Science.gov

Sample records for red marrow dosimetry

  1. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy

    NASA Astrophysics Data System (ADS)

    Wilderman, S. J.; Roberson, P. L.; Bolch, W. E.; Dewaraja, Y. K.

    2013-07-01

    A method is described for computing patient-specific absorbed dose rates to active marrow which accounts for spatial variation in bone volume fraction and marrow cellularity. A module has been added to the 3D Monte Carlo dosimetry program DPM to treat energy deposition in the components of bone spongiosa distinctly. Homogeneous voxels in regions containing bone spongiosa (as defined on CT images) are assumed to be comprised only of bone, active (red) marrow and inactive (yellow) marrow. Cellularities are determined from biopsy, and bone volume fractions are computed from cellularities and CT-derived voxel densities. Electrons are assumed to deposit energy locally in the three constituent components in proportions determined by electron energy absorption fractions which depend on energy, cellularity, and bone volume fraction, and which are either taken from the literature or are derived from Monte Carlo simulations using EGS5. Separate algorithms are used to model primary β particles and secondary electrons generated after photon interactions. Treating energy deposition distinctly in bone spongiosa constituents leads to marrow dosimetry results which differ from homogeneous spongiosa dosimetry by up to 20%. Dose rates in active marrow regions with cellularities of 20, 50, and 80% can vary by up to 20%, and can differ by up to 10% as a function of bone volume fraction. Dose to bone marrow exhibits a strong dependence on marrow cellularity and a potentially significant dependence on bone volume fraction.

  2. Red marrow and blood dosimetry in (131)I treatment of metastatic thyroid carcinoma: pre-treatment versus in-therapy results.

    PubMed

    Giostra, A; Richetta, E; Pasquino, M; Miranti, A; Cutaia, C; Brusasco, G; Pellerito, R E; Stasi, M

    2016-06-01

    Treatment with radioiodine is a standard procedure for patients with well-differentiated thyroid cancer, but the main approach to the therapy is still empiric, consisting of the administration of fixed activities. A predictive individualized dosimetric study may represent an important tool for physicians to determine the best activity to prescribe. The aim of this work is to compare red marrow and blood absorbed dose values obtained in the pre-treatment (PT) dosimetry phase with those obtained in the in-treatment (IT) dosimetry phase in order to estimate the predictive power of PT trial doses and to determine if they can be used as a decision-making tool to safely administer higher (131)I activity to potentially increase the efficacy of treatment. The PT and IT dosimetry for 50 patients has been evaluated using three different dosimetric approaches. In all three approaches blood and red marrow doses, are calculated as the sum of two components, the dose from (131)I activity in the blood and the dose from (131)I activity located in the remainder of the body (i.e. the blood and whole-body contributions to the total dose). PT and IT dose values to blood and red marrow appear to be well correlated irrespective of the dosimetric approach used. Linear regression analyses of PT and IT total doses, for blood and red marrow, and the whole-body contribution to these doses, showed consistent best fit slope and correlation coefficient values of approximately 0.9 and 0.6, respectively: analyses of the blood dose contribution to the total doses also yielded similar values for the best fit slope but with correlation coefficient values of approximately 0.4 reflecting the greater variance in these dose estimates. These findings suggest that pre-treatment red marrow dose assessments may represent an important tool to personalize metastatic thyroid cancer treatment, removing the constraints of a fixed activity approach and permitting potentially more effective higher (131)I

  3. Red marrow and blood dosimetry in 131I treatment of metastatic thyroid carcinoma: pre-treatment versus in-therapy results

    NASA Astrophysics Data System (ADS)

    Giostra, A.; Richetta, E.; Pasquino, M.; Miranti, A.; Cutaia, C.; Brusasco, G.; Pellerito, R. E.; Stasi, M.

    2016-06-01

    Treatment with radioiodine is a standard procedure for patients with well-differentiated thyroid cancer, but the main approach to the therapy is still empiric, consisting of the administration of fixed activities. A predictive individualized dosimetric study may represent an important tool for physicians to determine the best activity to prescribe. The aim of this work is to compare red marrow and blood absorbed dose values obtained in the pre-treatment (PT) dosimetry phase with those obtained in the in-treatment (IT) dosimetry phase in order to estimate the predictive power of PT trial doses and to determine if they can be used as a decision-making tool to safely administer higher 131I activity to potentially increase the efficacy of treatment. The PT and IT dosimetry for 50 patients has been evaluated using three different dosimetric approaches. In all three approaches blood and red marrow doses, are calculated as the sum of two components, the dose from 131I activity in the blood and the dose from 131I activity located in the remainder of the body (i.e. the blood and whole-body contributions to the total dose). PT and IT dose values to blood and red marrow appear to be well correlated irrespective of the dosimetric approach used. Linear regression analyses of PT and IT total doses, for blood and red marrow, and the whole-body contribution to these doses, showed consistent best fit slope and correlation coefficient values of approximately 0.9 and 0.6, respectively: analyses of the blood dose contribution to the total doses also yielded similar values for the best fit slope but with correlation coefficient values of approximately 0.4 reflecting the greater variance in these dose estimates. These findings suggest that pre-treatment red marrow dose assessments may represent an important tool to personalize metastatic thyroid cancer treatment, removing the constraints of a fixed activity approach and permitting potentially more effective higher 131I activities to be

  4. Influence of total-body mass on the scaling of S-factors for patient-specific, blood-based red-marrow dosimetry

    NASA Astrophysics Data System (ADS)

    Traino, A. C.; Ferrari, M.; Cremonesi, M.; Stabin, M. G.

    2007-09-01

    To perform patient-specific, blood-based red-marrow dosimetry, dose conversion factors (the S factors in the MIRD formalism) have to be scaled by patients' organ masses. The dose to red marrow includes both self-dose and cross-irradiation contributions. Linear mass scaling for the self-irradiation term only is usually applied as a first approximation, whereas the cross-irradiation term is considered to be mass independent. Recently, the need of a mass scaling correction on both terms, not necessarily linear and dependent on the radionuclide, has been highlighted in the literature. S-factors taking into account different mass adjustments of organs are available in the OLINDA/EXM code. In this paper, a general algorithm able to fit the mass-dependent factors Srm<--tb and Srm<--rm is suggested and included in a more general equation for red-marrow dose calculation. Moreover, parameters to be considered specifically for therapeutic radionuclides such as 131I, 90Y and 177Lu are reported. The red-marrow doses calculated by the traditional and new algorithms are compared for 131I in ablation therapy (14 pts), 177Lu- (13 pts) and 90Y- (11 pts) peptide therapy for neuroendocrine tumours, and 90Y-Zevalin therapy for NHL (21 pts). The range of differences observed is as follows: -36% to -10% for 131I ablation, -22% to 5% for 177Lu-DOTATATE, -9% to 11% for 90Y-DOTATOC and -8% to 6% for 90Y-Zevalin. All differences are mostly due to the activity in the remainder of the body contributing to cross-irradiation. This paper quantifies the influence of mass scaling adjustment on usually applied therapies and shows how to derive the appropriate parameters for other radionuclides and radiopharmaceuticals.

  5. Bone Marrow Dosimetry Using 124I-PET

    PubMed Central

    Schwartz, Jazmin; Humm, John L.; Divgi, Chaitanya R.; Larson, Steven M.; O'Donoghue, Joseph A.

    2012-01-01

    the assumption of time-independent proportionality between red marrow and plasma activity concentration may be too simplistic. Individualized imaged-based dosimetry is probably required for the optimal therapeutic delivery of radiolabeled antibodies, which does not compromise red marrow and may allow, for some patients, a substantial increase in administered activity and thus tumor dose. PMID:22414633

  6. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

    PubMed Central

    Goodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K.

    2014-01-01

    Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results

  7. Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

    SciTech Connect

    Goodsitt, Mitchell M. Shenoy, Apeksha; Howard, David; Christodoulou, Emmanuel; Dewaraja, Yuni K.; Shen, Jincheng; Schipper, Matthew J.; Wilderman, Scott; Chun, Se Young

    2014-05-15

    Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results

  8. An assessment of bone marrow and bone endosteum dosimetry methods for photon sources

    NASA Astrophysics Data System (ADS)

    Lee, Choonik; Lee, Choonsik; Shah, Amish P.; Bolch, Wesley E.

    2006-11-01

    The rather complex and microscopic histological structure of the skeletal system generally limits one's ability to accurately model this tissue during dosimetric evaluations. Consequently, various assumptions must be made to evaluate the absorbed dose from external and internal photons to the radiosensitive tissues of the red (or haematopoietically active) bone marrow and the osteogenic tissues of the skeletal endosteum. These various methods for photon skeletal dosimetry have not been inter-compared, partly due to the lack of a realistic reference model that can provide a high-resolution three-dimensional geometry for secondary electron particle transport. In the present study, the paired-image radiation transport (PIRT) model developed by Shah et al (2005 J. Nucl. Med. 45 344) was utilized to evaluate the absorbed dose per incident photon fluence to these skeletal regions from idealized parallel beams of monoenergetic photons. The PIRT model results were then used as a local reference against which absorbed doses via other methods were compared. For red bone marrow dosimetry, four approximate techniques were considered: (1) the dose response function method (DRF method) presented in ORNL/TM-8381, (2) the mass-energy absorption coefficient ratio method (two-parameter MEAC method), (3) the MEAC method with the additional use of energy-dependent dose enhancement factors from King and Spiers (1985 Br. J. Radiol. 58 345) (three-parameter MEAC method), and (4) the three-parameter MEAC method applied at the voxel level through the use image-specific CT numbers (CTN method). For the bone endosteum (i.e., bone surfaces), two approximate techniques were compared: (1) the DRF method for bone surfaces and (2) the homogeneous bone approximation (HBA) method. In each case, the local reference standard was assumed to be that of the PIRT model. Four different ex vivo bone specimens with distinctively different internal structures were used in the study: the cranium, the lumbar

  9. Bone marrow dosimetry via microCT imaging and stem cell spatial mapping

    NASA Astrophysics Data System (ADS)

    Kielar, Kayla N.

    In order to make predictions of radiation dose in patients undergoing targeted radionuclide therapy of cancer, an accurate model of skeletal tissues is necessary. Concerning these tissues, the dose-limiting factor in these therapies is the toxicity of the hematopoietically active bone marrow. In addition to acute effects, one must be concerned as well with long-term stochastic effects such as radiation-induced leukemia. Particular cells of interest for both toxicity and cancer risk are the hematopoietic stem cells (HSC), found within the active marrow regions of the skeleton. At present, cellular-level dosimetry models are complex, and thus we cannot model individual stem cells in an anatomic model of the patient. As a result, one reverts to looking at larger tissue regions where these cell populations may reside. To provide a more accurate marrow dose assessment, the skeletal dosimetry model must also be patient-specific. That is, it should be designed to match as closely as possible to the patient undergoing treatment. Absorbed dose estimates then can be tailored based on the skeletal size and trabecular microstructure of an individual for an accurate prediction of marrow toxicity. Thus, not only is it important to accurately model the target tissues of interest in a normal patient, it is important to do so for differing levels of marrow health. A skeletal dosimetry model for the adult female was provided for better predictions of marrow toxicity in patients undergoing radionuclide therapy. This work is the first fully established gender specific model for these applications, and supersedes previous models in scalability of the skeleton and radiation transport methods. Furthermore, the applicability of using bone marrow biopsies was deemed sufficient in prediction of bone marrow health, specifically for the hematopoietic stem cell population. The location and concentration of the HSC in bone marrow was found to follow a spatial gradient from the bone trabeculae

  10. Feasibility study on dosimetry verification of volumetric-modulated arc therapy-based total marrow irradiation.

    PubMed

    Liang, Yun; Kim, Gwe-Ya; Pawlicki, Todd; Mundt, Arno J; Mell, Loren K

    2013-01-01

    The purpose of this study was to develop dosimetry verification procedures for volumetric-modulated arc therapy (VMAT)-based total marrow irradiation (TMI). The VMAT based TMI plans were generated for three patients: one child and two adults. The planning target volume (PTV) was defined as bony skeleton, from head to mid-femur, with a 3 mm margin. The plan strategy similar to published studies was adopted. The PTV was divided into head and neck, chest, and pelvic regions, with separate plans each of which is composed of 2-3 arcs/fields. Multiple isocenters were evenly distributed along the patient's axial direction. The focus of this study is to establish a dosimetry quality assurance procedure involving both two-dimensional (2D) and three-dimensional (3D) volumetric verifications, which is desirable for a large PTV treated with multiple isocenters. The 2D dose verification was performed with film for gamma evaluation and absolute point dose was measured with ion chamber, with attention to the junction between neighboring plans regarding hot/cold spots. The 3D volumetric dose verification used commercial dose reconstruction software to reconstruct dose from electronic portal imaging devices (EPID) images. The gamma evaluation criteria in both 2D and 3D verification were 5% absolute point dose difference and 3 mm of distance to agreement. With film dosimetry, the overall average gamma passing rate was 98.2% and absolute dose difference was 3.9% in junction areas among the test patients; with volumetric portal dosimetry, the corresponding numbers were 90.7% and 2.4%. A dosimetry verification procedure involving both 2D and 3D was developed for VMAT-based TMI. The initial results are encouraging and warrant further investigation in clinical trials. PMID:23470926

  11. Aspects of the dosimetry of radionuclides within the skeleton with particular emphasis on the active marrow

    SciTech Connect

    Eckerman, K.F.

    1985-01-01

    Epidemiological surveys on man and results from animal experiments have shown that two tissues associated with the skeleton are of primary concern with respect to cancer induction by ionizing radiation. These are the cells on or near endosteal surfaces of bone, from which osteosarcomas are thought to arise, and hematopoietic bone marrow, which is associated with leukemia. The complex geometry of the soft tissue-bone intermixture makes calculations of absorbed dose to these target regions a difficult problem. In the case of photon or neutron radiations, charged particle equilibrium may not exist in the vicinity of soft tissue-bone mineral interface. In this paper a general study of the dosimetry of radionuclides within the skeleton is presented. Dosimetric data consistent with the MIRD schema and reflecting the physical and anatomical parameters defining the energy deposition are tabulated for the relevant target regions. 27 refs., 5 figs., 5 tabs.

  12. Estimation of radiation absorbed doses to the red marrow in radioimmunotherapy

    SciTech Connect

    Macey, D.J.; DeNardo, S.J.; DeNardo, G.L.; DeNardo, D.A.; Sui Shen

    1995-02-01

    Myelotoxicity is the dose-limiting factor in radioimmunotherapy. Traditional methods most commonly used to estimate the radiation adsorbed dose to the bone marrow of patients consider contribution from radionuclide in the blood and/or total body. Targeted therapies, such as radioimmunotherapy, add a third potential source for radiation to the bone marrow because the radiolabeled targeting molecules can accumulate specifically on malignant target cells infiltrating the bone marrow. A non-invasive method for estimating the radiation absorbed dose to the red marrow of patients who have received radiolabeled monoclonal antibodies (MoAb) has been developed and explored. The method depends on determining the cumulated activity in three contributing sources: (1) marrow; (2) blood; and (3) total body. The novel aspect of this method for estimating marrow radiation dose is derivation of the radiation dose for the entire red marrow from radiation dose estimates obtained by detection of cumulated activity in three lumbar vertebrae using a gamma camera. Contributions to the marrow radiation dose form marrow, blood, and total body cumulated activity were determined for patients who received an I-131 labeled MoAb, Lym-1, that reacts with malignant B-lymphocytes of chronic lymphocytic leukemia and nonHodgkin`s lymphoma. Six patients were selected for illustrative purposes because their vertebrae were readily visualized on lumbar images. 32 refs., 6 figs., 1 tab.

  13. Bone marrow transplantation for CVID-like humoral immune deficiency associated with red cell aplasia.

    PubMed

    Sayour, Elias J; Mousallem, Talal; Van Mater, David; Wang, Endi; Martin, Paul; Buckley, Rebecca H; Barfield, Raymond C

    2016-10-01

    Patients with common variable immunodeficiency (CVID) have a higher incidence of autoimmune disease, which may mark the disease onset; however, anemia secondary to pure red cell aplasia is an uncommon presenting feature. Here, we describe a case of CVID-like humoral immune deficiency in a child who initially presented with red cell aplasia and ultimately developed progressive bone marrow failure. Although bone marrow transplantation (BMT) has been associated with high mortality in CVID, our patient was successfully treated with a matched sibling BMT and engrafted with >98% donor chimerism and the development of normal antibody titers to diphtheria and tetanus toxoids. PMID:27273469

  14. Hyperemic peripheral red marrow in a patient with sickle cell anemia demonstrated on Tc-99m labeled red blood cell venography

    SciTech Connect

    Heiden, R.A.; Locko, R.C.; Stent, T.R. )

    1991-03-01

    A 25-year-old gravid woman, homozygous for sickle cell anemia, with a history of recent deep venous thrombosis, was examined using Tc-99m labeled red blood cell venography for recurrent thrombosis. Although negative for thrombus, the study presented an unusual incidental finding: the patient's peripheral bone marrow was hyperemic in a distribution consistent with peripheral red bone marrow expansion. Such a pattern has not been documented before using this technique. This report supports other literature that has demonstrated hyperemia of peripheral red bone marrow in other hemolytic anemias. This finding may ultimately define an additional role of scintigraphy in assessing the pathophysiologic status of the sickle cell patient.

  15. SU-E-T-600: In Vivo Dosimetry for Total Body and Total Marrow Irradiations with Optically Stimulated Luminescence Dosimeters

    SciTech Connect

    Niedbala, M; Save, C; Cygler, J

    2014-06-01

    Purpose: To evaluate the feasibility of using optically stimulated luminescence dosimeters (OSLDs) for in-vivo dosimetry of patients undergoing Total Body and Total Marrow Irradiations (TBI and TMI). Methods: TBI treatments of 12 Gy were delivered in 6 BID fractions with the patient on a moving couch under a static 10 MV beam (Synergy, Elekta). TMI treatments of 18 Gy in 9 BID fractions were planned and delivered using a 6 MV TomoTherapy unit (Accuray). To provide a uniform dose to the entire patient length, the treatment was split into 2 adjacent fields junctioned in the thigh region. Our standard clinical practice involves in vivo dosimetry with MOSFETs for each TBI fraction and TLDs for at least one fraction of the TMI treatment for dose verification. In this study we also used OSLDs. Individual calibration coefficients were obtained for the OSLDs based on irradiations in a solid water phantom to the dose of 50 cGy from Elekta Synergy 10 MV (TBI) and 6 MV (TMI) beams. Calibration coefficients were calculated based on the OSLDs readings taken 2 hrs post-irradiation. For in vivo dosimetry OSLDs were placed alongside MOSFETs for TBI patients and in approximately the same locations as the TLDs for TMI patients. OSLDs were read 2 hours post treatment and compared to the MOSFET and TLD results. Results: OSLD measured doses agreed within 5% with MOSFET and TLD results, with the exception of the junction region in the TMI patient due to very high dose gradient and difficulty of precise and reproducible detector placement. Conclusion: OSLDs are useful for in vivo dosimetry of TBI and TMI patients. The quick post-treatment readout is an advantage over TLDs, allowing the results to be obtained between BID fractions, while wireless detectors are advantageous over MOSFETs for treatments involving a moving couch.

  16. Comparison of mathematical models for red marrow and blood absorbed dose estimation in the radioiodine treatment of advanced differentiated thyroid carcinoma

    NASA Astrophysics Data System (ADS)

    Miranti, A.; Giostra, A.; Richetta, E.; Gino, E.; Pellerito, R. E.; Stasi, M.

    2015-02-01

    Metastatic and recurrent differentiated thyroid carcinoma is preferably treated with 131I, whose administered activity is limited by red marrow (RM) toxicity, originally correlated by Benua to a blood absorbed dose higher than 2 Gy. Afterward a variety of dosimetric approaches has been proposed. The aim of this work is to compare the results of the Benua formula with the ones of other three blood and RM absorbed dose formulae. Materials and methods have been borrowed by the dosimetric protocol of the Italian Internal Dosimetry group and adapted to the routine of our centre. Wilcoxon t-tests and percentage differences have been applied for comparison purposes. Results are significantly different (p < 0.05) from each other, with an average percentage difference between Benua versus other results of -22%. The dosimetric formula applied to determine blood or RM absorbed dose may contribute significantly to increase heterogeneity in absorbed dose and dose-response results. Standardization should be a major objective.

  17. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    PubMed Central

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600–1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2, an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage. PMID:25206807

  18. Visible red and infrared light alters gene expression in human marrow stromal fibroblast cells

    PubMed Central

    Guo, Jie; Wang, Qing; Wai, Daniel; Zhou, Qunzhou; Shi, Shihong; Le, Anh D; Shi, Songtao; Yen, Stephen L-K

    2015-01-01

    Objectives This study tested whether or not gene expression in human marrow stromal fibroblast (MSF) cells depends on light wavelength and energy density. Material and Methods Primary cultures of isolated human bone marrow stem cells (hBMSC) were exposed to visible red (VR, 633 nm) and infrared (IR, 830) radiation wavelengths from a light emitting diode (LED) over a range of energy densities (0.5, 1.0, 1.5, 2.0 Joules/cm2) Cultured cells were assayed for cell proliferation, osteogenic potential, adipogenesis, mRNA and protein content. mRNA was analyzed by microarray, and compared among different wavelengths and energy densities. Mesenchymal and epithelial cell responses were compared to determine whether responses were cell-type specific. Protein array analysis was used to further analyze key pathways identified by microarrays. Result Different wavelengths and energy densities produced unique sets of genes identified by microarray analysis. Pathway analysis pointed to TGF beta 1 in the visible red and Akt 1 in the infrared wavelengths as key pathways to study. TGF beta protein arrays suggested switching from canonical to non-canonical TGF beta pathways with increases to longer IR wavelengths. Microarrays suggest RANKL and TIMP 10 followed IR energy density dose response curves. Epithelial and mesenchymal cells respond differently to stimulation by light suggesting cell-type specific response is possible. Conclusions These studies demonstrate differential gene expression with different wavelengths, energy densities and cell types. These differences in gene expression have the potential to be exploited for therapeutic purposes and can help explain contradictory results in the literature when wavelengths, energy densities and cell types differ. PMID:25865533

  19. Resolution enhancement in MR spectroscopy of red bone marrow fat via intermolecular double-quantum coherences

    NASA Astrophysics Data System (ADS)

    Bao, Jianfeng; Cui, Xiaohong; Huang, Yuqing; Zhong, Jianhui; Chen, Zhong

    2015-08-01

    High-resolution 1H magnetic resonance spectroscopy (MRS) is generally inaccessible in red bone marrow (RBM) tissues using conventional MRS techniques. This is because signal from these tissues suffers from severe inhomogeneity in the main static B0 field originated from the intrinsic honeycomb structures in trabecular bone. One way to reduce effects of B0 field inhomogeneity is by using the intermolecular double quantum coherence (iDQC) technique, which has been shown in other systems to obtain signals insensitive to B0 field inhomogeneity. In the present study, we employed an iDQC approach to enhance the spectral resolution of RBM. The feasibility and performance of this method for achieving high resolution MRS was verified by experiments on phantoms and pig vertebral bone samples. Unsaturated fatty acid peaks which overlap in the conventional MRS were well resolved and identified in the iDQC spectrum. Quantitative comparison of fractions of three types of fatty acids was performed between iDQC spectra on the in situ RMB and conventional MRS on the extracted fat from the same RBM. Observations of unsaturated fatty acids with iDQC MRS may provide valuable information and may hold potential in diagnosis of diseases such as obesity, diabetes, and leukemia.

  20. Comparison of a restrictive versus liberal red cell transfusion policy for patients with myelodysplasia, aplastic anaemia, and other congenital bone marrow failure disorders

    PubMed Central

    Gu, Yisu; Estcourt, Lise J; Doree, Carolyn; Trivella, Marialena; Hopewell, Sally; Vyas, Paresh

    2015-01-01

    This is the protocol for a review and there is no abstract. The objectives are as follows: To assess the efficacy and safety of a restrictive versus liberal red cell transfusion strategy for patients with long-term bone marrow failure. These include myelodysplasia, acquired aplastic anaemia, and other inherited bone marrow failure disorders. PMID:25983657

  1. Influence of age, sex and calendar year on lifetime accumulated red bone marrow dose from diagnostic radiation exposure.

    PubMed

    Hoffmann, Wolfgang; Meiboom, Merle Friederike; Weitmann, Kerstin; Terschüren, Claudia; von Boetticher, Heiner

    2013-01-01

    Our aim is to evaluate the relevance of different factors influencing lifetime accumulated red bone marrow dose, such as calendar year, age and sex. The lifetime dose was estimated for controls interviewed in person (N = 2811, 37.5% women) of the population-based representative Northern Germany Leukemia and Lymphoma Study. Data were assessed in standardized computer-assisted personal interviews. The calculation of doses is based on a comprehensive quantification model including calendar year, sex, kind of examination, and technical development. In multivariate regression models the annual red bone marrow dose was analyzed depending on age, sex and calendar year to consider simultaneously temporal changes in radiologic practice and individual risk factors. While the number of examinations continuously rises over time, the dose shows two peaks around 1950 and after 1980. Men are exposed to higher doses than woman. Until 1970 traditional examinations like conventional and mass screening examinations caused the main dose. They were then replaced by technically advanced examinations mainly computed tomography and cardiac catheter. The distribution of the red bone marrow dose over lifetime depends highly on the technical standards and radiation protection survey. To a lesser extent it is influenced by age and sex of the subjects. Thus epidemiological studies concerning the assessment of radiation exposure should consider the calendar year in which the examination was conducted. PMID:24244286

  2. Red bone marrow doses, integral absorbed doses, and somatically effective dose equivalent from four maxillary occlusal projections

    SciTech Connect

    Berge, T.I.; Wohni, T.

    1984-02-01

    Phantom measurements of red bone marrow (RBM) doses, integral absorbed doses, and somatically effective dose equivalent (SEDE) from four different maxillary occlusal projections are presented. For each projection, different combinations of focus-skin distances and tube potentials were compared with regard to the patient's radiation load. The axial incisal view produced the highest patient exposures, with a maximum red bone marrow dose of 122.5 microGy/exposure, integral absorbed dose of 8.6 mJ/exposure, and SEDE values of 39.6 microSv/exposure. The corresponding values from the frontal, lateral occlusal, and tuber views ranged between 4% and 44% of the axial incisal view values for the integral absorbed dose and SEDE values, and between 0.3% and 3% for the red bone marrow doses. Increasing the focus-skin distance from 17.5 cm to 27 cm is accompanied by a 24% to 30% reduction in integral absorbed dose. Increasing the tube potential from 50 kV to 65 kV likewise results in a 23% reduction in absorbed energy.

  3. Use of Monte Carlo simulations with a realistic rat phantom for examining the correlation between hematopoietic system response and red marrow absorbed dose in Brown Norway rats undergoing radionuclide therapy with {sup 177}Lu- and {sup 90}Y-BR96 mAbs

    SciTech Connect

    Larsson, Erik; Ljungberg, Michael; Martensson, Linda; Nilsson, Rune; Tennvall, Jan; Strand, Sven-Erik; Joensson, Bo-Anders

    2012-07-15

    Purpose: Biokinetic and dosimetry studies in laboratory animals often precede clinical radionuclide therapies in humans. A reliable evaluation of therapeutic efficacy is essential and should be based on accurate dosimetry data from a realistic dosimetry model. The aim of this study was to develop an anatomically realistic dosimetry model for Brown Norway rats to calculate S factors for use in evaluating correlations between absorbed dose and biological effects in a preclinical therapy study. Methods: A realistic rat phantom (Roby) was used, which has some flexibility that allows for a redefinition of organ sizes. The phantom was modified to represent the anatomic geometry of a Brown Norway rat, which was used for Monte Carlo calculations of S factors. Kinetic data for radiolabeled BR96 monoclonal antibodies were used to calculate the absorbed dose. Biological data were gathered from an activity escalation study with {sup 90}Y- and {sup 177}Lu-labeled BR96 monoclonal antibodies, in which blood cell counts and bodyweight were examined up to 2 months follow-up after injection. Reductions in white blood cell and platelet counts and declines in bodyweight were quantified by four methods and compared to the calculated absorbed dose to the bone marrow or the total body. Results: A red marrow absorbed dose-dependent effect on hematological parameters was observed, which could be evaluated by a decrease in blood cell counts. The absorbed dose to the bone marrow, corresponding to the maximal tolerable activity that could safely be administered, was determined to 8.3 Gy for {sup 177}Lu and 12.5 Gy for {sup 90}Y. Conclusions: There was a clear correlation between the hematological effects, quantified with some of the studied parameters, and the calculated red marrow absorbed doses. The decline in body weight was stronger correlated to the total body absorbed dose, rather than the red marrow absorbed dose. Finally, when considering a constant activity concentration, the phantom

  4. Red bone marrow dose calculations in radiotherapy of prostate cancer based on the updated VCH adult male phantom

    NASA Astrophysics Data System (ADS)

    Ai, Jinqin; Xie, Tianwu; Sun, Wenjuan; Liu, Qian

    2014-04-01

    Red bone marrow (RBM) is an important dose-limiting tissue that has high radiosensitivity but is difficult to identify on clinical medical images. In this study, we investigated dose distribution in RBM for prostate cancer radiotherapy. Four suborgans were identified in the skeleton of the visible Chinese human phantom: cortical bone (CB), trabecular bone (TB), RBM, and yellow bone marrow (YBM). Dose distributions in the phantom were evaluated by the Monte Carlo method. When the left os coxae was taken as the organ-at-risk (OAR), the difference in absorbed dose between RBM and each CB and TB was up to 20%, but was much less (≤3.1%) between RBM and YBM. When the left os coxae and entire bone were both taken as OARs, RBM dose also increased with increasing planning target volume size. The results indicate the validity of using dose to homogeneous bone marrow mixture for estimating dose to RBM when RBM is not available in computational phantoms. In addition, the human skeletal system developed in this study provides a model for considering RBM dose in radiotherapy planning.

  5. Differentiation between Focal Malignant Marrow-Replacing Lesions and Benign Red Marrow Deposition of the Spine with T2*-Corrected Fat-Signal Fraction Map Using a Three-Echo Volume Interpolated Breath-Hold Gradient Echo Dixon Sequence

    PubMed Central

    Kim, Yong Pyo; Kannengiesser, Stephan; Paek, Mun-Young; Chung, Tae-Sub; Yoo, Yeon Hwa; Yoon, Choon-Sik; Song, Ho-Taek; Lee, Young Han; Suh, Jin-Suck

    2014-01-01

    Objective To assess the feasibility of T2*-corrected fat-signal fraction (FF) map by using the three-echo volume interpolated breath-hold gradient echo (VIBE) Dixon sequence to differentiate between malignant marrow-replacing lesions and benign red marrow deposition of vertebrae. Materials and Methods We assessed 32 lesions from 32 patients who underwent magnetic resonance imaging after being referred for assessment of a known or possible vertebral marrow abnormality. The lesions were divided into 21 malignant marrow-replacing lesions and 11 benign red marrow depositions. Three sequences for the parameter measurements were obtained by using a 1.5-T MR imaging scanner as follows: three-echo VIBE Dixon sequence for FF; conventional T1-weighted imaging for the lesion-disc ratio (LDR); pre- and post-gadolinium enhanced fat-suppressed T1-weighted images for the contrast-enhancement ratio (CER). A region of interest was drawn for each lesion for parameter measurements. The areas under the curve (AUC) of the parameters and their sensitivities and specificities at the most ideal cutoff values from receiver operating characteristic curve analysis were obtained. AUC, sensitivity, and specificity were respectively compared between FF and CER. Results The AUCs of FF, LDR, and CER were 0.96, 0.80, and 0.72, respectively. In the comparison of diagnostic performance between the FF and CER, the FF showed a significantly larger AUC as compared to the CER (p = 0.030), although the difference of sensitivity (p = 0.157) and specificity (p = 0.157) were not significant. Conclusion Fat-signal fraction measurement using T2*-corrected three-echo VIBE Dixon sequence is feasible and has a more accurate diagnostic performance, than the CER, in distinguishing benign red marrow deposition from malignant bone marrow-replacing lesions. PMID:25469090

  6. The relative roles of MHC and non-MHC antigens in bone marrow transplantation in rats. Graft acceptance and antigenic expression on donor red blood cells.

    PubMed

    Pinto, M; Gill, T J; Kunz, H W; Dixon-McCarthy, B D

    1983-06-01

    In order to investigate the influence of MHC and non-MHC genes in bone marrow transplantation, various combinations of congenic and inbred strains of rats were used as donors and recipients. A standard regimen of busulfan and cyclophosphamide treatment was used to condition the recipients. The resultant survival patterns of the animals indicated that: (1) a difference across the entire RT1 (MHC) complex is sufficient for the induction of fatal graft-versus-host disease (GVHD) in 100% of the engrafted animals; and (2) the blood group antigens RT2 and RT3, which are controlled by non-MHC genes, do not cause bone marrow graft rejection or GVHD. There were sequential changes of expression in surface alloantigens on the red cells in different donor-recipient combinations without other hematologic changes in the busulfan-cyclophosphamide conditioned bone marrow chimeras. PMID:6346598

  7. A bone marrow toxicity model for 223Ra alpha-emitter radiopharmaceutical therapy

    PubMed Central

    Hobbs, Robert F; Song, Hong; Watchman, Christopher J; Bolch, Wesley E; Aksnes, Anne-Kirsti; Ramdahl, Thomas; Flux, Glenn D; Sgouros, George

    2012-01-01

    Purpose Ra-223, an α-particle emitting bone-seeking radionuclide, has recently been used in clinical trials for osseous metasteses of prostate cancer. We investigated the relationship between absorbed fraction-based red marrow dosimetry and cell level-dosimetry using a model that accounts for the expected localization of this agent relative to marrow cavity architecture. We show that cell level-based dosimetry is essential to understanding potential marrow toxicity. Methods The GEANT4 software package was used to create simple spheres representing marrow cavities. Ra-223 was positioned on the trabecular bone surface or in the endosteal layer and simulated for decay, along with the descendants. The interior of the sphere was divided into cell-size voxels and the energy was collected in each voxel and interpreted as dose cell histograms. The average absorbed dose values and absorbed fractions were also calculated in order to compare those results with previously published values. Results The absorbed dose was predominantly deposited near the trabecular surface. The dose cell histograms results were used to plot the percentage of cells that received a potentially toxic absorbed dose (2 or 4 Gy) as a function of the average absorbed dose over the marrow cavity. The results show (1) a heterogeneous distribution of cellular absorbed dose, strongly dependent on the position of the cell within the marrow cavity; and (2) that increasing the average marrow cavity absorbed dose, or equivalently, increasing the administered activity resulted in only a small increase in potential marrow toxicity (i.e., the number of cells receiving more than 4 or 2 Gy), for a range of average marrow cavity absorbed doses from 1 Gy to 20 Gy. Conclusion The results from the trabecular model differ markedly from a standard absorbed fraction method while presenting comparable average dose values. These suggest that increasing the amount of radioactivity may not substantially increase the risk of

  8. A bone marrow toxicity model for 223Ra alpha-emitter radiopharmaceutical therapy

    NASA Astrophysics Data System (ADS)

    Hobbs, Robert F.; Song, Hong; Watchman, Christopher J.; Bolch, Wesley E.; Aksnes, Anne-Kirsti; Ramdahl, Thomas; Flux, Glenn D.; Sgouros, George

    2012-05-01

    Ra-223, an α-particle emitting bone-seeking radionuclide, has recently been used in clinical trials for osseous metastases of prostate cancer. We investigated the relationship between absorbed fraction-based red marrow dosimetry and cell level-dosimetry using a model that accounts for the expected localization of this agent relative to marrow cavity architecture. We show that cell level-based dosimetry is essential to understanding potential marrow toxicity. The GEANT4 software package was used to create simple spheres representing marrow cavities. Ra-223 was positioned on the trabecular bone surface or in the endosteal layer and simulated for decay, along with the descendants. The interior of the sphere was divided into cell-size voxels and the energy was collected in each voxel and interpreted as dose cell histograms. The average absorbed dose values and absorbed fractions were also calculated in order to compare those results with previously published values. The absorbed dose was predominantly deposited near the trabecular surface. The dose cell histogram results were used to plot the percentage of cells that received a potentially toxic absorbed dose (2 or 4 Gy) as a function of the average absorbed dose over the marrow cavity. The results show (1) a heterogeneous distribution of cellular absorbed dose, strongly dependent on the position of the cell within the marrow cavity; and (2) that increasing the average marrow cavity absorbed dose, or equivalently, increasing the administered activity resulted in only a small increase in potential marrow toxicity (i.e. the number of cells receiving more than 4 or 2 Gy), for a range of average marrow cavity absorbed doses from 1 to 20 Gy. The results from the trabecular model differ markedly from a standard absorbed fraction method while presenting comparable average dose values. These suggest that increasing the amount of radioactivity may not substantially increase the risk of toxicity, a result unavailable to the

  9. Bone Marrow Aspiration and Biopsy

    MedlinePlus

    ... the bone marrow and capability for blood cell production, including red blood cells (RBCs), white blood cells ( ... can affect the bone marrow and blood cell production. A specialist who has expertise in the diagnosis ...

  10. Estimating 131I biokinetics and radiation doses to the red marrow and whole body in thyroid cancer patients: probe detection versus image quantification*

    PubMed Central

    Willegaignon, José; Pelissoni, Rogério Alexandre; Lima, Beatriz Christine de Godoy Diniz; Sapienza, Marcelo Tatit; Coura-Filho, George Barberio; Queiroz, Marcelo Araújo; Buchpiguel, Carlos Alberto

    2016-01-01

    Objective To compare the probe detection method with the image quantification method when estimating 131I biokinetics and radiation doses to the red marrow and whole body in the treatment of thyroid cancer patients. Materials and Methods Fourteen patients with metastatic thyroid cancer, without metastatic bone involvement, were submitted to therapy planning in order to tailor the therapeutic amount of 131I to each individual. Whole-body scans and probe measurements were performed at 4, 24, 48, 72, and 96 h after 131I administration in order to estimate the effective half-life (Teff) and residence time of 131I in the body. Results The mean values for Teff and residence time, respectively, were 19 ± 9 h and 28 ± 12 h for probe detection, compared with 20 ± 13 h and 29 ± 18 h for image quantification. The average dose to the red marrow and whole body, respectively, was 0.061 ± 0.041 mGy/MBq and 0.073 ± 0.040 mGy/MBq for probe detection, compared with 0.066 ± 0.055 mGy/MBq and 0.078 ± 0.056 mGy/MBq for image quantification. Statistical analysis proved that there were no significant differences between the two methods for estimating the Teff (p = 0.801), residence time (p = 0.801), dose to the red marrow (p = 0.708), and dose to the whole body (p = 0.811), even when we considered an optimized approach for calculating doses only at 4 h and 96 h after 131I administration (p > 0.914). Conclusion There is full agreement as to the feasibility of using probe detection and image quantification when estimating 131I biokinetics and red-marrow/whole-body doses. However, because the probe detection method is inefficacious in identifying tumor sites and critical organs during radionuclide therapy and therefore liable to skew adjustment of the amount of 131I to be administered to patients under such therapy, it should be used with caution. PMID:27403014

  11. Phase I/II study of Holmium-166-DOTMP for bone marrow ablation in multiple myeloma prior to bone marrow transplantation (BMT)

    SciTech Connect

    Podoloff, D.A.; Bhadkamkar, V.H.; Kasi, L.P.

    1994-05-01

    We evaluated a bone seeking radionuclide, Ho-166 DOTMP (which has both beta and gamma energies) as an agent for bone marrow ablation prior to bone marrow transplant. Six men and 1 woman in the age range 42-59 yrs. who had previously failed conventional chemotherapy using VAD (Vincristine, Adriamycin, Dexamethasone) were treated. Each patient received a diagnostic dose (Dx) of 30 mCi of Ho-166 DOTMP and underwent serial total body images using photopeak and scatter windows. Transmission images were obtained on day O. Transmission, scatter and photopeak images were used to calculate marrow dose and skeletal uptake. Therapy dose (Tx) was established to deliver a prescribed absorbed dose to the marrow. Bone marrow biopsy samples from lilac crest were obtained to determine activity concentration and to calculate marrow dose. The Dx was followed by a Tx of 25 Gy (3 pts.), 40 Gy (3 pts.) and 50 Gy (1 pt.). Additional total body imaging was accomplished prior to each Tx and SPECT after the final Tx. Bone retention varied from 26-33%. The calculated red marrow dose varied from 11 to 48 Gy. Toxicity was minimal and included: myalgia (1), nausea (2), increased BUN (1), sore throat (1), fever (1x1 day). Bone marrow ablation was achieved in 3/7 pts. The last pt. treated at the highest dose level had greater than 75% reduction in myeloma protein. We conclude that at doses as high as 31.8 mCi/Kg no significant toxicity has been observed. Diagnostic pretherapy imaging and derived dosimetry is helpful in prescribing a red marrow dose prior to radionuclide therapy. The MTD has not yet been reached. However, thus far Ho-166 DOTMP has safely ablated bone marrow prior to BMT.

  12. Bone marrow dosimetry in rats using direct tissue counting after injection of radio-iodinated intact monoclonal antibodies or F(ab')2 fragments

    SciTech Connect

    Buchegger, F.; Chalandon, Y.; Pelegrin, A.; Hardman, N.; Mach, J.P. )

    1991-07-01

    Normal rats were injected intravenously with 131I- and 125I-labeled intact murine and chimeric mouse-human monoclonal antibodies directed against carcinoembryonic antigen or with the corresponding F(ab')2 fragments. At different times after injection, individual animals were killed and radioactivity of blood and major organs, including bones and bone marrow, was determined. Ratios comparing radioactivity concentration in different tissues with that of bone marrow were calculated and found to remain stable during several effective half-lives of the antibodies. Mean bone marrow radioactivity was 35% (range, 29%-40%) of that of blood and 126% (range, 108%-147%) of that of liver after injection of intact Mabs or F(ab')2 fragments. In nude rats bearing human colon carcinoma xenografts producing carcinoembryonic antigen, relative bone marrow radioactivity was slightly lower than that in normal rats.

  13. Internal radiation dosimetry for clinical testing of radiolabeled monoclonal antibodies

    SciTech Connect

    Fisher, D.R.; Durham, J.S.; Hui, T.E.; Hill, R.L.

    1990-11-01

    In gauging the efficacy of radiolabeled monoclonal antibodies in cancer treatment, it is important to know the amount of radiation energy absorbed by tumors and normal tissue per unit administered activity. This paper describes methods for estimating absorbed doses to human tumors and normal tissues, including intraperitoneal tissue surfaces, red marrow, and the intestinal tract from incorporated radionuclides. These methods use the Medical Internal Radiation Dose (MIRD) scheme; however, they also incorporate enhancements designed to solve specific dosimetry problems encountered during clinical studies, such as patient-specific organ masses obtained from computerized tomography (CT) volumetrics, estimates of the dose to tumor masses within normal organs, and multicellular dosimetry for studying dose inhomogeneities in solid tumors. Realistic estimates of absorbed dose are provided within the short time requirements of physicians so that decisions can be made with regard to patient treatment and procurement of radiolabeled antibodies. Some areas in which further research could improve dose assessment are also discussed. 16 refs., 3 figs.

  14. Comparison of a restrictive versus liberal red cell transfusion policy for patients with myelodysplasia, aplastic anaemia, and other congenital bone marrow failure disorders

    PubMed Central

    Gu, Yisu; Estcourt, Lise J; Doree, Carolyn; Hopewell, Sally; Vyas, Paresh

    2015-01-01

    Background Bone marrow failure disorders include a heterogenous group of disorders, of which myelodysplastic syndrome (MDS), forms the largest subgroup. MDS is predominantly a disease of the elderly, with many elderly people managed conservatively with regular allogeneic red blood cell (RBC) transfusions to treat their anaemia. However, RBC transfusions are not without risk. Despite regular transfusions playing a central role in treating such patients, the optimal RBC transfusion strategy (restrictive versus liberal) is currently unclear. Objectives To assess the efficacy and safety of a restrictive versus liberal red blood cell transfusion strategy for patients with myelodysplasia, acquired aplastic anaemia, and other inherited bone marrow failure disorders. Search methods We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2015, Issue 4), Ovid MEDLINE (from 1946), Ovid EMBASE (from 1974), EBSCO CINAHL (from 1937), the Transfusion Evidence Library (from 1980) and ongoing trial databases to 26th May 2015. Selection criteria RCTs including patients with long-term bone marrow failure disorders that require allogeneic blood transfusion, who are not being actively treated with a haematopoietic stem cell transplant, or intensive chemotherapy. Data collection and analysis We used standard Cochrane review methodology. One author initially screened all references, and excluded any that were clearly irrelevant or duplicates. Two authors then independently screened all abstracts of articles, identified by the review search strategy, for relevancy. Two authors independently assessed the full text of all potentially relevant articles for eligibility, completed the data extraction and assessed the studies for risk of bias using The Cochrane Collaboration’s ’Risk of bias’ tool. Main results We included one trial (13 participants) and identified three ongoing trials that assess RBC

  15. Dual-channel red/blue fluorescence dosimetry with broadband reflectance spectroscopic correction measures protoporphyrin IX production during photodynamic therapy of actinic keratosis

    NASA Astrophysics Data System (ADS)

    Kanick, Stephen Chad; Davis, Scott C.; Zhao, Yan; Hasan, Tayyaba; Maytin, Edward V.; Pogue, Brian W.; Chapman, M. Shane

    2014-07-01

    Dosimetry for aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) photodynamic therapy of actinic keratosis was examined with an optimized fluorescence dosimeter to measure PpIX during treatment. While insufficient PpIX generation may be an indicator of incomplete response, there exists no standardized method to quantitate PpIX production at depths in the skin during clinical treatments. In this study, a spectrometer-based point probe dosimeter system was used to sample PpIX fluorescence from superficial (blue wavelength excitation) and deeper (red wavelength excitation) tissue layers. Broadband white light spectroscopy (WLS) was used to monitor aspects of vascular physiology and inform a correction of fluorescence for the background optical properties. Measurements in tissue phantoms showed accurate recovery of blood volume fraction and reduced scattering coefficient from WLS, and a linear response of PpIX fluorescence versus concentration down to 1.95 and 250 nM for blue and red excitations, respectively. A pilot clinical study of 19 patients receiving 1-h ALA incubation before treatment showed high intrinsic variance in PpIX fluorescence with a standard deviation/mean ratio of >0.9. PpIX fluorescence was significantly higher in patients reporting higher pain levels on a visual analog scale. These pilot data suggest that patient-specific PpIX quantitation may predict outcome response.

  16. SU-E-T-121: Dosimetric Characterization of Gafchromic Film EBT3 Using Vidar DosimetryPro Advantage RED and EPSON Expression 10000XL Scanners

    SciTech Connect

    Medina, L; Adrada, A; Filipuzzi, M; Garrigo, E; Venencia, C

    2014-06-01

    Purpose: The purpose of this paper is to characterize EBT3 using two types of scanner, analyzing the factors of influence of each dosimetry system. Methods: The film used in this study was GAFCHROMIC EBT3, the films were exposed at a dose range between 0Gy a 9Gy in a solid water phantom, SSD=100cm, 5cm depth and perpendicularly to the 6MV photon beam generated by a Novalis TX linear accelerator equipped with an HDMLC. A Farmer type ion chamber TN30013 (PTW) was used to determine the dose delivered to the film. The films were digitized with a scanner EPSON expression 10000XL and the VIDAR DosimetryPro Adventage RED. Software RIT113v6.1 was used for construction of the calibration curve and analysis. The film characteristics investigated were: response at different dose levels, sensitivity to orientation and side and resolution through the results of the spatial response function by analyzing a step pattern. Additionally, 20 IMRT treatment fields were measured with both scanner and compared with calculated dose using gamma index analysis (3%-3mm). Results: The OD obtained for dose level 2Gy in the orientation portrait of the film on the scanner EPSON is (0,222±0,19) and for Vidar RED (0,252±0,10) and landscape is for EPSON (0,211±0,25) and for Vidar RED (0,250±0,11) . The orientation dependence with respect to film side is about 0,09% for EPSON and about 0.03% for VIDAR. The spatial response function increase in response to the Gaussian function FWHM EPSON scanner (0.18mm) compared with VIDAR scanner function (less than 0.06mm) was observed. We analyzed 20 total plan dose distributions the number of pixels with gamma>1 (3%-3mm) was 0.7%±1.2 [0.1%; 2.82%] for EBT3-VIDAR y 2%±2.9 [0.2%; 3.5%] for EBT3-EPSON. Conclusion: VIDAR scanner shows better sensitivity. EBT3 film shows a different response between portrait and landscape orientation. Step pattern is better reproduce by VIDAR scanner.

  17. Bone-marrow transplant - series (image)

    MedlinePlus

    Bone-marrow transplants are performed for: deficiencies in red blood cells (aplastic anemia) and white blood cells (leukemia or ... Bone-marrow transplants prolong the life of patients who might otherwise die. As with all major organ transplants, however, ...

  18. Red blood cell production

    MedlinePlus

    ... cells are an important element of blood. Their job is to transport oxygen to the body’s tissues in exchange for carbon dioxide, which is carried to and eliminated by the lungs. Red blood cells are formed in the red bone marrow of bones. Stem cells in the red bone marrow called hemocytoblasts ...

  19. Excess of veno-occlusive disease in a randomized clinical trial on a higher trigger for red blood cell transfusion after bone marrow transplantation: a canadian blood and marrow transplant group trial.

    PubMed

    Robitaille, Nancy; Lacroix, Jacques; Alexandrov, Lubomir; Clayton, Lucy; Cortier, Marion; Schultz, Kirk R; Bittencourt, Henrique; Duval, Michel

    2013-03-01

    Previous studies have shown that maintaining high hemoglobin levels in patients after chemotherapy reduced the length of neutropenia. Thus, we undertook a randomized, controlled, clinical trial in children undergoing allogeneic bone marrow transplantation after receiving a myeloablative conditioning regimen to compare 2 hemoglobin thresholds as triggers for red blood cell transfusion: 120 g/L in the experimental arm and 70 g/L in the control arm. The Data and Safety Monitoring Board closed the study after enrollment of the sixth patient because 3 patients in the experimental arm contracted veno-occlusive disease, but none in the control arm did (P = .05). Ascites was present in all 3 patients, pleura effusion in 2, and portal vein thrombosis in 2. One patient experienced hepatic failure and required treatment with the molecular adsorbent recycling system. Another patient required hemodialysis for renal failure. No major imbalance between groups was seen with regard to risk factors for veno-occlusive disease. Therefore, maintaining the hemoglobin at higher levels should be avoided after hematopoietic stem cell transplantation. PMID:23220014

  20. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    PubMed Central

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-01-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure. PMID:27445126

  1. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats.

    PubMed

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-01-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1-3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure. PMID:27445126

  2. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    NASA Astrophysics Data System (ADS)

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-07-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure.

  3. Effects of elevated temperatures during interruption of irradiation on Harwell Red 4034 PMMA and Kodak Biomax alanine film dosimetry systems

    NASA Astrophysics Data System (ADS)

    Sidereas, P.; Patil, D. S.; Garcia, R.; Tracy, R. P.; Holzman, J. M.

    2007-11-01

    In the industrial setting it is not uncommon for a process interruption to occur during irradiation. In this event, dosimeters may be exposed to prolonged periods of elevated temperature without exposure to ionizing radiation. Once the process is restarted, the same dosimeters are exposed to ionizing radiation in order to achieve target dose. The goal of this experiment was to simulate a process interruption within limits and quantify the effects of a combination of factors (heat, time, and fractionation) on dosimeter response. We present an in-depth experimental study on the response of dosimeters that have been irradiated, stored for a fixed period of time at several temperatures, and then re-irradiated. This study was performed using Harwell Red 4034 polymethylmethacrylate (PMMA) and Kodak BioMax alanine film dosimeters.

  4. Computational dosimetry

    SciTech Connect

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  5. Epid Dosimetry

    NASA Astrophysics Data System (ADS)

    Greer, Peter B.; Vial, Philip

    2011-05-01

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  6. Epid Dosimetry

    SciTech Connect

    Greer, Peter B.; Vial, Philip

    2011-05-05

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  7. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; ...

  8. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity, nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  9. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  10. Neutron personnel dosimetry

    SciTech Connect

    Griffith, R.V.

    1981-06-16

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

  11. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  12. Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry

    SciTech Connect

    Baechler, Sebastien; Hobbs, Robert F.; Prideaux, Andrew R.; Wahl, Richard L.; Sgouros, George

    2008-03-15

    In dosimetry-based treatment planning protocols, patients with rapid clearance of the radiopharmaceutical require a larger amount of initial activity than those with slow clearance to match the absorbed dose to the critical organ. As a result, the dose-rate to the critical organ is higher in patients with rapid clearance and may cause unexpected toxicity compared to patients with slow clearance. In order to account for the biological impact of different dose-rates, radiobiological modeling is beginning to be applied to the analysis of radionuclide therapy patient data. To date, the formalism used for these analyses is based on kinetics derived from activity in a single organ, the target. This does not include the influence of other source organs to the dose and dose-rate to the target organ. As a result, only self-dose irradiation in the target organ contributes to the dose-rate. In this work, the biological effective dose (BED) formalism has been extended to include the effect of multiple source organ contributions to the net dose-rate in a target organ. The generalized BED derivation has been based on the Medical Internal Radionuclide Dose Committee (MIRD) schema assuming multiple source organs following exponential effective clearance of the radionuclide. A BED-based approach to determine the largest safe dose to critical organs has also been developed. The extended BED formalism is applied to red marrow dosimetry, as well as kidney dosimetry considering the cortex and the medulla separately, since both those organs are commonly dose limiting in radionuclide therapy. The analysis shows that because the red marrow is an early responding tissue (high {alpha}/{beta}), it is less susceptible to unexpected toxicity arising from rapid clearance of high levels of administered activity in the marrow or in the remainder of the body. In kidney dosimetry, the study demonstrates a complex interplay between clearance of activity in the cortex and the medulla, as well as the

  13. Personalized estimation of dose to red bone marrow and the associated leukaemia risk attributable to pelvic kilo-voltage cone beam computed tomography scans in image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Zhang, Yibao; Yan, Yulong; Nath, Ravinder; Bao, Shanglian; Deng, Jun

    2012-07-01

    The aim of this study is to investigate the imaging dose to red bone marrow (RBM) and the associated leukaemia risks attributable to pelvic kilo-voltage cone beam computed tomography (kVCBCT) scans in image-guided radiation therapy (IGRT). The RBM doses of 42 patients (age 2.7-86.4 years) were calculated using Monte Carlo simulations. The trabecular spongiosa was segmented to substitute RBM rather than the whole bone. Quantitative correlations between anthropometric variables such as age, physical bone density (PBD) and RBM dose were established. Personalized leukaemia risk was evaluated using an improved Boice model which included the age-associated RBM involvement. An incremental leukaemia risk of 29%-82% (mean = 45%) was found to be associated with 40 pelvic kVCBCT scans in the subject group used in a typical external beam radiation therapy course. Higher risks were observed in children. Due to the enhanced photoelectric effect in high atomic number materials, PBD was observed to strongly affect the RBM dose. Considerable overestimations (9%-42%, mean = 28%) were observed if the whole bone doses were used as surrogates of RBM doses. The personalized estimation of RBM dose and associated leukaemia risk caused by pelvic kVCBCT scans is clinically feasible with the proposed empirical models. Higher radiogenic cancer risks are associated with repeated kVCBCT scans in IGRT of cancer patients, especially children.

  14. Bone marrow biopsy

    MedlinePlus

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may be taken from the pelvic or breast bone. Sometimes, other areas are used. Marrow is removed ...

  15. The radiation dosimetry of intrathecally administered radionuclides

    SciTech Connect

    Stabin, M.G.; Evans, J.F.

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energy deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.

  16. Bone marrow transplant - discharge

    MedlinePlus

    Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - ...

  17. Personnel neutron dosimetry

    SciTech Connect

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs. (ACR)

  18. New dosimetry of atomic bomb radiations.

    PubMed

    Fry, R J; Sinclair, W K

    1987-10-10

    The reassessment of the radiation dosimetry from the Hiroshima and Nagasaki atomic bombs is almost complete. Since atomic bomb survivors provide a major source of data for estimates of risk of cancer induction by radiation the impact of the new dosimetry on risk estimates and radiation protection standards is important. The changes include an increase of about 20% in the estimated yield of the Hiroshima bomb and a reduction in the estimated doses from neutrons in both cities. The estimated neutron dose for Hiroshima is about 10% of the previous estimate. The neutron doses are now so small that direct estimates of neutron relative biological effectiveness may be precluded or be much more difficult. There is little change in most of the gamma ray organ doses because various changes in the new estimates tend to cancel each other out. The new estimate of the attenuation of the free-in-air kerma by the walls of the homes is about twice that used in the previous dosimetry. But the transmission of gamma radiation to the deep organs such as bone marrow is significantly greater than earlier estimates. Probably future risk estimates for radiogenic cancer will be somewhat higher because of both the new dosimetry and the new cancer mortality data. New risk estimates should be available in 1988. PMID:2889042

  19. Imaging of Bone Marrow.

    PubMed

    Lin, Sopo; Ouyang, Tao; Kanekar, Sangam

    2016-08-01

    Bone marrow is the essential for function of hematopoiesis, which is vital for the normal functioning of the body. Bone marrow disorders or dysfunctions may be evaluated by blood workup, peripheral smears, marrow biopsy, plain radiographs, computed tomography (CT), MRI and nuclear medicine scan. It is important to distinguish normal spinal marrow from pathology to avoid missing a pathology or misinterpreting normal changes, either of which may result in further testing and increased health care costs. This article focuses on the diffuse bone marrow pathologies, because the majority of the bone marrow pathologies related to hematologic disorders are diffuse. PMID:27444005

  20. Bone marrow (stem cell) donation

    MedlinePlus

    Stem cell transplant; Allogeneic-donation ... There are two types of bone marrow donation: Autologous bone marrow transplant is when people donate their own bone marrow. "Auto" means self. Allogenic bone marrow transplant is when another person ...

  1. Bone marrow aspiration

    MedlinePlus

    ... creates suction. A small sample of bone marrow fluid flows into the tube. The needle is removed. Pressure and then a bandage are applied to the skin. The bone marrow fluid is sent to a laboratory and examined under ...

  2. Bone Marrow Diseases

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem cells ...

  3. Bone Marrow Transplantation

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a person's ...

  4. Bone marrow aspiration

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003658.htm Bone marrow aspiration To use the sharing features on this page, please enable JavaScript. Bone marrow is the soft tissue inside bones that helps ...

  5. Bone Marrow Diseases

    MedlinePlus

    ... that help with blood clotting. With bone marrow disease, there are problems with the stem cells or ... marrow makes too many white blood cells Other diseases, such as lymphoma, can spread into the bone ...

  6. Chemical dosimetry system for criticality accidents.

    PubMed

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values. PMID:15353694

  7. Starvation marrow - gelatinous transformation of bone marrow.

    PubMed

    Osgood, Eric; Muddassir, Salman; Jaju, Minal; Moser, Robert; Farid, Farwa; Mewada, Nishith

    2014-01-01

    Gelatinous bone marrow transformation (GMT), also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management. PMID:25317270

  8. Bone marrow biopsy

    MedlinePlus

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may ... This captures a tiny sample, or core, of bone marrow within the needle. The sample and needle are ...

  9. A STUDY OF PREDICTED BONE MARROW DISTRIBUTION ON CALCULATED MARROW DOSE FROM EXTERNAL RADIATION EXPOSURES USING TWO SETS OF IMAGE DATA FOR THE SAME INDIVIDUAL

    PubMed Central

    Caracappa, Peter F.; Chao, T. C. Ephraim; Xu, X. George

    2010-01-01

    Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ

  10. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  11. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons

    SciTech Connect

    Xie Tianwu; Han Dao; Liu Yang; Sun Wenjuan; Liu Qian

    2010-05-15

    Purpose: The skeleton makes a significant contribution to the whole body absorbed dose evaluation of rats, since the bone marrow and bone surface in the skeleton express high radiosensitivity and are considered to be important dose-limiting tissues. The bone marrow can be categorized as red bone marrow (RBM) and yellow bone marrow (YBM). It is important to investigate the bone marrow in skeletal dosimetry. Methods: Cryosectional color images of the skeleton of a 156 g rat were segmented into mineral bone (including cortical bone and trabecular bone), RBM, and YBM. These three tissue types were identified at 40 different bone sites and integrated into a previously developed voxel-based rat computational phantom. Photon and electron skeletal absorbed fractions were then calculated using the MCNPX Monte Carlo code. Results: Absorbed fraction (AF) and specific absorbed fraction (SAF) for mineral bone, RBM, and YBM at the 40 different bone sites were established for monoenergetic photon and electron sources placed in 18 organs and seven bone sites. Discrete photon energy was varied from 0.01 to 5.0 MeV in 21 discrete steps, while 21 discrete electron energies were studied, from 0.1 to 10.0 MeV. The trends and values found were consistent with the results of other researchers [M. G. Stabin, T. E. Peterson, G. E. Holburn, and M. A. Emmons, ''Voxel-based mouse and rat models for internal dose calculations,'' J. Nucl. Med. 47, 655-659 (2006)]. S-factors for the radionuclides {sup 169}Er, {sup 143}Pr, {sup 89}Sr, {sup 32}P, and {sup 90}Y, located in 18 organs and seven bone sites for the skeleton, were calculated and are provided in detail. Conclusions: For internal dose calculations, the AF data reveal that the mineral bone in the rat skeletal system is responsible for significant attenuation of gamma rays, especially at low energies. The photon SAF curves of RBM show that, for photon energies greater than 0.6 MeV, there is an increase in secondary photons emitted from the

  12. International Reactor Dosimetry Data.

    Energy Science and Technology Software Center (ESTSC)

    1982-06-28

    Version 00 IRDF-82 contains 620 neutron group cross sections (SAND-II format) based on the ENDF/B-V Special Purpose Dosimetry File as well as other reaction cross sections important for dosimetry applications. In addition, multigroup spectra for ten reference benchmarks are also provided.

  13. [Pharmacokinetic substantiation of the use of 111In-citrate in bone marrow studies].

    PubMed

    Korsunskiĭ, V N; Tarasenko, Iu I; Koval'chuk, N D; Kosheleva, I Iu; Popov, V I

    1986-07-01

    Soviet radiopharmaceutical 111In-citrin has been studied to define its possible application for marrow visualization. 111In-citrin has been shown to accumulate in the red marrow, parenchymal organs and to be excreted from animal organism by urinary system predominately. 111In-citrin has advantages in defining the nuclide concentrations in marrow blood and serum as compared with colloid preparations and 111In-chloride. 111In-citrin is supposed to be an adequate radiopharmaceutical preparation for visualization of the red marrow. PMID:3736386

  14. Bone Marrow Transplantation

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  15. Practical CT dosimetry

    SciTech Connect

    Yoshizumi, T.T.; Suneja, S.K.; Teal, J.S. )

    1989-07-01

    The dose from computed tomography (CT) examinations is not negligible from a radiation safety standpoint. Occasionally, one encounters a case in which an unsuspected pregnant woman undergoes a CT pelvic scan, and the radiologist is required to estimate the dose to the fetus. This article addresses practical methods of CT dosimetry with a specific discussion on fetal dose estimate. Three methods are described: (1) the use of a dose chart, (2) the pencil ionization chamber method, and (3) the thermoluminescence dosimetry (TLD) method.

  16. Bone marrow culture

    MedlinePlus

    ... 2015 Updated by: Yi-Bin Chen, MD, Leukemia/Bone Marrow Transplant Program, Massachusetts General Hospital, Boston, MA. Also reviewed ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  17. Hydroxyanthraquinone dye solutions for radiation dosimetry.

    PubMed

    Bedear El-Assy, N; Alian, A; Abdel Rahim, F; Roushdy, H

    1982-06-01

    An investigation has been carried out on the effect of gamma-radiation on the absorption spectra of aqueous solutions of the hydroxyanthraquinone dyes, alizarin and alizarin red S. Ionizing radiation at absorbed doses over the range 10(5)-3 x 10(6) rad brought about gradual bleaching of aerated (oxygenated) dye solutions. The radiolytic bleaching was enhanced through addition of hydrogen peroxide, as expected. A mechanism for the radiolytic reaction is proposed, based on chemical attack of the chromophore by radicals and radical ions as aqueous radiolysis products. Suggestions are made for possible radiation dosimetry by means of spectrophotometric analysis of the absorption spectra. PMID:7107037

  18. Bone marrow fat.

    PubMed

    Hardouin, Pierre; Pansini, Vittorio; Cortet, Bernard

    2014-07-01

    Bone marrow fat (BMF) results from an accumulation of fat cells within the bone marrow. Fat is not a simple filling tissue but is now considered as an actor within bone microenvironment. BMF is not comparable to other fat depots, as in subcutaneous or visceral tissues. Recent studies on bone marrow adipocytes have shown that they do not appear only as storage cells, but also as cells secreting adipokines, like leptin and adiponectin. Moreover bone marrow adipocytes share the same precursor with osteoblasts, the mesenchymal stem cell. It is now well established that high BMF is associated with weak bone mass in osteoporosis, especially during aging and anorexia nervosa. But numerous questions remain discussed: what is the precise phenotype of bone marrow adipocytes? What is the real function of BMF, and how does bone marrow adipocyte act on its environment? Is the increase of BMF during osteoporosis responsible for bone loss? Is BMF involved in other diseases? How to measure BMF in humans? A better understanding of BMF could allow to obtain new diagnostic tools for osteoporosis management, and could open major therapeutic perspectives. PMID:24703396

  19. Internal dosimetry of tritium

    SciTech Connect

    LaBone, T.R.

    1992-01-01

    Tritium is an interesting radionuclide from the perspective of internal dosimetry because of the wide variety of chemical compounds in which it can appear, its unusual routes of entry into the body, and its ability to exchange with stable hydrogen in surrounding material. In this report the internal dosimetry of tritium compounds is reviewed, with emphasis on methods of evaluating bioassay data following chronic and acute intakes. The assumptions and models used in the derivation of Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) for tritium are also discussed.

  20. Internal dosimetry of tritium

    SciTech Connect

    LaBone, T.R.

    1992-06-01

    Tritium is an interesting radionuclide from the perspective of internal dosimetry because of the wide variety of chemical compounds in which it can appear, its unusual routes of entry into the body, and its ability to exchange with stable hydrogen in surrounding material. In this report the internal dosimetry of tritium compounds is reviewed, with emphasis on methods of evaluating bioassay data following chronic and acute intakes. The assumptions and models used in the derivation of Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) for tritium are also discussed.

  1. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  2. WE-E-BRE-01: An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female - Internal Electron Sources

    SciTech Connect

    O'Reilly, S; Maynard, M; Marshall, E; Bolch, W; Sinclair, L; Rajon, D; Wayson, M

    2014-06-15

    Purpose: Limitations seen in previous skeletal dosimetry models, which are still employed in commonly used software today, include the lack of consideration of electron escape and cross-fire from cortical bone, the modeling of infinite spongiosa, the disregard of the effect of varying cellularity on active marrow self-irradiation, and the lack of use of the more recent ICRP definition of a 50 micron surrogate tissue region for the osteoprogenitor cells - shallow marrow. These limitations were addressed in the present dosimetry model. Methods: Electron transport was completed to determine specific absorbed fractions to active marrow and shallow marrow of the skeletal regions of the adult female. The bone macrostructure was obtained from the whole-body hybrid computational phantom of the UF series of reference phantoms, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 year-old female cadaver. The target tissue regions were active marrow and shallow marrow. The source tissues were active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume and cortical bone surfaces. The marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or modeled analytically. Results: The method of combining macro- and microstructure absorbed fractions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male in the Hough et al. study. Conclusion: The calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) and did not follow current models used in nuclear medicine dosimetry at high energies (due to that models use of an infinite expanse of trabecular spongiosa)

  3. What Is a Blood and Marrow Stem Cell Transplant?

    MedlinePlus

    ... procedure allows the recipient to get new stem cells that work properly. Stem cells are found in bone marrow, ... the body doesn't make enough red blood cells or they don't work properly. Certain immune-deficiency diseases that prevent the ...

  4. Bone marrow aspiration

    PubMed Central

    Bain, B

    2001-01-01

    Bone marrow aspiration biopsies are carried out principally to permit cytological assessment but also for immunophenotypic, cytogenetic, molecular genetic, and other specialised investigations. Often, a trephine biopsy is carried out as part of the same procedure. Bone marrow aspirations should be carried out by trained individuals who are aware of the indications, contraindications, and hazards of the procedure. They should follow a standard operating procedure. The operator should have made an adequate assessment of clinical and haematological features to ensure both that appropriate indications exist and that all relevant tests are performed. For the patient's comfort and safety, the posterior iliac crest is generally the preferred site of aspiration. Films of aspirated marrow and, when appropriate, films of crushed particles should be made and labelled. Once thoroughly dry, films should be fixed and stained. As a minimum, a Romanowsky stain and a Perls' stain are required. A cover slip should be applied. The bone marrow films should be assessed and reported in a systematic manner so that nothing of importance is overlooked, using a low power, then intermediate, then high power objective. A differential count should be performed. An interpretation of the findings, in the light of the clinical and haematological features, should be given. The report should be signed or computer authorised, using a secure password, and issued in a timely manner. Key Words: bone marrow aspirate • haematological diagnosis PMID:11533068

  5. Ion storage dosimetry

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  6. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  7. Dosimetry of Radiopharmaceuticals for Diagnostic and Therapeutic Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Smart, Richard

    2011-05-01

    A standard formalism for radionuclide internal radiation dosimetry was developed in the 1960s and continues to be refined today. Early work was based on a mathematical phantom but this is being replaced by phantoms developed from whole-body CT scans to give more realistic dose estimates. The largest contributors to the uncertainties in these dose estimates are the errors associated with in vivo activity quantitation, the variability of the biokinetics between patients and the limited information that can be obtained on these kinetics in individual patients. Despite these limitations, pre-treatment patient-specific dosimetry is being increasing used, particularly to limit the toxicity to non-target organs such as the bone marrow.

  8. Dosimetry of Radiopharmaceuticals for Diagnostic and Therapeutic Nuclear Medicine

    SciTech Connect

    Smart, Richard

    2011-05-05

    A standard formalism for radionuclide internal radiation dosimetry was developed in the 1960s and continues to be refined today. Early work was based on a mathematical phantom but this is being replaced by phantoms developed from whole-body CT scans to give more realistic dose estimates. The largest contributors to the uncertainties in these dose estimates are the errors associated with in vivo activity quantitation, the variability of the biokinetics between patients and the limited information that can be obtained on these kinetics in individual patients. Despite these limitations, pre-treatment patient-specific dosimetry is being increasing used, particularly to limit the toxicity to non-target organs such as the bone marrow.

  9. Bone-marrow transplant - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100112.htm Bone-marrow transplant - series—Normal anatomy To use the sharing ... Go to slide 4 out of 4 Overview Bone-marrow is a soft, fatty tissue found inside of ...

  10. Dosimetry for Radiopharmaceutical Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.

    2014-01-01

    Radiopharmaceutical therapy (RPT) involves the use of radionuclides that are either conjugated to tumor-targeting agents (eg, nanoscale constructs, antibodies, peptides, and small molecules) or concentrated in tissue through natural physiological mechanisms that occur predominantly in neoplastic or otherwise targeted cells (eg, Graves disease). The ability to collect pharmacokinetic data by imaging and use this to perform dosimetry calculations for treatment planning distinguishes RPT from other systemic treatment modalities. Treatment planning has not been widely adopted, in part, because early attempts to relate dosimetry to outcome were not successful. This was partially because a dosimetry methodology appropriate to risk evaluation rather than efficacy and toxicity was being applied to RPT. The weakest links in both diagnostic and therapeutic dosimetry are the accuracy of the input and the reliability of the radiobiological models used to convert dosimetric data to the relevant biologic end points. Dosimetry for RPT places a greater demand on both of these weak links. To date, most dosimetric studies have been retrospective, with a focus on tumor dose-response correlations rather than prospective treatment planning. In this regard, transarterial radioembolization also known as intra-arterial radiation therapy, which uses radiolabeled (90Y) microspheres of glass or resin to treat lesions in the liver holds much promise for more widespread dosimetric treatment planning. The recent interest in RPT with alpha-particle emitters has highlighted the need to adopt a dosimetry methodology that specifically accounts for the unique aspects of alpha particles. The short range of alpha-particle emitters means that in cases in which the distribution of activity is localized to specific functional components or cell types of an organ, the absorbed dose will be equally localized and dosimetric calculations on the scale of organs or even voxels (~5 mm) are no longer sufficient

  11. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... Help a Friend Who Cuts? Aspiration and Biopsy: Bone Marrow KidsHealth > For Teens > Aspiration and Biopsy: Bone Marrow Print A A A Text Size What's in ... Risks If You Have Questions What It Is Bone marrow aspirations and biopsies are performed to examine bone ...

  12. In vivo dosimetry for IMRT

    SciTech Connect

    Vial, Philip

    2011-05-05

    In vivo dosimetry has a well established role in the quality assurance of 2D radiotherapy and 3D conformal radiotherapy. The role of in vivo dosimetry for IMRT is not as well established. IMRT introduces a range of technical issues that complicate in vivo dosimetry. The first decade or so of IMRT implementation has largely relied upon pre-treatment phantom based dose verification. During that time, several new devices and techniques for in vivo dosimetry have emerged with the promise of providing the ultimate form of IMRT dose verification. Solid state dosimeters continue to dominate the field of in vivo dosimetry in the IMRT era. In this report we review the literature on in vivo dosimetry for IMRT, with an emphasis on clinical evidence for different detector types. We describe the pros and cons of different detectors and techniques in the IMRT setting and the roles that they are likely to play in the future.

  13. Quantitatively different red cell/nucleated cell chimerism in patients with long-term, persistent hematopoietic mixed chimerism after bone marrow transplantation for thalassemia major or sickle cell disease

    PubMed Central

    Andreani, Marco; Testi, Manuela; Gaziev, Javid; Condello, Rossella; Bontadini, Andrea; Tazzari, Pier Luigi; Ricci, Francesca; De Felice, Lidia; Agostini, Francesca; Fraboni, Daniela; Ferrari, Giuliana; Battarra, Mariarosa; Troiano, Maria; Sodani, Pietro; Lucarelli, Guido

    2011-01-01

    Background Persistent mixed chimerism represents a state in which recipient and donor cells stably co-exist after hematopoietic stem cell transplantation. However, since in most of the studies reported in literature the engraftment state was observed in the nucleated cells, in this study we determined the donor origin of the mature erythrocytes of patients with persistent mixed chimerism after transplantation for hemoglobinopathies. Results were compared with the engraftment state observed in singly picked out burst-forming unit – erythroid colonies and in the nucleated cells collected from the peripheral blood and from the bone marrow. Design and Methods The donor origin of the erythrocytes was determined analyzing differences on the surface antigens of the erythrocyte suspension after incubation with anti-ABO and/or anti-C, -c, -D, -E and -e monoclonal antibodies by a flow cytometer. Analysis of short tandem repeats was used to determine the donor origin of nucleated cells and burst-forming unit – erythroid colonies singly picked out after 14 days of incubation. Results The proportions of donor-derived nucleated cells in four transplanted patients affected by hemoglobinopathies were 71%, 46%, 15% and 25% at day 1364, 1385, 1314 and 932, respectively. Similar results were obtained for the erythroid precursors, analyzing the donor/recipient origin of the burst-forming unit – erythroid colonies. In contrast, on the same days of observation, the proportions of donor-derived erythrocytes in the four patients with persistent mixed chimerism were 100%, 100%, 73% and 90%. Conclusions Our results showed that most of the erythrocytes present in four long-term transplanted patients affected by hemoglobinopathies and characterized by the presence of few donor engrafted nucleated cells were of donor origin. The indication that small proportions of donor engrafted cells might be sufficient for clinical control of the disease in patients affected by hemoglobinopathies is

  14. Electron Paramagnetic Resonance Retrospective Dosimetry

    SciTech Connect

    Romanyukha, Alex; Trompier, Francois

    2011-05-05

    Necessity for, principles of, and general concepts of the electron paramagnetic resonance (EPR) retrospective dosimetry are presented. Also presented and given in details are examples of EPR retrospective dosimetry applications in tooth enamel, bone, and fingernails with focus on general approaches for solving technical and methodological problems. Advantages, drawbacks, and possible future developments are discussed and an extensive bibliography on EPR retrospective dosimetry is provided.

  15. Radiation dosimetry results from a Phase II trial of ibritumomab tiuxetan (Zevalin) radioimmunotherapy for patients with non-Hodgkin's lymphoma and mild thrombocytopenia.

    PubMed

    Wiseman, Gregory A; Leigh, Bryan R; Erwin, William D; Sparks, Richard B; Podoloff, Donald A; Schilder, Russell J; Bartlett, Nancy L; Spies, Stewart M; Grillo-López, Antonio J; Witzig, Thomas E; White, Christine A

    2003-04-01

    This was a 30-patient Phase II trial of reduced-dose (90)Y ibritumomab tiuxetan (Zevalin) RIT for patients with low-grade, follicular, or transformed B-cell NHL and mild thrombocytopenia. Patients were given an imaging dose of (111)In-labeled ibritumomab tiuxetan for dosimetry measurements. One week later, patients were administered a therapeutic dose of 0.3 mCi/kg (11 MBq/kg) (90)Y ibritumomab tiuxetan. Both (111)In- and (90)Y-labeled ibritumomab tiuxetan doses were preceded by an infusion of 250 mg/m(2) rituximab (Rituxan, MabThera) an unlabeled chimeric anti-CD20 antibody, to clear peripheral blood B cells and improve biodistribution of the radiolabeled antibody. For all 30 patients, normal organ and red marrow radiation absorbed doses were well below protocol-defined limits of 2000 cGy and 300 cGy, respectively. Median radiation absorbed doses were 48 cGy to red marrow (range: 6.5-95 cGy), 393 cGy to liver (range: 92-1581 cGy), 522 cGy to spleen (range: 165-1711 cGy), 162 cGy to lungs (41-295 cGy), and 14 cGy to kidneys (0.03-65 cGy). Though most correlative analyses were negative, certain analyses demonstrated a statistically significant correlation between the severity or duration of thrombocytopenia and pharmacokinetic or dosimetric parameters. These correlations were not consistent across the total patient population, and therefore, could not be exploited to predict hematologic toxicity. PMID:12804042

  16. Hanford External Dosimetry Program

    SciTech Connect

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs.

  17. Prostate PDT dosimetry

    PubMed Central

    Zhu, Timothy C.; Finlay, Jarod C.

    2015-01-01

    Summary We provide a review of the current state of dosimetry in prostate photodynamic therapy (PDT). PDT of the human prostate has been performed with a number of different photosensitizers and with a variety of dosimetry schemes. The simplest clinical light dose prescription is to quantify the total light energy emitted per length (J/cm) of cylindrical diffusing fibers (CDF) for patients treated with a defined photosensitizer injection per body weight. However, this approach does not take into account the light scattering by tissue and usually underestimates the local light fluence rate, and consequently the fluence. Techniques have been developed to characterize tissue optical properties and light fluence rates in vivo using interstitial measurements during prostate PDT. Optical methods have been developed to characterize tissue absorption and scattering spectra, which in turn provide information about tissue oxygenation and drug concentration. Fluorescence techniques can be used to quantify drug concentrations and photobleaching rates of photosensitizers. PMID:25046988

  18. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  19. Cosmic Ray Dosimetry

    NASA Astrophysics Data System (ADS)

    Si Belkhir, F.; Attallah, R.

    2010-10-01

    Radiation levels at aircraft cruising altitudes are twenty times higher than at sea level. Thus, on average, a typical airline pilot receives a larger annual radiation dose than some one working in nuclear industry. The main source of this radiation is from galactic cosmic radiation, high energy particles generated by exploding stars within our own galaxy. In this work we study cosmic rays dosimetry at various aviation altitudes using the PARMA model.

  20. Orchiectomy increases bone marrow interleukin-6 levels in mice.

    PubMed

    Zhang, J; Pugh, T D; Stebler, B; Ershler, W B; Keller, E T

    1998-03-01

    Interleukin-6 (IL-6) appears to be an important factor in disease states associated with bone resorption. There is both in vitro and in vivo evidence supporting the fact that androgens down-regulate interleukin-6 production. These observations, in combination with the fact that osteoblasts and bone marrow stromal cells produce IL-6, led us to hypothesize that orchiectomy-induced androgen loss will result in increased IL-6 expression in the bone microenvironment. To prove our hypothesis we assessed the effect of orchiectomy on IL-6 protein and mRNA expression in bone marrow and spleen. We found that orchiectomy was associated with increased serum IL-6 levels at 3 and 28 days postsurgery. Phorbol ester-stimulated IL-6 levels were also higher in supernatants from bone marrow and spleen cell cultures from orchiectomized mice compared with unoperated or sham-operated mice. Additionally, we found that steady state IL-6 mRNA levels were increased in bone marrow but not spleen cells. Finally, we found that orchiectomized mice had splenomegaly and increased bone marrow cellularity. Histopathology of the spleen revealed lymphoid hyperplasia accompanied by a marked mononuclear cell infiltration of the red pulp. We conclude that orchiectomy induces IL-6 expression in the bone marrow. These findings suggest that endocrine and cytokine interactions contribute to bone pathophysiology. PMID:9501955

  1. Pharmacokinetic, Dosimetry and Toxicity Study of ¹⁷⁷Lu-EDTMP in Patients: Phase 0/I study.

    PubMed

    Bal, Chandrasekhar; Arora, Geetanjali; Kumar, Praveen; Damle, Nishikant; Das, Tapas; Chakraborty, Sudipta; Banerjee, Sharmila; Venkatesh, Meera; Zaknun, John J; Pillai, M R A

    2016-01-01

    177Lu-EDTMP has been proposed as a potent bone pain palliation agent owing to theoretical advantage of reduced bone marrow suppression resulting from the low β(-) energy and a suitably long half-life facilitating its wider distribution with less loss from radioactive decay. Herein, we report the pharmacokinetics, dosimetry and toxicity analysis of 177Lu-EDTMP in patients (phase-0/I study). In a phase-0 study, the biokinetics of skeletal and non-skeletal uptake of 177Lu-EDTMP was assessed in 6 patients with metastatic prostate cancer using tracer doses (172.7-206.9MBq). Data of whole skeletal uptake, blood and fractionated urine samples were obtained and dosimetric calculations were performed using the OLINDA/EXM 1.0 software. Prolonged bone retention was observed in all patients. Excretion was mainly via the renal route and blood clearance was rapid and biphasic. Mean estimated red marrow dose was 0.80±0.15mGy/MBq while mean total-body dose was 0.16±0.04mGy/MBq. A maximum tolerated dose (MTD) of 2000-3250MBqfor 177Lu-EDTMP was calculated. For the phase-I study, 21 patients with metastatic prostate cancer were given a therapeutic dose of 177Lu- EDTMP (692-5550MBq). Toxiciy (WHO), evaluated by assessment of hemoglobin levels, platelet and leukocyte counts over 12 weeks, was mainly limited to anemia or thrombocytopenia. Only transient toxicity was observed in 14/21 patients, of which 6 had baseline toxicity. Beyond the MTD, a significantly higher number of patients displayed grade 3-4 toxicity. Pain relief, assessed by VAS pain score, was observed in 86% patients with median relief duration of 7 weeks. The results demonstrate that 177Lu-EDTMP has excellent pharmacokinetic and dosimetric properties, besides being safe and effective. Along with estimating radiation dose values to certain critical organs, we have also proposed an MTD for 177Lu-EDTMP that correlated well with toxicity data. The encouraging dosimetry and toxicity data of 177Lu-EDTMP reported provide the

  2. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    NASA Astrophysics Data System (ADS)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological

  3. The International Reactor Dosimetry File.

    Energy Science and Technology Software Center (ESTSC)

    1994-01-19

    Version 01 The International Reactor Dosimetry File (IRDF-90) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation. It also contains selected recommended values for radiation damage cross-sections and benchmark neutron spectra. This library supersedes all earlier versions of IRDF.

  4. Surface area overestimation within three-dimensional digital images and its consequence for skeletal dosimetry.

    PubMed

    Rajon, D A; Patton, P W; Shah, A P; Watchman, C J; Bolch, W E

    2002-05-01

    The most recent methods for trabecular bone dosimetry are based on Monte Carlo transport simulations within three-dimensional (3D) images of real human bone samples. Nuclear magnetic resonance and micro-computed tomography have been commonly used as imaging tools for studying trabecular microstructure. In order to evaluate the accuracy of these techniques for radiation dosimetry, a previous study was conducted that showed an overestimate in the absorbed fraction of energy for low-energy electrons emitted within the marrow space and irradiating the bone trabeculae. This problem was found to be related to an overestimate of the surface area of the true bone-marrow interface within the 3D digital images, and was identified as the surface-area effect. The goal of the present study is to better understand how this surface-area effect occurs in the case of single spheres representing individual marrow cavities within trabecular bone. First, a theoretical study was conducted which showed that voxelization of the spherical marrow cavity results in a 50% overestimation of the spherical surface area. Moreover, this overestimation cannot be reduced through a reduction in the voxel size (e.g., improved image resolution). Second, a series of single-sphere marrow cavity models was created with electron sources simulated within the sphere (marrow source) and outside the sphere (bone trabeculae source). The series of single-sphere models was then voxelized to represent 3D digital images of varying resolution. Transport calculations were made for both marrow and bone electron sources within these simulated images. The study showed that for low-energy electrons (<100 keV), the 50% overestimate of the bone-marrow interface surface area can lead to a 50% overestimate of the cross-absorbed fraction. It is concluded that while improved resolution will not reduce the surface area effects found within 3D image-based transport models, a tenfold improvement in current image resolution would

  5. Eye redness

    MedlinePlus

    Bloodshot eyes; Red eyes; Scleral infection; Conjunctival infection ... There are many causes of a red eye or eyes. Some are medical emergencies and some are a cause for concern, but not an emergency. Others are nothing to worry about. ...

  6. Red Clover

    MedlinePlus

    ... 17):2057–2071. Red clover. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on July 22, 2009. Red clover ( Trifolium pratense ). Natural Standard Database Web site. Accessed at www.naturalstandard.com on July ...

  7. Bone marrow trephine biopsy

    PubMed Central

    Bain, B

    2001-01-01

    Trephine biopsies of the bone marrow should be carried out, when clinically indicated, by trained individuals following a standard operating procedure. A bone marrow aspiration should be performed as part of the same procedure. For patient safety and convenience, biopsies are usually performed on the posterior iliac crest. The biopsy specimen should measure at least 1.6 cm and, if it does not, consideration should be given to repeating the procedure, possibly on the contralateral iliac crest. If bone marrow aspiration is found to be impossible, imprints from the biopsy specimen should be obtained. Otherwise, the specimen is placed immediately into fixative and after fixation is embedded in a resin or, more usually, decalcified and embedded in paraffin wax. Thin sections are cut and are stained, as a minimum, with haematoxylin and eosin and with a reticulin stain. A Giemsa stain is also desirable. A Perls' stain does not often give useful information and is not essential in every patient. The need for other histochemical or immunohistochemical stains is determined by the clinical circumstances and the preliminary findings. Trephine biopsy sections should be examined and reported in a systematic manner, assessment being made of the bones, the vessels and stroma, and the haemopoietic and any lymphoid or other tissue. Assessment should begin with a very low power objective, the entire section being examined. Further examination is then done with an intermediate and high power objective. Ideally, reporting of trephine biopsy sections should be done by an individual who is competent in both histopathology and haematology, and who is able to make an appropriate assessment of both the bone marrow aspirate and the trephine biopsy sections. When this is not possible, there should be close consultation between a haematologist and a histopathologist. The report should both describe the histological findings and give an interpretation of their importance. A signed or computer

  8. Bone marrow invasion in multiple myeloma and metastatic disease.

    PubMed

    Vilanova, J C; Luna, A

    2016-04-01

    Magnetic resonance imaging (MRI) of the spine is the imaging study of choice for the management of bone marrow disease. MRI sequences enable us to integrate structural and functional information for detecting, staging, and monitoring the response the treatment of multiple myeloma and bone metastases in the spine. Whole-body MRI has been incorporated into different guidelines as the technique of choice for managing multiple myeloma and metastatic bone disease. Normal physiological changes in the yellow and red bone marrow represent a challenge in analyses to differentiate clinically significant findings from those that are not clinically significant. This article describes the findings for normal bone marrow, variants, and invasive processes in multiple myeloma and bone metastases. PMID:26767542

  9. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  10. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  11. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  12. Uranium Dispersion & Dosimetry Model.

    Energy Science and Technology Software Center (ESTSC)

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  13. The Utah Leukemia Case-Control Study: dosimetry methodology and results.

    PubMed

    Simon, S L; Till, J E; Lloyd, R D; Kerber, R L; Thomas, D C; Preston-Martin, S; Lyon, J L; Stevens, W

    1995-04-01

    This paper discusses the dosimetry methodology used to estimate bone marrow dose and the results of dosimetry calculations for 6,507 subjects in an epidemiologic case-control study of leukemia among Utah residents. The estimated doses were used to determine if a higher incidence of leukemia among residents of Utah could have been attributed to exposure to radioactive fallout from above-ground nuclear weapons tests conducted at the Nevada Test Site. The objective of the dosimetry methodology was to estimate absorbed dose to active marrow specific to each case and each control subject. Data on the residence of each subject were available from records of the Church of Jesus Christ of Latter-day Saints. Deposition of fallout was determined from databases developed using historical measurements and exposure for each subject from each test was estimated using those data. Exposure was converted to dose by applying an age-dependent dose conversion factor and a factor for shielding. The median dose for all case and control subjects was 3.2 mGy. The maximum estimated mean dose for any case or control was 29 +/- 5.6 mGy (a resident of Washington County, UT). Uncertainties were estimated for each estimated dose. The results of the dosimetry calculations were applied in an epidemiological analysis. PMID:7883558

  14. Red clover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover (Trifolium pratense L.) is an important forage legume grown on approximately 4 million hectares worldwide. An estimated 2.8 million kg of red clover seed per year was produced worldwide in 2005-2007. This amount of seed would be enough to maintain approximately 4 million hectares of red...

  15. Red Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  The Red Sea     View Larger Image ... Imaging SpectroRadiometer (MISR) image of the Red Sea was acquired on August 13, 2000. Located between the East African coast and the Saudi Arabian peninsula, the Red Sea got its name because the blooms of a type of algae,  Trichodesmium ...

  16. Hematopoietic bone marrow in the adult knee: spin-echo and opposed-phase gradient-echo MR imaging.

    PubMed

    Lang, P; Fritz, R; Majumdar, S; Vahlensieck, M; Peterfy, C; Genant, H K

    1993-01-01

    Hematopoietic bone marrow in the distal femur of the adult may be mistaken for a pathologic marrow process in magnetic resonance imaging of the knee. We investigated the incidence of hematopoietic marrow in the distal femur in a series of 51 adult patients and compared spin-echo (TR/TE in ms: 500/35, 2000/80) and opposed-phase gradient-echo (0.35 T, TR/TE in ms: 1000/30, theta = 75 degrees) magnetic resonance images. Zones with intermediate to low signal intensity on T1-weighted spin-echo and opposed-phase gradient-echo sequences representing hematopoietic marrow within high signal intensity fatty marrow were observed in 18 of the 51 patients. Five patterns of marrow signal reduction were identified; type 0: uniform high signal, i.e., no signal change; type I, focal signal loss; type II, multifocal signal loss without confluence; type III, confluent signal loss; and type IV, complete homogeneous reduction in marrow signal. Opposed-phase gradient-echo sequences demonstrated markedly greater red-yellow marrow contrast than conventional spin-echo sequences. Follow-up studies in three patients using a gradient-echo sequence with TE varying from 10 to 21 ms at 1-ms increments showed a cyclic increase and decrease in red and yellow marrow signal intensity depending on the TE. The contribution of intravoxel chemical shift effects on red-yellow marrow contrast in opposed-phase gradient-echo images was verified by almost complete cancellation of the TE-dependent marrow signal oscillation with use of a chemically selective pulse presaturating the water protons. Hematopoietic marrow in the adult distal femur in the absence of hematologic abnormalities is found primarily in women of menstruating age.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8438189

  17. Liquid radiochromic dosimetry

    NASA Astrophysics Data System (ADS)

    Rativanich, N.; Radak, B. B.; Miller, A.; Uribe, R. M.; McLaughlin, W. L.

    By strategic combination of weak acid, mild oxidizing agent, and polar organic solvents containing millimolar concentrations of leucocyanides of certain triphenylmethane dyes, fairly broad ranges of absorbed doses of ionizing radiation can be determined. The yield of dye ions as determined by spectrophotometry can be made essentially constant with dose (i.e. linear response) from 0.01 to 30 kGy and it does not vary with dose rate upto 10 11 Gy·s -1. The radiation-induced color is stable and offers fast-retrieval dosimetry if N-vinyl-2-pyrrolidone is used as solvent. Other possible polar solvents are 2-propanol, 2-methoxy ethanol, N, N-dimethyl formamide, dimethyl sulfoxide, and triethyl phosphate. Dimethyl sulfoxide is found to give the widest and most linear response. Suitable dye precursors are leucocyanides of pararosaniline, new fuchsin, hexa (hydroxyethyl) pararosaniline, crystal violet, malachite green, setoglaucine, ethyl violet, helvetia green, basic violet-14, and formyl violet. Low concentrations of carboxylic acids contribute stability to the system. Typical mild oxidizing agents are nitrobenzene, and atmospheric oxygen, or oxygen released radiolytically from the solvents. The dosimetry systems do not require high-purity of ingredients or ultracleanliness of containers, although, for reproducibility of dye yields (G-values), thoroughly purified and uniform dye derivates are recommended.

  18. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  19. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  20. Optimizing the dynamic range extension of a radiochromic film dosimetry system

    SciTech Connect

    Devic, Slobodan; Tomic, Nada; Soares, Christopher G.; Podgorsak, Ervin B.

    2009-02-15

    The authors present a radiochromic film dosimetry protocol for a multicolor channel radiochromic film dosimetry system consisting of the external beam therapy (EBT) model GAFCHROMIC film and the Epson Expression 1680 flat-bed document scanner. Instead of extracting only the red color channel, the authors are using all three color channels in the absorption spectrum of the EBT film to extend the dynamic dose range of the radiochromic film dosimetry system. By optimizing the dose range for each color channel, they obtained a system that has both precision and accuracy below 1.5%, and the optimized ranges are 0-4 Gy for the red channel, 4-50 Gy for the green channel, and above 50 Gy for the blue channel.

  1. High-fidelity organic preservation of bone marrow in ca. 10 Ma amphibians

    NASA Astrophysics Data System (ADS)

    McNamara, Maria E.; Orr, Patrick J.; Kearns, Stuart L.; Alcalá, Luis; Anadón, Pere; Peñalver-Mollá, Enrique

    2006-08-01

    Bone marrow in ca. 10 Ma frogs and salamanders from the Miocene of Libros, Spain, represents the first fossilized example of this extremely decay-prone tissue. The bone marrow, preserved in three dimensions as an organic residue, retains the original texture and red and yellow color of hematopoietic and fatty marrow, respectively; moldic osteoclasts and vascular structures are also present. We attribute exceptional preservation of the fossilized bone marrow to cryptic preservation: the bones of the amphibians formed protective microenvironments, and inhibited microbial infiltration. Specimens in which bone marrow is preserved vary in their completeness and articulation and in the extent to which the body outline is preserved as a thin film of organically preserved bacteria. Cryptic preservation of these labile tissues is thus to a large extent independent of, and cannot be predicted by, the taphonomic history of the remainder of the specimen.

  2. Starvation marrow – gelatinous transformation of bone marrow

    PubMed Central

    Osgood, Eric; Muddassir, Salman; Jaju, Minal; Moser, Robert; Farid, Farwa; Mewada, Nishith

    2014-01-01

    Gelatinous bone marrow transformation (GMT), also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management. PMID:25317270

  3. KSC CENTER DIRECTOR ACCEPTS PLAQUE FOR RECORD-SETTING BONE MARROW DONOR REGISTRATION DRIVE

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Kennedy Space Center's Bone Marrow Donor Registration Drive Chairman Dr. George A. Martin and Center Director Jay Honeycutt (left to right) accept a plaque from the Leukemia Society of America's Associate Executive Director Martin Bernstine and the American Red Cross' Southeast Regional Director Jeff Koenreich. Representatives from the American Red Cross and the Leukemia Society of America came to KSC to honor those involved in the record-setting Bone Marrow Donor Registration Drive held here earlier this year. Over 900 potential donors were added to the National Bone Marrow Registry as a result of the KSC drive. The drive established a new record for the most people registered in a single day for the American Red Cross in the three state region of which Florida is a part.

  4. Bone Marrow Derived Eosinophil Cultures

    PubMed Central

    Lu, Thomas X.; Rothenberg, Marc E.

    2016-01-01

    Eosinophils are multifunctional effector cells implicated in the pathogenesis of a variety of diseases including asthma, eosinophil gastrointestinal disorders and helminth infection. Mouse bone marrow derived progenitor cells can be differentiated into eosinophils following IL-5 exposure. These bone marrow derived eosinophils are fully differentiated at the end of a 14 day culture based on morphology and expression of molecular markers.

  5. A Dosimetric Study of Radionuclide Therapy for Bone Marrow Ablation.

    NASA Astrophysics Data System (ADS)

    Bayouth, John Ellis

    In a phase I clinical trial, six multiple myeloma patients, who were non-responsive to conventional therapy and were scheduled for bone marrow transplantation, received Holmium-166 (166Ho) labeled to a bone seeking agent, DOTMP (1,4,7,10-tetraazacyclododecane -1,4,7,10-tetramethylene-phosphonic acid), for the purpose of bone marrow ablation. The specific aims of my research within this protocol were to evaluate the toxicity and efficacy of 166Ho DOTMP by quantifying the in vivo pharmacokinetics and radiation dosimetry, and by correlating these results to the biologic response observed. The reproducibility of pharmacokinetics from multiple injections of 166 Ho DOTMP administered to these myeloma patients was demonstrated from both blood and whole body retention. The skeletal concentration of 166 Ho DOTMP was heterogenous in all six patients: high in the ribs, pelvis, and lumbar vertebrae regions, and relatively low in the femurs, arms, and head. A novel technique was developed to calculate the radiation dose to the bone marrow in each skeletal ROI, and was applied to all six 166 Ho DOTMP patients. Radiation dose estimates for the bone marrow calculated using the standard MIRD "S" factors were compared with the average values derived from the heterogenous distribution of activity in the skeleton (i.e., the regional technique). The results from the two techniques were significantly different; the average of the dose estimates from the regional technique were typically 30% greater. Furthermore, the regional technique provided a range of radiation doses for the entire marrow volume, while the MIRD "S" factors only provided a single value. Dose volume histogram analysis of data from the regional technique indicated a range of dose estimates that varied by a factor of 10 between the high dose and low dose regions. Finally, the observed clinical response of cells and abnormal proteins measured in bone marrow aspirates and peripheral blood samples were compared with

  6. Internal dosimetry technical basis manual

    SciTech Connect

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  7. Radioembolization Dosimetry: The Road Ahead

    SciTech Connect

    Smits, Maarten L. J. Elschot, Mattijs; Sze, Daniel Y.; Kao, Yung H.; Nijsen, Johannes F. W.; Iagaru, Andre H.; Jong, Hugo W. A. M. de; Bosch, Maurice A. A. J. van den; Lam, Marnix G. E. H.

    2015-04-15

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  8. Fundamentals of Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  9. Medical dosimetry in Hungary

    NASA Astrophysics Data System (ADS)

    Turák, O.; Osvay, M.; Ballay, L.

    2012-09-01

    Radiation exposure of medical staff during cardiological and radiological procedures was investigated. The exposure of medical staff is directly connected to patient exposure. The aim of this study was to determine the distribution of doses on uncovered part of body of medical staff using LiF thermoluminescent (TL) dosimeters in seven locations. Individual Kodak film dosimeters (as authorized dosimetry system) were used for the assessment of medical staff's effective dose. Results achieved on dose distribution measurements confirm that wearing only one film badge under the lead apron does not provide enough information on the personal dose. The value of estimated annual doses on eye lens and extremities (fingers) were in good correlation with international publications.

  10. Fundamentals of Radiation Dosimetry

    SciTech Connect

    Bos, Adrie J. J.

    2011-05-05

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  11. Laser heated thermoluminescence dosimetry

    SciTech Connect

    Justus, B.L.; Huston, A.L.

    1996-06-01

    We report a novel laser-heated thermoluminescence dosimeter that is radically different from previous laser-heated dosimeters. The dosimeter is a semiconductor and metal ion doped silica glass that has excellent optical transparency. The high optical quality of the glass essentially eliminates laser power loss due to light scattering. This efficient utilization of the laser power permits operation of the dosimeter without strong absorption of the laser, as is required in traditional laser-heated dosimetry. Our laser-heated dosimeter does not rely on the diffusion of heat from a separate, highly absorbing substrate, but operates via intimate, localized heating within the glass dosimeter due to the absorption of the laser light by rare earth ion dopants in the glass. Following absorption of the laser light, the rare earth ions transfer energy to the surrounding glass via nonradiative relaxation processes, resulting in rapid, localized temperature increases sufficient to release all the filled traps near the ions. As the heat diffuses radially away from the rare earth ions the temperature plummets dramatically on a manometer distance scale and the release of additional filled traps subsides. A key distinguishing feature of this laser-heated dosimeter is the ability to read the dose information more than once. While laser-heating provides complete information about the radiation exposure experienced by the glass due to the release of locally heated traps, the process leaves the remaining filled bulk traps undisturbed. The bulk traps can be read using traditional bulk heating methods and can provide a direct determination of an accumulated dose, measured following any number of laser-heated readouts. Laser-heated dosimetry measurements have been performed using a solid state diode laser for the readout following radiation exposure with a {sup 60}Co source.

  12. The International Reactor Dosimetry File.

    Energy Science and Technology Software Center (ESTSC)

    2008-08-07

    Version 01 The International Reactor Dosimetry File (IRDF-2002) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation and subsequent neutron spectrum unfolding. It also contains selected recom�mended values for radiation damage cross-sections and benchmark neutron spectra. Two related programs available from NEADB and RSICC are: SPECTER-ANL (PSR-263) & STAY’SL (PSR-113).

  13. Hanford internal dosimetry program manual

    SciTech Connect

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  14. Fifth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  15. Effect of syngeneic marrow injection upon recovery in sub- and near-lethally irradiated mice

    SciTech Connect

    Boggs, S.S.; Boggs, D.R.; Patrene, K.D.

    1989-06-01

    Mice were given sub-lethal (200-600 cGy) or near-lethal (800 cGy) whole body irradiation and the effect of injecting syngeneic marrow on subsequent hematopoietic recovery was studied. Marrow cell injection enhanced erythropoietic recovery after sub-lethal irradiation as reflected in hematocrit values and rate of appearance of /sup 59/Fe-labeled red cells in blood. However, this enhanced erythropoiesis was only seen in the spleen, and /sup 59/Fe uptake in marrow was reduced. When the irradiation dose was kept constant and the marrow dose increased from 10(5) to 10(6) to 10(7) cells, there was a somewhat erratic increase in spleen /sup 59/Fe and a decrease in marrow /sup 59/Fe uptake. When marrow cell number was kept constant and the dose of irradiation was increased from 200 to 400 to 600 to 800 cGy, there was an exponential increase in spleen /sup 59/Fe uptake but the marrow /sup 59/Fe uptake changed from depressed after lower doses to increased after 800 cGy. Cell injection after sub-lethal irradiation did not increase or decrease granulocytopoiesis. Injection of irradiated marrow cells also reduced marrow erythropoiesis and this was evident after both sub- and near-lethal irradiation. However, injection of irradiated cells did not increase splenic erythropoiesis. Following splenectomy, the depressed marrow erythropoiesis attending injection of viable cells was virtually eliminated but no increase was seen. These data suggest that the injection of autologous or syngeneic marrow may not be effective as a means of accelerating hematopoietic recovery after irradiation unless near-lethal or lethal dose have been received.

  16. Red blood cell decreases of microgravity

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1985-01-01

    Postflight decreases in red blood cell mass (RBCM) have regularly been recorded after exposure to microgravity. These 5-25 percent decreases do not relate to the mission duration, workload, caloric intake or to the type of spacecraft used. The decrease is accompanied by normal red cell survivals, increased ferritin levels, normal radioactive iron studies, and increases in mean red blood cell volume. Comparable decreases in red blood cell mass are not found after bed rest, a commonly used simulation of the microgravity state. Inhibited bone marrow erythropoiesis has not been proven to date, although reticulocyte numbers in the peripheral circulation are decreased about 50 percent. To date, the cause of the microgravity induced decreases in RBCM is unknown. Increased splenic trapping of circulating red blood cells seem the most logical way to explain the results obtained.

  17. Evaluation of the in vivo genotoxicity of Allura Red AC (Food Red No. 40).

    PubMed

    Honma, Masamitsu

    2015-10-01

    Allura Red AC (Food Red No. 40) is a red azo dye that is used for food coloring in beverage and confectionary products. However, its genotoxic properties remain controversial. To clarify the in vivo genotoxicity, we treated mice with Allura Red AC and investigated the induction of DNA damage (liver, glandular stomach), clastogenicity/anuegenicity (bone marrow), and mutagenicity (liver, glandular stomach) using Comet assays, micronucleus tests, and transgenic gene mutation assays, respectively. All studies were conducted in accordance with the Organization for Economic Co-operation and Development (OECD) guideline. Although Allura Red AC was administered up to the maximum doses recommended by the OECD guideline, no genotoxic effect was observed in any of the genotoxic endpoints. These data clearly show no evidence of in vivo genotoxic potential of Allura Red AC administered up to the maximum doses in mice. PMID:26364875

  18. Skeletal dosimetry for external exposures to photons based on {mu}CT images of spongiosa: Consideration of voxel resolution, cluster size, and medullary bone surfaces

    SciTech Connect

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Brown, K. A. Robson

    2009-11-15

    Skeletal dosimetry based on {mu}CT images of trabecular bone has recently been introduced to calculate the red bone marrow (RBM) and the bone surface cell (BSC) equivalent doses in human phantoms for external exposure to photons. In order to use the {mu}CT images for skeletal dosimetry, spongiosa voxels in the skeletons were replaced at run time by so-called micromatrices, which have exactly the size of a spongiosa voxel and contain segmented trabecular bone and marrow microvoxels. A cluster (=parallelepiped) of 2x2x2=8 micromatrices was used systematically and periodically throughout the spongiosa volume during the radiation transport calculation. Systematic means that when a particle leaves a spongiosa voxel to enter into a neighboring spongiosa voxel, then the next micromatrix in the cluster will be used. Periodical means that if the particle travels through more than two spongiosa voxels in a row, then the cluster will be repeated. Based on the bone samples available at the time, clusters of up to 3x3x3=27 micromatrices were studied. While for a given trabecular bone volume fraction the whole-body RBM equivalent dose showed converging results for cluster sizes between 8 and 27 micromatrices, this was not the case for the BSC equivalent dose. The BSC equivalent dose seemed to be very sensitive to the number, form, and thickness of the trabeculae. In addition, the cluster size and/or the microvoxel resolution were considered to be possible causes for the differences observed. In order to resolve this problem, this study used a bone sample large enough to extract clusters containing up to 8x8x8=512 micromatrices and which was scanned with two different voxel resolutions. Taking into account a recent proposal, this investigation also calculated the BSC equivalent dose on medullary surfaces of cortical bone in the arm and leg bones. The results showed (1) that different voxel resolutions have no effect on the RBM equivalent dose but do influence the BSC equivalent

  19. Red Sky with Red Mesa

    SciTech Connect

    2011-04-14

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  20. Red Sky with Red Mesa

    ScienceCinema

    None

    2014-06-23

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  1. Red Capes, Red Herrings, and Red Flags.

    ERIC Educational Resources Information Center

    Fiske, Donald W.

    The argument that the personality structures obtained from retrospective ratings reflect semantic similarity structures has been as provocative as a red cape in the bull ring. High congruence between those two kinds of structures seems well established. What is less clear is how and why those structures differ from that for immediate judgments of…

  2. Space radiation dosimetry

    SciTech Connect

    Hanser, F.A.; Dichter, B.K. ||

    1993-12-31

    Dosimetry is the measurement of the energy deposited in matter by various forms of radiation. In space the radiation is primarily energetic electrons, protons and heavier ions from planetary radiation belts, solar flares, and interstellar cosmic rays. Experimentally, dose is frequently obtained by summing the individual energy deposits in a solid state detector. If the detector is calibrated and the sensitive mass is known, the energy sum can be converted directly to accumulated radiation dose in Gy (J/kg). Such detectors can also be used to provide an approximate separation of dose into the components due to electrons, protons, and heavier ions, which is useful if it is desired to convert the measured dose into a biological effective dose (Sv) for manned spaceflight purposes. The output can also be used to provide an essentially instantaneous dose rate for use as warning devices. This is the primary type of space radiation dosimeter to be discussed here. The MOS-type dosimeter is another solid state sensor which can be of small size and low power. These devices integrate the total dose once through, can not separate particle types, and are not suitable for instantaneous dose rate measurement at low levels. There are several additional methods of measuring space radiation dose using scintillators, etc., but are not discussed in detail. In this paper emphasis is given to descriptions of active solid state detector instruments which have successfully worked in space. Some results of in-orbit dose measurements are presented.

  3. Red and NIR light dosimetry in the human deep brain

    NASA Astrophysics Data System (ADS)

    Pitzschke, A.; Lovisa, B.; Seydoux, O.; Zellweger, M.; Pfleiderer, M.; Tardy, Y.; Wagnières, G.

    2015-04-01

    Photobiomodulation (PBM) appears promising to treat the hallmarks of Parkinson’s Disease (PD) in cellular or animal models. We measured light propagation in different areas of PD-relevant deep brain tissue during transcranial, transsphenoidal illumination (at 671 and 808 nm) of a cadaver head and modeled optical parameters of human brain tissue using Monte-Carlo simulations. Gray matter, white matter, cerebrospinal fluid, ventricles, thalamus, pons, cerebellum and skull bone were processed into a mesh of the skull (158 × 201 × 211 voxels; voxel side length: 1 mm). Optical parameters were optimized from simulated and measured fluence rate distributions. The estimated μeff for the different tissues was in all cases larger at 671 than at 808 nm, making latter a better choice for light delivery in the deep brain. Absolute values were comparable to those found in the literature or slightly smaller. The effective attenuation in the ventricles was considerably larger than literature values. Optimization yields a new set of optical parameters better reproducing the experimental data. A combination of PBM via the sphenoid sinus and oral cavity could be beneficial. A 20-fold higher efficiency of light delivery to the deep brain was achieved with ventricular instead of transcranial illumination. Our study demonstrates that it is possible to illuminate deep brain tissues transcranially, transsphenoidally and via different application routes. This opens therapeutic options for sufferers of PD or other cerebral diseases necessitating light therapy.

  4. Nuclear accident dosimetry intercomparison studies.

    PubMed

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry. PMID:2777549

  5. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... A Recipes En Español Teachers - Looking for Health Lessons? Visit KidsHealth in the Classroom What Other Parents ... bone marrow sample for procedures (such as a stem cell transplant ) or other testing (such as chromosomal ...

  6. 4.2 Methods for Internal Dosimetry

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.2 Methods for Internal Dosimetry' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy' with the contents:

  7. Initial radiation dosimetry at Hiroshima and Nagasaki

    SciTech Connect

    Loewe, W.E.

    1983-09-01

    The dosimetry of A-bomb survivors at Hiroshima and Nagasaki is discussed in light of the new dosimetry developed in 1980 by the author. The important changes resulting from the new dosimetry are the ratios of neutron to gamma doses, particularly at Hiroshima. The implications of these changes in terms of epidemiology and radiation protection standards are discussed. (ACR)

  8. Internal dose to active marrow and endosteum from radioactive iodine.

    PubMed

    Hoseinian-Azghadi, E; Rafat-Motavalli, L; Miri-Hakimabad, H

    2015-04-01

    This study analyses the active marrow and endosteum dose differences between the new International Commission on Radiological Protection (ICRP) male and female reference computational phantoms and the stylised phantom for two thyroid agents. The active marrow and endosteum doses from (131)I and (123)I were calculated for 0-55 % maximum thyroid uptakes using the MCNP-4C Monte Carlo code. The biokinetic models were taken from ICRP Publication 53. To evaluate the absorbed doses to red marrow and endosteum, the deposited energy was determined for the 19 spongiosa regions and 6 medullary cavities and was mass weighted using the mass fractions available in ICRP Publication 116. The results were then compared with the published values given in ICRP Publication 53. The poor anatomic realism of the stylised phantom used in ICRP Publication 53 leads to important dose differences between the ICRP voxel phantoms and the stylised phantom. The influence of the use of different bone material was also investigated. Underestimations of ∼60% were observed for active marrow doses of the stylised phantom compared with reference voxel phantoms. The results highlight the importance of the accuracy of the shape and inter-organ distances of the anthropomorphic model used. PMID:25157198

  9. Fourth Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Dickson, H.W.

    1980-02-01

    The fourth Personnel Dosimetry Intercomparison Study was held at the Oak Ridge National Laboratory's Dosimetry Applications Research Facility during March 15-23, 1978. The Health Physics Research Reactor (HPRR) used unshielded, with a 12-cm-thick Lucite shield, a 20-cm-thick concrete shield, or a 5-cm-thick steel and 15-cm-thick concrete shield, and provided four neutron and gamma-ray spectra. Then the dose was calculated based on the HPRR neutron spectra and dose conversion factors which had been determined previously for the four spectra. The results of these personnel dosimetry intercomparison studies reveal that estimates of dose equivalent vary over a wide range. The standard deviation of the mean of participants data for gamma measurements was in the range of 29 to 43%; for neutrons it was 57 to 188%. (PCS)

  10. TVA's dosimetry technician training program

    SciTech Connect

    Hudson, C.G.; Faust, V.L.; Cornelius, T.W.; Regan, J.M.; Farrell, W.E. )

    1984-04-01

    In 1984, the Tennessee Valley Authority decentralized its personnel TLD program and established TLD processing facilities at each of its nuclear plant sites. This article describes the training program that was developed to aid in staffing dosimetry technician positions at each of the plants. The scope of the dosimetry technician's duties include TLD processing, operation of a computerized records system, whole-body counting system operation, and respirator mask fit-testing. The training program includes thirteen weeks of classroom and laboratory training plus a 15-month apprenticeship at a nuclear plant. Retraining and requalification are performed on an annual basis.

  11. Monte Carlo portal dosimetry

    SciTech Connect

    Chin, P.W. . E-mail: mary.chin@physics.org

    2005-10-15

    This project developed a solution for verifying external photon beam radiotherapy. The solution is based on a calibration chain for deriving portal dose maps from acquired portal images, and a calculation framework for predicting portal dose maps. Quantitative comparison between acquired and predicted portal dose maps accomplishes both geometric (patient positioning with respect to the beam) and dosimetric (two-dimensional fluence distribution of the beam) verifications. A disagreement would indicate that beam delivery had not been according to plan. The solution addresses the clinical need for verifying radiotherapy both pretreatment (without the patient in the beam) and on treatment (with the patient in the beam). Medical linear accelerators mounted with electronic portal imaging devices (EPIDs) were used to acquire portal images. Two types of EPIDs were investigated: the amorphous silicon (a-Si) and the scanning liquid ion chamber (SLIC). The EGSnrc family of Monte Carlo codes were used to predict portal dose maps by computer simulation of radiation transport in the beam-phantom-EPID configuration. Monte Carlo simulations have been implemented on several levels of high throughput computing (HTC), including the grid, to reduce computation time. The solution has been tested across the entire clinical range of gantry angle, beam size (5 cmx5 cm to 20 cmx20 cm), and beam-patient and patient-EPID separations (4 to 38 cm). In these tests of known beam-phantom-EPID configurations, agreement between acquired and predicted portal dose profiles was consistently within 2% of the central axis value. This Monte Carlo portal dosimetry solution therefore achieved combined versatility, accuracy, and speed not readily achievable by other techniques.

  12. Characteristics of marrow production and reticulocyte maturation in normal man in response to anemia

    PubMed Central

    Hillman, Robert S.

    1969-01-01

    Erythropoiesis in normal man was studied during periods of phlebotomy-induced anemia of varying severity. This study permitted a comparison of marrow production measurements over a wide range of marrow production levels. As long as the serum iron remained above 50 μg/100 ml, measurements of plasma iron turnover provided an excellent index of marrow production at all levels of red cell production. In contrast, the absolute reticulocyte count demonstrated a poor correlation with the other measurements. This was shown to be the result of a prolongation of the time required for circulating reticulocytes to lose their reticulum, which correlated with the severity of the anemia. For the clinical application of the reticulocyte count as a measurement of marrow production, an adjustment must be made for this alteration in the circulating reticulocyte maturation time. PMID:5773082

  13. What Happens During a Bone Marrow Transplant? | NIH MedlinePlus the Magazine

    MedlinePlus

    ... procedure allows the recipient to get new stem cells that work properly. Stem cells are found in bone marrow, ... The body doesn’t make enough red blood cells, or they don’t work properly. Certain immune-deficiency diseases that prevent the ...

  14. An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources

    NASA Astrophysics Data System (ADS)

    Pafundi, Deanna; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2010-04-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  15. A stochastic model of radiation-induced bone marrow damage

    SciTech Connect

    Cotlet, G.; Blue, T.E.

    2000-03-01

    A stochastic model, based on consensus principles from radiation biology, is used to estimate bone-marrow stem cell pool survival (CFU-S and stroma cells) after irradiation. The dose response model consists of three coupled first order linear differential equations which quantitatively describe time dependent cellular damage, repair, and killing of red bone marrow cells. This system of differential equations is solved analytically through the use of a matrix approach for continuous and fractionated irradiations. The analytic solutions are confirmed through the dynamical solution of the model equations using SIMULINK. Rate coefficients describing the cellular processes of radiation damage and repair, extrapolated to humans from animal data sets and adjusted for neutron-gamma mixed fields, are employed in a SIMULINK analysis of criticality accidents. The results show that, for the time structures which may occur in criticality accidents, cell survival is established mainly by the average dose and dose rate.

  16. Modeling Hematopoiesis and Responses to Radiation Countermeasures in a Bone Marrow-on-a-Chip.

    PubMed

    Torisawa, Yu-Suke; Mammoto, Tadanori; Jiang, Elisabeth; Jiang, Amanda; Mammoto, Akiko; Watters, Alexander L; Bahinski, Anthony; Ingber, Donald E

    2016-05-01

    Studies on hematopoiesis currently rely on animal models because in vitro culture methods do not accurately recapitulate complex bone marrow physiology. We recently described a bone marrow-on-a-chip microfluidic device that enables the culture of living hematopoietic bone marrow and mimics radiation toxicity in vitro. In the present study, we used this microdevice to demonstrate continuous blood cell production in vitro and model bone marrow responses to potential radiation countermeasure drugs. The device maintained mouse hematopoietic stem and progenitor cells in normal proportions for at least 2 weeks in culture. Increases in the number of leukocytes and red blood cells into the microfluidic circulation also could be detected over time, and addition of erythropoietin induced a significant increase in erythrocyte production. Exposure of the bone marrow chip to gamma radiation resulted in reduction of leukocyte production, and treatment of the chips with two potential therapeutics, granulocyte-colony stimulating factor or bactericidal/permeability-increasing protein (BPI), induced significant increases in the number of hematopoietic stem cells and myeloid cells in the fluidic outflow. In contrast, BPI was not found to have any effect when analyzed using static marrow cultures, even though it has been previously shown to accelerate recovery from radiation-induced toxicity in vivo. These findings demonstrate the potential value of the bone marrow-on-a-chip for modeling blood cell production, monitoring responses to hematopoiesis-modulating drugs, and testing radiation countermeasures in vitro. PMID:26993746

  17. A probabilistic gastrointestinal tract dosimetry model

    NASA Astrophysics Data System (ADS)

    Huh, Chulhaeng

    In internal dosimetry, the tissues of the gastrointestinal (GI) tract represent one of the most radiosensitive organs of the body with the hematopoietic bone marrow. Endoscopic ultrasound is a unique tool to acquire in-vivo data on GI tract wall thicknesses of sufficient resolution needed in radiation dosimetry studies. Through their different echo texture and intensity, five layers of differing echo patterns for superficial mucosa, deep mucosa, submucosa, muscularis propria and serosa exist within the walls of organs composing the alimentary tract. Thicknesses for stomach mucosa ranged from 620 +/- 150 mum to 1320 +/- 80 mum (total stomach wall thicknesses from 2.56 +/- 0.12 to 4.12 +/- 0.11 mm). Measurements made for the rectal images revealed rectal mucosal thicknesses from 150 +/- 90 mum to 670 +/- 110 mum (total rectal wall thicknesses from 2.01 +/- 0.06 to 3.35 +/- 0.46 mm). The mucosa thus accounted for 28 +/- 3% and 16 +/- 6% of the total thickness of the stomach and rectal wall, respectively. Radiation transport simulations were then performed using the Monte Carlo N-particle transport code (MCNP) 4C transport code to calculate S values (Gy/Bq-s) for penetrating and nonpenetrating radiations such as photons, beta particles, conversion electrons and auger electrons of selected nuclides, I123, I131, Tc 99m and Y90 under two source conditions: content and mucosa sources, respectively. The results of this study demonstrate generally good agreement with published data for the stomach mucosa wall. The rectal mucosa data are consistently higher than published data compared with the large intestine due to different radiosensitive cell thicknesses (350 mum vs. a range spanning from 149 mum to 729 mum) and different geometry when a rectal content source is considered. Generally, the ICRP models have been designed to predict the amount of radiation dose in the human body from a "typical" or "reference" individual in a given population. The study has been performed to

  18. Mechanics of intact bone marrow.

    PubMed

    Jansen, Lauren E; Birch, Nathan P; Schiffman, Jessica D; Crosby, Alfred J; Peyton, Shelly R

    2015-10-01

    The current knowledge of bone marrow mechanics is limited to its viscous properties, neglecting the elastic contribution of the extracellular matrix. To get a more complete view of the mechanics of marrow, we characterized intact yellow porcine bone marrow using three different, but complementary techniques: rheology, indentation, and cavitation. Our analysis shows that bone marrow is elastic, and has a large amount of intra- and inter-sample heterogeneity, with an effective Young׳s modulus ranging from 0.25 to 24.7 kPa at physiological temperature. Each testing method was consistent across matched tissue samples, and each provided unique benefits depending on user needs. We recommend bulk rheology to capture the effects of temperature on tissue elasticity and moduli, indentation for quantifying local tissue heterogeneity, and cavitation rheology for mitigating destructive sample preparation. We anticipate the knowledge of bone marrow elastic properties for building in vitro models will elucidate mechanisms involved in disease progression and regenerative medicine. PMID:26189198

  19. Cobalt-60 total body irradiation dosimetry at 220 cm source-axis distance

    SciTech Connect

    Glasgow, G.P.; Mill, W.B.

    1980-06-01

    Adults with acute leukemia are treated with cyclophosphamide and total body irradiation (TBI) followed by autologous marrow transplants. For TBI, patients seated in a stand angled 45/sup 0/ above the floor are treated for about 2 hours at 220 cm source-axis distance (SAD) with sequential right and left lateral 87 cm x 87 cm fields to a 900 rad mid-pelvic dose at about 8 rad/min using a 5000 Ci cobalt unit. Maximum (lateral) to minimum (mid-plane) dose ratios are: hips--1.15, shoulders--1.30, and head--1.05, which is shielded by a compensator filter. Organ doses are small intestine, liver and kidneys--1100 rad, lung--1100 to 1200 rad, and heart--1300 rad. Verification dosimetry reveals the prescribed dose is delivered to within +-5%. Details of the dosimetry of this treatment are presented.

  20. Neocytolysis: physiological down-regulator of red-cell mass

    NASA Technical Reports Server (NTRS)

    Alfrey, C. P.; Rice, L.; Udden, M. M.; Driscoll, T. B.

    1997-01-01

    It is usually considered that red-cell mass is controlled by erythropoietin-driven bone marrow red-cell production, and no physiological mechanisms can shorten survival of circulating red cells. In adapting to acute plethora in microgravity, astronauts' red-cell mass falls too rapidly to be explained by diminished red-cell production. Ferrokinetics show no early decline in erythropolesis, but red cells radiolabelled 12 days before launch survive normally. Selective destruction of the youngest circulating red cells-a process we call neocytolysis-is the only plausible explanation. A fall in erythropoietin below a threshold is likely to initiate neocytolysis, probably by influencing surface-adhesion molecules. Recognition of neocytolysis will require re-examination of the pathophysiology and treatment of several blood disorders, including the anaemia of renal disease.

  1. Bone marrow and splenic histology in hairy cell leukaemia.

    PubMed

    Wotherspoon, Andrew; Attygalle, Ayoma; Mendes, Larissa Sena Teixeira

    2015-12-01

    Hairy cell leukaemia is a rare chronic neoplastic B-cell lymphoproliferation that characteristically involves blood, bone marrow and spleen with liver, lymph node and skin less commonly involved. Histologically, the cells have a characteristic appearance with pale/clear cytoplasm and round or reniform nuclei. In the spleen, the infiltrate involves the red pulp and is frequently associated with areas of haemorrhage (blood lakes). The cells stain for B-cell related antigens as well as with antibodies against tartrate-resistant acid phosphatase, DBA44 (CD72), CD11c, CD25, CD103, CD123, cyclin D1 and annexin A1. Mutation of BRAF -V600E is present and antibody to the mutant protein can be used as a specific marker. Bone marrow biopsy is essential in the initial assessment of disease as the bone marrow may be inaspirable or unrepresentative of degree of marrow infiltration as a result of the tumour associated fibrosis preventing aspiration of the tumour cell component. Bone marrow biopsy is important in the assessment of therapy response but in this context staining for CD11c and Annexin A1 is not helpful as they are also markers of myeloid lineage and identification of low level infiltration may be obscured. In this context staining for CD20 may be used in conjunction with morphological assessment and staining of serial sections for cyclin D1 and DBA44 to identify subtle residual infiltration. Staining for CD79a and CD19 is not recommended as these antibodies will identify plasma cells and can lead to over-estimation of disease. Staining for CD20 should not be used in patients following with anti-CD20 based treatments. Down regulation of cyclin D1 and CD25 has been reported in patients following BRAF inhibitor therapy and assessment of these antigens should not be used in this context. Histologically, hairy cell leukaemia needs to be distinguished from other B-cell lymphoproliferations associated with splenomegaly including splenic marginal zone lymphoma, splenic

  2. [Inherited bone marrow failure syndromes].

    PubMed

    Okuno, Yusuke

    2016-02-01

    Inherited bone marrow failure syndromes comprise a series of disorders caused by various gene mutations. Genetic tests were formerly difficult to perform because of the large size and number of causative genes. However, recent advances in next-generation sequencing has enabled simultaneous testing of all causative genes to be performed at an acceptable cost. We collaboratively conducted a series of whole-exome sequencing studies of patients with inherited bone marrow failure syndromes and discovered RPS27/RPL27 and FANCT as causative genes of Diamond-Blackfan anemia and Fanconi anemia, respectively. Furthermore, we established a target gene sequencing system to cover 189 genes associated with pediatric blood diseases to assist genetic diagnoses in clinical practice. In this review, discovery of new causative genes and possible roles of next-generation sequencing in the genetic diagnosis of inherited bone marrow failure syndromes are discussed. PMID:26935625

  3. How flatbed scanners upset accurate film dosimetry.

    PubMed

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film. PMID:26689962

  4. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  5. Widespread marrow necrosis during pregnancy

    SciTech Connect

    Knickerbocker, W.J.; Quenville, N.F.

    1982-11-01

    Recently, a 22-year-old Caucasian female was referred to our Hospital two days post-partum. She had been feeling unwell during the last few days of her pregnancy and complained of multiple aches and pains, worst in the abdomen and lower back. Her admission platelet count was severely depressed and a bone biopsy showed extensive marrow necrosis with viable bony trabeculae. There was no evidence of vasculitis, vascular thrombosis, or malignancy. Widespread marrow necrosis in pregnancy followed by recovery, to our knowledge, has not been previously reported.

  6. Bone Marrow Transplants: "Another Possibility at Life"

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Bone Marrow Transplants “Another Possibility at Life” Past Issues / Summer ... year, and, for 16,000 of them, a bone marrow transplant is the best treatment option, notes Susan ...

  7. Planning for a Bone Marrow Transplant (BMT)

    MedlinePlus

    ... us Digg Facebook Google Bookmarks Planning for a Bone Marrow Transplant (BMT) If you're going to have ... to a friend or family member undergoing a bone marrow or cord blood transplant. Help Your Loved One ...

  8. Transplant Outcomes (Bone Marrow and Cord Blood)

    MedlinePlus

    ... reports show patient survival and transplant data of bone marrow and umbilical cord blood transplants in the transplant ... Data by Center Report —View the number of bone marrow and cord blood transplants performed at a specific ...

  9. Marrow Fat and Bone—New Perspectives

    PubMed Central

    Fazeli, Pouneh K.; Horowitz, Mark C.; MacDougald, Ormond A.; Scheller, Erica L.; Rodeheffer, Matthew S.; Rosen, Clifford J.

    2013-01-01

    Context: There is growing interest in the relationship between bone mineral density, bone strength, and fat depots. Marrow adipose tissue, a well-established component of the marrow environment, is metabolically distinct from peripheral fat depots, but its functional significance is unknown. Objective: In this review, we discuss animal and human data linking the marrow adipose tissue depot to parameters of bone density and integrity as well as the potential significance of marrow adipose tissue in metabolic diseases associated with bone loss, including type 1 diabetes mellitus and anorexia nervosa. Potential hormonal determinants of marrow adipose tissue are also discussed. Conclusions: We conclude that whereas most animal and human data demonstrate an inverse association between marrow adipose tissue and measures of bone density and strength, understanding the functional significance of marrow adipose tissue and its hormonal determinants will be critical to better understanding its role in skeletal integrity and the role of marrow adipose tissue in the pathophysiology of bone loss. PMID:23393168

  10. Unexplained overexposures on physical dosimetry reported by biological dosimetry.

    PubMed

    Montoro, A; Almonacid, M; Villaescusa, J I; Verdu, G

    2009-01-01

    The Medical Service of the Radiation Protection Service from the University Hospital La Fe (Valencia, Spain), carries out medical examinations of the workers occupationally exposed to ionising radiation. The Biological Dosimetry Laboratory is developing its activity since 2001. Up to now, the activities have been focused in performing biological dosimetry studies of Interventionists workers from La Fe Hospital. Recently, the Laboratory has been authorized by the Health Authority in the Valencian Community. Unexplained overexposures of workers and patients are also studied. Workers suspected of being overexposed to ionising radiation were referred for investigation by cytogenetic analysis. Two of these were from Hospitals of the Valencian Community and one belonged to an uranium mine from Portugal. Hospital workers had a physical dose by thermoluminiscence dosimeters (TLD) that exceeded the established limit. The worker of the uranium mine received a dose from a lost source of Cesium 137 with an activity of 170 mCi. All three cases showed normal values after the hematological analysis. Finally, the aim of this study consist to determine whether the dose showed by the dosimeter is reliable or not. In the case of workers that wore dosimeter, it is concluded that the doses measured by dosimeter are not corresponding to real doses. Hospital worker with a physical dose of 2.6 Sv and 0.269 Sv had an estimated absorbed dose by biological dosimetry of 0.076 Gy (0-0.165 Gy) and 0 Gy (0-0.089 Gy), respectively. In case of the mine worker an estimated absorbed dose of 0.073 Gy (0-0.159 Gy) was obtained by biological dosimetry. In all cases we used the odds ratio to present the results due to a very low frequency of observed aberrations [1]. PMID:19964943

  11. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    SciTech Connect

    Veinot, K. G.

    2011-10-12

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  12. Neutron personnel dosimetry intecomparison studies

    SciTech Connect

    Sims, C.S.

    1991-01-01

    The Dosimetry Applications Research (DOSAR) Group at the Oak Ridge National Laboratory (ORNL) has conducted sixteen Neutron Personnel Dosimetry Intercomparison Studies (PDIS) since 1974. During these studies dosimeters are mailed to DOSAR, exposed to low-level (typically in the 0.3 -- 5.0 mSv range) neutron dose equivalents in a variety of mixed neutron-gamma radiation fields, and then returned to the participants for evaluation. The Health Physics Research Reactor (HPRR) was used as the primary radiation source in PDIS 1--12 and radioisotopic neutron sources at DOSAR's Radiation Calibration Laboratory (RADCAL) were mainly used, along with sources and accelerators at cooperating institutions, in PDIS 13--16. Conclusions based on 13,560 measurements made by 146 different participating organizations (102 - US) are presented.

  13. Fifth personnel dosimetry intercomparison study

    SciTech Connect

    Sims, C.S.

    1980-02-01

    The fifth Personnel Dosimetry Intercomparison Study (PDIS) was conducted at the Oak Ridge National Laboratory's (ORNL) Dosimetry Applications Research (DOSAR) facility on March 20-22, 1979. This study is the latest PDIS in the continuing series started at the DOSAR facility in 1974. The PDIS is a three day study, typically in March, where personnel dosimeters are mailed to the DOSAR facility, exposed to a range of low-level neutron radiation doses (1 to 15 mSv or equivalently, 100 to 1500 mrem) and neutron-to-gamma ratios (1:1-10:1) using the Health Physics Research Reactor (HPRR) as the radiation source, and returned to the participants for evaluation. This report is a summary and analysis of the results reported by the various participants. The participants are able to intercompare their results with those of others who made dose measurements under identical experimental conditions.

  14. Interspecies dosimetry of reactive gases

    SciTech Connect

    Miller, F.J.; Overton, J.H.; Gerrity, T.R.; Graham, R.C.

    1987-03-01

    The development of dosimetry models that can provide a description of the uptake and distribution of inhaled compounds throughout the body and the availability of animal toxicological data are integral components for a full evaluation of potential risks associated with human exposure. Interspecies dosimetric comparisons must be approached using a model conceptualization that incorporates the major factors affecting the uptake of the gas, such as respiratory tract morphology, route of breathing, depth and rate of breathing, physicochemical properties of the gas, etc. Modeling efforts thus far have primarily focused on ozone. A comparison of theoretical predictions of delivered dose of ozone to the lower respiratory tract of man shows good agreement with dose estimates derived from experimental measurements. Applications to ozone toxicological data in animals and man have been examined that incorporate the use of dosimetry models in studying quantitative dose-response relationships.

  15. Dosimetry study of [I-131] and [I-125]- meta-iodobenz guanidine in a simulating model for neuroblastoma metastasis.

    PubMed

    Roa, W H; Yaremko, B; McEwan, A; Amanie, J; Yee, D; Cho, J; McQuarrie, S; Riauka, T; Sloboda, R; Wiebe, L; Loebenberg, R; Janicki, C

    2013-02-01

    The physical properties of I-131 may be suboptimal for the delivery of therapeutic radiation to bone marrow metastases, which are common in the natural history of neuroblastoma. In vitro and preliminary clinical studies have implied improved efficacy of I-125 relative to I-131 in certain clinical situations, although areas of uncertainty remain regarding intratumoral dosimetry. This prompted our study using human neuroblastoma multicellular spheroids as a model of metastasis. 3D dose calculations were made using voxel-based Medical Internal Radiation Dosimetry (MIRD) and dose-point-kernel (DPK) techniques. Dose distributions for I-131 and I-125 labeled mIBG were calculated for spheroids (metastases) of various sizes from 0.01 cm to 3 cm diameter, and the relative dose delivered to the tumors was compared for the same limiting dose to the bone marrow. Based on the same data, arguments were advanced based upon the principles of tumor control probability (TCP) to emphasize the potential theoretical utility of I-125 over I-131 in specific clinical situations. I-125-mIBG can deliver a higher and more uniform dose to tumors compared to I-131 mIBG without increasing the dose to the bone marrow. Depending on the tumor size and biological half-life, the relative dose to tumors of less than 1 mm diameter can increase several-fold. TCP calculations indicate that tumor control increases with increasing administered activity, and that I-125 is more effective than I-131 for tumor diameters of 0.01 cm or less. This study suggests that I-125-mIBG is dosimetrically superior to I-131-mIBG therapy for small bone marrow metastases from neuroblastoma. It is logical to consider adding I-125-mIBG to I-131-mIBG in multi-modality therapy as these two isotopes could be complementary in terms of their cumulative dosimetry. PMID:22974332

  16. Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method

    SciTech Connect

    Mendez, I.; Hartman, V.; Hudej, R.; Strojnik, A.; Casar, B.

    2013-01-15

    Purpose:A dosimetric system formed by Gafchromic EBT2 radiochromic film and Epson Expression 10000XL flatbed scanner was commissioned for dosimetry. In this paper, several open questions concerning the commissioning of radiochromic films for dosimetry were addressed: (a) is it possible to employ this dosimetric system in reflection mode; (b) if so, can the methods used in transmission mode also be used in reflection mode; (c) is it possible to obtain accurate absolute dose measurements with Gafchromic EBT2 films; (d) which calibration method should be followed; (e) which calibration models should be used; and (f) does three-color channel dosimetry offer a significant improvement over single channel dosimetry. The purpose of this paper is to help clarify these questions. Methods: In this study, films were scanned in reflection mode, the effect of surrounding film was evaluated and the feasibility of EBT2 film dosimetry in reflection mode was studied. EBT2's response homogeneity has been reported to lead to excessive dose uncertainties. To overcome this problem, a new plan-based calibration method was implemented. Plan-based calibration can use every pixel and each of the three color channels of the scanned film to obtain the parameters of the calibration model. A model selection analysis was conducted to select lateral correction and sensitometric curve models. The commonly used calibration with fragments was compared with red-channel plan-based calibration and with three-channel plan-based calibration. Results: No effect of surrounding film was found in this study. The film response inhomogeneity in EBT2 films was found to be important not only due to differences in the fog but also due to differences in sensitivity. The best results for lateral corrections were obtained using absolute corrections independent of the dose. With respect to the sensitometric curves, an empirical polynomial fit of order 4 was found to obtain results equivalent to a gamma

  17. [The role of blood banks in bone marrow transplantation].

    PubMed

    Höcker, P; Wagner, A; Sklenar, G

    1991-01-01

    The transfusion service (TS) plays an important role in bone marrow transplantation (BMT). Many of the techniques and methods employed are also used in the daily work of a TS like tissue typing, apheresis techniques, handling of blood and its components under sterile conditions. In the pretransplantation phase the TS is responsible for the typing of recipient and presumptive donors, harvesting of autologous blood and selection of appropriate blood components. During BMT the TS can perform bone marrow harvesting, depletion of red cells in case of ABO-incompatibility and bone marrow manipulation when T-cell depletion or purging procedures are considered. Peripheral stem cell harvest by apheresis is also best performed by the TS experienced in such techniques. Storage of hematopoietic cells in liquid nitrogen and thawing are also techniques already used in most of the transfusion services. Post BMT, the support with blood components, irradiated and almost free of white cells to avoid TA-GVH and CMV-infection, is a major job of the TS. These facts demonstrate that a well organized transfusion service is a 'conditio sine qua non' for successful BMT. PMID:1725636

  18. Immune transfer studies in canine allogeneic marrow graft donor-recipient pairs

    SciTech Connect

    Grosse-Wilde, H.; Krumbacher, K.; Schuening, F.D.; Doxiadis, I.; Mahmoud, H.K.; Emde, C.; Schmidt-Weinmar, A.; Schaefer, U.W.

    1986-07-01

    Transfer of immunity occurring with bone marrow grafting was studied using the dog as a preclinical model. Allogeneic bone marrow transplantation (BMT) was performed between DLA-identical beagle litter-mates. The donors were immunized with tetanus toxoid (TT) or sheep red blood cells (SRBC), and their humoral response was monitored by hemagglutination. The recipients of bone marrow from TT-immunized donors showed a marked increase of antibody titer one week posttransplantation, while in the recipients of marrow from SRBC immunized donors the antibody titers were considerably lower. Within the following 60 days the antibody titers in both groups diminished gradually to pregrafting levels. Control experiments in which cell-free plasma from donors immunized with TT and SRBC respectively was transfused indicated that the initial rise of specific antibody titers after marrow grafting is likely to be due to a passive transfer of humoral immunity. A single challenge of these marrow graft recipients with the respective antigen 15-18 weeks posttransplantation led to a secondary type of humoral immune response. It could be demonstrated that transfer of memory against TT or SRBC was independent from the actual antibody titer and the time of vaccination of the donor. One dog was immunized with TT after serving as marrow donor. When the donor had shown an antibody response, a peripheral blood leukocytes (PBL) transfusion was given to his chimera. Subsequent challenge of the latter resulted in a secondary type of specific antibody response. This indicates that specific cellular-bound immunological memory can be transferred after BMT from the donor to his allogeneic bone marrow chimera by transfusion of peripheral blood leukocytes. The data may be of importance in clinical BMT to protect patients during the phase of reduced immune reactivity by transfer of memory cells.

  19. Gillick, bone marrow and teenagers.

    PubMed

    Cherkassky, Lisa

    2015-09-01

    The Human Tissue Authority can authorise a bone marrow harvest on a child of any age if a person with parental responsibility consents to the procedure. Older children have the legal capacity to consent to medical procedures under Gillick, but it is unclear if Gillick can be applied to non-therapeutic medical procedures. The relevant donation guidelines state that the High Court shall be consulted in the event of a disagreement, but what is in the best interests of the teenage donor under s.1 of the Children Act 1989? There are no legal authorities on child bone marrow harvests in the United Kingdom. This article considers the best interests of the older saviour sibling and questions whether, for the purposes of welfare, the speculative benefits could outweigh the physical burdens. PMID:25911618

  20. Primary bone marrow oedema syndromes.

    PubMed

    Patel, Sanjeev

    2014-05-01

    MRI scanning in patients with rheumatological conditions often shows bone marrow oedema, which can be secondary to inflammatory, degenerative, infective or malignant conditions but can also be primary. The latter condition is of uncertain aetiology and it is also uncertain whether it represents a stage in the progression to osteonecrosis in some patients. Patients with primary bone marrow oedema usually have lower limb pain, commonly the hip, knee, ankle or feet. The diagnosis is one of exclusion with the presence of typical MRI findings. Treatment is usually conservative and includes analgesics and staying off the affected limb. The natural history is that of gradual resolution of symptoms over a number of months. Evidence for medical treatment is limited, but open-label studies suggest bisphosphonates may help in the resolution of pain and improve radiological findings. Surgical decompression is usually used as a last resort. PMID:24080251

  1. Dosimetry in Nuclear Medicine Diagnosis and Therapy

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.7 Necessity of Patient-Specific Dose Planning in Radionuclide Therapy' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy'.

  2. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low dose-rate remote afterloader sources...

  3. Dosimetry modeling of inhaled toxic reactive gases

    SciTech Connect

    Overton, J.H.; Miller, F.J.

    1986-07-01

    This report focuses on the physical, chemical, and biological processes and factors involved in the absorption of reactive gases. Emphasis is placed on the importance of these factors in developing dosimetry models, special consideration being given to the role of lung fluids and tissues. Several dosimetry models are discussed and illustrations of predicted results presented to demonstrate the application of the models to the uptake of NO/sub 2/ and O/sub 3/, and to demonstrate the use of models in determining the effects of physical, chemical and biological parameters on dosimetry predictions. Gaps in our knowledge and understanding of the processes of dosimetry are pointed out, and research recommendations are made to increase our understanding of the processes and to enhance the development of dosimetry models.

  4. Ozone dosimetry predictions for humans and rats

    SciTech Connect

    Overton, J.H.; Graham, R.C.; McCurdy, T.R.; Richmond, H.M.

    1990-11-01

    The report summarizes ozone (O3) dosimetry model predictions for rats and humans under several different scenarios based on the most recent empirical data and theoretical considerations in the field of O3 dosimetry. The report was prepared at the request of the Office of Air Quality Planning and Standards (OAQPS) as an input to be considered by scientists participating in a chronic lung injury risk assessment project for O3. As indicated in the report a number of judgments and assumptions had to be made to obtain the dosimetry predictions. In addition to presenting the simulation results, the O3 dosimetry model used to make the predictions is discussed and the choice or method of selecting important physiological parameters explained. This includes anatomical dimensions, choices of rat and human ventilatory parameters, and the method of estimating human and rat upper respiratory tract uptake. Finally, a comparison of simulation results to recent experimental dosimetry results is discussed.

  5. Marrow fat composition in anorexia nervosa

    PubMed Central

    Bredella, Miriam A.; Fazeli, Pouneh K.; Daley, Scott M.; Miller, Karen K.; Rosen, Clifford J.; Klibanski, Anne; Torriani, Martin

    2014-01-01

    Purpose Women with anorexia nervosa (AN) have increased marrow fat despite severe depletion of body fat. Recent studies have suggested that marrow fat composition may serve as a biomarker for bone quality. The purpose of our study was to investigate marrow fat composition of the femur using proton MR spectroscopy (1H-MRS), and the relationship between measures of marrow fat composition and BMD and body composition in women with AN and normal-weight controls. Materials and Methods 14 women with AN (29.5±1.9 years) and 12 age-matched normal-weight controls underwent 1H-MRS to determine total marrow fat content and marrow fat composition of the femoral diaphysis and soleus intramyocellular lipids und unsaturated muscle lipids. MRI was performed to quantify abdominal fat, thigh fat and muscle. Lumbar spine BMD, fat and lean mass were assessed by DXA. Results Subjects with AN had higher marrow fat content (p<0.05), but similar marrow fat composition (p >0.05) compared to normal-weight controls. There was an inverse association between marrow methylene protons, an estimate of fatty acid (FA) saturated bonds, and lumbar spine BMD (r= -0.52, p=0.008) independent of %ideal body weight (%IBW). Olefinic protons at 5.3 ppm, an estimate of FA unsaturated bonds, were inversely associated with body fat depots, independent of %IBW, and positively associated with soleus unsaturation (p≤0.05). Conclusion Women with AN have higher total femoral marrow fat but similar composition compared to normal-weight controls. The degree of marrow FA saturation correlates inversely with BMD, suggesting that saturated lipids may have negative effects on BMD. The degree of marrow FA unsaturation correlates positively with soleus unsaturation, suggesting that marrow fat composition may be influenced by the same factors as ectopic lipid composition in muscle. PMID:24953711

  6. Evaluation of iron status: zinc protoporphyrin vis-a-vis bone marrow iron stores.

    PubMed

    Das, Sheila; Philip, Kandathil Joseph

    2008-01-01

    Zinc protoporphyrin (ZPP) in the red cells is an indicator of iron status in the bone marrow (BM) and can be easily measured by Protofluor-Z Hematofluorometer from Helena Laboratories. It is well known that bone marrow iron is a gold standard for the diagnosis of iron deficiency anemia (IDA) even in the pre-latent phase. Hence, it was considered pertinent to evaluate the diagnostic utility of ZPP in comparison with bone marrow iron stores. 107 random BM were selected over a period of 2(1/2) years; in each case, RBC indices where recorded along with ZPP and Perls' Prussian blue reaction for BM iron stores. The specificity and sensitivity were found to be 77.8% and sensitivity 69.8%, respectively. However, the sensitivity increased up to 96.2% when Hb, RBC indices and ZPP were considered for the diagnosis of IDA. PMID:18417877

  7. Solid-State Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2005-01-01

    This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

  8. The Future of Medical Dosimetry

    SciTech Connect

    Adams, Robert D.

    2015-07-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given.

  9. Patient dose analysis in total body irradiation through in vivo dosimetry.

    PubMed

    Ganapathy, K; Kurup, P G G; Murali, V; Muthukumaran, M; Bhuvaneshwari, N; Velmurugan, J

    2012-10-01

    Total body irradiation (TBI) is a special radiotherapy technique, administered prior to bone marrow transplantation. Due to the complex nature of the treatment setup, in vivo dosimetry for TBI is mandatory to ensure proper delivery of the intended radiation dose throughout the body. Lithium fluoride (LiF) TLD-100 chips are used for the TBI in vivo dosimetry. Results obtained from the in vivo dosimetry of 20 patients are analyzed. Results obtained from forehead, abdomen, pelvis, and mediastinum showed a similar pattern with the average measured dose from 96 to 97% of the prescription dose. Extremities and chest received a dose greater than the prescription dose in many instances (more than 20% of measurements). Homogeneous dose delivery to the whole body is checked by calculating the mean dose with standard deviation for each fraction. Reasons for the difference between prescription dose and measured dose for each site are discussed. Dose homogeneity within ±10% is achieved using our in-house TBI protocol. PMID:23293453

  10. Skeletal dosimetry in cone beam computed tomography

    SciTech Connect

    Walters, B. R. B.; Ding, G. X.; Kramer, R.; Kawrakow, I.

    2009-07-15

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12x0.12x0.12 cm{sup 3}, with 17x17x17 {mu}m{sup 3} microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens ({approx}8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only {approx}50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment.

  11. Skeletal dosimetry in cone beam computed tomography.

    PubMed

    Walters, B R B; Ding, G X; Kramer, R; Kawrakow, I

    2009-07-01

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12 x 0.12 x 0.12 cm3, with 17 x 17 x 17 microm3 microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/ MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens (approximately 8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only approximately 50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment. PMID:19673190

  12. Pharmacokinetics, dosimetry and comparative efficacy of 188Re-liposome and 5-FU in a CT26-luc lung-metastatic mice model.

    PubMed

    Chen, Liang-Cheng; Wu, Yu-Hsien; Liu, I-Hshiang; Ho, Chung-Li; Lee, Wan-Chi; Chang, Chih-Hsien; Lan, Keng-Li; Ting, Gann; Lee, Te-Wei; Shien, Jui-Hung

    2012-01-01

    The biodistribution, pharmacokinetics, dosimetry and comparative therapeutic efficacy of intravenously administrated (188)Re-N,N-bis(2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA)-labeled pegylated liposome ((188)Re-liposome) and 5-FU were investigated in a CT26-luc lung-metastatic model. After intravenous administration of (188)Re-liposome, tumor accumulation from the radioactivity was observed. Levels of radioactivity in tumors were maintained at steady levels (from 5.40 to 5.67 %ID/g) after 4 to 24 h. In pharmacokinetics, the AUC((0→∞)), MRT((0→∞)) and Cl of (188)Re-liposome in blood via intravenous route were 998 h %ID/ml, 28.7 h and 0.1 ml/h, respectively. The total excreted fractions of feces and urine were 0.61 and 0.26, respectively. Absorbed doses for (188)Re-liposome in the liver and red marrow were 0.31 and 0.08 mSv/MBq, respectively. Tumor-absorbed doses for (188)Re-liposome ranged from 48.4 to 1.73 mGy/MBq at 10 to 300 g tumor spheres. In therapeutic efficacy, the survival times of mice after (188)Re-liposome [80% maximum tolerated dose (MTD); 29.6 MBq], 5-FU (80% MTD; 144 mg/kg), liposome or normal saline treatments were evaluated. Consequently, radiotherapeutics of (188)Re-liposome attained a longer lifespan (increase of 34.9%; P=.005) in mice than in the normal saline group. The increase in lifespan of the (188)Re-liposome group was 2.5-fold greater than that of the 5-FU group. Therefore, intravenous administration of (188)Re-liposome could provide a benefit and it is a promising strategy for delivery of passive nanotargeted radiotherapeutics in oncology applications. PMID:21958858

  13. Monoclonal gammopathy-associated pure red cell aplasia.

    PubMed

    Korde, Neha; Zhang, Yong; Loeliger, Kelsey; Poon, Andrea; Simakova, Olga; Zingone, Adriana; Costello, Rene; Childs, Richard; Noel, Pierre; Silver, Samuel; Kwok, Mary; Mo, Clifton; Young, Neal; Landgren, Ola; Sloand, Elaine; Maric, Irina

    2016-06-01

    Pure red cell aplasia (PRCA) is a rare disorder characterized by inhibition of erythroid precursors in the bone marrow and normochromic, normocytic anaemia with reticulocytopenia. Among 51 PRCA patients, we identified 12 (24%) patients having monoclonal gammopathy, monoclonal gammopathy of undetermined significance or smouldering multiple myeloma, with presence of monoclonal protein or abnormal serum free light chains and atypical bone marrow features of clonal plasmacytosis, hypercellularity and fibrosis. Thus far, three patients treated with anti-myeloma based therapeutics have responded with reticulocyte recovery and clinical transfusion independence, suggesting plasma cells play a key role in the pathogenesis of this specific monoclonal gammopathy-associated PRCA. PMID:26999424

  14. Retrospective dosimetry using synthesized nano-structure hydroxyapatite.

    PubMed

    Ziaie, F; Hajiloo, N; Alipour, A; Amraei, R; Mehtieva, S I

    2011-06-01

    Micro and nano-structure hydroxyapatite samples were synthesized via several different methods. The samples were characterised utilising the Fourier transmission infra-red, scanning electron microscope and X-ray diffraction methods, to find out the structure most similar to human tooth enamel, and the best method was found. The electron paramagnetic resonance (EPR) signals of the gamma-irradiated samples were measured using an EPR spectrometer system. A calibration curve was established by irradiation of the samples at four doses of 50-500 mGy. The parameters of the calibration curve, slope and intercept with dose axis are determined by linear regression analysis. This calibration curve can be used for human tooth enamel for retrospective dosimetry purposes. PMID:21131666

  15. Cure of murine thalassemia by bone marrow transplantation without eradication of endogenous stem cells

    SciTech Connect

    Wagemaker, G.; Visser, T.P.; van Bekkum, D.W.

    1986-09-01

    alpha-Thalassemic heterozygous (Hbath/+) mice were used to investigate the possible selective advantage of transplanted normal (+/+) hemopoietic cells. Without conditioning by total-body irradiation (TBI), infusion of large numbers of normal bone marrow cells failed to correct the thalassemic peripheral blood phenotype. Since the recipients' stem cells are normal with respect to number and differentiation capacity, it was thought that the transplanted stem cells were not able to lodge, or that they were not stimulated to proliferate. Therefore, a nonlethal dose of TBI was given to temporarily reduce endogenous stem cell numbers and hemopoiesis. TBI doses of 2 or 3 Gy followed by infusion of normal bone marrow cells proved to be effective in replacing the thalassemic red cells by normal red cells, whereas a dose of 1 Gy was ineffective. It is concluded that cure of thalassemia by bone marrow transplantation does not necessarily require eradication of thalassemic stem cells. Consequently, the objectives of conditioning regimens for bone marrow transplantation of thalassemic patients (and possibly other nonmalignant hemopoietic disorders) should be reconsidered.

  16. Health physics research reactor reference dosimetry

    SciTech Connect

    Sims, C.S.; Ragan, G.E.

    1987-06-01

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs.

  17. Path forward for dosimetry cross sections

    SciTech Connect

    Griffin, P.J.; Peters, C.D.

    2011-07-01

    In the 1980's the dosimetry community embraced the need for a high fidelity quantification of uncertainty in nuclear data used for dosimetry applications. This led to the adoption of energy-dependent covariance matrices as the accepted manner of quantifying the uncertainty data. The trend for the dosimetry community to require high fidelity treatment of uncertainty estimates has continued to the current time where requirements on nuclear data are codified in standards such as ASTM E 1018. This paper surveys the current state of the dosimetry cross sections and investigates the quality of the current dosimetry cross section evaluations by examining calculated-to-experimental ratios in neutron benchmark fields. In recent years more nuclear-related technical areas are placing an emphasis on uncertainty quantification. With the availability of model-based cross sections and covariance matrices produced by nuclear data codes, some nuclear-related communities are considering the role these covariance matrices should play. While funding within the dosimetry community for cross section evaluations has been very meager, other areas, such as the solar-related astrophysics community and the US Nuclear Criticality Safety Program, have been supporting research in the area of neutron cross sections. The Cross Section Evaluation Working Group (CSEWG) is responsible for the creation and maintenance of the ENDF/B library which has been the mainstay for the reactor dosimetry community. Given the new trends in cross section evaluations, this paper explores the path forward for the US nuclear reactor dosimetry community and its use of the ENDF/B cross-sections. The major concern is maintenance of the sufficiency and accuracy of the uncertainty estimate when used for dosimetry applications. The two major areas of deficiency in the proposed ENDF/B approach are: 1) the use of unrelated covariance matrices in ENDF/B evaluations and 2) the lack of 'due consideration' of experimental data

  18. Seeing Red

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This New Horizons image of Jupiter's volcanic moon Io was taken at 13:05 Universal Time during the spacecraft's Jupiter flyby on February 28, 2007. It shows the reddish color of the deposits from the giant volcanic eruption at the volcano Tvashtar, near the top of the sunlit crescent, as well as the bluish plume itself and the orange glow of the hot lava at its source. The relatively unprocessed image on the left provides the best view of the volcanic glow and the plume deposits, while the version on the right has been brightened to show the much fainter plume, and the Jupiter-lit night side of Io.

    New Horizons' color imaging of Io's sunlit side was generally overexposed because the spacecraft's color camera, the super-sensitive Multispectral Visible Imaging Camera (MVIC), was designed for the much dimmer illumination at Pluto. However, two of MVIC's four color filters, the blue and 'methane' filter (a special filter designed to map methane frost on the surface of Pluto at an infrared wavelength of 0.89 microns), are less sensitive than the others, and thus obtained some well-exposed views of the surface when illumination conditions were favorable. Because only two color filters are used, rather than the usual three, and because one filter uses infrared light, the color is only a rough approximation to what the human eye would see.

    The red color of the Tvashtar plume fallout is typical of Io's largest volcanic plumes, including the previous eruption of Tvashtar seen by the Galileo and Cassini spacecraft in 2000, and the long-lived Pele plume on the opposite side of Io. The color likely results from the creation of reddish three-atom and four-atom sulfur molecules (S3 and S4) from plume gases rich in two-atom sulfur molecules (S2 After a few months or years, the S3 and S4 molecules recombine into the more stable and familiar yellowish form of sulfur consisting of eight-atom molecules (S8), so these red deposits are only seen around recently-active Io

  19. International intercomparison for criticality dosimetry: the case of biological dosimetry.

    PubMed

    Roy, L; Buard, V; Delbos, M; Durand, V; Paillole, N; Grégoire, E; Voisin, P

    2004-01-01

    The Institute of Radiation Protection and Nuclear Safety (IRSN) organized a biological dosimetry international intercomparison with the purpose of comparing (i) dicentrics yield produced in human lymphocytes; (ii) the gamma and neutron dose estimate according to the corresponding laboratory calibration curve. The experimental reactor SILENE was used with different configurations: bare source 4 Gy, lead shield 1 and 2 Gy and a 60Co source 2 Gy. An increasing variation of dicentric yield per cell was observed between participants when there were more damages in the samples. Doses were derived from the observed dicentric rates according to the dose-effect relationship provided by each laboratory. Differences in dicentric rate values are more important than those in the corresponding dose values. The doses obtained by the participants were found to be in agreement with the given physical dose within 20%. The evaluation of the respective gamma and neutron dose was achieved only by four laboratories, with some small variations among them. PMID:15353693

  20. Fat Embolism Syndrome Secondary to Bone Marrow Necrosis in Patients with Hemoglobinopathies.

    PubMed

    Gangaraju, Radhika; Reddy, Vishnu V B; Marques, Marisa B

    2016-09-01

    Bone marrow necrosis with subsequent embolization of the fat and necrotic tissues into the systemic circulation causing fat embolism syndrome and multiorgan failure is a rare complication of patients with hemoglobinopathies. The exact etiology of this condition is not known. Because it occurs more often in patients with compound heterozygous conditions than in sickle cell disease, some patients are unaware of their predisposition. The initial symptoms are nonspecific, such as back and/or abdominal pain, fever, and fatigue, which may rapidly progress to respiratory failure and severe neurologic compromise. Common laboratory tests reveal anemia without reticulocytosis, thrombocytopenia, leukoerythroblastic picture with immature white cells and nucleated red blood cells, increased lactate dehydrogenase, high ferritin, and, sometimes increased creatinine. The diagnosis can be delayed because of an apparent lack of awareness about bone marrow necrosis with fat embolism syndrome, its rarity, and its similarities with other conditions such as thrombotic thrombocytopenic purpura. Although a bone marrow biopsy is diagnostic, waiting for it delays definitive treatment, which appears to be essential for the recovery of end-organ damage, such as neurologic and pulmonary damage. In our experience, either multiple units of red blood cell transfusion or, preferably, red cell exchange initiated promptly, is lifesaving. PMID:27598359

  1. Inherited Bone Marrow Failure Syndromes (IBMFS)

    Cancer.gov

    The NCI IBMFS Cohort Study consists of affected individuals and their immediate families in North America who have an inherited bone marrow failure syndrome (IBMFS)-either one that has been specifically identified and defined, or bone marrow failure that appears to be inherited but has not yet been clearly identified as having a genetic basis.

  2. Emerging technological bases for retrospective dosimetry.

    PubMed

    Straume, T; Anspaugh, L R; Haskell, E H; Lucas, J N; Marchetti, A A; Likhtarev, I A; Chumak, V V; Romanyukha, A A; Khrouch, V T; Gavrilin YuI; Minenko, V F

    1997-01-01

    In this article we discuss examples of challenging problems in retrospective dosimetry and describe some promising solutions. The ability to make measurements by accelerator mass spectrometry and luminescence techniques promises to provide improved dosimetry for regions of Belarus, Ukraine and Russian Federation contaminated by radionuclides from the Chernobyl accident. In addition, it may soon be possible to resolve the large neutron discrepancy in the dosimetry system for Hiroshima through novel measurement techniques that can be used to reconstruct the fast-neutron fluence emitted by the bomb some 51 years ago. Important advances in molecular cytogenetics and electron paramagnetic resonance measurements have produced biodosimeters that show potential in retrospective dosimetry. The most promising of these are the frequency of reciprocal translocations measured in chromosomes of blood lymphocytes using fluorescence in situ hybridization and the electron paramagnetic resonance signal in tooth enamel. PMID:9368303

  3. Cross sections required for FMIT dosimetry

    SciTech Connect

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-05-02

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies.

  4. INTERSPECIES DOSIMETRY MODELS FOR PULMONARY PHARMACOLOGY

    EPA Science Inventory

    Interspecies Dosimetry Models for Pulmonary Pharmacology

    Ted B. Martonen, Jeffry D. Schroeter, and John S. Fleming

    Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangl...

  5. Audits for advanced treatment dosimetry

    NASA Astrophysics Data System (ADS)

    Ibbott, G. S.; Thwaites, D. I.

    2015-01-01

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits.

  6. Aufgaben und Genauigkeit der klinischen Dosimetrie

    NASA Astrophysics Data System (ADS)

    Krieger, Hanno

    In diesem Kapitel werden die Aufgaben der klinischen Dosimetrie für die verschiedenen radiologischen Disziplinen zusammengestellt. Die wichtigste Aufgabe ist die Messung der im bestrahlten Medium entstandenen Energiedosis für die verschiedenen Strahlungsquellen. Die am weitesten verbreitete dazu verwendete Methode ist die Dosismessung mit gasgefüllten Ionisationskammern. Im zweiten Teil des Kapitels werden die Genauigkeitsanforderungen der klinischen Dosimetrie diskutiert.

  7. Rosiglitazone Promotes Bone Marrow Adipogenesis to Impair Myelopoiesis under Stress

    PubMed Central

    Lu, Wenyi; Wang, Weimin; Wang, Shujuan; Feng, Yonghuai; Liu, Kaiyan

    2016-01-01

    Objective The therapeutic use of thiazolidinediones (TZDs) causes unwanted hematological side effects, although the underlying mechanisms of these effects are poorly understood. This study tests the hypothesis that rosiglitazone impairs the maintenance and differentiation of hematopoietic stem/progenitor cells, which ultimately leads to hematological abnormalities. Methods Mice were fed a rosiglitazone-supplemented diet or a normal diet for 6 weeks. To induce hematopoietic stress, all mice were injected once with 250 mg/kg 5-fluorouracil (5-Fu) intraperitoneally. Next, hematopoietic recovery, hematopoietic stem/progenitor cells (HSPCs) subsets, and myeloid differentiation after 5-Fu treatment were evaluated. The adipogenesis induced by rosiglitazone was assessed by histopathology and oil red O staining. The effect of adipocytes on HSPCs was studied with an in vitro co-culture system. Results Rosiglitazone significantly enhanced bone marrow adipogenesis and delayed hematopoietic recovery after 5-Fu treatment. Moreover, rosiglitazone inhibited proliferation of a granulocyte/monocyte progenitor (GMP) cell population and granulocyte/macrophage colony-stimulating factor (GM-CSF) colonies, although the proliferation and mobilization of Lin-c-kit+Sca-1+ cells (LSK) was maintained following hematopoietic stress. These effects could be partially reversed by the selective PPARγ antagonist BADGE. Finally, we demonstrated in a co-culture system that differentiated adipocytes actively suppressed the myeloid differentiation of HSPCs. Conclusion Taken together, our results demonstrate that rosiglitazone inhibits myeloid differentiation of HSPCs after stress partially by inducing bone marrow adipogenesis. Targeting the bone marrow microenvironment might be one mechanism by which rosiglitazone impairs stress-induced hematopoiesis. PMID:26895498

  8. Is hydroxyethyl starch necessary for sedimentation of bone marrow?

    PubMed

    Dijkstra-Tiekstra, Margriet J; Setroikromo, Airies C; Kraan, Marcha; Gkoumassi, Effimia; de Wildt-Eggen, Janny

    2015-02-01

    Hydroxyethyl starch (HES) is used to separate hematopoietic progenitor cells after bone marrow (BM) collection from red blood cells. The aims were to study alternatives for HAES-steril (200 kDa; not available anymore) and to optimize the sedimentation process. Using WBC-enriched product (10 × 10(9) WBC/L), instead of BM, sedimentation at 10% hematocrit using final 0.6 or 0.39% Voluven (130 kDa) or without HES appeared to be good alternatives for 0.6% HAES-steril. MNC recovery >80% and RBC depletion >90% was reached. Optimal sedimentation was reached using 110-140 mL volume. Centrifugation appeared not suitable for sedimentation. Additional testing with BM might be necessary to confirm these results. PMID:25544385

  9. A protocol for EBT3 radiochromic film dosimetry using reflection scanning

    SciTech Connect

    Papaconstadopoulos, Pavlos Hegyi, Gyorgy; Seuntjens, Jan; Devic, Slobodan

    2014-12-15

    Purpose: To evaluate the performance of the EBT3 radiochromic film dosimetry system using reflection measurements and to suggest a calibration protocol for precise and accurate reflection film dosimetry. Methods: A set of 14 Gafchromic EBT3 film pieces were irradiated to various doses ranging from 0 to 8 Gy and subsequently scanned using both the reflection and transmission mode. Scanning resolution varied from 50 to 508 dpi (0.5–0.05 mm/pixel). Both the red and green color channels of scanned images were used to relate the film response to the dose. A sensitivity, uncertainty, and accuracy analysis was performed for all scanning modes and color channels. The total uncertainty, along with the fitting and experimental uncertainty components, was identified and analyzed. A microscope resolution target was used to evaluate possible resolution losses under reflection scanning. The calibration range was optimized for reflection scanning in the low (<2 Gy) and high (>2 Gy) dose regions based on the reported results. Results: Reflection scanning using the red channel exhibited the highest sensitivity among all modes, being up to 150% higher than transmission mode in the red channel for the lowest dose level. Furthermore, there was no apparent loss in resolution between the two modes. However, higher uncertainties and reduced accuracy were observed for the red channel under reflection mode, especially at dose levels higher than 2 Gy. These uncertainties were mainly attributed to saturation effects which were translated in poor fitting results. By restricting the calibration to the 0–2 Gy dose range, the situation is reversed and the red reflection mode was superior to the transmission mode. For higher doses, the green channel in reflection mode presented comparable results to the red transmission. Conclusions: A two-color reflection scanning protocol can be suggested for EBT3 radiochromic film dosimetry using the red channel for doses less than 2 Gy and the green

  10. Uncertainty in 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  11. Nasopharyngeal carcinoma with bone marrow metastasis.

    PubMed

    Zen, H G; Jame, J M; Chang, A Y; Li, W Y; Law, C K; Chen, K Y; Lin, C Z

    1991-02-01

    Five of 23 patients with recurrent nasopharyngeal carcinoma (NPC) were diagnosed to have bone marrow metastasis. They all had advanced local-regional disease, and were treated with neoadjuvant chemotherapy and definitive radiotherapy after the initial diagnosis. Bone marrow metastasis developed 4-24 months later. The clinical features were anemia (5 of 5), leukopenia (3 of 5), thrombocytopenia (4 of 5), sepsis (3 of 5), tenderness of the sternum (3 of 5), and fever (4 of 5). Patients frequently had elevation of serum lactic dehydrogenase (LDH), alkaline phosphatase (ALK-P), and IgG and IgA antibody titers to Epstein-Barr viral capsid antigen when bone marrow involvement was diagnosed. However, clinical manifestations and laboratory tests were not specific. It is important that three patients had normal bone scans. All five patients had a rapid downhill course; four patients died within 23 days, and the fifth 3 months after the diagnosis of bone marrow metastasis. We concluded that bone marrow was a common metastatic site in NPC patients. Bone marrow metastasis adversely affected patients' survival and required a high index of suspicion for diagnosis. We suggested that bone marrow biopsy should be considered as a routine staging procedure in NPC patients and indicated especially when patients presented with abnormal blood counts, sepsis, bone pain, or tenderness of the sternum. It may be positive in the face of a normal bone scan. PMID:1987743

  12. In aqua vivo EPID dosimetry

    SciTech Connect

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Igor; Pecharroman-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; Herk, Marcel J.; Mijnheer, Ben van

    2012-01-15

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D {gamma} evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D {gamma} evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by

  13. A Novel Biological Dosimetry Method for Monitoring Occupational Radiation Exposure in Diagnostic and Therapeutic Wards: From Radiation Dosimetry to Biological Effects

    PubMed Central

    Heydarheydari, S.; Haghparast, A.; Eivazi, M.T.

    2016-01-01

    Background and Objective Professional radiation workers are occupationally exposed to long-term low levels of ionizing radiation. Occupational health hazards from radiation exposure, in a large occupational segment of the population, are of special concern. Biological dosimetry can be performed in addition to physical dosimetry with the aim of individual dose assessment and biological effects. Methods In this biodosimetry study, some hematological parameters have been examined in 40 exposed and 40 control subjects who were matched by gender, age and occupational records (±3 years) in Kermanshah hospitals in Iran (2013-2014). The occupational radiation dose was measured by personal dosimetry device (film badges). The data was analyzed using SPSS V.20 and statistical tests such as two-sided Student’s t-test. Results Exposed subjects had a median exposure of 0.68±1.58 mSv/year by film badge dosimetry. Radiation workers with at least a 10-year record showed lower values of Mean Hemoglobin (Hb) and Mean Corpuscular Volume (MCV) compared to the control group (p<0.05). The mean value of Red Blood Cells (RBCs) in personnel working in Radiology departments seemed to show decrease in comparison with other radiation workers. Conclusion Although the radiation absorbed doses were below the permissible limits based on the ICRP, this study showed the role of low-level chronic exposure in decreasing Hb and MCV in the blood of radiation workers with at least 10 years records. Therefore, the findings from the present study suggest that monitoring of hematological parameters of radiation workers can be useful as biological dosimeter, and also the exposed medical personnel should carefully follow the radiation protection instructions and radiation exposure should be minimized as possible. PMID:27026951

  14. Breast dosimetry in clinical mammography

    NASA Astrophysics Data System (ADS)

    Benevides, Luis Alberto Do Rego

    The objective of this study was show that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. In the study, AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The protocol proposes the use of a fiber-optic coupled (FOCD) or Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeter to measure the entrance skin exposure at the time of the mammogram without interfering with diagnostic information of the mammogram. The study showed that FOCD had sensitivity with less than 7% energy dependence, linear in all tube current-time product stations, and was reproducible within 2%. FOCD was superior to MOSFET dosimeter in sensitivity, reusability, and reproducibility. The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. In addition, the study population anthropometric

  15. [Expression of Toll-like receptors in human bone marrow mesenchymal stem cells].

    PubMed

    He, Xiao-Xia; Bai, Hai; Yang, Guo-Rong; Xue, Yong-Jie; Su, Ya-Nan

    2009-06-01

    The aim of this study was to explore the characteristics of Toll-like receptor expression in mesenchymal stem cells derived from bone marrow of healthy donor (BM-MSCs). BM-MSCs were isolated from bone marrow of healthy donor by Ficoll method. Expressions of CD34, CD45, HLA-DR, CD44 and CD71 in BM-MSCs were detected by flow cytometry. CD71 in BM-MSCs was assayed by immunocytochemistry. The adipocyte and osteoblast induction of BM-MSCs were detected by alizarin red stain and oil red stain respectively. TLR 1 - 10 mRNA levels in BM-MSCs were evaluated by semiquantitative RT-PCR. The results showed that expressions of CD34, CD45 and HLA-DR in BM-MSC were negative while the expressions of CD44 and CD71 were positive. CD71 in BM-MSCs was positive. After induced by osteoblast and adipocyte inductor, BM-MSCs were positive for alizarin red staining and oil red staining respectively. All of TLR 1 - 10 mRNA were found in BM-MSCs with high expression levels of TLR2, TLR3, TLR4, TLR7, TLR8, TLR9 and low expression levels of TLR1, TLR5, TLR6, TLR10. In conclusion, different levels of TLR 1 - 10 mRNA were expressed in BM-MSCs of healthy donor. PMID:19549390

  16. Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice

    SciTech Connect

    Colnot, C. . E-mail: colnotc@orthosurg.ucsf.edu; Huang, S.; Helms, J.

    2006-11-24

    The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis.

  17. Experimental verification of internal dosimetry calculations. Annual progress report

    SciTech Connect

    1980-05-01

    During the past year a dosimetry research program has been established in the School of Nuclear Engineering at the Georgia Institute of Technology. The major objective of this program has been to provide research results upon which a useful internal dosimetry system could be based. The important application of this dosimetry system will be the experimental verification of internal dosimetry calculations such as those published by the MIRD Committee.

  18. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    SciTech Connect

    COOPER, J.R.

    2000-04-17

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  19. Personnel neutron dosimetry at Department of Energy facilities

    SciTech Connect

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered.

  20. Skeletal dosimetry based on µCT images of trabecular bone: update and comparisons

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; de Oliveira Lira, C. A. B.; Robson Brown, K.

    2012-06-01

    Two skeletal dosimetry methods using µCT images of human bone have recently been developed: the paired-image radiation transport (PIRT) model introduced by researchers at the University of Florida (UF) in the US and the systematic-periodic cluster (SPC) method developed by researchers at the Federal University of Pernambuco in Brazil. Both methods use µCT images of trabecular bone (TB) to model spongiosa regions of human bones containing marrow cavities segmented into soft tissue volumes of active marrow (AM), trabecular inactive marrow and the bone endosteum (BE), which is a 50 µm thick layer of marrow on all TB surfaces and on cortical bone surfaces next to TB as well as inside the medullary cavities. With respect to the radiation absorbed dose, the AM and the BE are sensitive soft tissues for the induction of leukaemia and bone cancer, respectively. The two methods differ mainly with respect to the number of bone sites and the size of the µCT images used in Monte Carlo calculations and they apply different methods to simulate exposure from radiation sources located outside the skeleton. The PIRT method calculates dosimetric quantities in isolated human bones while the SPC method uses human bones embedded in the body of a phantom which contains all relevant organs and soft tissues. Consequently, the SPC method calculates absorbed dose to the AM and to the BE from particles emitted by radionuclides concentrated in organs or from radiation sources located outside the human body in one calculation step. In order to allow for similar calculations of AM and BE absorbed doses using the PIRT method, the so-called dose response functions (DRFs) have been developed based on absorbed fractions (AFs) of energy for electrons isotropically emitted in skeletal tissues. The DRFs can be used to transform the photon fluence in homogeneous spongiosa regions into absorbed dose to AM and BE. This paper will compare AM and BE AFs of energy from electrons emitted in skeletal

  1. EVA dosimetry in manned spacecraft.

    PubMed

    Thomson, I

    1999-12-01

    Extra Vehicular Activity (EVA) will become a large part of the astronaut's work on board the International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses which are high enough to be a significant health risk to the crew. The doses received during EVA, however, have not been quantified to the same degree. This paper reviews the space radiation environment and the current dose limits to critical organs. Results of preliminary radiation dosimetry experiments on the external surface of the BION series of satellites indicate that EVA doses will vary considerably due to a number of factors such as EVA suit shielding, temporal fluctuations and spacecraft orbit and shielding. It is concluded that measurement of doses to crew members who engage in EVA should be done on board the spacecraft. An experiment is described which will lead the way to implementing this plan on the ISS. It is expected that results of this experiment will help future crew mitigate the risks of ionising radiation in space. PMID:10631334

  2. The bone marrow aspirate and biopsy in the diagnosis of unsuspected nonhematologic malignancy: A clinical study of 19 cases

    PubMed Central

    Ozkalemkas, Fahir; Ali, Rıdvan; Ozkocaman, Vildan; Ozcelik, Tulay; Ozan, Ulku; Ozturk, Hulya; Kurt, Ender; Evrensel, Turkkan; Yerci, Omer; Tunali, Ahmet

    2005-01-01

    Background Although bone marrow metastases can be found commonly in some malignant tumors, diagnosing a nonhematologic malignancy from marrow is not a usual event. Methods To underscore the value of bone marrow aspiration and biopsy as a short cut in establishing a diagnosis for disseminated tumors, we reviewed 19 patients with nonhematologic malignancies who initially had diagnosis from bone marrow. Results The main indications for bone marrow examination were microangiopathic hemolytic anemia (MAHA), leukoerythroblastosis (LEB) and unexplained cytopenias. Bone marrow aspiration was not diagnostic due to dry tap or inadequate material in 6 cases. Biopsy results were parallel to the cytological ones in all cases except one; however a meticulous second examination of the biopsy confirmed the cytologic diagnosis in this patient too. The most common histologic subtype was adenocarcinoma, and after all the clinical and laboratory evaluations, the primary focus was disclosed definitively in ten patients (5 stomach, 3 prostate, 1 lung, 1 muscle) and probably in four patients (3 gastrointestinal tract, 1 lung). All work up failed in five patients and these cases were classified as tumor of unknown origin (TUO). Conclusion Our series showed that anemia, thrombocytopenia, elevated red cell distribution width (RDW) and hypoproteinemia formed a uniform tetrad in patients with disseminated tumors that were diagnosed via bone marrow examination. The prognosis of patients was very poor and survivals were only a few days or weeks (except for 4 patients whose survivals were longer). We concluded that MAHA, LEB and unexplained cytopenias are strong indicators of the necessity of bone marrow examination. Because of the very short survival of many patients, all investigational procedures should be judged in view of their rationality, and should be focused on treatable primary tumors. PMID:16262899

  3. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  4. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  5. A prototype quantitative film scanner for radiochromic film dosimetry

    SciTech Connect

    Ranade, Manisha K.; Li, Jonathan G.; Dubose, Ryan S.; Kozelka, Jakub; Simon, William E.; Dempsey, James F.

    2008-02-15

    We have developed a high resolution, quantitative, two-dimensional optical film scanner for use with a commercial high sensitivity radiochromic film (RCF) for measuring single fraction external-beam radiotherapy dose distributions. The film scanner was designed to eliminate artifacts commonly observed in RCF dosimetry. The scanner employed a stationary light source and detector with a moving antireflective glass film platen attached to a high precision computerized X-Y translation stage. An ultrabright red light emitting diode (LED) with a peak output at 633 nm and full width at half maximum (FWHM) of 16 nm was selected as the scanner light source to match the RCF absorption peak. A dual detector system was created using two silicon photodiode detectors to simultaneously measure incident and transmitted light. The LED light output was focused to a submillimeter (FWHM 0.67 mm) spot size, which was determined from a scanning knife-edge technique for measuring Gaussian optical beams. Data acquisition was performed with a 16-bit A/D card in conjunction with commercial software. The linearity of the measured densities on the scanner was tested using a calibrated neutral-density step filter. Sensitometric curves and three IMRT field scans were acquired with a spatial resolution of 1 mm for both radiographic film and RCF. The results were compared with measurements taken with a commercial diode array under identical delivery conditions. The RCF was rotated by 90 deg. and rescanned to study orientation effects. Comparison between the RCF and the diode array measurements using percent dose difference and distance-to-agreement criteria produced average passing rates of 99.0% using 3%/3 mm criteria and 96.7% using 2%/2 mm criteria. The same comparison between the radiographic film and diode array measurements resulted in average passing rates 96.6% and 91.6% for the above two criteria, respectively. No measurable light-scatter or interference scanner artifacts were observed

  6. Pure red cell aplasia in a simultaneous pancreas-kidney transplantation patient: inside the erythroblast

    PubMed Central

    Labbadia, Francesca; Salido-Fierréz, Eduardo; Majado-Martinez, Juliana; Cabañas-Perianes, Valentin; Moraleda, Jiménez José M.

    2012-01-01

    A case of pure red cell aplasia in a simultaneous kidney-pancreas transplant recipient on immunosuppressive therapy is reported here. The patient presented with anemia unresponsive to erythropoietin treatment. Bone marrow cytomorphology was highly suggestive of parvovirus pure red cell aplasia, which was confirmed with serology and polymerase chain reaction positive for parvovirus B19 DNA in peripheral blood. After the administration of intravenous immunoglobulin the anemia improved with a rising number of the reticulocytes. PMID:23087806

  7. Bone marrow lesions: A systematic diagnostic approach

    PubMed Central

    Grande, Filippo Del; Farahani, Sahar J; Carrino, John A; Chhabra, Avneesh

    2014-01-01

    Bone marrow lesions on magnetic resonance (MR) imaging are common and may be seen with various pathologies. The authors outline a systematic diagnostic approach with proposed categorization of various etiologies of bone marrow lesions. Utilization of typical imaging features on conventional MR imaging techniques and other problem-solving techniques, such as chemical shift imaging and diffusion-weighted imaging (DWI), to achieve accurate final diagnosis has been highlighted. PMID:25114392

  8. Fat embolism syndrome following bone marrow harvesting.

    PubMed

    Baselga, J; Reich, L; Doherty, M; Gulati, S

    1991-06-01

    A case of fat embolism syndrome is reported following an uncomplicated bone marrow harvest. The presenting symptoms were restlessness, shortness of breath and arterial hypoxemia. A lung perfusion scan ruled out the presence of a lung thromboembolism. The patient received supportive therapy and recovered within a few hours. We speculate that the larger gauge needle (13 vs 15) used to aspirate the bone marrow may have represented increased trauma to the iliac crest leading to fat embolism. PMID:1873595

  9. Erythropoietin stimulation decreases hepcidin expression through hematopoietic activity on bone marrow cells in mice.

    PubMed

    Sasaki, Yusuke; Noguchi-Sasaki, Mariko; Yasuno, Hideyuki; Yorozu, Keigo; Shimonaka, Yasushi

    2012-12-01

    Erythropoiesis-stimulating agents (ESA) are now central to the treatment of renal anemia and are associated with improved clinical outcomes. It is well known that erythropoietin (EPO) is a key regulator of erythropoiesis through its promotion of red blood cell production. In order to investigate the role of ESA on iron metabolism, we analyzed the regulation of the iron regulatory hormone hepcidin by ESA treatment in a bone marrow transplant model in mouse. After treating C57BL/6 mice with continuous erythropoietin receptor activator (C.E.R.A.), recombinant human epoetin-β (rhEPO), or recombinant human carbamylated epoetin-β (rhCEPO), we investigated serum hepcidin concentrations and parameters of erythropoiesis. Serum hepcidin concentrations after rhEPO treatment were analyzed in mice subjected to total body irradiation followed by bone marrow transplantation. C.E.R.A. administration caused long-term downregulation of serum hepcidin levels. Serum hepcidin levels in rhEPO-treated mice decreased significantly, whereas there was no change in rhCEPO-treated mice. The reduction in circulating hepcidin levels after rhEPO administration was not observed in irradiated mice. Finally, bone marrow transplantation recovered the response to rhEPO administration that downregulates hepcidin concentration in irradiated mice. These results indicate that ESA treatment downregulates serum hepcidin concentrations, mainly by indirect mechanisms affecting hematopoietic activity in bone marrow cells. PMID:23160767

  10. Dosimetry procedures for an industrial irradiation plant

    NASA Astrophysics Data System (ADS)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  11. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV. PMID:15353690

  12. 3-D Imaging Based, Radiobiological Dosimetry

    PubMed Central

    Sgouros, George; Frey, Eric; Wahl, Richard; He, Bin; Prideaux, Andrew; Hobbs, Robert

    2008-01-01

    Targeted radionuclide therapy holds promise as a new treatment against cancer. Advances in imaging are making it possible to evaluate the spatial distribution of radioactivity in tumors and normal organs over time. Matched anatomical imaging such as combined SPECT/CT and PET/CT have also made it possible to obtain tissue density information in conjunction with the radioactivity distribution. Coupled with sophisticated iterative reconstruction algorithims, these advances have made it possible to perform highly patient-specific dosimetry that also incorporates radiobiological modeling. Such sophisticated dosimetry techniques are still in the research investigation phase. Given the attendant logistical and financial costs, a demonstrated improvement in patient care will be a prerequisite for the adoption of such highly-patient specific internal dosimetry methods. PMID:18662554

  13. Survey of international personnel radiation dosimetry programs

    SciTech Connect

    Swaja, R.E.

    1985-04-01

    In September of 1983, a mail survey was conducted to determine the status of external personnel gamma and neutron radiation dosimetry programs at international agencies. A total of 130 agencies participated in this study including military, regulatory, university, hospital, laboratory, and utility facilities. Information concerning basic dosimeter types, calibration sources, calibration phantoms, corrections to dosimeter responses, evaluating agencies, dose equivalent reporting conventions, ranges of typical or expected dose equivalents, and degree of satisfaction with existing systems was obtained for the gamma and neutron personnel monitoring programs at responding agencies. Results of this survey indicate that to provide the best possible occupational radiation monitoring programs and to improve dosimetry accuracy in performance studies, facility dosimetrists, regulatory and standards agencies, and research laboratories must act within their areas of responsibility to become familiar with their radiation monitoring systems, establish common reporting guidelines and performance standards, and provide opportunities for dosimetry testing and evaluation. 14 references, 10 tables.

  14. Osteosarcoma after bone marrow transplantation.

    PubMed

    Ueki, Hideaki; Maeda, Naoko; Sekimizu, Masahiro; Tsukushi, Satoshi; Nishida, Yoshihiro; Horibe, Keizo

    2013-03-01

    Three children treated with bone marrow transplantation for acute lymphoblastic leukemia, Diamond-Blackfan anemia, and congenital amegakaryocytic thrombocytopenia developed secondary osteosarcoma in the left tibia at the age of 13, 13, and 9 years, respectively, at 51, 117, and 106 months after transplantation, respectively. Through treatment with chemotherapy and surgery, all 3 patients are alive without disease. We surveyed the literature and reviewed 10 cases of osteosarcoma after hematopoietic stem cell transplantation (SCT), including our 3 cases. Eight of the patients had received myeloablative total body irradiation before SCT. The mean interval from SCT to the onset of osteosarcoma was 6 years and 4 months, and the mean age at the onset of osteosarcoma was 14 years and 5 months. The primary site of the post-SCT osteosarcoma was the tibia in 6 of 10 cases, in contrast to de novo osteosarcoma, in which the most common site is the femur. At least 7 of the 10 patients are alive without disease. Osteosarcoma should be one of the items for surveillance in the follow-up of patients who undergo SCT. PMID:22995925

  15. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  16. HSE performance tests for dosimetry services.

    PubMed

    Birch, R; Simpson, J A; Hedley, R P; Wardle, J

    2000-12-01

    In the United Kingdom a dosimetry service that measures and assesses whole-body or part-body doses arising from external radiation must successfully complete a performance test. Results of the performance tests for routine whole-body, routine extremity/skin and special accident dosimetry, carried out over the past six years by the AEA Technology Calibration Service at Winfrith, and DRaStaC, the AWE Calibration Service at Aldermaston, are presented. The test involves irradiating groups of dosemeters to known doses of gamma radiation and determining the bias and relative standard deviations for each dose group. The results are compared with the pass criteria specified by the UK Health and Safety Executive. For routine whole-body dosimetry, both the film badge and thermoluminescent dosemeter (TLD) perform adequately for irradiations between 0.6 and 30 mSv. For higher doses up to 250 mSv, where the slow emulsion of the film is used, the film badge shows poorer performance with a tendency to overestimate the dose. For routine extremity/skin dosimetry there is a wider spread of relative standard deviation results than is seen for routine whole-body dosimetry. This is to be expected since the results will include dosemeters that are based on 'disposable' TLDs and ones based on lithium fluoride powder in sachets. For special accident dosimetry the dosemeters are tested between 0.26 and 6 Gy. For the highest dose group the film badge invariably underestimates the true dose, whereas the TLD has a tendency to overestimate it. PMID:11140715

  17. Applicability of Topaz Composites to Electron Dosimetry

    NASA Astrophysics Data System (ADS)

    Bomfim, K. S.; Souza, D. N.

    2010-11-01

    Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.

  18. Recent progresses in tritium radioecology and dosimetry

    SciTech Connect

    Galeriu, D.; Davis, P.; Raskob, W.; Melintescu, A.

    2008-07-15

    In this paper, some aspects of recent progress in tritium radioecology and dosimetry are presented, with emphasis on atmospheric releases to terrestrial ecosystems. The processes involved in tritium transfer through the environment are discussed, together with the current status of environmental tritium models. Topics include the deposition and reemission of HT and HTO, models for the assessment of routine and accidental HTO emissions, a new approach to modeling the dynamics of tritium in mammals, the dose consequences of tritium releases and aspects of human dosimetry. The need for additional experimental data is identified, together with the attributes that would be desirable in the next generation of tritium codes. (authors)

  19. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  20. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  1. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  2. Time to demand dosimetry for molecular radiotherapy?

    PubMed Central

    Guy, M J

    2015-01-01

    Molecular radiotherapy (MRT) has been used clinically for around 75 years. Despite this long history of clinical use, there is no established dosimetry practice for calculating the absorbed dose delivered to tumour targets or to organs at risk. As a result, treatment protocols have often evolved based on experience with relatively small numbers of patients, each receiving a similar administered activity but, potentially, widely varying doses. This is in stark contrast to modern external-beam radiotherapy practice. This commentary describes some of the barriers to MRT dosimetry and gives some opinions on the way forward. PMID:25571916

  3. SNL RML recommended dosimetry cross section compendium

    SciTech Connect

    Griffin, P.J.; Kelly, J.G.; Luera, T.F.; VanDenburg, J.

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  4. Celiac disease with pure red cell aplasia: an unusual hematologic association in pediatric age group.

    PubMed

    Chatterjee, Sitangshu; Dey, Pranab Kumar; Roy, Pratyay; Sinha, Malay Kumar

    2014-09-01

    Anemia in Celiac disease (CD) is usually hypoproliferative, reflecting impaired absorption of essential nutrients like iron and various vitamins. We report a 2-year-old boy with Celiac disease and severe anemia due to pure red cell aplasia, diagnosed by bone marrow biopsy. This rare, unexplained extra digestive manifestation responded to gluten free diet. PMID:25332626

  5. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging

    SciTech Connect

    Jackson, Price A.; Kron, Tomas; Beauregard, Jean-Mathieu; Hofman, Michael S.; Hogg, Annette; Hicks, Rodney J.

    2013-11-15

    Purpose: To create an accurate map of the distribution of radiation dose deposition in healthy and target tissues during radionuclide therapy.Methods: Serial quantitative SPECT/CT images were acquired at 4, 24, and 72 h for 28 {sup 177}Lu-octreotate peptide receptor radionuclide therapy (PRRT) administrations in 17 patients with advanced neuroendocrine tumors. Deformable image registration was combined with an in-house programming algorithm to interpolate pharmacokinetic uptake and clearance at a voxel level. The resultant cumulated activity image series are comprised of values representing the total number of decays within each voxel's volume. For PRRT, cumulated activity was translated to absorbed dose based on Monte Carlo-determined voxel S-values at a combination of long and short ranges. These dosimetric image sets were compared for mean radiation absorbed dose to at-risk organs using a conventional MIRD protocol (OLINDA 1.1).Results: Absorbed dose values to solid organs (liver, kidneys, and spleen) were within 10% using both techniques. Dose estimates to marrow were greater using the voxelized protocol, attributed to the software incorporating crossfire effect from nearby tumor volumes.Conclusions: The technique presented offers an efficient, automated tool for PRRT dosimetry based on serial post-therapy imaging. Following retrospective analysis, this method of high-resolution dosimetry may allow physicians to prescribe activity based on required dose to tumor volume or radiation limits to healthy tissue in individual patients.

  6. RED-LETTER DAYS

    EPA Science Inventory

    The word "red-letter" is an adjective meaning "of special significance." It's origin is from the practice of marking Christian holy days in red letters on calendars. The "red-letter days" to which I refer occurred while I was a graduate student of ...

  7. International Federation of Red Cross and Red Crescent Societies

    MedlinePlus

    ... dignity and resilience Geneva, 14 September 2016 – The International Federation of Red Cross and Red Crescent Societies... ... News Contact us Sitemap Go to top The International Federation of Red Cross and Red Crescent Societies ( ...

  8. Dose Escalation and Dosimetry of First in Human Alpha Radioimmunotherapy with 212Pb-TCMC-trastuzumab

    PubMed Central

    Meredith, Ruby; Torgue, Julien; Shen, Sui; Fisher, Darrell R.; Banaga, Eileen; Bunch, Patty; Morgan, Desiree; Fan, Jinda; Straughn, J. Michael

    2015-01-01

    Our purpose was to study the safety, distribution, pharmacokinetics, immunogenicity and tumor response of intraperitoneal (IP) 212Pb-TCMC-trastuzumab (TCMC is S-2-(4-isothiocyantobenzl)-1, 4, 7, 10-tetraaza-1, 4, 7, 10=tetra (2-carbamoylmethl) cyclododecane) in patients with HER-2 expressing malignancy. Methods In a standard 3+3 Phase 1 design for dose escalation, 212Pb-TCMC-trastuzumab was delivered IP less than 4 hours after giving 4mg/kg IV trastuzumab to patients with peritoneal carcinomatosis who had failed standard therapies. Results Five dosage levels (7.4, 9.6, 12.6, 16.3, 21.1 MBq/m2) showed minimal toxicity at >1 year for the first group and >4 months for others. The lack of substantial toxicity was consistent with the dosimetry assessments (mean equivalent dose to marrow = 0.18 mSv/MBq). Radiation dosimetry assessment was performed using pharmacokinetics data obtained in the initial cohort (n=3). Limited redistribution of radioactivity out of the peritoneal cavity to circulating blood, which cleared via urinary excretion and no specific uptake in major organs was observed in 24 hours. Maximum serum concentration of the radiolabeled antibody was 22.9% at 24h (decay corrected to injection time) and 500 Bq/mL (decay corrected to collection time). Non-decay corrected cumulative urinary excretion was ≤6% in 24h (2.3 half lives). Dose rate measurements performed at 1m from the patient registered less than 5μSv/hr (using portable detectors) in the latest cohort, significantly less than what is normally observed using nuclear medicine imaging agents. Anti-drug antibody assays performed on serum from the first 4 cohorts were all negative. Conclusions Five dose levels of IP 212Pb-TCMC-trastuzumab treatment of patients with peritoneal carcinomatosis showed little agent related toxicity, consistent with the dosimetry calculations. PMID:25157044

  9. Personnel radiation dosimetry symposium: program and abstracts

    SciTech Connect

    Not Available

    1984-10-01

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry.

  10. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... system or source traceable to the National Institute of Standards and Technology (NIST) and...