, a technique for cryopreservation of giant grouper sperm was successfully developed and applied to crossbreeding with red-spotted grouper eggs. PMID:25985804

  10. Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other. Panel 2: The red giant sheds much of its outer layers in a stellar wind. The white dwarf helps concentrate the wind along a thin equatorial plane. The white dwarf accretes some of this escaping gas forming a disk around the itself. Panel 3: When enough gas accumulates on the white dwarf's surface it explodes as a nova outburst. Most of the hot gas forms a pair of expanding bubbles above and below the equatorial disk. Panel 4: A few thousand years after the bubbles expand into space, the white dwarf goes through another nova outburst and makes another pair of bubbles, which form a distinctive hourglass shape.

  11. Systematic trend of water vapour absorption in red giant atmospheres revealed by high resolution TEXES 12 μm spectra

    NASA Astrophysics Data System (ADS)

    Ryde, N.; Lambert, J.; Farzone, M.; Richter, M. J.; Josselin, E.; Harper, G. M.; Eriksson, K.; Greathouse, T. K.

    2015-01-01

    Context. The structures of the outer atmospheres of red giants are very complex. Recent interpretations of a range of different observations have led to contradictory views of these regions. It is clear, however, that classical model photospheres are inadequate to describe the nature of the outer atmospheres. The notion of large optically thick molecular spheres around the stars (MOLspheres) has been invoked in order to explain spectro-interferometric observations and low- and high-resolution spectra. On the other hand high-resolution spectra in the mid-IR do not easily fit into this picture because they rule out any large sphere of water vapour in LTE surrounding red giants. Aims: In order to approach a unified scenario for these outer regions of red giants, more empirical evidence from different diagnostics are needed. Our aim here is to investigate high-resolution, mid-IR spectra for a range of red giants, spanning spectral types from early K to mid M. We want to study how the pure rotational lines of water vapour change with effective temperature, and whether we can find common properties that can put new constraints on the modelling of these regions, so that we can gain new insights. Methods: We have recorded mid-IR spectra at 12.2 - 12.4 μm at high spectral resolution of ten well-studied bright red giants, with TEXES mounted on the IRTF on Mauna Kea. These stars span effective temperatures from 3450 K to 4850 K. Results: We find that all red giants in our study cooler than 4300 K, spanning a wide range of effective temperatures (down to 3450 K), show water absorption lines stronger than expected and none are detected in emission, in line with what has been previously observed for a few stars. The strengths of the lines vary smoothly with spectral type. We identify several spectral features in the wavelength region that are undoubtedly formed in the photosphere. From a study of water-line ratios of the stars, we find that the excitation temperatures, in the

  12. First report of Enterocytozoon bieneusi from giant pandas (Ailuropoda melanoleuca) and red pandas (Ailurus fulgens) in China.

    PubMed

    Tian, Ge-Ru; Zhao, Guang-Hui; Du, Shuai-Zhi; Hu, Xiong-Feng; Wang, Hui-Bao; Zhang, Long-Xian; Yu, San-Ke

    2015-08-01

    Enterocytozoon bieneusi is an emerging and opportunistic enteric pathogen triggering diarrhea and enteric disease in humans and animals. Despite extensive research on this pathogen, the prevalence and genotypes of E. bieneusi infection in precious wild animals of giant and red pandas have not been reported. In the present study, 82 faecal specimens were collected from 46 giant pandas (Ailuropoda melanoleuca) and 36 red pandas (Ailurus fulgens) in the northwest of China. By PCR and sequencing of the internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene of E. bieneusi, an overall infection rate of 10.98% (9/82) was observed in pandas, with 8.70% (4/46) for giant pandas, and 13.89% (5/36) for red pandas. Two ITS genotypes were identified: the novel genotype I-like (n=4) and genotype EbpC (n=5). Multilocus sequence typing (MLST) employing three microsatellites (MS1, MS3 and MS7) and one minisatellite (MS4) showed that nine, six, six and nine positive products were amplified and sequenced successfully at four respective loci. A phylogenetic analysis based on a neighbor-joining tree of the ITS gene sequences of E. bieneusi indicated that the genotype EbpC fell into 1d of group 1 of zoonotic potential, and the novel genotype I-like was clustered into group 2. The present study firstly indicated the presence of E. bieneusi in giant and red pandas, and these results suggested that integrated strategies should be implemented to effectively protect pandas and humans from infecting E. bieneusi in China. PMID:26079276

  13. VizieR Online Data Catalog: Carbon in red giants in GCs and dSph galaxies (Kirby+, 2015)

    NASA Astrophysics Data System (ADS)

    Kirby, E. N.; Guo, M.; Zhang, A. J.; Deng, M.; Cohen, J. G.; Guhathakurta, P.; Shetrone, M. D.; Lee, Y. S.; Rizzi, L.

    2015-07-01

    We obtained Keck/DEIMOS spectra of the carbon G band in red giants in Milky Way (MW) globular clusters (GCs) and dwarf spheroidal galaxies (dSphs) between 2011 Jul 29 and 2012 Mar 19. The GCs are NGC 2419, NGC 4590 (M68), and NGC 7078 (M15). The dSphs are Sculptor, Fornax, Ursa Minor, and Draco. See table 1. (3 data files).

  14. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints

    NASA Astrophysics Data System (ADS)

    Lagarde, N.; Miglio, A.; Eggenberger, P.; Morel, T.; Montalbán, J.; Mosser, B.; Rodrigues, T. S.; Girardi, L.; Rainer, M.; Poretti, E.; Barban, C.; Hekker, S.; Kallinger, T.; Valentini, M.; Carrier, F.; Hareter, M.; Mantegazza, L.; Elsworth, Y.; Michel, E.; Baglin, A.

    2015-08-01

    Context. The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. Aims: We use a detailed spectroscopic study of 19 CoRoT red giant stars to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. Methods: In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red giant branch. Results: We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red giant targets. However, with this sample of stars we cannot perform stringent tests of the current stellar models. Tighter constraints on the physics of the models would require the measurement of the core and surface rotation rates, and of the period spacing of gravity-dominated mixed modes. A larger number of stars with longer times series, as provided by Kepler or expected with Plato, would help ensemble asteroseismology.

  15. Volatile Cycles and Glaciation: Earth and Mars (Now and Near a Red Giant Sun), and Moons of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Fegley, M. B.

    2003-05-01

    Glaciers are classically defined as perennial masses of ice showing geomorphic evidence of flow. This definition is expanded to include any flowing mass of solid volatiles condensed on planetary surfaces. Glacier-forming volatiles in this solar system may include water ice on Earth and Mars, carbon dioxide on Mars, sulfur on Io, and, in the future red giant phase of solar evolution, may encompass silicon monoxide or metallic magnesium and sodium glaciers on Earth and Mars. Comparable glaciers may occur on large rocky moons of hot Jupiters and comparably close-in "terrestrial" type planets. We have modeled the temperature distribution across the surfaces of red-giant phase Earth and Mars, without considering radiative effects of the gases and clouds, to illustrate these points. We have assumed alternate conditions of asynchronous and synchronous rotation and calculated the temperatures during the run-up along the red giant evolutionary branch. Near red giant solar maximum, Earth's subsolar temperature will exceed 2400 K for about a million years. A magma ocean will exist but will not be continuous across the globe; for a tidally locked Earth, solid continents will consist largely of atmospheric condensates of the more volatile metals and metal oxides, with shorelines and some buoyant 'bergs' composed of refractory Ca-Al-oxide residues, whereas some residues and condensates will sink to the core. Atmospheric partial pressures of Mg, MgO, SiO, SiO2, Fe, and FeO will total nearly 0.3 mbars. O and O2 partial pressures will sum to 1 mbar, and alkalis would initially be over 3 mbars. Condensation will occur by fractional chemical distillation. A chemical sequence of deposits will occur toward the pole and terminator. Some condensate deposits will flow glacier-like into the magma ocean, where they will redissolve, closing the cycle in a quasi-steady state familiar to glaciologists.

  16. Highly Red Objects in M31: Candidates for Massive Young Stellar Objects or Superwind-Phase Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Kodaira, Keiichi; Tamura, Motohide; Vansevičius, Vladas; Miyazaki, Satoshi

    1998-06-01

    Several highly red objects (H-K>=0.9) are detected in the ~2'×2' field of OB association A24 near the 7 kpc spiral arm of M31. They show infrared excesses on the J-H versus H-K diagram, which is typical for stars with thick dust shells. We suspect them to be candidates either for compact young clusters containing massive young stellar objects or for superwind-phase asymptotic giant branch stars in M31.

  17. Infrared tip of the red giant branch and distances to the MAFFEI/IC 342 group

    SciTech Connect

    Wu, Po-Feng; Tully, R. Brent; Jacobs, Bradley A.; Rizzi, Luca; Dolphin, Andrew E.; Karachentsev, Igor D.

    2014-07-01

    In this paper, we extend the use of the tip of the red giant branch (TRGB) method to near-infrared wavelengths from the previously used I-band, using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). Upon calibration of a color dependency of the TRGB magnitude, the IR TRGB yields a random uncertainty of ∼5% in relative distance. The IR TRGB methodology has an advantage over the previously used Advance Camera for Surveys F606W and F814W filter set for galaxies that suffer from severe extinction. Using the IR TRGB methodology, we obtain distances toward three principal galaxies in the Maffei/IC 342 complex, which are located at low Galactic latitudes. New distance estimates using the TRGB method are 3.45{sub −0.13}{sup +0.13} Mpc for IC 342, 3.37{sub −0.23}{sup +0.32} Mpc for Maffei 1, and 3.52{sub −0.30}{sup +0.32} Mpc for Maffei 2. The uncertainties are dominated by uncertain extinction, especially for Maffei 1 and Maffei 2. Our IR calibration demonstrates the viability of the TRGB methodology for observations with the James Webb Space Telescope.

  18. CHARACTERIZATION OF THE RED GIANT HR 2582 USING THE CHARA ARRAY

    SciTech Connect

    Baines, Ellyn K.; McAlister, Harold A.; Ten Brummelaar, Theo A.; Turner, Nils H.; Sturmann, Judit; Sturmann, Laszlo; Farrington, Christopher D.; Vargas, Norm; Van Belle, Gerard T.; Ridgway, Stephen T.

    2013-07-20

    We present the fundamental parameters of HR 2582, a high-mass red giant star whose evolutionary state is a mystery. We used the CHARA Array interferometer to directly measure the star's limb-darkened angular diameter (1.006 {+-} 0.020 mas) and combined our measurement with parallax and photometry from the literature to calculate its physical radius (35.76 {+-} 5.31 R{sub Sun }), luminosity (517.8 {+-} 17.5 L{sub Sun }), bolometric flux (14.8 {+-} 0.5 Multiplication-Sign 10{sup -8} erg s{sup -1} cm{sup -2}), and effective temperature (4577 {+-} 60 K). We then determined the star's mass (5.6 {+-} 1.7 M{sub Sun }) using our new values with stellar oscillation results from Baudin et al. Finally, using the Yonsei-Yale evolutionary models, we estimated HR 2582's age to be 165{sup +20}{sub -15} Myr. While our measurements do not provide the precision required to definitively state where the star is in its evolution, it remains an excellent test case for evaluating stellar interior models.

  19. THERMOHALINE MIXING: DOES IT REALLY GOVERN THE ATMOSPHERIC CHEMICAL COMPOSITION OF LOW-MASS RED GIANTS?

    SciTech Connect

    Denissenkov, Pavel A.; Merryfield, William J. E-mail: bill.merryfield@ec.gc.ca

    2011-01-20

    First results of our three-dimensional numerical simulations of thermohaline convection driven by {sup 3}He burning in a low-mass red giant branch (RGB) star at the bump luminosity are presented. They confirm our previous conclusion that this convection has a mixing rate that is a factor of 50 lower than the observationally constrained rate of RGB extra-mixing. It is also shown that the large-scale instabilities of the salt-fingering mean field (those of the Boussinesq and advection-diffusion equations averaged over length and timescales of many salt fingers), which have been observed to increase the rate of oceanic thermohaline mixing up to one order of magnitude, do not enhance the RGB thermohaline mixing. We speculate on possible alternative solutions of the problem of RGB extra-mixing, among which the most promising one that is related to thermohaline mixing takes advantage of the shifting of the salt-finger spectrum toward larger diameters by toroidal magnetic field.

  20. Distance moduli of open cluster NGC 6819 from Red Giant Clump stars

    NASA Astrophysics Data System (ADS)

    Abedigamba, O. P.; Balona, L. A.; Medupe, R.

    2016-07-01

    In this paper we study Kepler open cluster NGC 6819 using Kepler data of Red Giant Clump (RGC) single member (SM) stars. The Kepler data spans a period of 4 years starting in 2009. In particular, we derive distance moduli for each individual RGC star, from which we get the mean distance modulus of μ0 = 11.520 ± 0.105 mag for the cluster when we use reddening from the Kepler Input Catalogue (KIC) for each RGC star. A value of μ0 = 11.747 ± 0.086 mag is obtained when uniform reddening value E(B - V) = 0.15 is used for the cluster. The values of μ0 obtained with RGC stars are in agreement with the values in the literature with other methods. We report for the case of Kepler open cluster NGC 6819 that RGC stars can be used as 'distance candles' as has been done in the literature with other open clusters.

  1. Can Star–Disk Collisions Explain the Missing Red Giants Problem in the Galactic Center?

    NASA Astrophysics Data System (ADS)

    Kieffer, T. Forrest; Bogdanović, Tamara

    2016-06-01

    Observations have revealed a relative paucity of red giant (RG) stars within the central 0.5 pc in the Galactic Center (GC). Motivated by this finding we investigate the hypothesis that collisions of stars with a fragmenting accretion disk are responsible for the observed dearth of evolved stars. We use three-dimensional hydrodynamic simulations to model a star with radius 10 R ⊙ and mass 1 M ⊙, representative of the missing population of RGs, colliding with high density clumps. We find that multiple collisions with clumps of column density ≳108 g cm‑2 can strip a substantial fraction of the star’s envelope and in principle render it invisible to observations. Simulations confirm that repeated impacts are particularly efficient in driving mass loss as partially stripped RGs expand and have increased cross sections for subsequent collisions. Because the envelope is unbound on account of the kinetic energy of the star, any significant amount of stripping of the RG population in the GC should be mirrored by a systematic decay of their orbits and possibly by their enhanced rotational velocity. To be viable, this scenario requires that the total mass of the fragmenting disk has been several orders of magnitude higher than that of the early-type stars which now form the stellar disk in the GC.

  2. Chemical Abundances of Red Giant Branch Stars in the Globular Cluster NGC 288

    NASA Astrophysics Data System (ADS)

    Hsyu, Tiffany; Johnson, C. I.; Pilachowski, C. A.; Lee, Y.; Rich, R. M.

    2013-01-01

    We present chemical abundances and radial velocities for ~30 red giant branch (RGB) stars in the globular cluster NGC 288. The results are based on moderate resolution (R≈18,000) and moderate signal-to-noise ratio 50-75) obtained with the Hydra multi-object spectrograph on the Blanco 4m telescope. NGC 288 has been shown to exhibit two separate RGBs and we investigate possible differences in metallicity and/or light element abundances between stars on each branch. We present a new filter tracing for the CTIO Calcium HK narrow band filter and explore its effects on previous globular cluster color-magnitude diagrams. We also compare the light element abundance patterns of NGC 288 to those of other similar metallicity halo clusters. This material is based upon work supported by the National Science Foundation under award No.AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grants AST-0709479 and AST-121120995.

  3. Chemical Abundances of Red Giant Branch Stars in the Globular Clusters NGC 6333 and NGC 6366

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Rich, R. M.; Pilachowski, C. A.; Kunder, A. M.

    2013-01-01

    We present chemical abundances and radial velocities for >20 red giant branch (RGB) stars in the Galactic globular clusters NGC 6333 ([Fe/H]≈-1.8) and NGC 6366 ([Fe/H]≈-0.6). The results are based on moderate resolution (R=18,000), high signal-to-noise ratio (>100) spectra obtained with the Hydra multifiber positioner and bench spectrograph on the WIYN 3.5m telescope at Kitt Peak National Observatory. Both objects are likely associated with the Galactic bulge globular cluster system, and we therefore compare the cluster abundance patterns with those of nearby bulge field stars. Additionally, we investigate differences in the O-Na anticorrelation and neutron-capture element dispersion between the two clusters, and compare their abundance patterns with those of similar metallicity halo globular clusters. This material is based upon work supported by the National Science Foundation under award No. AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grant AST-0709479 and AST-121120995.

  4. Building the Galactic halo from globular clusters: evidence from chemically unusual red giants

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smolinski, J. P.; Beers, T. C.; Grebel, E. K.

    2011-10-01

    We present a spectroscopic search for halo field stars that originally formed in globular clusters. Using moderate-resolution SDSS-III/SEGUE-2 spectra of 561 red giants with typical halo metallicities (-1.8 ≤ [Fe/H] ≤ -1.0), we identify 16 stars, 3% of the sample, with CN and CH bandstrength behavior indicating depleted carbon and enhanced nitrogen abundances relative to the rest of the data set. Since globular clusters are the only environment known in which stars form with this pattern of atypical light-element abundances, we claim that these stars are second-generation globular cluster stars that have been lost to the halo field via normal cluster mass-loss processes. Extrapolating from theoretical models of two-generation globular cluster formation, this result suggests that globular clusters contributed significant numbers of stars to the construction of the Galactic halo: we calculate that a minimum of 17% of the present-day mass of the stellar halo was originally formed in globular clusters. The ratio of CN-strong to CN-normal stars drops with Galactocentric distance, suggesting that the inner-halo population may be the primary repository of these stars. Full Tables 1 and 3 are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A136

  5. Compared Experimental Studies of Giant Vesicles and Red Blood Cells in Shear Flow

    NASA Astrophysics Data System (ADS)

    Viallat, Annie; Faivre, Magalie; Leyrat, Anne; Abkarian, Manouk

    2003-11-01

    The motion and the deformation of soft shells in bounded shear flows is of biological importance since, for example, white or red blood cells (RBC) are submitted to strong shear stresses during circulation. The role of cell deformability and viscoelastic properties has not been yet quantitatively studied experimentally although it is important for understanding mobility, binding and rolling of cells on vascular walls. We quantitatively characterized the behaviour of giant lipid vesicles and RBC in a bounded linear shear flow by optical microscopy. The tank-treading motion (fixed cell orientation), the tumbling motion and the lift force experienced by deformable vesicles and RBC close to a substrate, are described as a function of the contrast of viscosity between the inner and the outer fluids, and as a function of the distance from the wall. Results are compared to models developed for ellipsoids of fixed shape. Finally, we showed that RBC oscillate while tank-treading and by increasing the shear rate, they pass from tank treading to tumbling, which discloses the existence of a characteristic time that is related to the visco-elasticity of their cytoskeleton.

  6. Purification and characterization of pepsin-solubilized collagen from skin and connective tissue of giant red sea cucumber (Parastichopus californicus).

    PubMed

    Liu, Zunying; Oliveira, Alexandra C M; Su, Yi-Cheng

    2010-01-27

    Pepsin-solubilized collagen (PSC) was extracted from giant red sea cucumbers ( Parastichopus californicus ) and characterized for denaturation temperature (T(d)), maximum transition temperature (T(m)), enzyme-digested peptide maps, and gel-forming capability. SDS-PAGE showed that PSCs from giant red sea cucumber skin and connective tissue were both type I collagens, consisting of three alpha(1) chains of approximately 138 kDa each. The amino acid composition and peptide maps of PSCs digested by V8 protease were different from those of calf skin type I collagen. The T(d) and T(m) are 18.5 and 33.2 degrees C, respectively, for skin PSC and are 17.9 and 32.7 degrees C, respectively, for connective tissue PSC. Both skin and connective tissue PSCs exhibited good gel-forming capability at pH 6.5 and at an ionic strength of 300 mM salt (NaCl). Collagen isolated from giant red sea cucumbers might be used as an alternative to mammalian collagen in the food and pharmaceutical industries. PMID:20085374

  7. Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - IX. Spotted pairs with red giants

    NASA Astrophysics Data System (ADS)

    Ratajczak, M.; Hełminiak, K. G.; Konacki, M.; Smith, A. M. S.; Kozłowski, S. K.; Espinoza, N.; Jordán, A.; Brahm, R.; Hempel, M.; Anderson, D. R.; Hellier, C.

    2016-09-01

    We present spectroscopic and photometric solutions for three spotted systems with red giant components. Absolute physical and orbital parameters for these double-lined detached eclipsing binary stars are presented for the first time. These were derived from the V-, and I-band ASAS and WASP photometry, and new radial velocities calculated from high quality optical spectra we obtained with a wide range of spectrographs and using the two-dimensional cross-correlation technique (TODCOR). All of the investigated systems (ASAS J184949-1518.7, BQ Aqr, and V1207 Cen) show the differential evolutionary phase of their components consisting of a main-sequence star or a subgiant and a red giant, and thus constitute very informative objects in terms of testing stellar evolution models. Additionally, the systems show significant chromospheric activity of both components. They can be also classified as classical RS CVn-type stars. Besides the standard analysis of radial velocities and photometry, we applied spectral disentangling to obtain separate spectra for both components of each analysed system which allowed for a more detailed spectroscopic study. We also compared the properties of red giant stars in binaries that show spots, with those that do not, and found that the activity phenomenon is substantially suppressed for stars with Rossby number higher than ˜1 and radii larger than ˜20 R⊙.

  8. Bayesian peak bagging analysis of 19 low-mass low-luminosity red giants observed with Kepler

    NASA Astrophysics Data System (ADS)

    Corsaro, E.; De Ridder, J.; García, R. A.

    2015-07-01

    Context. Non-radial oscillations, observed in thousands of red giants by the space missions CoRoT and Kepler, allow us to greatly improve our understanding of stellar structure and evolution in cool low-mass stars. The currently available Kepler light curves contain an outstanding amount of information, but a detailed analysis of the individual oscillation modes in the observed power spectra, also known as peak bagging, is computationally demanding and challenging to perform on a large number of targets. Aims: Our intent is to perform for the first time a peak bagging analysis on a sample of 19 low-mass low-luminosity red giants observed by Kepler for more than four years. This allows us to provide high-quality asteroseismic measurements that can be exploited for an intensive testing of the physics used in stellar structure models, stellar evolution, and pulsation codes, as well as for refining existing asteroseismic scaling relations in the red giant branch regime. Methods: For this purpose, powerful and sophisticated analysis tools are needed. We exploit the Bayesian code Diamonds, using an efficient nested sampling Monte Carlo algorithm, to perform both a fast fitting of the individual oscillation modes and a peak detection test based on the Bayesian evidence. Results: We find good agreement for the parameters estimated in the background fitting phase with those given in the literature. We extract and characterize a total of 1618 oscillation modes, providing the largest set of detailed asteroseismic mode measurements ever published. We report on the evidence of a change in regime observed in the relation between linewidths and effective temperatures of the stars occurring at the bottom of the red giant branch. We show the presence of a linewidth depression or plateau around νmax for all the red giants of the sample. Lastly, we show a good agreement between our measurements of maximum mode amplitudes and existing maximum amplitudes from global analyses provided

  9. NGC 362: another globular cluster with a split red giant branch

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Bragaglia, A.; Gratton, R. G.; Lucatello, S.; D'Orazi, V.; Bellazzini, M.; Catanzaro, G.; Leone, F.; Momany, Y.; Sollima, A.

    2013-09-01

    We obtained FLAMES GIRAFFE+UVES spectra for both first- and second-generation red giant branch (RGB) stars in the globular cluster (GC) NGC 362 and used them to derive abundances of 21 atomic species for a sample of 92 stars. The surveyed elements include proton-capture (O, Na, Mg, Al, Si), α-capture (Ca, Ti), Fe-peak (Sc, V, Mn, Co, Ni, Cu), and neutron-capture elements (Y, Zr, Ba, La, Ce, Nd, Eu, Dy). The analysis is fully consistent with that presented for twenty GCs in previous papers of this series. Stars in NGC 362 seem to be clustered into two discrete groups along the Na-O anti-correlation with a gap at [O/Na] ~ 0 dex. Na-rich, second generation stars show a trend to be more centrally concentrated, although the level of confidence is not very high. When compared to the classical second-parameter twin NGC 288 with similar metallicity but different horizontal branch type and a much lower total mass, the proton-capture processing in stars of NGC 362 seems to be more extreme, confirming previous analysis. We discovered the presence of a secondary RGB sequence, which is redder than the bulk of the RGB. A preliminary estimate shows that this sequence comprises about 6% of RGB stars. Our spectroscopic data and literature photometry indicate that this sequence is populated almost exclusively by giants rich in Ba and is probably rich in all s-process elements, as found in other clusters. In this regard, NGC 362 joins previously studied GCs like NGC 1851, NGC 6656 (M 22), and NGC 7089 (M 2). Based on observations collected at ESO telescopes under programme 083.D-0208.Appendix A is available in electronic form at http://www.aanda.orgFull Tables 2-8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A138

  10. REVEALING PROBABLE UNIVERSAL FEATURES IN THE LOWER RED GIANT BRANCH LUMINOSITY FUNCTIONS OF GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Kravtsov, V. V.

    2009-06-15

    This paper aims at demonstrating, for the first time, very probable universal peculiarities of the evolution of stars in the lower red giant branch (RGB) of Galactic globular clusters (GCs), reflected in two corresponding dips in the luminosity functions (LFs). By relying on the database of Hubble Space Telescope photometry of GCs, we analyze the lower RGB LFs of a sample of 18 GCs in a wide metallicity range, {delta}[Fe/H] {approx} 1.9 dex. We first show that in the F555W-(F439W-F555W) color-magnitude diagrams (CMDs), the lower RGB of GCs, except for the most metal-poor of them, frequently shows an apparent 'knee'. It reveals itself as a fairly abrupt change of the RGB slope. At the same luminosity level, the RGB LFs show a feature in the form of a more or less pronounced dip. We find that the magnitude difference between the RGB base and the given feature is, on average, around {delta} F555W{sup dip} {sub base}{approx} 1.4 mag. It shows a marginal variation with metallicity, if any, comparable to the error. At the same time, the magnitude difference between the dip and the RGB bump, {delta} F555W{sup bump} {sub dip}, decreases with increasing metallicity and falls within the range 0.8 {approx}< {delta} F555W{sup bump} {sub dip} {approx}< 1.7 mag. Generalized LFs (GLFs) have been obtained for three subsamples of GCs within limited metallicity ranges and with different horizontal branch (HB) morphology. They reproduce the 'knee-related' dip that is statistically significant in two of the GLFs. This feature turns out to be more pronounced in the GLFs of GCs with either the blue or red HB morphology than with the intermediate one. The same GLFs also reveal an additional probable universal dip. It shows up below the RGB bump at {delta} F555W slightly increasing from {approx}0.3 to {approx}0.5 mag with increasing metallicity. Also, the statistical significance of this 'prebump' dip increases, on average, toward higher metallicity. Except for the well known RGB bump, no

  11. Red giant stars from Sloan Digital Sky Survey. I. The general field

    SciTech Connect

    Chen, Y. Q.; Zhao, G.; Carrell, K.; Zhao, J. K.; Tan, K. F.; Nissen, P. E.; Wei, P. E-mail: pen@phys.au.dk

    2014-11-01

    We have obtained a sample of ∼22,000 red giant branch (RGB) stars based on stellar parameters, provided by the ninth data release of the Sloan Digital Sky Survey, and the CH(G)/MgH indices, measured from the included spectra. The Galactic rest-frame velocity of V {sub gsr} versus longitude for the sample shows the existence of several groups of stars from globular clusters and known streams. Excluding these substructures, a sample of ∼16,000 RGB stars from the general field is used to investigate the properties of the thick disk, the inner halo, and the outer halo of our Galaxy. The metallicity and rotational velocity distributions are investigated for stars at 0 kpc < |Z| < 10 kpc. It is found that the canonical thick disk dominates at 0 kpc < |Z| < 2 kpc and its contribution becomes negligible at |Z| > 3 kpc. The MWTD is present and overlaps with the inner halo at 1 kpc < |Z| < 3 kpc. The inner halo starts at 2 kpc < |Z| < 3 kpc and becomes the dominated population for 4 kpc < |Z| < 10 kpc. For halo stars with |Z| > 5 kpc, bimodal metallicity distributions are found for 20 kpc < |Z| < 25 kpc and 35 kpc < RR < 45 kpc, which suggests a dual halo, the inner and the outer halo, as reported in Carollo et al. at low |Z| values. The peak of metallicity for the inner halo is at [Fe/H] ∼ –1.6 and appears to be at [Fe/H] ∼ –2.3 for the outer halo. The transition point from the inner to the outer halo is located at |Z| ∼ 20 kpc and RR ∼ 35 kpc.

  12. Probing interstellar extinction in the Tarantula Nebula with red giant stars

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, N.; Girardi, L.; Sabbi, E.

    2014-01-01

    We have studied the properties of the interstellar extinction in a field of 3‧ × 3‧ located about 6‧ SW of 30 Doradus in the Large Magellanic Cloud (LMC). The observations with with the WFPC 2 camera on board the Hubble Space Telescope in the U, B, V , I and H bands show the presence of patchy extinction in this field. In particular, the colour-magnitude diagram (CMD) reveals an elongated stellar sequence, running almost parallel to the main sequence (MS), which is in reality made up of stars belonging to the red giant clump (RC) and spread across the CMD by the considerable and uneven extinction in this region. This allows us to derive in a quantitative way both the extinction law in the range 3 000-8 000 Å and the values of the absolute extinction towards more than 100 objects, thereby setting statistically significant constraints on the properties of the extinction in this area. We find an extinction curve considerably flatter than the standard Galactic one and than those derived before towards a sample of sight lines in the LMC. The value of RV = 5.6 that we find implies that in this region large grains dominate. Comparing the extinction towards the individual RC stars and a similar number of stars in the upper MS reveals that the latter span a narrower range of E(B - V) values, contrary to what has been found elsewhere in the LMC. We are now extending these studies to 30 Doradus itself and to a large portion of the Tarantula nebula using existing HST observations at ultraviolet, optical and near infrared wavelengths.

  13. Stellar encounter driven red-giant star mass loss in globular clusters

    SciTech Connect

    Pasquato, Mario; Moraghan, Anthony; Chung, Chul; Lee, Young-Wook; De Luca, Andrea; Raimondo, Gabriella; Carini, Roberta; Brocato, Enzo

    2014-07-01

    Globular cluster (GC) color-magnitude diagrams (CMDs) are reasonably well understood in terms of standard stellar evolution. However, there are still some open issues, such as fully accounting for the horizontal branch (HB) morphology in terms of chemical and dynamical parameters. Mass loss on the red giant branch (RGB) shapes the mass distribution of the HB stars, and the color distribution in turn. The physical mechanisms driving mass loss are still unclear, as direct observations fail to reveal a clear correlation between mass-loss rate and stellar properties. The HB mass distribution is further complicated by helium-enhanced multiple stellar populations due to differences in the evolving mass along the HB. We present a simple analytical mass-loss model based on tidal stripping through Roche-Lobe overflow during stellar encounters. Our model naturally results in a non-Gaussian mass-loss distribution with high skewness and contains only two free parameters. We fit it to the HB mass distribution of four Galactic GCs, as obtained from fitting the CMD with zero age HB models. The best-fit model accurately reproduces the observed mass distribution. If confirmed on a wider sample of GCs, our results would account for the effects of dynamics in RGB mass-loss processes and provide a physically motivated procedure for synthetic CMDs of GCs. Our physical modeling of mass loss may result in the ability to disentangle the effects of dynamics and helium-enhanced multiple populations on the HB morphology and is instrumental in making HB morphology a probe of the dynamical state of GCs, leading to an improved understanding of their evolution.

  14. Red giants in the Small Magellanic Cloud - I. Disc and tidal stream kinematics

    NASA Astrophysics Data System (ADS)

    Dobbie, P. D.; Cole, A. A.; Subramaniam, A.; Keller, S.

    2014-08-01

    We present results from an extensive spectroscopic survey of field stars in the Small Magellanic Cloud (SMC). 3037 sources, predominantly first-ascent red giants, spread across roughly 37.5 deg2, are analysed. The line-of-sight velocity field is dominated by the projection of the orbital motion of the SMC around the Large Magellanic Cloud/Milky Way. The residuals are inconsistent with both a non-rotating spheroid and a nearly face on disc system. The current sample and previous stellar and H I kinematics can be reconciled by rotating disc models with line-of-nodes position angle Θ ≈ 120°-130°, moderate inclination (25°-70°), and rotation curves rising at 20-40 km s-1 kpc-1. The metal-poor stars exhibit a lower velocity gradient and higher velocity dispersion than the metal-rich stars. If our interpretation of the velocity patterns as bulk rotation is appropriate, then some revision to simulations of the SMC orbit is required since these are generally tuned to the SMC disc line of nodes lying in a north-east-south-west (SW) direction. Residuals show strong spatial structure indicative of non-circular motions that increase in importance with increasing distance from the SMC centre. Kinematic substructure in the north-west part of our survey area is associated with the tidal tail or Counter-Bridge predicted by simulations. Lower line-of-sight velocities towards the Wing and the larger velocities just beyond the SW end of the SMC Bar are probably associated with stellar components of the Magellanic-Bridge and Counter-Bridge, respectively. Our results reinforce the notion that the intermediate-age stellar population of the SMC is subject to substantial stripping by external forces.

  15. Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries

    NASA Astrophysics Data System (ADS)

    Beck, Paul G.

    2013-12-01

    Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.

  16. Chemical composition of the giant red sea cucumber, Parastichopus californicus, commercially harvested in Alaska.

    PubMed

    Bechtel, Peter J; Oliveira, Alexandra Cm; Demir, Necla; Smiley, Scott

    2013-01-01

    Giant red sea cucumbers, Parastichopus californicus, are commercially harvested in the U.S. Pacific Northwest; however, the nutritional and chemical properties of its edible muscle bands and body wall have not been fully elucidated. In particular are the fatty acid profiles of P. californicus tissues, which have not been documented. Sea cucumbers were delivered live and muscle bands and body wall freeze dried, vacuum packed, and stored at -30°C until analyzed. Proximate composition of freeze-dried tissues varied greatly with muscle bands being composed of 68% protein, 12% ash, 9% carbohydrate, and 5% lipids, while the body wall was composed of 47% protein, 26% ash, 15% carbohydrate, and 8% lipids. The hydroxyproline, proline, and glycine contents of the body wall were much higher than those in muscle bands, consistent with the larger amount of connective tissue. Calcium, magnesium, sodium, and iron contents were higher in the body wall than those in muscle bands, whereas the opposite was observed for zinc content. Total long-chain n-3 fatty acid contents were 19% and 32% of total fatty acids in body wall and muscle bands, respectively. Muscle bands had higher content of eicosapentaenoic acid (20:5n-3) than body wall at 22.6% and 12.3%, respectively. High content of arachidonic acid (20:4n-6) was recorded in both body wall (7.1%) and muscle bands (9.9%). Overall, the fatty acid profiles of body wall and muscle bands of P. californicus resemble those described for other species; however, the distribution and occurrence of certain fatty acids is unique to P. californicus, being representative of the fatty acid composition of temperate-polar marine organisms. The chemical characterization of freeze-dried edible tissues from P. californicus demonstrated that these products have valuable nutritional properties. The body wall, a food product of lower market value than muscle bands, could be better utilized for nutraceutical and pharmaceutical applications. PMID:24804015

  17. Amino acid composition and functional properties of giant red sea cucumber ( Parastichopus californicus) collagen hydrolysates

    NASA Astrophysics Data System (ADS)

    Liu, Zunying; Su, Yicheng; Zeng, Mingyong

    2011-03-01

    Giant red sea cucumber ( Parastichopus californicus) is an under-utilized species due to its high tendency to autolysis. The aim of this study was to evaluate the functional properties of collagen hydrolysates from this species. The degree of hydrolysis (DH), amino acid composition, SDS-PAGE, emulsion activity index (EAI), emulsion stability index (ESI), foam expansion (FE), and foam stability (FS) of hydrolysates were investigated. The effects of pH on the EAI, ESI FE and FS of hydrolysates were also investigated. The results indicated that the β and α 1 chains of the collagen were effectively hydrolyzed by trypsin at 50°c with an Enzyme/Substrate (E/S) ration of 1:20 (w:w). The DH of collagen was up to 17.3% after 3 h hydrolysis with trypsin. The hydrolysates had a molecular weight distribution of 1.1-17 kDa, and were abundant in glycine (Gly), proline (Pro), glutamic acid (Glu), alanine (Ala) and hydroxyproline (Hyp) residues. The hydrolysates were fractionated into three fractions (< 3 kDa, 3-10 kDa, and > 10 kDa), and the fraction of 3-10 kDa exhibited a higher EAI value than the fraction of > 10 kDa ( P<0.05). The fraction of > 10 kDa had higher FE and FS values than other fractions ( P<0.05). The pH had an important effect on the EAI, ESI, FE and FS. All the fractions showed undesirable emulsion and forming properties at pH 4.0. Under pH 7.0 and pH 10.0, the 3-10 kDa fraction showed higher EAI value and the fraction of > 10 kDa showed higher FE value, respectively. They are hoped to be utilized as functional ingredients in food and nutraceutical industries.

  18. Asteroseismic Analysis of the Internal Structure and Evolution of Red Giant Branch Bump Stars

    NASA Astrophysics Data System (ADS)

    Gai, Ning; Tang, Yanke

    2015-05-01

    The “bump” is a prominent feature of the red giant branch (RGB) luminosity function of stellar clusters. Through constructing a grid of models with different masses and metallicities to study the feature of the RGB bump luminosity we find that the luminosity increases almost monotonically with increasing mass for a given metallicity and decreases monotonically with increasing metallicity. Moreover, different stars have different shapes of the RGB bump. It is correlated with the sharpness of the H discontinuity, which is left over by the convection envelope during the first dredge-up. Using the periodicity in the small separations d01, d10 to probe the internal structure, we find that, at about half the acoustic radius, the sound speed has a sharp variation that is caused by a local depression of the first adiabatic exponent {{{Γ }}1} in the second helium ionization zone. It induces an oscillation modulation in d01, d10 with a period of 6.4 μ Hz. Meanwhile, in the same model, the base of the convective envelope is located at a relatively small acoustic radius {{t}envp}/T, which is about 10-1. It is too deep to detect the exact location of the bottom of the outer convective envelope. In order to discriminate the evolutionary status of different stars, we calculate the asymptotic g-mode period spacing {Δ }{{{\\Pi }}1}. We find that {Δ }{{{\\Pi }}1} decreases monotonically with evolution. It is a reliable parameter for distinguishing stars in different positions of the RGB bump.

  19. The chromosphere of VV cephei and the distribution of circumstellar dust around red giants and supergiants

    NASA Astrophysics Data System (ADS)

    Bauer, Wendy Hagen

    1992-01-01

    The work on this project has followed two separate paths of inquiry. The first project was entitled 'the Chromosphere of VV Cephei.' The examination of the archival spectra revealed significant changes in the spectra. Therefore, we obtained additional observing time with IUE to monitor the system during the summer of 1991. Short-term changes continue to be seen in both the overall spectrum and individual line profiles. Work continues on this object. The second project was entitled 'the Distribution of Circumstellar Dust around Red Giants and Supergiants.' A number of cool evolved stars are surrounded by dust shells of sufficient angular size as to appear extended in the IRAS survey data. The aim of this project has been to convolve the predictions of the flux distribution from model dust shells with the IRAS beam profiles in order to reproduce the observed IRAS scans. At the time of the last status report, the cross-scan profiles of the IRAS detectors had just been added to the modeling procedure. For scans in which the star passed near the detector center, there was no significant variation in predicted scan profile for different detectors. Scans in which the detector did not pass over the bright central star had been anticipated to be particularly useful in determining the dust distribution; however, significant differences in the predicted scan profiles were seen for different detector profiles. For this reason, and due to the cross-talk effects discussed in the previous status report, further work on the scans not including a central star has been postponed in favor of further analysis of scans passing over the central star.

  20. Chemical composition of the giant red sea cucumber, Parastichopus californicus, commercially harvested in Alaska

    PubMed Central

    Bechtel, Peter J; Oliveira, Alexandra CM; Demir, Necla; Smiley, Scott

    2013-01-01

    Giant red sea cucumbers, Parastichopus californicus, are commercially harvested in the U.S. Pacific Northwest; however, the nutritional and chemical properties of its edible muscle bands and body wall have not been fully elucidated. In particular are the fatty acid profiles of P. californicus tissues, which have not been documented. Sea cucumbers were delivered live and muscle bands and body wall freeze dried, vacuum packed, and stored at –30°C until analyzed. Proximate composition of freeze-dried tissues varied greatly with muscle bands being composed of 68% protein, 12% ash, 9% carbohydrate, and 5% lipids, while the body wall was composed of 47% protein, 26% ash, 15% carbohydrate, and 8% lipids. The hydroxyproline, proline, and glycine contents of the body wall were much higher than those in muscle bands, consistent with the larger amount of connective tissue. Calcium, magnesium, sodium, and iron contents were higher in the body wall than those in muscle bands, whereas the opposite was observed for zinc content. Total long-chain n-3 fatty acid contents were 19% and 32% of total fatty acids in body wall and muscle bands, respectively. Muscle bands had higher content of eicosapentaenoic acid (20:5n-3) than body wall at 22.6% and 12.3%, respectively. High content of arachidonic acid (20:4n-6) was recorded in both body wall (7.1%) and muscle bands (9.9%). Overall, the fatty acid profiles of body wall and muscle bands of P. californicus resemble those described for other species; however, the distribution and occurrence of certain fatty acids is unique to P. californicus, being representative of the fatty acid composition of temperate-polar marine organisms. The chemical characterization of freeze-dried edible tissues from P. californicus demonstrated that these products have valuable nutritional properties. The body wall, a food product of lower market value than muscle bands, could be better utilized for nutraceutical and pharmaceutical applications. PMID

  1. An Abundance Analysis of Red Giant Stars in the Retrograde Galactic Globular Cluster NGC 3201: Implications for Cluster Formation Scenarios

    NASA Astrophysics Data System (ADS)

    Simmerer, Jennifer A.; Ivans, I. I.

    2011-01-01

    Globular clusters have long been central to the study of Galactic Chemical Evolution. They serve as laboratories for stellar physics, evolution, and nucleosynthesis as well as representing fossil remnants of Galactic assembly processes. Our work addresses two recent areas of interest: globular clusters as accreted objects and globular clusters as hosts for multiple stellar populations. The globular cluster NGC 3201 is a curious object on a retrograde orbit. Some studies suggest that it contains stars of more than one metallicity, a property seen only in the peculiar globular cluster Omega Centauri. Both properties hint at an extra-Galactic origin. We present an elemental abundance pattern for NGC 3201 based on high resolution, high signal-to-noise spectra of red giant stars. We present abundance patterns of similar stars from the globular cluster M5 for comparison. Interpretation of our results is complicated by the discovery that at least two of our giants are variable stars. Though we can derive adequate stellar parameter solutions for both stars in every stage of variability and heavy element abundances do not change with the stellar phase, the abundances of the light elements O, Na, Mg, and Al are extremely unstable and vary greatly. Our inability to correctly model light element line formation in the atmosphere of variable red giant stars has significant implications for studies of star to star abundance variations in exactly these elements in globular clusters, which rely on stars at the same evolutionary stage as the variables in NGC 3201.

  2. Fundamental stellar parameters and age-metallicity relation of Kepler red giants in comparison with theoretical evolutionary tracks

    NASA Astrophysics Data System (ADS)

    Takeda, Y.; Tajitsu, A.; Sato, B.; Liu, Y.-J.; Chen, Y.-Q.; Zhao, G.

    2016-04-01

    Spectroscopic parameters (effective temperature, metallicity, etc) were determined for a large sample of ˜100 red giants in the Kepler field, for which mass, radius, and evolutionary status had already been asteroseismologically established. These two kinds of spectroscopic and seismic information suffice to define the position on the `luminosity versus effective temperature' diagram and to assign an appropriate theoretical evolutionary track to each star. Making use of this advantage, we examined whether the stellar location on this diagram really matches the assigned track, which would make an interesting consistency check between theory and observation. It turned out that satisfactory agreement was confirmed in most cases (˜90 per cent, though appreciable discrepancies were seen for some stars such as higher mass red-clump giants), suggesting that recent stellar evolution calculations are practically reliable. Since the relevant stellar age could also be obtained by this comparison, we derived the age-metallicity relation for these Kepler giants and found the following characteristics: (1) the resulting distribution is quite similar to what was previously concluded for F-, G-, and K-type stars dwarfs; (2) the dispersion of metallicity progressively increases as the age becomes older; (3) nevertheless, the maximum metallicity at any stellar age remains almost flat, which means the existence of super/near-solar metallicity stars in a considerably wide age range from ˜(2-3) × 108 to ˜1010 yr.

  3. Red supergiants in the LMC - II. Spectrophotometry and model atmospheres

    NASA Astrophysics Data System (ADS)

    Oestreicher, M. O.; Schmidt-Kaler, Th.

    1998-09-01

    Spectrophotometric observations for 88 red supergiant candidates in the Large Magellanic Cloud are presented. The spectra range from 4800 to 7700Angstroms with a resolution of 10Angstroms. The error in the absolute fluxes is 0.04 to 0.05mag. The molecular bands of the member stars are often rather weak, i.e. many of these are not M- but K-type supergiants. The data are available on the Strasbourg stellar data base (CDS). Most of the red (super)giant model atmospheres available up to now do not reproduce the observations well. The models of Kurucz and Lejeune, Cuisinier & Buser - often applied especially to population synthesis - correctly describe the strengths of atomic lines and the overall increase of the flux towards the red, but strongly underestimate the strengths of molecular bands. The models presented by Plez, however, tend to reproduce the observed spectra well, except for the blue, as they include a more complete list of opacity sources. Concerning physical properties, only the Plez models give reliable results. Considering the relation between effective temperature and the strengths of molecular bands, both the Kurucz and Lejeune models predict much higher temperatures than derived from the interferometric radius measurements discussed by Schmidt-Kaler and Dyck et al. The temperatures given by the Plez models show a much better agreement with these observations. Furthermore, the relation between T_eff and molecular absorption is much more clearly defined. When considering metallicities, however, the Plez models also fail, as they predict a [Fe/H] distribution that is much too broad, and furthermore an increase of T_eff with increasing [Fe/H] which clearly contradicts models of stellar evolution. The effective temperatures based on the Plez models range mostly from 3500 to 4100K. The surface gravities derived on the basis of the Geneva evolutionary models range from logg=-0.3 to 0.3, while the bolometric luminosities based on BVRIJHK observations range

  4. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. III. Line formation in the atmospheres of giants located close to the base of the red giant branch

    NASA Astrophysics Data System (ADS)

    Dobrovolskas, V.; Kučinskas, A.; Steffen, M.; Ludwig, H.-G.; Prakapavičius, D.; Klevas, J.; Caffau, E.; Bonifacio, P.

    2013-11-01

    Aims: We utilize state-of-the-art three-dimensional (3D) hydrodynamical and classical 1D stellar model atmospheres to study the influence of convection on the formation properties of various atomic and molecular spectral lines in the atmospheres of four red giant stars, located close to the base of the red giant branch, RGB (Teff ≈ 5000 K, log g = 2.5), and characterized by four different metallicities, [M/H] = 0.0, -1.0, -2.0, -3.0. Methods: The role of convection in the spectral line formation is assessed with the aid of abundance corrections, i.e., the differences in abundances predicted for a given equivalent width of a particular spectral line with the 3D and 1D model atmospheres. The 3D hydrodynamical and classical 1D model atmospheres used in this study were calculated with the CO5BOLD and 1D LHD codes, respectively. Identical atmospheric parameters, chemical composition, equation of state, and opacities were used with both codes, therefore allowing a strictly differential analysis of the line formation properties in the 3D and 1D models. Results: We find that for lines of certain neutral atoms, such as Mg i, Ti i, Fe i, and Ni i, the abundance corrections strongly depend both on the metallicity of a given model atmosphere and the line excitation potential, χ. While abundance corrections for all lines of both neutral and ionized elements tend to be small at solar metallicity (≤±0.1 dex), for lines of neutral elements with low ionization potential and low-to-intermediate χ they quickly increase with decreasing metallicity, reaching in their extremes -0.6 to -0.8 dex. In all such cases the large abundance corrections are due to horizontal temperature fluctuations in the 3D hydrodynamical models. Lines of neutral elements with higher ionization potentials (Eion ≳ 10 eV) generally behave very similarly to lines of ionized elements characterized by low ionization potentials (Eion ≲ 6 eV). In the latter case, the abundance corrections are small

  5. High-resolution abundance analysis of red giants in the metal-poor bulge globular cluster HP 1

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; Cantelli, E.; Vemado, A.; Ernandes, H.; Ortolani, S.; Saviane, I.; Bica, E.; Minniti, D.; Dias, B.; Momany, Y.; Hill, V.; Zoccali, M.; Siqueira-Mello, C.

    2016-06-01

    Context. The globular cluster HP 1 is projected at only 3.̊33 from the Galactic center. Together with its distance, this makes it one of the most central globular clusters in the Milky Way. It has a blue horizontal branch (BHB) and a metallicity of [Fe/H] ≈ -1.0. This means that it probably is one of the oldest objects in the Galaxy. Abundance ratios can reveal the nucleosynthesis pattern of the first stars as well as the early chemical enrichment and early formation of stellar populations. Aims: High-resolution spectra obtained for six stars were analyzed to derive the abundances of the light elements C, N, O, Na, and Al, the alpha-elements Mg, Si, Ca, and Ti, and the heavy elements Sr, Y, Zr, Ba, La, and Eu. Methods: High-resolution spectra of six red giants that are confirmed members of the bulge globular cluster HP 1 were obtained with the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. The spectroscopic parameter derivation was based on the excitation and ionization equilibrium of Fe i and Fe ii. Results: We confirm a mean metallicity of [Fe/H] = -1.06 ± 0.10, by adding the two stars that were previously analyzed in HP 1. The alpha-elements O and Mg are enhanced by about +0.3 ≲ [O,Mg/Fe] ≲ +0.5 dex, Si is moderately enhanced with +0.15 ≲ [Si/Fe] ≲ +0.35 dex, while Ca and Ti show lower values of -0.04 ≲ [Ca,Ti/Fe] ≲ +0.28 dex. The r-element Eu is also enhanced with [Eu/Fe] ≈ +0.4, which together with O and Mg is indicative of early enrichment by type II supernovae. Na and Al are low, but it is unclear if Na-O are anticorrelated. The heavy elements are moderately enhanced, with -0.20 < [La/Fe] < +0.43 dex and 0.0 < [Ba/Fe] < +0.75 dex, which is compatible with r-process formation. The spread in Y, Zr, Ba, and La abundances, on the other hand, appears to be compatible with the spinstar scenario or other additional mechanisms such as the weak r-process. Observations collected at the European Southern

  6. THE Mg II CROSS-SECTION OF LUMINOUS RED GALAXIES

    SciTech Connect

    Bowen, David V.; Chelouche, Doron

    2011-01-20

    We describe a search for Mg II {lambda}{lambda}2796, 2803 absorption lines in Sloan Digital Sky Survey (SDSS) spectra of QSOs whose lines of sight pass within impact parameters {rho} {approx} 200 kpc of galaxies with photometric redshifts of z = 0.46-0.6 and errors {Delta}z {approx} 0.05. The galaxies selected have the same colors and luminosities as the Luminous Red Galaxy (LRG) population previously selected from the SDSS. A search for Mg II lines within a redshift interval of {+-}0.1 of a galaxy's photometric redshift shows that absorption by these galaxies is rare: the covering fraction is f({rho}) {approx_equal} 10%-15% between {rho} = 20 kpcand{rho} = 100 kpc, for Mg II lines with rest equivalent widths of W{sub r} {>=} 0.6 A, falling to zero at larger {rho}. There is no evidence that W{sub r} correlates with impact parameter or galaxy luminosity. Our results are consistent with existing scenarios in which cool Mg II-absorbing clouds may be absent near LRGs because of the environment of the galaxies: if LRGs reside in high-mass groups and clusters, either their halos are too hot to retain or accrete cool gas, or the galaxies themselves-which have passively evolving old stellar populations-do not produce the rates of star formation and outflows of gas necessary to fill their halos with Mg II-absorbing clouds. In the rarer cases where Mg II is detected, however, the origin of the absorption is less clear. Absorption may arise from the little cool gas able to reach into cluster halos from the intergalactic medium, or from the few star-forming and/or AGN-like LRGs that are known to exist.

  7. TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA

    SciTech Connect

    Huber, D.; Bedding, T. R.; Stello, D.; Hekker, S.; Mathur, S.; Mosser, B.; Verner, G. A.; Elsworth, Y. P.; Hale, S. J.; Chaplin, W. J.; Bonanno, A.; Buzasi, D. L.; Campante, T. L.; Kallinger, T.; Silva Aguirre, V.; De Ridder, J.; Garcia, R. A.; Frandsen, S.; Houdek, G.; and others

    2011-12-20

    We have analyzed solar-like oscillations in {approx}1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}), the large frequency separation ({Delta}{nu}), and oscillation amplitudes. We show that the difference of the {Delta}{nu}-{nu}{sub max} relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M){sup s} scaling nor the revised scaling relation by Kjeldsen and Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of {approx}25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.

  8. VLTI/AMBER Studies of the Atmospheric Structure and Fundamental Parameters of Red Giant and Supergiant Stars

    NASA Astrophysics Data System (ADS)

    Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Abellan, F. J.; Chiavassa, A.; Fabregat, J.; Freytag, B.; Guirado, J. C.; Hauschildt, P. H.; Marti-Vidal, I.; Quirrenbach, A.; Scholz, M.; Wood, P. R.

    2015-08-01

    We present recent near-IR interferometric studies of red giant and supergiant stars, which are aimed at obtaining information on the structure of the atmospheric layers and constraining the fundamental parameters of these objects. The observed visibilities of six red supergiants (RSGs), and also of one of the five red giants observed, indicate large extensions of the molecular layers, as previously observed for Mira stars. These extensions are not predicted by hydrostatic PHOENIX model atmospheres, hydrodynamical (RHD) simulations of stellar convection, or self-excited pulsation models. All these models based on parameters of RSGs lead to atmospheric structures that are too compact compared to our observations. We discuss how alternative processes might explain the atmospheric extensions for these objects. As the continuum appears to be largely free of contamination by molecular layers, we can estimate reliable Rosseland angular radii for our stars. Together with distances and bolometric fluxes, we estimate the effective temperatures and luminosities of our targets, locate them in the HR diagram, and compare their positions to recent evolutionary tracks.

  9. Rotational and radial velocities of 1.3-2.2 M {sub ☉} red giants in open clusters

    SciTech Connect

    Carlberg, Joleen K.

    2014-06-01

    This study presents the rotational distribution of red giant (RG) stars in 11 old to intermediate age open clusters. The masses of these stars are all above the Kraft break, so they lose negligible amounts of their birth angular momentum (AM) during the main-sequence (MS) evolution. However, they do span a mass range with quite different AM distributions imparted during formation, with the stars less massive than ∼1.6M {sub ☉} arriving on the MS with lower rotation rates than the more massive stars. The majority of RGs in this study are slow rotators across the entire red giant branch regardless of mass, supporting the picture that intermediate-mass stars rapidly spin down when they evolve off the MS and develop convection zones capable of driving a magnetic dynamo. Nevertheless, a small fraction of RGs in open clusters show some level of enhanced rotation, and faster rotators are as common in these clusters as in the field RG population. Most of these enhanced rotators appear to be red clump stars, which is also true of the underlying stellar sample, while others are clearly RGs that are above or below the clump. In addition to rotational velocities, the radial velocities (RVs) and membership probabilities of individual stars are also presented. Cluster heliocentric RVs for NGC 6005 and Pismis 18 are reported for the first time.

  10. Giant Micelles of Organoplatinum(II) Gemini Amphiphiles

    PubMed Central

    Maran, Umamageswaran; Conley, Hiram; Frank, Markus; Arif, Atta M.; Orendt, Anita M.; Britt, David; Hlady, Vladimir; Davis, Robert; Stang, Peter J.

    2008-01-01

    Organoplatinum(II) gemini amphiphiles with two different chain lengths are synthesized and characterized. Self-assembly at the air-water interface is investigated as a function of chain length and reduction in surface area by using Langmuir-trough techniques. The Langmuir-trough experiments lead to a conjecture that surface aggregates may be the adsorbing units. Atomic force microscopy on the transferred Langmuir-Schaefer films reveals spontaneous formation of wormlike micellar aggregates. A shear-induced transition and alignment are proposed for the observed effects. PMID:18439034

  11. On a search for O-17 in super-metal-rich red giants

    SciTech Connect

    Campbell, B.; Lambert, D.L.; Maillard, J.P. Texas Univ., Austin CNRS, Institut d'Astrophysique, Paris )

    1990-01-01

    High-resolution infrared (4100-4500/cm) spectra of the SMR giants Alpha Ser and Tau Dra and eight other giants are analyzed to obtain the C-12/C-13 and O-16/O-17/O-18 ratios from the CO vibration-rotation first-overtone bands. It is shown that the lower limits to the O-16/0-17 ratios together with published estimates for Alpha Ser and Mu Leo are consistent with predictions for giants after the first dredge-up. 31 refs.

  12. THE ASYMPTOTIC GIANT BRANCH AND THE TIP OF THE RED GIANT BRANCH AS PROBES OF STAR FORMATION HISTORY: THE NEARBY DWARF IRREGULAR GALAXY KKH 98

    SciTech Connect

    Melbourne, J.; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D. C.; Dolphin, A. E-mail: ben@astro.washington.ed E-mail: ammons@ucolick.or E-mail: koo@ucolick.or E-mail: adolphin@raytheon.co

    2010-03-20

    We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D = 2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (near-IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR-bright stars reaching over 1 mag below the tip of the RGB. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the red clump and the main-sequence turnoff for 0.5 Gyr old populations. Compared to the optical color-magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate-age (0.5-5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10{sup -4} M{sub sun} yr{sup -1}) for much of cosmic time. Except for the youngest main-sequence populations (age <0.1 Gyr), which are typically fainter than the AO data flux limit, the SFH estimated from the 592 IR-bright stars is a reasonable match to that derived from the much larger optical data set. Differences between the optical- and IR-derived SFHs for 0.1-1 Gyr populations suggest that current stellar evolution models may be overproducing the AGB by as much as a factor of 3 in this galaxy. At the depth of the AO data, the IR-luminous stars are not crowded. Therefore, these techniques can potentially be used to determine the stellar populations of galaxies at significantly further distances.

  13. ASTEROSEISMOLOGY OF RED GIANTS FROM THE FIRST FOUR MONTHS OF KEPLER DATA: GLOBAL OSCILLATION PARAMETERS FOR 800 STARS

    SciTech Connect

    Huber, D.; Bedding, T. R.; Stello, D.; White, T. R.; Mosser, B.; Mathur, S.; Kallinger, T.; Hekker, S.; Elsworth, Y. P.; Chaplin, W. J.; Hale, S. J.; Buzasi, D. L.; Preston, H. L.; De Ridder, J.; Gilliland, R. L.; Kjeldsen, H.; Christensen-Dalsgaard, J.; GarcIa, R. A.; Clarke, B. D.

    2010-11-10

    We have studied solar-like oscillations in {approx}800 red giant stars using Kepler long-cadence photometry. The sample includes stars ranging in evolution from the lower part of the red giant branch to the helium main sequence. We investigate the relation between the large frequency separation ({Delta}{nu}) and the frequency of maximum power ({nu}{sub max}) and show that it is different for red giants than for main-sequence stars, which is consistent with evolutionary models and scaling relations. The distributions of {nu}{sub max} and {Delta}{nu} are in qualitative agreement with a simple stellar population model of the Kepler field, including the first evidence for a secondary clump population characterized by M {approx}> 2 M{sub sun} and {nu}{sub max} {approx_equal} 40-110 {mu}Hz. We measured the small frequency separations {delta}{nu}{sub 02} and {delta}{nu}{sub 01} in over 400 stars and {delta}{nu}{sub 03} in over 40. We present C-D diagrams for l = 1, 2, and 3 and show that the frequency separation ratios {delta}{nu}{sub 02}/{Delta}{nu} and {delta}{nu}{sub 01}/{Delta}{nu} have opposite trends as a function of {Delta}{nu}. The data show a narrowing of the l = 1 ridge toward lower {nu}{sub max}, in agreement with models predicting more efficient mode trapping in stars with higher luminosity. We investigate the offset {epsilon} in the asymptotic relation and find a clear correlation with {Delta}{nu}, demonstrating that it is related to fundamental stellar parameters. Finally, we present the first amplitude-{nu}{sub max} relation for Kepler red giants. We observe a lack of low-amplitude stars for {nu}{sub max} {approx}> 110 {mu}Hz and find that, for a given {nu}{sub max} between 40 and 110 {mu}Hz, stars with lower {Delta}{nu} (and consequently higher mass) tend to show lower amplitudes than stars with higher {Delta}{nu}.

  14. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.

    2014-12-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between --2.0 and --1.8 dex. Combining these abundances with accurate age estimates, we date the onset of SNe Ia to ≈ 12--10 Gyrs ago. Our results are compatible with an initial mass function that lacks the most massive stars and with a star formation going on throughout the whole history of Fornax.

  15. Non-thermal emission from standing relativistic shocks: an application to red giant winds interacting with AGN jets

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.

    2015-03-01

    Context. Galactic and extragalactic relativistic jets are surrounded by rich environments that are full of moving objects, such as stars and dense medium inhomogeneities. These objects can enter into the jets and generate shocks and non-thermal emission. Aims: We characterize the emitting properties of the downstream region of a standing shock formed due to the interaction of a relativistic jet with an obstacle. We focus on the case of red giants interacting with an extragalactic jet. Methods: We perform relativistic axisymmetric hydrodynamical simulations of a relativistic jet meeting an obstacle of very large inertia. The results are interpreted in the framework of a red giant whose dense and slow wind interacts with the jet of an active galactic nucleus. Assuming that particles are accelerated in the standing shock generated in the jet as it impacts the red giant wind, we compute the non-thermal particle distribution, the Doppler boosting enhancement, and the non-thermal luminosity in gamma rays. Results: The available non-thermal energy from jet-obstacle interactions is potentially enhanced by a factor of ~100 when accounting for the whole surface of the shock induced by the obstacle, instead of just the obstacle section. The observer gamma-ray luminosity, including the effective obstacle size, the flow velocity and Doppler boosting effects, can be ~300 (γj/10)2 times higher than when the emitting flow is assumed at rest and only the obstacle section is considered, where γj is the jet Lorentz factor. For a whole population of red giants inside the jet of an active galactic nucleus, the predicted persistent gamma-ray luminosities may be potentially detectable for a jet pointing approximately to the observer. Conclusions: Obstacles interacting with relativistic outflows, for instance clouds and populations of stars for extragalactic jets, or stellar wind inhomogeneities in microquasar jets and in winds of pulsars in binaries, should be taken into account when

  16. Formation of giant H II regions following supernova explosions

    NASA Technical Reports Server (NTRS)

    Sartori, L.

    1971-01-01

    The principal optical properties of type I supernovae are summarized. These include the light curve and the spectrum. The spectra consist of broad bands with very little continuum. According to the theory presented, the observed light is principally fluorescence, excited in the medium surrounding the supernova by ultraviolet radiation originating from the explosion. It is proposed that the spectrum that impinges on the fluorescent medium while emission is taking place must fall abruptly across the Lyman edge of He II. Such a filtering action is plausibly provided by a much denser internal region, rich in helium, immediately surrounding the exploding object. This will form a Stromgren sphere during the time the intense UV pulse is passing through it. The dense region also slows down the photons below the edge by Thomson scattering, thereby spreading out the UV pulse in time. Various proposed mechanisms for the production of ionization in the Gum nebula are discussed.

  17. The chemical composition of red giants in 47 Tucanae. I. Fundamental parameters and chemical abundance patterns

    NASA Astrophysics Data System (ADS)

    Thygesen, A. O.; Sbordone, L.; Andrievsky, S.; Korotin, S.; Yong, D.; Zaggia, S.; Ludwig, H.-G.; Collet, R.; Asplund, M.; Ventura, P.; D'Antona, F.; Meléndez, J.; D'Ercole, A.

    2014-12-01

    Context. The study of chemical abundance patterns in globular clusters is key importance to constraining the different candidates for intracluster pollution of light elements. Aims: We aim at deriving accurate abundances for a wide range of elements in the globular cluster 47 Tucanae (NGC 104) to add new constraints to the pollution scenarios for this particular cluster, expanding the range of previously derived element abundances. Methods: Using tailored 1D local thermodynamic equilibrium (LTE) atmospheric models, together with a combination of equivalent width measurements, LTE, and NLTE synthesis, we derive stellar parameters and element abundances from high-resolution, high signal-to-noise spectra of 13 red giant stars near the tip of the RGB. Results: We derive abundances of a total 27 elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into account for Na, Al, and Ba. We find a mean [Fe/H] = -0.78 ± 0.07 and [ α/ Fe ] = 0.34 ± 0.03 in good agreement with previous studies. The remaining elements show good agreement with the literature, but including NLTE for Al has a significant impact on the behavior of this key element. Conclusions: We confirm the presence of an Na-O anti-correlation in 47 Tucanae found by several other works. Our NLTE analysis of Al shifts the [Al/Fe] to lower values, indicating that this may be overestimated in earlier works. No evidence of an intrinsic variation is found in any of the remaining elements. Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (Programmes 084.B-0810 and 086.B-0237).Full Tables 2, 5, and 9 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A108Appendix A is available in electronic form at http://www.aanda.org

  18. ABUNDANCES OF C, N, Sr, AND Ba ON THE RED GIANT BRANCH OF {omega} CENTAURI

    SciTech Connect

    Stanford, Laura M.; Da Costa, G. S.; Norris, John E. E-mail: gdc@mso.anu.edu.a

    2010-05-10

    Abundances relative to iron for carbon, nitrogen, strontium, and barium are presented for 33 stars on the red giant branch (RGB) of the globular cluster {omega} Centauri. They are based on intermediate-resolution spectroscopic data covering the blue spectral region analyzed using spectrum synthesis techniques. The data reveal the existence of a broad range in the abundances of these elements, and a comparison with similar data for main-sequence stars enables insight into the evolutionary history of the cluster. The majority of the RGB stars were found to be depleted in carbon, i.e., [C/Fe] < 0, while [N/Fe] for the same stars shows a range of {approx}1 dex, from [N/Fe] {approx} 0.7 to 1.7 dex. The strontium-to-iron abundance ratios varied from solar to mildly enhanced (0.0 {<=} [Sr/Fe] {<=} 0.8), with [Ba/Fe] generally equal to or greater than [Sr/Fe]. The carbon and nitrogen abundance ratios for the one known CH star in the sample, ROA 279, are [C/Fe] = 0.6 and [N/Fe] = 0.5 dex. Evidence for evolutionary mixing on the RGB is found from the fact that the relative carbon abundances on the main sequence are generally higher than those on the RGB. However, comparison of the RGB and main-sequence samples shows that the upper level of nitrogen enhancement is similar in both sets at [N/Fe] {approx} 2.0 dex. This is most likely the result of primordial rather than evolutionary mixing processes. One RGB star, ROA 276, was found to have Sr and Ba abundance ratios similar to the anomalous Sr-rich main-sequence star S2015448. High-resolution spectra of ROA 276 were obtained with the Magellan Telescope/MIKE spectrograph combination to confirm this result, revealing that ROA 276 is indeed an unusual star. For this star, calculations of the depletion effect, the potential change in surface abundance that results from the increased depth of the convective envelope as a star moves from the main sequence to the RGB, strongly suggest that the observed Sr enhancement in ROA 276 is of

  19. Properties of the giant H II regions and bar in the nearby spiral galaxy NGC 5430

    NASA Astrophysics Data System (ADS)

    Brière, É.; Cantin, S.; Spekkens, K.

    2012-09-01

    In order to better understand the impact of the bar on the evolution of spiral galaxies, we measure the properties of giant H II regions and the bar in the SB(s)b galaxy NGC 5430. We use two complementary data sets, both obtained at the Observatoire du Mont-Mégantic: a hyperspectral data cube from the imaging Fourier transform spectrograph SpIOMM (Spectromètre-Imageur à transformée de Fourier de l-Observatoire du Mont-Mégantic) and high-resolution spectra across the bar from a long-slit spectrograph. We flux-calibrate SpIOMM spectra for the first time, and produce Hα and [N II]λ6584 Å intensity maps from which we identify 51 giant H II regions in the spiral arms and bar. We evaluate the type of activity, the oxygen abundance and the age of the young populations contained in these giant H II regions and in the bar. Thus, we confirm that NGC 5430 does not harbour a strong active galactic nucleus, and that its Wolf-Rayet knot shows a pure H II region nature. We find no variation in abundance or age between the bar and spiral arms, nor as a function of galactocentric radius. These results are consistent with the hypothesis that a chemical mixing mechanism is at work in the galaxy's disc to flatten the oxygen abundance gradient. Using the STARBURST99 model, we estimate the ages of the young populations, and again find no variations in age between the bar and the arms or as a function of radius. Instead, we find evidence for two galaxy-wide waves of star formation, about 7.1 and 10.5 Myr ago. While the bar in NGC 5430 is an obvious candidate to trigger these two episodes, it is not clear how the bar could induce widespread star formation on such a short time-scale.

  20. FUNDAMENTAL PARAMETERS, INTEGRATED RED GIANT BRANCH MASS LOSS, AND DUST PRODUCTION IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    McDonald, I.; Zijlstra, A. A.; Boyer, M. L.; Gordon, K.; Meixner, M.; Sewilo, M.; Shiao, B.; Whitney, B.; Van Loon, J. Th.; Hora, J. L.; Robitaille, T.; Babler, B.; Meade, M.; Block, M.; Misselt, K.

    2011-04-01

    Fundamental parameters and time evolution of mass loss are investigated for post-main-sequence stars in the Galactic globular cluster 47 Tucanae (NGC 104). This is accomplished by fitting spectral energy distributions (SEDs) to existing optical and infrared photometry and spectroscopy, to produce a true Hertzsprung-Russell diagram. We confirm the cluster's distance as d = 4611{sup +213}{sub -200} pc and age as 12 {+-} 1 Gyr. Horizontal branch models appear to confirm that no more red giant branch mass loss occurs in 47 Tuc than in the more metal-poor {omega} Centauri, though difficulties arise due to inconsistencies between the models. Using our SEDs, we identify those stars that exhibit infrared excess, finding excess only among the brightest giants: dusty mass loss begins at a luminosity of {approx}1000 L{sub sun}, becoming ubiquitous above L = 2000 L{sub sun}. Recent claims of dust production around lower-luminosity giants cannot be reproduced, despite using the same archival Spitzer imagery.

  1. An analysis of the solar-like oscillations in the red giant star KIC 5701829 observed with KEPLER

    NASA Astrophysics Data System (ADS)

    Fox-Machado, Lester; Deras, Dan

    2015-08-01

    The preliminary results of an asteroseismic analysis of the red giant star KIC 5701829 observed for 29 d in short-cadence mode with the Kepler satellite are reported. The oscillation spectrum of this star is characterized by the presence of a well-defined solar-like oscillation pattern due to radial acoustic modes. The high-precision time series data allow us to accurately extract the oscillation frequencies from the power spectrum. The characterization of the power spectrum has been performed following three basics steps commonly used in the analysis of solar-like oscillations: fitting and correcting for the background, estimating the frequency of maximum power (nu_max) and the large separation (Dnu), and extracting individual frequencies. We find that the frequency of maximum oscillation power ,nu_max, and the mean large frequency separation, Dnu, are around 143 and 12 muHz, respectively.In order to shed more light on the structure of KIC 5701829 a seismic modeling have been carried out. The physical parameters of the stars have been derived from Stromgren photometry and spectroscopic observations. We have computed a grid of theoretical structure models for the star and the adiabatic oscillation frequencies for all the models satisfying the observational constraints. As a result we find that the star is still ascending the red-giant branch.

  2. Stellar Population Synthesis Based Modeling of the Milky Way Using Asteroseismology of 13,000 Kepler Red Giants

    NASA Astrophysics Data System (ADS)

    Sharma, Sanjib; Stello, Dennis; Bland-Hawthorn, Joss; Huber, Daniel; Bedding, Timothy R.

    2016-05-01

    With current space-based missions it is now possible to obtain age-sensitive asteroseismic information for tens of thousands of red giants. This provides a promising opportunity to study the Galactic structure and evolution. We use asteroseismic data of red giants, observed by Kepler, to test the current theoretical framework of modeling the Galaxy based on population synthesis modeling and the use of asteroseismic scaling relations for giants. We use the open source code Galaxia to model the Milky Way and find the distribution of the masses predicted by Galaxia to be systematically offset with respect to the seismically inferred observed masses. The Galactic model overestimates the number of low-mass stars, and these stars are predominantly old and of low metallicity. Using corrections to the {{Δ }}ν scaling relation suggested by stellar models significantly reduces the disagreement between predicted and observed masses. For a few cases where non-seismic mass estimates are available, the corrections to {{Δ }}ν also improve the agreement between seismic and non-seismic mass estimates. The disagreement between predictions of the Galactic model and the observations is most pronounced for stars with {{[Fe/H]}}\\lt -0.5 and {{[Fe/H]}}\\gt 0 or for {T}{{eff}}\\gt 4700 K. Altering the star formation rate in order to suppress stars older than 10 Gyr improves the agreement for mass but leads to inconsistent color distributions. We also tested the predictions of the TRILEGAL Galactic model. However, unlike Galaxia, it had difficulties in reproducing the photometric properties of the Kepler Input Catalog because it overestimates the number of blue stars. We conclude that either the scaling relations and/or the Galactic models need to be revised to reconcile predictions of theory with asteroseismic observations.

  3. DISCOVERY OF A RED GIANT WITH SOLAR-LIKE OSCILLATIONS IN AN ECLIPSING BINARY SYSTEM FROM KEPLER SPACE-BASED PHOTOMETRY

    SciTech Connect

    Hekker, S.; Debosscher, J.; De Ridder, J.; Aerts, C.; Van Winckel, H.; Beck, P. G.; Blomme, J.; Huber, D.; Hidas, M. G.; Stello, D.; Bedding, T. R.; Gilliland, R. L.; Christensen-Dalsgaard, J.; Kjeldsen, H.; Brown, T. M.; Borucki, W. J.; Koch, D.; Jenkins, J. M.; Pigulski, A.

    2010-04-20

    Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger than 0.5 AU and orbital period longer than 75 days.

  4. FUSE Cycle 3 Program CO22: Chromospheric Activity in Population II Giants

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2004-01-01

    One of the mysteries of Population II giants is that they still show chromospheric emission despite their great age. The global dynamo which was active during their main-sequence lifetimes is expected to become extremely weak through magnetic rotational braking. The nature of the observed emission is not understood; although acoustic shock waves might provide the heating, acoustic waves are not predicted to drive the observed mass loss - which in turn requires the dissipation of magneto-hydrodynamic waves. This program was designed to search for the faint stellar H Ly(beta) emission wings and the fluorescent Fe II and H2 emission from one of the brightest, metal poor, Population II stars. These FUSE diagnostics, when combined with existing UV and optical spectra, help determine the major radiative cooling channels for the chromosphere. This observation was to complement that previously planned for the mildly metal deficient giant alpha Boo (K2 III). However, a Boo has yet to be observed with FUSE.

  5. Light Phenomena over the ESO Observatories II: Red Sprites

    NASA Astrophysics Data System (ADS)

    Horálek, P.; Christensen, L. L.; Bór, J.; Setvák, M.

    2016-03-01

    A rare atmospheric phenomenon, known as red sprites, was observed and captured on camera from the La Silla Observatory. This event signalled the first time that these extremely short-lived flashes of red light, originating in the Earth’s upper atmosphere, were photographed from a major astronomical observatory. Further images of red sprites from the La Silla Paranal Observatory sites are presented and the nature of red sprites is discussed.

  6. Final Masses of Giant Planets II: Jupiter Formation in a Gas-Depleted Disk

    NASA Astrophysics Data System (ADS)

    Tanigawa, Takayuki; Tanaka, Hidekazu

    2015-12-01

    Firstly, we study the final masses of giant planets growing in protoplanetary disks through capture of disk gas, by employing an empirical formula for the gas capture rate and a shallow disk gap model, which are both based on hydrodynamical simulations. The shallow disk gaps cannot terminate growth of giant planets. For planets less massive than 10 Jupiter masses, their growth rates are mainly controlled by the gas supply through the global disk accretion, rather than their gaps. The insufficient gas supply compared with the rapid gas capture causes a depletion of the gas surface density even at the outside of the gap, which can create an inner hole in the protoplanetary disk. Our model can also predict how deep the inner hole is for a given planet mass. Secondly, our findings are applied to the formation of our solar system. For the formation of Jupiter, a very low-mass gas disk with a few or several Jupiter masses is required at the beginning of its gas capture because of the non-stopping capture. Such a low-mass gas disk with sufficient solid material can be formed through viscous evolution from an initially ˜10AU-sized compact disk with the solar composition. By the viscous evolution with a moderate viscosity of α˜10-3, most of disk gas accretes onto the sun and a widely spread low-mass gas disk remains when the solid core of Jupiter starts gas capture at t˜107 yrs. The depletion of the disk gas is suitable for explaining the high metallicity in giant planets of our solar system. A very low-mass gas disk also provides a plausible path where type I and II planetary migrations are both suppressed significantly. In particular, we also show that the type II migration of Jupiter-size planets becomes inefficient because of the additional gas depletion due to the rapid gas capture by themselves.

  7. The identification of extreme asymptotic giant branch stars and red supergiants in M33 with 24 μm variability

    SciTech Connect

    Montiel, Edward J.; Clayton, Geoffrey C.; Johnson, Christopher B.; Srinivasan, Sundar; Engelbracht, Charles W.

    2015-02-01

    We present the first detection of 24 μm variability in 24 sources in the Local Group galaxy M33. These results are based on 4 epochs of Multiband Imaging Photometer for Spitzer observations, which are irregularly spaced over ∼750 days. We find that these sources are constrained exclusively to the Holmberg radius of the galaxy, which increases their chances of being members of M33. We have constructed spectral energy distributions (SEDs) ranging from the optical to the submillimeter to investigate the nature of these objects. We find that 23 of our objects are most likely heavily self-obscured, evolved stars, while the remaining source is the Giant H ii region, NGC 604. We believe that the observed variability is the intrinsic variability of the central star reprocessed through their circumstellar dust shells. Radiative transfer modeling was carried out to determine their likely chemical composition, luminosity, and dust production rate (DPR). As a sample, our modeling has determined an average luminosity of (3.8±0.9)×10{sup 4} L{sub ⊙} and a total DPR of (2.3±0.1)×10{sup −5} M{sub ⊙} yr{sup −1}. Most of the sources, given the high DPRs and short wavelength obscuration, are likely extreme asymptotic giant branch (XAGB) stars. Five of the sources are found to have luminosities above the classical AGB limit (M{sub bol} <−7.1 mag, L > 54,000 L{sub ⊙}), which classifies them as probable red supergiants (RSGs). Almost all of the sources are classified as oxygen-rich. As also seen in the LMC, a significant fraction of the dust in M33 is produced by a handful of XAGB and RSG stars.

  8. Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints - The open cluster NGC 6633 and field stars-

    NASA Astrophysics Data System (ADS)

    Lagarde, Nadège; Miglio, Andrea; Eggenberger, Patrick; Morel, Thierry; Montalbàn, Josefina; Mosser, Benoit

    2015-08-01

    The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations.We use the first detailed spectroscopic study of CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars.In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch.We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. Tighter constraints on the physics of the models would be possible if there were detailed knowledge of the core rotation rate and the asymptotic period spacing.

  9. Al-26 from red giants. [connections with anomalous Mg-26 content in meteorites and solar system formation

    NASA Technical Reports Server (NTRS)

    Norgaard, H.

    1980-01-01

    Simplified models of thermally pulsing red giants are investigated, with particular emphasis on predicting the extent to which nuclear processing at the base of the convective envelope in conjunction with processing in the thermally unstable He shell can synthesize Al-26 (tau/1/2/ = 7.2 x 10 to the 5th yr). Values of Al-26/Al-27 of about 0.5-1, with Al-27/Al-27(solar) of about 1-2, are predicted in some cases. It is pointed out that such results can lead to isotope shifts in the absorption lines of AlH and AlO, which should be observationally identifiable in some late-type supergiants. The possible connection with the anomalous Mg-26 content (assigned to the decay of Al-26) detected in some meteorites and the connection with formation of the solar system are also touched on.

  10. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    SciTech Connect

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaeel E-mail: iii@physics.utah.edu E-mail: patrick.francois@obspm.fr E-mail: richard.monier@unice.fr

    2013-02-10

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  11. Star-to-star Iron Abundance Variations in Red Giant Branch Stars in the Galactic Globular Cluster NGC 3201

    NASA Astrophysics Data System (ADS)

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël

    2013-02-01

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  12. The Araucaria Project: On the Tip of the Red Giant Branch Distance Determination to the Magellanic Clouds.

    NASA Astrophysics Data System (ADS)

    Górski, Marek; Pietrzyński, Grzegorz; Gieren, Wolfgang; Catelan, Márcio; Pilecki, Bogumił; Karczmarek, Paulina; Suchomska, Ksenia; Graczyk, Dariusz; Konorski, Piotr; Zgirski, Bartłomiej; Wielgórski, Piotr

    2016-06-01

    We present a precise optical and near-infrared determination of the tip of the red giant branch (TRGB) brightness in the Large and Small Magellanic Clouds (respectively, LMC and SMC). The commonly used calibrations of the absolute magnitude of the TRGB lead to an overestimation of the distance to the LMC and SMC in the K band, and an underestimation of the distance in the optical I band for both galaxies. Reported discrepancies are at the level of 0.2 mag, with respect to the very accurate distance determinations to both MCs based on late-type eclipsing binaries. The differential distances between the LMC and SMC obtained in the J and K bands, and for the bolometric brightness are consistent with each other, and with the results obtained from eclipsing binaries and other distance indicators.

  13. THREE DISCRETE GROUPS WITH HOMOGENEOUS CHEMISTRY ALONG THE RED GIANT BRANCH IN THE GLOBULAR CLUSTER NGC 2808

    SciTech Connect

    Carretta, E.

    2014-11-10

    We present the homogeneous reanalysis of Mg and Al abundances from high resolution UVES/FLAMES spectra for 31 red giants in the globular cluster NGC 2808. We found a well defined Mg-Al anticorrelation reaching a regime of subsolar Mg abundance ratios, with a spread of about 1.4 dex in [Al/Fe]. The main result from the improved statistics of our sample is that the distribution of stars is not continuous along the anticorrelation because they are neatly clustered into three distinct clumps, each with different chemical compositions. One group (P) shows a primordial composition of field stars of similar metallicity, and the other two (I and E) have increasing abundances of Al and decreasing abundances of Mg. The fraction of stars we found in the three components (P: 68%, I: 19%, E: 13%) is in excellent agreement with the ratios computed for the three distinct main sequences in NGC 2808: for the first time there is a clear correspondence between discrete photometric sequences of dwarfs and distinct groups of giants with homogeneous chemistry. The composition of the I group cannot be reproduced by mixing of matter with extreme processing in hot H-burning and gas with pristine, unprocessed composition, as also found in the recent analysis of three discrete groups in NGC 6752. This finding suggests that different classes of polluters were probably at work in NGC 2808 as well.

  14. THE FRAGMENTING PAST OF THE DISK AT THE GALACTIC CENTER: THE CULPRIT FOR THE MISSING RED GIANTS

    SciTech Connect

    Amaro-Seoane, Pau; Chen, Xian E-mail: Xian.Chen@aei.mpg.de

    2014-01-20

    Since 1996 we have known that the Galactic Center (GC) displays a core-like distribution of red giant branch (RGB) stars starting at ∼10'', which poses a theoretical problem because the GC should have formed a segregated cusp of old stars. This issue has been addressed invoking stellar collisions, massive black hole binaries, and infalling star clusters, which can explain it to some extent. Another observational fact, key to the work presented here, is the presence of a stellar disk at the GC. We postulate that the reason for the missing stars in the RGB is closely intertwined with the disk formation process, which initially was gaseous and went through a fragmentation phase to form the stars. Using simple analytical estimates, we prove that during fragmentation the disk developed regions with densities much higher than a homogeneous gaseous disk, i.e., ''clumps'', which were optically thick, and hence contracted slowly. Stars in the GC interacted with them and in the case of RGB stars, the clumps were dense enough to totally remove their outer envelopes after a relatively low number of impacts. Giant stars in the horizontal branch (HB), however, have much denser envelopes. Hence, the fragmentation phase of the disk must have had a lower impact on their distribution, because it was more difficult to remove their envelopes. We predict that future deeper observations of the GC should reveal less depletion of HB stars and that the released dense cores of RGB stars will still be populating the GC.

  15. OGLE-III DETECTION OF THE ANOMALOUS GALACTIC BULGE RED GIANT BRANCH BUMP: EVIDENCE OF ENHANCED HELIUM ENRICHMENT

    SciTech Connect

    Nataf, D. M.; Gould, A.; Pinsonneault, M. H.; Udalski, A.

    2011-04-01

    We measure the red giant branch bump (RGBB) of the Galactic bulge, the most metal-rich RGBB ever detected. The RGBB luminosity function peaks at the expected brightness, but its number density is very low relative to Galactic globular cluster calibrations, implying the Galactic bulge has a higher helium enrichment parameter {Delta}Y/{Delta}Z {>=} 4.0 for Y {approx} 0.35 rather than the standard 2.0 with Y = 0.27, which we suggest may be a common feature of galactic spheroids. The RGBB is (0.71 {+-} 0.02) mag fainter than the red clump (RC) in I toward the densest stellar regions imaged by the OGLE-III Galactic bulge photometric survey, (|l| {<=} 4, 2 {approx}< |b| {<=} 4). The number density of RGBB stars is (12.7 {+-} 2.0)% that of RC stars. The brightness dispersion of the RGBB is significantly lower than that of the RC, a result that is difficult to explain as the RGBB luminosity is known to vary significantly with metallicity. Sight lines that have two RCs have two RGBBs with similar properties to one another, an expected outcome if the Milky Way's bulge is X-shaped. We also find preliminary evidence of the Galactic bulge asymptotic giant branch bump, at a brightness of {approx}1.06 mag brighter than the RC in I and with a number density {approx}1.5% that of the RC. Accounting for the RGBB has a small effect on the best-fit parameters of the RC, shifting its best-fit peak brightness and reducing its brightness dispersion by {approx}0.015 mag each.

  16. Double-core evolution. 5: Three-dimensional effects in the merger of a red giant with a dwarf companion

    NASA Technical Reports Server (NTRS)

    Terman, James L.; Taam, Ronald E.; Hernquist, Lars

    1994-01-01

    The evolution of the common envelope phase of a binary system consisting of a 4.67 solar mass red giant and a 0.94 solar mass dwarf is studied using smoothed particle hydrodynamics. We demonstrate that the three-dimensional effects associated with the gravitational tidal torques lead to a rapid decay of the orbit on timescales approximately less than 1 yr. The relative orbit of the two cores in the common envelope is initally eccentric and tends to circularize as the orbital separation of the two cores decreases. The angular momentum lost from the orbital motion is distributed throughout the common envelope, and the double core does not evolve to a state of co-rotation for the evolutionary time followed. The energy dissipated from the relative orbit and deposited in the common envelope results in the ejection of approximately 13% of the mass of the envelope. The mass is ejected in all directions, but there is a preference for mass ejection in the orbital plane of the binary system. For example, approximately 80% of the ejected mass lies within 30 deg of the binary orbital plane. Because gravitational forces are long range, most of the energy and angular momentum is imparted to a small fraction of the common envelope resulting in an efficiency of the mass ejection process of approximately 15%. The core of the red giant executes significant displacement with respect to the center of mass of the system and contributes nearly equally to the total energy dissipation rate during the latter phases of the evolution. The degree of departure from synchronism of the initial binary system can be an important property of the system which can affect the outcome of the common envelope phase.

  17. Lithium abundance in the globular cluster M4: from the turn-off to the red giant branch bump

    NASA Astrophysics Data System (ADS)

    Mucciarelli, A.; Salaris, M.; Lovisi, L.; Ferraro, F. R.; Lanzoni, B.; Lucatello, S.; Gratton, R. G.

    2011-03-01

    We present Li and Fe abundances for 87 stars in the globular cluster M4, obtained by using high-resolution spectra collected with GIRAFFE at the Very Large Telescope. The targets range from the turn-off up to the red giant branch bump. The Li abundance in the turn-off stars is uniform, with an average value equal to A(Li)= 2.30 ± 0.02 dex (σ= 0.10 dex), consistent with the upper envelope of Li content measured in other globular clusters and in the halo field stars, confirming also for M4 the discrepancy with the primordial Li abundance predicted by Wilkinson Microwave Anisotropy Probe+ big bang nucleosynthesis (WMAP+BBNS). The global behaviour of A(Li) as a function of the effective temperature allows us to identify the two main drops in the Li evolution due to the first dredge-up and to the extra-mixing episode after the red giant branch bump. The measured iron content of M4 results to [Fe/H]=-1.10 ± 0.01 dex (σ= 0.07 dex), with no systematic offsets between dwarf and giant stars. The behaviour of the Li and Fe abundances along the entire evolutionary path is incompatible with theoretical models including pure atomic diffusion, pointing out that an additional turbulent mixing below the convective region needs to be taken into account, able to inhibit the atomic diffusion. The measured value of A(Li) and its homogeneity in the turn-off stars allow us to put strong constraints on the shape of the Li profile inside the M4 turn-off stars. The global behaviour of A(Li) with the effective temperature can be reproduced with different pristine Li abundances, depending on the kind of adopted turbulent mixing. One cannot reproduce the global trend that starts from the WMAP+BBNS A(Li) and adopts the turbulent mixing described by Richard, Michaud & Richer with the same efficiency as that used by Korn et al. to explain the Li content in NGC 6397. In fact, such a solution is not able to well reproduce simultaneously the Li abundance observed in turn-off and red giant branch

  18. Evaluation of natural colorants and their application on citrus fruit as alternatives to citrus red II

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The poor peel color of some varieties of oranges and the hybrids, especially for early season fruits, is caused by the subtropical climate of Florida, and has resulted in the use of a red dye on the peel to improve fruit appearance and marketability. Citrus Red II (CR2), the commercial citrus color ...

  19. Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris.

    PubMed

    Maercker, M; Mohamed, S; Vlemmings, W H T; Ramstedt, S; Groenewegen, M A T; Humphreys, E; Kerschbaum, F; Lindqvist, M; Olofsson, H; Paladini, C; Wittkowski, M; de Gregorio-Monsalvo, I; Nyman, L-A

    2012-10-11

    The asymptotic-giant-branch star R Sculptoris is surrounded by a detached shell of dust and gas. The shell originates from a thermal pulse during which the star underwent a brief period of increased mass loss. It has hitherto been impossible to constrain observationally the timescales and mass-loss properties during and after a thermal pulse--parameters that determine the lifetime of the asymptotic giant branch and the amount of elements returned by the star. Here we report observations of CO emission from the circumstellar envelope and shell around R Sculptoris with an angular resolution of 1.3″. What was previously thought to be only a thin, spherical shell with a clumpy structure is revealed to also contain a spiral structure. Spiral structures associated with circumstellar envelopes have been previously seen, leading to the conclusion that the systems must be binaries. Combining the observational data with hydrodynamic simulations, we conclude that R Sculptoris is a binary system that underwent a thermal pulse about 1,800 years ago, lasting approximately 200 years. About 3 × 10(-3) solar masses of material were ejected at a velocity of 14.3 km s(-1) and at a rate around 30 times higher than the pre-pulse mass-loss rate. This shows that about three times more mass was returned to the interstellar medium during and immediately after the pulse than previously thought. PMID:23060194

  20. Rapid Rotation of Low-mass Red Giants Using APOKASC: A Measure of Interaction Rates on the Post-main-sequence

    NASA Astrophysics Data System (ADS)

    Tayar, Jamie; Ceillier, Tugdual; García-Hernández, D. A.; Troup, Nicholas W.; Mathur, Savita; García, Rafael A.; Zamora, O.; Johnson, Jennifer A.; Pinsonneault, Marc H.; Mészáros, Szabolcs; Allende Prieto, Carlos; Chaplin, William J.; Elsworth, Yvonne; Hekker, Saskia; Nidever, David L.; Salabert, David; Schneider, Donald P.; Serenelli, Aldo; Shetrone, Matthew; Stello, Dennis

    2015-07-01

    We investigate the occurrence rate of rapidly rotating (v{sin}i >10 km s-1), low-mass giant stars in the Apache Point Observatory Galaxy Evolution Experiment-Kepler (APOKASC) fields with asteroseismic mass and surface gravity measurements. Such stars are likely merger products and their frequency places interesting constraints on stellar population models. We also identify anomalous rotators, i.e., stars with 5 km s-1 < v{sin}i < 10 km s-1 that are rotating significantly faster than both angular momentum evolution predictions and the measured rates of similar stars. Our data set contains fewer rapid rotators than one would expect given measurements of the Galactic field star population, which likely indicates that asteroseismic detections are less common in rapidly rotating red giants. The number of low-mass moderate (5-10 km s-1) rotators in our sample gives a lower limit of 7% for the rate at which low-mass stars interact on the upper red giant branch because single stars in this mass range are expected to rotate slowly. Finally, we classify the likely origin of the rapid or anomalous rotation where possible. KIC 10293335 is identified as a merger product and KIC 6501237 is a possible binary system of two oscillating red giants.

  1. Compulsory Deep Mixing of 3He and CNO Isotopes in the Envelopes of low-mass Red Giants

    SciTech Connect

    Eggleton, P P; Dearborn, D P; Lattanzio, J C

    2007-03-20

    Three-dimensional stellar modeling has enabled us to identify a deep-mixing mechanism that must operate in all low mass giants. This mixing process is not optional, and is driven by a molecular weight inversion created by the {sup 3}He({sup 3}He,2p){sup 4}He reaction. In this paper we characterize the behavior of this mixing, and study its impact on the envelope abundances. It not only eliminates the problem of {sup 3}He overproduction, reconciling stellar and big bang nucleosynthesis with observations, but solves the discrepancy between observed and calculated CNO isotope ratios in low mass giants, a problem of more than 3 decades standing. This mixing mechanism operates rapidly once the hydrogen burning shell approaches the material homogenized by the surface convection zone. In agreement with observations, Pop I stars between 0.8 and 2.0 M{sub {circle_dot}} develop {sup 12}C/{sup 13}C ratios of 14.5 {+-} 1.5, while Pop II stars process the carbon to ratios of 4.0 {+-} 0.5. In stars less than 1.25 M{sub {circle_dot}}, this mechanism also destroys 90% to 95% of the {sup 3}He produced on the main sequence.

  2. Rotation and macroturbulence in bright giants

    SciTech Connect

    Gray, D.F.; Toner, C.G.

    1986-11-01

    Spectral line profiles of 35 F, G, and K bright giants were analyzed to obtain rotation rates, v sin i, and macroturbulence dispersion. This sample indicates that rotation rates of cool class II giants is less than 11 km/s, in contrast with some recent periodicity measurements. Macroturbulence dispersion generally increases with effective temperature, but the range of values at a given effective temperature is much larger than seen for lower luminosity classes; this is interpreted in terms of red-giant and blue-loop evolution. No evidence is found for angular momentum dissipation on the first crossing of the H-R diagram. 57 references.

  3. ATCA Detects Cometary-Shaped Objects In the Giant H II Region

    NASA Technical Reports Server (NTRS)

    Mucke, A.; Koribalski, B. S.; Moffat, A. F. J.; Cororan, M. F.; Stevens, I. R.; White, Nicholas E.

    2002-01-01

    Three protoplanetary disks in the giant H II region NGC 3603, originally found by HST (Hubble Space Telescope) + VLT (Very Large Telescope), have been detected with the ATCA (Australia Telescope Compact Array) at 3 and 6 cm. All three ProPlyDs (protoplanetary disks) are clearly resolved, showing a head-tail extent of approx. 4 inches. Proplyd 3 shows the most pronounced head-tail structure with a 3 cm flux density ratio between head and tail of about 10:1. The tail is very well defined and at least 2 inches long, pointing away from the central star cluster. Unfortunately, ProPlyD 3 is rather faint in the low-sensitivity HST broad band image shown by Brandner et al.; it is located outside the region of their high sensitivity HST H(alpha) image.

  4. Physical conditions near red giant and supergiant stars - An interpretation of SiO VLBI maps

    NASA Technical Reports Server (NTRS)

    Alcock, Charles; Ross, Randy R.

    1986-01-01

    Understanding the dynamical structure of circumstellar envelopes around cool giant and supergiant stars depends critically on the knowledge of what happens in the 'near zone' of the envelope, within a few stellar radii of the star. One probe with adequate angular resolution to study the near zone is VLBI observation of the SiO masers. It is shown that VLBI maps of VX Sgr establish that the particle density in the SiO masers is very high (about 10 to the 12th/cu cm), indicating that the masers form in dense cloudlets and not in a spherically expanding wind. The implications of these results for the mechanism of mass loss are discussed.

  5. Interferometric Mapping of SIO J=2-1 V=0 Emission from the Mass-Loss Envelopes of Red Giants

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Bieging, J.; Wilner, D.

    Radiation-pressure on grains is widely held responsible for accelerating the mass-outflows in red giants to their terminal velocity - however, the question of how and where circumstellar dust condenses still remains unanswered. In oxygen-rich envelopes, refractory elements like Si are the probable constituents of grains, thus observations leading to a determination of the radial abudnance of Si-bearing molecules, such as SiO, can provide a unique probe of dust-related physical processes. Though the depletion of Si can occur through the condensation of substantial amounts of solid silicates close to the star, indicated by the rpesence of a broad 9 micron spectral feature, the strong SiO masers observed in these sources require a substantial fraction of the Si coming off the star to be in SiO- an alternate hypothesis suggests that SiO is depleted by adhesion onto cold grains at large circumstellar radii (approx. 1016 cm). In order to investigate th depletion of SiO in circumstellar envelopes, we have used the Hatcreek millimeter interferometer (B-array) to map the SiO J=2-1 (v=0) 86 GHz line emission from 3 nearby red giants IK Tau, RX Boo, and Chi Cyg, with spatial resolution approx. 7". The emission is largely circulalry symmetric, and marginally resolved (Fig. 1a, 2a). The deconvolved source-sizes are roughly less than or equal to 4.5" (approx. 1016 cm). The on-source spectra show rounded profiles, indicating optically-thick emission (Figs. 1b, 2b) with line-center intensities up to approx. 20K. The small spatial extent of the emission, high brightness temperature and large optical depth, imply that [SiO]/[H2] starts decreasing significantly at radii approaching 1016 cm - favouring the depletion of SiO by adhesion onto grains at this radius. Modelling of IRAM 30m (27" HPBW) SiO J=2-1 (v=0) data for several red giants (including our objects), also shows that [SiO]/[H2] is higher in the inner regions of the envelopes. Out future A-array mapping (resolution 2") will

  6. A novel multi-scale analysis to determine red giant branch metallicities of Milky Way dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Rodgers, Christopher Thomas

    , (U--R)0 color-magnitude diagram plane as a way to roughly calculate metallicities of red giant branches in old, metal poor, complex stellar populations. For MI = 0, -1, and -2, I produce histograms in a discrete multi-scale method to uncover blended sub-populations within the red giant branches. I use the massive globular cluster, o Centauri, as a test population to show the soundness of the method. Then the method is used to uncover a second possible sub-population in both the Draco and Ursa Minor dwarf spheroidal galaxies for the first time.

  7. A Comparison Between the Patterns of CN, O, and Na Inhomogeneities on the Red Giant Branch of Messier 71 Using Data from the Literature

    NASA Astrophysics Data System (ADS)

    Smith, Graeme H.

    2015-12-01

    Data drawn from the published literature are used to define the relations between the spectroscopic λ4215 CN-band strength of red giants in the globular cluster Messier 71 and both the sodium and oxygen abundances. The cluster giants with CN measurements included in this study have absolute magnitudes in the range -2 < MV < +2. The data are consistent with a moderate degree of anticorrelation between the CN-band strength and the [O/Fe] abundance, as well as a moderate correlation between CN-band strength and [Na/Fe], although there is scatter of up to 0.3-0.4 dex in both O and Na abundance among giants with CN bands of similar strength. The mean difference in [O/Fe] between CN-strong and CN-weak giants is 0.13 dex, the former group of stars having the lower average oxygen abundance. By contrast, the mean difference in [Na/Fe] between CN-strong and CN-weak giants is 0.17 dex, with the CN-strong group having the higher average sodium abundance. There is a similar range in λ4215 CN-band strengths among the red giants in Messier 71 and 47 Tucanae. Furthermore, the red giant branch stars in the two clusters follow very similar relations between CN-band strength and [Na/Fe] abundance. These two similarities are intriguing given that the two clusters differ by a factor of 30 or more in luminous mass, with 47 Tuc having a much higher degree of central mass concentration than M71. A difference can be discerned between the O-CN relations in the two clusters, such that for a given CN-band strength the CN-strong giants in 47 Tuc attain lower values of [O/Fe], a result that is consistent with previously noted differences in the O-Na relations of the two objects. A scenario is discussed in which both 47 Tuc and M71 were formed as the mergers of pre-existing CN-weak and CN-strong subclusters, the later having been formed following chemical evolution and self-enrichment of a large cloud complex that had earlier formed the CN-weak subcluster. Different dynamical merger routes may

  8. A close halo of large transparent grains around extreme red giant stars.

    PubMed

    Norris, Barnaby R M; Tuthill, Peter G; Ireland, Michael J; Lacour, Sylvestre; Zijlstra, Albert A; Lykou, Foteini; Evans, Thomas M; Stewart, Paul; Bedding, Timothy R

    2012-04-12

    An intermediate-mass star ends its life by ejecting the bulk of its envelope in a slow, dense wind. Stellar pulsations are thought to elevate gas to an altitude cool enough for the condensation of dust, which is then accelerated by radiation pressure, entraining the gas and driving the wind. Explaining the amount of mass loss, however, has been a problem because of the difficulty of observing tenuous gas and dust only tens of milliarcseconds from the star. For this reason, there is no consensus on the way sufficient momentum is transferred from the light from the star to the outflow. Here we report spatially resolved, multiwavelength observations of circumstellar dust shells of three stars on the asymptotic giant branch of the Hertzsprung-Russell diagram. When imaged in scattered light, dust shells were found at remarkably small radii (less than about two stellar radii) and with unexpectedly large grains (about 300 nanometres in radius). This proximity to the photosphere argues for dust species that are transparent to the light from the star and, therefore, resistant to sublimation by the intense radiation field. Although transparency usually implies insufficient radiative pressure to drive a wind, the radiation field can accelerate these large grains through photon scattering rather than absorption--a plausible mass loss mechanism for lower-amplitude pulsating stars. PMID:22498626

  9. The origin of broad emission lines in the extragalactic giant H II region NGC 2363

    NASA Technical Reports Server (NTRS)

    Roy, Jean-Rene; Aube, Martin; Mccall, Marshall L.; Dufour, R. J.

    1992-01-01

    High signal-to-noise long-slit spectra have been obtained of the giant H II region NGC 2363 located in the dwarf SBm galaxy NGC 2366. A discovery of low-intensity broad spectral components (FWHM is approximately equal to 40 A or 2400 km/s) in the bright nebular lines H-alpha, H-beta, and forbidden O III is reported. The broad spectral components are detected over a large spatial extent (not less than 500 pc) centered on the nebula. Several mechanisms for broadening nebular lines are explored: stellar winds, Thomson scattering by hot gas, supernova remnants, and superbubble blowout. All mechanisms have problems. Superbubble blowout, which is the only known mechanism capable of accelerating interstellar gas over such a volume of space, does not appear consistent with the physical properties of the H II region NGC 2363 or with the nature of the host galaxy. It is concluded that the broad nebular lines are probably due to very high velocity gas whose origin is, at present, unknown.

  10. A white dwarf companion to the main-sequence star 4 Omicron(1) Orionis and the binary hypothesis for the origin of peculiar red giants

    NASA Technical Reports Server (NTRS)

    Ake, Thomas B.; Johnson, Hollis R.

    1988-01-01

    Ultraviolet spectra of the peculiar red giants (PRGs) called MS stars are investigated, and the discovery of a white dwarf (WD) companion to the MS star 4 Omicron(1) Orionis is reported. The observations and data analysis are discussed and compared with those for field WDs in order to derive parameters for the WD and the luminosity of the primary. Detection limits for the other MS stars investigated are derived, and the binary hypothesis for PRGs is reviewed.

  11. On Potassium and Other Abundance Anomalies of Red Giants in NGC 2419

    NASA Astrophysics Data System (ADS)

    Iliadis, C.; Karakas, A. I.; Prantzos, N.; Lattanzio, J. C.; Doherty, C. L.

    2016-02-01

    Globular clusters are of paramount importance for testing theories of stellar evolution and early galaxy formation. Strong evidence for multiple populations of stars in globular clusters derives from observed abundance anomalies. A puzzling example is the recently detected Mg-K anticorrelation in NGC 2419. We perform Monte Carlo nuclear reaction network calculations to constrain the temperature-density conditions that gave rise to the elemental abundances observed in this elusive cluster. We find a correlation between stellar temperature and density values that provide a satisfactory match between simulated and observed abundances in NGC 2419 for all relevant elements (Mg, Si, K, Ca, Sc, Ti, and V). Except at the highest densities (ρ ≳ 108 g cm-3), the acceptable conditions range from ≈100 MK at ≈108 g cm-3 to ≈200 MK at ≈10-4 g cm-3. This result accounts for uncertainties in nuclear reaction rates and variations in the assumed initial composition. We review hydrogen-burning sites and find that low-mass stars, asymptotic giant branch (AGB) stars, massive stars, or supermassive stars cannot account for the observed abundance anomalies in NGC 2419. Super-AGB stars could be viable candidates for the polluter stars if stellar model parameters can be fine-tuned to produce higher temperatures. Novae, involving either CO or ONe white dwarfs, could be interesting polluter candidates, but a current lack of low-metallicity nova models precludes firmer conclusions. We also discuss whether additional constraints for the first-generation polluters can be obtained by future measurements of oxygen, or by evolving models of second-generation low-mass stars with a non-canonical initial composition.

  12. Three-dimensional computer simulations of feeding behaviour in red and giant pandas relate skull biomechanics with dietary niche partitioning.

    PubMed

    Figueirido, Borja; Tseng, Zhijie Jack; Serrano-Alarcón, Francisco J; Martín-Serra, Alberto; Pastor, Juan F

    2014-01-01

    The red (Ailurus fulgens) and giant (Ailuropoda melanoleuca) pandas are mammalian carnivores convergently adapted to a bamboo feeding diet. However, whereas Ailurus forages almost entirely on younger leaves, fruits and tender trunks, Ailuropoda relies more on trunks and stems. Such difference in foraging mode is considered a strategy for resource partitioning where they are sympatric. Here, we use finite-element analysis to test for mechanical differences and similarities in skull performance between Ailurus and Ailuropoda related to diet. Feeding simulations suggest that the two panda species have similar ranges of mechanical efficiency and strain energy profiles across the dentition, reflecting their durophagous diet. However, the stress distributions and peaks in the skulls of Ailurus and Ailuropoda are remarkably different for biting at all tooth locations. Although the skull of Ailuropoda is capable of resisting higher stresses than the skull of Ailurus, the latter is able to distribute stresses more evenly throughout the skull. These differences in skull biomechanics reflect their distinct bamboo feeding preferences. Ailurus uses repetitive chewing in an extended mastication to feed on soft leaves, and Ailuropoda exhibits shorter and more discrete periods of chomp-and-swallow feeding to break down hard bamboo trunks. PMID:24718096

  13. RED GIANT BRANCH BUMP BRIGHTNESS AND NUMBER COUNTS IN 72 GALACTIC GLOBULAR CLUSTERS OBSERVED WITH THE HUBBLE SPACE TELESCOPE

    SciTech Connect

    Nataf, David M.; Gould, Andrew P.; Pinsonneault, Marc H.; Udalski, Andrzej

    2013-04-01

    We present the broadest and most precise empirical investigation of red giant branch bump (RGBB) brightness and number counts ever conducted. We implement a new method and use data from two Hubble Space Telescope globular cluster (GC) surveys to measure the brightness and star counts of the RGBB in 72 GCs. The median measurement precision is 0.018 mag in the brightness and 31% in the number counts, respectively, reaching peak precision values of 0.005 mag and 10%. The position of the main-sequence turnoff and the number of horizontal branch stars are used as comparisons where appropriate. Several independent scientific conclusions are newly possible with our parameterization of the RGBB. Both brightness and number counts are shown to have second parameters in addition to their strong dependence on metallicity. The RGBBs are found to be anomalous in the GCs NGC 2808, 5286, 6388, and 6441, likely due to the presence of multiple populations. Finally, we use our empirical calibration to predict the properties of the Galactic bulge RGBB. The updated RGBB properties for the bulge are shown to differ from the GC-calibrated prediction, with the former having lower number counts, a lower brightness dispersion, and a brighter peak luminosity than would be expected from the latter. This discrepancy is well explained by the Galactic bulge having a higher helium abundance than expected from GCs, {Delta}Y {approx} +0.06 at the median metallicity.

  14. Three-dimensional computer simulations of feeding behaviour in red and giant pandas relate skull biomechanics with dietary niche partitioning

    PubMed Central

    Figueirido, Borja; Tseng, Zhijie Jack; Serrano-Alarcón, Francisco J.; Martín-Serra, Alberto; Pastor, Juan F.

    2014-01-01

    The red (Ailurus fulgens) and giant (Ailuropoda melanoleuca) pandas are mammalian carnivores convergently adapted to a bamboo feeding diet. However, whereas Ailurus forages almost entirely on younger leaves, fruits and tender trunks, Ailuropoda relies more on trunks and stems. Such difference in foraging mode is considered a strategy for resource partitioning where they are sympatric. Here, we use finite-element analysis to test for mechanical differences and similarities in skull performance between Ailurus and Ailuropoda related to diet. Feeding simulations suggest that the two panda species have similar ranges of mechanical efficiency and strain energy profiles across the dentition, reflecting their durophagous diet. However, the stress distributions and peaks in the skulls of Ailurus and Ailuropoda are remarkably different for biting at all tooth locations. Although the skull of Ailuropoda is capable of resisting higher stresses than the skull of Ailurus, the latter is able to distribute stresses more evenly throughout the skull. These differences in skull biomechanics reflect their distinct bamboo feeding preferences. Ailurus uses repetitive chewing in an extended mastication to feed on soft leaves, and Ailuropoda exhibits shorter and more discrete periods of chomp-and-swallow feeding to break down hard bamboo trunks. PMID:24718096

  15. The Chemical Composition of Red Giant Branch Stars in the Galactic Globular Clusters NGC 6342 and NGC 6366

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Pilachowski, Catherine A.; Hsyu, Tiffany

    2016-07-01

    We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high-resolution (R ≳ 20,000) spectra obtained with the MMT–Hectochelle and WIYN–Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km s‑1 (σ = 8.6 km s‑1), NGC 6366 has a heliocentric radial velocity of ‑122.3 km s‑1 (σ = 1.5 km s‑1), and both clusters have nearly identical metallicities ([Fe/H] ≈ ‑0.55). NGC 6366 shows evidence of a moderately extended O–Na anti-correlation, but more data are needed for NGC 6342 to determine if this cluster also exhibits the typical O–Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC 6342 and NGC 6366 display α and Fe-peak element abundance patterns that are typical of other metal-rich ([Fe/H] > ‑1) inner Galaxy clusters. However, the median [La/Fe] abundance may vary from cluster-to-cluster.

  16. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe.

    PubMed

    Li, Weidong; Bloom, Joshua S; Podsiadlowski, Philipp; Miller, Adam A; Cenko, S Bradley; Jha, Saurabh W; Sullivan, Mark; Howell, D Andrew; Nugent, Peter E; Butler, Nathaniel R; Ofek, Eran O; Kasliwal, Mansi M; Richards, Joseph W; Stockton, Alan; Shih, Hsin-Yi; Bildsten, Lars; Shara, Michael M; Bibby, Joanne; Filippenko, Alexei V; Ganeshalingam, Mohan; Silverman, Jeffrey M; Kulkarni, S R; Law, Nicholas M; Poznanski, Dovi; Quimby, Robert M; McCully, Curtis; Patel, Brandon; Maguire, Kate; Shen, Ken J

    2011-12-15

    Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10-100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf. PMID:22170681

  17. Disruption of a Red Giant Star by a Supermassive Black Hole and the Case of PS1-10jh

    NASA Astrophysics Data System (ADS)

    Bogdanović, Tamara; Cheng, Roseanne M.; Amaro-Seoane, Pau

    2014-06-01

    The development of a new generation of theoretical models for tidal disruptions is timely, as increasingly diverse events are being captured in surveys of the transient sky. Recently, Gezari et al. reported a discovery of a new class of tidal disruption events: the disruption of a helium-rich stellar core, thought to be a remnant of a red giant (RG) star. Motivated by this discovery and in anticipation of others, we consider tidal interaction of an RG star with a supermassive black hole (SMBH) which leads to the stripping of the stellar envelope and subsequent inspiral of the compact core toward the black hole. Once the stellar envelope is removed the inspiral of the core is driven by tidal heating as well as the emission of gravitational radiation until the core either falls into the SMBH or is tidally disrupted. In the case of the tidal disruption candidate PS1-10jh, we find that there is a set of orbital solutions at high eccentricities in which the tidally stripped hydrogen envelope is accreted by the SMBH before the helium core is disrupted. This places the RG core in a portion of parameter space where strong tidal heating can lift the degeneracy of the compact remnant and disrupt it before it reaches the tidal radius. We consider how this sequence of events explains the puzzling absence of the hydrogen emission lines from the spectrum of PS1-10jh and gives rise to its other observational features.

  18. SIMULATING THE COMMON ENVELOPE PHASE OF A RED GIANT USING SMOOTHED-PARTICLE HYDRODYNAMICS AND UNIFORM-GRID CODES

    SciTech Connect

    Passy, Jean-Claude; Mac Low, Mordecai-Mark; De Marco, Orsola; Fryer, Chris L.; Diehl, Steven; Rockefeller, Gabriel; Herwig, Falk; Oishi, Jeffrey S.; Bryan, Greg L.

    2012-01-01

    We use three-dimensional hydrodynamical simulations to study the rapid infall phase of the common envelope (CE) interaction of a red giant branch star of mass equal to 0.88 M{sub Sun} and a companion star of mass ranging from 0.9 down to 0.1 M{sub Sun }. We first compare the results obtained using two different numerical techniques with different resolutions, and find very good agreement overall. We then compare the outcomes of those simulations with observed systems thought to have gone through a CE. The simulations fail to reproduce those systems in the sense that most of the envelope of the donor remains bound at the end of the simulations and the final orbital separations between the donor's remnant and the companion, ranging from 26.8 down to 5.9 R{sub Sun }, are larger than the ones observed. We suggest that this discrepancy vouches for recombination playing an essential role in the ejection of the envelope and/or significant shrinkage of the orbit happening in the subsequent phase.

  19. Investigating the Consistency of Stellar Evolution Models with Globular Cluster Observations via the Red Giant Branch Bump

    NASA Astrophysics Data System (ADS)

    Joyce, Meridith; Chaboyer, Brian

    2016-01-01

    Synthetic Red Giant Branch Bump (RGBB) magnitudes are generated with the most recent theoretical stellar evolution models computed with the Dartmouth Stellar Evolution Program (DSEP) code. They are compared to the observational work of Nataf et al. (2013), who present RGBB magnitudes for 72 globular clusters. A DSEP model using a chemical composition with enhanced α capture [α/Fe] =+0.4 and an age of 13 Gyr shows agreement with observations over metallicities ranging from [Fe/H] = 0 to [Fe/H] ≈-1.5, with discrepancy emerging at lower metallicities. A model-independent, density-based outlier detection routine known as the Local Outlying Factor (LOF) algorithm is applied to the observations in order to identify clusters that deviate most in magnitude-metallicity space from the bulk of the observations. Our model's fit is scrutinized with a series of χ^2 routines performed on subsets of the data from which highly anomalous clusters have been selectively removed based on LOF identification. In particular, NGCs 6254, 6681, 6218, and 1904 are tagged recurrently as outliers. The effects of systematic and non-systematic error in metallicity are assessed, and the robustness of observational error bars is investigated.

  20. Disruption of a red giant star by a supermassive black hole and the case of PS1-10jh

    SciTech Connect

    Bogdanović, Tamara; Cheng, Roseanne M.; Amaro-Seoane, Pau E-mail: rcheng@gatech.edu

    2014-06-20

    The development of a new generation of theoretical models for tidal disruptions is timely, as increasingly diverse events are being captured in surveys of the transient sky. Recently, Gezari et al. reported a discovery of a new class of tidal disruption events: the disruption of a helium-rich stellar core, thought to be a remnant of a red giant (RG) star. Motivated by this discovery and in anticipation of others, we consider tidal interaction of an RG star with a supermassive black hole (SMBH) which leads to the stripping of the stellar envelope and subsequent inspiral of the compact core toward the black hole. Once the stellar envelope is removed the inspiral of the core is driven by tidal heating as well as the emission of gravitational radiation until the core either falls into the SMBH or is tidally disrupted. In the case of the tidal disruption candidate PS1-10jh, we find that there is a set of orbital solutions at high eccentricities in which the tidally stripped hydrogen envelope is accreted by the SMBH before the helium core is disrupted. This places the RG core in a portion of parameter space where strong tidal heating can lift the degeneracy of the compact remnant and disrupt it before it reaches the tidal radius. We consider how this sequence of events explains the puzzling absence of the hydrogen emission lines from the spectrum of PS1-10jh and gives rise to its other observational features.

  1. Spitzer-IRS Spectroscopic Studies of Oxygen-Rich Asymptotic Giant Branch Star and Red Supergiant Star Dust Properties

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Speck, Angela; Volk, Kevin; Kemper, Ciska; Reach, William T.; Lagadec, Eric; Bernard, Jean-Philippe; McDonald, Iain; Meixner, Margaret

    2015-01-01

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of Oxygen-rich (O-rich) asymptotic giant branch (AGB) and red supergiant (RSG) stars. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper) and other archival Spitzer-IRS programs. The broad 10 and 20 micron emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We present an update of our investigation of differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  2. Comparative Studies of the Dust around Red Supergiant and Oxygen-Rich Asymptotic Giant Branch Stars in the Local Universe

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Srinivasan, Sundar; Speck, Angela K.; Volk, Kevin; Kemper, Ciska; Reach, William; Lagadec, Eric; Bernard, Jean-Philippe; McDonald, Iain; Meixner, Margaret; Sloan, Greg; Jones, Olivia

    2015-08-01

    We analyze the dust emission features seen in Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of red supergiant (RSG) and oxygen-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud galaxies and in various Milky Way globular clusters. The spectra come from the Spitzer Legacy program SAGE-Spectroscopy (PI: F. Kemper), the Spitzer program SMC-Spec (PI: G. Sloan), and other archival Spitzer-IRS programs. The broad 10 and 20 μm emission features attributed to amorphous dust of silicate composition seen in the spectra show evidence for systematic differences in the centroid of both emission features between O-rich AGB and RSG populations. Radiative transfer modeling using the GRAMS grid of models of AGB and RSG stars suggests that the centroid differences are due to differences in dust properties. We investigate differences in dust composition, size, shape, etc that might be responsible for these spectral differences. We explore how these differences may arise from the different circumstellar environments around RSG and O-rich AGB stars and assess effects of varying metallicity (LMC versus SMC versus Milky Way globular cluster) and other properties (mass-loss rate, luminosity, etc.) on the dust originating from these stars. BAS acknowledges funding from NASA ADAP grant NNX13AD54G.

  3. Infrared extinction in the inner Milky Way through red clump giants

    SciTech Connect

    González-Fernández, C.; Asensio Ramos, A.; Garzón, F.; Cabrera-Lavers, A.; Hammersley, P. L.

    2014-02-20

    While the shape of the extinction curve in the infrared is considered to be set and the extinction ratios between infrared bands are usually taken to be approximately constant, a number of recent studies point to either a spatially variable behavior of the exponent of the power law or a different extinction law altogether. In this paper, we propose a method to analyze the overall behavior of the interstellar extinction by means of the red-clump population, and we apply it to those areas of the Milky Way where the presence of interstellar matter is heavily felt: areas located in 5° < l < 30° and b = 0°. We show that the extinction ratios traditionally used for the near infrared could be inappropriate for the inner Galaxy and we analyze the behavior of the extinction law from 1 μm to 8 μm.

  4. Zinc abundances in Galactic bulge field red giants: Implications for damped Lyman-α systems

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; Friaça, A. C. S.; da Silveira, C. R.; Hill, V.; Zoccali, M.; Minniti, D.; Renzini, A.; Ortolani, S.; Gómez, A.

    2015-08-01

    Context. Zinc in stars is an important reference element because it is a proxy to Fe in studies of damped Lyman-α systems (DLAs), permitting a comparison of chemical evolution histories of bulge stellar populations and DLAs. In terms of nucleosynthesis, it behaves as an alpha element because it is enhanced in metal-poor stars. Abundance studies in different stellar populations can give hints to the Zn production in different sites. Aims: The aim of this work is to derive the iron-peak element Zn abundances in 56 bulge giants from high resolution spectra. These results are compared with data from other bulge samples, as well as from disk and halo stars, and damped Lyman-α systems, in order to better understand the chemical evolution in these environments. Methods: High-resolution spectra were obtained using FLAMES+UVES on the Very Large Telescope. We computed the Zn abundances using the Zn i lines at 4810.53 and 6362.34 Å. We considered the strong depression in the continuum of the Zn i 6362.34 Å line, which is caused by the wings of the Ca i 6361.79 Å line suffering from autoionization. CN lines blending the Zn i 6362.34 Å line are also included in the calculations. Results: We find [Zn/Fe] = +0.24 ± 0.02 in the range -1.3 < [Fe/H] < -0.5 and [Zn/Fe] = + 0.06 ± 0.02 in the range -0.5 < [Fe/H] < -0.1, whereas for [Fe/H] ≥ -0.1, it shows a spread of -0.60 < [Zn/Fe] < + 0.15, with most of these stars having low [Zn/Fe] < 0.0. These low zinc abundances at the high metallicity end of the bulge define a decreasing trend in [Zn/Fe] with increasing metallicities. A comparison with Zn abundances in DLA systems is presented, where a dust-depletion correction was applied for both Zn and Fe. When we take these corrections into account, the [Zn/Fe] vs. [Fe/H] of the DLAs fall in the same region as the thick disk and bulge stars. Finally, we present a chemical evolution model of Zn enrichment in massive spheroids, representing a typical classical bulge evolution

  5. TOWARD THE GENERAL RED GIANT BRANCH SLOPE-METALLICITY-AGE CALIBRATION. I. METALLICITIES, AGES, AND KINEMATICS FOR EIGHT LARGE MAGELLANIC CLOUD CLUSTERS

    SciTech Connect

    Sharma, Saurabh; Borissova, J.; Kurtev, R.; Ivanov, V. D.; Geisler, D. E-mail: jura.borissova@uv.cl E-mail: vivanov@eso.org

    2010-03-15

    In this paper, we discuss the properties of color-magnitude diagrams, age, metallicity, and radial velocities of eight massive Large Magellanic Cloud (LMC) clusters using data taken from the FORS2 multiobject spectrograph at the 8.2 m Very Large Telescope/Unit Telescope 1. The strong near-infrared Ca II triplet lines of red giant branch stars obtained from the high signal-to-noise ratio spectra are used to determine the metallicity and radial velocity of cluster members. We report for the first time spectroscopically determined metallicity values for four clusters based on the mean [Fe/H] value of {approx}10 cluster members each. We found two concentrations in the distribution of ages of the target clusters. Six have ages between 0.8 Gyr and 2.2 Gyr and the other two, NGC 1754 and NGC 1786, are very old. The metallicity of the six intermediate-age clusters, with a mean age of 1.5 Gyr, is -0.49 with a scatter of only 0.04. This tight distribution suggests that a close encounter between the LMC and Small Magellanic Cloud may have caused not only the restart of cluster formation in the LMC but also the generation of the central bar. The metallicity for the two old clusters is similar to that of the other old, metal-poor LMC clusters. We find that the LMC cluster system exhibits disk-like rotation with no clusters appearing to have halo kinematics and there is no evidence of a metallicity gradient in the LMC, in contrast with the stellar population of the Milky Way and M33, where the metallicity decreases as galactocentric distance increases. The LMC's stellar bar may be the factor responsible for the dilution of any kind of gradient in the LMC.

  6. Non-LTE sodium abundance in galactic thick- and thin-disk red giants

    NASA Astrophysics Data System (ADS)

    Alexeeva, S. A.; Pakhomov, Yu. V.; Mashonkina, L. I.

    2014-07-01

    The non-LTE sodium abundance has been determined from the Na I 6154 and 6161 Å lines for 38 thin-disk stars (15 of them are Ba II stars), 15 thick-disk stars, 13 Hercules-stream stars, and 13 stars that cannot be attributed neither to the thick Galactic disk nor to the thin one. The Na I model atom has been constructed using the most accurate present-day atomic data. For the Na I 6154 and 6161 Å lines, the non-LTEabundance corrections are from -0.06 to -0.24 dex, depending on the stellar parameters. No differences in [Na/Fe] abundance between the thick and thin disks have been detected; the derived ratios are close to the solar ones. The existence of a [Na/Fe] overabundance in the Ba II stars has been confirmed. The Hercules-stream stars exhibit nearly solar [Na/Fe] ratios. The results obtained can be used to test the sodium nucleosynthesis models.

  7. Detection of a red supergiant progenitor star of a type II-plateau supernova.

    PubMed

    Smartt, Stephen J; Maund, Justyn R; Hendry, Margaret A; Tout, Christopher A; Gilmore, Gerard F; Mattila, Seppo; Benn, Chris R

    2004-01-23

    We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8(+4)(-2) solar masses. This confirms both stellar evolution models and supernova theories predicting that cool red supergiants are the immediate progenitor stars of type II-plateau supernovae. PMID:14739452

  8. Probing the Deep End of the Milky Way with Kepler: Asteroseismic Analysis of 854 Faint Red Giants Misclassified as Cool Dwarfs

    NASA Astrophysics Data System (ADS)

    Mathur, S.; García, R. A.; Huber, D.; Regulo, C.; Stello, D.; Beck, P. G.; Houmani, K.; Salabert, D.

    2016-08-01

    Asteroseismology has proven to be an excellent tool to determine not only global stellar properties with good precision, but also to infer the stellar structure, dynamics, and evolution for a large sample of Kepler stars. Prior to the launch of the mission, the properties of Kepler targets were inferred from broadband photometry, leading to the Kepler Input Catalog (KIC). The KIC was later revised in the Kepler Star Properties Catalog, based on literature values and an asteroseismic analysis of stars that were unclassified in the KIC. Here, we present an asteroseismic analysis of 45,400 stars that were classified as dwarfs in the Kepler Star Properties Catalog. We found that around 2% of the sample shows acoustic modes in the typical frequency range that put them in the red-giant category rather than the cool dwarf category. We analyze the asteroseismic properties of these stars, derive their surface gravities, masses, and radii, and present updated effective temperatures and distances. We show that the sample is significantly fainter than the previously known oscillating giants in the Kepler field, with the faintest stars reaching down to a Kepler magnitude of Kp ˜ 16. We demonstrate that 404 stars are at distances beyond 5 kpc and that the stars are significantly less massive than for the original Kepler red-giant sample, consistent with a population of distant halo giants. A comparison with a galactic population model shows that up to 40 stars might be genuine halo giants, which would increase the number of known asteroseismic halo stars by a factor of 4. The detections presented here will provide a valuable sample for galactic archeology studies.

  9. Semiconductive Nanotube Array Constructed from Giant [Pb(II)18I54(I2)9] Wheel Clusters.

    PubMed

    Wang, Guan-E; Xu, Gang; Liu, Bin-Wen; Wang, Ming-Sheng; Yao, Ming-Shui; Guo, Guo-Cong

    2016-01-11

    Crystalline nanotube array would create great opportunity for novel electrical application. Herein we report the first example of a metal halide based crystalline nanotube array which is constructed from an unprecedented giant [Pb(II)18I54(I2)9] wheel cluster, as determined by synchrotron X-ray diffraction. The electrical properties of the single crystal were studied and the present compound shows typical semiconductivity and highly anisotropic conductivity. PMID:26549327

  10. The Global Evolution of Giant Molecular Clouds. II. The Role of Accretion

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Matzner, Christopher D.; McKee, Christopher F.

    2011-09-01

    We present virial models for the global evolution of giant molecular clouds (GMCs). Focusing on the presence of an accretion flow and accounting for the amount of mass, momentum, and energy supplied by accretion and star formation feedback, we are able to follow the growth, evolution, and dispersal of individual GMCs. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds. We find that accretion and star formation contribute roughly equal amounts of turbulent kinetic energy over the lifetime of the cloud. Clouds attain virial equilibrium and grow in such a way as to maintain roughly constant surface densities, with typical surface densities of order 50-200 M sun pc-2, in good agreement with observations of GMCs in the Milky Way and nearby external galaxies. We find that as clouds grow, their velocity dispersion and radius must also increase, implying that the linewidth-size relation constitutes an age sequence. Lastly, we compare our models to observations of GMCs and associated young star clusters in the Large Magellanic Cloud and find good agreement between our model clouds and the observed relationship between H II regions, young star clusters, and GMCs.

  11. HERSCHEL FAR-IR OBSERVATIONS OF THE GIANT H II REGION NGC 3603

    SciTech Connect

    Cecco, Alessandra Di; Faustini, Fabiana; Calzoletti, Luca; Paresce, Francesco; Correnti, Matteo

    2015-01-20

    We observed the giant H II region around the NGC 3603 YC with the five broad bands (70, 160, 250, 350, 500 μm) of the SPIRE and PACS instruments, on board the Herschel Space Observatory. Together with what is currently known of the stellar, atomic, molecular, and warm dust components, this additional and crucial information should allow us to better understand the details of the star-formation history in this region. The main objective of the investigation is to study, at high spatial resolution, the distribution and main physical characteristics of the cold dust. By reconstructing the temperature and density maps, we found, respectively, a mean value of 36 K and log{sub 10} N {sub H} = 22.0 ± 0.1 cm{sup –2}. We carried out a photometric analysis detecting 107 point-like sources, mostly confined to the north and south of the cluster. By comparing our data with spectral energy distribution models, we found that 35 sources are well represented by young stellar objects in early evolutionary phases, from Class 0 to Class I. The Herschel detections also provided far-IR counterparts for 4 H{sub 2}O masers and 11 objects previously known from mid-IR observations. The existence of so many embedded sources confirms the hypothesis of intense and ongoing star-formation activity in the region around NGC 3603 YC.

  12. Herschel Far-IR Observations of the Giant H II Region NGC 3603

    NASA Astrophysics Data System (ADS)

    Di Cecco, Alessandra; Faustini, Fabiana; Paresce, Francesco; Correnti, Matteo; Calzoletti, Luca

    2015-01-01

    We observed the giant H II region around the NGC 3603 YC with the five broad bands (70, 160, 250, 350, 500 μm) of the SPIRE and PACS instruments, on board the Herschel Space Observatory. Together with what is currently known of the stellar, atomic, molecular, and warm dust components, this additional and crucial information should allow us to better understand the details of the star-formation history in this region. The main objective of the investigation is to study, at high spatial resolution, the distribution and main physical characteristics of the cold dust. By reconstructing the temperature and density maps, we found, respectively, a mean value of 36 K and log10 N H = 22.0 ± 0.1 cm-2. We carried out a photometric analysis detecting 107 point-like sources, mostly confined to the north and south of the cluster. By comparing our data with spectral energy distribution models, we found that 35 sources are well represented by young stellar objects in early evolutionary phases, from Class 0 to Class I. The Herschel detections also provided far-IR counterparts for 4 H2O masers and 11 objects previously known from mid-IR observations. The existence of so many embedded sources confirms the hypothesis of intense and ongoing star-formation activity in the region around NGC 3603 YC. Herschel is an ESA space observatory with science instruments provided by European-led principal investigator consortia and with important participation from NASA.

  13. Characterization and expression of MHC class II alpha and II beta genes in mangrove red snapper (Lutjanus argentimaculatus).

    PubMed

    Wang, Tianyan; Tan, Shangjin; Cai, Zhonghua

    2015-12-01

    The major histocompatibility complex (MHC) class II plays a key role in adaptive immunity by presenting foreign peptides to CD4(+) T cells and by triggering the adaptive immune response. While the structure and function of MHC class II have been well characterized in mammalian, limited research has been done on fishes. In this study, we characterized the gene structure and expression of MHC class II α (Lunar-DAA) and II β (Lunar-DAB) of mangrove red snapper (Lutjanus argentimaculatus). Both genes shared, respectively, a high similarity and typical features with other vertebrate MHC class II α and II β. The phylogenetic analysis of the deduced peptides revealed that both Lunar-DAA and Lunar-DAB were located in the teleost subclass. Western blotting analyses indicated that both MHC class II α and II β were expressed ubiquitously in immune-related cells, tissues and organs, and that MHC class II α and II β chains existed mainly as heterodimers. While it was highly expressed in gills, thymus, head kidney (HK), spleen, head kidney macrophage and spleen leucocytes, MHC class II β chain was expressed with a low abundance in skin, intestine, stomach and heart. The highest expression of MHC class II β in thymus confirmed the conclusion that thymus is one of the primary lymphoid organs in fishes. The detection of MHC class II αβ dimers in HK macrophages and spleen leucocytes indicated that HK macrophages and spleen leucocytes play a critical role in the adaptive immunity in fishes. All these results provide valuable information for understanding the structure of MHC class II α and II β and their function in immune responses. PMID:26454477

  14. Final Masses of Giant Planets. II. Jupiter Formation in a Gas-depleted Disk

    NASA Astrophysics Data System (ADS)

    Tanigawa, Takayuki; Tanaka, Hidekazu

    2016-05-01

    First, we study the final masses of giant planets growing in protoplanetary disks through capture of disk gas, by employing empirical formulae for the gas capture rate and a shallow disk gap model, which are both based on hydrodynamic simulations. We find that, for planets less massive than 10 Jupiter masses, their growth rates are mainly controlled by the gas supply through the global disk accretion, and the gap opening does not limit the accretion. The insufficient gas supply compared with the rapid gas capture causes a depletion of the gas surface density even at the outside the gap, which can create an inner hole in the disk. Second, our findings are applied to the formation of our solar system. For the formation of Jupiter, a very low-mass gas disk of several Jupiter masses is required at the beginning of its gas capture because of the continual capture. Such a low-mass gas disk with sufficient solid material can be formed through viscous evolution from a compact disk of initial size ∼10 au. By viscous evolution with a moderate viscosity of α ∼ 10‑3, most of the disk gas accretes onto the Sun and a widely spread low-mass gas disk remains when the solid core of Jupiter starts gas capture at t ∼ 107 yr. A very low-mass gas disk also provides a plausible path where type I and II planetary migrations are both suppressed significantly. In particular, the type II migration of Jupiter-size planets becomes inefficient because of the additional gas depletion due to the rapid gas capture by such planets.

  15. Final Masses of Giant Planets. II. Jupiter Formation in a Gas-depleted Disk

    NASA Astrophysics Data System (ADS)

    Tanigawa, Takayuki; Tanaka, Hidekazu

    2016-05-01

    First, we study the final masses of giant planets growing in protoplanetary disks through capture of disk gas, by employing empirical formulae for the gas capture rate and a shallow disk gap model, which are both based on hydrodynamic simulations. We find that, for planets less massive than 10 Jupiter masses, their growth rates are mainly controlled by the gas supply through the global disk accretion, and the gap opening does not limit the accretion. The insufficient gas supply compared with the rapid gas capture causes a depletion of the gas surface density even at the outside the gap, which can create an inner hole in the disk. Second, our findings are applied to the formation of our solar system. For the formation of Jupiter, a very low-mass gas disk of several Jupiter masses is required at the beginning of its gas capture because of the continual capture. Such a low-mass gas disk with sufficient solid material can be formed through viscous evolution from a compact disk of initial size ˜10 au. By viscous evolution with a moderate viscosity of α ˜ 10‑3, most of the disk gas accretes onto the Sun and a widely spread low-mass gas disk remains when the solid core of Jupiter starts gas capture at t ˜ 107 yr. A very low-mass gas disk also provides a plausible path where type I and II planetary migrations are both suppressed significantly. In particular, the type II migration of Jupiter-size planets becomes inefficient because of the additional gas depletion due to the rapid gas capture by such planets.

  16. Recurrent Novae as a Progenitor System of Type Ia Supernovae. I. RS Ophiuchi Subclass: Systems with a Red Giant Companion

    NASA Astrophysics Data System (ADS)

    Hachisu, Izumi; Kato, Mariko

    2001-09-01

    Theoretical light curves of four recurrent novae in outburst are modeled to obtain various physical parameters. The four objects studied here are those with a red giant companion, i.e., T Coronae Borealis, RS Ophiuchi, V745 Scorpii, and V3890 Sagittarii. Our model consists of a very massive white dwarf (WD) with an accretion disk and a red giant companion. Light-curve calculation includes reflection effects of the companion star and the accretion disk together with a shadowing effect on the companion by the accretion disk. We also include a radiation-induced warping instability of the accretion disk to reproduce the second peak of T CrB outbursts. The early visual light curves are well reproduced by applying a thermonuclear runaway model to a very massive white dwarf close to the Chandrasekhar mass limit, i.e., MWD=1.37+/-0.01 Msolar for T CrB and 1.35+/-0.01 Msolar for RS Oph with solar metallicity (Z=0.02), but 1.377+/-0.01 Msolar for RS Oph with low metallicity (Z=0.004), 1.35+/-0.01 Msolar for V745 Sco, and 1.35+/-0.01 Msolar for V3890 Sgr. Optically thick winds, which blow from the WDs during the outbursts, play a key role in determining the nova duration and the speed of decline because the wind quickly reduces the envelope mass on the WD. The envelope mass at each optical maximum is also estimated to be ΔM~3×10-6 Msolar (T CrB), 2×10-6 Msolar (RS Oph), 5×10-6 Msolar (V745 Sco), 3×10-6 Msolar (V3890 Sgr), indicating average mass accretion rates of Macc~0.4×10-7 Msolar yr-1 (80 yr; T CrB), 1.2×10-7 Msolar yr-1 (18 yr; RS Oph), 0.9×10-7 Msolar yr-1 (52 yr; V745 Sco), and 1.1×10-7 Msolar yr-1 (28 yr; V3890 Sgr) during the quiescent phase before the last outburst. Although a large part of the envelope mass is blown off in the wind, each WD retains a substantial part of the envelope mass after hydrogen burning ends. Thus, we have obtained net mass-increasing rates of the WDs as MHe~0.1×10-7 Msolar yr-1 (T CrB), 0.12×10-7 Msolar yr-1 (RS Oph), 0.05×10

  17. Abundance ratios of red giants in low-mass ultra-faint dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    François, P.; Monaco, L.; Bonifacio, P.; Moni Bidin, C.; Geisler, D.; Sbordone, L.

    2016-04-01

    Context. Low-mass dwarf spheroidal galaxies are key objects for our understanding of the chemical evolution of the pristine Universe and the Local Group of galaxies. Abundance ratios in stars of these objects can be used to better understand their star formation and chemical evolution. Aims: We report on the analysis of a sample of 11 stars belonging to five different ultra-faint dwarf spheroidal galaxies (UfDSph) that is based on X-Shooter spectra obtained at the VLT. Methods: Medium-resolution spectra have been used to determine the detailed chemical composition of their atmosphere. We performed a standard 1D LTE analysis to compute the abundances. Results: Considering all the stars as representative of the same population of low-mass galaxies, we found that the [α/Fe] ratios vs.s [Fe/H] decreases as the metallicity of the star increases in a way similar to that which is found for the population of stars that belong to dwarf spheroidal galaxies. The main difference is that the solar [α/Fe] is reached at a much lower metallicity for the UfDSph than for the dwarf spheroidal galaxies. We report for the first time the abundance of strontium in CVn II. The star we analyzed in this galaxy has a very high [Sr/Fe] and a very low upper limit of barium which makes it a star with an exceptionally high [Sr/Ba] ratio.

  18. THE ACS LCID PROJECT. IV. DETECTION OF THE RED GIANT BRANCH BUMP IN ISOLATED GALAXIES OF THE LOCAL GROUP

    SciTech Connect

    Monelli, M.; Hidalgo, S. L; Aparicio, A.; Gallart, C.; Cassisi, S.; Bernard, E. J.; Skillman, E. D. E-mail: carme@iac.e E-mail: shidalgo@iac.e E-mail: ejb@roe.ac.u

    2010-08-01

    We report the detection and analysis of the red giant branch (RGB) luminosity function bump in a sample of isolated dwarf galaxies in the Local Group. We have designed a new analysis approach comparing the observed color-magnitude diagrams (CMDs) with theoretical best-fit CMDs derived from precise estimates of the star formation histories of each galaxy. This analysis is based on studying the difference between the V magnitude of the RGB bump and the horizontal branch at the level of the RR Lyrae instability strip ({Delta}V {sup bump}{sub HB}) and we discuss here a technique for reliably measuring this quantity in complex stellar systems. By using this approach, we find that the difference between the observed and predicted values of {Delta}V {sup bump}{sub HB} is +0.13 {+-} 0.14 mag. This is smaller, by about a factor of 2, than the well-known discrepancy between theory and observation at low metallicity commonly derived for Galactic globular clusters (GCs). This result is confirmed by a comparison between the adopted theoretical framework and empirical estimates of the {Delta}V {sup bump}{sub HB} parameter for both a large database of Galactic GCs and for four other dwarf spheroidal galaxies for which this estimate is available in the literature. We also investigate the strength of the RGB bump feature (R{sub bump}), and find very good agreement between the observed and theoretically predicted R{sub bump} values. This agreement supports the reliability of the evolutionary lifetimes predicted by theoretical models of the evolution of low-mass stars.

  19. Asteroseismic study on cluster distance moduli for red giant branch stars in NGC 6791 and NGC 6819

    SciTech Connect

    Wu, T.; Li, Y.; Hekker, S. E-mail: ly@ynao.ac.cn

    2014-05-01

    Stellar distance is an important basic parameter in stellar astrophysics. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust; therefore, they are expected to have common properties. These common properties strengthen our ability to constrain theoretical models and/or to determine fundamental parameters, such as stellar mass, metal fraction, and distance, when tested against an ensemble of cluster stars. Here we derive a new relation based on solar-like oscillations, photometric observations, and the theory of stellar structure and evolution of red giant branch stars to determine cluster distance moduli through the global oscillation parameters Δν and ν{sub max} and photometric data V. The values of Δν and ν{sub max} are derived from Kepler observations. At the same time, it is used to interpret the trends between V and Δν. From the analyses of this newly derived relation and observational data of NGC 6791 and NGC 6819, we devise a method in which all stars in a cluster are regarded as one entity to determine the cluster distance modulus. This approach fully reflects the characteristic of member stars in a cluster as a natural sample. From this method we derive true distance moduli of 13.09 ± 0.10 mag for NGC 6791 and 11.88 ± 0.14 mag for NGC 6819. Additionally, we find that the distance modulus only slightly depends on the metallicity [Fe/H] in the new relation. A change of 0.1 dex in [Fe/H] will lead to a change of 0.06 mag in the distance modulus.

  20. On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Jones, O. C.; Kemper, F.; Sargent, B. A.; McDonald, I.; Gielen, C.; Woods, Paul M.; Sloan, G. C.; Boyer, M. L.; Zijlstra, A. A.; Clayton, G. C.; Kraemer, K. E.; Srinivasan, S.; Ruffle, P. M. E.

    2012-12-01

    We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer spectra of 217 oxygen-rich asymptotic giant branch and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds, and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 μm. We detect crystalline silicates in stars with dust mass-loss rates which span over 3 dex, down to rates of ˜10-9 M⊙ yr-1. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, though the highest mass-loss rate objects do not show the 23-μm feature, possibly due to the low temperature of the forsterite grains or it may indicate that the 23-μm band is going into absorption due to high column density. Furthermore, we detect a change in the crystalline silicate mineralogy with metallicity, with enstatite seen increasingly at low metallicity.

  1. A white dwarf companion to the main-sequence star 4 Omicron(1) Orionis and the binary hypothesis for the origin of peculiar red giants

    NASA Astrophysics Data System (ADS)

    Ake, Thomas B.; Johnson, Hollis R.

    1988-04-01

    In the course of an investigation with the IUE satellite of the ultraviolet spectra of peculiar red giants, the authors have discovered a white dwarf companion to the MS star 4 ο1Ori. They discuss the reductions performed for the ο1Ori IUE observations, and compare these with field white dwarfs to derive parameters of the white dwarf and the luminosity of the primary. Upper detection limits are derived for hot degenerate companions to four other bright MS stars, HR 363, RS Cnc, ST Her, and OP Her. Combined with the ο1Ori observations, it is argued that the nondetections for these stars are consistent with the statistics of field giant binaries and that either mass-transfer effects are not responsible for the incipient S-star nature of the MS stars, if their abundance peculiarities are recent, or that the MS stars must be older than 106yr.

  2. The NHLBI Retrovirus Epidemiology Donor Studies (REDS and REDS-II): Twenty years of research to advance blood product safety and availability

    PubMed Central

    Kleinman, Steven; King, Melissa R; Busch, Michael P; Murphy, Edward L; Glynn, Simone A.

    2012-01-01

    The Retrovirus Epidemiology Donor Study (REDS), conducted from 1989–2001, and the Retrovirus Epidemiology Donor Study-II (REDS-II), conducted from 2004–2012, were National Heart Lung and Blood Institute (NHLBI) funded multicenter programs focused on improving blood safety and availability in the United States. REDS-II also included international study sites in Brazil and China. The three major research domains of REDS/REDS-II have been infectious disease risk evaluation, blood donation availability, and blood donor characterization. Both programs have made significant contributions to transfusion medicine research methodology by the use of mathematical modeling, large-scale donor surveys, innovative methods of repository sample storage, and establishing an infrastructure that responded to potential emerging blood safety threats such as XMRV. Blood safety studies have included protocols evaluating epidemiologic and/or laboratory aspects of HIV, HTLV I/II, HCV, HBV, WNV, CMV, HHV-8, B19V, malaria, CJD, influenza, and T. cruzi infections. Other analyses have characterized: blood donor demographics, motivations to donate, factors influencing donor return, behavioral risk factors, donors’ perception of the blood donation screening process, and aspects of donor deferral. In REDS-II, two large-scale blood donor protocols examined iron deficiency in donors and the prevalence of leukocyte antibodies. This review describes the major study results from over 150 peer-reviewed articles published by these two REDS programs. In 2011, a new seven year program, the Recipient Epidemiology and Donor Evaluation Study-III (REDS-III), was launched. REDS-III expands beyond donor-based research to include studies of blood transfusion recipients in the hospital setting, and adds a third country, South Africa, to the international program. PMID:22633182

  3. Searching for the Upper Mass Limit in NGC 3603, the Nearest Giant H II Region

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2009-07-01

    What is the mass of the highest mass star? 100Mo? 150Mo? 200Mo? Or higher? Theory gives us little guidance as to what physics sets the upper mass limit, presuming one exists. Is it due to limitations in the highest masses that can coalesce? Or is it due to stability issues in such a behemoth? Observationally, the upper mass limit is poorly constrained at present, with the strongest evidence coming from the K-band luminosity function of the Arches cluster near the Galactic Center. Here we propose to investigate this question by determining the Initial Mass Function of NGC 3603, the nearest giant H II region. This cluster is known to contain a wealth of O3 and hydrogen-rich Wolf-Rayets, the most luminous and massive of stars. By constructing an accurate H-R diagram for the cluster, we will construct a present day mass function using newly computed high mass evolutionary tracks, and convert this to an initial mass function using the inferred ages. This will allow us to see whether or not there is a true deficit of high mass stars, evidence of an upper mass cutoff. At the same time we are likely to establish good masses for the highest mass stars ever determined. We have laid the groundwork for this project using the Magellan 6.5-m telescope and the excellent seeing found on Las Campanas, plus analysis of archival ACS/HRS frames, but we now need to obtain spectra of the stars unobservable from the ground. This can only be done with HST and a reburbished STIS.

  4. New asteroseismic scaling relations based on the Hayashi track relation applied to red giant branch stars in NGC 6791 and NGC 6819

    SciTech Connect

    Wu, T.; Li, Y.; Hekker, S. E-mail: ly@ynao.ac.cn

    2014-01-20

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on a relation for stars on the Hayashi track (√(T{sub eff})∼g{sup p}R{sup q}) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and ν{sub max} (frequency of maximum oscillation power). The Δν and ν{sub max} values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and ν{sub max}, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - ν{sub max} relation for red giant branch stars.

  5. Absorption-line survey of 32 QSOs at red wavelengths - properties of the Mg II absorbers

    SciTech Connect

    Lanzetta, K.M.; Wolfe, A.M.; Turnshek, D.A.

    1987-11-01

    The results of a survey of 32 QSOs for Mg II absorption at red wavelengths are presented, and the properties of the metal absorption systems are investigated. When interpreted in terms of ejection, the Mg II absorption systems are randomly distributed in velocity relative to the QSOs, although the systems may cluster on scales of a few thousand km/s. This is consistent with the absorption systems arising in intervening material not associated with the QSOs. The equivalent width distribution of the Mg II systems is well fitted by either an exponential or a power-law distribution, with the number density of the absorption systems increasing with decreasing rest equivalent width. There is marginally significant evidence for cosmological evolution of the number density of the Mg II absorbers, and no evidence for evolution of the Mg II equivalent width distribution with redshift. 42 references.

  6. Phylogenetic Diversity, Distribution, and Cophylogeny of Giant Bacteria (Epulopiscium) with their Surgeonfish Hosts in the Red Sea

    PubMed Central

    Miyake, Sou; Ngugi, David K.; Stingl, Ulrich

    2016-01-01

    Epulopiscium is a group of giant bacteria found in high abundance in intestinal tracts of herbivorous surgeonfish. Despite their peculiarly large cell size (can be up to 600 μm), extreme polyploidy (some with over 100,000 genome copies per cell) and viviparity (whereby mother cells produce live offspring), details about their diversity, distribution or their role in the host gut are lacking. Previous studies have highlighted the existence of morphologically distinct Epulopiscium cell types (defined as morphotypes A to J) in some surgeonfish genera, but the corresponding genetic diversity and distribution among other surgeonfishes remain mostly unknown. Therefore, we investigated the phylogenetic diversity of Epulopiscium, distribution and co-occurrence in multiple hosts. Here, we identified eleven new phylogenetic clades, six of which were also morphologically characterized. Three of these novel clades were phylogenetically and morphologically similar to cigar-shaped type A1 cells, found in a wide range of surgeonfishes including Acanthurus nigrofuscus, while three were similar to smaller, rod-shaped type E that has not been phylogenetically classified thus far. Our results also confirmed that biogeography appears to have relatively little influence on Epulopiscium diversity, as clades found in the Great Barrier Reef and Hawaii were also recovered from the Red Sea. Although multiple symbiont clades inhabited a given species of host surgeonfish and multiple host species possessed a given symbiont clade, statistical analysis of host and symbiont phylogenies indicated significant cophylogeny, which in turn suggests co-evolutionary relationships. A cluster analysis of Epulopiscium sequences from previously published amplicon sequencing dataset revealed a similar pattern, where specific clades were consistently found in high abundance amongst closely related surgeonfishes. Differences in abundance may indicate specialization of clades to certain gut environments

  7. Phylogenetic Diversity, Distribution, and Cophylogeny of Giant Bacteria (Epulopiscium) with their Surgeonfish Hosts in the Red Sea.

    PubMed

    Miyake, Sou; Ngugi, David K; Stingl, Ulrich

    2016-01-01

    Epulopiscium is a group of giant bacteria found in high abundance in intestinal tracts of herbivorous surgeonfish. Despite their peculiarly large cell size (can be up to 600 μm), extreme polyploidy (some with over 100,000 genome copies per cell) and viviparity (whereby mother cells produce live offspring), details about their diversity, distribution or their role in the host gut are lacking. Previous studies have highlighted the existence of morphologically distinct Epulopiscium cell types (defined as morphotypes A to J) in some surgeonfish genera, but the corresponding genetic diversity and distribution among other surgeonfishes remain mostly unknown. Therefore, we investigated the phylogenetic diversity of Epulopiscium, distribution and co-occurrence in multiple hosts. Here, we identified eleven new phylogenetic clades, six of which were also morphologically characterized. Three of these novel clades were phylogenetically and morphologically similar to cigar-shaped type A1 cells, found in a wide range of surgeonfishes including Acanthurus nigrofuscus, while three were similar to smaller, rod-shaped type E that has not been phylogenetically classified thus far. Our results also confirmed that biogeography appears to have relatively little influence on Epulopiscium diversity, as clades found in the Great Barrier Reef and Hawaii were also recovered from the Red Sea. Although multiple symbiont clades inhabited a given species of host surgeonfish and multiple host species possessed a given symbiont clade, statistical analysis of host and symbiont phylogenies indicated significant cophylogeny, which in turn suggests co-evolutionary relationships. A cluster analysis of Epulopiscium sequences from previously published amplicon sequencing dataset revealed a similar pattern, where specific clades were consistently found in high abundance amongst closely related surgeonfishes. Differences in abundance may indicate specialization of clades to certain gut environments

  8. Defining the Far-Red Limit of Photosystem II in Spinach[C][W

    PubMed Central

    Thapper, Anders; Mamedov, Fikret; Mokvist, Fredrik; Hammarström, Leif; Styring, Stenbjörn

    2009-01-01

    The far-red limit of photosystem II (PSII) photochemistry was studied in PSII-enriched membranes and PSII core preparations from spinach (Spinacia oleracea) after application of laser flashes between 730 and 820 nm. Light up to 800 nm was found to drive PSII activity in both acceptor side reduction and oxidation of the water-oxidizing CaMn4 cluster. Far-red illumination induced enhancement of, and slowed down decay kinetics of, variable fluorescence. Both effects reflect reduction of the acceptor side of PSII. The effects on the donor side of PSII were monitored using electron paramagnetic resonance spectroscopy. Signals from the S2-, S3-, and S0-states could be detected after one, two, and three far-red flashes, respectively, indicating that PSII underwent conventional S-state transitions. Full PSII turnover was demonstrated by far-red flash-induced oxygen release, with oxygen appearing on the third flash. In addition, both the pheophytin anion and the Tyr Z radical were formed by far-red flashes. The efficiency of this far-red photochemistry in PSII decreases with increasing wavelength. The upper limit for detectable photochemistry in PSII on a single flash was determined to be 780 nm. In photoaccumulation experiments, photochemistry was detectable up to 800 nm. Implications for the energetics and energy levels of the charge separated states in PSII are discussed in light of the presented results. PMID:19700631

  9. Wolf-Rayet stars and giant H II regions in M33 - Casual associations or meaningful relationships

    NASA Astrophysics Data System (ADS)

    Conti, P. S.; Massey, P.

    1981-10-01

    The discovery is reported of 14 new Wolf-Rayet stars in the Local Group galaxy M33, of which six are surrounded by small H II regions and have spectra and M(v) similar to field W-R stars in the Galaxy. In addition, eight of the stars are found to be among the brightest in the giant H II regions NGC 588, 592, 595 and 604, and similar to the superluminous W-R's found in 30 Dor in the Large Magellanic Cloud and HD 97950 in NGC 3603. It is concluded after a discussion of statistics pertaining to the W-R types known in M33 that selection effects still dominate the discovery process, and it is suggested that the morphological similarities among superluminous W-R star spectra and the dynamics of giant H II regions imply a shared evolutionary pattern where the nebulae may be dominated by the effects of a few massive, unstable objects with W-R spectra.

  10. Ozonation of azo dyes (Orange II and Acid Red 27) in saline media.

    PubMed

    Silva, Alessandra C; Pic, Jean Stephane; Sant'Anna, Geraldo L; Dezotti, Marcia

    2009-09-30

    Ozonation of two azo dyes was investigated in a monitored bench scale bubble column reactor (8.5-L), varying liquid media salt content (0, 1, 40 and 100 g L(-1), NaCl). In experiments with Orange II pH was varied (5, 7.5 and 9) but ozonation of Acid Red 27 was performed at pH 7.5. Ozone self-decomposition rate-constant increased with salt concentration. Color removal was very effective and fast achieved under all experimental conditions. For the two azo dyes tested, more than 98% of color intensity was removed in 30-min ozonation assays. However, only partial mineralization of azo dyes (45%-Orange II; 20%-Acid Red 27) was attained in such experiments. The degree of mineralization (TOC removal) was negatively affected by salt concentration. Biodegradation assays conducted by respirometry revealed the inhibitory effect of dye degradation products formed during ozonation. PMID:19443113

  11. Insights into Planet Formation from Debris Disks - II. Giant Impacts in Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Wyatt, Mark C.; Jackson, Alan P.

    2016-03-01

    Giant impacts refer to collisions between two objects each of which is massive enough to be considered at least a planetary embryo. The putative collision suffered by the proto-Earth that created the Moon is a prime example, though most Solar System bodies bear signatures of such collisions. Current planet formation models predict that an epoch of giant impacts may be inevitable, and observations of debris around other stars are providing mounting evidence that giant impacts feature in the evolution of many planetary systems. This chapter reviews giant impacts, focussing on what we can learn about planet formation by studying debris around other stars. Giant impact debris evolves through mutual collisions and dynamical interactions with planets. General aspects of this evolution are outlined, noting the importance of the collision-point geometry. The detectability of the debris is discussed using the example of the Moon-forming impact. Such debris could be detectable around another star up to 10 Myr post-impact, but model uncertainties could reduce detectability to a few 100 yr window. Nevertheless the 3 % of young stars with debris at levels expected during terrestrial planet formation provide valuable constraints on formation models; implications for super-Earth formation are also discussed. Variability recently observed in some bright disks promises to illuminate the evolution during the earliest phases when vapour condensates may be optically thick and acutely affected by the collision-point geometry. The outer reaches of planetary systems may also exhibit signatures of giant impacts, such as the clumpy debris structures seen around some stars.

  12. WHAT DRIVES THE EXPANSION OF GIANT H II REGIONS?: A STUDY OF STELLAR FEEDBACK IN 30 DORADUS

    SciTech Connect

    Lopez, Laura A.; Krumholz, Mark R.; Prochaska, J. Xavier; Ramirez-Ruiz, Enrico; Bolatto, Alberto D.

    2011-04-20

    Observations show that star formation is an inefficient and slow process. This result can be attributed to the injection of energy and momentum by stars that prevents free-fall collapse of molecular clouds. The mechanism of this stellar feedback is debated theoretically; possible sources of pressure include the classical warm H II gas, the hot gas generated by shock heating from stellar winds and supernovae, direct radiation of stars, and the dust-processed radiation field trapped inside the H II shell. In this paper, we measure observationally the pressures associated with each component listed above across the giant H II region 30 Doradus in the Large Magellanic Cloud. We exploit high-resolution, multi-wavelength images (radio, infrared, optical, ultraviolet, and X-ray) to map these pressures as a function of position. We find that radiation pressure dominates within 75 pc of the central star cluster, R136, while the H II gas pressure dominates at larger radii. By contrast, the dust-processed radiation pressure and hot gas pressure are generally weak and not dynamically important, although the hot gas pressure may have played a more significant role at early times. Based on the low X-ray gas pressures, we demonstrate that the hot gas is only partially confined and must be leaking out the H II shell. Additionally, we consider the implications of a dominant radiation pressure on the early dynamics of 30 Doradus.

  13. Stellar Evolution in NGC 6791: Mass Loss on the Red Giant Branch and the Formation of Low-Mass White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kalirai, Jasonjot S.; Bergeron, P.; Hansen, Brad M. S.; Kelson, Daniel D.; Reitzel, David B.; Rich, R. Michael; Richer, Harvey B.

    2007-12-01

    We present the first detailed study of the properties (temperatures, gravities, and masses) of the NGC 6791 white dwarf population. This unique stellar system is both one of the oldest (8 Gyr) and most metal-rich ([Fe/H]~+0.4) open clusters in our Galaxy and has a color-magnitude diagram (CMD) that exhibits both a red giant clump and a much hotter extreme horizontal branch. Fitting the Balmer lines of the white dwarfs in the cluster using Keck/LRIS spectra suggests that most of these stars are undermassive, =0.43+/-0.06 Msolar, and therefore could not have formed from canonical stellar evolution involving the helium flash at the tip of the red giant branch. We show that at least 40% of NGC 6791's evolved stars must have lost enough mass on the red giant branch to avoid the flash and therefore did not convert helium into carbon-oxygen in their core. Such increased mass loss in the evolution of the progenitors of these stars is consistent with the presence of the extreme horizontal branch in the CMD. This unique stellar evolutionary channel also naturally explains the recent finding of a very young age (2.4 Gyr) for NGC 6791 from white dwarf cooling theory; helium-core white dwarfs in this cluster will cool ~3 times slower than carbon-oxygen-core stars, and therefore the corrected white dwarf cooling age is in fact >~7 Gyr, consistent with the well-measured main-sequence turnoff age. These results provide direct empirical evidence that mass loss is much more efficient in high-metallicity environments and therefore may be critical in interpreting the ultraviolet upturn in elliptical galaxies. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based on observations obtained at the

  14. Altered red and white blood cell rheology in type II diabetes.

    PubMed

    Ernst, E; Matrai, A

    1986-12-01

    Twenty-three patients suffering from type II, non-insulin-dependent diabetes were compared with matched controls. Suspensions with standardized white and red cell counts were filtered in a novel device capable of discriminating filter occlusion and cell transit time. Results confirm previous studies indicating that red cell deformability is impaired in diabetes. According to our findings, this may be caused by a slight overall loss of red cell fluidity together with the existence of a subpopulation of more markedly rigid erythrocytes. Furthermore, we demonstrate that white cell filterability is reduced in type II diabetes. This could be due to decreased white cell deformability, increased white cell adhesion, or both. Analysis of diabetic subgroups indicates that the white cell rheology is impaired to a greater extent in patients taking oral antidiabetic drugs than in patients controlled by diet alone. Altered white cell rheology could help to explain the pathological blood cell filterability frequently reported in diabetes. More important, impaired white cell rheology might significantly contribute to microcirculatory flow abnormalities jeopardizing O2 exchange in the terminal vascular bed. PMID:3770316

  15. EVOLUTION OF THE SYMBIOTIC NOVA PU VUL-OUTBURSTING WHITE DWARF, NEBULAE, AND PULSATING RED GIANT COMPANION

    SciTech Connect

    Kato, Mariko; Mikolajewska, Joanna; Hachisu, Izumi

    2012-05-01

    We present a composite light-curve model of the symbiotic nova PU Vul (Nova Vulpeculae 1979) that shows a long-lasting flat optical peak followed by a slow decline. Our model light curve consists of three components of emission, i.e., an outbursting white dwarf (WD), its M-giant companion, and the nebulae. The WD component dominates in the flat peak while the nebulae dominate after the photospheric temperature of the WD rises to log T (K) {approx}> 4.5, suggesting its WD origin. We analyze the 1980 and 1994 eclipses to be total eclipses of the WD occulted by the pulsating M-giant companion with two sources of the nebular emission; one is an unocculted nebula of the M-giant's cool-wind origin and the other is a partially occulted nebula associated to the WD. We confirmed our theoretical outburst model of PU Vul by new observational estimates, which spanned 32 yr, of the temperature and radius. Also our eclipse analysis confirmed that the WD photosphere decreased by two orders of magnitude between the 1980 and 1994 eclipses. We obtain the reddening E(B - V) {approx} 0.3 and distance to PU Vul d {approx} 4.7 kpc. We interpret the recent recovery of brightness in terms of eclipse of the hot nebula surrounding the WD, suggesting that hydrogen burning is ongoing. To detect supersoft X-rays, we recommend X-ray observations around 2014 June when absorption by neutral hydrogen is minimum.

  16. Re-inflated Warm Jupiters around Red Giants: A New Test for Models of Hot Jupiter Inflation

    NASA Astrophysics Data System (ADS)

    Lopez, Eric D.; Jonathan, Fortney

    2015-12-01

    Ever since the discovery of the first transiting hot Jupiter, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of the hot Jupiter radius anomaly scales strongly with a planet’s level of irradiation and numerous models have since been developed to help explain these inflated radii. In general however, these models can be grouped into two broad categories: 1) models that directly inflate planetary radii by depositing a fraction of the incident irradiation in the convective interior and 2) models that simply slow a planet’s radiative cooling allowing it to retain more heat from formation and thereby delay contraction. Here we propose a new test to distinguish between these two classes of models, by examining the post-main sequence radius evolution of gas giants with moderate orbital periods of ~10-30 days. If hot Jupiter inflation actively deposits heat in a planets interior then current and upcoming transit surveys should uncover a new population of “re-inflated” gas giants around post main sequence stars.

  17. Toward long-term all-sky time domain surveys-SINDICS: a prospective concept for a Seismic INDICes Survey of half a million red giants

    NASA Astrophysics Data System (ADS)

    Michel, Eric; Haywood, Misha; Mosser, Benoit; García, Rafael A.; Babusiaux, Carine; Ballot, Jérôme; Samadi, Reza; Katz, David; Belkacem, Kevin; Bernardi, Pernelle; Buey, Tristan

    2015-09-01

    CoRoT and Kepler have brought a new and deep experience in long-term photometric surveys and how to use them. This is true for exoplanets characterizing, stellar seismology and beyond for studying several other phenomena, like granulation or activity. Based on this experience, it has been possible to propose new generation projects, like TESS and PLATO, with more specific scientific objectives and more ambitious observational programs in terms of sky coverage and/or duration of the observations. In this context and as a prospective exercise, we explore here the possibility to set up an all-sky survey optimized for seismic indices measurement, providing masses, radii and evolution stages for half a million solar-type pulsators (subgiants and red giants), in our galactic neighborhood and allowing unprecedented stellar population studies.

  18. A histological study of ovarian development in the giant red shrimp Aristaeomorpha foliacea (Crustacea: Decapoda: Aristeidae) from the Southern Tyrrhenian Sea (Western Mediterranean).

    PubMed

    Perdichizzi, Anna; Pirrera, Laura; Micale, Valeria; Muglia, Ugo; Rinelli, Paola

    2012-01-01

    The reproductive features of the giant red shrimp, Aristaeomorpha foliacea, were investigated in the southern Tyrrhenian sea by experimental trawl sampling. The annual length-frequency distribution showed a multimodal trend in females, ranging between 16 and 67 mm carapace length (CL), and a unimodal trend in males (18-45 mm CL). Mature males occurred in different proportions all year round, while females displayed seasonal maturity (June-September), with a peak in July. Six oocyte developmental stages were identified, the most advanced of which (Pv, postvitellogenic) had never been described before in this species. Ovary development followed a group-synchronous pattern, with the yolked oocyte stock clearly separated from the reservoir of unyolked oocytes, suggesting that A. foliacea is a total spawner, with determinate fecundity. Based upon histological findings, a revision of macroscopic maturity staging employed in Mediterranean bottom trawl surveys (MEDITS) is proposed. PMID:22629127

  19. A Histological Study of Ovarian Development in the Giant Red Shrimp Aristaeomorpha foliacea (Crustacea: Decapoda: Aristeidae) from the Southern Tyrrhenian Sea (Western Mediterranean)

    PubMed Central

    Perdichizzi, Anna; Pirrera, Laura; Micale, Valeria; Muglia, Ugo; Rinelli, Paola

    2012-01-01

    The reproductive features of the giant red shrimp, Aristaeomorpha foliacea, were investigated in the southern Tyrrhenian sea by experimental trawl sampling. The annual length-frequency distribution showed a multimodal trend in females, ranging between 16 and 67 mm carapace length (CL), and a unimodal trend in males (18–45 mm CL). Mature males occurred in different proportions all year round, while females displayed seasonal maturity (June—September), with a peak in July. Six oocyte developmental stages were identified, the most advanced of which (Pv, postvitellogenic) had never been described before in this species. Ovary development followed a group-synchronous pattern, with the yolked oocyte stock clearly separated from the reservoir of unyolked oocytes, suggesting that A. foliacea is a total spawner, with determinate fecundity. Based upon histological findings, a revision of macroscopic maturity staging employed in Mediterranean bottom trawl surveys (MEDITS) is proposed. PMID:22629127

  20. BOND: Bayesian Oxygen and Nitrogen abundance Determinations in giant H II regions using strong and semistrong lines

    NASA Astrophysics Data System (ADS)

    Vale Asari, N.; Stasińska, G.; Morisset, C.; Cid Fernandes, R.

    2016-08-01

    We present the Bayesian oxygen and nitrogen abundance determinations (BOND) method. BOND is a Bayesian code (available at: http://bond.ufsc.br) to simultaneously derive oxygen and nitrogen abundances in giant H II regions. It compares observed emission lines to a grid of photoionization models without assuming any relation between O/H and N/O. Our grid spans a wide range in O/H, N/O and ionization parameter U, and covers different starburst ages and nebular geometries. Varying starburst ages accounts for variations in the ionizing radiation field hardness, which arise due to the ageing of H II regions or the stochastic sampling of the initial mass function. All previous approaches assume a strict relation between the ionizing field and metallicity. The other novelty is extracting information on the nebular physics from semistrong emission lines. While strong lines ratios alone ([O III]/Hβ, [O II]/Hβ and [N II]/Hβ) lead to multiple O/H solutions, the simultaneous use of [Ar III]/[Ne III] allows one to decide whether an H II region is of high or low metallicity. Adding He I/Hβ pins down the hardness of the radiation field. We apply our method to H II regions and blue compact dwarf galaxies, and find that the resulting N/O versus O/H relation is as scattered as the one obtained from the temperature-based method. As in previous strong-line methods calibrated on photoionization models, the BOND O/H values are generally higher than temperature-based ones, which might indicate the presence of temperature fluctuations or kappa distributions in real nebulae, or a too soft ionizing radiation field in the models.

  1. BOND: Bayesian Oxygen and Nitrogen abundance Determinations in giant H II regions using strong and semi-strong lines

    NASA Astrophysics Data System (ADS)

    Vale Asari, N.; Stasińska, G.; Morisset, C.; Cid Fernandes, R.

    2016-04-01

    We present BOND, a Bayesian code to simultaneously derive oxygen and nitrogen abundances in giant H II regions. It compares observed emission lines to a grid of photoionization models without assuming any relation between O/H and N/O. Our grid spans a wide range in O/H, N/O and ionization parameter U, and covers different starburst ages and nebular geometries. Varying starburst ages accounts for variations in the ionizing radiation field hardness, which arise due to the ageing of H II regions or the stochastic sampling of the initial mass function. All previous approaches assume a strict relation between the ionizing field and metallicity. The other novelty is extracting information on the nebular physics from semi-strong emission lines. While strong lines ratios alone ([O III]/Hβ, [O II]/Hβ and [N II]/Hβ) lead to multiple O/H solutions, the simultaneous use of [Ar III]/[Ne III] allows one to decide whether an H II region is of high or low metallicity. Adding He I/Hβ pins down the hardness of the radiation field. We apply our method to H II regions and blue compact dwarf galaxies, and find that the resulting N/O vs O/H relation is as scattered as the one obtained from the temperature-based method. As in previous strong-line methods calibrated on photoionization models, the BOND O/H values are generally higher than temperature-based ones, which might indicate the presence of temperature fluctuations or kappa distributions in real nebulae, or a too soft ionizing radiation field in the models.

  2. Super-Nyquist asteroseismology of solar-like oscillators with Kepler and K2 - expanding the asteroseismic cohort at the base of the red giant branch

    NASA Astrophysics Data System (ADS)

    Chaplin, W. J.; Elsworth, Y.; Davies, G. R.; Campante, T. L.; Handberg, R.; Miglio, A.; Basu, S.

    2014-11-01

    We consider the prospects for detecting solar-like oscillations in the `super-Nyquist' regime of long-cadence (LC) Kepler photometry, i.e. above the associated Nyquist frequency of ≃ 283 μHz. Targets of interest are cool, evolved subgiants and stars lying at the base of the red giant branch. These stars would ordinarily be studied using the short-cadence (SC) data, since the associated SC Nyquist frequency lies well above the frequencies of the detectable oscillations. However, the number of available SC target slots is quite limited. This imposes a severe restriction on the size of the ensemble available for SC asteroseismic study. We find that archival Kepler LC data from the nominal mission may be utilized for asteroseismic studies of targets whose dominant oscillation frequencies lie as high as ≃ 500 μHz, i.e. about 1.75-times the LC Nyquist frequency. The frequency detection threshold for the shorter duration science campaigns of the re-purposed Kepler mission, K2, is lower. The maximum threshold will probably lie somewhere between ≃400 and 450 μHz. The potential to exploit the archival Kepler and K2 LC data in this manner opens the door to increasing significantly the number of subgiant and low-luminosity red giant targets amenable to asteroseismic analysis, overcoming target limitations imposed by the small number of SC slots. We estimate that around 400 such targets are now available for study in the Kepler LC archive. That number could potentially be a lot higher for K2, since there will be a new target list for each of its campaigns.

  3. THE GLOBULAR CLUSTER SYSTEM OF THE VIRGO GIANT ELLIPTICAL GALAXY NGC 4636. II. KINEMATICS OF THE GLOBULAR CLUSTER SYSTEM

    SciTech Connect

    Lee, Myung Gyoon; Park, Hong Soo; Hwang, Ho Seong; Arimoto, Nobuo; Tamura, Naoyuki; Onodera, Masato E-mail: hspark@astro.snu.ac.k E-mail: masato.onodera@cea.f E-mail: naoyuki@subaru.naoj.or

    2010-02-01

    We present a kinematic analysis of the globular cluster (GC) system in the giant elliptical galaxy (gE) NGC 4636 in the Virgo cluster. Using the photometric and spectroscopic database of 238 GCs (108 blue GCs and 130 red GCs) at the galactocentric radius 0.'39 < R < 15.'43, we have investigated the kinematics of the GC system. The NGC 4636 GC system shows weak overall rotation, which is dominated by the red GCs. However, both the blue GCs and red GCs show some rotation in the inner region at R < 4.'3 (=2.9R{sub eff} = 18.5 kpc). The velocity dispersion for all the GCs is derived to be sigma{sub p} = 225{sup +12}{sub -9} km s{sup -1}. The velocity dispersion for the blue GCs (sigma{sub p} = 251{sup +18}{sub -12} km s{sup -1}) is slightly larger than that for the red GCs (sigma{sub p} = 205{sup +11}{sub -13} km s{sup -1}). The velocity dispersions for the blue GCs about the mean velocity and about the best-fit rotation curve have a significant variation depending on the galactocentric radius. Comparison of observed stellar and GC velocity dispersion profiles (VDPs) with the VDPs calculated from the stellar mass profile shows that the mass-to-light ratio should increase as the galactocentric distance increases, indicating the existence of an extended dark matter halo. From the comparison of the observed GC VDPs and the VDPs calculated for the X-ray mass profiles in the literature, we find that the orbit of the GC system is tangential, and that the orbit of the red GCs is slightly more tangential than that of the blue GCs. We compare the GC kinematics of NGC 4636 with those of other six gEs, finding that the kinematic properties of the GCs are diverse among gEs. We find several correlations between the kinematics of the GCs and the global parameters of their host galaxies. We discuss the implication of the results for the formation models of the GC system in gEs, and suggest a mixture scenario for the origin of the GCs in gEs.

  4. Disorganization of the Mn4Ca complex of photosystem II by ruthenium red: a thermoluminescence study.

    PubMed

    Gauthier, Alain; Carpentier, Robert

    2009-01-01

    Ruthenium red (RR) is known to be an inhibitor that binds to Ca2+ sites. It releases Ca2+ and Cl(-) together with the extrinsic polypeptide of 17 kDa associated with the oxygen evolving complex of photosystem II. In this work we used thermoluminescence to study S2/3QB(-) and S2QA(-) charge recombination. It is shown that RR produced a deeper inhibition of oxygen evolution compared with the effect of extrinsic polypeptide or Ca2+/Cl(-) depletion. Even though Mn is not released, the Mn cluster is disorganized by RR and the S1-->S2 transition is inhibited. PMID:18800362

  5. The characteristic red chemiluminescence from reactions with acidic potassium permanganate: further spectroscopic evidence for a manganese(II) emitter.

    PubMed

    Adcock, Jacqui L; Francis, Paul S; Smith, Trevor A; Barnett, Neil W

    2008-01-01

    A direct comparison of the laser-induced photoluminescence of manganese(ii) with the chemiluminescence from the reaction between acidic potassium permanganate and sodium borohydride was used to confirm that the characteristic red emission from this widely used chemiluminescence reagent emanates from an electronically excited manganese(ii) species. PMID:18087612

  6. A Multi-ionic Kinematic Investigation of NGC 595, a Giant Extragalactic H II Region in M33

    NASA Astrophysics Data System (ADS)

    Lagrois, Dominic; Joncas, Gilles

    2009-08-01

    Spectro-interferometric observations of the Hα, [O III], and [S II] optical emission lines are combined with radio observations of the 21 cm line in order to obtain a reliable kinematic image of NGC 595, the second largest giant extragalactic H II region in M33. The Hα and [O III] observations reveal that the nebula is exposed to two distinct kinematical regimes. While symmetric, broad velocity profiles dominate a sizeable fraction of the ionized extent, evidence for line splitting is detected in a small region near the most massive stars of the star cluster. A quantitative investigation proposes that two expanding wind-blown bubbles could be held responsible for the observed line splitting. The kinematics of the ionized material presenting one-component velocity profiles likely indicates that Champagne flows are present at the periphery of the molecular component leading to accelerated ionized material in the ambient interstellar medium. In areas not dominated by the photoionization of the molecular clouds, the H+ and S+ material shows a kinematical behavior roughly in agreement with the atomic gas. Mean nonthermal line widths show relatively large, supersonic values especially in [O III]. Models of structure functions indicate that the Hα and [O III] components could be exposed to different turbulent motions which could explain the broadening excess observed for the latter ion. On the full ionized extent of the nebula, the S+ material shows narrower line widths than the two other ions. Combined with the absence of line splitting, these peculiar characteristics indicate that the [S II] component is likely located at the periphery of the nebula and probably does not coexist with Hα and [O III]. The shape of the [S II] structure function is in agreement with a relatively low number of large-scale velocity gradients which partially explains the narrower profiles observed. The mean electron density in the nebula is estimated at 162 ± 106(1σ) cm-3, in agreement

  7. Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets

    SciTech Connect

    Huang, Lei; Yu, Cong E-mail: cyu@ynao.ac.cn

    2014-11-20

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.

  8. The Mg II h and k interstellar lines in the spectrum of the G-type giant HD 156854

    NASA Technical Reports Server (NTRS)

    Gurzadian, G. A.; Cholakian, V. G.; Kondo, Y.; Shore, Steven N.; Terzian, Yervant

    1990-01-01

    The results of the measurements and analysis of the IUE observations of the 2800 Mg II doublet in the spectrum of HD 156854, a G9 III star, are presented. The relative power of the magnesium chromosphere, R(Mg) = 0.00001, is in agreement with the known data for giants of the same class. The emission profiles of this doublet present absorption cores, which are of interstellar origin. Taking into account the interstellar depletion of Mg, the derived density of interstellar hydrogen is n(H) = 0.001/cu cm, which agrees with the conclusion (Paresce 1984) about the possibility of large hydrogen concentrations in some directions of the Galaxy far from the sun.

  9. Chemical investigations of Atlantis II and discovery brines in the Red Sea

    NASA Astrophysics Data System (ADS)

    Danielsson, Lars-Göran; Dyrssen, David; Granéli, Anders

    1980-12-01

    Analytical data for the Atlantis II and Discovery deeps in the Red Sea are given. The data were collected in March and June 1976 during the 22nd cruise of R/V Akademik Kurchatov in the Indian Ocean. On board analyses were performed of density, chlorinity, Mg, Ca, Sr and trace elements. The salinity, calculated from the density, is related to the chlorinity by S = 1.67 Cl + 4.02. The Ca-salinity relation is linear for both deeps showing that intermediate waters are formed by mixing of the brines with Red Sea water (RSDW). The hot brine (62°C) in the Atlantis II deep contains approx. 80 mg/kg of Fe and Mn while the warm brine (45°C) in the Discovery deep has a very low concentration of Fe and approx. 50 mg/kg of Mn. Mixing of RSDW containing 2 ml/l of oxygen with the anoxic deep brines causes precipitation of hydrous Mn(IV) and Fe(III) hydroxides. These two processes occur at different depths in the two deeps due to the formation of the warm (48-49°) intermediate brine in the Atlantis II deep. The oxidation-hydrolysis reactions proposed are supported by alkalinity-depth profiles and measurements of pH. These reactions also explain most of the trace element distributions and the composition of the SiO 2-Fe(III) hydroxide slurry recovered by some water samplers in the Atlantis II deep.

  10. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. II. Super Li-rich giant HD 107028

    NASA Astrophysics Data System (ADS)

    Adamów, M.; Niedzielski, A.; Villaver, E.; Wolszczan, A.; Kowalik, K.; Nowak, G.; Adamczyk, M.; Deka-Szymankiewicz, B.

    2015-09-01

    Context. Lithium-rich giant stars are rare objects. For some of them, Li enrichment exceeds the abundance of this element found in solar system meteorites, suggesting that these stars have gone through a Li enhancement process. Aims: We identified a Li-rich giant HD 107028 with A(Li) > 3.3 in a sample of evolved stars observed within the PennState Toruń Planet Search. In this work we study different enhancement scenarios and we try to identify the one responsible for Li enrichment in HD 107028. Methods: We collected high-resolution spectra with three different instruments, covering different spectral ranges. We determined stellar parameters and abundances of selected elements with both equivalent width measurements and analysis, and spectral synthesis. We also collected multi-epoch high-precision radial velocities in an attempt to detect a companion. Results: Collected data show that HD 107028 is a star at the base of the red giant branch (RGB). Except for high Li abundance, we have not identified any other anomalies in its chemical composition, and there is no indication of a low-mass or stellar companion. We exclude Li production at the luminosity function bump on the RGB as the effective temperature and luminosity suggest that the evolutionary state is much earlier than the RGB bump. We also cannot confirm the Li enhancement by contamination as we do not observe any anomalies that are associated with this scenario. Conclusions: After evaluating various scenarios of Li enhancement we conclude that the Li-overabundance of HD 107028 originates from main-sequence evolution, and may be caused by diffusion processes. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on

  11. Insight into glucosidase II from the red marine microalga Porphyridium sp. (Rhodophyta).

    PubMed

    Levy-Ontman, Oshrat; Fisher, Merav; Shotland, Yoram; Tekoah, Yoram; Malis Arad, Shoshana

    2015-12-01

    N-glycosylation of proteins is one of the most important post-translational modifications that occur in various organisms, and is of utmost importance for protein function, stability, secretion, and loca-lization. Although the N-linked glycosylation pathway of proteins has been extensively characterized in mammals and plants, not much information is available regarding the N-glycosylation pathway in algae. We studied the α 1,3-glucosidase glucosidase II (GANAB) glycoenzyme in a red marine microalga Porphyridium sp. (Rhodophyta) using bioinformatic and biochemical approaches. The GANAB-gene was found to be highly conserved evolutionarily (compo-sed of all the common features of α and β subunits) and to exhibit similar motifs consistent with that of homolog eukaryotes GANAB genes. Phylogenetic analysis revealed its wide distribution across an evolutionarily vast range of organisms; while the α subunit is highly conserved and its phylogenic tree is similar to the taxon evolutionary tree, the β subunit is less conserved and its pattern somewhat differs from the taxon tree. In addition, the activity of the red microalgal GANAB enzyme was studied, including functional and biochemical characterization using a bioassay, indicating that the enzyme is similar to other eukaryotes ortholog GANAB enzymes. A correlation between polysaccharide production and GANAB activity, indicating its involvement in polysaccharide biosynthesis, is also demonstrated. This study represents a valuable contribution toward understanding the N-glycosylation and polysaccharide biosynthesis pathways in red microalgae. PMID:26987003

  12. Subsea salt flows in the Atlantis II Deep and Thetis Deep, Red Sea

    NASA Astrophysics Data System (ADS)

    Feldens, P.; Schmidt, M.; Mitchell, N.; Basaham, A. S.

    2012-04-01

    In the area of today's Red Sea, evaporites were widely deposited during the Miocene. Due to the ongoing rifting and seafloor spreading, the evaporites have lost their lateral constraint and started to move downslope. High sediment temperatures near the Red Sea graben and the weak rheology of halite may also favour evaporite movement. However, the deformation mechanism as well as the velocity of these flows is largely unknown. New high-resolution multibeam and seismic data were recorded in March 2011 (P408-2 cruise) within the framework of the project "The Jeddah Transect", a cooperation between King Abdulaziz University, Saudi-Arabia and GEOMAR, Germany. The data give new insights into evaporite flows in the area of the Atlantis II Deep. This ~400 m deep seafloor depression is located at about 21°N in the central Red Sea graben and is partly filled with hot saline brine (T~68°C, S~270‰). The brine-seawater interface at about 2050 mbsl coincides with the depth of a subseafloor salt layer in the seismic reflection data. The rough seafloor morphology of the Atlantis II Deep area is dominated by a sequence of normal faults showing vertical offsets of several hundred meters. However, SW-NE directed lineaments parallel to the seafloor gradient in the south east and possibly north-west of the deep, with typical heights between 20 and 40 m, widths between 300 and 1000 m and lengths exceeding 10 km in places, are interpreted as surface indications of subsurface evaporite flow. The fronts of some of these flows are well rounded, and their occurrence is limited to areas of low seafloor gradients. Generally, the appearance of evaporite flows in the Atlantis II Deep is comparable to salt flows in the Thetis Deep at ~23°N (Mitchell et al., 2010). Furthermore, deformed hemipelagic layers deposited on top of the Miocene evaporites indicate salt movement 60 km off the central rift axis. A second research cruise is planned in March 2012 (RV Pelagia) to obtain more high

  13. Cu(II) binding by dried biomass of red, green and brown macroalgae.

    PubMed

    Murphy, Vanessa; Hughes, Helen; McLoughlin, Peter

    2007-02-01

    Dried biomass of the marine macroalgae Fucus spiralis and Fucus vesiculosus (brown), Ulva spp. (comprising Ulva linza, Ulva compressa and Ulva intestinalis) and Ulva lactuca (green), Palmaria palmata and Polysiphonia lanosa (red) were studied in terms of their Cu(II) biosorption performance. This is the first study of its kind to compare Cu(II) uptake by these seaweeds in the South-East of Ireland. Potentiometric and conductimetric titrations revealed a variety of functionalities on the seaweed surface including carboxyl and amino groups, which are capable of metal binding. It was also found that, of the seaweeds investigated, F. vesiculosus contained the greatest number of acidic surface binding sites while Palmaria palmata contained the least. The metal uptake capacities of the seaweeds increased with increasing pH and kinetic behaviour followed a similar pattern for all seaweeds: a rapid initial sorption period followed by a longer equilibrium period. P. palmata reached equilibrium within 10min of exposure while F. vesiculosus required 60min. Correlation was found between the total number of acidic binding sites and the time taken to reach equilibrium. Fourier transform infra-red (FTIR) analysis of the seaweeds revealed the interaction of carboxyl, amino, sulphonate and hydroxyl groups on the seaweed surface with Cu(2+) ions while time course studies established the relative contribution of each of these groups in metal binding. PMID:17234234

  14. New Records Reveal the Actual Distribution of Cratomelus meritus Gorochov (Orthoptera: Anostostomatidae), a Giant Red Cricket from Chile.

    PubMed

    Alfaro, F M; Zuñiga-Reinoso, A; Muñoz-Ramírez, C; Elgueta, M

    2015-04-01

    The geographic distribution of the red cricket Cratomelus meritus Gorochov had remained unknown until now due to mislabeling and lack of new records. The aim of this short communication is to uncover and establish the actual distribution of the species on the basis of new records and discuss potential biogeographic hypotheses about its distribution. PMID:26013139

  15. A 2D multiwavelength study of the ionized gas and stellar population in the giant H II region NGC 588

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Relaño, M.; Kehrig, C.; Pérez-Montero, E.; Vílchez, J. M.; Kelz, A.; Roth, M. M.; Streicher, O.

    2011-05-01

    Giant H II regions (GHIIRs) in nearby galaxies are a local sample in which we can study in detail processes in the interaction of gas, dust and newly formed stars which are analogous to those which occurred in episodes of higher intensity in which much of the current stellar population was born. Here, we present an analysis of NGC 588, a GHIIR in M33, based on optical Integral Field Spectroscopy data obtained with the Potsdam Multi-Aperture Spectrophotometer at the 3.5-m telescope of the Calar Alto Observatory, CAHA, together with Spitzer infrared images at 8 and 24 μm. The extinction distribution measured in the optical shows complex structure, with three maxima which correlate in position with those of the emission at 24 and 8 μm. Furthermore, the Hα luminosity absorbed by the dust within the H II region reproduces the structure observed in the 24-μm image, supporting the use of the 24-μm band as a valid tracer of recent star formation. A velocity difference of ˜50 km s-1 was measured between the areas of high and low surface brightness, which would be expected if NGC 588 were an evolved GHIIR. We have carefully identified the areas which contribute most to the line ratios measured in the integrated spectrum. Those line ratios which are used in diagnostic diagrams proposed by Baldwin, Phillips & Terlevich (i.e. the BPT diagrams) show a larger range of variation in the low surface brightness areas. The ranges are ˜0.5-1.2 dex for [N II]λ6584/Hα, 0.7-1.7 dex for [S II]λλ6717,6731/Hα and 0.3-0.5 dex for [O III]λ5007/Hβ, with higher values of [N II]λ6584/Hα and [S II]λλ6717,6731/Hα, and lower values of [O III]λ5007/Hβ in the areas of lower surface brightness. Ratios corresponding to large ionization parameter (U) are found between the peak of the emission in Hβ and the main ionizing source decreasing radially outwards within the region. Differences between the integrated and local values of the U tracers can be as high as ˜0.8 dex, notably when

  16. Photoproduced fluorescent Au(I)@(Ag2/Ag3)-thiolate giant cluster: an intriguing sensing platform for DMSO and Pb(II).

    PubMed

    Ganguly, Mainak; Mondal, Chanchal; Jana, Jayasmita; Pal, Anjali; Pal, Tarasankar

    2014-01-14

    Synergistic evolution of fluorescent Au(I)@(Ag2/Ag3)-thiolate core-shell particles has been made possible under the Sun in presence of the respective precursor coinage metal compounds and glutathione (GSH). The green chemically synthesized fluorescent clusters are giant (∼600 nm) in size and robust. Among all the common water miscible solvents, exclusively DMSO exhibits selective fluorescence quenching (Turn Off) because of the removal of GSH from the giant cluster. Again, only Pb(II) ion brings back the lost fluorescence (Turn On) leaving aside all other metal ions. This happens owing to the strong affinity of the sulfur donor of DMSO for Pb(II). Thus, employing the aqueous solution containing the giant cluster, we can detect DMSO contamination in water bodies at trace level. Besides, a selective sensing platform has emerged out for Pb(II) ion with a detection limit of 14 × 10(-8) M. Pb(II) induced fluorescence recovery is again vanished by I(-) implying a promising route to sense I(-) ion. PMID:24359547

  17. A SUCCESSFUL BROADBAND SURVEY FOR GIANT Ly{alpha} NEBULAE. II. SPECTROSCOPIC CONFIRMATION

    SciTech Connect

    Prescott, Moire K. M.; Dey, Arjun; Jannuzi, Buell T.

    2013-01-01

    Using a systematic broadband search technique, we have carried out a survey for large Ly{alpha} nebulae (or Ly{alpha} {sup b}lobs{sup )} at 2 {approx}< z {approx}< 3 within 8.5 deg{sup 2} of the NOAO Deep Wide-Field Survey Booetes field, corresponding to a total survey comoving volume of Almost-Equal-To 10{sup 8} h {sup -3} {sub 70} Mpc{sup 3}. Here, we present our spectroscopic observations of candidate giant Ly{alpha} nebulae. Of 26 candidates targeted, 5 were confirmed to have Ly{alpha} emission at 1.7 {approx}< z {approx}< 2.7, 4 of which were new discoveries. The confirmed Ly{alpha} nebulae span a range of Ly{alpha} equivalent widths, colors, sizes, and line ratios, and most show spatially extended continuum emission. The remaining candidates did not reveal any strong emission lines, but instead exhibit featureless, diffuse, blue continuum spectra. Their nature remains mysterious, but we speculate that some of these might be Ly{alpha} nebulae lying within the redshift desert (i.e., 1.2 {approx}< z {approx}< 1.6). Our spectroscopic follow-up confirms the power of using deep broadband imaging to search for the bright end of the Ly{alpha} nebula population across enormous comoving volumes.

  18. HLA class II genes polymorphism in DR4 giant cell arteritis patients.

    PubMed

    Bignon, J D; Ferec, C; Barrier, J; Pennec, Y; Verlingue, C; Cheneau, M L; Lucas, V; Muller, J Y; Saleun, J P

    1988-11-01

    We have previously reported a significant increase of HLA-DR4 antigen frequency in giant cell arteritis (GCA). This finding suggested an important role of immunogenetic factors in this syndrome. Recent data suggest that inherited susceptibility to several autoimmune diseases was associated with specific DR4 associated DQ beta alleles. DNAs from 27 DR4 positive patients with GCA were digested with Taq I and Bam HI, analysed on 0.7% agarose gel and hybridized with DR beta, DQ alpha and DQ beta probes. DR beta hybridization produced no variant detectable within DR4. DQ beta probe confirmed two clusters among DR4 associated DQW3 alleles: DQW 3.1 (Bam HI 360 Kb) and DQw 3.2 (Taq I 1.9 Kb and Bam HI 11 Kb). Among our 27 DR4 positive patients, 34% were DQW 3.1 and 66% were DQW 3.2. These frequencies are the same as those observed in healthy controls. PMID:2906182

  19. A search for Ca II emission enhancement in stars resulting from nearby giant planets

    NASA Astrophysics Data System (ADS)

    Saar, S. H.; Cuntz, M.

    2001-07-01

    We present a search for periodicities (Pchr) in the chromospheric Caii infrared triplet emission of several stars (τ Boo, 51 Peg, υ And, ρ1 Cnc, ρ CrB, 70 Vir and GL 876) which may be directly attributable to interaction with close-in giant planets. Activity enhancements could arise from increased non-radiative heating and dynamo action in planet-induced tidal bulges (with Pchr~Porb/2), or from interactions between the stellar and planetary magnetic fields (with Pchr~Porb). We compare both Pchr and the phase dependence of the activity with the planetary orbital period Porb, the orbital phase, and models. No significant Pchr or phase dependence attributable to planets can be clearly identified. We place approximate upper limits on the amplitude of any planet-induced activity. We identify a possible stellar rotation period for GL 876, and support previous period determinations for four other stars. We discuss the results and possible directions of future research.

  20. Isotopic studies of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea

    USGS Publications Warehouse

    Zierenberg, Robert A.; Shanks, Wayne C., III

    1988-01-01

    The unique depositional environment of the Atlantis II Deep brine pool in the Red Sea produces a stratiform metalliferous deposit of greater areal extent than deposits formed by buoyant-plume systems typical of the midocean ridges because of much more efficient metal entrapment. Isotopic analyses of strontium, sulfur, carbon, and oxygen from the metalliferous sediments indicate that three major sources contribute dissolved components to the hydrothermal system: seawater, Miocene evaporites, and rift-zone basalt. An areally restricted magnetite-hematite-pyroxene assemblage formed at high temperatures, possibly in response to hydrothermal convection initiated by intrusion of basalt into the metalliferous sediment. A correlation between smectite Fe/(Fe+Mg) ratios and oxygen isotope temperatures suggests that smectite is a potentially important chemical geothermometer, and confirms geochemical calculations indicating that Mg-rich smectite is more stable than Fe-rich smectite at elevated temperatures.

  1. Novel Features of Eukaryotic Photosystem II Revealed by Its Crystal Structure Analysis from a Red Alga.

    PubMed

    Ago, Hideo; Adachi, Hideyuki; Umena, Yasufumi; Tashiro, Takayoshi; Kawakami, Keisuke; Kamiya, Nobuo; Tian, Lirong; Han, Guangye; Kuang, Tingyun; Liu, Zheyi; Wang, Fangjun; Zou, Hanfa; Enami, Isao; Miyano, Masashi; Shen, Jian-Ren

    2016-03-11

    Photosystem II (PSII) catalyzes light-induced water splitting, leading to the evolution of molecular oxygen indispensible for life on the earth. The crystal structure of PSII from cyanobacteria has been solved at an atomic level, but the structure of eukaryotic PSII has not been analyzed. Because eukaryotic PSII possesses additional subunits not found in cyanobacterial PSII, it is important to solve the structure of eukaryotic PSII to elucidate their detailed functions, as well as evolutionary relationships. Here we report the structure of PSII from a red alga Cyanidium caldarium at 2.76 Å resolution, which revealed the structure and interaction sites of PsbQ', a unique, fourth extrinsic protein required for stabilizing the oxygen-evolving complex in the lumenal surface of PSII. The PsbQ' subunit was found to be located underneath CP43 in the vicinity of PsbV, and its structure is characterized by a bundle of four up-down helices arranged in a similar way to those of cyanobacterial and higher plant PsbQ, although helices I and II of PsbQ' were kinked relative to its higher plant counterpart because of its interactions with CP43. Furthermore, two novel transmembrane helices were found in the red algal PSII that are not present in cyanobacterial PSII; one of these helices may correspond to PsbW found only in eukaryotic PSII. The present results represent the first crystal structure of PSII from eukaryotic oxygenic organisms, which were discussed in comparison with the structure of cyanobacterial PSII. PMID:26757821

  2. Giant molecular filaments in the Milky Way. II. The fourth Galactic quadrant

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Ragan, S.; Kainulainen, J.; Henning, Th.; Beuther, H.; Johnston, K.

    2016-05-01

    Context. Filamentary structures are common morphological features of the cold, molecular interstellar medium (ISM). Recent studies have discovered massive, hundred-parsec-scale filaments that may be connected to the large-scale, Galactic spiral arm structure. Addressing the nature of these giant molecular filaments (GMFs) requires a census of their occurrence and properties. Aims: We perform a systematic search of GMFs in the fourth Galactic quadrant and determine their basic physical properties. Methods: We identify GMFs based on their dust extinction signatures in the near- and mid-infrared and the velocity structure probed by 13CO line emission. We use the 13CO line emission and ATLASGAL dust emission data to estimate the total and dense gas masses of the GMFs. We combine our sample with an earlier sample from literature and study the Galactic environment of the GMFs. Results: We identify nine GMFs in the fourth Galactic quadrant: six in the Centaurus spiral arm and three in inter-arm regions. Combining this sample with an earlier study using the same identification criteria in the first Galactic quadrant results in 16 GMFs, nine of which are located within spiral arms. The GMFs have sizes of 80-160 pc and 13CO-derived masses between 5-90 × 104M⊙. Their dense gas mass fractions are between 1.5-37%, which is higher in the GMFs connected to spiral arms. We also compare the different GMF-identification methods and find that emission and extinction-based techniques overlap only partially, thereby highlighting the need to use both to achieve a complete census. Table A.2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A131

  3. TWO DISTINCT RED GIANT BRANCH POPULATIONS IN THE GLOBULAR CLUSTER NGC 2419 AS TRACERS OF A MERGER EVENT IN THE MILKY WAY

    SciTech Connect

    Lee, Young-Wook; Han, Sang-Il; Joo, Seok-Joo; Jang, Sohee; Na, Chongsam; Lim, Dongwook; Kim, Hak-Sub; Yoon, Suk-Jin; Okamoto, Sakurako; Arimoto, Nobuo

    2013-11-20

    Recent spectroscopic observations of the outer halo globular cluster (GC) NGC 2419 show that it is unique among GCs, in terms of chemical abundance patterns, and some suggest that it was originated in the nucleus of a dwarf galaxy. Here we show, from the Subaru narrowband photometry employing a calcium filter, that the red giant branch (RGB) of this GC is split into two distinct subpopulations. Comparison with spectroscopy has confirmed that the redder RGB stars in the hk[=(Ca–b) – (b – y)] index are enhanced in [Ca/H] by ∼0.2 dex compared to the bluer RGB stars. Our population model further indicates that the calcium-rich second generation stars are also enhanced in helium abundance by a large amount (ΔY = 0.19). Our photometry, together with the results for other massive GCs (e.g., ω Cen, M22, and NGC 1851), suggests that the discrete distribution of RGB stars in the hk index might be a universal characteristic of this growing group of peculiar GCs. The planned narrowband calcium photometry for the Local Group dwarf galaxies would help to establish an empirical connection between these GCs and the primordial building blocks in the hierarchical merging paradigm of galaxy formation.

  4. SO and SO2 in mass-loss envelopes of red giants - Probes of nonequilibrium circumstellar chemistry and mass-loss rates

    NASA Technical Reports Server (NTRS)

    Sahai, Raghvendra; Wannier, Peter G.

    1992-01-01

    SO emission was searched for in one or more of four transitions toward 23 oxygen-rich red giant or supergiant stars and one S star, selected primarily on the basis of their nonmaser SiO emission. SO was detected in a total of 14 circumstellar envelopes, 13 of which are new detections. The circumstellar abundance of SO (and SO2) is significantly enhanced over the equilibrium value achieved in the photospheres of these stars. In general, the SO abundances are significantly larger than predicted by nonequilibrium circumstellar chemistry models. Sulfur cannot be significantly depleted onto circumstellar grains, and probably exists as H2S (and/or SH) in the inner regions of the envelopes. The SO rotational-level population in most circumstellar envelopes observed is characterized by excitation temperatures less than or approximately equal to 50 K. The circumstellar abundance of SO2 is comparable to, or larger than, that of SO, ruling out the 'large' value adopted for the unshielded photodissociation rate for SO2 in recent models.

  5. Toward shrimp consumption without chemicals: Combined effects of freezing and modified atmosphere packaging (MAP) on some quality characteristics of Giant Red Shrimp (Aristaeomorpha foliacea) during storage.

    PubMed

    Bono, Gioacchino; Okpala, Charles Odilichukwu R; Alberio, Giuseppina R A; Messina, Concetta M; Santulli, Andrea; Giacalone, Gabriele; Spagna, Giovanni

    2016-04-15

    The combined effects of freezing and modified atmosphere packaging (MAP) (100% N2 and 50% N2+50% CO2) on some quality characteristics of Giant Red Shrimp (GRS) (Aristaeomorpha foliacea) was studied during 12-month storage. In particular, the quality characteristics determined proximal and gas compositions, melanosis scores, pH, total volatile basic-nitrogen (TVB-N), thiobarbituric acid (TBA) as well as free amino acid (FAA). In addition, the emergent data were compared to those subject to vacuum packaging as well as conventional preservative method of sulphite treatment (SUL). Most determined qualities exhibited quantitative differences with storage. By comparisons, while pH and TVB-N statistically varied between treatments (P<0.05) and TBA that ranged between ∼0.15 and 0.30 mg MDA/kg appeared least at end of storage for 100% N2 treated-group, the latter having decreased melanosis scores showed such treatments with high promise to keep the colour of GRS sample hence, potential replacement for SUL group. By comparisons also, while some individual FAA values showed increases especially at the 100% N2-treated group, the total FAAs statistically differed with storage (P<0.05). The combination of freezing and MAP treatments as preservative treatment method shows high promise to influence some quality characteristics of GRS samples of this study. PMID:26616991

  6. Hydrothermal fluid migration and brine pool formation in the Red Sea: the Atlantis II Deep

    NASA Astrophysics Data System (ADS)

    Schardt, Christian

    2016-01-01

    Numerical heat and fluid flow simulations of the Atlantis II Deep in the Red Sea were conducted to investigate the development, migration, and discharge of hydrothermal fluids into a submarine depression and determine the conditions necessary to form a brine pool. High-salinity fluids are predicted to form by leaching Miocene evaporates, migrate and convect within young oceanic crust, and discharge onto the seafloor. Predicted fluid discharge temperatures ( T max, 301 °C), discharge fluid velocities ( V max, 0.09 m/s), and salinities ( S max, 21 wt%) increase over time and reach values comparable to modern seafloor observations. Established convection patterns and discharge behavior are robust and are not greatly affected by geometry of rock property changes. Modeling results were used to calculate the minimum conditions for hydrothermal fluids from a developing hydrothermal system to mix with seawater, reverse buoyancy, and begin to form a brine pool in a submarine depression. Under conditions encountered on the seafloor ( T, 25-300 °C; S, 5-25 wt%), fluid mixtures predicted to pond on the seafloor range from late in the mixing process (99 %) at low temperatures ( T, 26 °C) to much earlier (36 % mixing) at higher temperatures ( T, 94 °C). A model of brine pool evolution is proposed that describes the processes and conditions necessary to initiate brine pool formation and compares formation conditions with accumulated ore material in the Atlantis II Deep and other locations.

  7. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea).

    PubMed

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin. PMID:26485717

  8. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)

    PubMed Central

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin. PMID:26485717

  9. Programme for Environmental Studies, Red Sea and Gulf of Aden, Jeddah II Conference, 12-18 January 1976. Provisional Report.

    ERIC Educational Resources Information Center

    Arab Organization for Education and Science, Cairo (Egypt).

    This publication presents the report of Jeddah II Conference of the Program for Environmental Studies, Red Sea and Gulf of Aden (PERSGA) hosted by King Abdul Aziz University in Jeddah in January 1976. The Arab League Educational, Cultural and Scientific Organization (ALECSO) initiated the conference to study the issues of scientific research on,…

  10. Rice and red rice interference. II. Rice response to population densities of three red rice (Oryza sativa) ecotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice, which grows taller and produces more tillers than domestic rice and shatters most of its seeds early, is a major weed in many rice-growing areas of the world. Field experiments were conducted at Stuttgart, AR in 1997 and 1998 to evaluate the growth response of the Kaybonnet (KBNT) rice cul...

  11. The Wolf-Rayet star population in the most massive giant H II regions of M33

    NASA Technical Reports Server (NTRS)

    Drissen, Laurent; Moffat, Anthony F. J.; Shara, Michael M.

    1990-01-01

    Narrow-band images of NGC 604, NGC 595, and NGC 592, the most massive giant H II regions (GHRs) in M33 have been obtained, in order to study their Wolf-Rayet content. These images reveal the presence of nine candidates in NGC 604 (seven WN, two WC), 10 in NGC 595 (nine WN, one WC), and two in NGC 592 (two WN). Precise positions and estimated magnitudes are given for the candidates, half of which have so far been confirmed spectroscopically as genuine W-R stars. The flux in the emission lines of all candidates is comparable to that of normal Galactic W-R stars of similar subtype. A few of the putative superluminous W-R stars are shown to be close visual double or multiple stars; their newly estimated luminosities are now more compatible with those of normal W-R stars. NGC 595 seems to be overabundant in W-R stars for its mass compared to other GHRs, while NGC 604 is normal. Factors influencing the W-R/O number ratio in GHRs are discussed: metallicity and age appear to be the most important.

  12. A DEEP CHANDRA OBSERVATION OF THE GIANT H II REGION N11. I. X-RAY SOURCES IN THE FIELD

    SciTech Connect

    Nazé, Yaël; Wang, Q. Daniel; Chu, You-Hua; Gruendl, Robert; Oskinova, Lida

    2014-08-01

    A very sensitive X-ray investigation of the giant H II region N11 in the Large Megallanic Cloud was performed using the Chandra X-ray Observatory. The 300 ks observation reveals X-ray sources with luminosities down to 10{sup 32} erg s{sup –1}, increasing the number of known point sources in the field by more than a factor of five. Among these detections are 13 massive stars (3 compact groups of massive stars, 9 O stars, and one early B star) with log (L {sub X}/L {sub BOL}) ∼–6.5 to –7, which may suggest that they are highly magnetic or colliding-wind systems. On the other hand, the stacked signal for regions corresponding to undetected O stars yields log (L {sub X}/L {sub BOL}) ∼–7.3, i.e., an emission level comparable to similar Galactic stars despite the lower metallicity. Other point sources coincide with 11 foreground stars, 6 late-B/A stars in N11, and many background objects. This observation also uncovers the extent and detailed spatial properties of the soft, diffuse emission regions, but the presence of some hotter plasma in their spectra suggests contamination by the unresolved stellar population.

  13. The Abundances of Neutron-capture Species in the Very Metal-poor Globular Cluster M15: A Uniform Analysis of Red Giant Branch and Red Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Sobeck, Jennifer S.; Kraft, Robert P.; Sneden, Christopher; Preston, George W.; Cowan, John J.; Smith, Graeme H.; Thompson, Ian B.; Shectman, Stephen A.; Burley, Gregory S.

    2011-06-01

    The globular cluster M15 is unique in its display of star-to-star variations in the neutron-capture elements. Comprehensive abundance surveys have been previously conducted for handfuls of M15 red giant branch (RGB) and red horizontal branch (RHB) stars. No attempt has been made to perform a single, self-consistent analysis of these stars, which exhibit a wide range in atmospheric parameters. In the current effort, a new comparative abundance derivation is presented for three RGB and six RHB members of the cluster. The analysis employs an updated version of the line transfer code MOOG, which now appropriately treats coherent, isotropic scattering. The apparent discrepancy in the previously reported values for the metallicity of M15 RGB and RHB stars is addressed and a resolute disparity of Δ(RHB - RGB) ≈ 0.1 dex in the iron abundance was found. The anti-correlative behavior of the light neutron-capture elements (Sr, Y, Zr) is clearly demonstrated with both Ba and Eu, standard markers of the s- and r-process, respectively. No conclusive detection of Pb was made in the RGB targets. Consequently for the M15 cluster, this suggests that the main component of the s-process has made a negligible contribution to those elements normally dominated by this process in solar system material. Additionally for the M15 sample, a large Eu abundance spread is confirmed, which is comparable to that of the halo field at the same metallicity. These abundance results are considered in the discussion of the chemical inhomogeneity and nucleosynthetic history of M15.

  14. THE STELLAR CONTENT OF OBSCURED GALACTIC GIANT H II REGIONS. VII. W3

    SciTech Connect

    Navarete, F.; Figueredo, E.; Damineli, A.; Moises, A. P.; Blum, R. D.; Conti, P. S.

    2011-09-15

    Spectrophotometric distances in the K band have been reported by different authors for a number of obscured Galactic H II regions. Almost 50% of them show large discrepancies compared to the classical method using radial velocities measured in the radio spectral region. In order to provide a crucial test of both methods, we selected a target that does not present particular difficulty for any method and which has been measured by as many techniques as possible. The W3 star-forming complex, located in the Perseus arm, offers a splendid opportunity for such a task. We used the Near-Infrared Integral Field Spectrograph on the Frederick C. Gillett Gemini North telescope to classify candidate 'naked photosphere' OB stars based on Two Micron All Sky Survey photometry. Two of the targets are revealed to be mid-O-type main-sequence stars leading to a distance of d = 2.20 kpc. This is in excellent agreement with the spectrophotometric distance derived in the optical band (d = 2.18 pc) and with a measurement of the W3 trigonometric parallax (d = 1.95 kpc). Such results confirm that the spectrophotometric distances in the K band are reliable. The radio-derived kinematic distance, on the contrary, gives a distance twice as large (d = 4.2 kpc). This indicates that this region of the Perseus arm does not follow the Galactic rotation curve, and this may also be the case for other H II regions for which discrepancies have been found.

  15. ROTATION OF THE K3 II-III GIANT STAR {alpha} HYDRA

    SciTech Connect

    Gray, David F.

    2013-08-01

    Fundamental spectroscopic determination of projected rotation rates of slowly rotating stars is challenging because the rotational broadening of the spectral lines is often comparable to, or smaller than, the broadening from other sources, most notably macroturbulence. Fourier techniques have the advantage over direct profile matching when the observed profiles are complete, but when the profiles are severely blended, the Fourier analysis is compromised. A process of modeling partial profiles for determining the rotation rate for stars having blended spectral lines is investigated and applied to the evolved star {alpha} Hya (K3 II-III). Projected rotation higher than 5 km s{sup -1} can be definitively ruled out for this star. Not all lines are equally good, depending on the amount of blending and also depending on the strength of the line, as the balance between the thermal and non-thermal components changes. A modest ambiguity arises between macroturbulence and rotational broadening, but a careful look at the differences between the observations and the models allows one to measure the rotation with acceptable precision. The result for {alpha} Hya is v sin i = 2.6 {+-} 0.3 km s{sup -1}.

  16. Substrate water exchange in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae.

    PubMed

    Nilsson, Håkan; Krupnik, Tomasz; Kargul, Joanna; Messinger, Johannes

    2014-08-01

    The binding affinity of the two substrate-water molecules to the water-oxidizing Mn₄CaO₅ catalyst in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae was studied in the S₂ and S₃ states by the exchange of bound ¹⁶O-substrate against ¹⁸O-labeled water. The rate of this exchange was detected via the membrane-inlet mass spectrometric analysis of flash-induced oxygen evolution. For both redox states a fast and slow phase of water-exchange was resolved at the mixed labeled m/z 34 mass peak: kf=52 ± 8s⁻¹ and ks=1.9 ± 0.3s⁻¹ in the S₂ state, and kf=42 ± 2s⁻¹ and kslow=1.2 ± 0.3s⁻¹ in S₃, respectively. Overall these exchange rates are similar to those observed previously with preparations of other organisms. The most remarkable finding is a significantly slower exchange at the fast substrate-water site in the S₂ state, which confirms beyond doubt that both substrate-water molecules are already bound in the S2 state. This leads to a very small change of the affinity for both the fast and the slowly exchanging substrates during the S₂→S₃ transition. Implications for recent models for water-oxidation are briefly discussed. PMID:24726350

  17. The morphology of the sub-giant branch and red clump reveal no sign of age spreads in intermediate-age clusters

    NASA Astrophysics Data System (ADS)

    Bastian, N.; Niederhofer, F.

    2015-04-01

    A recent surprise in stellar cluster research, made possible through the precision of Hubble Space Telescope photometry, was that some intermediate-age (1-2 Gyr) clusters in the Large and Small Magellanic Clouds have main-sequence turn-off (MSTO) widths that are significantly broader than would be expected for a simple stellar population (SSP). One interpretation of these extended MSTOs (eMSTOs) is that age spreads of the order of ˜500 Myr exist within the clusters, radically redefining our view of stellar clusters, which are traditionally thought of as single-age, single-metallicity stellar populations. Here we test this interpretation by studying other regions of the CMD that should also be affected by such large age spreads, namely the width of the sub-giant branch (SGB) and the red clump (RC). We study two massive clusters in the LMC that display the eMSTO phenomenon (NGC 1806 and NGC 1846) and show that both have SGB and RC morphologies that are in conflict with expectations if large age spreads exist within the clusters. We conclude that the SGB and RC widths are inconsistent with extended star formation histories within these clusters, hence age spreads are not likely to be the cause of the eMSTO phenomenon. Our results are in agreement with recent studies that also have cast doubt on whether large age spreads can exist in massive clusters; namely the failure to find age spreads in young massive clusters, a lack of gas/dust detected within massive clusters, and homogeneous abundances within clusters that exhibit the eMSTO phenomenon.

  18. The Carina Project. VII. Toward the Breaking of the Age-Metallicity Degeneracy of Red Giant Branch Stars Using the C U, B, I Index

    NASA Astrophysics Data System (ADS)

    Monelli, M.; Milone, A. P.; Fabrizio, M.; Bono, G.; Stetson, P. B.; Walker, A. R.; Cassisi, S.; Gallart, C.; Nonino, M.; Aparicio, A.; Buonanno, R.; Dall'Ora, M.; Ferraro, I.; Iannicola, G.; Pulone, L.; Thévenin, F.

    2014-12-01

    We present an analysis of photometric and spectroscopic data of the Carina dSph galaxy, testing a new approach similar to that used to disentangle multiple populations in Galactic globular clusters (GCs). We show that a proper color combination is able to separate a significant fraction of the red giant branch (RGB) of the two main Carina populations (the old one, ~12 Gyr, and the intermediate-age one, 4-8 Gyr). In particular, the c U, B, I = (U - B) - (B - I) pseudo-color allows us to follow the RGB of both populations along a relevant portion of the RGB. We find that the oldest stars have a more negative c U, B, I pseudo-color than intermediate-age ones. We correlate the pseudo-color of RGB stars with their chemical properties, finding a significant trend between the iron content and the c U, B, I. Stars belonging to the old population are systematically more metal-poor ([Fe/H] =-2.32 ± 0.08 dex) than the intermediate-age ones ([Fe/H] =-1.82 ± 0.03 dex). This gives solid evidence of the chemical evolution history of this galaxy, and we have a new diagnostic that can allow us to break the age-metallicity degeneracy of H-burning advanced evolutionary phases. We compared the distribution of stars in the c U, B, I plane with theoretical isochrones, finding that no satisfactory agreement can be reached with models developed in a theoretical framework based on standard heavy element distributions. Finally, we discuss possible systematic differences when compared with multiple populations in GCs.

  19. Looks like a duck, moves like a duck, but does it quack like a duck? Asteroseismology of red-giant stars in clusters

    NASA Astrophysics Data System (ADS)

    Miglio, Andrea; Brogaard, Karsten; Handberg, Rasmus

    2015-08-01

    Undoubtedly one the highlights of the Kepler asteroseismology programme has been the detection of solar-like oscillations in giants belonging to the open clusters NGC 6791, NGC 6819, and NGC 6811. The availability of such constraints has made it possible to infer precise stellar properties (e.g. radius, mass, evolutionary state, age) on a star-by-star basis.These constraints give us a “new pair of eyes” to look at clusters, and they open several exciting opportunities. Based on a detailed analysis of the complete set of 4-years-long Kepler data, we present clear evidence for stars that have undergone non-standard evolution (evolved blue stragglers, low-mass Li-rich stars). We then illustrate the potential of integrated-mass-loss and mass-loss-dispersion measurements in both NGC6791 and NGC6819, which suggest a small true mass scatter among the red-clump stars and thus a very small mass-loss dispersion.We will then show examples of how our analysis based on individual-mode frequencies, as opposed to average seismic parameters and scaling relations, allow us to determine with higher accuracy stellar properties, and to probe features in the deep stellar interior (i.e. acoustic glitches related to Helium ionisation, properties of near-core mixing in the He-core-burning phase).Finally, we will discuss the prospects for seismic analyses of other clusters, in particular the globular cluster M4 which could reveal new insights into mass-loss dispersion and its effect on the horizontal-branch morphology.

  20. The Contribution of Thermally-Pulsing Asymptotic Giant Branch and Red Supergiant Starts to the Luminosities of the Magellanic Clouds at 1-24 micrometers

    NASA Technical Reports Server (NTRS)

    Melbourne, J.; Boyer, Martha L.

    2013-01-01

    We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at approx 3 - 4 micron, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at approx 3 - 4 micron and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 micron, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1 - 4 micron. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e.g., at 0.8 - 1 micron). At longer wavelengths (much > 8 micron), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 micron, TP-AGB and RSG contribute less than 4% of the 8 micron flux. However, 19% of the SMC 8 micron flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 micron flux (e.g., observed-frame 24 micron at z = 2), may be biased modestly high, especially for galaxies with little PAH emission.

  1. THE CONTRIBUTION OF THERMALLY-PULSING ASYMPTOTIC GIANT BRANCH AND RED SUPERGIANT STARS TO THE LUMINOSITIES OF THE MAGELLANIC CLOUDS AT 1-24 {mu}m

    SciTech Connect

    Melbourne, J.; Boyer, Martha L. E-mail: martha.l.boyer@nasa.gov

    2013-02-10

    We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at {approx}3-4 {mu}m, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at {approx}3-4 {mu}m and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 {mu}m, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1-4 {mu}m. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e.g., at 0.8-1 {mu}m). At longer wavelengths ({>=}8 {mu}m), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 {mu}m, TP-AGB and RSG contribute less than 4% of the 8 {mu}m flux. However, 19% of the SMC 8 {mu}m flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 {mu}m flux (e.g., observed-frame 24 {mu}m at z = 2), may be biased modestly high, especially for galaxies with little PAH emission.

  2. The Carina project. VII. Toward the breaking of the age-metallicity degeneracy of red giant branch stars using the C {sub U,} {sub B,} {sub I} index

    SciTech Connect

    Monelli, M.; Milone, A. P.; Gallart, C.; Aparicio, A.; Bono, G.; Stetson, P. B.; Walker, A. R.; Nonino, M.; Dall'Ora, M.; Ferraro, I.; Iannicola, G.; Pulone, L.; Thévenin, F.

    2014-12-01

    We present an analysis of photometric and spectroscopic data of the Carina dSph galaxy, testing a new approach similar to that used to disentangle multiple populations in Galactic globular clusters (GCs). We show that a proper color combination is able to separate a significant fraction of the red giant branch (RGB) of the two main Carina populations (the old one, ∼12 Gyr, and the intermediate-age one, 4-8 Gyr). In particular, the c {sub U,} {sub B,} {sub I} = (U – B) – (B – I) pseudo-color allows us to follow the RGB of both populations along a relevant portion of the RGB. We find that the oldest stars have a more negative c {sub U,} {sub B,} {sub I} pseudo-color than intermediate-age ones. We correlate the pseudo-color of RGB stars with their chemical properties, finding a significant trend between the iron content and the c {sub U,} {sub B,} {sub I}. Stars belonging to the old population are systematically more metal-poor ([Fe/H] =–2.32 ± 0.08 dex) than the intermediate-age ones ([Fe/H] =–1.82 ± 0.03 dex). This gives solid evidence of the chemical evolution history of this galaxy, and we have a new diagnostic that can allow us to break the age-metallicity degeneracy of H-burning advanced evolutionary phases. We compared the distribution of stars in the c {sub U,} {sub B,} {sub I} plane with theoretical isochrones, finding that no satisfactory agreement can be reached with models developed in a theoretical framework based on standard heavy element distributions. Finally, we discuss possible systematic differences when compared with multiple populations in GCs.

  3. New insights into the mineralogy of the Atlantis II Deep metalliferous sediments, Red Sea

    NASA Astrophysics Data System (ADS)

    Laurila, Tea E.; Hannington, Mark D.; Leybourne, Matthew; Petersen, Sven; Devey, Colin W.; Garbe-Schönberg, Dieter

    2015-12-01

    The Atlantis II Deep of the Red Sea hosts the largest known hydrothermal ore deposit on the ocean floor and the only modern analog of brine pool-type metal deposition. The deposit consists mainly of chemical-clastic sediments with input from basin-scale hydrothermal and detrital sources. A characteristic feature is the millimeter-scale layering of the sediments, which bears a strong resemblance to banded iron formation (BIF). Quantitative assessment of the mineralogy based on relogging of archived cores, detailed petrography, and sequential leaching experiments shows that Fe-(oxy)hydroxides, hydrothermal carbonates, sulfides, and authigenic clays are the main "ore" minerals. Mn-oxides were mainly deposited when the brine pool was more oxidized than it is today, but detailed logging shows that Fe-deposition and Mn-deposition also alternated at the scale of individual laminae, reflecting short-term fluctuations in the Lower Brine. Previous studies underestimated the importance of nonsulfide metal-bearing components, which formed by metal adsorption onto poorly crystalline Si-Fe-OOH particles. During diagenesis, the crystallinity of all phases increased, and the fine layering of the sediment was enhanced. Within a few meters of burial (corresponding to a few thousand years of deposition), biogenic (Ca)-carbonate was dissolved, manganosiderite formed, and metals originally in poorly crystalline phases or in pore water were incorporated into diagenetic sulfides, clays, and Fe-oxides. Permeable layers with abundant radiolarian tests were the focus for late-stage hydrothermal alteration and replacement, including deposition of amorphous silica and enrichment in elements such as Ba and Au.

  4. Molecular characterization of a gene POLR2H encoded an essential subunit for RNA polymerase II from the Giant Panda (Ailuropoda Melanoleuca).

    PubMed

    Du, Yu-Jie; Hou, Yi-Ling; Hou, Wan-Ru

    2013-02-01

    The Giant Panda is an endangered and valuable gene pool in genetic, its important functional gene POLR2H encodes an essential shared peptide H of RNA polymerases. The genomic DNA and cDNA sequences were cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) adopting touchdown-PCR and reverse transcription polymerase chain reaction (RT-PCR), respectively. The length of the genomic sequence of the Giant Panda is 3,285 bp, including five exons and four introns. The cDNA fragment cloned is 509 bp in length, containing an open reading frame of 453 bp encoding 150 amino acids. Alignment analysis indicated that both the cDNA and its deduced amino acid sequence were highly conserved. Protein structure prediction showed that there was one protein kinase C phosphorylation site, four casein kinase II phosphorylation sites and one amidation site in the POLR2H protein, further shaping advanced protein structure. The cDNA cloned was expressed in Escherichia coli, which indicated that POLR2H fusion with the N-terminally His-tagged form brought about the accumulation of an expected 20.5 kDa polypeptide in line with the predicted protein. On the basis of what has already been achieved in this study, further deep-in research will be conducted, which has great value in theory and practical significance. PMID:23070920

  5. Photosystem II Photochemistry and Phycobiliprotein of the Red Algae Kappaphycus alvarezii and Their Implications for Light Adaptation

    PubMed Central

    Wang, Jinfeng; Zhu, Jianyi; Yao, Chunyan; Liu, Jianguo; Qin, Song; Jiang, Peng

    2013-01-01

    Photosystem II photochemistry and phycobiliprotein (PBP) genes of red algae Kappaphycus alvarezii, raw material of κ-carrageenan used in food and pharmaceutical industries, were analyzed in this study. Minimum saturating irradiance (Ik) of this algal species was less than 115 μmol m−2 s−1. Its actual PSII efficiency (yield II) increased when light intensity enhanced and decreased when light intensity reached 200 μmol m−2 s−1. Under dim light, yield II declined at first and then increased on the fourth day. Under high light, yield II retained a stable value. These results indicate that K. alvarezii is a low-light-adapted species but possesses regulative mechanisms in response to both excessive and deficient light. Based on the PBP gene sequences, K. alvarezii, together with other red algae, assembled faster and showed a closer relationship with LL-Prochlorococcus compared to HL-Prochlorococcus. Many amino acid loci in PBP sequences of K. alvarezii were conserved with those of LL-Prochlorococcus. However, loci conserved with HL-Prochlorococcus but divergent with LL-Prochlorococcus were also found. The diversities of PE and PC are proposed to have played some roles during the algal evolution and divergence of light adaption. PMID:24380080

  6. Photosystem II photochemistry and phycobiliprotein of the red algae Kappaphycus alvarezii and their implications for light adaptation.

    PubMed

    Guan, Xiangyu; Wang, Jinfeng; Zhu, Jianyi; Yao, Chunyan; Liu, Jianguo; Qin, Song; Jiang, Peng

    2013-01-01

    Photosystem II photochemistry and phycobiliprotein (PBP) genes of red algae Kappaphycus alvarezii, raw material of κ -carrageenan used in food and pharmaceutical industries, were analyzed in this study. Minimum saturating irradiance (I k) of this algal species was less than 115 μmol m(-2) s(-1). Its actual PSII efficiency (yield II) increased when light intensity enhanced and decreased when light intensity reached 200 μmol m(-2) s(-1). Under dim light, yield II declined at first and then increased on the fourth day. Under high light, yield II retained a stable value. These results indicate that K. alvarezii is a low-light-adapted species but possesses regulative mechanisms in response to both excessive and deficient light. Based on the PBP gene sequences, K. alvarezii, together with other red algae, assembled faster and showed a closer relationship with LL-Prochlorococcus compared to HL-Prochlorococcus. Many amino acid loci in PBP sequences of K. alvarezii were conserved with those of LL-Prochlorococcus. However, loci conserved with HL-Prochlorococcus but divergent with LL-Prochlorococcus were also found. The diversities of PE and PC are proposed to have played some roles during the algal evolution and divergence of light adaption. PMID:24380080

  7. Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties

    NASA Astrophysics Data System (ADS)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2012-05-01

    We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at λ ~ 70 μm. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M ≲ 30 M⊕) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of ~ Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of >1 Gyr-old solar-type stars with observed 24 μm excesses. Our simulations do not sample the full range of

  8. Why some stems are red: cauline anthocyanins shield photosystem II against high light stress

    PubMed Central

    Gould, Kevin S.; Dudle, Dana A.; Neufeld, Howard S.

    2010-01-01

    Red-stemmed plants are extremely common, yet the functions of cauline anthocyanins are largely unknown. The possibility that photoabatement by anthocyanins in the periderm reduces the propensity for photoinhibition in cortical chlorenchyma was tested for Cornus stolonifera. Anthocyanins were induced in green stems exposed to full sunlight. PSII quantum yields (ФPSII) and photochemical quenching coefficients were depressed less in red than in green stems, both under a light ramp and after prolonged exposures to saturating white light. These differences were primarily attributable to the attenuation of PAR, especially green/yellow light, by anthocyanins. However, the red internodes also had less chlorophyll and higher carotenoid:chlorophyll ratios than the green, and when the anthocyanic periderm was removed, small differences in the ФPSII of the underlying chlorenchyma were retained. Thus, light screening by cauline anthocyanins is important, but is only part of a set of protective acclimations to high irradiance. Hourly measurements of ФPSII on established trees under natural daylight indicated a possible advantage of red versus green stems under sub-saturating diffuse, but not direct sunlight. To judge the wider applicability of the hypothesis, responses to high light were compared for red and green stems across five further unrelated species. There was a strong, linear, interspecific correlation between photoprotective advantage and anthocyanin concentration differences among red and green internodes. The photoprotective effect appears to be a widespread phenomenon. PMID:20400528

  9. Harvesting Far-Red Light by Chlorophyll f in Photosystems I and II of Unicellular Cyanobacterium strain KC1.

    PubMed

    Itoh, Shigeru; Ohno, Tomoki; Noji, Tomoyasu; Yamakawa, Hisanori; Komatsu, Hirohisa; Wada, Katsuhiro; Kobayashi, Masami; Miyashita, Hideaki

    2015-10-01

    Cells of a unicellular cyanobacterium strain KC1, which were collected from Japanese fresh water Lake Biwa, formed chlorophyll (Chl) f at 6.7%, Chl a' at 2.0% and pheophytin a at 0.96% with respect to Chl a after growth under 740 nm light. The far-red-acclimated cells (Fr cells) formed extra absorption bands of Chl f at 715 nm in addition to the major Chl a band. Fluorescence lifetimes were measured. The 405-nm laser flash, which excites mainly Chl a in photosystem I (PSI), induced a fast energy transfer to multiple fluorescence bands at 720-760 and 805 nm of Chl f at 77 K in Fr cells with almost no PSI-red-Chl a band. The 630-nm laser flash, which mainly excited photosystem II (PSII) through phycocyanin, revealed fast energy transfer to another set of Chl f bands at 720-770 and 810 nm as well as to the 694-nm Chl a fluorescence band. The 694-nm band did not transfer excitation energy to Chl f. Therefore, Chl a in PSI, and phycocyanin in PSII of Fr cells transferred excitation energy to different sets of Chl f molecules. Multiple Chl f forms, thus, seem to work as the far-red antenna both in PSI and PSII. A variety of cyanobacterial species, phylogenically distant from each other, seems to use a Chl f antenna in far-red environments, such as under dense biomats, in colonies, or under far-red LED light. PMID:26320210

  10. redMaPPer II: X-Ray and SZ Performance Benchmarks for the SDSS Catalog

    NASA Astrophysics Data System (ADS)

    Rozo, E.; Rykoff, E. S.

    2014-03-01

    We evaluate the performance of the Sloan Digital Sky Survey (SDSS) DR8 redMaPPer photometric cluster catalog by comparing it to overlapping X-ray- and Sunyaev-Zeldovich (SZ)-selected catalogs from the literature. We confirm that the redMaPPer photometric redshifts are nearly unbiased (langΔzrang <= 0.005), have low scatter (σ z ≈ 0.006-0.02, depending on redshift), and have a low catastrophic failure rate (≈1%). Both the TX -λ and M gas-λ scaling relations are consistent with a mass scatter of σln M|λ ≈ 25%, albeit with a ≈1% outlier rate due to projection effects (λ is the cluster richness estimated employed by redMaPPer). This failure rate is somewhat lower than that expected for the full cluster sample but is consistent with the additional selection effects introduced by our reliance on X-ray and SZ selected reference cluster samples. Where the redMaPPer DR8 catalog is volume-limited (z <= 0.35), the catalog is 100% complete above TX >~ 3.5 keV, and LX >~ 2 × 1044 erg s-1, decreasing to 90% completeness at LX ≈ 1043 erg s-1. All rich (λ >~ 100), low-redshift (z <~ 0.25) redMaPPer clusters are X-ray-detected in the ROSAT All Sky Survey, and 86% of the clusters are correctly centered. Compared to other SDSS photometric cluster catalogs, redMaPPer has the highest completeness and purity, and the best photometric redshift performance, though some algorithms do achieve comparable performance to redMaPPer in subsets of the above categories and/or in limited redshift ranges. The redMaPPer richness is clearly the one that best correlates with X-ray temperature and gas mass. Most algorithms (including redMaPPer) have very similar centering performance as tested by comparing against X-ray centers, with only one exception which performs worse.

  11. MIGRATION AND GROWTH OF PROTOPLANETARY EMBRYOS. II. EMERGENCE OF PROTO-GAS-GIANT CORES VERSUS SUPER EARTH PROGENITORS

    SciTech Connect

    Liu, Beibei; Zhang, Xiaojia; Lin, Douglas N. C.; Aarseth, Sverre J.

    2015-01-01

    Nearly 15%-20% of solar type stars contain one or more gas giant planets. According to the core-accretion scenario, the acquisition of their gaseous envelope must be preceded by the formation of super-critical cores with masses 10 times or larger than that of the Earth. It is natural to link the formation probability of gas giant planets with the supply of gases and solids in their natal disks. However, a much richer population of super Earths suggests that (1) there is no shortage of planetary building block material, (2) a gas giant's growth barrier is probably associated with whether it can merge into super-critical cores, and (3) super Earths are probably failed cores that did not attain sufficient mass to initiate efficient accretion of gas before it is severely depleted. Here we construct a model based on the hypothesis that protoplanetary embryos migrated extensively before they were assembled into bona fide planets. We construct a Hermite-Embryo code based on a unified viscous-irradiation disk model and a prescription for the embryo-disk tidal interaction. This code is used to simulate the convergent migration of embryos, and their close encounters and coagulation. Around the progenitors of solar-type stars, the progenitor super-critical-mass cores of gas giant planets primarily form in protostellar disks with relatively high (≳ 10{sup –7} M {sub ☉} yr{sup –1}) mass accretion rates, whereas systems of super Earths (failed cores) are more likely to emerge out of natal disks with modest mass accretion rates, due to the mean motion resonance barrier and retention efficiency.

  12. Migration and Growth of Protoplanetary Embryos. II. Emergence of Proto-Gas-Giant Cores versus Super Earth Progenitors

    NASA Astrophysics Data System (ADS)

    Liu, Beibei; Zhang, Xiaojia; Lin, Douglas N. C.; Aarseth, Sverre J.

    2015-01-01

    Nearly 15%-20% of solar type stars contain one or more gas giant planets. According to the core-accretion scenario, the acquisition of their gaseous envelope must be preceded by the formation of super-critical cores with masses 10 times or larger than that of the Earth. It is natural to link the formation probability of gas giant planets with the supply of gases and solids in their natal disks. However, a much richer population of super Earths suggests that (1) there is no shortage of planetary building block material, (2) a gas giant's growth barrier is probably associated with whether it can merge into super-critical cores, and (3) super Earths are probably failed cores that did not attain sufficient mass to initiate efficient accretion of gas before it is severely depleted. Here we construct a model based on the hypothesis that protoplanetary embryos migrated extensively before they were assembled into bona fide planets. We construct a Hermite-Embryo code based on a unified viscous-irradiation disk model and a prescription for the embryo-disk tidal interaction. This code is used to simulate the convergent migration of embryos, and their close encounters and coagulation. Around the progenitors of solar-type stars, the progenitor super-critical-mass cores of gas giant planets primarily form in protostellar disks with relatively high (gsim 10-7 M ⊙ yr-1) mass accretion rates, whereas systems of super Earths (failed cores) are more likely to emerge out of natal disks with modest mass accretion rates, due to the mean motion resonance barrier and retention efficiency.

  13. Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur and Phosphorus

    NASA Astrophysics Data System (ADS)

    Visscher, Channon; Lodders, Katharina; Fegley, Bruce, Jr.

    2006-09-01

    Thermochemical equilibrium and kinetic calculations are used to model sulfur and phosphorus chemistry in giant planets, brown dwarfs, and extrasolar giant planets (EGPs). The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of pressure, temperature, and metallicity. The results are independent of particular model atmospheres, and in principle, the equilibrium composition along the pressure-temperature profile of any object can be determined. Hydrogen sulfide (H2S) is the dominant S-bearing gas throughout substellar atmospheres and approximately represents the atmospheric sulfur inventory. Silicon sulfide (SiS) is a potential tracer of weather in substellar atmospheres. Disequilibrium abundances of phosphine (PH3) approximately representative of the total atmospheric phosphorus inventory are expected to be mixed upward into the observable atmospheres of giant planets and T dwarfs. In hotter objects, several P-bearing gases (e.g., P2, PH3, PH 2, PH, and HCP) become increasingly important at high temperatures.

  14. Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea

    NASA Astrophysics Data System (ADS)

    Swift, Stephen; Bower, Amy; Schmitt, Raymond

    2013-04-01

    In October 2008, we measured temperature and salinity in hot (68°C), hypersaline (250 psu) brine filling the Atlantis II and Discovery Deeps on the Red Sea spreading center near 21°N. In agreement with previous observations in the Atlantis II Deep, we found a stack of four convective layers (in which temperature is vertically uniform) separated by thin interfaces with high vertical temperature gradients. Compared with the last observations in 1997, temperature in the thickest, deepest convective layer in the Atlantis II Deep continued to slowly increase at 0.1°C/yr. Based on earlier data extending back to the 1960s, we found that the temperature of all four convective layers increased at the same rate, from which we infer that diffusive vertical heat flux between convective layers is rapid on time scales of 3-5 yr and, thus, heat is lost from the brine pools to overlying Red Sea Deep Water. Heat budgets suggest that the heat flux from hydrothermal venting decreased from 0.54 GW in 1966 to 0.18 GW in 2008. A towed CTD survey found that temperature in the upper convective layers changes about 0.2°C over 5-6 km, whereas the temperature in the lower brine layer remains constant. Compared to previous surveys, temperature in the lower convective layer in the Discovery Deep remains unchanged at 48°C. To explain these results, we hypothesize that heat flux from a hydrothermal vent in the floor of the Discovery Deep has been stable for 40 years, whereas temperature of the brine in the Atlantis II Deep is adjusting to a decrease in hydrothermal heat flux from the vent in the Southwest Basin. We found no changes in the upper transition layer at 1900-1990 m depth that appeared between 1976 and 1992. Our data are consistent with this layer originating from a seafloor vent elsewhere in the rift.

  15. Vertical, horizontal, and temporal changes in temperature in the Atlantis II and Discovery hot brine pools, Red Sea

    NASA Astrophysics Data System (ADS)

    Swift, Stephen A.; Bower, Amy S.; Schmitt, Raymond W.

    2012-06-01

    In October 2008, we measured temperature and salinity in hot, hypersaline brine filling the Atlantis II and Discovery Deeps on the Red Sea spreading center west of Jeddah, Saudi Arabia. In agreement with previous observations in the Atlantis II Deep, we found a stack of four convective layers with vertically uniform temperature profiles separated by thin interfaces with high vertical temperature gradients. Temperature in the thick lower convective layer in the Atlantis II Deep continued to slowly increase at 0.1 °C/year since the last observations in 1997. Previously published data show that the temperature of all four convective layers increased since the 1960s at the same rate, from which we infer that diffusive vertical heat flux between convective layers is rapid on time scales of 3-5 years and, thus, heat is lost from the brine pools to overlying Red Sea Deep Water. Heat budgets suggest that the heat flux from hydrothermal venting has decreased from 0.54 GW to 0.18 GW since 1966. A tow-yo survey found that temperature in the upper convective layers changes about 0.2 °C over 5-6 km but the temperature in the lower brine layer remains constant. Temperature in the lower convective layer in the Discovery Deep remains unchanged at 48 °C. To explain these results, we hypothesize that heat flux from a hydrothermal vent in the floor of the Discovery Deep has been stable for 40 years, whereas temperature of the brine in the Atlantis II Deep is adjusting to the change in hydrothermal heat flux from the vent in the Southwest Basin. We found no changes in the upper transition layer at 1900-1990 m depth that appeared between 1976 and 1992 and suggest that this layer originated from the seafloor elsewhere in the rift.

  16. Application of natural colorants on citrus fruit as alternatives to Citrus Red II

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Warm field temperatures can often result in poor peel color of some citrus varieties, especially early in the harvest season. Under these conditions, Florida oranges, temples, tangelos, and K-Early citrus fruit are allowed to be treated with Citrus Red No.2 (CR2) to help produce a more acceptable pe...

  17. Recent seafloor metallogeneses: examples from the Atlantis II Deep, Red Sea and 21/sup 0/N East Pacific Rise

    SciTech Connect

    Zierenberg, R.A.

    1983-01-01

    Massive sulfide from 21/sup 0/N East Pacific Rise consists of pyrrhotite, cubic cubanite, wurtzite, chalcopyrite, pyrite, sphalerite, marcasite, and traces of galena. The samples show a complex paragenesis with extensive replacement and sulfur isotope disequilibrium. Sulfides in the Atlantis II Deep, Red Sea are very fine grained pyrrhotite, cubic cubanite, chalcopyrite, sphalerite, and pyrite which are interlayered with iron phyllosilicates. Epigenetic veins cutting unlithified metalliferous sediment in the Atlantis II are the conduits for the entry or new hot brine into the Deep. Vein mineralogy is dominated by talc and anhydrite with subordinate sulfides and phyllosilicates. Vertical zoning of vein minerals is related to cooling of hydrothermal fluid. Stable isotope ratios indicate depositional temperatures up to 300/sup 0/C. Stable isotope ratios also suggest that cooling of the hydrothermal fluid is caused by mixing with cooler brine having the approximate composition of the lower brine layer. Geochemical modeling of mixing successfully predicts the observed vertical zonation. The 21/sup 0/N East Pacific Rise deposit and the Atlantis II Deep have similar geochemical systems dominated by interaction with hot tholeiitic basalt. The differences in the deposits are related to their different depositional environments. The 21/sup 0/N East Pacific Rise deposit is forming directly on the seafloor in contact with cold oxygenated seawater, while the Atlantis II Deep deposit is forming beneath a warm, saline, anoxic brine pool.

  18. Photochemical Formation of Fe(II) and Peroxides in Coastal Seawater Collected around Okinawa Island, Japan - Impact of Red Soil Pollution

    NASA Astrophysics Data System (ADS)

    Okada, K.; Nakajima, H.; Higuchi, T.; Fujimura, H.; Arakaki, T.; Taira, H.

    2003-12-01

    In a study to elucidate the impacts of red soil pollution on the oxidizing power of seawater, photochemical formation of Fe(II) and peroxides was studied in seawaters collected around Okinawa Island, Japan. The northern part of Okinawa Island suffers from red soil pollution which is caused mainly by land development such as pineapple farming and the construction of recreational facilities. We studied photochemical formation of peroxides and Fe(II) in the same seawater samples because the reaction between HOOH and Fe(II) forms hydroxyl radical (OH radical), the most potent environmental oxidant. Photochemical formation of Fe(II) was fast and reached steady-state in 30 minutes of simulated sunlight illumination and the steady-state Fe(II) concentrations were about 80% of total iron concentrations. Photochemical formation of peroxides was relatively slow and formation kinetics varied, depending on the initial peroxide concentrations. Because photochemical formation of peroxides was faster and total iron concentrations in the red soil polluted seawater were higher, red soil polluted seawater is expected to have greater oxidizing power than seawater that is not polluted with red soil.

  19. Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of 27 December 2004 with the AMANDA-II detector.

    PubMed

    Achterberg, A; Ackermann, M; Adams, J; Ahrens, J; Andeen, K; Atlee, D W; Bahcall, J N; Bai, X; Baret, B; Bartelt, M; Barwick, S W; Bay, R; Beattie, K; Becka, T; Becker, J K; Becker, K-H; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Blaufuss, E; Boersma, D J; Bohm, C; Bolmont, J; Böser, S; Botner, O; Bouchta, A; Braun, J; Burgess, C; Burgess, T; Castermans, T; Chirkin, D; Christy, B; Clem, J; Cowen, D F; D'Agostino, M V; Davour, A; Day, C T; De Clercq, C; Demirörs, L; Descamps, F; Desiati, P; Deyoung, T; Diaz-Velez, J C; Dreyer, J; Dumm, J P; Duvoort, M R; Edwards, W R; Ehrlich, R; Eisch, J; Ellsworth, R W; Evenson, P A; Fadiran, O; Fazely, A R; Feser, T; Filimonov, K; Fox, B D; Gaisser, T K; Gallagher, J; Ganugapati, R; Geenen, H; Gerhardt, L; Goldschmidt, A; Goodman, J A; Gozzini, R; Grullon, S; Gross, A; Gunasingha, R M; Gurtner, M; Hallgren, A; Halzen, F; Han, K; Hanson, K; Hardtke, D; Hardtke, R; Harenberg, T; Hart, J E; Hauschildt, T; Hays, D; Heise, J; Helbing, K; Hellwig, M; Herquet, P; Hill, G C; Hodges, J; Hoffman, K D; Hommez, B; Hoshina, K; Hubert, D; Hughey, B; Hulth, P O; Hultqvist, K; Hundertmark, S; Hülss, J-P; Ishihara, A; Jacobsen, J; Japaridze, G S; Jones, A; Joseph, J M; Kampert, K-H; Karle, A; Kawai, H; Kelley, J L; Kestel, M; Kitamura, N; Klein, S R; Klepser, S; Kohnen, G; Kolanoski, H; Köpke, L; Krasberg, M; Kuehn, K; Landsman, H; Leich, H; Liubarsky, I; Lundberg, J; Madsen, J; Mase, K; Matis, H S; McCauley, T; McParland, C P; Meli, A; Messarius, T; Mészáros, P; Miyamoto, H; Mokhtarani, A; Montaruli, T; Morey, A; Morse, R; Movit, S M; Münich, K; Nahnhauer, R; Nam, J W; Niessen, P; Nygren, D R; Ogelman, H; Olbrechts, Ph; Olivas, A; Patton, S; Peña-Garay, C; Pérez de Los Heros, C; Piegsa, A; Pieloth, D; Pohl, A C; Porrata, R; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Refflinghaus, F; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Robbins, S; Roth, P; Rott, C; Rutledge, D; Ryckbosch, D; Sander, H-G; Sarkar, S; Schlenstedt, S; Schmidt, T; Schneider, D; Seckel, D; Seo, S H; Seunarine, S; Silvestri, A; Smith, A J; Solarz, M; Song, C; Sopher, J E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Steffen, P; Stezelberger, T; Stokstad, R G; Stoufer, M C; Stoyanov, S; Strahler, E A; Straszheim, T; Sulanke, K-H; Sullivan, G W; Sumner, T J; Taboada, I; Tarasova, O; Tepe, A; Thollander, L; Tilav, S; Toale, P A; Turcan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; Voigt, B; Wagner, W; Walck, C; Waldmann, H; Walter, M; Wang, Y-R; Wendt, C; Wiebusch, C H; Wikström, G; Williams, D R; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, X W; Yodh, G; Yoshida, S; Zornoza, J D

    2006-12-01

    On 27 December 2004, a giant gamma flare from the Soft Gamma-Ray Repeater 1806-20 saturated many satellite gamma-ray detectors, being the brightest transient event ever observed in the Galaxy. AMANDA-II was used to search for down-going muons indicative of high-energy gammas and/or neutrinos from this object. The data revealed no significant signal, so upper limits (at 90% C.L.) on the normalization constant were set: 0.05(0.5) TeV-1 m;{-2} s;{-1} for gamma=-1.47 (-2) in the gamma flux and 0.4(6.1) TeV-1 m;{-2} s;{-1} for gamma=-1.47 (-2) in the high-energy neutrino flux. PMID:17155787

  20. Limits on the High-Energy Gamma and Neutrino Fluxes from the SGR 1806-20 Giant Flare of 27 December 2004 with the AMANDA-II Detector

    NASA Astrophysics Data System (ADS)

    Achterberg, A.; Ackermann, M.; Adams, J.; Ahrens, J.; Andeen, K.; Atlee, D. W.; Bahcall, J. N.; Bai, X.; Baret, B.; Bartelt, M.; Barwick, S. W.; Bay, R.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Burgess, C.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Davour, A.; Day, C. T.; de Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; De Young, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feser, T.; Filimonov, K.; Fox, B. D.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grullon, S.; Groß, A.; Gunasingha, R. M.; Gurtner, M.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, D.; Hardtke, R.; Harenberg, T.; Hart, J. E.; Hauschildt, T.; Hays, D.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hommez, B.; Hoshina, K.; Hubert, D.; Hughey, B.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Hülß, J.-P.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Jones, A.; Joseph, J. M.; Kampert, K.-H.; Karle, A.; Kawai, H.; Kelley, J. L.; Kestel, M.; Kitamura, N.; Klein, S. R.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Krasberg, M.; Kuehn, K.; Landsman, H.; Leich, H.; Liubarsky, I.; Lundberg, J.; Madsen, J.; Mase, K.; Matis, H. S.; McCauley, T.; McParland, C. P.; Meli, A.; Messarius, T.; Mészáros, P.; Miyamoto, H.; Mokhtarani, A.; Montaruli, T.; Morey, A.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Ögelman, H.; Olbrechts, Ph.; Olivas, A.; Patton, S.; Peña-Garay, C.; Pérez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Refflinghaus, F.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, S.; Roth, P.; Rott, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Seckel, D.; Seo, S. H.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Solarz, M.; Song, C.; Sopher, J. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Steffen, P.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Sumner, T. J.; Taboada, I.; Tarasova, O.; Tepe, A.; Thollander, L.; Tilav, S.; Toale, P. A.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; Voigt, B.; Wagner, W.; Walck, C.; Waldmann, H.; Walter, M.; Wang, Y.-R.; Wendt, C.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zornoza, J. D.

    2006-12-01

    On 27 December 2004, a giant γ flare from the Soft Gamma-Ray Repeater 1806-20 saturated many satellite gamma-ray detectors, being the brightest transient event ever observed in the Galaxy. AMANDA-II was used to search for down-going muons indicative of high-energy gammas and/or neutrinos from this object. The data revealed no significant signal, so upper limits (at 90% C.L.) on the normalization constant were set: 0.05(0.5)TeV-1m-2s-1 for γ=-1.47 (-2) in the gamma flux and 0.4(6.1)TeV-1m-2s-1 for γ=-1.47 (-2) in the high-energy neutrino flux.

  1. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES. II. NLTE EFFECTS IN J-BAND SILICON LINES

    SciTech Connect

    Bergemann, Maria; Kudritzki, Rolf-Peter; Wuerl, Matthias; Plez, Bertrand; Davies, Ben; Gazak, Zach E-mail: Matthias.Wuerl@physik.uni-muenchen.de E-mail: zgazak@ifa.hawaii.edu E-mail: bdavies@ast.cam.ac.uk

    2013-02-20

    Medium-resolution J-band spectroscopy of individual red supergiant stars is a promising tool to investigate the chemical composition of the young stellar population in star-forming galaxies. As a continuation of recent work on iron and titanium, detailed non-LTE (NLTE) calculations are presented to investigate the influence of NLTE on the formation of silicon lines in the J-band spectra of red supergiants. Substantial effects are found resulting in significantly stronger absorption lines of neutral silicon in NLTE. As a consequence, silicon abundances determined in NLTE are significantly smaller than in local thermodynamic equilibrium (LTE) with the NLTE abundance corrections varying smoothly between -0.4 dex and -0.1 dex for effective temperatures between 3400 K and 4400 K. The effects are largest at low metallicity. The physical reasons behind the NLTE effects and the consequences for extragalactic J-band abundance studies are discussed.

  2. A multifrequency study of giant radio sources - II. Spectral ageing analysis of the lobes of selected sources

    NASA Astrophysics Data System (ADS)

    Jamrozy, M.; Konar, C.; Machalski, J.; Saikia, D. J.

    2008-04-01

    Multifrequency observations with the Giant Metrewave Radio Telescope (GMRT) and the Very Large Array (VLA) are used to determine the spectral breaks in consecutive strips along the lobes of a sample of selected giant radio sources (GRSs) in order to estimate their spectral ages. The maximum spectral ages estimated for the detected radio emission in the lobes of our sources range from ~6 to 46Myr with a median value of ~23Myr using the classical equipartition fields. Using the magnetic field estimates from the Beck & Krause formalism the spectral ages range from ~5 to 58Myr with a median value of ~24Myr. These ages are significantly older than smaller sources. In all but one source (J1313+6937) the spectral age gradually increases with distance from the hotspot regions, confirming that acceleration of the particles mainly occurs in the hotspots. Most of the GRSs do not exhibit zero spectral ages in the hotspots, as is the case in earlier studies of smaller sources. This is likely to be largely due to contamination by more extended emission due to relatively modest resolutions. The injection spectral indices range from ~0.55 to 0.88 with a median value of ~0.6. We discuss these values in the light of theoretical expectations, and show that the injection spectral index appears to be correlated with luminosity and/or redshift as well as with linear size.

  3. A TALE OF DWARFS AND GIANTS: USING A z = 1.62 CLUSTER TO UNDERSTAND HOW THE RED SEQUENCE GREW OVER THE LAST 9.5 BILLION YEARS

    SciTech Connect

    Rudnick, Gregory H.; Tran, Kim-Vy; Papovich, Casey; Momcheva, Ivelina; Willmer, Christopher

    2012-08-10

    We study the red sequence in a cluster of galaxies at z = 1.62 and follow its evolution over the intervening 9.5 Gyr to the present day. Using deep YJK{sub s} imaging with the HAWK-I instrument on the Very Large Telescope, we identify a tight red sequence and construct its rest-frame i-band luminosity function (LF). There is a marked deficit of faint red galaxies in the cluster that causes a turnover in the LF. We compare the red-sequence LF to that for clusters at z < 0.8, correcting the luminosities for passive evolution. The shape of the cluster red-sequence LF does not evolve between z = 1.62 and z = 0.6 but at z < 0.6 the faint population builds up significantly. Meanwhile, between z = 1.62 and 0.6 the inferred total light on the red sequence grows by a factor of {approx}2 and the bright end of the LF becomes more populated. We construct a simple model for red-sequence evolution that grows the red sequence in total luminosity and matches the constant LF shape at z > 0.6. In this model the cluster accretes blue galaxies from the field whose star formation is quenched and who are subsequently allowed to merge. We find that three to four mergers among cluster galaxies during the 4 Gyr between z = 1.62 and z = 0.6 match the observed LF evolution between the two redshifts. The inferred merger rate is consistent with other studies of this cluster. Our result supports the picture that galaxy merging during the major growth phase of massive clusters is an important process in shaping the red-sequence population at all luminosities.

  4. Broad-band photometric colors and effective temperature calibrations for late-type giants. II. Z < 0.02

    NASA Astrophysics Data System (ADS)

    Kučinskas, A.; Hauschildt, P. H.; Brott, I.; Vansevičius, V.; Lindegren, L.; Tanabé, T.; Allard, F.

    2006-06-01

    We investigate the effects of metallicity on the broad-band photometric colors of late-type giants, and make a comparison of synthetic colors with observed photometric properties of late-type giants over a wide range of effective temperatures (T_eff=3500-4800 K) and gravities (log g=0.0-2.5), at [M/H]=-1.0 and -2.0. The influence of metallicity on the synthetic photometric colors is small at effective temperatures above 3800 K, but the effects grow larger at lower T_eff, due to the changing efficiency of molecule formation which reduces molecular opacities at lower [M/H]. To make a detailed comparison of the synthetic and observed photometric colors of late type giants in the T_eff-color and color-color planes (which is done at two metallicities, [M/H]=-1.0 and -2.0), we derive a set of new T_eff-log g-color relations based on synthetic photometric colors, at [M/H]=-0.5, -1.0, -1.5, and -2.0. These relations are based on the T_eff-log g scales that we derive employing literature data for 178 late-type giants in 10 Galactic globular clusters (with metallicities of the individual stars between [M/H]=-0.7 and -2.5), and synthetic colors produced with the PHOENIX, MARCS and ATLAS stellar atmosphere codes. Combined with the T_eff-log g-color relations at [M/H]=0.0 (Kučinskas et al. 2005), the set of new relations covers metallicities [M/H]=0.0dots-2.0 (Δ[M/H]=0.5), effective temperatures T_eff=3500dots4800 K (Δ T_eff=100 K), and gravities log g=-0.5dots3.0. The new T_eff-log g-color relations are in good agreement with published T_eff-color relations based on observed properties of late-type giants, both at [M/H]=-1.0 and -2.0. The differences in all T_eff-color planes are typically well within 100 K. We find, however, that effective temperatures predicted by the scales based on synthetic colors tend to be slightly higher than those resulting from the T_eff-color relations based on observations, with the offsets up to 100 K. This is clearly seen both at [M/H]=-1

  5. Unique Prokaryotic Consortia in Geochemically Distinct Sediments from Red Sea Atlantis II and Discovery Deep Brine Pools

    PubMed Central

    Siam, Rania; Mustafa, Ghada A.; Sharaf, Hazem; Moustafa, Ahmed; Ramadan, Adham R.; Antunes, Andre; Bajic, Vladimir B.; Stingl, Uli; Marsis, Nardine G. R.; Coolen, Marco J. L.; Sogin, Mitchell; Ferreira, Ari J. S.; Dorry, Hamza El

    2012-01-01

    The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The ‘polyextremophiles’ that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction. PMID:22916172

  6. Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells

    PubMed Central

    Cho, Chun-Seok; Yoon, Hyun Ju; Kim, Jeong Yeon; Woo, Hyun Ae; Rhee, Sue Goo

    2014-01-01

    The catalytic cysteine of the typical 2-Cys Prx subfamily of peroxiredoxins is occasionally hyperoxidized to cysteine sulfinic acid during the peroxidase catalytic cycle. Sulfinic Prx (Prx–SO2H) is reduced back to the active form of the enzyme by sulfiredoxin. The abundance of Prx–SO2H was recently shown to oscillate with a period of ∼24 h in human red blood cells (RBCs). We have now investigated the molecular mechanism and physiological relevance of such oscillation in mouse RBCs. Poisoning of RBCs with CO abolished Prx–SO2H formation, implicating H2O2 produced from hemoglobin autoxidation in Prx hyperoxidation. RBCs express the closely related PrxI and PrxII isoforms, and analysis of RBCs deficient in either isoform identified PrxII as the hyperoxidized Prx in these cells. Unexpectedly, RBCs from sulfiredoxin-deficient mice also exhibited circadian oscillation of Prx–SO2H. Analysis of the effects of protease inhibitors together with the observation that the purified 20S proteasome degraded PrxII–SO2H selectively over nonhyperoxidized PrxII suggested that the 20S proteasome is responsible for the decay phase of PrxII–SO2H oscillation. About 1% of total PrxII undergoes daily oscillation, resulting in a gradual loss of PrxII during the life span of RBCs. PrxII–SO2H was detected in cytosolic and ghost membrane fractions of RBCs, and the amount of membrane-bound PrxII–SO2H oscillated in a phase opposite to that of total PrxII–SO2H. Our results suggest that membrane association of PrxII–SO2H is a tightly controlled process and might play a role in the tuning of RBC function to environmental changes. PMID:25092340

  7. THE ORIGIN OF [O II] IN POST-STARBURST AND RED-SEQUENCE GALAXIES IN HIGH-REDSHIFT CLUSTERS

    SciTech Connect

    Lemaux, B. C.; Lubin, L. M.; Kocevski, D.; Shapley, A.; Gal, R. R.; Squires, G. K.

    2010-06-20

    We present the first results from a near-IR spectroscopic campaign of the Cl1604 supercluster at z {approx} 0.9 and the cluster RX J1821.6+6827 at z {approx} 0.82 to investigate the nature of [O II] {lambda}3727 emission in cluster galaxies at high redshift. Of the 401 members in Cl1604 and RX J1821+6827 confirmed using the Keck II/DEIMOS spectrograph, 131 galaxies have detectable [O II] emission with no other signs of current star formation activity, as well as strong absorption features indicative of a well-established older stellar population. The combination of these features suggests that the primary source of [O II] emission in these galaxies is not a result of star formation processes, but rather due to the presence of a low-ionization nuclear emission-line region (LINER) or Seyfert component. Using the NIRSPEC spectrograph on the Keck II 10 m telescope, 19 such galaxies were targeted, as well as 6 additional [O II]-emitting cluster members that exhibited signs of ongoing star formation activity. Nearly half ({approx}47%) of the 19 [O II]-emitting, absorption-line-dominated galaxies exhibit [O II] to H{alpha} equivalent width (EW) ratios higher than unity, the typical observed value for star-forming galaxies, with an EW distribution similar to that observed for LINERs at low redshift. A majority ({approx}68%) of these 19 galaxies are classified as LINER/Seyfert based primarily on the emission-line ratio of [N II] {lambda}6584 and H{alpha}. The fraction of LINER/Seyferts increases to {approx}85% for red [O II]-emitting, absorption-line-dominated galaxies. The LINER/Seyfert galaxies in our Cl1604 sample exhibit average L([O II])/L(H{alpha}) ratios that are significantly higher than that observed in populations of star-forming galaxies, suggesting that [O II] is a poor indicator of star formation in a significant fraction of high-redshift cluster members. From the prevalence of [O II]-emitting, absorption-line-dominated galaxies in both systems and the fraction

  8. NRO M 33 All-Disk Survey of Giant Molecular Clouds (NRO MAGiC). II Dense Gas Formation

    NASA Astrophysics Data System (ADS)

    Onodera, Sachiko; Kuno, Nario; Tosaki, Tomoka; Muraoka, Kazuyuki; Miura, Rie E.; Kohno, Kotaro; Nakanishi, Kouichiro; Sawada, Tsuyoshi; Komugi, Shinya; Kaneko, Hiroyuki; Hirota, Akihiko; Kawabe, Ryohei

    2012-12-01

    We report the results of our observations of the 12 CO (J = 1-0) and 12 CO (J = 3-2) line emission of 74 major giant molecular clouds (GMCs) within the galactocentric distance of 5.1 kpc in the Local Group galaxy M 33. The observations have been conducted as part of the Nobeyama Radio Observatory M 33 All-disk survey of Giant Molecular Clouds project (NRO MAGiC). The spatial resolutions are 80 pc for 12 CO (J = 1-0) and 100 pc for 12 CO (J = 3-2). We detect 12 CO (J = 3-2) emission of 65 GMCs successfully. Furthermore, we find that the correlation between the surface density of the star formation rate, which is derived from a linear combination of Hα and 24 μ m emissions, and the 12 CO (J = 3-2) integrated intensity still holds at this scale. This result shows that the star-forming activity is closely associated with warm and dense gases that are traced with the 12 CO (J = 3-2) line, even in the scale of GMCs. We also find that the GMCs with a high star-forming activity tend to show a high integrated intensity ratio (R3-2/1-0). Moreover, we also observe a mass-dependent trend of R3-2/1- 0 for the GMCs with a low star-forming activity. From these results, we speculate that the R3-2/1-0 values of the GMCs with a low star-forming activity mainly depend on the dense gas fraction and not on the temperature, and therefore, the dense gas fraction increases with the mass of GMCs, at least in the GMCs with a low star-forming activity.

  9. The s-process in low-metallicity stars - II. Interpretation of high-resolution spectroscopic observations with asymptotic giant branch models

    NASA Astrophysics Data System (ADS)

    Bisterzo, S.; Gallino, R.; Straniero, O.; Cristallo, S.; Käppeler, F.

    2011-11-01

    High-resolution spectroscopic observations of 100 metal-poor carbon and s-rich stars (CEMP-s) collected from the literature are compared with the theoretical nucleosynthesis models of the asymptotic giant branch (AGB) presented in Paper I (MAGBini= 1.3, 1.4, 1.5, 2 M⊙, - 3.6 ≲ [ Fe/H ] ≲- 1.5). The s-process enhancement detected in these objects is associated with binary systems: the more massive companion evolved faster through the thermally pulsing AGB phase (TP-AGB), synthesizing s-elements in the inner He intershell, which are partly dredged up to the surface during the third dredge-up (TDU) episode. The secondary observed low-mass companion became CEMP-s by the mass transfer of C- and s-rich material from the primary AGB. We analyse the light elements C, N, O, Na and Mg, as well as the two s-process indicators, [hs/ls] (where ls = is the the light-s peak at N = 50 and hs = the heavy-s peak at N = 82) and [Pb/hs]. We distinguish between CEMP-s with high s-process enhancement, [hs/Fe] >rsim 1.5 (CEMP-sII), and mild s-process enhanced stars, [hs/Fe] < 1.5 (CEMP-sI). To interpret the observations, a range of s-process efficiencies at any given metallicity is necessary. This is confirmed by the high spread observed in [Pb/hs] (˜2 dex). A degeneration of solutions is found with some exceptions: most main-sequence CEMP-sII stars with low [Na/Fe] can only be interpreted with MAGBini= 1.3-1.4 M⊙. Giants having suffered the first dredge-up (FDU) need a dilution >rsim1 dex (dil is defined as the mass of the convective envelope of the observed star, Mobs★, over the material transferred from the AGB to the companion, MtransAGB). Then AGB models with higher AGB initial masses (MAGBini= 1.5-2 M⊙) are adopted to interpret CEMP-sII giants. In general, solutions with AGB models in the mass range MAGBini= 1.3-2 M⊙ and different dilution factors are found for CEMP-sI stars. About half of the CEMP-s stars with europium measurements show a high r

  10. Low temperature hydrothermal maturation of organic matter in sediments from the Atlantis II Deep, Red Sea

    NASA Technical Reports Server (NTRS)

    Simoneit, Bernd R. T.; Grimalt, Joan O.; Hayes, J. M.; Hartman, Hyman

    1987-01-01

    Hydrocarbons and bulk organic matter of two sediment cores within the Atlantis II Deep are analyzed, and microbial inputs and minor terrestrial sources are found to represent the major sedimentary organic material. Results show that extensive acid-catalyzed reactions are occurring in the sediments, and the Atlantis II Deep is found to exhibit a lower degree of thermal maturation than other hydrothermal or intrusive systems. The lack of carbon number preference noted among the n-alkanes suggests that the organic matter of these sediments has undergone some degree of catagenesis, though yields of hydrocarbons are much lower than those found in other hydrothermal areas, probably due to the effect of lower temperature and poor source-rock characteristics.

  11. Adiabatic Mass Loss in Binary Stars. II. From Zero-age Main Sequence to the Base of the Giant Branch

    NASA Astrophysics Data System (ADS)

    Ge, Hongwei; Webbink, Ronald F.; Chen, Xuefei; Han, Zhanwen

    2015-10-01

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M⊙-100 M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely

  12. A three-dimensional model of moist convection for the giant planets II: Saturn's water and ammonia moist convective storms

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Sánchez-Lavega, Agustín

    2004-11-01

    Moist convective storms constitute a key aspect in the global energy budget of the atmospheres of the giant planets. Among them, Saturn is known to develop the largest scale convective storms in the Solar System, the Great White Spots (GWS) which occur rarely and have been detected once every 30 years approximately. On the average, Saturn seems to show much less convective storms than Jupiter with smaller size and reduced frequency and intensity. Here we present detailed simulations of the onset and development of storms at the Equator and mid-latitudes of Saturn. These are the regions where most of the recent convective activity of the planet has been observed. We use a 3D anelastic model with parameterized microphysics (Hueso and Sánchez-Lavega, 2001, Icarus 151, 257) studying the onset and evolution of water and ammonia moist convective storms up to sizes of a few hundred km. Water storms, while more difficult to initiate than in Jupiter, can be very energetic, arriving to the 150 mbar level and developing vertical velocities on the order of 150 m s -1. Ammonia storms develop easier but with a much smaller intensity unless very large abundances of ammonia (10 times solar) are present in Saturn's atmosphere. The Coriolis forces play a major role in the morphology and properties of water based storms.

  13. Genetic survey of an isolated community in Bali, Indonesia. II. Haemoglobin types and red cell isozymes.

    PubMed

    Breguet, G; Ney, R; Kirk, R L; Blake, N M

    1982-01-01

    316 adults and children from an isolated community of Bali, Indonesia, have been tested for 18 red cell enzyme systems controlled by 24 loci, and haemoglobin. 13 loci were invariant. The other 11 loci showed variations similar to those found previously in Southeast Asian populations. Of special interest is the occurrence of lactate dehydrogenase Calcutta-1 variants, indicating Indian gene admixture, and PGM92, indicating a Melanesian genetic component. A few individuals were CA1 1-3Bali and this is possibly the same as other CA1 1-3 types found in the Philippines and Guam. Nearly 10% were glucose-6-phosphate dehydrogenase (G6PD) deficient and 2% carried Hb E. A fast electrophoretic variant of G6PD was detected in 5 persons. Two sub-groups of the population were studied. Gene frequencies in the Isolate supported the view that inbreeding and genetic drift have made this sub-group genetically distinct from the non-inbred part of the population. PMID:7152535

  14. The Hunt for Red October II: a demonstration for introductory electromagnetism

    NASA Astrophysics Data System (ADS)

    Zile, Daniel; Sebastian, Thomas; Polyak, Viktor; Rutah, Anjalee; Overduin, James

    We have designed, constructed and tested a small-scale version of the silent submarine depicted in the 1990 Sean Connery thriller The Hunt for Red October. This vessel contains no moving parts. It uses onboard batteries and magnets to propel seawater salt ions out of the back of the boat, producing an equal and opposite forward thrust on the submarine thanks to Newton's third law. Such a craft could be very hard to detect by conventional means. Our objectives were to create a striking teaching demonstration for introductory electromagnetism courses and to determine why (to our knowledge) no navy has yet exploited such a seemingly revolutionary propulsion system for purposes of national defense. As teaching demonstrations, our prototypes are very successful at capturing student interest and convincing them of the reality and practical importance of electromagnetic fields. We have also identified a number of factors that may help to explain why a scaled-up model might not quite function as depicted in the film. We discuss several promising avenues for future student research.

  15. Evolution of long-lived globular cluster stars. II. Sodium abundance variations on the asymptotic giant branch as a function of globular cluster age and metallicity

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne; Chantereau, William

    2016-02-01

    Context. Long-lived stars in globular clusters exhibit chemical peculiarities with respect to their halo counterparts. In particular, sodium-enriched stars are identified as belonging to a second stellar population born from cluster material contaminated by the hydrogen-burning ashes of a first stellar population. Their presence and numbers in different locations of the colour-magnitude diagram provide important constraints on the self-enrichment scenarios. In particular, the ratio of Na-poor to Na-rich stars on the asymptotic giant branch (AGB) has recently been found to vary strongly from cluster to cluster (NGC 6752, 47 Tuc, and NGC 2808), while it is relatively constant on the red giant branch (RGB). Aims: We investigate the impact of both age and metallicity on the theoretical sodium spread along the AGB within the framework of the fast rotating massive star (FRMS) scenario for globular cluster self-enrichment. Methods: We computed evolution models of low-mass stars for four different metallicities ([Fe/H] = -2.2, -1.75, -1.15, -0.5) assuming the initial helium-sodium abundance correlation for second population stars derived from the FRMS models and using mass loss prescriptions on the RGB with two realistic values of the free parameter in the Reimers formula. Results: Based on this grid of models we derive the theoretical critical initial mass for a star born with a given helium, sodium, and metal content that determines whether that star will climb or not the AGB. This allows us to predict the maximum sodium content expected on the AGB for globular clusters as a function of both their metallicity and age. We find that (1) at a given metallicity, younger clusters are expected to host AGB stars exhibiting a larger sodium spread than older clusters and (2) at a given age, higher sodium dispersion along the AGB is predicted in the most metal-poor globular clusters than in the metal-rich ones. We also confirm the strong impact of the mass loss rate in the earlier

  16. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF LOW-MASS ASYMPTOTIC GIANT BRANCH STARS AT DIFFERENT METALLICITIES. II. THE FRUITY DATABASE

    SciTech Connect

    Cristallo, S.; Dominguez, I.; Abia, C.; Piersanti, L.; Straniero, O.; Gallino, R.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-12-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables and Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 {<=}M/M{sub Sun} {<=} 3.0 and metallicities 1 Multiplication-Sign 10{sup -3} {<=} Z {<=} 2 Multiplication-Sign 10{sup -2}, is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  17. Studies on the ingestion characteristics of giant freshwater prawn, Chinese prawn and giant tiger prawn

    NASA Astrophysics Data System (ADS)

    Zang, Wei-Ling; Wang, Wei-Dong; Dai, Xi-Lin; Jiang, Min; Zhu, Zheng-Guo; Yang, Ming-Hui; Liu, Xian-Zhong; Xu, Gui-Rong; Ding, Fu-Jiang

    2000-12-01

    The ingestion of giant freshwater prawn, Chinese prawn and giant tiger prawn had continuity and the ingestion high peak occurred at night. Light and temperature had significant effects on the daily ingestion rate (DIR) of giant freshwater prawn Macrobrachium rosenbergii. Red light and blue light favorably induced favorable ingestion. In the adaptive range of temperature, the DIR increased with rising temperature and feeding frequency, but decreased with rising body weight.

  18. Antimicrobial photodisinfection with Zn(II) phthalocyanine adsorbed on TiO2 upon UVA and red irradiation

    NASA Astrophysics Data System (ADS)

    Mantareva, Vanya; Eneva, Ivelina; Kussovski, Vesselin; Borisova, Ekaterina; Angelov, Ivan

    2015-01-01

    The light exposure on a daily basis has been well accepted as a competitive method for decontamination of wastewater. The catalytic properties of TiO2 offer a great potential to reduce the transmission of pathogens in the environment. Although the titanium dioxide shows high activity against pathogens, its general usage in water cleaning is limited due to the insufficient excitation natural light (about 3% of the solar spectrum). A hydrophobic dodecylpyridyloxy Zn(II)-phthalocyanine with four peripheral hydrocarbon chains of C12 (ZnPcDo) was immobilized on a photocatalyst TiO2 anatase (P25). The resulted greenish colored nanoparticles of phthalocyanine were characterized by the means of absorption, fluorescence and infrared spectroscopy. The laser scanning confocal fluorescence microscopy was used to visualize the phthalocyanine dye by the red fluorescence emission (650 - 740 nm). The intensive Q-band in the far red visible spectral region (~ 690 nm) suggested a monomeric state of phthalocyanine on TiO2 nanoparticles. Two pathogenic bacterial strains (methicillin-resistant Staphylococcus aureus - MRSA and Salmonella enteritidis) associated with wastewater were photoinactivated with the suspension of the particles. The effective photoinactivation was observed with 1 g.L-1 TiO2 anatase at irradiation with UVA 364 nm as with UVA 364 nm and LED 643 nm. The gram-negative Salmonella enteritidis was fully photoinactivated with ZnPcDo-TiO2 and TiO2 alone at UVA 346 nm and at irradiation with two light sources (364 nm + 643 nm). The proposed conjugate appears as an useful composite material for antibacterial disinfection.

  19. Electrophysiological correlates of rapid escape reflexes in intact earthworms, Eisenia foetida. II. Effects of food deprivation on the functional development of giant nerve fibers.

    PubMed

    Vining, E P; O'Gara, B; Drewes, C D

    1982-07-01

    Noninvasive electrophysiological recording methods were used to study the effects of prolonged food deprivation on the postembryonic patterns of giant fiber growth, as indicated by age-dependent changes in giant fiber conduction velocity and diameter, in the earthworm, Eisenia foetida. In addition, giant fiber growth was compared to patterns of somatic growth, as indicated by increases in body weight. Within a wide range of food deprivation levels, normal age-dependent increases in conduction velocity and diameter occurred in spite of marked stunting of somatic growth. Stunting of giant fiber velocity and diameter occurred only during severe food deprivation, but giant fiber spikes and associated rapid escape responses were still readily evoked. The stunting effects of prolonged and severe food deprivation upon giant fiber conduction velocity and diameter were readily reversed by replenishing food. The results demonstrate the persistence of rapid escape reflex functioning, as well as the priority of giant fiber growth relative to somatic growth, during severe and prolonged food deprivation. As a consequence of the priority of giant fiber growth during limited food availability, giant fiber conduction velocity appears to be a more reliable predictor of animal age then body size. PMID:7108517

  20. Interaction forces between red cells agglutinated by antibody. II. Measurement of hydrodynamic force of breakup.

    PubMed Central

    Tha, S P; Shuster, J; Goldsmith, H L

    1986-01-01

    The expressions derived in the previous paper for the respective normal, F3, and shear forces, Fshear, acting along and perpendicular to the axis of a doublet of rigid spheres, were used to determine the hydrodynamic forces required to separate two red cell spheres of antigenic type B crosslinked by the corresponding antibody. Cells were sphered and swollen in isotonic buffered glycerol containing 8 X 10(-5) M sodium dodecyl sulfate, fixed in 0.085% glutaraldehyde, and suspended in aqueous glycerol (viscosity: 15-34 mPa s), containing 0.15 M NaCl and anti-B antibody from human hyperimmune antiserum at concentrations from 0.73 to 3.56 vol%. After incubating and mixing for 12 h, doublets were observed through a microscope flowing in a 178-micron tube by gravity feed between two reservoirs. Using a traveling microtube apparatus, the doublets were tracked in a constantly accelerating flow and the translational and rotational motions were recorded on videotape until breakup occurred. From a frame by frame replay of the tape, the radial position, velocity and orientation of the doublet were obtained and the normal and shear forces of separation at breakup computed. Both forces increased significantly with increasing antiserum concentration, the mean values of F3 increasing from 0.060 to 0.197 nN, and Fshear from 0.023 to 0.072 nN. There was no significant effect of glycerol viscosity on the forces of separation. It was not possible to determine whether the shear or normal force was responsible for doublet separation. Measurements of the mean dimensionless period of rotation, TG, of doublets in suspensions containing 0.73 and 2.40% antiserum undergoing steady flow were also made to test whether the spheres were rigidly linked or capable of some independent rotation. A fairly narrow distribution in TG about the value 15.64, predicted for rigidly-linked doublets, was obtained at both antiserum concentrations. Images FIGURE 1 PMID:3801572

  1. Chemical mass balances in metalliferous deposits from the Atlantis II Deep, Red Sea

    NASA Astrophysics Data System (ADS)

    Anschutz, Pierre; Blanc, Gérard

    1995-10-01

    In order to assess the quantitative distribution of mineral species within the sedimentary series of the Atlantis II Deep, we have examined the chemical composition, mineralogy, and physical properties of 120 sediment samples from two cores that sampled the entire sediment sequences in the West and South-West basins. Biostratigraphic correlations and chemical budget calculations indicate that the nonmetalliferous solid fractions (i.e., detrital and biogenic particles) in the older sedimentary unit (unit 1 in the West basin) represent 46% wt of the total, and that they were deposited between 23,000 and 15-12,000 years BP with a mass accumulation rate between 109 and 150 kg per thousand years per square metre. The muddy sediment in the upper part of the West basin core (units 2, 3, and 4) consists mainly of metalliferous particles which account for less than 15% wt of the mud, and yield a mass accumulation rate (130-162 kg/k.y./M 2) close to that of nonmetalliferous particles deposited simultaneously. Nonmetalliferous particles were probably the major source of Si and a significant source of Pb through dissolution in the brine system and diagenesis in the metalliferous mud. The metalliferous sediments in the upper unit of the South-West basin (unit U, 1100 cm) were deposited at the same time as those of the upper unit in the West basin (unit 4,335 cm). The calculated mass accumulation rate is about 700 kg/k.y./m 2 for unit U. The recent sediments of the South-West basin are more enriched in Zn and Cu, and more depleted in Mn relative to Fe than the contemporary sediments in the West basin, suggesting that the hydrothermal source has been in, or near, the South-West basin during the last 2,250 years. Assuming that a Salton Sea-like solution supplies all the Fe contained in the West basin metalliferous sedimentary pile, the mineralizing brine flowed at a minimum rate of 30 L/s. Except for the period of Mn-oxide deposition, the difference between the metal/Fe ratios in

  2. Red-light photosensitized cleavage of DNA by (l-lysine)(phenanthroline base)copper(II) complexes.

    PubMed

    Patra, Ashis K; Nethaji, Munirathinam; Chakravarty, Akhil R

    2005-08-21

    Ternary copper(II) complexes [Cu(l-lys)B(ClO4)](ClO4)(1-4), where B is a heterocyclic base, viz. 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2',3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (l-lys =l-lysine). Complex 2, structurally characterized by X-ray crystallography, shows a square-pyramidal (4 + 1) coordination geometry in which the N,O-donor l-lysine and N,N-donor heterocyclic base bind at the basal plane and the perchlorate ligand is bonded at the elongated axial site. The crystal structure shows the presence of a pendant cationic amine moiety -(CH2)4NH3+ of l-lysine. The one-electron paramagnetic complexes display a d-d band in the range of 598-762 nm in DMF and exhibit cyclic voltammetric response due to Cu(II)/Cu(I) couple in the range of 0.07 to -0.20 V vs. SCE in DMF-Tris-HCl buffer. The complexes having phenanthroline bases display good binding propensity to the calf thymus DNA giving an order: 4 (dppz) > 3 (dpq) > 2 (phen)> 1 (bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or visible light (694 nm ruby laser) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The amino acid l-lysine bound to the metal shows photosensitizing effect at red light, while the heterocyclic bases are primarily DNA groove binders. The dpq and dppz ligands display red light-induced photosensitizing effects in copper-bound form. PMID:16075123

  3. Line-profile tomography of exoplanet transits - II. A gas-giant planet transiting a rapidly rotating A5 star

    NASA Astrophysics Data System (ADS)

    Collier Cameron, A.; Guenther, E.; Smalley, B.; McDonald, I.; Hebb, L.; Andersen, J.; Augusteijn, Th.; Barros, S. C. C.; Brown, D. J. A.; Cochran, W. D.; Endl, M.; Fossey, S. J.; Hartmann, M.; Maxted, P. F. L.; Pollacco, D.; Skillen, I.; Telting, J.; Waldmann, I. P.; West, R. G.

    2010-09-01

    Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the light curve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33 V = 8.3, v sini = 86 km s-1). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas-giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit, we directly derive the size of the planet, the inclination and obliquity of its orbital plane and its retrograde orbital motion relative to the spin of the star. This kind of analysis opens the way to studying the formation of planets around a whole new class of young, early-type stars, hence under different physical conditions and generally in an earlier stage of formation than in sharp-lined late-type stars. The reflex orbital motion of the star caused by the transiting planet is small, yielding an upper mass limit of 4.1MJupiter on the planet. We also find evidence of a third body of substellar mass in the system, which may explain the unusual orbit of the transiting planet. In HD 15082, the stellar line profiles also show evidence of non-radial pulsations, clearly distinct from the planetary transit signal. This raises the intriguing possibility that tides raised by the close-in planet may excite or amplify the pulsations in such stars. Based on observations at Tautenburg Observatory, McDonald Observatory and the Nordic Optical Telescope. E-mail: acc4@st-and.ac.uk

  4. HI studies of extremely metal-deficient galaxies - II. Giant Metrewave Radio Telescope observations of SBS 1129+576

    NASA Astrophysics Data System (ADS)

    Ekta; Chengalur, Jayaram N.; Pustilnik, Simon A.

    2006-10-01

    We present Giant Metrewave Radio Telescope HI observations of an extremely metal-deficient galaxy SBS 1129+576. SBS 1129+576 has a weighted mean oxygen abundance of 12 + log (O/H) = 7.41 +/- 0.07, or 1/18 of the solar value. Our HI observations show that the galaxy is strongly interacting with a companion (projected separation ~27 kpc) galaxy, SBS 1129+577. HI emission from a third, smaller galaxy, SDSS J113227.68+572142.3, is also present in the data cube. We study the HI morphology and kinematics of this small group at angular resolutions ranging from ~40 to 8arcsec. The low-resolution map shows a bridge of emission connecting the two larger galaxies and a large one-armed spiral distortion of the disc of SBS 1129+577. We measure HI masses of ~4.2 × 108, ~2.7 × 109 and ~2.1 × 108Msolar for SBS 1129+576, SBS 1129+577 and the gas in the bridge, respectively. Assuming that most of the bridge gas originally came from SBS 1129+576, approximately one-third of its original gas mass has been stripped off. The third smaller galaxy has an HI mass of (MHI ~ 1.1 × 107Msolar) and does not show any sign of interaction with the other two galaxies. The higher-resolution maps show that SBS 1129+577 has a central bar and a ring surrounding the bar; there is also a hint of an integral-shaped warp in SBS 1129+576. All these features are very likely to have been induced by the tidal interaction. In both SBS 1129+576 and SBS 1129+577, there is, in general, a good correspondence between regions with high HI column density and those with ongoing star formation. The two brightest HII regions in SBS 1129+576 have (inclination-corrected) gas column densities of ~1.6 × 1021 and ~1.8 × 1021 atoms cm-2, respectively. The inclination-corrected HI column density near the HII regions in SBS 1129+577 is generally above ~2.0 × 1021 atoms cm-2. These values are close to the threshold density for star formation observed in other blue compact galaxies. In contrast to SBS 1129+576 and SBS 1129

  5. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. IV. TYC 3667-1280-1: The most massive red giant star hosting a warm Jupiter

    NASA Astrophysics Data System (ADS)

    Niedzielski, A.; Villaver, E.; Nowak, G.; Adamów, M.; Maciejewski, G.; Kowalik, K.; Wolszczan, A.; Deka-Szymankiewicz, B.; Adamczyk, M.

    2016-05-01

    Context. We present the latest result of the TAPAS project that is devoted to intense monitoring of planetary candidates that are identified within the PennState-Toruń planet search. Aims: We aim to detect planetary systems around evolved stars to be able to build sound statistics on the frequency and intrinsic nature of these systems, and to deliver in-depth studies of selected planetary systems with evidence of star-planet interaction processes. Methods: The paper is based on precise radial velocity measurements: 13 epochs collected over 1920 days with the Hobby-Eberly Telescope and its High-Resolution Spectrograph, and 22 epochs of ultra-precise HARPS-N data collected over 961 days. Results: We present a warm-Jupiter (Teq = 1350 K, m2 sin i = 5.4 ± 0.4 MJ) companion with an orbital period of 26.468 days in a circular (e = 0.036) orbit around a giant evolved (log g = 3.11 ± 0.09, R = 6.26 ± 0.86 R⊙) star with M⋆ = 1.87 ± 0.17 M⊙. This is the most massive and oldest star found to be hosting a close-in giant planet. Its proximity to its host (a = 0.21 au) means that the planet has a 13.9 ± 2.0% probability of transits; this calls for photometric follow-up study. Conclusions: This massive warm Jupiter with a near circular orbit around an evolved massive star can help set constraints on general migration mechanisms for warm Jupiters and, given its high equilibrium temperature, can help test energy deposition models in hot Jupiters. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto

  6. Spectroscopy of chromospheric lines of giants in the globular cluster

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Hartmann, Lee; Smith, Graeme H.; Rodgers, A. W.; Roberts, W. H.; Zucker, D. B.

    1994-01-01

    Spectroscopic observations of chromospheric transitions (Mg II, H-alpha, and Ca II K) from two red giants (A31 and A59) in the globular cluster NGC 6572 were made with the Goddard High Resolution Spectrograph on the Hubble Space Telescope and the coude spectrograph of the 1.9 m telescope at the Mount Stromlo Observatory. These measurements give evidence for chromospheric activity and outward motions within the atmospheres. The surface flux of the Mg II emission is comparable to that in disk population giants of similar (B-V) color. The Mg II profiles are asymmetric, which is most likely caused by absorption in an expanding stellar atmosphere and/or by possible interstellar features. Notches are found in the core of the H-alpha line of A59, which are similar to those found in Cepheids. This suggests that shocks are present in the atmosphere of A59 and indicates that hydrodynamic phenomena are influencing the levvel of chromospheric emission and producing upper atmospheric motions which may lead to mass loss.

  7. Allium discoloration: the precursor and formation of the red pigment in giant onion (Allium giganteum Regel) and some other subgenus Melanocrommyum species.

    PubMed

    Kucerová, Petra; Kubec, Roman; Simek, Petr; Václavík, Lukás; Schraml, Jan

    2011-03-01

    The precursor of the orange-red pigment formed upon wounding the bulbs of Allium giganteum (Allium subg. Melanocrommyum) was isolated and shown to be S-(2-pyrrolyl)cysteine S-oxide. In addition, two other pyrrolylsulfinyl derivatives were found in an extract from the bulbs, namely, 3-(2-pyrrolylsulfinyl)lactic acid and S-(3-pyrrolyl)cysteine S-oxide. Contrary to a previous report, the latter compound was shown not to serve as the precursor of the pigment, being in fact only an artifact formed during isolation. The formation of pyrrolyl-containing compounds following disruption of A. giganteum bulbs was studied by a combination of LC-MS, LC-NMR and DART-MS. It was found that S-(2-pyrrolyl)cysteine S-oxide is cleaved by a C-S lyase (alliinase) to yield 2-pyrrolesulfenic acid. Two molecules of the latter compound give rise to highly reactive S-(2-pyrrolyl) 2-pyrrolethiosulfinate which in turn converts into red 2,2'-epidithio-3,3'-dipyrrole (dipyrrolo[2,3-d:2',3'-e]-1,2-dithiin). Several other pyrrolyl-containing compounds were detected in A. giganteum for the first time, including S-methyl 2-pyrrolethiosulfinate, S-(2-pyrrolyl) methanethiosulfinate, di(2-pyrrolyl) disulfide, and S-(2-pyrrolyl) 2-pyrrolethiosulfonate. It can be concluded that the formation of the orange-red pigment in Allium subg. Melanocrommyum species, despite sharing several analogous features, is of a different nature than the pink discoloration of onion (A. cepa). PMID:21299219

  8. Oxygen- and carbon-rich variable red giant populations in the Magellanic Clouds from EROS, OGLE, MACHO, and 2MASS photometry

    NASA Astrophysics Data System (ADS)

    Wiśniewski, M.; Marquette, J. B.; Beaulieu, J. P.; Schwarzenberg-Czerny, A.; Tisserand, P.; Lesquoy, É.

    2011-06-01

    Context. The carbon-to-oxygen (C/O) ratio of asymptotic giant branch (AGB) stars constitutes an important index of evolutionary and environment/metallicity factor. Aims: We develop a method for mass C/O classification of AGBs in photometric surveys without using periods. Methods: For this purpose we rely on the slopes in the tracks of individual stars in the colour-magnitude diagram. Results: We demonstrate that our method enables the separation of C-rich and O-rich AGB stars with little confusion. For the Magellanic Clouds we demonstrate that this method works for several photometric surveys and filter combinations. As we rely on no period identification, our results are relatively insensitive to the phase coverage, aliasing, and time-sampling problems that plague period analyses. For a subsample of our stars, we verify our C/O classification against published C/O catalogues. With our method we are able to produce C/O maps of the entire Magellanic Clouds. Conclusions: Our purely photometric method for classification of C- and O-rich AGBs constitutes a method of choice for large, near-infrared photometric surveys. Because our method depends on the slope of colour-magnitude variation but not on magnitude zero point, it remains applicable to objects with unknown distances.

  9. The magnetic fields at the surface of active single G-K giants

    NASA Astrophysics Data System (ADS)

    Aurière, M.; Konstantinova-Antova, R.; Charbonnel, C.; Wade, G. A.; Tsvetkova, S.; Petit, P.; Dintrans, B.; Drake, N. A.; Decressin, T.; Lagarde, N.; Donati, J.-F.; Roudier, T.; Lignières, F.; Schröder, K.-P.; Landstreet, J. D.; Lèbre, A.; Weiss, W. W.; Zahn, J.-P.

    2015-02-01

    Aims: We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. In our sample, 24 stars are identified from the literature as presenting moderate to strong signs of magnetic activity. An additional 7 stars are identified as those in which thermohaline mixing appears not to have occured, which could be due to hosting a strong magnetic field. Finally, we observed 17 additional very bright stars which enable a sensitive search to be performed with the spectropolarimetric technique. Methods: We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets. We treat the spectropolarimetric data using the least-squares deconvolution method to create high signal-to-noise ratio mean Stokes V profiles. We also measure the classical S-index activity indicator for the Ca ii H&K lines, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. Results: We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars. However no detections were obtained in the 7 thermohaline deviant giants. The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a "magnetic strip" for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro

  10. Chemical Abundances of Symbiotic Giants

    NASA Astrophysics Data System (ADS)

    Gałan, C.; Mikołajewska, J.; Hinkle, K. H.; Joyce, R. R.

    2015-12-01

    High resolution (R ˜ 50000), near-IR spectra were used to measure photospheric abundances of CNO and elements around the iron peak for 24 symbiotic giants. Spectrum synthesis was employed using local thermal equilibrium and hydrostatic model atmospheres. The metallicities are distributed in a wide range with maximum around [Fe/H] ˜-0.4 - - 0.3 dex. Enrichment in 14N indicates that all the sample giants have experienced the first dredge-up. The relative abundance of [Ti/Fe] is generally large in red symbiotic systems.

  11. NLTE and LTE Lick Indices for Red Giants from [Fe/H] 0.0 to -6.0 at SDSS and IDS Spectral Resolution

    NASA Astrophysics Data System (ADS)

    Short, C. Ian; Young, Mitchell E.; Layden, Nicholas

    2015-09-01

    We investigate the dependence of the complete system of 22 Lick indices on overall metallicity scaled from solar abundances, [{{M}}/{{H}}], from the solar value, 0.0, down to the extremely metal-poor (XMP) value of -6.0, for late-type giant stars (MK luminosity class III, {log}g=2.0) of MK spectral class late-K to late-F (3750\\lt {T}{eff}\\lt 6500 K) of the type that are detected as “fossils” of early galaxy formation in the Galactic halo and in extra-galactic structures. Our investigation is based on synthetic index values, I, derived from atmospheric models and synthetic spectra computed with PHOENIX in Local Thermodynamic Equilibrium (LTE) and Non-LTE (NLTE), where the synthetic spectra have been convolved to the spectral resolution, R, of both IDS and SDSS (and LAMOST) spectroscopy. We identify nine indices, that we designate “Lick-XMP,” that remain both detectable and significantly [{{M}}/{{H}}]-dependent down to [{{M}}/{{H}}] values of at least ˜ -5.0, and down to [{{M}}/{{H}}] ˜ -6.0 in five cases, while also remaining well-behaved (single-valued as a function of [{{M}}/{{H}}] and positive in linear units). For these nine indices, we study the dependence of I on NLTE effects, and on spectral resolution. For our LTE I values for spectra of SDSS resolution, we present the fitted polynomial coefficients, {C}{{n}}, from multi-variate linear regression for I with terms up to third order in the independent variable pairs ({T}{eff}, [{{M}}/{{H}}] ) and (V-K, [{{M}}/{{H}}]), and compare them to the fitted {C}{{n}} values of Worthey et al. at IDS spectral resolution. For this fitted I data-set we present tables of LTE partial derivatives, \\frac{\\partial I}{\\partial {T}{eff}}{| }[{{M}/{{H}}]}, \\frac{\\displaystyle \\partial I}{\\partial [{{M}}/{{H}}]}{| }{T{eff}}, \\frac{\\displaystyle \\partial I}{\\partial (V-K)}{| }[{{M}/{{H}}]}, and \\frac{\\partial I}{\\partial [{{M}}/{{H}}]}{| }(V-K), that can be used to infer the relation between a given

  12. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N . I. A multiple planetary system around the red giant star TYC 1422-614-1

    NASA Astrophysics Data System (ADS)

    Niedzielski, A.; Villaver, E.; Wolszczan, A.; Adamów, M.; Kowalik, K.; Maciejewski, G.; Nowak, G.; García-Hernández, D. A.; Deka, B.; Adamczyk, M.

    2015-01-01

    Context. Stars that have evolved off the main sequence are crucial for expanding the frontiers of knowledge on exoplanets toward higher stellar masses and for constraining star-planet interaction mechanisms. These stars have an intrinsic activity, however, which complicates the interpretation of precise radial velocity (RV) measurements, and therefore they are often avoided in planet searches. Over the past ten years, we have monitored about 1000 evolved stars for RV variations in search for low-mass companions under the Penn State - Toruń Centre for Astronomy Planet Search program with the Hobby-Eberly Telescope. Selected prospective candidates that required higher RV precision measurements have been followed with HARPS-N at the 3.6 m Telescopio Nazionale Galileo. Aims: We aim to detect planetary systems around evolved stars, to be able to build sound statistics on the frequency and intrinsic nature of these systems, and to deliver in-depth studies of selected planetary systems with evidence of star-planet interaction processes. Methods: We obtained 69 epochs of precise RV measurements for TYC 1422-614-1 collected over 3651 days with the Hobby-Eberly Telescope, and 17 epochs of ultra-precise HARPS-N data collected over 408 days. We complemented these RV data with photometric time-series from the All Sky Automatic Survey archive. Results: We report the discovery of a multiple planetary system around the evolved K2 giant star TYC 1422-614-1. The system orbiting the 1.15 M⊙ star is composed of a planet with mass msini = 2.5 MJ in a 0.69 AU orbit, and a planet or brown dwarf with msini = 10 MJ in an orbit of 1.37 AU. The multiple planetary system orbiting TYC 1422-614-1 is the first finding of the TAPAS project, a HARPS-N monitoring of evolved planetary systems identified with the Hobby-Eberly Telescope. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University

  13. Spot evolution on the red giant star XX Triangulum. A starspot-decay analysis based on time-series Doppler imaging

    NASA Astrophysics Data System (ADS)

    Künstler, A.; Carroll, T. A.; Strassmeier, K. G.

    2015-06-01

    Context. Solar spots appear to decay linearly proportional to their size. The decay rate of solar spots is directly related to magnetic diffusivity, which itself is a key quantity for the length of a magnetic-activity cycle. Is a linear spot decay also seen on other stars, and is this in agreement with the large range of solar and stellar activity cycle lengths? Aims: We investigate the evolution of starspots on the rapidly-rotating (Prot≈24 d) K0 giant XX Tri, using consecutive time-series Doppler images. Our aim is to obtain a well-sampled movie of the stellar surface over many years, and thereby detect and quantify a starspot decay law for further comparison with the Sun. Methods: We obtained continuous high-resolution and phase-resolved spectroscopy with the 1.2-m robotic STELLA telescope on Tenerife over six years, and these observations are ongoing. For each observing season, we obtained between 5 to 7 independent Doppler images, one per stellar rotation, making up a total of 36 maps. All images were reconstructed with our line-profile inversion code iMap. A wavelet analysis was implemented for denoising the line profiles. To quantify starspot area decay and growth, we match the observed images with simplified spot models based on a Monte Carlo approach. Results: It is shown that the surface of XX Tri is covered with large high-latitude and even polar spots and with occasional small equatorial spots. Just over the course of six years, we see a systematically changing spot distribution with various timescales and morphology, such as spot fragmentation and spot merging as well as spot decay and formation. An average linear decay of D = -0.022 ± 0.002 SH/day is inferred. We found evidence of an active longitude in phase toward the (unseen) companion star. Furthermore, we detect a weak solar-like differential rotation with a surface shear of α = 0.016 ± 0.003. From the decay rate, we determine a turbulent diffusivity of ηT = (6.3 ± 0.5) × 1014 cm2/s and

  14. Long-term photometry of three active red giants in close binary systems: V2253 Oph, IT Com and IS Vir

    NASA Astrophysics Data System (ADS)

    Oláh, K.; Moór, A.; Strassmeier, K. G.; Borkovits, T.; Granzer, T.

    2013-08-01

    We present and analyze long-term optical photometric measurements of the three active stars V2253 Oph, IT Com and IS Vir. All three systems are single-lined spectroscopic binaries with an early K giant as primary component but in different stages of orbital-rotational synchronization. Our photometry is supplemented by 2MASS and WISE near-IR and mid-IR magnitudes and then used to obtain more accurate effective temperatures and extinctions. For V2253 Oph and IT Com, we found their spectral energy distributions consistent with pure photospheric emission. For IS Vir, we detect a marginal mid-IR excess which hints towards a dust disk. The orbital and rotational planes of IT Com appear to be coplanar, contrary to previous findings in the literature. We apply a multiple frequency analysis technique to determine photometric periods, and possibly changes of periods, ranging from days to decades. New rotational periods of 21.55±0.03 d, 65.1±0.3 d, and 23.50±0.04 d were determined for V2253 Oph, IT Com, and IS Vir, respectively. Splitting of these periods led to tentative detections of differential surface rotations of δ P/P≈0.02 for V2253 Oph and 0.07 for IT Com. Using a time-frequency technique based on short-term Fourier transforms we present evidence of cyclic light variations of length ≈ 10 yr for V2253 Oph and 5-6 yr for IS Vir. A single flip-flop event has been observed for IT Com of duration 2-3 yr. Its exchange of the dominant active longitude had happened close to a time of periastron passage, suggesting some response of the magnetic activity from the orbital dynamics. The 21.55-d rotational modulation of V2253 Oph showed phase coherence also with the orbital period, which is 15 times longer than the rotational period, thus also indicating a tidal feedback with the stellar magnetic activity.

  15. IRAS 12556-7731: a "chamaeleonic" lithium-rich M-giant

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.; Biazzo, K.; Covino, E.; Frasca, A.; Bedin, L. R.

    2011-07-01

    Aims: In this letter we characterise IRAS 12556-7731 as the first lithium-rich M-type giant. Based on its late spectral type and high lithium content, and because of its proximity in angular distance to the Chamaeleon II star-forming region, the star was misclassified as a young low-mass star in a previous work. Methods: Based on HARPS data, synthetic spectral modelling, and proper motions, we derive the astrophysical parameters and kinematics of the star and discuss its evolutionary status. Results: This solar-mass red giant (Teff = 3460 ± 60 K and log g = 0.6 ± 0.2) is characterised by a relatively fast rotation (vsini ~ 8 km s-1), slightly subsolar metallicity and a high-lithium abundance, A(Li) = 2.4 ± 0.2 dex. We discuss IRAS 12556-7731 within the context of other known lithium-rich K-type giants. Because it is close to the tip of the red giant branch, IRAS 12556-7731 is the coolest lithium-rich giant known so far, and it is among the least massive and most luminous giants where enhancement of lithium has been detected. Among several possible explanations, we cannot preclude the possibility that the lithium enhancement and rapid rotation of the star were triggered by the engulfment of a brown dwarf or a planet. Based on HARPS observations collected at the La Silla Observations.Figure 4 and Appendix A are available in electronic form at http://www.aanda.org

  16. A Novel Mercuric Reductase from the Unique Deep Brine Environment of Atlantis II in the Red Sea

    PubMed Central

    Sayed, Ahmed; Ghazy, Mohamed A.; Ferreira, Ari J. S.; Setubal, João C.; Chambergo, Felipe S.; Ouf, Amged; Adel, Mustafa; Dawe, Adam S.; Archer, John A. C.; Bajic, Vladimir B.; Siam, Rania; El-Dorry, Hamza

    2014-01-01

    A unique combination of physicochemical conditions prevails in the lower convective layer (LCL) of the brine pool at Atlantis II (ATII) Deep in the Red Sea. With a maximum depth of over 2000 m, the pool is characterized by acidic pH (5.3), high temperature (68 °C), salinity (26%), low light levels, anoxia, and high concentrations of heavy metals. We have established a metagenomic dataset derived from the microbial community in the LCL, and here we describe a gene for a novel mercuric reductase, a key component of the bacterial detoxification system for mercuric and organomercurial species. The metagenome-derived gene and an ortholog from an uncultured soil bacterium were synthesized and expressed in Escherichia coli. The properties of their products show that, in contrast to the soil enzyme, the ATII-LCL mercuric reductase is functional in high salt, stable at high temperatures, resistant to high concentrations of Hg2+, and efficiently detoxifies Hg2+ in vivo. Interestingly, despite the marked functional differences between the orthologs, their amino acid sequences differ by less than 10%. Site-directed mutagenesis and kinetic analysis of the mutant enzymes, in conjunction with three-dimensional modeling, have identified distinct structural features that contribute to extreme halophilicity, thermostability, and high detoxification capacity, suggesting that these were acquired independently during the evolution of this enzyme. Thus, our work provides fundamental structural insights into a novel protein that has undergone multiple biochemical and biophysical adaptations to promote the survival of microorganisms that reside in the extremely demanding environment of the ATII-LCL. PMID:24280218

  17. A Large-Scale Genetic Analysis Reveals a Strong Contribution of the HLA Class II Region to Giant Cell Arteritis Susceptibility

    PubMed Central

    Carmona, F. David; Mackie, Sarah L.; Martín, Jose-Ezequiel; Taylor, John C.; Vaglio, Augusto; Eyre, Stephen; Bossini-Castillo, Lara; Castañeda, Santos; Cid, Maria C.; Hernández-Rodríguez, José; Prieto-González, Sergio; Solans, Roser; Ramentol-Sintas, Marc; González-Escribano, M. Francisca; Ortiz-Fernández, Lourdes; Morado, Inmaculada C.; Narváez, Javier; Miranda-Filloy, José A.; Martínez-Berriochoa, Agustín; Unzurrunzaga, Ainhoa; Hidalgo-Conde, Ana; Madroñero-Vuelta, Ana B.; Fernández-Nebro, Antonio; Ordóñez-Cañizares, M. Carmen; Escalante, Begoña; Marí-Alfonso, Begoña; Sopeña, Bernardo; Magro, César; Raya, Enrique; Grau, Elena; Román, José A.; de Miguel, Eugenio; López-Longo, F. Javier; Martínez, Lina; Gómez-Vaquero, Carmen; Fernández-Gutiérrez, Benjamín; Rodríguez-Rodríguez, Luis; Díaz-López, J. Bernardino; Caminal-Montero, Luis; Martínez-Zapico, Aleida; Monfort, Jordi; Tío, Laura; Sánchez-Martín, Julio; Alegre-Sancho, Juan J.; Sáez-Comet, Luis; Pérez-Conesa, Mercedes; Corbera-Bellalta, Marc; García-Villanueva, M. Jesús; Fernández-Contreras, M. Encarnación; Sanchez-Pernaute, Olga; Blanco, Ricardo; Ortego-Centeno, Norberto; Ríos-Fernández, Raquel; Callejas, José L.; Fanlo-Mateo, Patricia; Martínez-Taboada, Víctor M.; Beretta, Lorenzo; Lunardi, Claudio; Cimmino, Marco A.; Gianfreda, Davide; Santilli, Daniele; Ramirez, Giuseppe A.; Soriano, Alessandra; Muratore, Francesco; Pazzola, Giulia; Addimanda, Olga; Wijmenga, Cisca; Witte, Torsten; Schirmer, Jan H.; Moosig, Frank; Schönau, Verena; Franke, Andre; Palm, Øyvind; Molberg, Øyvind; Diamantopoulos, Andreas P.; Carette, Simon; Cuthbertson, David; Forbess, Lindsy J.; Hoffman, Gary S.; Khalidi, Nader A.; Koening, Curry L.; Langford, Carol A.; McAlear, Carol A.; Moreland, Larry; Monach, Paul A.; Pagnoux, Christian; Seo, Philip; Spiera, Robert; Sreih, Antoine G.; Warrington, Kenneth J.; Ytterberg, Steven R.; Gregersen, Peter K.; Pease, Colin T.; Gough, Andrew; Green, Michael; Hordon, Lesley; Jarrett, Stephen; Watts, Richard; Levy, Sarah; Patel, Yusuf; Kamath, Sanjeet; Dasgupta, Bhaskar; Worthington, Jane; Koeleman, Bobby P.C.; de Bakker, Paul I.W.; Barrett, Jennifer H.; Salvarani, Carlo; Merkel, Peter A.; González-Gay, Miguel A.; Morgan, Ann W.; Martín, Javier

    2015-01-01

    We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10−40, OR = 1.73). A multivariate model including class II amino acids of HLA-DRβ1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB1∗04. An omnibus test on polymorphic amino acid positions highlighted DRβ1 13 (p = 4.08 × 10−43) and HLA-DQα1 47 (p = 4.02 × 10−46), 56, and 76 (both p = 1.84 × 10−45) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10−6, OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10−6, OR = 1.20), and REL (rs115674477, p = 1.10 × 10−5, OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function. PMID:25817017

  18. A large-scale genetic analysis reveals a strong contribution of the HLA class II region to giant cell arteritis susceptibility.

    PubMed

    Carmona, F David; Mackie, Sarah L; Martín, Jose-Ezequiel; Taylor, John C; Vaglio, Augusto; Eyre, Stephen; Bossini-Castillo, Lara; Castañeda, Santos; Cid, Maria C; Hernández-Rodríguez, José; Prieto-González, Sergio; Solans, Roser; Ramentol-Sintas, Marc; González-Escribano, M Francisca; Ortiz-Fernández, Lourdes; Morado, Inmaculada C; Narváez, Javier; Miranda-Filloy, José A; Beretta, Lorenzo; Lunardi, Claudio; Cimmino, Marco A; Gianfreda, Davide; Santilli, Daniele; Ramirez, Giuseppe A; Soriano, Alessandra; Muratore, Francesco; Pazzola, Giulia; Addimanda, Olga; Wijmenga, Cisca; Witte, Torsten; Schirmer, Jan H; Moosig, Frank; Schönau, Verena; Franke, Andre; Palm, Øyvind; Molberg, Øyvind; Diamantopoulos, Andreas P; Carette, Simon; Cuthbertson, David; Forbess, Lindsy J; Hoffman, Gary S; Khalidi, Nader A; Koening, Curry L; Langford, Carol A; McAlear, Carol A; Moreland, Larry; Monach, Paul A; Pagnoux, Christian; Seo, Philip; Spiera, Robert; Sreih, Antoine G; Warrington, Kenneth J; Ytterberg, Steven R; Gregersen, Peter K; Pease, Colin T; Gough, Andrew; Green, Michael; Hordon, Lesley; Jarrett, Stephen; Watts, Richard; Levy, Sarah; Patel, Yusuf; Kamath, Sanjeet; Dasgupta, Bhaskar; Worthington, Jane; Koeleman, Bobby P C; de Bakker, Paul I W; Barrett, Jennifer H; Salvarani, Carlo; Merkel, Peter A; González-Gay, Miguel A; Morgan, Ann W; Martín, Javier

    2015-04-01

    We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10(-40), OR = 1.73). A multivariate model including class II amino acids of HLA-DRβ1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB1(∗)04. An omnibus test on polymorphic amino acid positions highlighted DRβ1 13 (p = 4.08 × 10(-43)) and HLA-DQα1 47 (p = 4.02 × 10(-46)), 56, and 76 (both p = 1.84 × 10(-45)) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10(-6), OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10(-6), OR = 1.20), and REL (rs115674477, p = 1.10 × 10(-5), OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function. PMID:25817017

  19. Effect of red cyst cell inoculation and iron(II) supplementation on autotrophic astaxanthin production by Haematococcus pluvialis under outdoor summer conditions.

    PubMed

    Hong, Min-Eui; Choi, Yoon Young; Sim, Sang Jun

    2016-01-20

    The negative effect of heat stress on the autotrophic astaxanthin production by Haematococcus pluvialis has been observed during outdoor culture in summer. Under the summer conditions, the proliferation of vegetative cells was highly halted in the green stage and the inducibility in the biosynthesis of astaxanthin was partly hindered in the red stage. Herein, under outdoor summer conditions in which variations of the diurnal temperature occur, heat-stress-driven inefficient vegetative growth of H. pluvialis was highly improved by inoculating the red cyst cells; thereby, maintaining relatively moderate intracellular carotenoid levels in the green stage. Subsequently, a remarkably enhanced astaxanthin titer was successfully obtained by supplementing 50 μM iron(II) to induce the heat stress-driven Haber-Weiss reaction in the red stage. As a result, the productivity of astaxanthin in the cells cultured under summer temperature conditions (23.4-33.5 °C) using the two methods of red cell (cyst) inoculation and the iron(Fe(2+)) supplementation was increased by 147% up to 5.53 mg/L day compared with that of the cells cultured under spring temperature conditions (17.5-27.3 °C). Our technical solutions will definitely improve the annual natural astaxanthin productivity in H. pluvialis in locations confronted by hot summer weather, particularly in large-scale closed photobioreactor systems. PMID:26630998

  20. Red Dwarfs and the End of the Main Sequence

    NASA Astrophysics Data System (ADS)

    Adams, F. C.; Graves, G. J. M.; Laughlin, G.

    2004-12-01

    This paper celebrates the contributions of Peter Bodenheimer to our understanding of stellar evolution by focusing on the long term development of red dwarf stars. We show that these diminutive stellar objects remain convective over most of their lives, they continue to burn hydrogen for trillions of years, and they do not experience red giant phases in their old age. Instead, red dwarfs turn into blue dwarfs and finally white dwarfs. This work shows (in part) why larger stars do become red giants.

  1. Effectively simultaneous naked-eye detection of Cu(II), Pb(II), Al(III) and Fe(III) using cyanidin extracted from red cabbage as chelating agent

    NASA Astrophysics Data System (ADS)

    Khaodee, Warangkhana; Aeungmaitrepirom, Wanlapa; Tuntulani, Thawatchai

    Simultaneous determination of Cu(II), Pb(II), Al(III) and Fe(III) using cyanidin as a chelating agent was investigated in terms of both quantitative and qualitative detections. Cyanidin was extracted and purified from red cabbage which is a local plant in Thailand. The selectivity of this method was examined by regulating the pH of cyanidin solution operated together with masking agents. It was found that Cu(II), Pb(II), Al(III) and Fe(III) simultaneously responded with the color change at pH 7, pH 6, pH 5 and pH 4, respectively. KF, DMG and the mixture of KF and DMG were used as masking agents for the determination of Fe(III), Al(III) and Pb(II), respectively. Results from naked-eye detection were evaluated by comparing with those of inductively coupled plasma (ICP), and there was no significant difference noticed. Cyanidin using as a multianalyte reagent could be employed for simultaneous determination of Cu(II), Pb(II), Al(III) and Fe(III) at the lowest concentration at 50, 80, 50 and 200 μM, respectively, by slightly varying pHs. Moreover, the proposed method could be potentially applied for real water samples with simplicity, rapidity, low cost and environmental safety.

  2. Giant Axonal Neuropathy

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Giant Axonal Neuropathy Information Page Table of Contents (click to jump ... done? Clinical Trials Organizations What is Giant Axonal Neuropathy? Giant axonal neuropathy (GAN) is a rare inherited ...

  3. A selective, long-lived deep-red emissive ruthenium(II) polypyridine complexes for the detection of BSA

    NASA Astrophysics Data System (ADS)

    Babu, Eththilu; Muthu Mareeswaran, Paulpandian; Singaravadivel, Subramanian; Bhuvaneswari, Jayaraman; Rajagopal, Seenivasan

    2014-09-01

    A selective, label free luminescence sensor for bovine serum albumin (BSA) is investigated using ruthenium(II) complexes over the other proteins. Interaction between BSA and ruthenium(II) complexes has been studied using absorption, emission, excited state lifetime and circular dichroism (CD) spectral techniques. The luminescence intensity of ruthenium(II) complexes (I and II), has enhanced at 602 and 613 nm with a large hypsochromic shift of 18 and 5 nm respectively upon addition of BSA. The mode of binding of ruthenium(II) complexes with BSA has analyzed using computational docking studies.

  4. Binding of copper(II) ions to the polyproline II helices of PEVK modules of the giant elastic protein titin as revealed by ESI-MS, CD, and NMR.

    PubMed

    Ma, Kan; Wang, Kuan

    2003-10-01

    Titin, a family of giant elastic proteins, constitutes an elastic sarcomere matrix in striated muscle. In the I-band region of the sarcomere, the titin PEVK segment acts as a molecular spring to generate elasticity as well as sites of adhesion with parallel thin filaments. Previously, we reported that PEVK consists of tandem repeats of 28 residue modules and that the "polyproline II-coil" motif is the fundamental conformational motif of the PEVK module. In order to characterize the factors that may affect and alter the PPII-coil conformational motifs, we have initiated a systematic study of the interaction with divalent cations (Cu2+, Ca2+, Zn2+, and Ni2+) and a conformational profile of PEVK peptides (a representative 28-mer peptide PR: PEPPKEVVPEKKAPVAPPKKPEVPPVKV and its subfragments PR1: kvPEPPKEVVPE, PR2: VPEKKAPVAPPK, PR3: KPEVPPVKV). UV-Vis absorption difference spectra and CD spectra showed that Cu2+ bound to PR1 with high affinity (20 microM), while its binding to PR2 and PR3 as well as the binding of other cations to all four peptides were of lower affinity (>100 microM). Conformational studies by CD revealed that Cu2+ binding to PR1 resulted in a polyproline II to turn transition up to a 1:2 PR1/Cu2+ ratio and a coil to turn transition at higher Cu2+ concentration. ESI-MS provided the stoichiometry of PEVK peptide-Cu2+ complexes at both low and high ion strength, confirming the specific high affinity binding of Cu2+ to PR1 and PR. Furthermore, NMR and ESI-MS/MS fragmentation analysis elucidated the binding sites of the PEVK peptide-Cu2+ complexes at (-2)KVPE2, 8VPE10, 13APV15, and 22EVP24. A potential application of Cu2+ binding in peptide sequencing by mass spectrometry was also revealed. We conclude that Cu2+ binds and bends PEVK peptides to a beta-turn-like structure at specific sites. The specific targeting of Cu2+ towards PPII is likely to be of significant value in elucidating the roles of PPII in titin elasticity as well as in interactions of

  5. Anoxia and possible export production spikes in the Red Sea during Termination II: evidence from U-decay series and organic C concentrations

    NASA Astrophysics Data System (ADS)

    Torfstein, A.; Almogi-Labin, A.; McManus, J. F.

    2014-12-01

    The late Quaternary history of the Red Sea is characterized by sharp increases in sea surface salinity during glacial maxima in response to global sea level drop. These imposed an extremely weak current exchange between the Red Sea and the Indian Ocean through the Bab-el-Mandeb Straits that resulted in temporal changes in stratification, productivity and subsurface oxygenation of the Red Sea. The combined effect of these perturbations has been interpreted to impose extended aplanktonic zones in Red Sea sediments centered at glacial maxima. Yet the dynamics of the transition between glacial and interglacial stages in the Red Sea are still not well understood. Here, we present evidence for the occurrence of a strong anoxic episode during the penultimate transition from Marine Isotope Stage (MIS) 6 to MIS5 (Termination II) based on uranium concentrations, isotopic ratios, and organic carbon concentrations (Corg) studied in core KL23 taken by R/V Meteor from northern Red Sea (24o44.88'N 35o03.28'E) at 702 m water depth. (234U/238U) activity ratios and U concentrations start rising from their MIS6 levels (~1 and 1.9 ppm, respectively) ca. 140 ka, and peak at 135-132 ka (1.08 and 3.1 ppm). These patterns are matched by changes in Corg, and the onset of all slightly precedes sea level rise patterns. Thereafter, uranium and Corg decrease sharply, reaching minima that characterizes the rest of MIS5e, ca. 130 ka. Uranium activity ratios however, decrease gradually from their deglacial peak to a minimum value (~0.94) at 122 ka. In view of the redox sensitive behavior of U, the buildup of U concentrations would support anoxic conditions, rather than a rise in export production, as the most likely explanation for the preservation of Corg in the sediments. Yet, the high (234U/238U) values that imply a dominance of open seawater U in the samples, together with d13C values of foraminifera bracketing the studied interval that display a depletion trend indicating an increase in

  6. Experimental and theoretical studies on Sudan Red G [1-(2-methoxyphenylazo)-2-naphthol] and its Cu(II) coordination compound

    NASA Astrophysics Data System (ADS)

    Esme, Aslı; Sagdinc, Seda G.; Yildiz, S. Zeki

    2014-10-01

    The molecular structure, natural bond orbital (NBO) analysis and vibrational studies of Sudan Red G {(SRG), [1-(2-methoxyphenylazo)-2-naphthol]} have been investigated using Density Functional Theory (DFT) calculations. To investigate the tautomeric stability, optimisation calculations at the Hartree-Fock (HF) and DFT/B3LYP levels were performed for the azo (OH) and hydrazo (NH) forms of the title compound. FT-IR, FT-Raman and electronic absorption spectra of SRG have recorded and analysed. We have compared the calculated IR and Raman wavenumbers with the observed data. A novel copper(II) coordination compound with Sudan Red G was synthesised and characterised by analytical, spectroscopic (FT-IR and electronic absorption spectra) and single-crystal X-ray diffraction methods. The X-ray structure of the prepared coordination compound indicated that it crystallised in a dimeric form as [Cu2(SRG)4·2O0.5] that consists of facial geometric isomer. In the coordination compound, the Cu(II) atoms have a distorted octahedral geometry.

  7. Mass loss from red giants - Infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    A discussion is presented of IR spectroscopy, particularly high-resolution spectroscopy in the approximately 1-20 micron band, as it impacts the study of circumstellar envelopes. The molecular bands within this region contain an enormous amount of information, especially when observed with sufficient resolution to obtain kinematic information. In a single spectrum, it is possible to resolve lines from up to 50 different rotational/vibrational levels of a given molecule and to detect several different isotopic variants. When high resolution techniques are combined with mapping techniques and/or time sequence observations of variable stars, the resulting information can paint a very detailed picture of the mass-loss phenomenon. To date, near-IR observations have been made of 20 molecular species. CO is the most widely observed molecule and useful information has been gleaned from the observed rotational excitation, kinematics, time variability and spatial structure of its lines. Examples of different observing techniques are discussed in the following sections.

  8. The use of fish metabolic, pathological and parasitological indices in pollution monitoring . II. The Red Sea and Mediterranean

    NASA Astrophysics Data System (ADS)

    Diamant, A.; Banet, A.; Paperna, I.; Westernhagen, H. v.; Broeg, K.; Kruener, G.; Koerting, W.; Zander, S.

    1999-12-01

    The complex interactions between parasites, hosts and the environment are influenced by the stability of the ecosystem. Heteroxenous parasites, with complex, multiple-host life cycles, can persist only in habitats where the full range of their required hosts are present. Conversely, in impoverished environments such as those impacted by environmental stress, monoxenous species that have simple, single-host life cycles are likely to predominate. In the present study, we analyzed the ratio between heteroxenous and monoxenous (H/M) parasites as well as parasite species richness (SH/SM) and species diversity in rabbitfish (Siganus rivulatus) collected from several sites in the Red Sea. The rabbitfish is a Suez Canal immigrant, well established in the eastern Mediterranean, and fish were also collected from a site on the Mediterranean coast of Israel. Separate treatment of the micro- and macroparasite components of the rabbitfish parasite communities in the Red Sea suggested that macroparasites only - monogenea and gut parasites - were better indicators than the parasite community as a whole. Quantification of macroparasites is accurate, saves time and effort, produces more accurate data and better differentiates between sites. Higher H/M ratios and SH/SM ratios were found in the rabbitfish collected at the ecologically stable habitat of the coral reef compared to rabbitfish from sandy habitat or mariculture-impacted sandy habitat. The results of the study emphasized the negative impacts of cage mariculture on the environment. The rabbitfish collected near the mariculture farms supported the poorest and least diverse parasite communities of all sampled sites, with virtual depletion of heteroxenous species, and even reduction of gill monogenean infections on the hosts. When results from the Mediterranean sites were compared with those of the Red Sea, the data showed full representation of monoxenous parasites (all but one of Red Sea origin), while heteroxenous species

  9. Ionization and excitation in cool giant stars. I - Hydrogen and helium

    NASA Technical Reports Server (NTRS)

    Luttermoser, Donald G.; Johnson, Hollis R.

    1992-01-01

    The influence that non-LTE radiative transfer has on the electron density, ionization equilibrium, and excitation equilibrium in model atmospheres representative of both oxygen-rich and carbon-rich red giant stars is demonstrated. The radiative transfer and statistical equilibrium equations are solved self-consistently for H, H(-), H2, He I, C I, C II, Na I, Mg I, Mg II, Ca I, and Ca II in a plane-parallel static medium. Calculations are made for both radiative-equilibrium model photospheres alone and model photospheres with attached chromospheric models as determined semiempirically with IUE spectra of g Her (M6 III) and TX Psc (C6, 2). The excitation and ionization results for hydrogen and helium are reported.

  10. Peripheral giant cell granuloma: This enormity is a rarity

    PubMed Central

    Rodrigues, Silvia Victor; Mitra, Dipika Kalyan; Pawar, Sudarshana Devendrasing; Vijayakar, Harshad Narayan

    2015-01-01

    Peripheral giant cell granuloma (PGCG) is an infrequent exophytic lesion of the oral cavity, also known as giant cell epulis, osteoclastoma, giant cell reparative granuloma, or giant cell hyperplasia. Lesions vary in appearance from smooth, regularly outlined masses to irregularly shaped, multilobulated protuberances with surface indentations. Ulcerations of the margin are occasionally seen. The lesions are painless, vary in size, and may cover several teeth. It normally presents as a purplish-red nodule consisting of multinucleated giant cells in the background of mononuclear stromal cells and extravasated red blood cells. This case report describes the unusual appearance of a PGCG extending from left maxillary interdental gingiva to palatal area in 32-year-old female patient. PMID:26392701

  11. The sampled Red List Index for plants, phase II: ground-truthing specimen-based conservation assessments.

    PubMed

    Brummitt, Neil; Bachman, Steven P; Aletrari, Elina; Chadburn, Helen; Griffiths-Lee, Janine; Lutz, Maiko; Moat, Justin; Rivers, Malin C; Syfert, Mindy M; Nic Lughadha, Eimear M

    2015-02-19

    The IUCN Sampled Red List Index (SRLI) is a policy response by biodiversity scientists to the need to estimate trends in extinction risk of the world's diminishing biological diversity. Assessments of plant species for the SRLI project rely predominantly on herbarium specimen data from natural history collections, in the overwhelming absence of accurate population data or detailed distribution maps for the vast majority of plant species. This creates difficulties in re-assessing these species so as to measure genuine changes in conservation status, which must be observed under the same Red List criteria in order to be distinguished from an increase in the knowledge available for that species, and thus re-calculate the SRLI. However, the same specimen data identify precise localities where threatened species have previously been collected and can be used to model species ranges and to target fieldwork in order to test specimen-based range estimates and collect population data for SRLI plant species. Here, we outline a strategy for prioritizing fieldwork efforts in order to apply a wider range of IUCN Red List criteria to assessments of plant species, or any taxa with detailed locality or natural history specimen data, to produce a more robust estimation of the SRLI. PMID:25561676

  12. Witnessing the Birth of the Red Sequence: ALMA High-resolution Imaging of [C II] and Dust in Two Interacting Ultra-red Starbursts at z = 4.425

    NASA Astrophysics Data System (ADS)

    Oteo, I.; Ivison, R. J.; Dunne, L.; Smail, I.; Swinbank, A. M.; Zhang, Z.-Y.; Lewis, A.; Maddox, S.; Riechers, D.; Serjeant, S.; Van der Werf, P.; Biggs, A. D.; Bremer, M.; Cigan, P.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Eales, S.; Ibar, E.; Messias, H.; Michałowski, M. J.; Pérez-Fournon, I.; van Kampen, E.

    2016-08-01

    Exploiting the sensitivity and spatial resolution of the Atacama Large Millimeter/submillimeter Array, we have studied the morphology and the physical scale of the interstellar medium—both gas and dust—in SGP 38326, an unlensed pair of interacting starbursts at z = 4.425. SGP 38326 is the most luminous star bursting system known at z > 4, with a total IR luminosity of L IR ˜ 2.5 × 1013 L ⊙ and a star formation rate of ˜ 4500 M ⊙ yr‑1. SGP 38326 also contains a molecular gas reservoir among the most massive yet found in the early universe, and it is the likely progenitor of a massive, red-and-dead elliptical galaxy at z ˜ 3. Probing scales of ˜0.″1 or ˜800 pc we find that the smooth distribution of the continuum emission from cool dust grains contrasts with the more irregular morphology of the gas, as traced by the [C ii] fine structure emission. The gas is also extended over larger physical scales than the dust. The velocity information provided by the resolved [C ii] emission reveals that the dynamics of the two interacting components of SGP 38326 are each compatible with disk-like, ordered rotation, but also reveals an ISM which is turbulent and unstable. Our observations support a scenario where at least a subset of the most distant extreme starbursts are highly dissipative mergers of gas-rich galaxies.

  13. Witnessing the Birth of the Red Sequence: ALMA High-resolution Imaging of [C II] and Dust in Two Interacting Ultra-red Starbursts at z = 4.425

    NASA Astrophysics Data System (ADS)

    Oteo, I.; Ivison, R. J.; Dunne, L.; Smail, I.; Swinbank, A. M.; Zhang, Z.-Y.; Lewis, A.; Maddox, S.; Riechers, D.; Serjeant, S.; Van der Werf, P.; Biggs, A. D.; Bremer, M.; Cigan, P.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Eales, S.; Ibar, E.; Messias, H.; Michałowski, M. J.; Pérez-Fournon, I.; van Kampen, E.

    2016-08-01

    Exploiting the sensitivity and spatial resolution of the Atacama Large Millimeter/submillimeter Array, we have studied the morphology and the physical scale of the interstellar medium—both gas and dust—in SGP 38326, an unlensed pair of interacting starbursts at z = 4.425. SGP 38326 is the most luminous star bursting system known at z > 4, with a total IR luminosity of L IR ∼ 2.5 × 1013 L ⊙ and a star formation rate of ∼ 4500 M ⊙ yr‑1. SGP 38326 also contains a molecular gas reservoir among the most massive yet found in the early universe, and it is the likely progenitor of a massive, red-and-dead elliptical galaxy at z ∼ 3. Probing scales of ∼0.″1 or ∼800 pc we find that the smooth distribution of the continuum emission from cool dust grains contrasts with the more irregular morphology of the gas, as traced by the [C ii] fine structure emission. The gas is also extended over larger physical scales than the dust. The velocity information provided by the resolved [C ii] emission reveals that the dynamics of the two interacting components of SGP 38326 are each compatible with disk-like, ordered rotation, but also reveals an ISM which is turbulent and unstable. Our observations support a scenario where at least a subset of the most distant extreme starbursts are highly dissipative mergers of gas-rich galaxies.

  14. Giant Magnons Meet Giant Gravitons

    SciTech Connect

    Hofman, Diego M.

    2008-07-28

    We study the worldsheet reflection matrix of a string attached to a D-brane in AdS{sub 5}xS{sup 5}. The D-brane corresponds to a maximal giant graviton that wraps an S{sup 3} inside S{sup 5}. In the gauge theory, the open string is described by a spin chain with boundaries. We focus on open strings with a large SO(6) charge and define an asymptotic boundary reflection matrix. Using the symmetries of the problem, we review the computation of the boundary reflection matrix, up to a phase. We also discuss weak and strong coupling computations where we obtain the overall phase factor and test our exact results.

  15. Mapping Giant Salvinia with Satellite Imagery and Image Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    QuickBird multispectral satellite imagery was evaluated for distinguishing giant salvinia (Salvinia molesta Mitchell) in a large reservoir in east Texas. The imagery had four bands (blue, green, red, and near-infrared) and contained 11-bit data. Color-infrared (green, red, and near-infrared bands)...

  16. Spectral relationships for atmospheric correction. II. Improving NASA's standard and MUMM near infra-red modeling schemes.

    PubMed

    Goyens, C; Jamet, C; Ruddick, K G

    2013-09-01

    Spectral relationships, reflecting the spectral dependence of water-leaving reflectance, ρw(λ), can be easily implemented in current AC algorithms with the aim to improve ρw(λ) retrievals where the algorithms fail. The present study evaluates the potential of spectral relationships to improve the MUMM [Ruddick et al., 2006, Limnol. Oceanogr. 51, 1167-1179] and standard NASA [Bailey et al., 2010, Opt. Express 18, 7521-7527] near infra-red (NIR) modeling schemes included in the AC algorithm to account for non-zero ρw(λNIR), based on in situ coastal ρw(λ) and simulated Rayleigh corrected reflectance data. Two modified NIR-modeling schemes are investigated: (1) the standard NASA NIR-modeling scheme is forced with bounding relationships in the red spectral domain and with a NIR polynomial relationship and, (2) the constant NIR ρw(λ) ratio used in the MUMM NIR-modeling scheme is replaced by a NIR polynomial spectral relationship. Results suggest that the standard NASA NIR-modeling scheme performs better for all turbidity ranges and in particular in the blue spectral domain (percentage bias decreased by approximately 50%) when it is forced with the red and NIR spectral relationships. However, with these new constraints, more reflectance spectra are flagged due to non-physical Chlorophyll-a concentration estimations. The new polynomial-based MUMM NIR-modeling scheme yielded lower ρw(λ) retrieval errors and particularly in extremely turbid waters. However, including the polynomial NIR relationship significantly increased the sensitivity of the algorithm to errors on the selected aerosol model from nearby clear water pixels. PMID:24103991

  17. A KECK HIRES DOPPLER SEARCH FOR PLANETS ORBITING METAL-POOR DWARFS. II. ON THE FREQUENCY OF GIANT PLANETS IN THE METAL-POOR REGIME

    SciTech Connect

    Sozzetti, Alessandro; Torres, Guillermo; Latham, David W.; Stefanik, Robert P.; Korzennik, Sylvain G.; Boss, Alan P.; Carney, Bruce W.; Laird, John B. E-mail: gtorres@cfa.harvard.edu E-mail: skorzennik@cfa.harvard.edu E-mail: boss@dtm.ciw.edu E-mail: laird@bgsu.edu

    2009-05-20

    We present an analysis of three years of precision radial velocity (RV) measurements of 160 metal-poor stars observed with HIRES on the Keck 1 telescope. We report on variability and long-term velocity trends for each star in our sample. We identify several long-term, low-amplitude RV variables worthy of followup with direct imaging techniques. We place lower limits on the detectable companion mass as a function of orbital period. Our survey would have detected, with a 99.5% confidence level, over 95% of all companions on low-eccentricity orbits with velocity semiamplitude K {approx}> 100 m s{sup -1}, or M{sub p} sin i {approx}> 3.0 M {sub J}(P/yr){sup (1/3)}, for orbital periods P {approx}< 3 yr. None of the stars in our sample exhibits RV variations compatible with the presence of Jovian planets with periods shorter than the survey duration. The resulting average frequency of gas giants orbiting metal-poor dwarfs with -2.0{approx}<[Fe/H]{approx}<-0.6 is f{sub p} < 0.67% (at the 1{sigma} confidence level). We examine the implications of this null result in the context of the observed correlation between the rate of occurrence of giant planets and the metallicity of their main-sequence solar-type stellar hosts. By combining our data set with the Fischer and Valenti (2005) uniform sample, we confirm that the likelihood of a star to harbor a planet more massive than Jupiter within 2 AU is a steeply rising function of the host's metallicity. However, the data for stars with -1.0{approx}<[Fe/H]{approx}<0.0 are compatible, in a statistical sense, with a constant occurrence rate f{sub p} {approx_equal} 1%. Our results can usefully inform theoretical studies of the process of giant-planet formation across two orders of magnitude in metallicity.

  18. Freezing Drizzle Formation in Stably Stratified Layer Clouds. Part II: The Role of Giant Nuclei and Aerosol Particle Size Distribution and Solubility.

    NASA Astrophysics Data System (ADS)

    Geresdi, István; Rasmussen, Roy

    2005-07-01

    This paper investigates how the characteristics of aerosol particles (size distribution and solubility) as well as the presence of giant nuclei affect drizzle formation in stably stratified layer clouds. A new technique was developed to simulate the evolution of water drops from wet aerosol particles and implemented into a detailed microphysical model. The detailed microphysical model was incorporated into a one-dimensional parcel model and a two-dimensional version of the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5). Sensitivity experiments were performed with the parcel model using a constant updraft speed and with the two-dimensional model by simulating flow over a bell-shaped mountain. The results showed that 1) stably stratified clouds with weak updrafts (<10 cms-1) can form drizzle relatively rapidly for maritime size distributions with any aerosol particle solubility, and for continental size distributions with highly insoluble particles due to the low number of activated cloud condensation nuclei (CCN) (<100 cm-3), 2) drizzle is suppressed in stably stratified clouds with weak updrafts (<10 cms-1) for highly soluble urban and extreme urban size distributions, and 3) the presence of giant nuclei only has an effect on drizzle formation for the highly soluble continental aerosol size distributions.

  19. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate formulae

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Decin, L.; de Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M.

    2010-11-01

    Context. The evolution of intermediate and low-mass stars on the asymptotic giant branch is dominated by their strong dust-driven winds. More massive stars evolve into red supergiants with a similar envelope structure and strong wind. These stellar winds are a prime source for the chemical enrichment of the interstellar medium. Aims: We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of the asymptotic giant branch, red supergiant, and yellow hypergiant stars in our galactic sample. Methods: The rotationally excited lines of carbon monoxide (CO) are a classic and very robust diagnostic in the study of circumstellar envelopes. When sampling different layers of the circumstellar envelope, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the circumstellar envelopes of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. These expressions are applied to our extensive CO data set to estimate the mass-loss rates of 47 sample stars. Results: We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule and thencompare our results to those of previous studies. Our expressions account for line saturation and resolving of the envelope, thereby allowing accurate determination of very high mass-loss rates. We argue that, for estimates based on a single rotational line, the CO(2-1) transition provides the most reliable mass-loss rate. The mass-loss rates calculated for the asympotic giant branch stars range from 4 × 10-8 M⊙ yr-1 up to 8 × 10-5 M⊙ yr-1. For red supergiants they reach

  20. WHITE DWARF-RED DWARF SYSTEMS RESOLVED WITH THE HUBBLE SPACE TELESCOPE. II. FULL SNAPSHOT SURVEY RESULTS

    SciTech Connect

    Farihi, J.; Hoard, D. W.; Wachter, S.

    2010-10-15

    Results are presented for a Hubble Space Telescope Advanced Camera for Surveys high-resolution imaging campaign of 90 white dwarfs with known or suspected low-mass stellar and substellar companions. Of the 72 targets that remain candidate and confirmed white dwarfs with near-infrared excess, 43 are spatially resolved into two or more components, and a total of 12 systems are potentially triples. For 68 systems where a comparison is possible, 50% have significant photometric distance mismatches between their white dwarf and M dwarf components, suggesting that white dwarf parameters derived spectroscopically are often biased due to the cool companion. Interestingly, 9 of the 30 binaries known to have emission lines are found to be visual pairs and hence widely separated, indicating an intrinsically active cool star and not irradiation from the white dwarf. There is a possible, slight deficit of earlier spectral types (bluer colors) among the spatially unresolved companions, exactly the opposite of expectations if significant mass is transferred to the companion during the common envelope phase. Using the best available distance estimates, the low-mass companions to white dwarfs exhibit a bimodal distribution in projected separation. This result supports the hypothesis that during the giant phases of the white dwarf progenitor, any unevolved companions either migrate inward to short periods of hours to days, or outward to periods of hundreds to thousands of years. No intermediate projected separations of a few to several AU are found among these pairs. However, a few double M dwarfs (within triples) are spatially resolved in this range, empirically demonstrating that such separations were readily detectable among the binaries with white dwarfs. A straightforward and testable prediction emerges: all spatially unresolved, low-mass stellar and substellar companions to white dwarfs should be in short-period orbits. This result has implications for substellar companion and

  1. Raman spectroscopic monitoring of the bioeffects of nitroglycerin on Hb-O II in single red blood cell

    NASA Astrophysics Data System (ADS)

    Chiang, Huihua Kenny; Ruan, Hung-Shiang; Cheng, Hung-You; Fang, Tung-Ting

    2007-02-01

    Raman spectroscopy has been shown to have the potential for providing oxygenated ability of erythrocytes. Raman line at 1638 cm-1 has also been reported as one significant oxygenic indicator for erythrocytes. In this research, we develop the Raman spectroscopic monitoring of the bioeffects of Nitroglycerin on hemoglobin oxygen saturation in a single red blood cell (RBC). Nitroglycerin has been frequently used in the management of angina pectoris. Nitroglycerin liberates nitric oxide (NO) to blood vessels. NO is an oxidizer that easily converts hemoglobin to methemoglobin. The conversion may cause the decrease of oxygenated ability of erythrocytes. In this study, we observed the oxidize state of erythrocytes caused by the over dosage of Nitroglycerin. When the dose of Nitroglycerin exceeds 2x10 -4 M, the oxygenic state of erythrocytes decreases significantly. The Raman spectroscopic results demonstrate the observation of the bioeffects of Nitroglycerin on hemoglobin.

  2. Giant Cell Arteritis

    MedlinePlus

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  3. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2012-10-01

    The 2009 impact on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010 impact flash detections and lightcurve measurements}.We propose a Target of Opportunity program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  4. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2014-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution (enabling the 2009 impact debris field detection) and rapid frame rates (enabling the 2010/2012 impact flash detections and lightcurve measurements).We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere (10^20 J).HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing (not achievable from the ground) is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  5. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2013-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010/2012 impact flash detections and lightcurve measurements}.We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere {10^20 J}.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  6. Within-person reproducibility of red blood cell mercury over a 10- to 15-year period among women in the Nurses' Health Study II.

    PubMed

    Kioumourtzoglou, Marianthi-Anna; Roberts, Andrea L; Nielsen, Flemming; Tworoger, Shelley S; Grandjean, Philippe; Weisskopf, Marc G

    2016-01-01

    Most epidemiologic studies of methylmercury (MeHg) health effects rely on a single measurement of a MeHg biomarker to assess long-term exposures. Long-term reproducibility data are, therefore, needed to assess the reliability of a single measure to reflect long-term exposures. In this study, we assessed within-person reproducibility of red blood cell (RBC) mercury (Hg), a marker of methyl-mercury, over 10-15 years in a sample of 57 women. Fifty-seven women from the Nurses' Health Study II provided two blood samples 10-15-years apart (median: 12 years), which were analyzed for mercury levels in the red blood cells (B-Hg*). To characterize within-person reproducibility, we estimated correlation and intraclass correlation coefficients (r and ICC) across the two samples. Further, we compared different prediction models, including variables on fish and seafood consumption, for B-Hg* at the first sample, using leave-one-out cross-validation to assess predictive ability. Overall, we observed strong correlations over 10-15 years (r=0.69), as well as a high ICC (0.67; 95% CI: 0.49, 0.79). Fish and seafood consumption reported concurrently with the first B-Hg* sample accounted for 26.8% of the variability in that B-Hg*, giving a correlation of r=0.52. Despite decreasing B-Hg* levels over time, we observed strong correlations and high ICC estimates across B-Hg* measured 10-15 years apart, suggesting good relative within-person stability over time. Our results indicate that a single measurement of B-Hg* likely is adequate to represent long-term exposures. PMID:25492240

  7. Lithium-rich Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia

    2016-03-01

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  8. Optically active red-emitting Cu nanoclusters originating from complexation and redox reaction between copper(ii) and d/l-penicillamine

    NASA Astrophysics Data System (ADS)

    Long, Tengfei; Guo, Yanjia; Lin, Min; Yuan, Mengke; Liu, Zhongde; Huang, Chengzhi

    2016-05-01

    Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging.Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of

  9. IMPROVED log(gf ) VALUES OF SELECTED LINES IN Mn I AND Mn II FOR ABUNDANCE DETERMINATIONS IN FGK DWARFS AND GIANTS

    SciTech Connect

    Den Hartog, E. A.; Lawler, J. E.; Sobeck, J. S.; Sneden, C.; Cowan, J. J. E-mail: jelawler@wisc.edu E-mail: chris@verdi.as.utexas.edu

    2011-06-01

    The goal of the present work is to produce transition probabilities with very low uncertainties for a selected set of multiplets of Mn I and Mn II. Multiplets are chosen based upon their suitability for stellar abundance analysis. We report on new radiative lifetime measurements for 22 levels of Mn I from the e {sup 8} D, z {sup 6} P, z {sup 6} D, z {sup 4} F, e {sup 8} S, and e {sup 6} S terms and six levels of Mn II from the z {sup 5} P and z {sup 7} P terms using time-resolved laser-induced fluorescence on a slow atom/ion beam. New branching fractions for transitions from these levels, measured using a Fourier-transform spectrometer, are reported. When combined, these measurements yield transition probabilities for 47 transitions of Mn I and 15 transitions of Mn II. Comparisons are made to data from the literature and to Russell-Saunders (LS) theory. In keeping with the goal of producing a set of transition probabilities with the highest possible accuracy and precision, we recommend a weighted mean result incorporating our measurements on Mn I and II as well as independent measurements or calculations that we view as reliable and of a quality similar to ours. In a forthcoming paper, these Mn I/II transition probability data will be utilized to derive the Mn abundance in stars with spectra from both space-based and ground-based facilities over a 4000 A wavelength range. With the employment of a local thermodynamic equilibrium line transfer code, the Mn I/II ionization balance will be determined for stars of different evolutionary states.

  10. Improved log(gf ) Values of Selected Lines in Mn I and Mn II for Abundance Determinations in FGK Dwarfs and Giants

    NASA Astrophysics Data System (ADS)

    Den Hartog, E. A.; Lawler, J. E.; Sobeck, J. S.; Sneden, C.; Cowan, J. J.

    2011-06-01

    The goal of the present work is to produce transition probabilities with very low uncertainties for a selected set of multiplets of Mn I and Mn II. Multiplets are chosen based upon their suitability for stellar abundance analysis. We report on new radiative lifetime measurements for 22 levels of Mn I from the e 8 D, z 6 P, z 6 D, z 4 F, e 8 S, and e 6 S terms and six levels of Mn II from the z 5 P and z 7 P terms using time-resolved laser-induced fluorescence on a slow atom/ion beam. New branching fractions for transitions from these levels, measured using a Fourier-transform spectrometer, are reported. When combined, these measurements yield transition probabilities for 47 transitions of Mn I and 15 transitions of Mn II. Comparisons are made to data from the literature and to Russell-Saunders (LS) theory. In keeping with the goal of producing a set of transition probabilities with the highest possible accuracy and precision, we recommend a weighted mean result incorporating our measurements on Mn I and II as well as independent measurements or calculations that we view as reliable and of a quality similar to ours. In a forthcoming paper, these Mn I/II transition probability data will be utilized to derive the Mn abundance in stars with spectra from both space-based and ground-based facilities over a 4000 Å wavelength range. With the employment of a local thermodynamic equilibrium line transfer code, the Mn I/II ionization balance will be determined for stars of different evolutionary states.

  11. Early depositional history of metalliferous sediments in the Atlantis II Deep of the Red Sea: Evidence from rare earth element geochemistry

    NASA Astrophysics Data System (ADS)

    Laurila, Tea E.; Hannington, Mark D.; Petersen, Sven; Garbe-Schönberg, Dieter

    2014-02-01

    The Atlantis II Deep is a brine-filled depression on the slowly spreading Red Sea rift axis. It is by far the largest deposit of hydrothermally precipitated metals on the present ocean floor and the only known modern deposit that is analogous to laminated Fe-rich chemical sediments, such as banded iron formation (BIF). The brine pool at the bottom of the Atlantis II Deep creates an environment where most of the hydrothermally sourced elements can be dispersed and deposited over an area of ˜60 km2. We analyzed the rare earth element concentrations in 100 small-volume samples from 9 cores in different parts of the Atlantis II Deep to better understand the origins of different types of metalliferous sediments (detrital, proximal hydrothermal and distal hydrothermal). Our results agree with earlier studies based on larger bulk samples that show the composition of the major depositional units is related to major changes in the location and intensity of hydrothermal activity and the amount of hydrothermal versus background sedimentation. In this paper, we address the origins of chemically distinct laminae (down to sub-millimeter) that correspond to ˜annual deposition. REE patterns clearly reflect 3 different sources (e.g., detrital, scavenging, direct hydrothermal input). Detrital REE that are delivered to the Deep from outside account for most of the REE in the sediments of the Atlantis II Deep, similar to BIF, and are unaffected by fractionation due to hydrothermal processes during deposition and diagenesis. Fe- and Mn-(oxy)hydroxides that form at the anoxic-oxic boundary scavenge REE from the brine pool as they settle. The Fe-(oxy)hydroxides contain a larger proportion of REE from seawater than any other sediment-type and also scavenge REE from pore waters after deposition. In contrast, the Mn-(oxy)hydroxides dissolve before deposition and thus function as transporting agents between seawater and the brine. However, there is little evidence for direct seawater

  12. Metal-assisted red light-induced DNA cleavage by ternary L-methionine copper(II) complexes of planar heterocyclic bases.

    PubMed

    Patra, Ashis K; Dhar, Shanta; Nethaji, Munirathinam; Chakravarty, Akhil R

    2005-03-01

    Ternary copper(II) complexes [Cu(l-met)B(Solv)](ClO4) (1-4), where B is a N,N-donor heterocyclic base like 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2'],3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (L-Hmet =L-methionine). Complex 2, structurally characterized by X-ray crystallography, shows a square pyramidal (4 + 1) coordination geometry in which the N,O-donor L-methionine and N,N-donor heterocyclic base bind at the basal plane and a solvent molecule is coordinated at the axial site. The complexes display a d-d band at approximately 600 nm in DMF and exhibit a cyclic voltammetric response due to the Cu(II)/Cu(I) couple near -0.1 V in DMF-Tris-HCl buffer. The complexes display significant binding propensity to the calf thymus DNA in the order: 4(dppz) > 3(dpq) > 2(phen> 1(bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or red light (632.8 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The DNA cleavage activity of the dpq complex is found to be significantly more than its dppz and phen analogues. PMID:15726142

  13. Phase II-inducing, polyphenols content and antioxidant capacity of corn (Zea mays L.) from phenotypes of white, blue, red and purple colors processed into masa and tortillas.

    PubMed

    Lopez-Martinez, Leticia X; Parkin, Kirk L; Garcia, Hugo S

    2011-03-01

    White, blue, red and purple corns (Zea mays L.) were lime-cooked to obtain masa for tortillas. The total phenolics and anthocyanins content, antioxidant activity expressed as total reducing power (TRP), peroxyl radical bleaching (PRAC), total antioxidant activity (TAA) and quinone reductase (QR) induction in the murine hepatoma (Hepa 1 c1c7 cell line) as a biological marker for phase II detoxification enzymes were investigated. Among the extracts prepared from raw corn varieties the highest concentration of total phenolics, anthocyanins, antioxidant index and induction of QR-inducing activity were found in the Veracruz 42 (Ver 42) genotype. The nixtamalization process (masa) reduced total phenolics, anthocyanins and antioxidant activities and the ability for QR induction when was compared to raw grain. Processing masa into tortillas also negatively affected total phenolics, anthocyanin concentration, antioxidant activities, and QR induction in the colored corn varieties. The blue variety and its corresponding masa and tortillas did not induce QR. Ver 42 genotype and their products (masa and tortilla) showed the greatest antioxidant activity and capacity to induce QR. PMID:21327968

  14. Seeing Red

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This New Horizons image of Jupiter's volcanic moon Io was taken at 13:05 Universal Time during the spacecraft's Jupiter flyby on February 28, 2007. It shows the reddish color of the deposits from the giant volcanic eruption at the volcano Tvashtar, near the top of the sunlit crescent, as well as the bluish plume itself and the orange glow of the hot lava at its source. The relatively unprocessed image on the left provides the best view of the volcanic glow and the plume deposits, while the version on the right has been brightened to show the much fainter plume, and the Jupiter-lit night side of Io.

    New Horizons' color imaging of Io's sunlit side was generally overexposed because the spacecraft's color camera, the super-sensitive Multispectral Visible Imaging Camera (MVIC), was designed for the much dimmer illumination at Pluto. However, two of MVIC's four color filters, the blue and 'methane' filter (a special filter designed to map methane frost on the surface of Pluto at an infrared wavelength of 0.89 microns), are less sensitive than the others, and thus obtained some well-exposed views of the surface when illumination conditions were favorable. Because only two color filters are used, rather than the usual three, and because one filter uses infrared light, the color is only a rough approximation to what the human eye would see.

    The red color of the Tvashtar plume fallout is typical of Io's largest volcanic plumes, including the previous eruption of Tvashtar seen by the Galileo and Cassini spacecraft in 2000, and the long-lived Pele plume on the opposite side of Io. The color likely results from the creation of reddish three-atom and four-atom sulfur molecules (S3 and S4) from plume gases rich in two-atom sulfur molecules (S2 After a few months or years, the S3 and S4 molecules recombine into the more stable and familiar yellowish form of sulfur consisting of eight-atom molecules (S8), so these red deposits are only seen around recently-active Io

  15. Giant Radio Sources as a Probe of the Cosmological Evolution of the IGM. II. The Observational Constraint on the Model of Radio-Jets Propagation through the X-ray Halo-IGM Interface

    NASA Astrophysics Data System (ADS)

    Kuligowska, E.; Jamrozy, M.; Koziel-Wierzbowska, D.; Machalski, J.

    2009-12-01

    Three limited samples of high-redshift radio sources of FRII-type are used to constrain the dynamical model for the jets' propagation through the two-media environment: the X-ray emitting halo with the power-law density profile surrounding the parent galaxy and the much hotter intergalactic medium (IGM) of a constant density. The model, originally developed by Gopal-Krishna and Wiita, is modified adopting modern values of its free parameters taken from recent X-ray measurements with the XMM-Newton and Chandra Observatories. We find that (i) giant-sized radio sources (≍1 Mpc) exist at redshifts up to z≍2, (ii) all newly identified the largest radio sources with 1

  16. The M giant candidates identified in the LAMOST DR1

    NASA Astrophysics Data System (ADS)

    Zhong, Jing

    2015-08-01

    M giants are red-giant-branch (RGB) stars with low surface temperature and high luminosity in the late-phase of stellar evolution. Its luminous nature allows us to use these stars as good tracers to study the outer Galactic halo and distant substructures. A well classified M-giant stars sample has important scientific values for the statistic research. In order to fully utilize the spectral data of LAMOST spectroscopic survey, we perform a discrimination procedure with the spectral index diagram of TiO5 and CaH2+CaH3 to separate M giants from M dwarfs. Using the M giant spectra identified from the LAMOST DR1 with high signal-to-noise ratio, we have successfully assembled a set of M giant templates from M0 to M6. Then, the template-fit algorithm were used to automatically identify and classify M giants from the LAMOST DR1. In addition, we calculated the heliocentric radial velocity of all M giants by using the cross-correlation method with the template spectrum in a zero-velocity rest frame. Using the relationship between the absolute infrared magnitude MJ and our classified spectroscopic subtype, we derived the spectroscopic distance of M giants, with uncertainties of about 40%. Finally, we present a spectroscopic catalog of 8639 M giants including stellar parameters like photometry, proper motion, radial velocity, distance, spectral type and so on. In particular, the large sample of M giants is carried out for the first time. We will further use this sample to study the sub-structures and tidal stream in the Galactic Anti-Center.

  17. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D.; Srinivasan, S.; Kemper, F.; Woods, Paul M.; Tielens, A. G. G. M.; Speck, A. K.; Matsuura, M.; Bernard, J.-Ph.; Hony, S.; Marengo, M.; Sloan, G. C.

    2010-06-10

    We model multi-wavelength broadband UBVIJHK{sub s} and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with {gamma} of -3.5, a {sub min} of 0.01 {mu}m, and a {sub 0} of 0.1 {mu}m to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be {approx}5100 L {sub sun} and {approx}36,000 L {sub sun}, respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of {approx}3 M {sub sun} and {approx}7 M {sub sun}. This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius {approx}17 and

  18. Peripheral giant cell granuloma.

    PubMed

    Adlakha, V K; Chandna, P; Rehani, U; Rana, V; Malik, P

    2010-01-01

    Peripheral giant cell granuloma is a benign reactive lesion of gingiva. It manifests as a firm, soft, bright nodule or as a sessile or pedunculate mass. This article reports the management of peripheral giant cell granuloma in a 12-year-old boy by surgical excision. PMID:21273719

  19. Eye redness

    MedlinePlus

    Bloodshot eyes; Red eyes; Scleral infection; Conjunctival infection ... There are many causes of a red eye or eyes. Some are medical emergencies and some are a cause for concern, but not an emergency. Others are nothing to worry about. ...

  20. Red Clover

    MedlinePlus

    ... 17):2057–2071. Red clover. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on July 22, 2009. Red clover ( Trifolium pratense ). Natural Standard Database Web site. Accessed at www.naturalstandard.com on July ...

  1. Deep He II and C IV Spectroscopy of a Giant Lyα Nebula: Dense Compact Gas Clumps in the Circumgalactic Medium of a z ~ 2 Quasar

    NASA Astrophysics Data System (ADS)

    Arrigoni Battaia, Fabrizio; Hennawi, Joseph F.; Prochaska, J. Xavier; Cantalupo, Sebastiano

    2015-08-01

    The recent discovery by Cantalupo et al. of the largest (˜500 kpc) luminous (L ≃ 1.43 × 1045 erg s-1) Lyα nebula associated with the quasar UM287 (z = 2.279) poses a great challenge to our current understanding of the astrophysics of the halos hosting massive z ˜ 2 galaxies. Either an enormous reservoir of cool gas is required M ≃ 1012 M⊙, exceeding the expected baryonic mass available, or one must invoke extreme gas clumping factors not present in high-resolution cosmological simulations. However, observations of Lyα emission alone cannot distinguish between these two scenarios. We have obtained the deepest ever spectroscopic integrations in the He ii λ1640 and C iv λ1549 emission lines with the goal of detecting extended line emission, but detect neither line to a 3σ limiting SB ≃ 10-18 erg s-1 cm-2 arcsec-2. We construct simple models of the expected emission spectrum in the highly probable scenario that the nebula is powered by photoionization from the central hyper-luminous quasar. The non-detection of He ii implies that the nebular emission arises from a mass Mc ≲ 6.4 × 1010 M⊙ of cool gas on ˜200 kpc scales, distributed in a population of remarkably dense (nH ≳ 3 cm-3) and compact (R ≲ 20 pc) clouds, which would clearly be unresolved by current cosmological simulations. Given the large gas motions suggested by the Lyα line (v ≃ 500 km s-1), it is unclear how these clouds survive without being disrupted by hydrodynamic instabilities. Our work serves as a benchmark for future deep integrations with current and planned wide-field IFU spectrographs such as MUSE, KCWI, and KMOS. Our observations and models suggest that a ≃10 hr exposure would likely detect ˜10 rest-frame UV/optical emission lines, opening up the possibility of conducting detailed photoionization modeling to infer the physical state of gas in the circumgalactic medium. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a

  2. Red clover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover (Trifolium pratense L.) is an important forage legume grown on approximately 4 million hectares worldwide. An estimated 2.8 million kg of red clover seed per year was produced worldwide in 2005-2007. This amount of seed would be enough to maintain approximately 4 million hectares of red...

  3. Red Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  The Red Sea     View Larger Image ... Imaging SpectroRadiometer (MISR) image of the Red Sea was acquired on August 13, 2000. Located between the East African coast and the Saudi Arabian peninsula, the Red Sea got its name because the blooms of a type of algae,  Trichodesmium ...

  4. Identifying Remote Halo Giants in High-Latitude Fields with Kepler 2

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth C.

    2016-08-01

    This work sketches how SDSS ugr colors and Kepler 2 in halo fields can identify red giants 50 - 100 kpc distant with minimal metallicity bias. For these mildly-reddened, metal-poor giants, (g-r)o yields the effective temperature T eff to 100 K. K2 can detect the p-mode oscillations of red giants and measure their frequency of maximum power νmax. This sets the luminosity L bol and thus the distance, plus an estimate of metallicity [Fe/H].

  5. He i in the central giant H ii region of NGC 5253. A 2D observational approach to collisional and radiative transfer effects

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Walsh, J. R.; Westmoquette, M. S.; Vílchez, J. M.

    2013-05-01

    -Rayet (WR) stars in the main GH iiR. Data are marginally consistent with an excess in the N/He ratio in the nitrogen-enriched area. This excess would be close to both the atmospheric N/He ratios in WR stars and the uncertainties estimated for the N/He ratios. We explored the influence of the kinematics in the evaluation of the He i radiative transfer effects. Our data empirically support the use of the traditional assumption that motions in an extragalactic H ii region have a negligible effect in the estimation of the global optical depths. Individually, the broad kinematic component (associated with an outflow) is affected by radiative transfer effects in a much more significant way than the narrow one. We find a relation between the amount of extra nitrogen and the upper limit of the contribution from radiative transfer effects that requires further investigation. We suggest that the electron temperature could be a common agent causing this relation. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 078.B-0043 and 383.B-0043) and at the Gemini South Telescope (Programme GS-2008A-Q-25).

  6. NON-LOCAL THERMODYNAMICAL EQUILIBRIUM EFFECTS ON THE IRON ABUNDANCE OF ASYMPTOTIC GIANT BRANCH STARS IN 47 TUCANAE

    SciTech Connect

    Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Massari, D.

    2014-12-20

    We present the iron abundance of 24 asymptotic giant branch (AGB) stars, members of the globular cluster 47 Tucanae, obtained with high-resolution spectra collected with the FEROS spectrograph at the MPG/ESO 2.2 m Telescope. We find that the iron abundances derived from neutral lines (with a mean value [Fe I/H] =–0.94 ± 0.01, σ = 0.08 dex) are systematically lower than those derived from single ionized lines ([Fe II/H] =–0.83 ± 0.01, σ = 0.05 dex). Only the latter are in agreement with those obtained for a sample of red giant branch (RGB) cluster stars, for which the Fe I and Fe II lines provide the same iron abundance. This finding suggests that non-local thermodynamical equilibrium (NLTE) effects driven by overionization mechanisms are present in the atmosphere of AGB stars and significantly affect the Fe I lines while leaving Fe II features unaltered. On the other hand, the very good ionization equilibrium found for RGB stars indicates that these NLTE effects may depend on the evolutionary stage. We discuss the impact of this finding on both the chemical analysis of AGB stars and on the search for evolved blue stragglers.

  7. Unstable giant gravitons

    SciTech Connect

    Mello Koch, Robert de; Ives, Norman; Smolic, Jelena; Smolic, Milena

    2006-03-15

    We find giant graviton solutions in Frolov's three parameter generalization of the Lunin-Maldacena background. The background we study has {gamma}-tilde{sub 1}=0 and {gamma}-tilde{sub 2}={gamma}-tilde{sub 3}={gamma}-tilde. This class of backgrounds provides a nonsupersymmetric example of the gauge theory/gravity correspondence that can be tested quantitatively, as recently shown by Frolov, Roiban, and Tseytlin. The giant graviton solutions we find have a greater energy than the point gravitons, making them unstable states. Despite this, we find striking quantitative agreement between the gauge theory and gravity descriptions of open strings attached to the giant.

  8. Clouds in brown dwarfs and giant planets

    NASA Astrophysics Data System (ADS)

    Metchev, S.; Apai, D.; Radigan, J.; Artigau, É.; Heinze, A.; Helling, C.; Homeier, D.; Littlefair, S.; Morley, C.; Skemer, A.; Stark, C.

    2013-02-01

    A growing body of observational and theoretical evidence points toward the importance of clouds in the atmospheres of ultra-cool brown dwarfs and giant planets. Empirically, the presence of clouds is inferred from the red, likely dusty atmospheres of young substellar objects, and from detections of periodic variability in a fraction of brown dwarfs - as expected from rotation and a patchy cloud cover. Theoretical models have progressed alongside by including ever more comprehensive atomic and molecular opacity tables, incorporating the treatment of non-equilibrium chemistry and clouds through vertical mixing and grain size/sedimentation parameters, and employing 3-D hydrodynamical simulations. In this proceeding we summarize the key issues raised during the first gathering of observers and theorists to discuss clouds and atmospheric circulation in non-irradiated ultra-cool dwarfs and giant planets.