Science.gov

Sample records for red sand beds

  1. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  2. 20. View of sand filtration bed. Wheelbarrow was used to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of sand filtration bed. Wheelbarrow was used to remove schmutzdeck (top, dirty sand layer containing particulate contamination, dead microorganisms and debris) for cleaning and or disposal. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  3. Coupled changes in sand grain size and sand transport driven by changes in the upstream supply of sand in the Colorado River: relative importance of changes in bed-sand grain size and bed-sand area

    USGS Publications Warehouse

    Topping, D.J.; Rubin, D.M.; Melis, T.S.

    2007-01-01

    Sand transport in the Colorado River in Marble and Grand canyons was naturally limited by the upstream supply of sand. Prior to the 1963 closure of Glen Canyon Dam, the river exhibited the following four effects of sand supply limitation: (1) hysteresis in sediment concentration, (2) hysteresis in sediment grain size coupled to the hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4) development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Construction and operation of the dam has enhanced the degree to which the first two of these four effects are evident, and has not affected the degree to which the last two effects of sand supply limitation are evident in the Colorado River in Marble and Grand canyons. The first three of the effects involve coupled changes in suspended-sand concentration and grain size that are controlled by changes in the upstream supply of sand. During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase, even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. Also associated with these changes in sand supply are changes in the fraction of the bed that is covered by sand. Thus, suspended-sand concentration in the Colorado River is likely regulated by both changes in the bed-sand grain size and changes in the bed-sand area. A physically based flow and suspended-sediment transport model is developed, tested, and applied to data from the Colorado River to evaluate the relative importance of changes in the bed-sand grain size and changes in the bed-sand area in regulating suspended-sand concentration. Although the model was developed using approximations for steady, uniform flow, and other simplifications that are not met in the Colorado River, the results nevertheless support the idea that changes in bed-sand grain size are much more important than changes in bed-sand area in regulating the concentration of suspended sand.

  4. Erosion of sand from a gravel bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cleaning of fine sediment out of gravel stream beds has become an important method to restore impacted stream habitats. Introducing the increased flows needed to entrain fine sediments without eroding the coarser fractions of the bed and potentially destroying its usefulness as a habitat requires c...

  5. Modeling downstream fining in sand-bed rivers. I: Formulation

    USGS Publications Warehouse

    Wright, S.; Parker, G.

    2005-01-01

    In this paper a numerical modeling formulation is presented for simulation of the development of the longitudinal profile and bed sediment distribution in sand-bed rivers. The objective of the model application, which is presented in the companion paper (Wright and Parker, 2005), is to study the development of two characteristics of large, low-slope, sand-bed rivers: (1) a downstream decrease in bed slope (i.e. concave upward longitudinal profile) and (2) a downstream decrease in characteristic bed sediment diameter (e.g. the median bed surface size D50). Three mechanisms that lead to an upward concave profile and downstream fining are included in the modeling formulation: (1) a delta prograding into standing water at the downstream boundary, (2) sea-level rise, and (3) tectonic subsidence. In the companion paper (Wright and Parker, 2005) the model is applied to simulate the development of the longitudinal profile and downstream fining in sand-bed rivers flowing into the ocean during the past 5000 years of relatively slow sea-level rise. ?? 2005 International Association of Hydraulic Engineering and Research.

  6. Design of Large Wood Structures in Sand-Bed Streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large woody structures (LWS) are potentially an efficient and cost effective way to protect streambanks from erosion while enhancing aquatic habitat. While LWS have been successful in some cases in the Pacific Northwest when ballasted with rock, the failure rate in sand-bed streams typical of the mi...

  7. MODELING LARGE WOOD STRUCTURES IN SAND BED STREAMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In-stream large wood structures (LWS) are becoming increasingly popular throughout the world. The LWS improve aquatic habitat quality and protect banks from erosion. While most reports describe the LWS in the Northwest as successful, LWS in one Mississippi sand-bed stream had an unacceptable failure...

  8. Multiscale statistical characterization of migrating bed forms in gravel and sand bed rivers

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Lanzoni, Stefano; Wilcock, Peter R.; Foufoula-Georgiou, Efi

    2011-12-01

    Migrating bed forms strongly influence hydraulics, transport, and habitat in river environments. Their dynamics are exceedingly complex, making it difficult to predict their geometry and their interaction with sediment transport. Acoustic instrumentation now permits high-resolution observations of bed elevation as well as flow velocity. We present a space-time characterization of bed elevation series in laboratory experiments of sand and gravel transport in a large 84 m long, 2.75 m wide flume. We use a simple filtering and thresholding methodology to estimate bed form heights and report that the shape of their probability density function (pdf) remains invariant to discharge for both gravel and sand and has a positive tail slightly thicker than Gaussian. Using a wavelet decomposition, we quantify the presence of a rich multiscale statistical structure and estimate the scale-dependent celerity of migrating bed forms, showing the faster movement of smaller bed forms relative to the larger ones. The nonlinear dynamics of gravel and sand bed forms is also examined, and the predictability time, i.e., the interval over which one can typically forecast the system, is estimated. Our results demonstrate that flow rate as well as bed sediment composition exert a significant influence on the multiscale dynamics and degree of nonlinearity and complexity of bed form evolution.

  9. Numerical simulation of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Sotiropoulos, Fotis

    2012-11-01

    We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium from of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both URANS and LES models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33. Computational resources were provided by the University of Minnesota Supercomputing Institute.

  10. Bed Bugs Drawn to Red and Black Colors

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_158493.html Bed Bugs Drawn to Red and Black Colors Critters strongly ... 25, 2016 MONDAY, April 25, 2016 (HealthDay News) -- Bed bugs have favorite colors, new research has discovered. In ...

  11. Predicting bed load transport of sand and gravel on Goodwin Creek

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bed load transport rates are difficult to predict in channels with bed material composed of sand and gravel mixtures. The transport of bed load was measured on Goodwin Creek, and in a laboratory flume channel with a similar bed material size distribution. The range of bed load transport rates meas...

  12. Acoustic bed velocity and bed load dynamics in a large sand bed river

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2006-01-01

    Development of a practical technology for rapid quantification of bed load transport in large rivers would represent a revolutionary advance for sediment monitoring and the investigation of fluvial dynamics. Measurement of bed load motion with acoustic Doppler current profiles (ADCPs) has emerged as a promising approach for evaluating bed load transport. However, a better understanding of how ADCP data relate to conditions near the stream bed is necessary to make the method practical for quantitative applications. In this paper, we discuss the response of ADCP bed velocity measurements, defined as the near-bed sediment velocity detected by the instrument's bottom-tracking feature, to changing sediment-transporting conditions in the lower Missouri River. Bed velocity represents a weighted average of backscatter from moving bed load particles and spectral reflections from the immobile bed. The ratio of bed velocity to mean bed load particle velocity depends on the concentration of the particles moving in the bed load layer, the bed load layer thickness, and the backscatter strength from a unit area of moving particles relative to the echo strength from a unit area of unobstructed bed. A model based on existing bed load transport theory predicted measured bed velocities from hydraulic and grain size measurements with reasonable success. Bed velocities become more variable and increase more rapidly with shear stress when the transport stage, defined as the ratio of skin friction to the critical shear stress for particle entrainment, exceeds a threshold of about 17. This transition in bed velocity response appears to be associated with the appearance of longer, flatter bed forms at high transport stages.

  13. Density stratification effects in sand-bed rivers

    USGS Publications Warehouse

    Wright, S.; Parker, G.

    2004-01-01

    In this paper the effects of density stratification in sand-bed rivers are studied by the application of a model of vertical velocity and concentration profiles, coupled through the use of a turbulence closure that retains the buoyancy terms. By making the governing equations dimensionless, it is revealed that the slope is the additional dimensionless parameter introduced by inclusion of the buoyancy terms. The primary new finding is that in general density stratification effects tend to be greater in large, low-slope rivers than in their smaller, steeper brethren. Under high flow conditions the total suspended load and size distribution of suspended sediment can be significantly affected by density stratification, and should be accounted for in any general theory of suspended transport. ?? ASCE.

  14. The importance of bed sediment sand content for the structure of a static armor layer in a gravel bed river

    NASA Astrophysics Data System (ADS)

    Curran, Joanna Crowe; Waters, Kevin A.

    2014-07-01

    The surface structure of static armor layers generated from water-worked gravel bed channels was investigated with primary focus on the influence of sand content and flow rate. Flume experiments were conducted in which four sediment mixtures with sand contents between 1% and 38% were armored under one of three different flow rates. First- and second-order statistical analyses were applied to digital elevation models of unarmored, armored, and clustered bed surface areas to identify changes in surface structure. Results were combined with data from previous research to create an extended data set of armored bed surfaces. Water-worked, unarmored bed surfaces established under a dynamic equilibrium flow rate impacted the topographic variability and structure of the armored beds. Surface complexity decreased with armor formation as surface grains preferentially aligned with the flow direction. The bed surface became smoother, and where sediment mixture sand content was constant, there was greater smoothing of the surface during higher armoring flows as grains rearranged more easily. As bulk sand content increased, statistical analyses of the expanded data set showed that beds with very little sand content developed static armor layers that remained rough and had greater topographic variability than armor layers from sediments with higher sand contents. The bulk sediment sand content exerted a stronger influence over the change in surface roughness and structure upon armoring than that of the flow rate during armor formation. When combined with the knowledge of the local flow regime, the sand content may aid in predictions related to armored bed surface structure.

  15. Flow resistance and suspended load in sand-bed rivers: Simplified stratification model

    USGS Publications Warehouse

    Wright, S.; Parker, G.

    2004-01-01

    New methods are presented for the prediction of the flow depth, grain-size specific near-bed concentration, and bed-material suspended sediment transport rate in sand-bed rivers. The salient improvements delineated here all relate to the need to modify existing formulations in order to encompass the full range of sand-bed rivers, and in particular large, low-slope sand-bed rivers. They can be summarized as follows: (1) the inclusion of density stratification effects in a simplified manner, which have been shown in the companion paper to be particularly relevant for large, low-slope, sand-bed rivers; (2) a new predictor for near-bed entrainment rate into suspension which extends a previous relation to the range of large, low-slope sand-bed rivers; and (3) a new predictor for form drag which again extends a previous relation to include large, low-slope sand-bed rivers. Finally, every attempt has been made to cast the relations in the simplest form possible, including the development of software, so that practicing engineers may easily use the methods. ?? ASCE.

  16. Bed topography and sand transport responses to a step-change in discharge and water depth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ephemeral streams with sand and gravel beds may inherit bed topography caused by previous flow events, resulting in bed topography that is not in equilibrium with flow conditions, complicating the modeling of flow and sediment transport. Major flow events, resulting from rainfall with high intensity...

  17. Algorithm for resistance to flow and transport in sand-bed channels

    USGS Publications Warehouse

    Bennett, J.P.

    1995-01-01

    An algorithm is developed that relates depth to discharge and determines bed- and suspended-load transport for the entire range of bed forms found in sand-bed channels; equilibrium-state geometry of lower flow regime bedforms is also predicted. A Meyer-Peter-type formulation is used to compute sand transport in the bed-load layer and for computing suspended sand transport, McLean's procedure is adopted. A bed-form classifcation scheme is developed. The algorithm produces overall geometric averages of predicted to observed depth and predicted to observed transport of 1.00. For a verification data set of 855 observations, mostly from rivers and canals, the overall geometric averages of predicted to observed depth and transport are 0.87 and 1.14. -from Author

  18. Bed Level Change of a Sand Ridge Observed by Sonar Altimeters

    NASA Astrophysics Data System (ADS)

    Lee, G.; Rhew, H.; Lee, S.; Park, H.

    2012-12-01

    Although the general aspects of ridge formation and maintenance with respect to the overall flow pattern have been well documented, there still exists a room for improvement. The localized flow pattern and responding morphologic change are vital to understand the stability of sand ridges under the rising sea level and coastal retreat. In order to investigate the morphologic behavior of a sand ridge, we deployed 10 autonomous sonar altimeters on the Habulchontaey sand ridge since July 1, 2011 and measured bed level every 10 minutes. The Habulchontaey sand ridge is a tide-dominated sand body that makes up a much larger sand ridge field in macro-tidal Kyunggi Bay on the west coast of Korea. The bed level change over two consecutive tidal cycles ranges from a few centimeters to over a half meter. Small bed level changes of a few centimeters were usually related to the formation and migration of bedforms, while the big change over a half meter occurred under the influence of Typhoon Muifa in August of 2011. Bed level changes on most measurement sites were forced by the combined effects of waves and tidal currents. However, there exist two sites where bed level changes were strongly correlated to the spring-neap tidal cycle, with large changes occurring during spring tides, and large wave events, respectively. Based on preliminary results of flow measurements, localized flow patterns around the sand ridge are responsible for this.

  19. The pyrolysis of oil sands in a fluidized bed at reduced pressure

    SciTech Connect

    Fletcher, J.V.

    1992-01-01

    A fluidized bed pyrolysis reactor system was designed, constructed, and tested at reactor pressures less than atmospheric using mined and crushed oil sands from the Whiterocks deposit of Utah. A 6.0 inch ID fluidized bed reactor was fed oil sand of 7% bitumen saturation on a continuous basis while maintaining a bed height of approximately 12 inches. Spent sand was withdrawn using a modified nonmechanical L valve. The characteristics of bed pressure drop, [Delta]P[sub B], versus superficial gas velocity, U, were determined during fluidization and defluidization of spent sand using laboratory air. A proposed method for interpreting the minimum fluidization gas velocity, U[sub mf], from [Delta]P[sub B] versus U curves for multisized particles at reduced pressure was tested. U[sub mf] values were consistent with predictive correlations in the literature. The relationship, U[sub mf] T[sup 0.27] = a constant, was tested and found to be valid from 295 K to 559 K for spent sand fluidized by air. The reactor used propane for heating and the hot propane combustion product gases for fluidization during pyrolysis. Liquid products were condensed and filtered using commercial basket strainers modified with water cooling coils. Material balances of 90% or more were obtained for pyrolysis experiments at 450[degrees]C, 475[degrees]C, and 500[degrees]C. The optimum pyrolysis temperature for liquid yields was found to be 475[degrees]C at average retention times of thirty minutes or more. For pyrolysis temperatures of 475[degrees]C or lower, recovered oil sand pyrolysis products were 88 wt% liquid, 9 wt% coke, and 3 wt% gas. Liquid yields from the fluidized bed pyrolysis of Whiterocks oil sands at reduced pressure were greater than reported yields from a rotary kiln or an atmospheric pressure fluidized bed. Coke on the spent sand was about 0.6 wt% of the spent sand and represented about 8 wt% of the bitumen pyrolyzed.

  20. Efficacy of Permethrin Treated Bed Nets Against Leishmania major Infected Sand Flies.

    PubMed

    Rowland, Tobin; Davidson, Silas A; Kobylinski, Kevin; Menses, Claudio; Rowton, Edgar

    2015-01-01

    Insecticide treated nets (ITNs) are a potential tool to help control sand flies and prevent Leishmaniasis. However, little is currently known about the response of Leishmania infected sand flies to ITNs. In this study, Phlebotomus duboscqi sand flies were infected with the parasite Leishmania major. Infected and noninfected sand flies were then evaluated against permethrin treated and untreated bed nets in a laboratory assay that required sand flies to pass through suspended netting material to feed on a mouse serving as an attractive host. The number of sand flies passing through the nets and blood feeding was recorded. There was not a significant difference in the ability of infected or noninfected sand flies to move through treated or untreated nets. Fewer sand flies entered the permethrin treated nets compared to the untreated nets, indicating that permethrin creates an effective barrier. The results show that in addition to reducing the nuisance bites of noninfected sand flies, ITNs also protect against Leishmania infected sand flies and therefore can play in key role in reducing the rates of Leishmaniasis. This study is important to the Department of Defense as it continues to develop and field new bed nets to protect service members. PMID:26276941

  1. Experiments on the Evolution of Sand Bed Forms for Varying Degrees of Supply Limitation

    NASA Astrophysics Data System (ADS)

    Langendoen, E. J.; Wren, D. G.; Kuhnle, R. A.

    2011-12-01

    The advanced age and impending decommissioning of many dams have brought increased attention to the fate of sediments stored in reservoirs. In many cases, fine sediments are reintroduced to coarse substrates that have large volumes of pore space available for storage after having sediments removed by years of sediment-starved flow. Recent research has found that the fine sediment elevation relative to the coarse substrate significantly alters bed surface roughness, turbulence characteristics, the mobility of the fine sediment, and consequently sediment transport rates and sediment bed forms that move over and through these coarse substrates. The roughness of the bed surface is an important parameter for the prediction of bulk flow and sediment transport rates. In order to calculate sediment transport rates, bed shear stresses are typically adjusted for drag exerted by the flow on macro roughness elements, which are related here to the protrusion of coarse substrate particles and sediment bed forms. Also, the partial mobility (or supply limitation) of sediment yields bed forms that differ from those observed for uniform bed material. Hence, a proper understanding of the interactions between near-bed flow structure, sediment transport rates, and bed surface elevation is needed to adequately determine the downstream impact of fine sediment releases from reservoirs. Recent experiments at the USDA-ARS-National Sedimentation Laboratory in a sediment-recirculating flume (15 m long, 0.36 m wide, and 0.45 m deep) were carried out to elucidate turbulence and sand transport over and through coarse gravel substrates. The median diameter of the sand was 0.3 mm, and that of the gravel was 35 mm. This paper presents results on the change in bed form types with increasing sand elevation relative to the coarse gravel substrate and for Froude numbers ranging from about 0.1 to 0.6. The mean sand elevation was varied between 5 cm below the top of the gravel and the top of the gravel. The bed level was measured using both an acoustic sensor and stereo photogrammetry. The acoustic sensor provided bed elevation transects along the channel centerline, whereas digital elevation models with a horizontal grid size of 0.25x0.25 mm were derived from the stereo images. At low mean sand elevations an individual, low-relief dune-like bed form initially developed for larger Froude numbers. Groups of increasingly numerous low-relief bed forms developed when increasing mean sand elevation. The tops of the bed forms were located at an elevation similar to those of the higher gravel tops.

  2. Electrokinetic injection of ammonium and sulfate ions into sand and kaolinite beds

    SciTech Connect

    Acar, Y.B.; Rabbi, M.F.; Ozsu, E.E.

    1997-03-01

    Electrokinetic remediation is an emerging in-situ remediation technique that employs a low-level direct current (DC) across an electrode system inserted in soil to extract inorganic/organic species. The efficiency of electrokinetic injection of a cation (ammonium) from the anode and an anion (sulfate) from the cathode into a fine-grained sand bed and a kaolinite bed is investigated. Electrodes are placed in chambers across 80 cm of soil beds in a flume. The electrical conductivity of the kaolinite bed was 124.1 {+-} 6.6 {micro}S/cm approximately an order of magnitude higher than the fine sand bed while the hydraulic conductivity of the same was 2 {times} 10{sup {minus}7} cm/s about three orders of magnitude lower than the fine-grained sand bed. The electrical gradients of 1 V/cm or less constituted the predominant driving force for transport under constant current densities of 15 {micro}A/cm{sup 2} and 123 {micro}A/cm{sup 2} in the sand and kaolinite beds, respectively. An electrolyte conditioning scheme where the co-ions (hydroxide ion in the ammonium hydroxide used at the anode and the hydronium ion in the sulfuric acid used at the cathode) depolarized the electrode reactions maintained the pH value across the beds between 6.5 and 7.4. This novel conditioning scheme prevented formation and introduction of species formed by the electrode reactions and avoided unnecessary increase in the electrical conductivity in the electrolytes. Transport rates on the order of 8--20 cm/d were achieved for sulfate and ammonium ions in both the fine-grained sand bed and the kaolinite bed.

  3. Turbulent flow and sand transport over a cobble bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The turbulence structure of flow over rough beds and its interaction with fine sediments in the bed are important for efforts to predict sediment transport downstream of dams. The advanced age and impending decommissioning of many dams have brought increased attention to the fate of sediments stored...

  4. Deposition of carbonate mud beds within high-energy subtidal sand Dunes, Bahamas

    SciTech Connect

    Dill, R.F.; Steinen, R.P.

    1988-01-01

    Laminated, carbonate mud beds are being deposited in the interisland channels of the Exuma Cays in the Bahamas. They are associated with stromatolites and interbedded with ooid sands that form large migrating subtidal dunes on flood tidal deltas and bars. Currents up to 3 knots sweep in and out of the 4-8 m deep channels 3 hours out of every 6 hours, creating a high-energy bank margin environment not usually considered to be the site of mud-sized particle deposition. Mud deposits reach thicknesses of 1 m and have individual beds 2-5 cm thick. When exposed to flowing seawater, bed surfaces become encrusted with carbonate cement and algal mats. The white interior of mud beds between the crusts appears homogeneous, is soft, and has the consistency of ''tooth paste.'' Loose uncemented ooid sand is found above and below the mud beds, showing that both are occupying the same depositional environment. Rip-up clasts of the crusted mud beds, formed by scour of underlying sands, are carried throughout the channels and accumulate as a lag deposit within the troughs of migrating dunes. Some clasts are colonized by algal mats that trap ooid and skeletal sands forming stromatolite structures that can grow up to 2 m high.

  5. Sand Transport, Flow Turbulence, and Bed Forms over an Immobile Gravel Bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channels downstream of dams often become armored because the sediment supply from upstream is cut off. Sand is generally supplied to these armored reaches intermittently from tributaries downstream of the dam or from sand bypassing. Accurate predictions of the rate of transport of sand over and th...

  6. Measurement of bedload transport in sand-bed rivers: a look at two indirect sampling methods

    USGS Publications Warehouse

    Holmes, Robert R., Jr.

    2010-01-01

    Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sandbed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method. Much research remains to develop methods and determine accuracy of the virtual velocity method in small sand-bed rivers.

  7. Flow and sand transport over an immobile gravel bed.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many dams in the USA and elsewhere have exceeded their design life and are being considered for remediation or removal, which will result in the reintroduction of fine sediments, often into coarse grained armored substrates, downstream of dams. The deposition of sand in the interstices of the grave...

  8. Ichnology of the Cretaceous Oceanic Red Beds (Outer Western Carpathians, Czech Republic)

    NASA Astrophysics Data System (ADS)

    Mikuláš, Radek; Skupien, Petr; Bubík, Miroslav; Vašíček, Zdeněk

    2009-06-01

    Large differences in the intensity and overall character of bioturbational structures were found in five facies containing hemipelagic red beds. Red beds (CORB) of the Godula facies of the Silesian Unit and their equivalents (mostly not red) in the Kelč facies of the Silesian Unit and the CORB in the non-calcareous sediments of the Rača Unit display a very low degree of bioturbation. The CORB facies of the Rača Unit, containing calcareous intercalations, displays a very high degree of bioturbation as expressed by a high ichnofabric index. They contain trace fossils Chondrites, Zoophycos, Planolites, Thalassinoides, Palaeophycus, Teichichnus and Phycosiphon. The supply of food obviously acted as the controlling factor. The "calcareous" facies of the CORB of the Rača Unit has a considerably higher proportion of sand-dominated interbeds and also carbonates than the non-calcareous facies. This (especially the presence of carbonates) suggests a relative proximity of food-rich environments and an easy transport of nutrition-rich substrate by turbidite currents into the basin directly, not only by periodical fall-out of dead plankton (which is probably responsible for the rhythmicity of poor colonization horizons in weakly bioturbated units).

  9. RESPONSE OF FISHES AND AQUATIC HABITATS TO SAND-BED STREAM RESTORATION USING LARGE WOODY DEBRIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large woody debris structures hold promise as cost-effective stream corridor rehabilitation measures. Pre- and post construction data are presented that describe effects of habitat rehabilitation of Little Topashaw Creek, a sinuous, fourth-order sand-bed stream draining 37 km2 in northwest Mississip...

  10. Colorado River sediment transport 2. Systematic bed-elevation and grain-size effects of sand supply limitation

    USGS Publications Warehouse

    Topping, D.J.; Rubin, D.M.; Nelson, J.M.; Kinzel, P. J., III; Corson, I.C.

    2000-01-01

    The Colorado River in Marble and Grand Canyons displays evidence of annual supply limitation with respect to sand both prior to [Topping et al., this issue] and after the closure of Glen Canyon Dam in 1963. Systematic changes in bed elevation and systematic coupled changes in suspended-sand concentration and grain size result from this supply limitation. During floods, sand supply limitation either causes or modifies a lag between the time of maximum discharge and the time of either maximum or minimum (depending on reach geometry) bed elevation. If, at a cross section where the bed aggrades with increasing flow, the maximum bed elevation is observed to lead the peak or the receding limb of a flood, then this observed response of the bed is due to sand supply limitation. Sand supply limitation also leads to the systematic evolution of sand grain size (both on the bed and in suspension) in the Colorado River. Sand input during a tributary flood travels down the Colorado River as an elongating sediment wave, with the finest sizes (because of their lower settling velocities) traveling the fastest. As the fine front of a sediment wave arrives at a given location, the bed fines and suspended-sand concentrations increase in response to the enhanced upstream supply of finer sand. Then, as the front of the sediment wave passes that location, the bed is winnowed and suspended-sand concentrations decrease in response to the depletion of the upstream supply of finer sand. The grain-size effects of depletion of the upstream sand supply are most obvious during periods of higher dam releases (e.g, the 1996 flood experiment and the 1997 test flow). Because of substantial changes in the grain-size distribution of the bed, stable relationships between the discharge of water and sand-transport rates (i.e., stable sand rating curves) are precluded. Sand budgets in a supply-limited river like the Colorado River can only be constructed through inclusion of the physical processes that couple changes in bed-sediment grain size to changes in sand-transport rates.

  11. Interactions between riparian vegetation and river morphodynamics in a sand-bed meandering stream.

    NASA Astrophysics Data System (ADS)

    Gorrick, Sam; Rodriguez, Jose F.

    2014-05-01

    River morphodynamics results from the action of various sediment fluxes associated with different transport mechanisms, and those fluxes are influenced by the presence of riparian vegetation. We present in this study a comprehensive set of flow and sediment measurements required to compute the fluxes in a sand-bed stream with riparian vegetation. We collected data in a reduced-scale, movable-bed laboratory model of a reach that is undergoing rehabilitation using in-stream riparian vegetation. We used light weight sediment in order to ensure similar sediment mobility levels in model and prototype. Laboratory measurements included downstream and transverse velocities, bed shear stresses, bed load transport, suspended sediment concentrations, and bed topography over time with and without riparian vegetation placed along the outer bank of the bend. The results unveiled the importance of secondary circulation as well as converging and diverging flow patterns in shaping the bed topography. Modifications due to the vegetation included a shift of the main flow away from the vegetated outer bank and an overall straightening of the flow in the reach, resulting in an increased deposition near the vegetated bank and a reduced deposition near the inner bank. Our results highlight the need for overall reach assessment of flow and sediment dynamics before revegetation, as its effects go beyond local bank protection. We discuss implications for reach-scale morphodynamic modelling.

  12. Characterisation of sand transport in gravel-bed rivers using iron slag dated by historical studies

    NASA Astrophysics Data System (ADS)

    Houbrechts, G.; Levecq, Y.; Petit, F.

    2012-04-01

    Considerable quantities of iron-smelting slag are present in the bed of the Ardennian rivers. These waste products come from hundreds of ironworks (mainly blast furnaces and finery forges) built close to different-sized rivers between the 14th and the 19th centuries. In general, slag was crushed by hammers, sorted and piled up in heaps around the furnaces, generally onto the floodplains. Furthermore, some archives mention that they were sometimes thrown out directly into the rivers. This means that for centuries, slag elements have been swept away by floods, mixed with the sediment and spread out along river courses. Due to their distinctive appearance, slag particles are easily recognizable among the natural elements. Thanks to many historical studies conducted on the early iron industry, we are able to date quite precisely the inception and the periods of activity of the different sites established in the catchments. These data are indispensable in order to use slag as a tracer to quantify the particles' velocity in rivers. Downstream of ironworks, samples of sand have been collected in the surface layer of many gravel-bed rivers. Then, the slag concentration of each sample has been measured in the coarse sand fraction. The representation of the longitudinal evolution of slag concentration in these rivers permits the dispersion of slag to be analysed, the relative bed-material discharges at confluences to be quantified and the velocity of coarse sand to be determined. A survey of the bedload discharge in the Ardennian rivers established that more than 90 % of the bedload transport consists of coarse sand grains that are transported on the bottom of the bed. However, in the literature, this grain-size fraction is generally not considered in bedload discharge estimations because the sandy particles are very difficult to tag and to recover. Consequently, the huge amounts of slag injected in rivers several centuries ago can be considered as a very useful opportunity to characterise the sand transport in gravel-bed rivers.

  13. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-01-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 micron-diameter grains into similar material. Elastic energy deposited in the bed by the impacting grain creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains from closed to open packing, and grains are consequently able to eject themselves forcefully from the impact site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. There is a great temptation to draw parallels with cratering produced by meteorite impacts, but a rigorous search for common modelling ground between the two phenomena has not been conducted at this time. For every impact of an aerodynamically energized grain, there are several hundred grains ejected into the wind for the high-energy transport that might occur on Mars. Many of these grains will themselves become subject to the boundary layer's aerodynamic lift forces (their motion will not immediately die and add to the creep population), and these grains will become indistinguishable from those lifted entirely by aerodynamic forces. As each grain impacts the bed, it will eject even more grains into the flow. A cascading effect will take place, but because it must be finite in its growth, damping will occur as the number of grains set in motion causes mid-air collisions that prevent much of the impact energy from reaching the surface of the bed -thus creating a dynamic equilibrium in a high-density saltation cloud. It is apparent that for a given impact energy, the stress field permits a smaller volume of grains to convert to open packing as the size of the bed grains increases, or as the energy of the "percussive" grain decreases (by decrease in velocity or mass). Thus, the mass of the "repercussive" grain population that is ejected from the impact site becomes a function of the scale of the stress field in relation to the scale of the bed material (self-similarity being applicable if both bed size and energy are simultaneously adjusted). In other words, in a very high energy aeolian system where an aerodynamically raised grain can ballistically raise many more grains, the amount of material lifted into the wind becomes largely a function of a dilatancy threshold. If this threshold is exceeded, grains are repercussively injected into the saltation cloud. The "dilatancy threshold" may be defined in terms of the saltation percussive force required to convert the bed, through elastic response, from a closed to an open packing system. If open packing cannot be created, the grains cannot escape from the impact site, even though the elastic deformation and percussive force may be able to reorganize the grains with respect to one another. As the crossbow experiments showed, for an ever-increasing bed grain size, a point is reached when no material can be moved because the energy of the percussive grain is insufficient to dilate the relatively coarse bed. Although this seems to be stating the obvious -- that too little energy will not cause the bed to splash -- the consequences of exceeding the "splash threshold" by dilatancy are not so obvious for high-energy aeolian transport. It is noted that the force required to elastically dilate the bed has to overcome Coulombic grain attractions such as dipole-dipole coupling, dielectric, monopole, contact-induced dipole attractions, van der Waals forces, molecular monolayer capillary forces, as well as the mechanical interlocking frictional resistance of the grains. On Mars, it is predicted that the dilatancy threshold may be the prime control of grain flux. Additional information is contained in the original.

  14. Evaluation of an experimental LiDAR for surveying a shallow, braided, sand-bedded river

    USGS Publications Warehouse

    Kinzel, P.J.; Wright, C.W.; Nelson, J.M.; Burman, A.R.

    2007-01-01

    Reaches of a shallow (<1.0m), braided, sand-bedded river were surveyed in 2002 and 2005 with the National Aeronautics and Space Administration's Experimental Advanced Airborne Research LiDAR (EAARL) and concurrently with conventional survey-grade, real-time kinematic, global positioning system technology. The laser pulses transmitted by the EAARL instrument and the return backscatter waveforms from exposed sand and submerged sand targets in the river were completely digitized and stored for postflight processing. The vertical mapping accuracy of the EAARL was evaluated by comparing the ellipsoidal heights computed from ranging measurements made using an EAARL terrestrial algorithm to nearby (<0.5m apart) ground-truth ellipsoidal heights. After correcting for apparent systematic bias in the surveys, the root mean square error of these heights with the terrestrial algorithm in the 2002 survey was 0.11m for the 26 measurements taken on exposed sand and 0.18m for the 59 measurements taken on submerged sand. In the 2005 survey, the root mean square error was 0.18m for 92 measurements taken on exposed sand and 0.24m for 434 measurements on submerged sand. In submerged areas the waveforms were complicated by reflections from the surface, water column entrained turbidity, and potentially the riverbed. When applied to these waveforms, especially in depths greater than 0.4m, the terrestrial algorithm calculated the range above the riverbed. A bathymetric algorithm has been developed to approximate the position of the riverbed in these convolved waveforms and preliminary results are encouraging. ?? 2007 ASCE.

  15. Fecal Indicator Bacteria Entrainment from Streambed to Water Column: Transport by Unsteady Flow over a Sand Bed.

    PubMed

    Surbeck, Cristiane Q; Douglas Shields, F; Cooper, Alexandra M

    2016-05-01

    Storms cause a substantial increase in the fecal indicator bacteria (FIB) concentrations in stream water as a result of FIB-laden runoff and the release of FIB from stream sediments. Previous work has emphasized the association between FIB and bed sediments finer than sand. The objectives of this work were to elucidate the effect of various velocities on the entrainment of bed-dwelling coliforms in sand-bed streams and to refine methodologies for quantifying sandy streambeds as sources of FIB. Pump-induced hydrographs were created using a stainless steel nonrecirculating flume. Experiments consisted of simulating four storm hydrographs and collecting water samples upstream and downstream of a sand bed at selected intervals. Bed sediment samples were collected before and after each event. The highest concentrations of total coliform and suspended sediments generally occurred in the downstream samples during the rising limb of the hydrographs as a result of entrainment of coliforms and sand from the bed to the water column. There was a first flush effect in the system, as the upper layer of sand was influenced by a rapidly increasing velocity at ∼0.2 m s. Coliforms downstream of the sand bed increased rapidly as velocity exceeded this threshold but then declined even as velocity and discharge continued to increase. This likely reflects the depletion of coliforms as the more densely populated sediment layer was flushed out. There is evidence that streams with sand beds harbor enough FIB that development of total maximum daily loads (TMDLs) should include consideration of them as a source. PMID:27136173

  16. Underwater sand bed erosion and internal jump formation by travelling plane jets

    NASA Astrophysics Data System (ADS)

    Perng, A. T. H.; Capart, H.

    Theory and experiments are used to investigate the water and sediment motion induced along a sea bed by travelling plane jets. Steadily moving jets are considered, and represent an idealization of the tools mounted on ships and remotely operated vehicles (ROVs) for injection dredging and trenching. The jet-induced turbulent currents simultaneously suspend sand from the bed and entrain water from the ambient. To describe these processes, a shallow-flow theory is proposed in which the turbulent current is assumed stratified into sediment-laden and sediment-free sublayers. The equations are written in curvilinear coordinates attached to the co-evolving bed profile. A sharp interface description is then adopted to account rigorously for mass and momentum exchanges between the bed, current and ambient, including their effects on the balance of mechanical energy. Travelling-wave solutions are obtained, in which the jet-induced current scours a trench of permanent form in a frame of reference moving with the jetting tool. Depending on the operating parameters, it is found that the sediment-laden current may remain supercritical throughout the trench, or be forced to undergo an internal hydraulic jump. These predictions are confirmed by laboratory experiments. For flows with or without jump in which the current remains attached to the bed, bottom profiles computed by the theory compare favourably with imaging measurements.

  17. Pyrolysis of Uinta Basin Oil Sands in fluidized bed and rotary kiln reactors

    SciTech Connect

    Nagpal, S.; Fletcher, J.V.; Hanson, F.V.

    1995-12-31

    A pilot-scale fluidized bed reactor (FBR) was used to pyrolyze the mined and crushed ore from the PR Spring oil sands deposit which is located in the Uinta Basin of Utah. Liquid yields of approximately 80 wt% of the bitumen fed to the reactor were obtained. This compares to 55-70 wt% obtained from smaller laboratory scale fluidized bed reactors and a pilot-scale rotary kiln. The product yields and distributions exhibited no discernable trends with reactor temperature or solids retention time. The liquid products obtained from the pilot-scale fluidized bed reactor were upgraded compared to the bitumen in terms of volatility, viscosity, molecular weight, and metals (Ni and V) content. The nitrogen and sulphur contents of the total liquid products were also reduced relative to the bitumen. A comparison of oil sands pyrolysis yields from a pilot scale FBR and a rotary kiln of the same diameter (15.2 cm) was made. Under similar pyrolysis conditions, the rotary kiln produced a slightly more upgraded product but at lower total liquid yields. Kinetic modeling of the various reactors indicates that the pilot-scale FBR product distributions may be explained using a simplified two-reaction scheme. It is proposed that secondary cracking is suppressed in the large diameter FBR due to elimination of slugging and the superior quality of fluidization in the reactor. More experimental studies with the rotary kiln and an economic evaluation will be required before concluding which reactor is preferred for the thermal recovery process.

  18. Bedform dynamics in a large sand-bedded river using multibeam echo sounding

    NASA Astrophysics Data System (ADS)

    Elliott, C. M.; Jacobson, R. B.; Erwin, S.; Eric, A. B.; DeLonay, A. J.

    2014-12-01

    High-resolution repeat multibeam Echo Sounder (MBES) surveys of the Lower Missouri River in Missouri, USA demonstrate sand bedform movement at a variety of scales over a range of discharges. Understanding dune transport rates and the temporal and spatial variability in sizes across the channel has implications for how sediment transport measurements are made and for understanding the dynamics of habitats utilized by benthic organisms over a range of life stages. Nearly 800 miles of the Lower Missouri River has been altered through channelization and bank stabilization that began in the early 1900's for navigation purposes. Channelization of the Lower Missouri River has created a self-scouring navigation channel with large dunes that migrate downstream over a wide range of discharges. Until the use of MBES surveys on the Missouri River the spatial variability of dune forms in the Missouri River navigation channel was poorly understood. MBES surveys allow for visualization of a range of sand bedforms and repeat measurements demonstrate that dunes are moving over a wide range of discharges on the river. Understanding the spatial variability of dunes and dune movement across the channel and in different channel settings (bends, channel cross-overs, near channel structures) will inform emerging methods in sediment transport measurement that use bedform differencing calculations and provide context for physical bedload sediment sampling on large sand-bedded rivers. Multiple benthic fish species of interest including the endangered pallid sturgeon utilize Missouri River dune fields and adjacent regions for migration, feeding, spawning, early development and dispersal. Surveys using MBES and other hydroacoustic tools provide fisheries biologists with broad new insights into the functionality of bedforms as habitat for critical life stages of large river fish species in the Missouri River, and similar sand-bedded systems.

  19. Suspension of bed material over sand bars in the Lower Mississippi River and its implications for Mississippi delta environmental restoration

    NASA Astrophysics Data System (ADS)

    Ramirez, Michael T.; Allison, Mead A.

    2013-06-01

    specific pathways for sand transport in the lower reaches of large rivers, including the Mississippi, is a key for addressing multiple significant geologic problems, such as delta building and discharge to the oceans, and for environmental restoration efforts in deltaic environments threatened by rising sea levels. Field studies were performed in the Mississippi River 75-100 km upstream of the Gulf of Mexico outlet in 2010-2011 to examine sand transport phenomena in the tidally affected river channel over a range of discharges. Methods included mapping bottom morphology (multibeam sonar), cross-sectional and longitudinal measurements of water column velocity and acoustic backscatter, suspended sediment sampling, and channel-bed sampling. Substantial interaction was observed between the flow conditions in the river (boundary shear stress), channel-bed morphology (size and extent of sandy bedforms), and bed material sand transport (quantity, transport mode, and spatial distribution). A lateral shift was observed in the region of maximum bed material transport from deep to shallow areas of subaqueous sand bars with increasing water discharge. Bed material was transported both in traction and in suspension at these water discharges, and we posit that the downriver flux of sand grains is composed of both locally- and drainage basin-sourced material, with distinct transport pathways and relations to flow conditions. We provide suggestions for the optimal design and operation of planned river diversion projects.

  20. Validating Experimental Bedform Dynamics on Cohesive Sand-Mud Beds in the Dee Estuary

    NASA Astrophysics Data System (ADS)

    Baas, Jaco H.; Baker, Megan; Hope, Julie; Malarkey, Jonathan; Rocha, Renata

    2014-05-01

    Recent laboratory experiments and field measurements have shown that small quantities of cohesive clay, and in particular 'sticky' biological polymers, within a sandy substrate dramatically reduce the development rate of sedimentary bedforms, with major implications for sediment transport rate calculations and process interpretations from the sedimentary record. FURTHER INFORMATION Flow and sediment transport predictions from sedimentary structures found in modern estuaries and within estuarine geological systems are impeded by an almost complete lack of process-based knowledge of the behaviour of natural sediments that consist of mixtures of cohesionless sand and biologically-active cohesive mud. Indeed, existing predictive models are largely based on non-organic cohesionless sands, despite the fact that mud, in pure form or mixed with sand, is the most common sediment on Earth and also the most biologically active interface across a range of Earth-surface environments, including rivers and shallow seas. The multidisciplinary COHBED project uses state-of-the-art laboratory and field technologies to measure the erosional properties of mixed cohesive sediment beds and the formation and stability of sedimentary bedforms on these beds, integrating the key physical and biological processes that govern bed evolution. The development of current ripples on cohesive mixed sediment beds was investigated as a function of physical control on bed cohesion versus biological control on bed cohesion. These investigations included laboratory flume experiments in the Hydrodynamics Laboratory (Bangor University) and field experiments in the Dee estuary (at West Kirby near Liverpool). The flume experiments showed that winnowing of fine-grained cohesive sediment, including biological stabilisers, is an important process affecting the development rate, size and shape of the cohesive bedforms. The ripples developed progressively slower as the kaolin clay fraction in the sandy substrate bed was increased. The same result was obtained for xanthan gum, which is a proxy for biological polymers produced by microphytobenthos. Yet, the xanthan gum was several orders more effective in slowing down ripple development than kaolin clay, suggesting that the cohesive forces for biological polymers are much higher than for clay minerals, and that sedimentological process models should refocus on biostabilisation processes. The first results of the field experiments show that the winnowing of fines from developing ripples and the slowing down of current ripple development in mixed cohesive sediment is mimicked on intertidal flats in the Dee estuary. In particular, these field data revealed that current ripples in cohesive sediment are smaller with more two-dimensional crestlines than in non-cohesive sand. The wider implications of these findings will be discussed. COHBED Project Team (NERC): Alan Davies (Bangor University); Daniel Parsons, Leiping Ye (University of Hull); Jeffrey Peakall (University of Leeds); Dougal Lichtman, Louise O'Boyle, Peter Thorne (NOC Liverpool); Sarah Bass, Andrew Manning, Robert Schindler (University of Plymouth); Rebecca Aspden, Emma Defew, Julie Hope, David Paterson (University of St Andrews)

  1. Hydro-morphological analysis of a sand-bed river in Hungary

    NASA Astrophysics Data System (ADS)

    Baranya, S.; Rajmund, S.; Józsa, J.

    2012-04-01

    The main goal of this paper is to introduce a suitable procedure for the assessment of reach-scale hydro-morphological conditions of rivers. For this purpose a 4 km long reach of River Tisza in Hungary was chosen and investigated by means of comprehensive field measurements and three-dimensional numerical modelling. The river can be characterized with an average depth of 6 m and an average width of 150 m, whereas the mean annual discharge is around 800 m3/s. The bed material is sand with a d50 of 0.2 mm. In the shallow zones of the river bed forms are migrating with a typical length of 20 m and amplitude of 0.3 m. The study reach has recently been surveyed in 2008 and 2010. The river bed evolution occurred during the two years is assessed by difference maps of the river bathymetry. Furthermore, moving and fixed ADCP measurements were carried out in order to reveal the spatial flow structure. Suspended sediment and bed material samples were also collected yielding the sediment discharge and characteristic grain size distributions. Moreover, the bed movement was also quantified in some locations of the reach based on the deviation between bottom track and GPS positions collected during fixed ADCP measurements. Parameterizing with the detailed field data a three-dimensional flow and sediment transport model was applied to carry out morphological simulations. The numerical model solves the Reynolds averaged Navier-Stokes equations (RANS) using a k-epsilon turbulence closure. The empirical formulas of van Rijn were used to estimate sediment concentration close to the bed. Moreover, the flow resistance due to bed forms was also considered using an empirical approach. A comparative analysis of the measured and simulated velocity field, sediment concentration and river bed migration was accomplished to introduce model capabilities. Furthermore, three-dimensional flow structure accounting for the development of local, unique morphological features is analysed. The coupled field and numerical investigations can greatly contribute to the establishment of the sediment budget for the study reach, however, further research is needed, e.g. analysis of high water regimes or the study of long term changes in the sediment transport and river morphology.

  2. Sand Transport and Turbulence over Immobile Gravel and Cobble Beds: Similarities and Differences Caused by Roughness Scale

    NASA Astrophysics Data System (ADS)

    Wren, D. G.; Langendoen, E. J.; Kuhnle, R. A.

    2011-12-01

    Characterizing the turbulence generated by flow over rough beds has become increasingly important in support of efforts to predict sediment transport downstream of dams. The advanced age and impending decommissioning of many dams have brought increased attention to the fate of sediments stored in reservoirs. In many cases, fine sediments are reintroduced to coarse substrates that have large volumes of pore space available for storage after having sediments removed by years of sediment-starved flow. The roughness and porosity of the coarse substrate are both affected by the fine sediment elevation relative to the coarse substrate; therefore, the turbulence characteristics and sediment transport over and through these beds are significantly altered after sediment is reintroduced. Experiments at the USDA-ARS-National Sedimentation Laboratory have focused on sand transport and turbulence over two different rough, immobile, substrates: 35 mm gravel and 150 mm cobbles. Detailed acoustic Doppler-based measurements of turbulence structure over the gravel and cobble beds have allowed the influence of the scale of roughness on both the turbulence and sand transport to be evaluated. It was found that the sand transport in both the gravel and cobble beds showed a strong relationship with bed shear stress scaled by the value of the cumulative distribution of bed elevation at the level of sand within the rough bed. Reynolds stresses near and just below the top of the cobble bed show a region of near constant value with depth, while, for the gravel bed there is a gradual decrease in Reynolds stress beginning just above the gravel and decreasing with increasing depth into the gravel. Dispersive stresses show a very similar patter with a peak at the top of the roughness elements decaying to zero with increasing distance above and below.

  3. Upper Pleistocene turbidite sand beds and chaotic silt beds in the channelized, distal, outer-fan lobes of the Mississippi fan

    SciTech Connect

    Nelson, C.H.; Lee, H.L. ); Twichell, D.C.; Schwab, W.C. ); Kenyon, N.H. )

    1992-08-01

    Cores from a Mississippi outer-fan depositional lobe demonstrate that sublobes at the distal edge contain a complex local network of channelized-turbidite beds of graded sand and debris-flow beds of chaotic silt. Off-lobe basin plains lack siliciclastic coarse-grained beds. The basin-plain mud facies exhibit low acoustic backscatter on SeaMARC IA sidescan sonar images, whereas high acoustic backscatter is characteristic of the lobe sand and silt facies. The depth of the first sand-silt layer correlates with relative backscatter intensity and stratigraphic age of the distal sublobes (i.e., shallowest sand = highest backscatter and youngest sublobe). The high proportion (> 50%) of chaotic silt compared to graded sand in the distal, outer-fan sublobes may be related to the unstable, muddy, canyon-wall source areas of the extensive Mississippi delta-fed basin slope. A predominance of chaotic silt in cores or outcrops from outer-fan lobes thus may predict similar settings for ancient fans.

  4. Thermal origin of continental red beds in SE China: An experiment study

    NASA Astrophysics Data System (ADS)

    Jiang, Lianting; Chen, Guoneng; Grapes, Rodney; Peng, Zhuolun

    2015-04-01

    The origin of continental red beds in SE China is the result of high diagenetic temperatures, rather than an arid climate during their deposition. Here we present results from an experimental study where black mud was heated to demonstrate the formation of red beds. Diffuse reflectance spectroscopy (DRS) of heated samples enables determination of the relative proportion of goethite and hematite. Iron in black mud is predominantly in the form of goethite that has an initial dehydration temperature of ca.150 °C. Increasing temperature or prolonged heating time is accompanied by decreasing goethite and organic content, increasing hematite and red colouration. Heat provided to subsiding red bed basins is supplied by cooling of an intracrustal granitic magma layer. The thermal model can explain vertical colour, temperature, redox and mineral zonation in red bed sequences, from red (hematite-bearing), through green-yellow (Cu, Zn, V sulphide mineralization) to grey-black (hydrocarbon, halite-bearing) sediments. The model can also be used to help prospect for hydrocarbon and halite deposits in the SE China red bed basins.

  5. Near-bed turbulence and relict waveformed sand ripples: Observations from the inner shelf

    NASA Astrophysics Data System (ADS)

    Hay, Alex E.

    2008-04-01

    Results are presented from a field investigation of near-bed turbulence above degrading waveformed sand ripples in 17-m water depth on the inner shelf. The heights of the 50-cm wavelength primary ripples were about 5 cm at the start of the observation period, and decreased by a factor of 2 within 15 days. The principal degradation mechanism involved fish making pits in the seafloor. Near-bed turbulent kinetic energy dissipation rates are estimated both from the energy spectrum and from the vertical structure function within the inertial subrange, and ranged from 0.1 × 10-6 to 3 × 10-6 W/kg. The friction velocity, u*, at the bed ranged from 0.3 to 0.5 cm/s, and the wave friction factor, fw, from 0.017 to 0.02. The nearbed turbulence intensities and consequently the estimated values of u2* and fw are likely too small by a factor of 2, partly to satisfy the smooth-wall constraint, and partly to account for the effects of small-scale turbulence within the finite-volume range cells of the coherent Doppler system used to make the turbulence estimates. Finally, the results indicate that the hydraulic roughness of relict ripples is likely a function of both ripple height and steepness, and that the relative roughness should also depend on the near-bed wave orbital excursion. For modeling purposes, Nielsen's ripple roughness formula is recommended, with a reduced proportionality constant to account for the effects of irregular wave forcing and non-equilibrium ripple history.

  6. Co-pyrolysis of walnut shell and tar sand in a fixed-bed reactor.

    PubMed

    Kar, Yakup

    2011-10-01

    This study investigated potential synergistic activities between tar sand and walnut shell during co-pyrolysis. A series of pyrolysis studies were conducted under specific operating conditions in a fixed-bed reactor. The highest yield of bio-oil from the co-pyrolysis was 31.84 wt.%, which represented an increase of 7.88 wt.% compared to the bio-oil yield from the pyrolysis of walnut shell alone. The bio-oils were characterized using various spectroscopic and chromatographic analysis techniques. The results indicated that the synergetic effect increased the co-pyrolysis bio-oil yield and its quality. Consequently, the results indicate that the bio-oils obtained will be suitable for the production of fuels and chemicals as feedstock after required improvements. PMID:21875795

  7. IDENTIFICATION OF APPROPRIATE QUALIFICATION TESTING AND END-OF-LIFE WASTE STORAGE CONSIDERATIONS FOR DEEP BED SAND FILTERS

    SciTech Connect

    Matthews, K.

    2010-06-02

    Deep bed sand (DBS) filters have filtered radioactive particulates at two United States Department of Energy (DOE) sites since 1948. Some early DBS filters experienced issues with chemical attack on support tiles, requiring significant repairs. Designs of DBS filters constructed since 1970 paid greater attention to chemical compatibility, resulting in decades of reliable performance since 1975.

  8. Interactions among riparian vegetation, flow and sediment in a sand bed river: Implications for restoration

    NASA Astrophysics Data System (ADS)

    Gorrick, S.; Rodriguez, J. F.

    2012-12-01

    We present a set of laboratory experiments based on field site conditions on a sand bed stream in Australia that is currently being restored by reintroduction of lost riparian vegetation. Three experiments were conducted in order to investigate both the local and reach-scale impacts of bank vegetation on flow and sediment dynamics. The first experiment contained no bank vegetation and was similar to the original state of the stream. The second experiment placed a series of three inline vegetation patches along the outer bank, simulating the design of the ongoing restoration works. The third experiment used a continuous strip of vegetation along the outer bank, which represents a more traditional restoration technique. In each experiment flow and sediment measurements were carried out, including ADV velocities, water surface elevations, suspended and bedload sediment transport rates and bed evolution. The analysis focussed on the quantification of flow and sediment fluxes and the resulting stream morphology, which responded to the presence of vegetation and to changes in stream curvature and width. Both arrangements of vegetation provided effective bank protection; however the patches used less vegetation and were thus more efficient. The reach-scale effects included changes to stream curvature, stream width and redistribution of sediments, all of which have important implications for management. Recommendations also include the selection of optimum patch size and spacing as well as plant composition.

  9. Bedform development in mixed sand-mud: The contrasting role of cohesive forces in flow and bed

    NASA Astrophysics Data System (ADS)

    Baas, Jaco H.; Davies, Alan G.; Malarkey, Jonathan

    2013-01-01

    The majority of subaqueous sediment on Earth consists of mixtures of cohesive clay and cohesionless sand and silt, but the role of cohesion on the development and stability of sedimentary bedforms is poorly understood. The results of new laboratory flume experiments on bedform development in cohesive, mixed sand-mud beds are compared with the results of previous experiments in which cohesive forces in high concentration clay flows dominated bedform development. Even though both series of mixed sand-mud experiments were conducted at similar flow velocities, the textural and structural properties of the bedforms were sufficiently different to permit the designation of key criteria for identifying bedform generation under cohesive flows against bedform generation on cohesive substrates. These criteria are essential for improving bedform size predictions in sediment transport modelling in modern sedimentary environments and for the reconstruction of depositional processes in the geological record. The current ripples developing on the cohesive, mixed sand-mud beds, with bed mud fractions of up to 18%, were significantly smaller than equivalent bedforms in noncohesive sand. Moreover, the bedform height showed a stronger inversely proportional relationship with initial bed mud fraction than the bedform wavelength. This is in contrast with the bedforms developing under the cohesive clay flows, which tend to increase in size with increasing suspended clay concentration until the flow turbulence is fully suppressed. Selective removal of clay from the mixed beds, i.e., clay winnowing, was found to be an important process, with 82-100% clay entrained into suspension after 2 h of bedform development. This winnowing process led to the development of a sand-rich armouring layer. This armouring layer is inferred to have protected the underlying mixed sand-mud from prolonged erosion, and in conjunction with strong cohesive forces in the bed may have caused the smaller size of the bedforms. Winnowing was less efficient for the bedforms developing under the cohesive clay flows, where bedforms consisting of muddy sand were more characteristic. The winnowed sand was also found to heal irregularly scoured topography, thus reestablishing classic quasitriangular bedform shapes. In cohesive flows, the bedforms had more variable shapes, and the healing process was confined to lower transitional plug flows in which strong turbulence is only present close to the sediment bed. Furthermore, the bedforms on the cohesive beds tended to form angle-of-repose cross lamination, whereas low angle cross lamination was more common in bedforms under cohesive flows. In general terms, erosional bedforms prevail when cohesive forces in the bed dominate bedform dynamics, whereas depositional bedforms prevail when cohesive forces in the flow dominate bedform dynamics. Empirical relationships between the proportion of cohesive mud in the mixed sand-mud bed and the development rate and size of the bedforms are defined for future use in field and laboratory studies.

  10. Autogenic variability and dynamic steady-state in sand-bedded rivers

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; McElroy, B.; Mohrig, D.

    2004-12-01

    In sand-bedded rivers, the local physics of sediment transport produces spatially varying topography that evolves unpredictably in time, even when the structure of the stream-bed varies little in a statistical sense. Understanding autogenic adjustments within trains of bedforms under conditions of steady and uniform flow is necessary before we can predict the response of channel morphology to changes in flow conditions, e.g. the stage-discharge relationship. Also, dunes may coalesce to form bars, which are capable of laterally deflecting flow and ultimately modifying the path and shape of a channel. Bedforms are the link between sediment transport and channel morphology in sandy rivers, and their collective interactions maintain a dynamic steady-state on the river bottom. We document the evolution of fields of dunes under steady flow in the N. Loup River, NE, using topographic maps generated from low-altitude aerial photography. The distributions of bedform height, length and migration rate are broad (coefficient of variation 0.5 for each), but remain stationary in time. Individual bedforms, however, undergo substantial deformation during migration, through interactions with neighboring bedforms and the associated spatially varying sediment flux. Cross-correlation techniques show that the spatial/temporal correlation coefficient of the sediment-fluid interface decays exponentially with migration distance and time. Hence, the dunes themselves are inherently unstable objects and become unrecognizable from their original form after migrating a few wavelengths, corresponding here to a distance of 2 m and a time of 1 hour. If bedload is the dominant style of sediment transport, then sediment flux may be treated as responding instantaneously to the flow field. We build a simple mathematical model in which instantaneous sediment flux is computed locally from a combination of bed elevation and slope, and we deduce the general form of a surface evolution equation for bedforms. The goal is to capture the styles and rates of bed adjustments under steady flow, such as splitting and merging of individual bedforms, and to reproduce the spatial variability of bedform shape and size. Many qualitative aspects of bedform geometry and kinematics are reproduced, however, after long model times, a uniform field of periodic bedforms emerges. Nonlocal and stochastic (turbulent) effects of fluid flow are neglected in this treatment, and their inclusion might produce a field of continuously varying bed topography similar to what is observed in the field.

  11. Development and design of a fluidized bed/upflow sand filter configuration for use in recirculating aquaculture systems

    SciTech Connect

    Burden, D.G.

    1988-01-01

    A fluidized bed/upflow sand filter configuration, was developed and designed for utilization in recirculating aquaculture system, specifically the soft-shell crab and soft-shell crawfish industries. These filters were selected and designed because of their ability to withstand clogging and still maintain high levels of water quality for aquaculture production. The effectiveness of sand grain size was used to evaluate fluidized bed filter performance with filter loadings ranging from 16 to 1285 pounds of crawfish per cubic foot of filter sand. A coarse sand grain size was recommended as a filter media because of it's ability to shear excessive biofilm growth from the and, thus prohibiting clogging from occurring within the filter bed. The fluidized bed/upflow sand filter combination was evaluated in terms of nitrification and oxygen consumption when used with a recirculating crab shedding system. The filter combination's carrying capacity (700 crabs per cubic foot of sand media) exceeded that observed with the submerged rock filter by more than 20 times and was largely explained by the filter's solids removal ability which significantly reduced the filter's oxygen loading rate (OLR). Nitrification rates with the filter combination were extremely high as total ammonia and nitrite levels remained below 1.0 mg-N/l. Verification of a volumetric loading criteria (150 pounds per cubic foot) for this filter combination was further established with performance data obtained from a commercial soft-shell crawfish facility. Water quality monitoring results indicated that the filters maintained total ammonia and nitrite levels below 1.0 mg-N/l under typical operating conditions. Shock loading, pH control, and over-feeding, rather than filter capacity, dominated water quality fluctuations, thereby indicating that the loading criteria was sufficient for commercial operation.

  12. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column

    NASA Astrophysics Data System (ADS)

    Gong, Ji-Lai; Zhang, Yong-Liang; Jiang, Yan; Zeng, Guang-Ming; Cui, Zhi-Hui; Liu, Ke; Deng, Can-Hui; Niu, Qiu-Ya; Deng, Jiu-Hua; Huan, Shuang-Yan

    2015-03-01

    The mixture of several effluents, caused by the improper handling and management of effluents, generated multi-component wastewater containing both metals and dyes, leading to the complicated treatment process. In this study, a continuous adsorption of Pb(II) and methylene blue (MB) has been studied in single and binary solutions by using graphite oxide coated sand (GO-sand) as an adsorbent in a fixed-bed column. GO-sand was analyzed by X-ray photoelectron spectroscopy before and after analyte adsorption. Compared with sand filter, adsorption quantity and capacity for Pb(II) and MB by GO-sand filter were greatly increased. In Pb(II) and MB single solutions, the experimental parameters were investigated in detail including initial concentration, flow rate, bed depth and pH. Exhaustion time decreased with increasing initial concentration and flow rate, and increased with increasing bed depth and pH. In the Pb(II)-MB binary solution, exhaustion time significantly decreased for Pb(II) adsorption, but increased for MB adsorption. The reason was explained that the more favorable adsorption for MB onto the surface of GO-sand than that for Pb(II), which was derived from π-π interaction between MB and GO on sand surface in packed filter. The Yoon-Nelson model was applied at different concentration of Pb(II) and MB to predict the breakthrough curves. The experimental data were well fit with the model indicating that it was suitable for this column design.

  13. The use of fluidized sand bed as an innovative technique for heat treating aluminum based castings

    NASA Astrophysics Data System (ADS)

    Ragab, Khaled

    The current study was carried out to arrive at a better understanding of the influences of the fluidized sand bed heat treatment on the tensile properties and quality indices of A356.2 and B319.2 casting alloys. For the purposes of validating the use of fluidized sand bed furnaces in industrial applications for heat treatment of 356 and 319 castings, the tensile properties and the quality indices of these alloys were correlated with the most common metallurgical parameters, such as strontium modification, grain refining, solutionizing time, aging parameters and quenching media. Traditional heat treatment technology, employing circulating air convection furnaces, was used to establish a relevant comparison with fluidized sand beds for the heat treatment of the alloys investigated, employing T6 continuous aging cycles or multi-temperature aging cycles. Quality charts were used to predict and/or select the best heat treatment conditions and techniques to be applied in industry in order to obtain the optimum properties required for particular engineering applications. The results revealed that the strength values achieved in T6-tempered 319 and 356 alloys are more responsive to fluidized bed (FB) heat treatment than to conventional convection furnace (CF) treatment for solution treatment times of up to 8 hours. Beyond this solution time, no noticeable difference in properties is observed with the two techniques. A significant increase in strength is observed in the FB heat-treated samples after short aging times of 0.5 and 1 hour, the trend continuing up to 5 hours. The 319 alloys show signs of overaging after 8 hours of aging using a conventional furnace, whereas with a fluidized bed, overaging occurs after 12 hours. Analysis of the tensile properties in terms of quality index charts showed that both modified and non-modified 319 and 356 alloys display the same, or better, quality, after only a 2-hr treatment in an FB compared to 10 hours when using a CF. The quality values of the 356 alloys are more responsive to the FB technique than 319 alloys through long aging times of up to 5 hours. The 319 alloys heat-treated in an FB, however, show better quality values after 0.5 hour of aging and for solution treatment times of up to 5 hours than those treated using a CF. With regard to the quality charts of 319 alloys, heat-treated samples show that increasing the aging time up to peak-strength, i.e. 8 and 12 hours in a CF and an FB, respectively, results in increasing in the alloy strength with a decrease in the quality values, for each of the solution heat treatment times used. The statistical analysis of the results reveals that modification and heating rate of the heat treatment technique have the greatest positive effects on the quality values of the 356 alloys. The use of a fluidized sand bed for the direct quenching-aging treatment of A356.2 and B319.2 casting alloys yields greater UTS and YS values compared to conventional furnace quenched alloys. The strength values of T6 tempered A356 and B319 alloys are greater when quenched in water compared to those quenched in an FB or CF. For the same aging conditions (170°C/4h), the fluidized bed quenched-aged 319 and 356 alloys show nearly the same or better strength values than those quenched in water and then aged in a CF or an FB. Based on the quality charts developed for alloys subjected to different quenching media, higher quality index values are obtained by water-quenched T6-tempered A356 alloys, and conventional furnace quenched-aged T6-tempered B319 alloys, respectively. The modification factor has the most significant effect on the quality results of the alloys investigated, for all heat treatment cycles, as compared to other metallurgical parameters. The results of alloys subjected to multi-temperature aging cycles reveal that the strength results obtained after the T6 continuous aging treatment of A356 alloys are not improved by means of multi-temperature aging cycles, indicating therefore that the optimum properties are obtained using a T6 aging treatment. The optimum strength properties of B319.2 alloys, however, is obtained by applying multi-temperature aging cycles such as, for example, 230°C/2h followed by 180°C/8h, rather than T6 aging treatment. In the case of multi-temperature aging cycles, the modification factor has the most significant role in improving the quality index values of 356 and 319 alloys. The FB heat-treated alloys have the highest strength values for all heat treatment cycles compared to CF heat-treated alloys; however, the FB has no significant effect on the quality values of 319 alloys compared to the CF. Regarding the interaction plots for multi-temperature aging cycles, the most significant factors that have a positive effect on the quality values of 356 alloys are modification and the 230°C/2h + 180°C/8h multi-temperature aging cycle. (Abstract shortened by UMI.)

  14. RETRACTED: The influence of sand bed temperature on lift-off and falling parameters in windblown sand flux

    NASA Astrophysics Data System (ADS)

    Bo, Tian-Li; Duan, Shao-Zhen; Zheng, Xiao-Jing; Liang, Yi-Rui

    2014-01-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy) This article has been retracted at the request of the Editors-in-Chief. This article also contains significant similarity with parts of text, written by the same author(s), that have appeared in Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, The influence of sand diameter and wind velocity on sand particle lift-off and incident angles in the windblown sand flux, Sedimentary Geology, Volume 290, 15 May 2013, Pages 149-156. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, The influence of wind velocity and sand grain diameter on the falling velocities of sand particles, Powder Technology, Volume 241, June 2013, Pages 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Analysis of sand particles' lift-off and incident velocities in wind-blown sand flux, Acta Mechanica Sinica, April 2013, Volume 29, Issue 2, pp 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Influence of sand grain diameter and wind velocity on lift-off velocities of sand particles, The European Physical Journal E, May 2013, 36:50. The "slicing" of research that would form one meaningful paper into several different papers represents an abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  15. Scaling of Sediment Dynamics in a Reach-Scale Laboratory Model of a Sand-Bed Stream with Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Gorrick, S.; Rodriguez, J. F.

    2011-12-01

    A movable bed physical model was designed in a laboratory flume to simulate both bed and suspended load transport in a mildly sinuous sand-bed stream. Model simulations investigated the impact of different vegetation arrangements along the outer bank to evaluate rehabilitation options. Preserving similitude in the 1:16 laboratory model was very important. In this presentation the scaling approach, as well as the successes and challenges of the strategy are outlined. Firstly a near-bankfull flow event was chosen for laboratory simulation. In nature, bankfull events at the field site deposit new in-channel features but cause only small amounts of bank erosion. Thus the fixed banks in the model were not a drastic simplification. Next, and as in other studies, the flow velocity and turbulence measurements were collected in separate fixed bed experiments. The scaling of flow in these experiments was simply maintained by matching the Froude number and roughness levels. The subsequent movable bed experiments were then conducted under similar hydrodynamic conditions. In nature, the sand-bed stream is fairly typical; in high flows most sediment transport occurs in suspension and migrating dunes cover the bed. To achieve similar dynamics in the model equivalent values of the dimensionless bed shear stress and the particle Reynolds number were important. Close values of the two dimensionless numbers were achieved with lightweight sediments (R=0.3) including coal and apricot pips with a particle size distribution similar to that of the field site. Overall the moveable bed experiments were able to replicate the dominant sediment dynamics present in the stream during a bankfull flow and yielded relevant information for the analysis of the effects of riparian vegetation. There was a potential conflict in the strategy, in that grain roughness was exaggerated with respect to nature. The advantage of this strategy is that although grain roughness is exaggerated, the similarity of bedforms and resulting drag can return similar levels of roughness to those in the field site.

  16. Removal of copper (II) by manganese-coated sand in a liquid fluidized-bed reactor.

    PubMed

    Lee, Chia-I; Yang, Wan-Fa; Hsieh, Cheng-I

    2004-10-18

    This study was performed in a fluidized-bed reactor (FBR) filled with manganese-coated sand (MCS) to treat copper-contaminated wastewater. The adsorption characteristics of MCS, the adsorption equilibrium of MCS, and the copper removal capacity by MCS in FBR were investigated. In terms of the adsorption characteristics of MCS, the surface of MCS was evaluated using a scanning electron microscope (SEM). Energy dispersive analysis (EDS) of X-rays indicated the composition of MCS, and the quantity of manganese on MCS was determined by means of acid digestion analysis. The experimental results indicated that copper was removed by both sorption (ion exchange and adsorption) and coprecipitation on the surface of MCS in FBR. Copper removal efficiency was highly dependent on the pH and increased with increasing pH from pH 2 to 8. After the copper adsorption by MCS, the pH in solution was decreased. When the MCS concentration was greater than 10 g/l, the copper adsorptivities obtained by FBR were almost the same as that from the shaker and when the MCS concentration reached 40 g/l, the copper adsorptivity in FBR was greater than that from the shaker. The adsorption sites of MCS could be used efficiently by the FBR. A Langmuir adsorption isotherm equation fit the measured adsorption data from the batch equilibrium adsorption test better than the Freundlich adsorption isotherm equation did. In addition, the adsorption rate increased when the influent wastewater was aerated. PMID:15511573

  17. Influence of bank materials, bed sediment, and riparian vegetation on channel form along a gravel-to-sand transition reach of the Upper Tualatin River, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Labbe, Jim M.; Hadley, Keith S.; Schipper, Aafke M.; Leuven, Rob S. E. W.; Gardiner, Christine Perala

    2011-02-01

    We examined the role of bed sediment size, bank materials, riparian vegetation, and discharge on channel form along a 10-km reach of the Upper Tualatin River, encompassing both gravel and sand-bed reaches. Statistical correlations and analyses of downstream changes of channel morphology reveal that bank materials and bed sediment are the dominant controls on channel cross section form. A rapid downstream reduction in bed sediment size in the gravel-bed channel is followed by an abrupt transition to a narrower, deeper, and less sinuous sand-bed channel with more cohesive bank materials. The simultaneous reductions in channel slope, bed sediment size, and width-to-depth ratio indicate the channel crosses a geomorphic threshold to maintain continuity in sediment transport. This gravel-to-sand transition and associated change in channel form are induced by a break in valley slope and an increase in bank resistance from cohesive bank materials. Bank materials, measured as the average percent silt and clay in banks, are a primary influence on channel form within both subreaches but demonstrate a greater influence on channel width and vertical stability in the gravel-bed channel and on channel depth and lateral stability in the sand-bed channel. Riparian vegetation at current densities and compositions is not a significant control on contemporary channel cross section form and may be responding to the bank and channel stability provided by cohesive bank materials in the laterally dynamic gravel-bed channel.

  18. The mobility and distribution of heavy metals during the formation of first cycle red beds.

    USGS Publications Warehouse

    Zielinski, R.A.; Bloch, S.; Walker, T.R.

    1983-01-01

    Analysis of the heavy metal content in a Holocene-Pliocene red bed sequence near San Felipe in N Baja California, Mexico, has yielded new information on the mobility and distribution of these metals during ageing of iron oxyhydroxides from the amorphous to the crystalline state. Whole-rock samples (27) and a series of successive leachates were analysed for V, Al, Cr, Mn, Fe, Co, Ni, Cu and Zn by ICP spectrometry and for U by a delayed neutron technique. These data are supported by a variety of other mineralogical and petrographical observations. The results indicate that the metal content of the samples is predominantly inherited from the constituent detrital minerals. Reddening of the whole-rock samples does not promote major open-system migration of the heavy metals; rather, contained metals redistribute themselves on an intergranular scale, moving from detrital mineral hosts to the secondary iron oxides. The amount of secondary iron oxides and the fraction of whole-rock metals associated with these oxides increase during red-bed development. In addition, the abundance of well- crystallized iron oxides increases during this period. Differences in the leaching efficiency for various metals are related to differences in metal site distribution and intergranular permeability. Inferred conditions for rapid vs limited removal of metals from red beds are summarized. It is suggested that developed red beds which are well flushed by suitable pore fluids may be sources of significant quantities of heavy metals. -J.E.S.

  19. Contrasting red bed diagenesis: the southern and northern margin of the Central European Basin

    NASA Astrophysics Data System (ADS)

    Schöner, Robert; Gaupp, Reinhard

    2005-12-01

    We compare the diagenetic evolution of deeply buried Rotliegend (Permian) red bed sandstones at the southern and northern margin of the Central European Basin (CEB) in Germany. Main target is to evaluate the influence of maturation products from hydrocarbon (HC) source rocks during red bed diagenesis. At the southern margin of the CEB, thick coal-bearing Carboniferous source rocks are omnipresent beneath the Rotliegend. They contain dominantly gas-prone terrigenous organic material and some oil source rocks. Hydrocarbons were generated from Late Carboniferous onwards throughout most of basin subsidence. At the northern margin of the CEB, source rocks are almost absent due to deep erosion of Carboniferous rocks and a low TOC of local Lower Carboniferous relics. Early diagenetic processes are comparable at both basin margins. Significant differences in burial diagenetic evolution are spatially correlated to the occurrence of hydrocarbon source rocks. Burial diagenesis at the southern margin of the CEB is characterized especially by bleaching of red beds, major dissolution events, pervasive illite formation, impregnation of pore surfaces with bitumen, and formation of late Fe-rich cements. Almost none of these features were detected at the northern basin margin. Instead, relatively early cements are preserved down to maximum burial depths. This suggests that major diagenetic mineral reactions in deeply buried red bed sandstones are controlled by the presence or absence of maturing hydrocarbon source rocks.

  20. Experimental Observations About The Behavior of The Sheet Flow On Sand Bed Streams and The Reversal Gradation Effect.

    NASA Astrophysics Data System (ADS)

    Bateman, A.; Aguilar, C.; Roquer, R.; Andreatta, A.; Velasco, D.

    In our land, Catalonia, exists a lot of torrential ephemeral streams. Which are char- acterized by a great floods during typical convective storms. Sediment transport rates are very important in this gravel/sand torrent. Usually, near the cities, they show a 2- 3% slope bed profile. Engineering works or actuations have to deal with this kind of dynamic systems. The stabilization of this torrents is one of the aim of our research at the Polytechnic University of Catalonia (Hydraulic, Marine and environmental De- partment). Typical experiments in a hydraulic flume was normally used to observe the behavior of stabilization structures. The first step in the research is to know the general evolution of the bed profile. Agradation and degradation experiments in a laboratory flume of 20 m length was car- ried out to study the behavior of the steady and unsteady flow with sediment transport. The hydraulic regime of the experiments was set to be supercritical flat bed; sand flow rates about 300gr/s which gives near a 2% equilibrium slope. The most interesting results of those experiments was the reversal gradation of the sand sizes measured along the flume in the final steady state. This kind of effect was reported by Luca Solari and Gary Parker 2000. A 1-D numerical model to solve the Exner and Saint_Venant implicit system of equation were used to compare the evolu- tion of the different experiments. The sheet sand flow produces a great resistance to flow, the experiments shows the influence exhorted by the sand discharge in the flow resistance factor.

  1. Palaeogeography of Late Triassic red-beds in Singapore and the Indosinian Orogeny

    NASA Astrophysics Data System (ADS)

    Oliver, Grahame; Prave, Anthony

    2013-10-01

    A red-bed facies of the Upper Triassic Jurong Formation has been logged on Sentosa Island, Singapore. An overall coarsening and thickening-upward pattern is well developed. The lower part of the section is dominated by purple-red, massive to finely laminated illite-smectite-kaolin-rich mudstones containing thin, discontinuous lenses of fine sandstone marked by low-angle lamination and small ripples. One dinosaur-like foot print has been discovered in a loose block of red mudstone. It is concluded that this is a lacustrine sequence and it is proposed to name the lake, Lake Sentosa. The upper part of the sequence consists of flat-laminated to trough cross-bedded medium-grained sandstone and granule to cobble conglomerates alternating with purple-red mudstone. The mudstone-sandstone packages are arranged in decametre-scale coarsening-upward cycles. The channelling and decimetre-scale cross-bedding characterising the sandstone and conglomeratic beds is evidence for deposition by flashy fluvial flood processes, possibly feeding into the lake as a fresh water delta. One possible dinosaur trackway in granule size conglomerate has been located. Detrital zircon U-Pb ages vary from 2.7 Ba to 209 Ma with significant populations at ˜245 Ma and 220 Ma. These ages throw light on the timing of the Indosinian Orogeny. The molasse red-beds of the Jurong Formation were deposited in a half graben formed in the hangingwall of the Bukit Timah Fault when central Peninsular Malaysia went into extension following the climax of the Indosinian Orogeny in the Late Triassic.

  2. Evaluation of ADCP apparent bed load velocity in a large sand-bed river: Moving versus stationary boat conditions

    USGS Publications Warehouse

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and apparent bed load velocity using a boat-mounted acoustic Doppler current profiler (ADCP) was carried out along a 388-m section of the lower Missouri River near Columbia, Missouri. Sampling transects (moving boat) were completed at 5- and 20-m spacing along the study section. Stationary (fixed-boat) measurements were made by maintaining constant boat position over a target point where the position of the boat did not deviate more than 3 m in any direction. For each transect and stationary measurement, apparent bed load velocity (vb) was estimated using ADCP bottom tracking data and high precision real-time kinematic (RTK) global positioning system (GPS). The principal objectives of this research are to (1) determine whether boat motion introduces a bias in apparent bed load velocity measurements; and (2) evaluate the reliability of ADCP bed velocity measurements for a range of sediment transport environments. Results indicate that both high transport (vb>0.6 m/s) and moving-boat conditions (for both high and low transport environments) increase the relative variability in estimates of mean bed velocity. Despite this, the spatially dense single-transect measurements were capable of producing detailed bed velocity maps that correspond closely with the expected pattern of sediment transport over large dunes. ?? 2011 American Society of Civil Engineers.

  3. Vertebrate biochronology of late Triassic red beds in New Mexico

    SciTech Connect

    Hunt, A.P. )

    1989-09-01

    Four vertebrate biochrons can be recognized in Late Triassic strata of New Mexico: (A) Metoposaurus-Rutiodon-Desmatosuchus-Calyptosuchus-Placerias occurs in the Los Esteros member of the Santa Rosa formation near Lamy and is less well known from the lower Petrified Forest Member of the Chinle Formation near San Ysidro, at Mesa del Oro, near Fort Wingate, at Ojo Huelos, and in the Joyita hills. (B) Anaschisma-Belodon-Typothorax-Desmatosuchus-Paratypothorax occurs in the lower Bull Canyon formation in Bull Canyon and near Tucumcari, in the Trujillo Formation near Tucumcari, and possibly in the Travesser Formation of the Dry Cimarron valley, the Petrified Forest Member near Carthage, and the Garita Creek formation near Lamy and Conchas Lake. (C) Anaschisma-Belodon-Typothorax occurs in the upper Bull Canyon formation in Bull Canyon, in the upper Petrified Forest Member near San Ysidro, at Ghost Ranch, near Albuquerque (Correo Sandstone Bed), and possibly in the Sloan Canyon Formation of the Dry Cimarron valley. (D) Anaschisma-new phytosaur, cf. Typothorax-new sphenosuchian, occurs in the Redonda Formation near Tucumcari. The biochronologic ranges of significant vertebrate taxa within New Mexico follow: metoposaurs - Metoposaurus (A-B ), Anaschisma (B-D); phytosuars - Rutiodon (A), Belodon (B-C), new taxon (D); aetosaurs - Calyptosuchus (A), Desmatosuchus (A-B), Paratypothorax (B), Typothorax (B-D ); rauisuchians - Postosuchus (A-B), Chatterjeea (B-C); sphenosuchians - new taxon 1 (A), Hesperosuchus (B), new taxon 2 (D); dinosaurs - ornithischians (B), Coelophysis (C), other theropods (B-C); therapsids - Placerias (A), Pseudotriconodon (C). Biochron A may be Carnian in age, whereas biochrons B-D are probably early to middle ( ) Norian.

  4. Spatial patterns of scour and fill in dryland sand bed streams 1843

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial patterns of scour and fill in two dryland ephemeral stream channels with sandy bed material have been measured with dense arrays of scour chains. Although the depth and areal extent of bed activity increased with discharge, active bed reworking at particular locations within the reaches res...

  5. Application of CFD modeling to hydrodynamics of CycloBio fluidized sand bed in recirculating aquaculture systems

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Song, Xiefa; Liang, Zhenlin; Peng, Lei

    2013-11-01

    To improve the efficiency of a CycloBio fluidized sand bed (CB FSB) in removal of dissolved wastes in recirculating aquaculture systems, the hydrodynamics of solid-liquid flow was investigated using computational fluid dynamics (CFD) modeling tools. The dynamic characteristics of silica sand within the CB FSB were determined using three-dimensional, unsteady-state simulations with the granular Eulerian multiphase approach and the RNG k-ɛ turbulence model, and the simulation results were validated using available lab-scale measurements. The bed expansion of CB FSB increased with the increase in water inflow rate in numerical simulations. Upon validation, the simulation involving 0.55 mm particles, the Gidaspow correlation for drag coefficient model and the Syamlal-O'Brien correlation for kinetic granular viscosity showed the closest match to the experimental results. The volume fraction of numerical simulations peaked as the wall was approached. The hydrodynamics of a pilot-scale CB FSB was simulated in order to predict the range of water flow to avoid the silica sand overflowing. The numerical simulations were in agreement with the experimental results qualitatively and quantitatively, and thus can be used to study the hydrodynamics of solid-liquid multiphase flow in CB FSB, which is of importance to the design, optimization, and amplification of CB FSBs.

  6. Synthesis and characterization of black, red and yellow nanoparticles pigments from the iron sand

    SciTech Connect

    Mufti, Nandang Atma, T. Fuad, A.; Sutadji, E.

    2014-09-25

    The aim of this research is to synthesize nanoparticles of black pigment of Magnetite (Fe{sub 3}O{sub 4}), red pigment of hematite (α-Fe{sub 2}O{sub 3}), and yellow pigment of ghoetite (α-FeOOH) from the iron sand. The black pigment of Fe{sub 3}O{sub 4} and the yellow pigment α-FeOOH nanoparticles were synthesized by coprecipitation method with variation of pH. Whereas, the red pigment Fe{sub 2}O{sub 3} was synthesized by sintering Fe{sub 3}O{sub 4} nanoparticles at temperature between 400 °C and 700 7°C for 1 hour. All the pigments has been characterized using X-ray diffraction and SEM. The XRD results shown that the particle size of the black pigmen Fe{sub 3}O{sub 4}, red pigment Fe{sub 3}O{sub 4} and yellow pigment α-FeOOH are around 12, 32, and 30 nm respectively. The particle size of Fe{sub 2}O{sub 3} nanoparticles increase by increasing sintering temperature from 32 nm at 400 °C to 39 nm at 700 °C. For yellow pigment of α-FeOOH, the particle size increase by increasing pH from 30,54 nm at pH 4 to 48,60 nm at pH 7. The SEM results shown that the morphologies of black, yellow and red pigments are aglomarated.

  7. Chute Formation and Iterative Adjustment in Large, Sand-Bed Meandering Rivers

    NASA Astrophysics Data System (ADS)

    Grenfell, M. C.; Aalto, R. E.; Nicholas, A.

    2011-12-01

    The meandering-braided continuum is a planform manifestation of excess available river energy; a balance between the energy of flow (commonly quantified as unit steam power or shear stress), and dynamic resistance due to bed material calibre and bank strength. Single-thread meandering rivers plot in part of the continuum defined by low excess available river energy, while braided rivers plot in part of the continuum defined by high excess available river energy. Planform patterns that are transitional between single-thread meandering and braided occur where chute channel formation is prolific. In this presentation we will elucidate the morphodynamic implications of chute formation for sinuosity and planform pattern in large, sand-bed meandering rivers. We draw on the results of recent research that applied binary logistic regression analysis to determine the possibility of predicting chute initiation based on attributes of meander bend character and dynamics (Grenfell et al., accepted, ESP&L). Regression models developed for the Strickland River, Papua New Guinea (54 bends), the lower Paraguay River, Paraguay/Argentina (45 bends), and the Beni River, Bolivia (114 bends), revealed that the probability of chute initiation at a meander bend is a function of the bend extension rate (the rate at which a bend elongates). Image analyses of all rivers and field observations from the Strickland suggest that the majority of chute channels form during scroll-slough development. Rapid extension is shown to favour chute initiation by breaking the continuity of point bar deposition and vegetation encroachment at the inner bank, resulting in widely-spaced scrolls with intervening sloughs that are positively aligned with primary over-bar flow. The rivers plot in order of increasing chute activity on an empirical meandering-braided pattern continuum (Kleinhans and van den Berg, 2011, ESP&L 36) defined by potential specific stream power (ωpv) and bedload calibre (D50). Increasing stream power is considered to result in higher bend extension rates, with implications for chute initiation, but we demonstrate that the probability of chute stability decreases with increasing sediment load (Qs/Q). We extend our empirical results with additional spatial analyses of chute initiation and infill on the Strickland, Paraguay, and Beni Rivers, and the Ok Tedi in Papua New Guinea, and explore the physical basis of chute stability with Delft 3D simulations, based on surveyed channel bathymetry from the Strickland. Results demonstrate that chute formation exerts negative feedback on bend extension (and channel sinuosity and slope) if the chute diverts sufficient flow from the mainstem, or leads to bend cutoff. This interplay between rapid extension, preferential chute initiation at rapidly extending bends, and subsequent feedback effects is framed within the theory of 'iterative adjustment' (Nanson and Huang, 2008, ESP&L 33), providing a conceptual framework for understanding self organisation in rivers subject to chute formation and chute cutoff. We suggest that this conceptual framework provides an alternative but allied theory to 'self-organised criticality', which has been used to explain the role of neck cutoff in some meandering rivers.

  8. Red algal beds increase the condition of nekto-benthic fish

    NASA Astrophysics Data System (ADS)

    Ordines, Francesc; Bauzá, Marco; Sbert, Miquel; Roca, Pilar; Gianotti, Magdalena; Massutí, Enric

    2015-01-01

    The present study analysed the effect of three different benthic habitats, the maërl, Peyssonnelia red algal beds and sandy bottoms, on the condition of two nekto-benthic fish species: Serranus cabrilla and Trigloporus lastoviza. Sampling was conducted during the MEDITS 2010 and 2011 surveys around the Balearic Islands. The condition of the spawning females of both species was determined by using i) biochemical measurements of proteins and lipids in the muscle, liver and gonads, and ii) weight at length relationships based on eviscerated, liver, and gonad weights. Moreover, based on the total weight at length relationship, the mean somatic condition (SC) of the sexually inactive individuals of S. cabrilla and males of T. lastoviza was calculated. Lipid reserves were higher in the livers of S. cabrilla and T. lastoviza from the maërl beds. Additionally, S. cabrilla showed higher lipid reserves in the gonads both in the maërl and Peyssonnelia beds. The mean weights of the liver and gonads at a given individual length revealed the same pattern as the lipids, whereas the mean eviscerated weight was higher in the maërl beds but only for S. cabrilla. A positive correlation was detected between the SC and the biomass of the algal species characterizing the maërl beds for both S. cabrilla and T. lastoviza. The high habitat quality of the red algal beds off the Balearic Islands increased the condition of nekto-benthic fish. In oligotrophic areas, such as the archipelago, these "oases" could help fish to maintain healthy populations.

  9. Depositional analysis of Hill sand of Rodessa Formation (lower Cretaceous) in north Shongaloo-Red Rock field, Webster Parish, Louisiana

    SciTech Connect

    Adamick, J.A.; Sartin, A.A.

    1988-09-01

    Hill sand is an informal subdivision of the Lower Cretaceous Rodessa Formation and is a common hydrocarbon reservoir in northeastern Texas, northern Louisiana, and southern Arkansas. The Hill sand is lithologically variable within the study area and consists of conglomerate, fine-grained sandstone, siltstone, mottled red-green claystone, black shale, and limestone. Five depositional environments were interpreted for lithofacies present in Hill sand cores from the North Shongaloo-Red Rock field. These include facies A, fluvial point bar; facies B, crevasse system; facies C, interdistributary bay; facies D, swamp; and facies E, carbonate interdistributary bay. Fluvial point bar and crevasse deposits commonly form hydrocarbon reservoirs in the field. On a regional scale, depositional environments observed in the Hill sand include several fluvial deposystems trending northeast-southwest through Webster Parish. These deposystems terminate into deltaic distributary mouth bars along a northwest-southeast-trending coastline. Areas west of the coastline were occupied by shallow marine environments. Interchannel areas east of the coastline were occupied by interdistributary bay, lake, and crevasse environments in lower deltaic areas, and by lake, swamp, and crevasse environments in upper deltaic areas. Lowermost deposits of the Hill sand throughout the region are interpreted to consist of shallow marine environments. These marine deposits were overlain by thick, predominantly nonmarine sediments. Near the end of Hill sand deposition, the entire region was covered by very shallow marine environments, prior to deposition of the overlying First Lower Anhydrite Stringer.

  10. Cretaceous oceanic red beds (CORBs): Different time scales and models of origin

    NASA Astrophysics Data System (ADS)

    Hu, Xiumian; Scott, Robert W.; Cai, Yuanfeng; Wang, Chengshan; Melinte-Dobrinescu, Mihaela C.

    2012-12-01

    The Cretaceous oceanic red bed (CORB) is a newly opened window on global oceanic and climate changes during the Cretaceous greenhouse world. As a result of the International Geoscience Programmes 463, 494 and 555 (2002-2010), CORBs have been documented in many places by numerous publications. The principle goal of this paper is to summarize scientific advances on CORBs including chronostratigraphy, sedimentology, mineralogy, elemental and isotopic geochemistry, and their relationship to oceanic anoxic events (OAEs), palaeoclimate and palaeoceanography. We propose a new geochemical classification of the CORBs using CaO, Al2O3 and SiO2 values, which lithologically refer to marly, clayey, and cherty CORBs respectively. Detailed mineralogical studies indicate that hematite, goethite and Mn2 +-bearing calcite are the minerals imparting the red color of CORBs. Hematite clusters of several to tens of nanometers in the calcite structure are the main cause of the red coloring of limestones, and the Mn2 +-bearing calcite gives additional red color. Goethite was thought to form originally with hematite, and was subsequently transformed to hematite during late diagenesis. Chronostratigraphic data allow the distinction of two groups of CORBs by their durations. Short-term CORBs are generally less than 1 myr in duration, and seem to be on the scale of Milankovitch cycles. During the deposition of Cretaceous reddish intervals from ODP cores 1049 and 1050, low primary productivity and relatively high surface temperature resulted in low organic carbon flux into the sediments which reduced oxygen demand and produced oxidizing early diagenetic conditions. In such an oxic environment, iron oxides formed imparting the reddish color. The long-term CORBs' depositional events lasted longer than 4 myr, and may be a possible consequence of the OAEs. Enhanced amounts of organic carbon and pyrite burial during and after the OAEs would have resulted in a large and abrupt fall in atmospheric CO2 concentration, which probably induced significant global climatic cooling during and after the OAEs. Global cooling would have enhanced formation of cold deep water, increasing its oxidizing capacity due to the greater content of dissolved oxygen and would promote formation of oceanic red beds. Sedimentological, mineralogical and geochemical data indicate that CORBs were deposited under highly oxic, oligotrophic conditions probably at a low sedimentation rate. The Cretaceous red and white limestones from Italy have similar compositions of terrestrial input-sensitive elements (Al, Ti, K, Mg, Rb, Zr), higher contents of Fe2O3, and depleted redox-sensitive elements (V, Cr, Ni, and U) and micronutrient elements Cu, Zn, indicating similar provenance sources but red limestones were deposited under more oxic conditions at the sediment-water interface than white limestones. The Cretaceous red shales such as those from the North Atlantic and Tibet have similar mineralogy and geochemistry as the Late Cenozoic red clays in the Pacific Ocean and the environment where both are formed was well-oxidizing at a very low sedimentation rate. We compiled seventeen published stratigraphic examples of Phanerozoic oceanic red beds including the Late Cenozoic red clays in the Pacific. Different hypotheses explain the origin of red pigmentation of limestones and shales including (1) detrital origin of iron derived from continental weathering; (2)iron-bacterial mediation at the time of sedimentation; and (3) iron oxidation in oligotrophic, highly oxic environment. Additional research on Phanerozoic oceanic red beds is needed in order to better document their origin and palaeoceanographic and palaeoclimatic significance.

  11. Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 1. Field spectroscopy and radiative transfer modeling

    USGS Publications Warehouse

    Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T.

    2011-01-01

    Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty. ?? 2011 by the American Geophysical Union.

  12. Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 1. field spectroscopy and radiative transfer modeling

    USGS Publications Warehouse

    Legleiter, Carl J.; Kinzel, Paul J.; Overstreet, Brandon T.

    2011-01-01

    Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty.

  13. Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the Red Sea

    PubMed Central

    Schöttner, Sandra; Pfitzner, Barbara; Grünke, Stefanie; Rasheed, Mohammed; Wild, Christian; Ramette, Alban

    2011-01-01

    Permeable sediments and associated microbial communities play a fundamental role in nutrient recycling within coral reef ecosystems by ensuring high levels of primary production in oligotrophic environments. A previous study on organic matter degradation within biogenic carbonate and terrigenous silicate reef sands in the Red Sea suggested that observed sand-specific differences in microbial activity could be caused by variations in microbial biomass and diversity. Here, we tested this hypothesis by comparing bacterial abundance and community structure in both sand types, and by further exploring the structuring effects of time (season) and space (sediment depth, in/out-reef). Changes in bacterial community structure, as determined via automated ribosomal intergenic spacer analysis (ARISA), were primarily driven by sand mineralogy at specific seasons, sediment depths and reef locations. By coupling ARISA with 16S-ITS rRNA sequencing, we detected significant community shifts already at the bacterial class level, with Proteobacteria (Gamma-, Delta-, Alpha-) and Actinobacteria being prominent members of the highly diverse communities. Overall, our findings suggest that reef sand-associated bacterial communities vary substantially with sand type. Especially in synergy with environmental variation over time and space, mineralogical differences seem to play a central role in maintaining high levels of bacterial community heterogeneity. The local co-occurrence of carbonate and silicate sands may thus significantly increase the availability of microbial niches within a single coral reef ecosystem. PMID:21554515

  14. Effects of sand addition on turbulent flow over an immobile gravel bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The factors controlling the complex interaction of a coarse stream bed with flow and sediment are difficult to measure. However, planning for reservoir flushing or dam removal requires knowledge of these interactions. In both cases, impounded sediments are introduced to channel beds that have had ...

  15. Tectonic rotations south of the Bohemian Massif from palaeomagnetic directions of Permian red beds in Hungary

    USGS Publications Warehouse

    Marton, E.; Elston, D.P.

    1987-01-01

    Palaeomagnetic studies were carried out in Permian red beds of the Balaton Highlands, the Mecsek Mountains and the Bu??kk Mountains of Hungary. Statistically well defined directions were obtained from six localities in the Balaton Highlands and two localities in the Mecsek Mountains. No meaningful results were obtained from the Bu??kk Mountains. Three magnetic components were identified from red beds of the Balaton Highlands: (1) in haematite with a very high unblocking temperature (700??C), interpreted as a Permian magnetization (Dc= 79??, Ic=-11??, k = 24, ??95 = 13.6 ??), in six samples from three beds in a single locality (2) a secondary but ancient component residing mainly inmaghemite (D = 314??, I = 49??, k = 48, ??95 = 10.0??), in 84 samples from six localities with a within-locality scatter increasing on unfolding; and (3) a direction parallel to the present field (D = 7??, I = 62??, k = 46, ??95 = 7.7 ??), in nine samples from a single locality. For the Balaton Highlands, the component 1 direction agrees with directions obtained from Permian red beds and volcanics in the eastern part of the Southern and Eastern Alps and the Inner West Carpathians. All show large, apparent rotations relative to stable Europe since the Permian. Component 2 is of post-folding (post-Aptian) age. Its direction agrees with known Late Cretaceous directions from the Transdanubian Central Mountains, which also show significant counterclockwise rotation relative to stable Europe. The characteristic magnetization for the Mecsek Mountains resides in haematite and may be primary. The directions indicate only a slight net counterclockwise rotation of the Mecsek Mountains with respect to stable Europe since the Permian. ?? 1987.

  16. Paleokarstic phenomena of the Lower Ordovician red bed sequences of the Arbuckle group, southern Oklahoma

    SciTech Connect

    Musselman, J.L. )

    1991-06-01

    Oil and gas production has been reported recently from paleokarstic Arbuckle reservoirs in the Ardmore and Arkoma basin. The West Spring Creek and the Kindblade formations apparently exhibit karstic features. The most extensive surface exposure of these formations is on the southern flank of the Arbuckle anticline along Interstate 35 north of Ardmore, Oklahoma. The lithology is predominantly limestone, ranging from argillaceous mudstone to oolitic and/or bioclastic grainstones. However, minor amounts of sandstone were also observed.These lithologies are characteristic of various peritidal facies. Of particular interest in this outcrop are three distinct red bed zones. Although the zones are part of the repetitive shallowing-upward cycles that characterize the West Spring Creek Formation, ample evidence suggests the red beds represent subaerial exposure surfaces where karstification took place. Many of the thin bedded, rubbly mudstones and wackestones actually represent varieties of breccia commonly associated with karst. Collapse and crackle breccia are most commonly observed. Small solution channels and other vugs are usually completely occluded by calcite cement. However, solution cavities or vugs with diameters larger than 10 cm (3.9 in.) are lined with drusy calcite. Hematite-impregnated sediment occurs as thinly laminated infilling of solution vugs and cavities and also acts as a cementing agent of collapse breccias. Preliminary evidence suggests that karstification processes were active during Arbuckle deposition.

  17. Mass balance and isotope effects during nitrogen transport through septic tank systems with packed-bed (sand) filters

    USGS Publications Warehouse

    Hinkle, S.R.; Böhlke, J.K.; Fisher, L.H.

    2008-01-01

    Septic tank systems are an important source of NO3- to many aquifers, yet characterization of N mass balance and isotope systematics following septic tank effluent discharge into unsaturated sediments has received limited attention. In this study, samples of septic tank effluent before and after transport through single-pass packed-bed filters (sand filters) were evaluated to elucidate mass balance and isotope effects associated with septic tank effluent discharge to unsaturated sediments. Chemical and isotopic data from five newly installed pairs and ten established pairs of septic tanks and packed-bed filters serving single homes in Oregon indicate that aqueous solute concentrations are affected by variations in recharge (precipitation, evapotranspiration), NH4+ sorption (primarily in immature systems), nitrification, and gaseous N loss via NH3 volatilization and(or) N2 or N2O release during nitrification/denitrification. Substantial NH4+ sorption capacity was also observed in laboratory columns with synthetic effluent. Septic tank effluent ??15N-NH4+ values were almost constant and averaged + 4.9??? ?? 0.4??? (1 ??). In contrast, ??15N values of NO3- leaving mature packed-bed filters were variable (+ 0.8 to + 14.4???) and averaged + 7.2??? ?? 2.6???. Net N loss in the two networks of packed-bed filters was indicated by average 10-30% decreases in Cl--normalized N concentrations and 2-3??? increases in ??15N, consistent with fractionation accompanying gaseous N losses and corroborating established links between septic tank effluent and NO3- in a local, shallow aquifer. Values of ??18O-NO3- leaving mature packed-bed filters ranged from - 10.2 to - 2.3??? (mean - 6.4??? ?? 1.8???), and were intermediate between a 2/3 H2O-O + 1/3 O2-O conceptualization and a 100% H2O-O conceptualization of ??18O-NO3- generation during nitrification.

  18. Significance of digging behavior to mortality of red imported fire ant workers, Solenopsis invicta, in fipronil-treated sand.

    PubMed

    Chen, J; Allen, M L

    2006-04-01

    The effect of fipronil-treated sand on digging behavior and mortality of red imported fire ant, Solenopsis invicta Buren, workers was examined in the laboratory. No-choice digging bioassays where fipronil-treated sand was the only available digging substrate were conducted on two colonies at fipronil concentrations of 0.00, 0.05, 0.10, 0.50, 1.00, 1.50, and 2.00 ppm. Workers dug into the fipronil-treated sand in all cases, even at 2.0 ppm level, which caused 100% mortality in acute toxicity tests for both colonies. At 1.5 and 2.0 ppm, workers from the less sensitive colony had significantly higher mortality than those from the more sensitive colony, which might be explained by the significantly higher digging activity of the less sensitive colony. In two-choice digging bioassays where untreated sand was also available, workers dug into the fipronil-treated sand in 29 of 30 cases, even at 10.0 ppm level. At 1.0 and 10.0 ppm, mortality was positively correlated to digging effort in treated sand; however, such correlation was significant only at 1.0 ppm level. This indicates that digging did affect mortality; however, such effect is concentration dependent. PMID:16686150

  19. A simplified Red Bed Inclination Correction: Case Study from the Permian Esterel Group of France.

    NASA Astrophysics Data System (ADS)

    Bilardello, D.; Kodama, K. P.

    2008-12-01

    Magnetic anisotropy-based inclinations corrections have been performed in the paleomagnetic laboratory at Lehigh University, on both hematite and magnetite-bearing sedimentary rocks. Results of these corrections indicate a latitudinal variation of inclination shallowing with the formations initially located at mid latitudes suffering from more shallowing than those initially closer to the equator, consistent with the tan (Im)= f * tan (If) relationship observed by King (1955) for inclination shallowing, where Im is the measured inclination and If is the field inclination during deposition. Shallowing of the paleomagnetic vectors can be expressed in terms of the flattening factor f, that relates tan (Im) to tan (If). Anisotropy- derived hematite f factors from the Maritime Provinces of Canada and Northwest China were combined with f factors derived from corrections that use models of geomagnetic field secular variation (the EI technique of Tauxe and Kent, 2004) on red bed Formations from North America, Greenland and Europe. The dataset was used to derive a probability density function for f. The mean f value will allow a simplified inclination correction for hematite-bearing red bed formations that are suspected to be affected by inclination shallowing. This approach was tested by correcting the Permian Esterel Group red beds from France: using the distribution mean f factor of 0.64 (±0.11, ±1 standard deviation), the corrected red bed paleopole becomes statistically indistinguishable from the paleopole measured for the Esterel Group volcanic rocks that have not suffered from inclination shallowing. f data was also compiled for magnetite-bearing sedimentary rocks from the Perforada Formation and the Valle Group from Baja California, Mexico, the Pigeon Point Formation of Central California, the Ladd and the Point Loma Formations from Southern California, the Nanaimo Group of British Columbia and the Deer Lake Group of Newfoundland that have been corrected for inclination shallowing, yielding a most probable f factor of 0.67 (±0.06). Based on our results, the maximum amounts of shallowing that can be expected for sedimentary rocks is 12.4° for hematite-bearing rocks, and 11.8° for magnetite-bearing rocks. These values are statistically indistinguishable. Therefore, we combined the datasets and have obtained an f factor of 0.66 (±0.1) that can be used for either hematite or magnetite-bearing sedimentary rocks. A major implication of this result is that a rock's NRM, either acquired by chemical processes soon after deposition or by depositional processes that accurately record the ambient magnetic field, may be susceptible to similar amounts of inclination shallowing, most likely caused by burial compaction.

  20. Turbulence structure and sand transport over gravel and cobble beds in laboratory flumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterizing the turbulence generated by flow over rough beds has become increasingly important in support of efforts to predict sediment transport downstream of dams. The advanced age and impending decommissioning of many dams have brought increased attention to the fate of sediments stored in r...

  1. [Near Infrared Spectroscopy of the Cretaceous Red Beds in Inner Mongolia Dongshengmiao].

    PubMed

    Liao, Yi-peng; Cao, Jian-jin; Wu, Zheng-quan; Luo, Song-ying; Wang, Zheng-yang

    2015-09-01

    Take the cores and surface weathered soil from the Cretaceous red beds in the western of Dongshengmiao mine of Inner Mongolia and analysis with near-infrared spectroscopy. The result shows that near-infrared spectroscopy can identify mineral quickly through the characteristic absorption peaks of each group. The Cretaceous red beds in the western of Dongshengmiao mine is argillaceous cementation, it is mainly composed of quartz, feldspar, montmorillonite, illite, chlorite, muscovite etc, the mineral composition is mainly affected by the upstream source area. The clay mineral like montmorillonite water swelling and uneven drying shrinkage expands the original crack and creates new cracks, reduces its strength, which is the mainly reason of its disintegration. According to the composition of clay mineral, we speculate its weathering process is mainly physical weathering, the climate during the weathering is cold and dry. The results can not only improve the geological feature of the mining area, but also show that the near-infrared spectroscopy technology can analyze the mineral composition of soil and rock effectively on the basis of Mineral spectroscopy, which demonstrates the feasibility of the near-infrared spectroscopy can analyze minerals in soil and rock quickly, that shows the feasibility in geology study, provides new ideas for the future research of soil and rock. PMID:26669159

  2. Reduction of phosphorus, nitrogen and microorganisms in pilot scale sand filter beds containing biotite, treating primary wastewater.

    PubMed

    Matikka, Ville; Heinonen-Tanski, Helvi

    2016-01-01

    In sparsely populated areas, sand filter beds play an important role in wastewater treatment. As the need to improve the removal of nutrients increases, reactive filter materials represent one potential way to improve the reliability of current systems. We tested a pilot-scale multi-layer biotite filter for its ability to remove phosphorus, nitrogen, organic matter and enteric microorganisms with the importance of each layer in a multi-layer biotite filter being examined. In the experimental setup, the filters were fed with a raw wastewater influent mimicking the usual daily rhythm of water consumption and the reduction effects of the variable loads were examined during the experiment time of 54 weeks. It was observed that the reduction efficiency of the phosphorus was good (87%) during normal and under loading sequences but the reduction achieved for nitrogen was poor (27%). During and after overloading sequences, the phosphorus reduction was poor (46.5%) whereas the nitrogen reduction improved (to 66.7%). The reduction of organic matter was good during all sequences. The reductions of enteric microorganisms were at a level of 2-3 log10 units already after a single sand layer. For Escherichia coli, reductions of more than 5 log10 units were found after the wastewater had passed through a multilayer biotite filter during all sequences. It is concluded that the inclusion of a biotite layer improves the reliability of the filter bed. However, the proper scaling of the unit is essential in order to guarantee that the filter remains in aerobic conditions. PMID:26118389

  3. Expression of syndepositional tectonic uplift in Permian Goose Egg formation (Phosphoria equivalent) carbonates and red beds of Sheep Mountain anticline, Bighorn basin, Wyoming

    SciTech Connect

    Simmons, S.P.; Ulmer, D.S.; Scholle, P.A.

    1989-03-01

    Based on detailed field observations at Sheep Mountain, a doubly plunging anticline in the northeastern Bighorn basin in Wyoming, there appears to have been active tectonic uplift at this site contemporaneous with Pennsylvanian and Permian sedimentation. The Permian (Leonardian to Guadalupian) Goose Egg Formation at Sheep Mountain consists of 25-60 m of silty red beds (including minor carbonate and evaporite units) capped by 15-30 m of dominantly intertidal carbonates (the Ervay Member). A strong lateral variation of facies normal to the trend of the anticline is found within the red-bed sequence: carbonate beds on the anticline flanks are transitional with a gypsum/anhydrite facies along the crest. Similarly, shales on the anticline limbs grade into sandstones near the fold axis, indicating a paleohigh roughly coincidental with the present-day anticline crest. Ervay deposition (late Guadalupian) was marked by a more extensive uplifted structure in a marginal marine setting. On Sheep Mountain the unit is typified by intertidal fenestral carbonates, whereas outcrops to the east suggest a restricted marine facies and outcrops to the west reflect a more open marine environment. Thin sand lenses present in the Ervay are thought to represent terrigenous sediments blown onto the sometimes emergent bank which were then captured through adhesion and cementation. Anticlinal features similar to Sheep Mountain are common along the eastern margin of the Bighorn basin. When found in the subsurface, these structures are often associated with hydrocarbon production from the Ervay Member. Tectonic uplift contemporaneous with deposition of this unit may explain the localization of the productive fenestral facies on the present-day anticlines.

  4. Pedogenic slickensides, indicators of strain and deformation processes in red bed sequences of the Appalachian foreland

    SciTech Connect

    Gray, M.B. ); Nickelsen, R.P. )

    1989-01-01

    Pedogenic slickensides are convex-concave slip surfaces that form during expansion/contraction in expansive clay soils such as Vertisols. In the central Appalachians, they occur near the tops of fining-upward cycles in Paleozoic red beds such as the Bloomsburg, Catskill, and Mauch Chunk Formations. Pedogenic slickensides are found in association with other pedogenic (or paleosol) features such as clay-skinned peds, in situ calcareous nodules, and root impressions. Repeated movements along these shear planes during pedogenesis produce strongly aligned clay particles adjacent to pedogenic slickensides; as a result, they are preserved as discrete fractures throughout diagenesis, compaction, and superimposed tectonic deformation. During whole-rock deformation, pedogenic slickensides segregate penetratively deformed rocks into independent, foliate packets and serve as discontinuities that are followed by later structural features. Because the original morphology of pedogenic slickensides is known, they can be used as crude strain markers.

  5. Paleomagnetism of red beds of Early Devonian age from Central Iran

    NASA Astrophysics Data System (ADS)

    Wensink, Hans

    1983-05-01

    Paleomagnetic results are reported from 13 sites of red beds of Early Devonian age from Central Iran. Detailed paleomagnetic analyses were carried out. Two types of partial progressive demagnetization were applied, one using alternating magnetic fields, the other heating. These procedures resulted in the detection of the characteristic remanences with a mean direction with D = 24.2, I = 1.3 (? 95 = 10.1). The paleomagnetic pole is located at 51.3N, 163.7W. If one shifts the Iranian landmass to its most likely position in the Gondwana configuration, then the position of the paleomagnetic pole coincides with the alternative polar wander path [14,15] which crossed South America in early Middle Paleozoic times.

  6. Volcanic red-bed copper mineralisation related to submarine basalt alteration, Mont Alexandre, Quebec Appalachians, Canada

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre Raphael; Beaudoin, Georges

    2007-11-01

    Two types of native copper occur in Upper Silurian basaltic rocks in the Mont Alexandre area, Quebec Appalachians: (1) type 1 forms micrometric inclusions in plagioclase and is possibly magmatic in origin, whereas (2) type 2 occurs as coarse-grained patches rimmed by cuprite in altered porphyritic basalt. Type 1 has higher contents of sulphur (2,000-20,263 ppm) and arsenic (146-6,017 ppm), and a broader range of silver abundances (<65-2,186 ppm Ag) than type 2 (149-1,288 ppm S, <90-146 As, <65-928 ppm Ag). No mineral inclusions of sulphide or arsenide in native copper were observed at the electron-microprobe scale. Primary igneous fabrics are preserved, but the basaltic flows are pervasively oxidised and plagioclase is albitised. Chlorite replaces plagioclase and forms interstitial aggregates in the groundmass and has Fe/(Fe+Mg) ratios ranging from 0.29 to 0.36 with calculated temperatures between 155°C and 182°C. Copper sulphides in vacuoles and veinlets are associated with malachite, fibro-radiating albite and yarrowite (Cu9S8 with up to 0.3 wt% Ag). Bulk-rock concentrations of thallium and lithium range from 70 to 310 ppb and 10 to 22 ppm, respectively, and thallium is positively correlated with Fe2O3. Such concentrations of thallium and lithium are typical of spilitisation during heated seawater-basalt interaction. Spilitisation is consistent with the regional geological setting of deepwater-facies sedimentation, but is different from current models for volcanic red-bed copper, which indicate subaerial oxidation of volcanic flows. The volcanic red-bed copper model should be re-examined to account for native copper mineralisation in basalts altered by warm seawater.

  7. AMS Fabric of a CRM in Hematite-Bearing Samples: Evidence of DRMs in Natural Red Beds

    NASA Astrophysics Data System (ADS)

    Kodama, K. P.

    2002-12-01

    Anisotropy of magnetic susceptibility (AMS) and anisotropy of isothermal remanence (AIR) in red sedimentary rocks both typically show a bedding parallel foliation with minimum axes clustered perpendicular to the bedding plane. Our studies have observed this type of magnetic fabric in red bed units that have a range of ages and come from widespread localities. These units include the Mississippian Mauch Chunk Formation from the Appalachians, the Triassic Passaic Formation from the Newark basin in Pennsylvania, the Cretaceous Kapusaliang Formation from the Tarim basin in China, and the early Mesozoic Kayenta and Chinle Formations from the Colorado Plateau in southwestern North America. Bedding parallel foliations are also observed in magnetite-bearing rocks that carry a depositional remanence (DRM), suggesting the possibility of a DRM in red beds, even though the conventional wisdom is that they carry a post-depositional chemical remanent magnetization (CRM). Before the typical magnetic fabric of red beds can be used to indicate their type of remanence, we must determine what the magnetic fabric of a CRM looks like. For this reason, I conducted a series of hematite-growth experiments following the procedures outlined by Stokking and Tauxe (1987). I grew hematite in the laboratory on stacks of glass-fiber filter papers and in slurries of quartz and kaolinite. The hematite was grown from a ferric nitrate solution heated to 95° C for 8 hours. The samples were then dehydrated in a vacuum at room temperature for approximately 38 hours. It was possible to thermally demagnetize the eight filter paper samples to 350° C, but the six kaolinite-quartz samples were grown in plastic sample cubes and could only be thermally demagnetized to 150° C, enough to remove the thermoviscous magnetization acquired by the samples during the heating at 95° C. The mean CRM acquired by the red-brown magnetic phase grown in the experiments was within its alpha-95 of the steeply inclined (inclination=60°) ambient magnetic field. The kaolinite-quartz samples had a very scattered remanence, probably due to the physical disturbance of the samples upon the initial application of the vacuum. In both the filter paper and kaolinite-quartz experiments the AMS fabric of the CRM-carrying grains was foliated with the maximum and intermediate principal axes defining a great circle that passes through the mean CRM direction and is moderately inclined (approximately 45°) to the horizontal. The moderately inclined great circle defined by the maximum-intermediate principal axes is quite distinct from the horizontal maximum-intermediate axes observed in the natural red bed samples, despite red bed characteristic remanences that range from nearly horizontal (Passaic, Chinle, Kayenta) to as steep as 30° (Mauch Chunk, Kapusaliang). This observation suggests that red bed characteristic remanence is typically a DRM, rather than a CRM. This has implications for interpreting red bed remanence since DRMs in hematite-bearing red beds may have large inclination errors.

  8. Network response to internal and external perturbations in large sand-bed braided rivers

    NASA Astrophysics Data System (ADS)

    Schuurman, F.; Kleinhans, M. G.; Middelkoop, H.

    2015-03-01

    The intrinsic instability of bars, bifurcations and branches in large braided rivers is a challenge to understand and predict. Even more, the reach-scale effect of human-induced perturbations on the braided channel network is still unresolved. In this study, we used a physics-based model to simulate the hydromorphodynamics in a large braided river and applied different types of perturbations. We analyzed the propagation of the perturbations through the braided channel network. The results showed that the perturbations initiate an instability that propagates in downstream direction by means of bifurcation instability. It alters and rotates the approaching flow of the bifurcations. The propagation celerity is in the same order of magnitude as the theoretical sand wave propagation rate. The adjustments of the bifurcations also change bar migration and reshape, with a feedback to the upstream bifurcation and alteration of the approaching flow to the downstream bifurcation. This way, the morphological effect of a perturbation amplifies in downstream direction. Thus, the interplay of bifurcation instability and asymmetrical reshaping of bars was found to be essential for propagation of the effects of a perturbation. The study also demonstrated that the large-scale bar statistics are hardly affected.

  9. Initiation and evolution of current ripples on a flat sand bed under turbulent water flow.

    PubMed

    Langlois, V; Valance, A

    2007-03-01

    We investigate the formation and dynamics of sand ripples under a turbulent water flow. Our experiments were conducted in an open flume with spherical glass beads between 100 and 500 microm in diameter. The flow Reynolds number is of the order of 10,000 and the particle Reynolds number of the order of 1 to 10. We study the development of ripples by measuring their wavelength and amplitude in course of time and investigate the influence of the grain size and the flow properties. In particular, we demonstrate two different regimes according to the grain size. For fine grains, a slow coarsening process (i.e., a logarithmic increase of the wavelength and amplitude) takes place, while for coarser grains, this process occurs at a much faster rate (i.e., with a linear growth) and stops after a finite time. In the later case, a stable pattern is eventually observed. Besides, we carefully analyze the wavelength of ripples in the first stages of the instability as a function of the grain size and the shear velocity of the flow, and compare our results with other available experimental data and with theoretical predictions based on linear stability analyses. PMID:17426938

  10. Granular spirals on erodible sand bed submitted to a circular fluid motion.

    PubMed

    Caps, H; Vandewalle, N

    2003-09-01

    An experimental study of a granular surface submitted to a circular fluid motion is presented. The appearance of an instability along the sand-water interface is observed beyond a critical radius r(c). This creates ripples with a spiral shape on the granular surface. A phase diagram of such patterns is constructed and discussed as a function of the rotation speed omega of the flow and as a function of the height of water h above the surface. The study of r(c) as a function of h, omega, and r parameters is reported. Thereafter, r(c) is shown to depend on the rotation speed according to a power law. The ripple wavelength is found to decrease when the rotation speed increases and is proportional to the radial distance r. The azimuthal angle epsilon of the spiral arms is studied. It is found that epsilon scales with homegar. This lead to the conclusion that epsilon depends on the fluid momentum. Comparison with experiments performed with fluids allows us to state that the spiral patterns are not the signature of an instability of the boundary layer. PMID:14524759

  11. Technical note: whole-pen assessments of nutrient excretion and digestibility from dairy replacement heifers housed in sand-bedded freestalls.

    PubMed

    Coblentz, W K; Hoffman, P C; Esser, N M; Bertram, M G

    2013-10-01

    Our objectives were to describe and test refined procedures for quantifying excreta produced from whole pens of dairy heifers. Previous research efforts attempting to make whole-pen measurements of excreta output have been complicated by the use of organic bedding, which requires cumbersome analytical techniques to quantify excreta apart from the bedding. Research pens equipped with sand-bedded freestalls offer a unique opportunity for refinement of whole-pen fecal collection methods, primarily because sand-bedded freestall systems contain no organic bedding; therefore, concentrations of ash within the manure, sand, and feces can be used to correct for contamination of manure by sand bedding. This study was conducted on a subset of heifers from a larger production-scale feeding trial evaluating ensiled eastern gamagrass [Tripsacum dactyloides (L.) L.] haylage (EGG) that was incorporated into a corn silage/alfalfa haylage-based blended diet at rates of 0, 9.1, 18.3, or 27.4% of total DM. The diet without EGG also was offered on a limit-fed basis. Eighty Holstein dairy heifers were blocked (heavy weight, 424 ± 15.9 kg; light weight, 324 ± 22.4 kg) and then assigned to 10 individual pens containing 8 heifers/pen. One pen per block was assigned to each of the 5 research diets, and whole-pen fecal collections were conducted twice for each pen. Grab fecal samples also were gathered from individual heifers within each pen, and subsequent analysis of these whole-pen composites allowed reasonable estimates of OM and NDF excreta output. Under the conditions of our experimental design, pooled SEM for the excreta DM, OM, NDF, and NDF (ash corrected) output were 0.113, 0.085, 0.093, and 0.075 kg·heifer(-1)·d(-1), respectively. For DM excretion, this represented about one-third of the SEM reported for previous whole-pen collections from bedded-pack housing systems. Subsequent calculations of apparent DM and OM digestibilities indicated that the technique was sensitive, and linear trends (P ≤ 0.027) associated with the inclusion rates of EGG within the diet were detected. This technique allows estimation of apparent diet digestibilities on multiple animals simultaneously, thereby mitigating the need for isolating individual animals to obtain digestibility coefficients. The approach appears viable but requires hand labor for collections of multiple pens and thorough mixing of large volumes of manure as well as analytical corrections for sand ingested by lounging heifers. PMID:23965394

  12. Hydrology and bedload transport relationships for sand-bed streams in the Ngarradj Creek catchment, northern Australia

    NASA Astrophysics Data System (ADS)

    Erskine, W. D.; Saynor, M. J.

    2013-03-01

    SummaryRainfall, discharge and bedload were measured at three gauging stations (East Tributary, Upper Swift Creek and Swift Creek) in the Ngarradj Creek catchment at Jabiluka, Northern Territory, Australia. Hand-held, pressure difference, Helley-Smith bedload samplers were used to measure bedload fluxes for the 1998/1999, 1999/2000, 2000/2001 and 2001/2002 wet seasons. Rainfall is strongly seasonal over the Ngarradj Creek catchment, being concentrated in the wet season between November and April. Mean annual point rainfall between 1998 and 2007 for the water year, September to August, inclusive varied over the Ngarradj Creek catchment from 1731 98 mm (SE) to 1754 116 mm. Between 190 and 440 mm of rainfall are required before streamflow commences in December in most years. Streamflow persists until at least April. Mean annual runoff, as a percentage of mean annual rainfall, decreases slightly with increasing catchment area. Bedload ratings were calculated for four data sets. Significant bedload ratings were defined as those that were not only statistically significant (? ? 0.05) but also explained at least 0.60 of the variance in bedload flux. For the three stations, twenty-three bedload ratings complied with the above criteria. Sixteen equations were accepted for East Tributary, four bedload ratings were accepted for Upper Swift Creek and three bedload ratings were accepted for Swift Creek. Significant bedload ratings were established between bedload flux and discharge, unit bedload flux and discharge, transport rate of unsuspended bedload by immersed weight per unit width and time and both unit and excess unit stream power, and finally, adjusted submersed bedload weight and both unit and excess unit stream power for raw and log10-transformed data. 'Censored data sets' were compiled for Upper Swift Creek and Swift Creek to include only bedload fluxes measured when there was no apparent scour or fill so that there were no changes in sand supply from the catchment (i.e. equilibrium conditions). Bedload sediments are similar at all sites. There is little difference in grain size statistics between wet season bedload and dry season bed material. The differences which were significant suggest that most of the bed material is transported as bedload during the wet season. Size selective transport occurs at all three gauging stations with bedload being better sorted than bed material and the coarsest fraction (Cobble gravel) is mobile only during extreme events.

  13. Treatment of oil sands process-affected water using moving bed biofilm reactors: With and without ozone pretreatment.

    PubMed

    Shi, Yijing; Huang, Chunkai; Rocha, Ketley Costa; El-Din, Mohamed Gamal; Liu, Yang

    2015-09-01

    Two moving bed biofilm reactors (MBBRs) were operated to treat raw (untreated) and 30 mg/L ozone-treated oil sands process-affected water (OSPW). After 210 days, the MBBR process showed 18.3% of acid-extractable fraction (AEF) and 34.8% of naphthenic acids (NAs) removal, while the ozonation combined MBBR process showed higher removal of AEF (41.0%) and NAs (78.8%). Biodegradation of raw and ozone treated OSPW showed similar performance. UPLC/HRMS analysis showed a highest NAs removal efficiency with a carbon number of 14 and a -Z number of 4. Confocal laser scanning microscopy (CLSM) showed thicker biofilms in the raw OSPW MBBR (97 ± 5 μm) than in the ozonated OSPW MBBR (71 ± 12 μm). Quantitative polymerase chain reaction (q-PCR) results showed higher abundance of gene copies of total bacteria and nitrogen removal relevant bacteria in the ozonated OSPW MBBR, but no significant difference was found. MiSeq sequencing showed Proteobacteria, Nitrospirae, and Acidobacteria were dominant. PMID:26038326

  14. The Transfiguration continental red-bed Cu-Pb-Zn-Ag deposit, Quebec Appalachians, Canada

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre Raphael; Beaudoin, Georges; Taylor, Bruce E.

    2009-04-01

    The Transfiguration Cu-Pb-Zn-Ag deposit, enclosed within reduced grey sandstone, is associated with continental red beds of the Lower Silurian Robitaille Formation in the Quebec Appalachians, Canada. The Robitaille Formation rests unconformably on foliated Cambro-Ordovician rocks. The unconformity is locally cut by barite veins. The basal unit of the Robitaille Formation comprises green wacke and pebble conglomerate, which locally contain calcite nodules. The latter have microstructures characteristic of alpha-type calcretes, such as “floating” fabrics, calcite-filled fractures (crystallaria) and circumgranular cracks. Massive, grey sandstone overlies the basal green wacke and pebble conglomerate unit, which is overlain, in turn, by red, fine-grained sandstone. Mineralisation occurred underneath the red sandstone unit, chiefly in the grey sandstone unit, as disseminated and veinlet sulphides. Chalcopyrite, the most abundant Cu sulphide, replaced early pyrite. Calcrete, disseminated carbonate and vein carbonate have stable isotope ratios varying from -7.5‰ to -1.1‰ δ13C and from 14.7‰ to 21.3‰ δ18O. The negative δ13C values indicate the oxidation of organic matter in a continental environment. Sulphur isotope ratios for pyrite, chalcopyrite and galena vary from -19‰ to 25‰ δ34S, as measured on mineral concentrates by a conventional SO2 technique. Laser-assisted microanalyses (by fluorination) of S isotopes in pyrite show an analogous range in δ34S values, from -21‰ to 25‰. Negative and positive δ34S values are compatible with bacterial sulphate reduction (BSR) in systems open and closed with respect to sulphate. We interpret similarly high δ34S values for sulphide concentrates (25.1‰) and for vein barite (26.2‰) to result from rapid and complete thermochemical reduction of pore-water sulphate. Two early to late diagenetic stages of mineralisation best explain the origin of the Transfiguration deposit. The first stage was characterised by the ponding of groundwater over the Taconian unconformity, recorded by calcrete and early pyrite formation via BSR in grey sandstone. Early pyrite contains up to 2 wt.% Pb, which is consistent with Pb fixation by sulphate-reducing bacteria. The second stage (II) is defined by the replacement of early pyrite by chalcopyrite, as well as by sulphide precipitation via either BSR or thermochemical sulphate reduction (TSR) in grey sandstone. This event resulted from the synsedimentary fault-controlled percolation and mixing of (1) an oxidising, sulphate-bearing cupriferous fluid migrating per descensum from the red-bed sequence and (2) a hydrocarbon-bearing fluid migrating per ascensum from the Cambro-Ordovician basement. Mixing between the two fluids led to sulphate reduction, causing Cu sulphide precipitation. The positive correlation between Cu and Fe3+/Fe2+ bulk rock values suggests that Fe acted as a redox agent during sulphate reduction. Stage II diagenetic fluid migration is tentatively attributed to the Late Silurian Salinic extensional event.

  15. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds.

    PubMed

    Medrano, Jose A; de Nooijer, Niek C A; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO₂ as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  16. Paleomagnetism of Cretaceous red beds from Tadzhikistan and Cenozoic deformation due to India-Eurasia collision

    NASA Astrophysics Data System (ADS)

    Bazhenov, Mikhail L.; Perroud, Herve; Chauvin, Annick; Burtman, Valentin S.; Thomas, Jean-Charles

    1994-06-01

    We have carried out structural and paleomagnetic studies in the Tadzhik depression in order to evaluate the main features of the Alpine tectonics of this area. About 340 cores from 43 sites of Lower Cretaceous red beds were sampled from four different localities in the basin and adjacent ranges. A well-defined component of magnetization (A) of normal polarity with high unblocking temperatures up to 650-670 C was isolated from all the sites. Another component of magnetization (B) with unblocking temperatures between 650 and 680 C was isolated from only fifteen sites; this component is bipolar. The fold test is positive for both components. We believe that component A was acquired during the Cretaceous long interval of normal polarity. Comparison with Eurasian reference data shows significant counterclockwise rotation of a locality close to the Pamir wedge (R = 51 +/- 5 deg) and another counterclockwise rotation from the inner part of the basin (R = 15 +/- 5 deg). No significant rotations are observed at the two other localities on the periphery of the Tadzhik basin.

  17. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds

    PubMed Central

    Medrano, Jose A.; de Nooijer, Niek C. A.; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO2 as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  18. The Cyborg Astrobiologist: scouting red beds for uncommon features with geological significance

    NASA Astrophysics Data System (ADS)

    McGuire, Patrick Charles; Díaz-Martínez, Enrique; Ormö, Jens; Gómez-Elvira, Javier; Rodríguez-Manfredi, José Antonio; Sebastián-Martínez, Eduardo; Ritter, Helge; Haschke, Robert; Oesker, Markus; Ontrup, Jörg

    2005-04-01

    The `Cyborg Astrobiologist' has undergone a second geological field trial, at a site in northern Guadalajara, Spain, near Riba de Santiuste. The site at Riba de Santiuste is dominated by layered deposits of red sandstones. The Cyborg Astrobiologist is a wearable computer and video camera system that has demonstrated a capability to find uncommon interest points in geological imagery in real time in the field. In this second field trial, the computer vision system of the Cyborg Astrobiologist was tested at seven different tripod positions, on three different geological structures. The first geological structure was an outcrop of nearly homogeneous sandstone, which exhibits oxidized-iron impurities in red areas and an absence of these iron impurities in white areas. The white areas in these `red beds' have turned white because the iron has been removed. The iron removal from the sandstone can proceed once the iron has been chemically reduced, perhaps by a biological agent. In one instance the computer vision system found several (iron-free) white spots to be uncommon and therefore interesting, as well as several small and dark nodules. The second geological structure was another outcrop some 600 m to the east, with white, textured mineral deposits on the surface of the sandstone, at the bottom of the outcrop. The computer vision system found these white, textured mineral deposits to be interesting. We acquired samples of the mineral deposits for geochemical analysis in the laboratory. This laboratory analysis of the crust identifies a double layer, consisting of an internal millimetre-size layering of calcite and an external centimetre-size efflorescence of gypsum. The third geological structure was a 50 cm thick palaeosol layer, with fossilized root structures of some plants. The computer vision system also found certain areas of these root structures to be interesting. A quasi-blind comparison of the Cyborg Astrobiologist's interest points for these images with the interest points determined afterwards by a human geologist shows that the Cyborg Astrobiologist concurred with the human geologist 68% of the time (true-positive rate), with a 32% false-positive rate and a 32% false-negative rate. The performance of the Cyborg Astrobiologist's computer vision system was by no means perfect, so there is plenty of room for improvement. However, these tests validate the image-segmentation and uncommon-mapping technique that we first employed at a different geological site (Rivas Vaciamadrid) with somewhat different properties for the imagery.

  19. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River

    PubMed Central

    Radinger, Johannes; Wolter, Christian; Kail, Jochem

    2015-01-01

    Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species’ presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the importance of considering habitat at spatial scales larger than the sampling site, and (iii) that the importance of (river morphological) habitat characteristics differs depending on the spatial scale. PMID:26569119

  20. The Role of Authigenic (pigment) Hematite in Controlling the Remanence, Rock Magnetic, and Magnetic Fabric Properties of Red Beds--If You Have Seen One Red Bed, You Certainly Have Not Seen Them All!

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.

    2014-12-01

    Discussion continues on the relative role of authigenic (pigment) fine-grained hematite, relative to detrital, considerably coarser specular hematite (specularite) as a carrier of geologically meaningful remanence, as a determinant of rock magnetic properties, and as a contributor to magnetic fabrics in red beds. For one, many workers commonly assume that the laboratory unblocking temperature spectra (Tlub) of a red bed dominated by authigenic pigment does not reach the maximum Tlub as approximated by the Neel temperature (~948 K) because of the ultra fine grain size of the pigment. This issue was discussed as recently as the IRM Santa Fe meeting in late June, 2014. Many laboratories routinely utilize chemical demagnetization in concert with progressive thermal demagnetization to attempt to assess the relative role of pigment vs. detrital hematite. However, the utility of chemical demagnetization has been long challenged. In studying the anisotropy of magnetic susceptibility and remanence in red beds, recent work has considered separating the contributions of both types of hematite to the fabric signal. Three different red bed "types" (siltstones of the Triassic Chugwater Group, Gros Ventre Range, Wyoming; mudrocks of lowermost Triassic Quartermaster Formation, west Texas; and siltstones to medium sandstones of Upper Cretaceous age, northwest Vietnam) are used to evaluate the effects of varying contributions by pigment hematite to remanence, rock magnetic, and magnetic fabric properties. All rocks are well-characterized petrographically, so that the modal abundance of detrital oxides is known. The Chugwater siltstones are notable because of a relatively low Tlub spectra (below about 620o C), with no evidence of a low coercivity cubic phase. Rock magnetic and magnetic fabric properties are monitored as a function of progressive chemical demagnetization to further elucidate the role of hematite pigment in rocks that have contributed much to the paleomagnetic record of Earth.

  1. SLOW SAND FILTRATION: INFLUENCES OF SELECTED PROCESS VARIABLES

    EPA Science Inventory

    Biological activity within the sand bed had the strongest influence on removal efficiency of total coliform bacteria by slow sand filtration, as determined by six pilot filters. Temperature, sand bed depth, and sand size also had a strong influecee.

  2. Direct measurement of hematite individual particle anisotropy: implications for inclination shallowing in red bed DRMs.

    NASA Astrophysics Data System (ADS)

    Bilardello, D.; Kodama, K. P.

    2007-12-01

    Methods to correct for the observed inclination shallowing in sedimentary rocks have been proposed that are based on either models of the geomagnetic field and the resulting directional distribution of paleomagnetic vectors or the magnetic anisotropy of the magnetic minerals carrying the remanence. One limitation of the anisotropy method for hematite-bearing red beds has been the isolation and determination of a rock's detrital hematite individual particle anisotropy. Up to now, our red bed inclination shallowing corrections have been dependent on estimates of hematite individual particle anisotropy using data fit to theoretical correction curves. We have developed a technique for preferentially extracting the detrital hematite particles in a sample in order to directly measure their individual particle anisotropy. The method involves crushing of the sample followed by ball milling and sieving to ensure that the rock particles are smaller than 4Φ. The resulting slurry was then placed in an ultrasonic cleaner for at least 24 hours and finally centrifuged at 1000 rpm for 20 minutes in order to separate the dense, gray iron oxide particles from the red pigmentary grains. The gray, iron oxide-rich slurry was collected by hand and circulated in a magnetic extraction apparatus. The magnetic separate was then collected over a period of two to three weeks. Small amounts of the magnetic separates where mixed in a slow-drying epoxy resin for 24 hours and placed in a DC magnetic field (100 mT to 180 mT) in order to align the grains. The bulk IRM anisotropy of the epoxy samples provides an average individual particle anisotropy for the magnetic grains. Separates were collected from samples of the Mauch Chunk Fm. of Pennsylvania, the Maringouin and the Shepody Fms of New Brunswick/ Nova Scotia and the Kapusaliang Fm. of northwestern China. IRM acquisitions experiments were performed in fields of up to 1.2 T in order to identify the magnetic mineralogies present. Remanence appears to be carried by a low coercivity phase (~50 mT) interpreted to be secondary magnetite and a higher coercivity phase (~350 mT) interpreted to be primary hematite for the Shepody and Maringouin Fms or just one high coercivity component (200- 250 mT) interpreted as primary hematite for the Mauch Chunk and Kapusaliang Fms. Hematite individual particle anisotropy was measured by imparting a 1.2 T IRM to the specimens in 9 different orientations followed by AF demagnetization at 100 mT. Calculated individual particle anisotropy values ranged between 1.28 and 1.45 with bulk anisotropies of ~$40%. Inclination corrections using the directly measured individual particle anisotropies indicate significant inclination shallowing for the Mauch Chunk and Kapusaliang Fms, while more moderate shallowing for the Maringouin and Shepody Fms. Curve fitting techniques with added constraints give a good first order approximation of the individual particle anisotropy, however direct measurement is preferable. The measured particle anisotropies for hematite are low and suggest that there is the potential for significant amounts of shallowing for a hematite DRM. This observation is consistent with redeposition experiments performed by Tauxe and Kent [1984] and the notion that depositional inclination of hematite may suffer from more shallowing than magnetite because of its lower spontaneous magnetization making it more affected by gravitational forces.

  3. Continental Red Beds: How, Why, and When Can they Be Remagnetized, and What Would Don Elston Think?

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.

    2006-12-01

    For logical reasons, continental red beds have served as the focus for thousands of paleomagnetic investigations; this author is becoming more and more convinced that the most accurate statements to make about how red beds are magnetized are: (1)no two red bed sequences are exactly the same and (2)understanding just how red beds are remagnetized (a nagging question pondered by several workers) may help us in more fully understanding aspects of how they acquire a geologically meaningful magnetization in the first place! Red beds of the Uinta Mountain Supergroup (UMS) serve as an excellent natural laboratory for studying magnetization acquisition and remagnetization processes. These rocks are exposed in the core of the Uinta Mountains, which formed during Laramide style shortening along the northern margin of the Colorado Plateau. In the eastern and central part of the range, strata are dominated by 3+ km of hematite-cemented medium to fine-grained sandstones, with relatively minor hematitic shales and conglomerates. Correlation of the upper part of the UMS section with the Chuar and Little Dal groups, and hence a mid-Neoproterozoic age for the strata, is based on the presence of the fossil Chuaria. At several localities in UMG strata, a dual polarity ChRM of about east-west declination and shallow inclination inferred to be primary) is smoothly and progressively unblocked between about 590 and 685°C, with no hint of changes in magnetic mineralogy and/or viscous behavior during unblocking. This magnetization provides a paleomagnetic pole of 0.8°N and 161.3°E (Weil,Geissman,and Ashby,2006, PC Res.) Several localities, in particular in the eastern part of the uplift, however, have been completely remagnetized and contain a pervasive and exceedingly well- defined, well-grouped magnetization that is consistent with a young, certainly post mid-Cretaceous, age of remagnetization. In chemical demagnetization, this secondary magnetization is completely removed over short time periods relative to the inferred primary remanence. Notably, none of the UMS strata investigated to date yield a secondary remanence of late Paleozoic age, which is not uncommon to Paleozoic and Precambrian rocks in the area. To provide a more accurate age of remagnetization, conglomerate tests are being performed on UMS cobbles from several sites in the oldest deposits flanking the uplift [Oligocene Bishop Conglomerate and Miocene Browns Park] that contain UMS clasts.

  4. Mediative adjustment of river dynamics: The role of chute channels in tropical sand-bed meandering rivers

    NASA Astrophysics Data System (ADS)

    Grenfell, M. C.; Nicholas, A. P.; Aalto, R.

    2014-03-01

    This paper examines processes of chute channel formation in four tropical sand-bed meandering rivers; the Strickland and Ok Tedi in Papua New Guinea, the Beni in Bolivia, and the lower Paraguay on the Paraguay/Argentina border. Empirical planform analyses highlight an association between meander bend widening and chute initiation that is consistent with recent physics-based modelling work. GIS analyses indicate that bend widening may be driven by a variety of mechanisms, including scour and cutbank bench formation at sharply-curving bends, point bar erosion due to cutbank impingement against cohesive terrace material, rapid cutbank erosion at rapidly extending bends, and spontaneous mid-channel bar formation. Chute channel initiation is observed to be predominantly associated with two of these widening mechanisms; i) an imbalance between cutbank erosion and point bar deposition associated with rapid bend extension, and ii) bank erosion forced by spontaneous mid-channel bar development. The work extends previous empirical analyses, which highlighted the role of bend extension (elongation) in driving chute initiation, with the observation that the frequency of chute initiation increases once bend extension rates and/or widening ratios exceed a reach-scale threshold. A temporal pattern of increased chute initiation frequency on the Ok Tedi, in response to channel steepening and mid-channel bar development following the addition of mine tailings, mirrors the inter- and intra-reach spatial patterns of chute initiation frequency on the Paraguay, Strickland and Beni Rivers, where increased stream power and sediment load are associated with increased bend extension and chute initiation rates. The process of chute formation is shown to be rate-dependent, and the threshold values of bend extension and widening ratio for chute initiation are shown to scale with measures of river energy, reminiscent of slope-ratio thresholds in river avulsion. Furthermore, Delft3D simulations suggest that chute formation can exert negative feedback on shear stress and bank erosion in the adjacent mainstem bifurcate, such that the process of chute formation may also be rate-limiting. Chute formation is activated iteratively in space and time in response to changes in river energy (and sediment load), predominantly affecting sites of rapid channel elongation, and thereby mediating the river response.

  5. The geomorphic and ecological effectiveness of habitat rehabilitation works: Continuous measurement of scour and fill around large logs in sand-bed streams

    NASA Astrophysics Data System (ADS)

    Borg, Dan; Rutherfurd, Ian; Stewardson, Mike

    2007-09-01

    Geomorphologists, ecologists and engineers have all contributed to stream rehabilitation projects by predicting the physical effect of habitat restoration structures. In this study we report the results of a stream rehabilitation project on the Snowy River, SE Australia; that aims to improve fish habitat and facilitate migration associated with scour holes around large wood in the streambed. Whilst engineering models allow us to predict maximum scour, the key management issue here was not the maximum scour depth but whether the holes persisted at a range of flows, and if they were present when fish actually required them. This led to the development of a new method to continuously monitor scour in a sand-bed, using a buried pressure transducer. In this study we monitored fluctuations in the bed level below three large logs (1 m diameter) on the Snowy River. Each log had a different scour mechanism: a plunge pool, a horseshoe vortex (analogous to a bridge pier), and a submerged jet beneath the log. The continuous monitoring demonstrated a complex relationship between discharge and pool scour. The horseshoe vortex pool maintained a constant level, whilst, contrary to expectations, both the plunge pool and the submerged jet pool gradually filled over the 12 months. Filling was associated with the average rise in flows in winter, and occurred despite several freshes and discharge spikes. The plunge pool showed the most variation, with bed levels fluctuating by over 1 m. A key factor in pool scour here may not be the local water depth at the log, but the position of the log in relation to larger scale movements of sand-waves in the stream. These results question assumptions on the relative importance of small floods or channel-maintenance flows that lead to beneficial scour around large wood in sand-bed streams. Further, the continuous measurement of scour and fill around the logs suggested the presence of pool scour holes would have met critical requirements for Australian bass ( Macquaria novemaculeata) during the migration period, whereas less-frequent monitoring typical of rehabilitation trials would have suggested the contrary. The results of this study have demonstrated that geomorphic effectiveness is not always synonymous with biological effectiveness. Whilst physical models emphasise extreme changes, such as maximum scour, the key biological issue is whether scour occurs at the critical time of the life cycle. Continuous measurement of sand levels is an example of a geomorphic technique that will help to develop models that predict biologically meaningful processes, not just extremes.

  6. Paleomagnetism of the Oligocene Kangtuo Formation red beds (Central Tibet): Inclination shallowing and tectonic implications

    NASA Astrophysics Data System (ADS)

    Ding, Jikai; Zhang, Shihong; Chen, Weiwei; Zhang, Junhong; Yang, Tianshui; Jiang, Gaolei; Zhang, Kexin; Li, Haiyan; Wu, Huaichun

    2015-05-01

    A paleomagnetic study on the red beds of the Oligocene Kangtuo Formation (Fm) was carried out in the Gerze Basin of the Lhasa terrane. A total of 700 samples were collected from 37 sites. Stepwise thermal demagnetization revealed that the main magnetic carrier is hematite. The natural remnant magnetization (NRM) consists of two components. A low-temperature component (LTC) is identified below 300 °C and is interpreted to be a recent viscous overprint, whereas a high temperature component (HTC) unblocks at ∼665-690 °C and is interpreted to be the primary magnetization. The HTC distributions show a clear east-west elongated distribution, which is considered as reflecting inclination flattening of deposited magnetic remanence carriers. After inclination calibration using the E/I method, the HTC could pass both a reversal test and a fold test at 95% confidence level, showing the mean direction at Ds = 340.3°, Is = 44.2°, with k = 63.0, and α95 = 3.1°, corresponding to a paleopole at 71.7°N, 339.3°E (A95 = 3.1°), and the paleolatitude of the sampling site at 25.9 ± 3.1°N. The paleolatitude is consistent with that expected from the coeval pole of the Qiangtang terrane obtained from volcanic rocks, suggesting that there has been no paleomagnetically-discernable latitudinal motion between the Qiantang and Lhasa terranes since ∼30 Ma. Comparing our new data with the apparent polar wander paths (APWPs) of East Asian blocks (Cogné et al., 2013), Europe, and India (Besse and Courtillot, 2002), we have reached the following conclusions. (1) There is no significant paleolatitudinal difference observed between the Lhasa terrane and other central and northern Asian terranes at ∼30 Ma. (2) The observed paleolatitude of the Kangtuo Fm is 8.0 ± 4.9° lower than the expected paleolatitude deduced from the data of stable Europe, highlighting the 'Asian inclination anomaly' phenomenon, but is 4.6 ± 5.1° higher than that deduced from the data of the India Plate, likely presenting a ∼506 ± 561 km shortening between the India and Lhasa terrane since the Oligocene. It is inferred that this amount of shortening has been absorbed mainly by the Himalaya Orogenic Belt.

  7. The influence of microbial mats on the formation of sand volcanoes and mounds in the Red Sea coastal plain, south Jeddah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Taj, Rushdi J.; Aref, Mahmoud A. M.; Schreiber, B. Charlotte

    2014-08-01

    Extensive areas covered by microbial mats have been found in the upper intertidal flats and supratidal pools in the Red Sea coastal plain of south Jeddah, Saudi Arabia. Numerous microbially controlled sediment-surface morphologies are evident, such as flat cohesive mats that commonly pass into mats with wrinkles, reticulates, and tufts, together with erosion pockets and mat chips. These microbial mats form cohesive surface layers that lead to biostabilization of the sediment surface. Fluidization of the underlying sediments is due to tidal influences and pressurized gas escape from decay and photosynthesis of microbial mats and causes deformation and rupture of the cohesive surface mat layer via vertical and sub-vertical pipes. Extrusion of fluidized sediments and water through these pipes leads to redeposition of sediment grains above the surface mat layer to form sand volcanoes and mounds. Most of the sand volcanoes present in the intertidal flats and supratidal pools show a symmetrical morphology, whereas in tidal channels asymmetrical forms are more common. Extrusion of underlying sediments through several adjacent vents leads to coalescence of sand volcanoes to form sand mounds. In this study sand volcanoes are also compared with other cone-like features from the Red Sea, such as gas domes and crab mounds. This comparison should help in differentiating similar cone-like features associated with microbial mats in the rock record.

  8. Tectonic controls on the quality and distribution of Syn- to Post-Rift reservoir sands in the Southern Red Sea, offshore Western Yemen

    SciTech Connect

    Carter, J.M.L.

    1995-08-01

    Previous geophysical and drilling results in the southern Red Sea, and the presence of numerous oil seeps, indicate that the syn- to post-rift section is prospective for oil and gas. The relatively high geothermal gradient offshore western Yemen makes intra-salt and post-salt reservoir sands the only viable exploration targets. The quality and distribution of the reservoir sands remains one of the main unknown risk factors, An improved understanding of the controls on deposition of these sands is achieved by use of LandSat data, which provide evidence of a regional tectonic framework involving NE/SW-trending oceanic transform faults which are expressed onshore as strike-slip features, in some cases representing reactivated Precambrian lineaments. These faults are thought to have played two fundamental roles in the Neogene to Recent evolution of the southern Red Sea - firstly by directing clastic input from the rising Yemen Highlands into offshore depocentres, and secondly by influencing the location of salt diapirs sourced by Upper Miocene evaporates. By considering these factors, together with the pattern of heat flow from the developing oceanic rift of the southern Red Sea, it is possible to delineate areas of offshore western Yemen where reservoir characteristics are likely to be most favourable.

  9. Characterization of CO2-induced (?) bleaching phenomena in German red bed sediments by combined geochemical and evolved gas analysis

    NASA Astrophysics Data System (ADS)

    Hilse, Ulrike; Goepel, Andreas; Pudlo, Dieter; Heide, Klaus; Gaupp, Reinhard

    2010-05-01

    We investigated varied coloured Buntsandstein and Rotliegend sandstones in Central Germany (Thuringian Vorderrhön, Altmark) by thermogravimetric/pyrolytic (DEGAS- directly coupled evolved gas analysis) and geochemical (ICP-MS/OES) means to evaluate geochemical/mineralogical characteristics of red bed rocks and their presumably altered, bleached modifications. Commonly bleaching of primary red bed sediments is regarded as a result of fluid-rock reactions by the participation of CO2. This study is performed in the framework of the special research program 'GEOTECHNOLOGIEN' (funded by the German Ministry of Education and Research - BMBF) and is part of two BMBF sponsored projects - 'COMICOR', an analogue study on potential effects of CO2-bearing fluids on Buntsandstein and Rotliegend deposits in Hesse and Thuringia and 'CLEAN', an enhanced gas recovery (EGR) pilot project in cooperation with GDF SUEZ E&P Deutschland GmbH. The intention of CLEAN is to evaluate the feasibility of EGR techniques and the suitability of depleted natural gas reservoirs for potential industrial CO2 sequestration projects. According to rock colour variations two slices of handspecimens (M49, A1) were split into 12 and 15 equally sized samples for analytical work. The medium grained Lower Buntsandstein sample M49 from Thuringia is of fluvial origin and partially bleached with transitions from red (unbleached) to light colours (bleached). Bulk rock geochemistry of red bed and bleached subsamples of M49 are almost similar, including rare earth element (REE) content. Only the content of iron and related metals is depleted in bleached samples compared to the red bed types. All PAAS normalized pattern of M49 show positive Eu and slightly negative Ce anomalies, most likely caused by the presence of apatite and illite in the rocks. The degassing behavior observed by DEGAS of M49 subsamples is mainly controlled by the breakdown of sheet silicates, hydroxides and hydrates, as well as of carbonates and sulphates. DEGAS pattern show no obvious systematic differences between the varied coloured zones of this specimen. Sample A1 consists of totally bleached medium grained, lithoclast rich Rotliegend sandstone which was deposited on a flood plain with braided rivers and aeolian dunes. Subsamples of A1 are grouped into three zones - all are bleached, with colours ranging from white to dark grey. Grey and dark grey zones (A1-1 to A1-6, A1-15) are cemented by Ca-rich carbonates and contain microscopically identified bitumina. In contrast the pore space of white zones (A1-7 to A1-14) is filled by anhydrite. These mineralogical differences are also reflected in the bulk rock geochemistry. In comparison to grey rocks white subsamples are depleted in iron and related elements as well as in REEs. Moreover, correlations between rock colour and degassing behavior exist. White samples display typical degassing signatures of sulphates, whereas dark grey zones reveal minor sulphate content, but also the presence of an additional S-species (sulphide) and CO2 (carbonate). Similar features were obtained regarding the specification and abundance of hydrocarbon components. In all samples of A1 methane, ethane and carbonylsulphide were detected, with higher contents in the more whitish parts. In grey rocks an additional, long-chained hydrocarbon component occurs. The relevance of this species is not yet resolved and will be investigated further in more detail. Mass spectrometric gas analytical and related geochemical data confirm major differences in rock composition of Buntsandstein and Rotliegend samples, mainly caused by primary rock composition and by the involvement of variable fluid composition during burial diagenetic alteration. In this study DEGAS was applied for the first time to characterize sandstone geochemistry. Our results constrain that this method might be a complementary analytical tool appropriate for petrological sedimentary research.

  10. Sand transport over an immobile gravel substrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted in a laboratory flume channel to evaluate the effects of increasing amounts of sand with an immobile gravel fraction on the sand transport rate and configuration of the sand bed. Knowledge of the movement of sand in gravel beds is important for the management of streams a...

  11. AsIII oxidation by Thiomonas arsenivorans in up-flow fixed-bed reactors coupled to As sequestration onto zero-valent iron-coated sand.

    PubMed

    Wan, Junfeng; Klein, Jonathan; Simon, Stephane; Joulian, Catherine; Dictor, Marie-Christine; Deluchat, Véronique; Dagot, Christophe

    2010-09-01

    The combined processes of biological As(III) oxidation and removal of As(III) and As(V) by zero-valent iron were investigated with synthetic water containing high As(III) concentration (10 mg L(-1)). Two up-flow fixed-bed reactors (R1 and R2) were filled with 2 L of sieved sand (d = 3 ± 1 mm) while zero-valent iron powder (d = 76 μm; 1% (w/w) of sand) was mixed evenly with sand in R2. Thiomonas arsenivorans was inoculated in the two reactors. The pilot unit was studied for 33 days, with HRT of 4 and 1 h. The maximal As(III) oxidation rate was 8.36 mg h(-1) L(-1) in R1 and about 45% of total As was removed in R2 for an HRT of 1 h. A first order model fitted well with the As(III) concentration evolution at the different levels in R1. At the end of the pilot monitoring, batch tests were conducted with support collected at different levels in R1. They showed that bacterial As(III) oxidation rate was correlated with the axial length of reactor, which could be explained by biomass distribution in reactor or by bacterial activity. In opposition, As(III) oxidation rate was not stable in R2 due to the simultaneous bacterial As(III) oxidation and chemical removal by zero-valent iron and its oxidant products. However, a durable removal of total As was realized and zero-valent iron was not saturated by As over 33 days in R2. Furthermore, the influence of zero-valent iron and its oxidant corrosion products on the evolution of As(III)-oxidizing bacteria diversity was highlighted by the molecular fingerprinting method of PCR-DGGE using aoxB gene as a functional marker of aerobic As(III) oxidizers. PMID:20850864

  12. Vertebrate fossils and trace fossils in Upper Jurassic-Lower cretaceous red beds in the Atacama region, Chile

    NASA Astrophysics Data System (ADS)

    Bell, C. M.; Suárez, M.

    Pterosaur, dinosaur, and crocodile bones are recorded here for the first time in Upper Jurassic-Lower Cretaceous red beds in the Atacama region east of Copiapó, Chile. Trace fossils produced by vertebrate animals include the footprints of theropod dinosaurs and the depressions of sandstone laminae interpreted as burrows and foot impressions. The fossils occur in the 1500-meter-thick Quebrada Monardes Formation, which consists predominantly of the aeolian and alluvial deposits of a semi-arid terrestrial environment. Vertebrate fossils are very rare in Chile. Dinosaur bones and footprints have previously been recorded at only seven locations, and pterosaur remains at only one location. The newly discovered dinosaur bones are the oldest to be described in Chile.

  13. Voidage and pressure profile characteristics of sand-iron ore-coal-FCC single-particle systems in the riser of a pilot plant circulating fluidized bed

    SciTech Connect

    Das, M.; Meikap, B.C.; Saha, R.K.

    2008-06-15

    Hydrodynamic behaviors of single system of particles were investigated in a circulating fluidized bed (CFB) unit. Particles belonging to Geldart groups A and B like sand of various sizes (90, 300, 417, 522, 599, and 622 mu m), FCC catalyst (120 mu m), iron ore (166 and 140 {mu} m), and coal (335 and 168 {mu} m) were used to study the hydrodynamic characteristics. Superficial air velocity used in the present study ranged between 2.01 and 4.681 m/s and corresponding mass fluxes were 12.5-50 kg/(m{sup 2} s). A CFB needs the creation of some special hydrodynamic conditions, namely a certain combination of superficial gas velocity, solids circulation rate, particle diameter, density of particle, etc. which can give rise to a state wherein the solid particles are subjected to an upward velocity greater than the terminal or free fall velocity of the majority of the individual particles. The hydrodynamics of the bed was investigated in depth and theoretical analysis is presented to support the findings. Based on gas-solid momentum balance in the riser, a distinction between apparent and real voidage has been made. The effects of acceleration and friction on the real voidage have been estimated. Results indicated a 0.995 voidage for higher superficial gas velocity of 4.681. m/s.

  14. Multiscale bed form interactions and their implications for the abruptness and stability of the downwind dune field margin at White Sands, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Jerolmack, Douglas J.

    2014-11-01

    The downwind margin of White Sands dune field is an abrupt transition from mobile aeolian dunes to a dune-free vegetated surface. This margin is also relatively stable; over the past 60 years it has migrated several times more slowly than the slowest dunes within the dune field, resulting in a zone of dune coalescence, aggradation, and, along most of the margin, development of a dune complex (i.e., dunes superimposed on draas). Repeat terrestrial laser scanning surveys conducted over a 3 month period demonstrate that sediment fluxes within the dune complex decrease on approach to the margin. Computational fluid dynamics modeling indicates that this decrease is due, in part, to a decrease in mean turbulent bed shear stress on the lee side of the dune complex as a result of flow line divergence or sheltering of the lee-side dunes by the stoss side of the dune complex. Conservation of mass demands that this decrease in bed shear stress causes aggradation. We speculate that aggradation on the lee side of the dune complex further enhances the sheltering effect in a positive feedback, contributing to the growth and/or maintenance of the dune complex and a relatively abrupt and stable dune field margin. Our model and data add to a growing body of evidence that aeolian dune field patterns are influenced by feedbacks that occur at scales larger than individual dunes.

  15. The effects of repeated cycles of calcination and carbonation on a variety of different limestones, as measured in a hot fluidized bed of sand

    SciTech Connect

    Paul S. Fennell; Roberta Pacciani; John S. Dennis; John F. Davidson; Allan N. Hayhurst

    2007-08-15

    The capacity of calcined limestone to react repeatedly with CO{sub 2}, according to CaO{sub cr} + CO{sub 2(g)} = CaCO{sub 3(cr)} (eq I), and also its regeneration in the reverse reaction have been studied in a small, electrically heated fluidized bed of sand, for five different limestones. The forward step of eq I is a promising way of removing CO{sub 2} from the exhaust of, for example, a coal-fired power station, ready for sequestration or as part of a scheme to generate H{sub 2} using an enhanced water-gas shift reaction. The reverse step regenerates the sorbent. The uptake of CO{sub 2} by CaO, produced by calcining limestone, was measured using a bed of sand fluidized by N{sub 2} at about 1023 K. For each experiment, a small quantity of limestone particles was added to the hot sand, whereupon the limestone calcined to produce CaO. Calcination was completed in about 500 s for particles of a mean diameter of about 600 {mu}m. Next, CO{sub 2} was added to the fluidizing nitrogen to carbonate the CaO for about 500 s. Measurements of (CO{sub 2}) in the off-gases enabled the rates of calcination and the subsequent carbonation to be measured as functions of time. Many successive cycles of calcination and carbonation were studied. The forward step of reaction I is shown to exhibit an apparent final conversion, which decreases with the number of cycles of reaction; the final conversion fits well to a correlation from the literature. The reverse (calcination) reaction always proceeded to completion. It was found that the carrying capacity of CaO for CO{sub 2} on the nth cycle of carbonation was roughly proportional to the voidage inside pores narrower than about 150 nm in the calcined CaO before carbonation began. Thus, morphological changes, including reduction in the volume of pores narrower than 150 nm within a calcined limestone, were found to be responsible for much of the fall in conversion of reaction I with increasing numbers of cycles. 19 refs., 9 figs., 4 tabs.

  16. Nugget-Navaho-Aztec sandstone: interaction of eolian sand sea with Andean-type volcanic arc

    SciTech Connect

    Marzolf, J.E.

    1986-05-01

    The Nugget-Navaho-Aztec sand sea was deposited east of an Andean-type volcanic arc. During the early stage of eolian deposition, fluvially transported sand was concentrated in the marine littoral zone and returned inland by onshore winds from the northwest. With progressive development of the arc, the sea withdrew. Wind direction changed from northwest to northeast. Previously deposited eolian sand was transported southwestward into the volcanic arc. Proximity of the arc can be detected with great difficulty by examining eolian and underlying red-bed facies. In southern Nevada, the volcanic arc is undetectable in eolian facies, but thin sandstone beds containing volcanic clasts or weathered feldspar in the finer grained red-bed facies indicate arc volcanism; volcanic clasts are distinct in a basal conglomerate. Westward into California, the sub-Aztec Sandstone contains volcanic pebbles. The upper part of the Aztec Sandstone contains a 1 to 2-m thick volcaniclastic siltstone. Farther west, the Aztec Sandstone is interbedded with volcanic flows, ash flows, and flow breccias. These rocks might easily be mistaken for red beds in well cores or cuttings. Sand in sets of large-scale cross-beds remain virtually identical in composition and texture to sand in eolian facies of the Colorado Plateau. Where sets of eolian cross-beds lie on volcanics, the quartzose sandstone contains pebble to cobble-size volcanic clasts. Locally, cross-bed sets of yellowish-white, quartzose sandstone alternate with purplish-gray cross-bed sets containing numerous pebble to cobble-size volcanic clasts. The ability to recognize volcanic indicators within Nugget-Navaho-Aztec eolian facies is important in delineating the western margin of the back-arc eolian basin.

  17. A wind tunnel study of flow structure adjustment on deformable sand beds containing a surface-mounted obstacle

    NASA Astrophysics Data System (ADS)

    McKenna Neuman, Cheryl; Bdard, OttO

    2015-09-01

    Roughness elements of varied scale and geometry commonly appear on the surfaces of sedimentary deposits in a wide range of planetary environments. They perturb the local fluid flow so that the entrainment, transport, and deposition of particles surrounding each element are fundamentally altered. Fluid dynamists have expended much effort in examining the flow structures surrounding idealized elements mounted on fixed, planar walls. However self-regulation occurs in sedimentary systems as a result of the bed surface undergoing rapid topographic modification with sediment transport, until it reaches a stable form that enhances the net physical roughness. The present wind tunnel study examines how the flow pattern surrounding an isolated cylinder, a problem extensively studied in classical fluid mechanics, is altered through morphodynamic development of a deep well that envelopes the windward face and sidewalls of the roughness element. Spatial patterns in the fluid velocity, turbulence intensity, and Reynolds stress obtained from laser Doppler anemometer measurements suggest that the flow structures surrounding such a cylinder are fundamentally altered through self-regulation of the bed topography as it reaches steady state. For example, flow stagnation and the turbulent dissipation of momentum are substantially increased at selected points surrounding the upwind face and sidewalls of the cylinder, respectively. Along the center line of the wake flow to the rear of the cylinder, several structures arising from flow separation are annihilated by strong upwelling of the airflow exhausted from the terminus of the well. Feedback plays a complex, time-dependent role in this system.

  18. Morphology and Hydraulics of Nine Sand-bed Fluvial Bifurcations from the Mossy Delta, SK: Implications for Their Stability

    NASA Astrophysics Data System (ADS)

    Slingerland, R.; Klein, F. E.; Edmonds, D. A.; Best, J. L.; Parsons, D. R.; Bridge, J. S.; Janesko, D.; Smith, N. D.

    2007-12-01

    The distributary channel network of the Mossy Delta, SK consists of ~25 presently-active bifurcations created by channel splitting around river mouth bars during a 70 year history of delta growth. Detailed morphologic and hydraulic data from nine bifurcations are analyzed here to define the processes that determine their stability. Processes considered include bedload steering by adverse bed slopes, sediment and flow steering by secondary circulation, flow steering by inherited channel planform, and gradient advantage due to external boundary conditions. Stability of the bifurcations was determined from serial aerial photo analysis. Results indicate that the net topology and planforms of the bifurcations were set early during deposition of river mouth bars. Inherited alignment of a bifurcate channel thalweg with the main stem does not play a large role in subsequent bifurcation evolution; today roughly half of the side-channels take a greater proportion of the flow. After creation, bifurcate channels decreased in width by c. 15 %, with most of the reduction occurring in the first decade through bank accretion of scroll bars. Modern bifurcate channel depths and widths follow a hydraulic geometry scaling law (although they are wider and shallower than typical river channels), indicating a morphodynamically stable channel network. Most active bifurcations today are asymmetric; the average proportion of discharge through subordinate channels is 37 % with variation from 20 to 50 %. Local water surface slopes are flat approaching a bifurcation and steepen down the bifurcate arms, with the steeper slope in the shallower channel. All subordinate bifurcate channels possess morphologic ramps from the main channel with adverse bed slopes of 3-5 %. Although this suggests topographic steering of bedload is an important process in maintaining stability, it is not the only controlling process, because the subordinate ramp is shallower in c. 30 % of the cases.

  19. Measuring remanence anisotropy of hematite in red beds: anisotropy of high-field isothermal remanence magnetization (hf-AIR)

    NASA Astrophysics Data System (ADS)

    Bilardello, Dario; Kodama, Kenneth P.

    2009-09-01

    The potential of using high-field anisotropy of isothermal remanence magnetization (hf-AIR) measurements for determining the origin of natural remanent magnetization in red beds and for identifying and correcting possible red-bed inclination shallowing was investigated for specimens of the Carboniferous Shepody Formation of New Brunswick and Nova Scotia, Canada. The technique makes it possible for a typical paleomagnetic laboratory to measure the remanence anisotropy of high-coercivity hematite. High-field (hf) AIR was used in conjunction with 100 mT alternating field (af) and 120°C thermal demagnetization to separate the contribution of hematite to the remanence anisotropy from that of magnetite/maghemite and goethite, respectively. A 5-T impulse DC magnetic field was used for the hf-AIR to reset the magnetic moment of high-coercivity hematite so that demagnetization between AIR orientations was not necessary. The ability of a 5-T field to reset the magnetization was tested by generating an isothermal remanent magnetization acquisition curve for hematite by using impulse DC magnetic fields up to 5 T in one orientation and followed by applying a field in the opposite direction at each step. Each field application was treated by 120°C heating and 100 mT af demagnetization before measurement. At 5 T, the difference between the magnetizations applied in opposite directions disappeared indicating that no magnetic memory persisted at this field strength. We performed a validity and reproducibility test of our hf-AIR measurement technique by measuring three specimens multiple times along two orthogonal coordinate systems. The method yielded highly reproducible results and, on rotating the specimen's coordinates, the fabric rotated by 90° as expected, showing that it is not an artifact of the technique. We also measured hf-AIR on samples that had previously been chemically demagnetized in 3N HCl to remove the secondary, chemically grown pigmentary hematite. The hf-AIR fabric of leached samples is similar to that of untreated samples, but shows a better-defined magnetic lineation and imbrication. We interpret the fabric observed for the Shepody Formation to be a compactional fabric that has been reoriented by strain during folding following a flexural-slip model.

  20. Impact of ozonation pre-treatment of oil sands process-affected water on the operational performance of a GAC-fluidized bed biofilm reactor.

    PubMed

    Islam, Md Shahinoor; Dong, Tao; McPhedran, Kerry N; Sheng, Zhiya; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2014-11-01

    Treatment of oil sands process-affected water (OSPW) using biodegradation has the potential to be an environmentally sound approach for tailings water reclamation. This process is both economical and efficient, however, the recalcitrance of some OSPW constituents, such as naphthenic acids (NAs), require the pre-treatment of raw OSPW to improve its biodegradability. This study evaluated the treatment of OSPW using ozonation followed by fluidized bed biofilm reactor (FBBR) using granular activated carbon (GAC). Different organic and hydraulic loading rates were applied to investigate the performance of the bioreactor over 120 days. It was shown that ozonation improved the adsorption capacity of GAC for OSPW and improved biodegradation by reducing NAs cyclicity. Bioreactor treatment efficiencies were dependent on the organic loading rate (OLR), and to a lesser degree, the hydraulic loading rate (HLR). The combined ozonation, GAC adsorption, and biodegradation process removed 62 % of chemical oxygen demand (COD), 88 % of acid-extractable fraction (AEF) and 99.9 % of NAs under optimized operational conditions. Compared with a planktonic bacterial community in raw and ozonated OSPW, more diverse microbial communities were found in biofilms colonized on the surface of GAC after 120 days, with various carbon degraders found in the bioreactor including Burkholderia multivorans, Polaromonas jejuensis and Roseomonas sp. PMID:25104220

  1. A Devonian paleomagnetic pole from red beds of the Tarim Block, China

    SciTech Connect

    Li, Yianping; McWilliams, M.; Sharps, R.; Cox, A. ); Li, Yongan; Li, Qiang; Gao, Zhengjia ); Zhang, Zhengkun ); Zhai, Yongjian )

    1990-11-10

    The authors present new Devonian paleomagnetic results from 59 sites in three stratigraphic sections exposed on the northwestern margin of the Tarim Block. At one section, 1,998 m of red sandstone is continuously exposed; the other two sections can be correlated with the first on both magnetostratigraphic and lithologic grounds. Progressive thermal demagnetization reveals three characteristic magnetizations. One is a Late Permian overprint which is isolated below 578C at sites near contacts with Late Permian dikes. The other two components are approximately antipodal, have a much higher unblocking temperature than the overprint, and are directionally distinct from the Late Permian overprint. They believe that these are characteristic Devonian magnetizations. Within the continuous 1,998 m section, results denote a 395 m reversed polarity zone overlying a 1,603 m normal polarity zone. One reversed event is recorded at the base of the section. A paleomagnetic pole calculated by averaging results from 47 normal and reversed sites lies at {lambda}{sub p}=16.5{degree}N, {phi}{sub p}=165.0{degree}E, K=25, and A{sub 95}=4.3{degree}. This pole is statistically distinct from a previously reported Late Devonian pole for Tarim. On the basis of field geologic and rock magnetic studies, they believe that the previously reported pole, in addition to results from one of their three sections, reflects at least partial contamination in the form of a thermal overprint caused by Late Permian igneous activity. An analysis of Devonian to Late Carboniferous polar wander suggests that the Tarim Block was attached to a subducting plate, and moved northward and rotated clockwise during the late Paleozoic. Comparison of the Devonian paleolatitudes of Siberian, Kazakhstan, Tarim and South China Blocks indicates that both the Tarim and South China Blocks were located in equatorial regions and were far south of the northern Angaran plate (Siberia and Kazakhstan).

  2. An Experimental Study of Sand Transport over an Immobile Gravel Substrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of a stepwise addition of sand to an immobile gravel bed on the sand transport rate and configuration of the sand bed was investigated in a laboratory flume channel. Detailed measurements of sand transport rate, bed texture, and bed topography were collected for four different discharge...

  3. Palaeomagnetism and magnetic anisotropy of Carboniferous red beds from the Maritime Provinces of Canada: evidence for shallow palaeomagnetic inclinations and implications for North American apparent polar wander

    NASA Astrophysics Data System (ADS)

    Bilardello, Dario; Kodama, Kenneth P.

    2010-03-01

    A palaeomagnetic and magnetic anisotropy study was conducted on the lower-middle Carboniferous Maringouin and Shepody red bed formations of the Maritime Provinces of Canada to detect and correct inclination shallowing. Because of the shallow inclinations commonly observed in red beds and the strong dependence of North America's Palaeo-Mesozoic apparent polar wander (APW) on red beds, inclination shallowing may substantially affect large portions of North America's APW path. Hematite is the primary magnetic mineral carrier in these red beds, accompanied by secondary magnetite, maghemite, goethite and pigmentary hematite. Thermal and chemical demagnetization of the Shepody Fm. successfully isolated characteristic remanence directions of D = 177°, I = 20.4°, α95 = 6.5°, N = 19 and D = 177.8° I = 17.7°, α95 = 6.9°, N = 16, respectively. Thermal demagnetization of the Maringouin Fm. isolated a characteristic remanence direction of D = 178.7°, I = 24.9°, α95 = 14.5°, N = 9. High field anisotropy of isothermal remanence followed by alternating field and thermal cleaning on leached samples was used to isolate the fabric of hematite. Individual particle anisotropy was measured directly from magnetic separates using a new technique. Hematite's magnetic fabric and particle anisotropy were used to apply an inclination correction. Our inclination corrections indicate up to 10° of inclination shallowing, corresponding to corrected palaeopole positions of 27.2°N, 118.3°E, A95 = 6.2° and 27.4°N, 117.2°E, A95 = 13.1° for the Shepody and Maringouin formations, respectively. This correction corresponds to a ~ 6° increase in colatitude for Carboniferous North America, which translates into approximately a 650 km change in North America's palaeogeographic position. The proposed position of North America supports a Pangea B-type reconstruction.

  4. Tar sand

    SciTech Connect

    McLendon, T.R.; Bartke, T.C.

    1990-01-01

    Research on tar sand is briefly discussed. The research program supported by the US Department of Energy (DOE) includes a variety of surface extraction schemes. The University of Utah has process development units (PDU) employing fluidized bed, hot, water-assisted, and fluidized-bed/heat-pipe, coupled combustor technology. Considerable process variable test data have been gathered on these systems: (1) a rotary kiln unit has been built recently; (2) solvent extraction processing is being examined; and (3) an advanced hydrogenation upgrading scheme (hydropyrolysis) has been developed. The University of Arkansas, in collaboration with Diversified Petroleum, Inc., has been working on a fatty acid, solvent extraction process. Oleic acid is the solvent/surfactant. Solvent is recovered by adjusting processing fluid concentrations to separate without expensive operations. Western Research Institute has a PDU-scale scheme called the Recycle Oil Pyrolysis and Extraction (ROPE) process, which combines solvent (hot recycle bitumen) and pyrolytic extraction. 14 refs., 19 figs.

  5. Suspended sediment transport response to upstream wash-load supply in the sand-bed reach of the Upper Yellow River, China

    NASA Astrophysics Data System (ADS)

    Ta, Wanquan; Wang, Haibin; Jia, Xiaopeng

    2015-09-01

    Wash load is a major component of suspended sediment transport in the sand-bed reach of the Upper Yellow River, China. This wash load sediment originates from the Loess region, with the high runoff mainly originating from the rock mountains of its upstream basin. These characteristics result in a mismatch between water and sediment sources and a low probability of high runoffs meeting high suspended sediment concentration (SSC) flows. As a result, higher runoff with lower SSC levels (HR-LS) and lower runoff with higher SSC values (HS) occur, whose SSCs do not follow the typical power form for flow discharges, Ci = αQβ, where Ci and Q are SSC and flow discharge, respectively. Here, we modify the traditional power form with an upstream wash-load supply function C1-β to satisfy the relation between the water and wash load sediment concentrations in water-sediment mismatched cases, Ci = αQβC1-β, where C is an input flow's SSC. Using the daily flow discharges and SSCs of nine typical HR-LS flows and 18 HS flows in our study reach from 1960 to 2012, we find that β changes in response to input flow conditions and downstream transport distances. When the downstream transport distance is between 360 and 663.5 km, β varies between 0.3 and 0.6 in a HS input flow condition, while in the HR-LS input flow case, β tends to be greater than 0.6 (between 0.74 and 0.65). The entrainment rate of an HR-LS flow and the deposition rate of an HS flow appear to be asymmetrically balanced, establishing a primary mechanism for channel aggradation and upward fining of floodplains in our study reach.

  6. Paleomagnetism and Its Tectonic Implication of the Red Beds of Oligocene Kangtuo Formation in the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ding, J.; Zhang, S.; Chen, W.; Li, H.; Wu, H.; Yang, T.; Zhang, K.

    2014-12-01

    Available paleomagnetic data show that after the collision, additional convergence of ~3000 km took place between the Indian Craton and Eurasian plate, of which ~1800 km was between the Indian Craton and the Lhasa terrane. According to the "fill-the-gap" solution, this shortening is interpreted as the evidence for the existence of the "Greater India". Intraplate shortening takes place often in the forms of folding and thrusting, and the major thrusts in the Himalayan orogen remained active after the Oligocene. Estimating the amount of the shortening quantitatively is of great importance for understanding the tectonic modeling for the evolution of this magnificent collision zone. To better understand the continental shortening after the India-Eurasia collision, a paleomagnetic study on the red beds of the Oligocene Kangtuo Formation (Fm) was carried out in the Gerze Basin of the Lhasa terrane. A total of 700 samples were collected from 37 sites. Stepwise thermal demagnetization revealed that the main magnetic carrier is hematite. The natural remnant magnetization (NRM) consists of two components. A low-temperature component (LTC) is identified below 300°C, whereas a high temperature component (HTC) unblocks at ~665-690°C. The HTC distributions show a clear east-west elongated distribution, which is considered as reflecting inclination flattening. After inclination calibration using the E/I method, the HTC could pass both a reversal test and a fold test at 95% confidentce level, showing the mean direction at Ds=340.3°, Is=44.2°, with k=54.9, and α95=3.3°, corresponding to a paleopole at 71.7°N, 340.7°E (A95=3.3°), and the paleolatitude of the sampling site at 25.9±3.3°N. Comparing our new data with the apparent polar wander paths of East Asian blocks, Europe, and India, we have reached the following conclusions. (1) There is no significant paleolatitudinal difference between the Lhasa terrane and other central and northern Asian terranes at ~30 Ma. (2) The observed paleolatitude of the Kangtuo Fm is 8.0±5.0° lower than the expected paleolatitude deduced from the data of stable Europe, but is 4.6±5.2° higher than that deduced from the data of the India Plate, likely presenting a ~506±572 km shortening between the India and Lhasa terrane since the Oligocene.

  7. Anisotropy of thermoremanent magnetisation of Cryogenian glaciogenic and Ediacaran red beds, South Australia: Neoproterozoic apparent or true polar wander?

    NASA Astrophysics Data System (ADS)

    Schmidt, Phillip W.; Williams, George E.

    2013-11-01

    Determining the effects of compaction-related inclination shallowing of remanence directions is crucial for ascertaining the validity of low palaeolatitudes for Neoproterozoic red beds in South Australia that are central to the debate concerning low-latitude Proterozoic glaciation. The inclination correction (or flattening) factor, f, is defined as tan(ID)/tan(IF), where ID and IF are the inclinations of the measured detrital remanence and the ancient inducing field, respectively. The anisotropy can be estimated using anisotropy of magnetic susceptibility and the anisotropy of high-field isothermal remanence (hf-AIR). The elongation-inclination (E-I) method has also been used to infer inclination shallowing. We add the anisotropy of thermoremanent magnetisation (ATR) to these methods. For the late Cryogenian Elatina Formation arenites, which constitute the bulk of the Elatina data set, the inclination correction using f = 0.738 derived from ATR increases the palaeolatitude of the Elatina Formation from 6.5 ± 2.2° to 8.8 ± 3.2°, which confirms that the Elatina glaciation occurred near the palaeoequator. Inclination corrections for the Ediacaran argillaceous Brachina and Wonoka formations, using f = 0.35-0.38 derived from ATR, are significantly greater than for the more arenaceous Elatina Formation, which increases their palaeolatitudes from ~ 12° to ~ 30°. Carbonates from the basal Ediacaran Nuccaleena Formation yielded f = 0.8 from ATR, which represents only a small palaeolatitude correction from 19° to 23°. The anisotropy results imply that the characteristic remanent magnetisations carried by all these units were acquired early as depositional remanent magnetisations, essentially at the time of deposition. The shift of the palaeopoles from argillaceous units indicating significantly higher palaeolatitudes introduces a distinctive loop into the late Cryogenian-Ediacaran-Cambrian pole path for Australia. This loop shows similarities with the North American pole path for this period, for which true polar wander (TPW) has been inferred. However, until ages of Neoproterozoic strata in South Australia are better constrained uncertainty persists on whether the similarities of the Australian and North American pole paths reflect TPW.

  8. Acquisition of chemical remanent magnetization during experimental ferrihydrite-hematite conversion in Earth-like magnetic field-implications for paleomagnetic studies of red beds

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J.; Tauxe, Lisa; Qin, Huafeng; Barrón, Vidal; Torrent, José

    2015-10-01

    Hematite-bearing red beds are renowned for their chemical remanent magnetization (CRM). If the CRM was acquired substantially later than the sediment was formed, this severely compromises paleomagnetic records. To improve our interpretation of the natural remanent magnetization, the intricacies of the CRM acquisition process must be understood. Here, we contribute to this issue by synthesizing hematite under controlled 'Earth-like' field conditions (≲ 100 μ T). CRM was imparted in 90 oriented samples with varying inclinations. The final synthesis product appeared to be dominated by hematite with traces of ferrimagnetic iron oxides. When the magnetic field intensity is ≳ 40 μ T, the CRM records the field direction faithfully. However, for field intensities ≲ 40 μ T, the CRM direction may deviate considerably from that of the applied field during synthesis. The CRM intensity normalized by the isothermal remanent magnetization (CRM/IRM@2.5 T) increases linearly with the intensity of growth field, implying that CRM could potentially be useful for relative paleointensity studies if hematite particles of chemical origins have consistent properties. CRM in hematite has a distributed unblocking temperature spectrum from ˜200 to ˜650 °C, while hematite with a depositional remanent magnetization (DRM) has a more confined spectrum from ˜ 600to 680 °C because it is usually coarser-grained and more stoichiometric. Therefore, the thermal decay curves of CRM with their concave shape are notably different from their DRM counterparts which are convex. These differences together are suggested to be a potential discriminator of CRM from DRM carried by hematite in natural red beds, and of significance for the interpretation of paleomagnetic studies on red beds.

  9. The paleoclimatic and geochronologic utility of coring red beds and evaporites: a case study from the RKB core (Permian, Kansas, USA)

    NASA Astrophysics Data System (ADS)

    Soreghan, Gerilyn S.; Benison, Kathleen C.; Foster, Tyler M.; Zambito, Jay; Soreghan, Michael J.

    2015-09-01

    Drill core is critical for robust and high-resolution reconstructions of Earth's climate record, as well demonstrated from both marine successions and modern long-lived lake systems. Deep-time climate reconstructions increasingly require core-based data, but some facies, notably red beds and evaporites, have garnered less attention for both paleoclimatic and geochronologic analyses. Here, we highlight studies from the Rebecca K. Bounds (RKB) core, a nearly continuous, >1.6 km drill core extending from the Cretaceous to the Mississippian, recovered from the US Midcontinent by Amoco Production Company in 1988, and serendipitously made available for academic research. Recent research conducted on this core illustrates the potential to recover high-resolution data for geochronologic and climatic reconstructions from both the fine-grained red bed strata, which largely represent paleo-loess deposits, and associated evaporite strata. In this case, availability of core was instrumental for (1) accessing a continuous vertical section that establishes unambiguous superposition key to both magnetostratigraphic and paleoclimatic analyses, and (2) providing pristine sample material from friable, soluble, and/or lithofacies and mineralogical species otherwise poorly preserved in surface exposures. The potential for high-resolution paleoclimatic reconstruction from coring of deep-time loess strata in particular remains severely underutilized.

  10. Sidewinding snakes on sand

    NASA Astrophysics Data System (ADS)

    Marvi, Hamidreza; Dimenichi, Dante; Chrystal, Robert; Mendelson, Joseph; Goldman, Daniel; Hu, David; Georgia Tech and Zoo Atlanta Collaboration

    2012-11-01

    Desert snakes such as the rattlesnake Crotalus cerastes propel themselves over sand using sidewinding, a mode of locomotion relying upon helical traveling waves. While sidewinding on hard ground has been described, the mechanics of movement on more natural substrates such as granular media remain poorly understood. In this experimental study, we use 3-D high speed video to characterize the motion of a sidewinder rattlesnake as it moves on a granular bed. We study the movement both on natural desert sand and in an air-fluidized bed trackway which we use to challenge the animal on different compactions of granular media. Particular attention is paid to rationalizing the snake's thrust on this media using friction and normal forces on the piles of sand created by the snake's body. The authors thank the NSF (PHY-0848894), Georgia Tech, and the Elizabeth Smithgall Watts endowment for support. We would also like to thank Zoo Atlanta staff for their generous help with this project.

  11. Paleomagnetism of Upper Cretaceous red-beds from the eastern Qiangtang Block: Clockwise rotations and latitudinal translation during the India-Asia collision

    NASA Astrophysics Data System (ADS)

    Tong, Ya-Bo; Yang, Zhenyu; Gao, Liang; Wang, Heng; Zhang, Xu-Dong; An, Chun-Zhi; Xu, Yin-Chao; Han, Zhi-Rui

    2015-12-01

    High-temperature magnetization component was isolated between 600 °C and 680 °C from Upper Cretaceous red-beds in the Mangkang area, in the eastern end of the Qiangtang Block, Tibetan Plateau. The tilt-corrected site-mean direction is Ds/Is = 51.3°/56.1°, with k = 31.0 and α95 = 6.5°, corresponding to a paleolatitude of 36.7 ± 6.7°N. Positive fold and reversal tests indicate a primary magnetization. Inclination shallowing tests show that inclination bias is not present in the Upper Cretaceous red-beds of the Qiangtang Block that might induce through depositional and/or compaction process. However, previous paleomagnetic data obtained from Cretaceous and Paleocene-Eocene volcanic rocks show that the paleolatitudes of the Lhasa Block were 17.1 ± 3.3°N and 22.3 ± 4.4°N, respectively, and 28.7 ± 3.7°N for the central Qiangtang Block yielded from Eocene volcanic rocks. These results show that there was a ∼10° latitudinal discrepancy between the Lhasa Block and Qiangtang relative to Eurasia. However, the Mangkang area of the southeastern Qiangtang Block experienced ∼3.2 ± 7.8° to 7.3 ± 5.2° southward extrusion and ∼40° clockwise rotational movement relative to Eurasia since the Cretaceous, which coincided with the Early Cenozoic rotational extrusion of the Indochina and Shan-Thai Blocks. The crustal deformation in the eastern Qiangtang Block should have been caused by the Indian Plate penetrating into Eurasia in the eastern end of Tibetan Plateau and the formation of the Eastern Himalaya Syntaxis since the Oligocene/Miocene.

  12. Technical note: Whole-pen assessments of nutrient excretion and digestibility from dairy replacement heifers housed in sand-bedded freestalls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objectives were to describe and test refined procedures for quantifying excreta produced from whole pens of dairy heifers. Previous research efforts attempting to make whole-pen measurements of excreta output have been complicated by the use of organic bedding, which requires cumbersome analytic...

  13. Identifying beach sand sources and pathways in the San Francisco Bay Coastal System through the integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling

    NASA Astrophysics Data System (ADS)

    Barnard, P.; Foxgrover, A. C.; Elias, E.; Erikson, L. H.; Hein, J. R.; McGann, M. L.; Mizell, K.; Rosenbauer, R. J.; Swarzenski, P. W.; Takesue, R. K.; Wong, F. L.; Woodrow, D. L.

    2012-12-01

    A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach sized-sand in the San Francisco Bay Coastal System. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry, to robustly determine the provenance of beach-sized sand in the region. Cross-validating geochemical analyses, numerical modeling, physical process measurements, and proxy-based techniques (e.g., bedform asymmetry, grain size morphometrics) is proved an effective technique for confidently defining sources, pathways, and sinks of sand in complex coastal-estuarine systems. The consensus results highlight the regional impact of a sharp reduction in the primary sediment source, the Sierras, to the San Francisco Bay Coastal System over the last century in driving erosion of the bay floor, ebb-tidal delta, and the outer coast south of the Golden Gate.A) Calculated transport directions based on the integration of the provenance techniques. B) Number of techniques applied for each grid cell to determine the final transport directions.

  14. Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay Coastal System

    USGS Publications Warehouse

    Barnard, Patrick L.; Foxgrover, Amy; Elias, Edwin P.L.; Erikson, Li H.; Hein, James; McGann, Mary; Mizell, Kira; Rosenbauer, Robert J.; Swarzenski, Peter W.; Takesue, Renee K.; Wong, Florence L.; Woodrow, Don

    2013-01-01

    Over 150 million m3 of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach-sized sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.

  15. Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay coastal system

    USGS Publications Warehouse

    Barnard, Patrick L.; Foxgrover, Amy C.; Elias, Edwin P.L.; Erikson, Li H.; Hein, James R.; McGann, Mary; Mizell, Kira; Rosenbauer, Robert J.; Swarzenski, Peter W.; Takesue, Renee K.; Wong, Florence L.; Woodrow, Donald L.

    2013-01-01

    Over 150 million m3 of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach-sized sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.

  16. Paleomagnetic data from Upper Cretaceous Red Beds, Northwest Vietnam (Song Da Terrane), and Their Bearing on the Extrusion History of Indochina and Deformation Along its Margins

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Pho, N.; Burchfiel, B.; Muggleton, S. R.

    2008-12-01

    Northwest Vietnam mainly consists of the Song Da terrane, which is bounded to the east by the NW-oriented Ailao Shan/Red River (ASRR) fault system, interpreted to be the southwest margin of the South China Block, and the NW-oriented Song Ma fault. The northern termination of the Song Da terrane is considered to be where the NE-oriented, right lateral Dien Bien Phu fault intersects the ASRR. Whether the Song Da terrane is part of the extruded Indochina Block, paleomagnetic data from which suggest some 10°+ southward latitudinal displacement, can be evaluated with paleomagnetic data from rocks of the appropriate age. Our paleomagnetic sampling concentrated on the Upper Cretaceous Yen Chau Formation, which unconformably overlies Paleozoic and Triassic sedimentary rocks. The Yen Chau Formation is locally up to about 1300 m thick, and is characterized by medium to thick bedded, coarse to fine-grained sandstones and siltstones, all of which are partially cemented by hematite. Samples were collected from 10 localities using a portable drill, with 6 to 19 sites collected per locality, and 7 to 15 samples collected from each site. This approach allows evaluation of the integrity of the remanence at the locality level, where, presumably, considerable time is recorded in each section. Each locality is a homoclinal road cut exposure, with bedding dips varying from sub-horizontal to moderately overturned. NRM intensities range from about 0.7 mA/m to about 25 mA/m; values which are relatively low in comparison to many red beds. A varied response to alternating field (AF) demagnetization indicates that magnetite carries a considerable (over 50 percent) of the remanence; the finest grained samples of relatively high NRM intensity reveal little response to AF treatment, indicating a dominance by hematite, as also supported by three-component IRM thermal demagnetization. Samples with the highest NRM intensities and the least contribution by magnetite respond favorably to thermal demagnetization, with full remanence unblocking by about 685°C, and yield characteristic magnetization directions of north-northeast to northeast declination and moderate positive inclination (about 30 to 35°). Our preliminary results are comparable to those of Takemoto et al. (2005, EPSL, 229, 273- 285) and we tentatively conclude that there has been no significant latitudinal translation of the Song Da terrane, since the Early Cretaceous, with respect to the South China Block. We continue to explore the possibility of local scale, vertical axis rotation of parts of the Song Da terrane. Extrusion of the Indochina Block, in association with its own style of internal deformation, appears to have been facilitated by displacement along structures west of the Song Ma fault.

  17. Influence of riparian vegetation on channel widening and subsequent contraction on a sand-bed stream since European settlement: Widden Brook, Australia

    NASA Astrophysics Data System (ADS)

    Erskine, Wayne; Keene, Annabelle; Bush, Richard; Cheetham, Michael; Chalmers, Anita

    2012-04-01

    Widden Brook in the Hunter Valley, Australia, was first settled by Europeans in 1831 and had widened substantially by the 1870s due to frequent floods during a flood-dominated regime impacting on highly disturbed banks whose riparian trees had been either ringbarked or cleared, and whose understorey had been grazed. Catastrophic floods in 1950 (many), two in August 1952 and one in February 1955 effected the final phase of channel widening at the onset of a second flood-dominated regime more than half a century after the initial widening. Contraction has been active since 1963 by a combination of five biogeomorphic processes. Firstly, rapid channel widening, migration and cutoffs totally reworked the pre-European floodplain and were followed by active floodplain formation. Initial bar formation was replaced by sand splay and overbank deposition which constructed a new floodplain and narrower channel. Secondly, overwidened channel segments that were produced by the catastrophic 1955 flood have contracted since 1963 by the formation of up to four bank-attached, discontinuous benches below the floodplain. Each bench has a bar nucleus of pebbly coarse sand overlain by stratified fine-medium sand and mud. Colonisation by River Sheoaks (Casuarina cunninghamiana subsp. cunninghamiana) or grasses (Cynodon dactylon, Paspalum distichum, Pennisetum clandestinum) is important in converting bars to benches. Thirdly, narrower segments which developed since 1963 have contracted by small-scale accretion on both banks. These deposits are steeply dipping, interbedded sand and mud trapped by stoloniferous and rhizomatous grasses (C. dactylon, P. distichum, P. clandestinum) which also rapidly stabilise the deposits. Fourthly, rare laterally migrating, small radius bends have contracted by recent point bar formation greatly exceeding cutbank recession rates. Point bar formation is controlled by secondary currents producing inclined stratified coarse sands without the influence of vegetation. Lastly, rare, overwidened, non-migrating, large radius bends have greatly contracted by the infilling of dissecting chutes across the convex bank. Establishment of stoloniferous and rhizomatous clonal grasses (Phragmites australis, C. dactylon, P. distichum, P. clandestinum) is important in inducing sedimentation of the chutes. Contraction has produced a much narrower channel than the design width between river training fences which were installed progressively between the 1960s and 1990s. The recent flood history of Widden Brook has not included any catastrophic floods of a size similar to February 1955. Our work demonstrates that both trees and grasses can be associated with narrower channel widths and that the causal link between width and vegetation type is more complex than usually acknowledged.

  18. Sand Storage

    A sand storage silo at Steamtown National Historic Site. Sand was stored in a dome on top of the engine and, as the train traveled the tracks, the sand would be sprinkled down pipes to land on the tracks in front of the wheels. This would aid the wheels in gripping the tracks, especially when the ra...

  19. Diagenetic evolution of opaque and transparent heavy minerals reflecting colour genesis in continental fluvial buntsandstein red beds of the eifel (F.R. Germany)

    NASA Astrophysics Data System (ADS)

    Mader, Detlef

    The postsedimentary evolution of the mainly fluvial Eifel Buntsandstein is characterized by an isochemical diagenesis in entirely fresh-water environment under conditions of slow pore water flow. The closed system favoured the internal coexistence of corrosion and authigenesis of various minerals and results in almost absence of net dissolution and rarity of net cementation in the sequence. The succession of events in time and space requires a mainly acidic initial composition of the pore solutions to enable leaching of detrital minerals, and a subsequent change to basic conditions allowing reprecipitation. Apart from light minerals, the occurrence of both dissolution and neoformation of various transparent and opaque accessories has been observed in both thin and polished sections. The authigenic appearance of stable heavy minerals underlines the compositional range of the postsedimentary processes, whereas the diagenetic evolution of the opaque accessories reflects the temporal range of the diagenetic alterations and especially provides important information on the origin of the red colour of the clastic sequence. The features of corrosion and authigenesis are documented for tourmaline, zircon, apatite and garnet from the transparent assemblage and for rutile, anatase, ilmeno-hematite, titaniferous magnetite, hematite pseudomorph after framboidal pyrite and rutilo-ilmenite from the opaque community. The authigenic neoformation of several transparent accessories and the diagenetic evolution of the opaque heavy minerals provide the most decisive contributions to the origin of the red colour which is enhanced by further sedimentological and petrographical criteria. The hematite pellicles surrounding sedimentary grains are predominantly of detrital provenance. After deposition, the primary grain envelopes as well as the heavy minerals are subjected to diagnetic alterations, beginning already syngenetically-eodiagenetically and persisting via phases of syndiagenesis, anadiagenesis and epidiagenesis (sensu Fairbridge 1967) up to recent time. Neoformed fine-dispersed iron oxides only subordinately originate by mobilization of iron oxides from micas and opaque heavy minerals. In micas, liberated iron oxides are predominantly reprecipitated between cleavage cracks forming pseudomorphs of hematite after biotite. Opaque heavy minerals are mainly transformed in situ into other iron and titanium oxides. Authigenic origin of fine-crystalline pigment in the pore space during course of the diagenetic evolution is only possible from iron oxides having been mobilized by skeletization of intergrowth and exsclution fabrics and by complete replacement of ilmeno-hematite and titaniferous magnetite by titanium oxides. The most important sedimentological criteria for the provenance of the red colour are the consistent differences in chroma hue and saturation between aeolian and fluvial deposits, the red colour of both channel and floodplain sediments, the absence of diachronous colour boundaries and the preservation of coexistent bleaching schlieren and patches of intensified chroma hue as well as the colour zonation within the Violette Horizonte calcrete palaeosols. The diagenetic evolution of opaque and transparent heavy minerals and the sedimentological relationships result in conclusion that the predominant amount of diagenetic iron oxides has been mobilized from primery grain pellicles. Dispersed or concentrated reprecipitation of liberated iron oxides takes place throughout all stages of diagenesis. The terrestrial deposits are mainly primary red beds, and the pigment distribution has been secondarily overprinted during diagenesis.

  20. An optical method of measuring the temperature in a fluidised bed combustor

    SciTech Connect

    Zukowski, Witold; Baron, Jerzy; Bulewicz, Elzbieta M.; Kowarska, Beata

    2009-07-15

    The paper analyses the dynamic aspects of the temperature field in a fluidised bed of solids particles (e.g., sand) in which a gaseous fuel is being burned. Such a hot bed emits electromagnetic radiation within the visible range and this can be recorded using a digital video camera. This fact has been used to develop a method for measuring the bed's temperature in the line of sight, through the quartz sides of the reactor. A solid probe is only used for calibration. Video recordings were obtained covering different regions of the bed over three wavelength bands, red, green and blue. In the course of an experiment, the mean temperature of the bed, measured with thermocouples, was raised from ambient to 1300 K, at a rate of {proportional_to} 1 K/s. The data collected were used for calibration, with the brightness of individual pixels converted to a temperature scale. The calibration can then be used to investigate the dynamic temperature distribution within the field of view, in individual elements of the bed. This can also help the study of heat transfer in the bed, its distribution and dissipation. Using this method, it is possible to make direct observations of the intermittent combustion of gaseous fuels in a bubbling fluidised bed. The results provide direct proof that the temperature gradients observed within such beds are associated with exothermic processes within fast moving bubbles. The method could be adapted to studying, e.g., the combustion of solid fuels. (author)

  1. Dual Fluidized Bed Biomass Gasification

    SciTech Connect

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  2. SHRIMP U-Pb ages of xenotime and monazite from the Spar Lake red bed-associated Cu-Ag deposit, western Montana: Implications for ore genesis

    USGS Publications Warehouse

    Aleinikoff, John N.; Hayes, Timothy S.; Evans, Karl V.; Mazdab, Frank K.; Pillers, Renee M.; Fanning, C. Mark

    2012-01-01

    Xenotime occurs as epitaxial overgrowths on detrital zircons in the Mesoproterozoic Revett Formation (Belt Supergroup) at the Spar Lake red bed-associated Cu-Ag deposit, western Montana. The deposit formed during diagenesis of Revett strata, where oxidizing metal-bearing hydrothermal fluids encountered a reducing zone. Samples for geochronology were collected from several mineral zones. Xenotime overgrowths (1–30 μm wide) were found in polished thin sections from five ore and near-ore zones (chalcocite-chlorite, bornite-calcite, galena-calcite, chalcopyrite-ankerite, and pyrite-calcite), but not in more distant zones across the region. Thirty-two in situ SHRIMP U-Pb analyses on xenotime overgrowths yield a weighted average of 207Pb/206Pb ages of 1409 ± 8 Ma, interpreted as the time of mineralization. This age is about 40 to 60 m.y. after deposition of the Revett Formation. Six other xenotime overgrowths formed during a younger event at 1304 ± 19 Ma. Several isolated grains of xenotime have 207Pb/206Pb ages in the range of 1.67 to 1.51 Ga, and thus are considered detrital in origin. Trace element data can distinguish Spar Lake xenotimes of different origins. Based on in situ SHRIMP analysis, detrital xenotime has heavy rare earth elements-enriched patterns similar to those of igneous xenotime, whereas xenotime overgrowths of inferred hydrothermal origin have hump-shaped (i.e., middle rare earth elements-enriched) patterns. The two ages of hydrothermal xenotime can be distinguished by slightly different rare earth elements patterns. In addition, 1409 Ma xenotime overgrowths have higher Eu and Gd contents than the 1304 Ma overgrowths. Most xenotime overgrowths from the Spar Lake deposit have elevated As concentrations, further suggesting a genetic relationship between the xenotime formation and Cu-Ag mineralization.

  3. Paleomagnetism of Late Jurassic to Early Cretaceous red beds from the Cardamom Mountains, southwestern Cambodia: Tectonic deformation of the Indochina Peninsula

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, Yukiho; Zaman, Haider; Sotham, Sieng; Samuth, Yos; Sato, Eiichi; Ahn, Hyeon-Seon; Uno, Koji; Tsumura, Kosuke; Miki, Masako; Otofuji, Yo-ichiro

    2016-01-01

    Late Jurassic to Early Cretaceous red beds of the Phuquoc Formation were sampled at 33 sites from the Sihanoukville and Koah Kong areas of the Phuquoc-Kampot Som Basin, southwestern Cambodia. Two high-temperature remanent components with unblocking temperature ranging 650°-670 °C and 670-690 °C were identified. The magnetization direction for the former component (D = 5.2 °, I = 18.5 ° with α95 = 3.1 ° in situ) reveals a negative fold test that indicates a post-folding secondary nature. However, the latter component, carried by specular hematite, is recognized as a primary remanent magnetization. A tilt-corrected mean direction of D = 43.4 °, I = 31.9 ° (α95 = 3.6 °) was calculated for the primary component at 11 sites, corresponding to a paleopole of 47.7°N, 178.9°E (A95 = 3.6 °). When compared with the 130 Ma East Asian pole, a southward displacement of 6.0 ° ± 3.5 ° and a clockwise rotation of 33.1 ° ± 4.0 ° of the Phuquoc-Kampot Som Basin (as a part of the Indochina Block) with respect to East Asia were estimated. This estimate of the clockwise rotation is ∼15° larger than that of the Khorat Basin, which we attribute to dextral motion along the Wang Chao Fault since the mid-Oligocene. The comparison of the herein estimated clockwise rotation with the counter-clockwise rotation reported from the Da Lat area in Vietnam suggests the occurrence of a differential tectonic rotation in the southern tip of the Indochina Block. During the southward displacement of the Indochina Block, the non-rigid lithosphere under its southern tip moved heterogeneously, while the rigid lithosphere under the Khorat Basin moved homogeneously.

  4. Effects of silt loading on turbulence and sand transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport of bed material and fluid turbulence are affected by many factors, including the fine sediment load being carried in a channel. Current research has focused on sand-sized particles introduced to gravel beds, while the effect of silt load on sand transport has received less attention. ...

  5. Influence of sand grain diameter and wind velocity on lift-off velocities of sand particles.

    PubMed

    Bo, Tian-Li; Zheng, Xiao-Jing; Duan, Shao-Zhen; Liang, Yi-Rui

    2013-05-01

    In this paper, the velocities of sand particles near the sand bed in the saltation cloud were measured in a wind tunnel through an improved experimental scheme of the Particle Image Velocimetry (PIV) system. The influences of the diameter of sand particles in the saltation cloud and wind velocity on the probability distribution function (PDF) of lift-off velocities of sand particles were investigated. Results demonstrate that for the sand particles saltating above the sand bed with the mean grain diameter (d m = 0.3 mm), smaller and larger ones have the same velocity distribution, and wind velocity has no obvious influence on the distribution shape of the lift-off velocities, i.e., the PDFs of the horizontal and vertical lift-off velocities both follow a lognormal distribution, but the diameter of sand particles in the saltation cloud and wind velocity have an influence on the parameters of the PDF of horizontal and vertical lift-off velocities. Eventually, we present formulas to describe the PDF of lift-off velocities of sand particles with regard to the influence of wind velocity and the diameter of sand particles in the saltation cloud above the sand bed with d m = 0.3 mm. PMID:23695368

  6. Sands-on Learning.

    ERIC Educational Resources Information Center

    Vandervoort, Frances S.

    1989-01-01

    Provides information for the development of a lesson which teaches students about sand, discusses facts about sands, sand studies, life in the sands, and sand activities. Includes diagrams showing the range in sand grain shape, formation of sand ripples, and sand samples from around the world. (RT)

  7. Deceleration of Projectiles in Sand

    NASA Astrophysics Data System (ADS)

    Bless, Stephan; Cooper, William; Stone, Zach; Watanabe, Keiko; Peden, Robert; Air Force Research Labratory, Eglin AFB Collaboration; InstituteAdvanced Technology-UT Austin Collaboration; Department of Physics-UT Austin Collaboration; Osaka University Collaboration

    2011-06-01

    Deceleration of projectiles has been measured for hemispherical and conical nose shapes penetrating granular media. Targets were beds of Ottawa sand and Eglin sand. The velocity range extended up to 600 m/s. Projectiles were rigid metals. Deceleration was measured by conventional time-of-arrival screens plus several innovative techniques: embedded EM coils, embedded optical fibers, and a photonic Doppler velocimeter (PDV), which observed the rear surface of the penetrator. Experimental parameters that were varied included velocity (from 300 to 600 m/s), sand density, and scale (from 5 mm to 25 mm). In this paper we will compare these various measurement techniques and we will show how the cavity geometry (cavitation and crushed veins of sand) and retarding stress (MdV / dt) / A vary with velocity, scale, and density.

  8. The gravel-sand transition: Sediment dynamics in a diffuse extension

    NASA Astrophysics Data System (ADS)

    Venditti, Jeremy G.; Domarad, Natalia; Church, Michael; Rennie, Colin D.

    2015-06-01

    As gravel-bedded rivers fine in the downstream direction, they characteristically exhibit an abrupt transition from gravel- to sand-bedded conditions. The prevailing theory for why abrupt gravel-sand transitions emerge is based on bed load sorting of a bimodal sediment. The abruptness is thought to be a consequence of sand overwhelming the gravel-sand mixture once it reaches a critical coverage on the bed. The role suspension plays in the development of gravel-sand transitions has not been fully appreciated. The Fraser River, British Columbia, is an archetypical abrupt gravel-sand transition with a "diffuse extension" composed of a sand bed with some patches of gravel. We examine flow, shear stress, and suspended sediment flux in the diffuse extension to better understand sediment dynamics where the sand bed emerges. Sand is carried in suspension upstream of the primary abrupt gravel-sand transition, but in the diffuse extension, sand is moved as both bed load and suspended load. We do not observe downstream gradients in shear stress or suspended sand flux through the diffuse extension that would suggest a gradual "rain out" of sand moving downstream, which raises the question, how is the sand bed formed? Sediment advection length scales indicate that with the exception of very fine sand that moves as wash load in the diffuse extension, fractions coarser than the median sand size cannot be carried in suspension for more than one channel width. This suggests that sand is deposited en masse at the beginning of the diffuse extension, forming a sediment slug at low flood flows that is smeared downstream at high flood flows to form the sand reach.

  9. High temperature thermal energy storage in moving sand

    NASA Technical Reports Server (NTRS)

    Turner, R. H.; Awaya, H. I.

    1978-01-01

    Several high-temperature (to 500 C) heat-storage systems using sand as the storage medium are described. The advantages of sand as a storage medium include low cost for sand, widespread availability, non-toxicity, non-degradation characteristics, easy containment, and safety. The systems considered include: stationary sand with closely spaced tubes throughout the volume, the use of a fluidized bed, use of conveyor belt transporter, and the use of a blower rapid transport system. For a stationary sand bed, very close spacing of heat transfer tubes throughout the volume is required, manifesting as high power related system cost. The suggestion of moving sand past or around pipes is intended to reduce the power related costs at the penalty of added system complexity. Preliminary system cost estimates are offered. These rough calculations indicate that mobile sand heat storage systems cost less than the stationary sand approach.

  10. Aeolian sand transport over gobi with different gravel coverages under limited sand supply: A mobile wind tunnel investigation

    NASA Astrophysics Data System (ADS)

    Tan, Lihai; Zhang, Weimin; Qu, Jianjun; Zhang, Kecun; An, Zhishan; Wang, Xiao

    2013-12-01

    Transport is one of the important aeolian processes on earth. Here we report results of systematic tests using a mobile wind tunnel to examine aeolian sand transport over different gravel beds and at different wind speeds. The gravel beds differ in terms of gravel size and spacing. The results reveal that the blown sand flux profile over gravel beds is non-monotonic such that sand transport increases with height above the surface for the first 5-8 cm before exponentially decreasing. The height at which the maximum sand transport rate occurs tends to increase with increasing both the experimental wind velocity and gravel coverage. Furthermore, the total sand transport rate in the upper exponentially decreasing zone of the sand flux profile scales as u∗2-u∗t2. However, sand transport over gravel beds with different coverages within the 0-20 cm layer can be well expressed by an Owen-type saltation equation: q=g(C)ρ/g u∗(u∗2-u∗t2) where q is the total sand transport rate, u∗ is the friction velocity, u∗t is the threshold friction velocity, g is the gravitational acceleration, ρ is the air density, g(C) is a cubic polynomial equation of gravel coverage C. In addition, gravel beds can obviously reduce sand transport compared with the same surface without the tested gravels, and the increase in gravel size benefits the reduction in sand transport.

  11. Prediction of Bed Load Transport on Small Gravel-Bed Streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rates and size distributions of bed load were calculated using 3 transport relations and compared to data collected on three streams with sand-gravel beds in the Goodwin Creek Experimental Watershed in north central Mississippi, USA. Bed load transport rates were greatly over predicted by two of th...

  12. The extraction of bitumen from western tar sands. Annual report, July 1990--July 1991

    SciTech Connect

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-04-01

    Contents of this report include the following: executive summary; characterization of the native bitumen from the Whiterocks oil sand deposit; influence of carboxylic acid content on bitumen viscosity; water based oil sand separation technology; extraction of bitumen from western oil sands by an energy-efficient thermal method; large- diameter fluidized bed reactor studies; rotary kiln pyrolysis of oil sand; catalytic upgrading of bitumen and bitumen derived liquids; ebullieted bed hydrotreating and hydrocracking; super critical fluid extraction; bitumen upgrading; 232 references; Appendix A--Whiterocks tar sand deposit bibliography; Appendix B--Asphalt Ridge tar sand deposit bibliography; and Appendix C--University of Utah tar sands bibliography.

  13. A sand wave simulation model

    NASA Astrophysics Data System (ADS)

    Németh, A.; Hulscher, S.; van Damme, R.

    2003-04-01

    Sand waves form a prominent regular pattern in the offshore seabeds of sandy shallow seas. A two dimensional vertical (2DV) flow and morphological numerical model describing the behaviour of these sand waves has been developed. The model contains the 2DV shallow water equations, with a free water surface and a general bed load formula. The water movement is coupled to the sediment transport equation with a seabed evolution equation. The domain is non-periodic in both directions. The spatial discretisation is performed by a spectral method based on Chebyshev polynomials. A fully implicit method is chosen for the discretisation in time. Firstly, we validate the model mathematically by reproducing the results obtained using a linear stability analysis for infinitely small sand waves. Hereby, we investigate a steady current situation induced by a wind stress applied at the sea surface. The bed forms we find have wavelengths in the order of hundreds of metres when the resistance at the seabed is relatively large. The results show that it is possible to model the initial evolution of sand waves with a numerical simulation model. Next, we investigate the influence of the chosen turbulent viscosity parameterisation by comparing the constant viscosity model with a depth dependent viscosity. This paper forms a part of a study to investigate the intermediate term behaviour of sand waves.

  14. Seismites in continental sand sea deposits of the Late Cretaceous Caiu Desert, Bauru Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Fernandes, Luiz Alberto; de Castro, Alice Bonatto; Basilici, Giorgio

    2007-07-01

    Two large-scale sediment deformation structures, minor fold occurrences in cross-bedded sand dune deposits and complex convolute folds, are observed in red sandstones, in a zone about 1.5 km long in floodway cuts at the Srgio Motta/Porto Primavera dam, So Paulo state, Brazil. The most important structures are confined to planar zones, up to 10 m thick, in undeformed dune foreset strata were they can be traced laterally for about 50-60 m. The sandstones are part of the Rio Paran Formation, Caiu Group, which accumulated in a great sand sea of about 100,000 km 2. The Caiu Desert developed during the Late Cretaceous in the southern part of the Bauru Basin, an intracontinental subsiding area in the central-southern part of the South-American Platform. The basin was filled by a sandy sequence about 300 m thick. The sand sea deposits correspond to the Caiu Group and comprise: a) deposits of dry sand sheets (Santo Anastcio Formation), b) deposits of medium-sized dunes and humid interdunes of the sand sea peripheral zones (Goio Er Formation), and c) deposits of large-sized complex aeolian dunes and draas, that correspond to the central part of the inland sand sea (Rio Paran Formation). The deformations in the sediments are attributed to the effects of fluidization, liquefaction and shear stress, which are interpreted as being earthquake-induced structures, mainly because: (1) the deformed horizons are confined between undeformed cross-bedded strata, (2) the complex convolute folds sometimes include nappe-like structures that overlie foreset facies, (3) during the Bauru Basin infilling there was tectonic activity associated with alkaline volcanism on the borders of the basin and related silicification in the central-southern part. The main silicification zones are aligned to regional lineaments that cross the area near the large-scale sedimentary deformation structures.

  15. SLUDGE DEWATERING AND DRYING ON SAND BEDS

    EPA Science Inventory

    Dewatering of water and wastewater treatment sludges was examined through mathematical modeling and experimental work. The various components of the research include: (1) chemical analyses of water treatment sludges, (2) drainage and drying studies of sludges, (3) a mathematical ...

  16. Dynamical evolution of sand ripples under water.

    PubMed

    Stegner, A; Wesfreid, J E

    1999-10-01

    We have performed an experimental study on the evolution of sand ripples formed under the action of an oscillatory flow. An annular sand-water cell was used in order to investigate a wide range of parameters. The sand ripples follow an irreversible condensation mechanism from small to large wavelength until a final state is reached. The wavelength and the shape of these stable sand patterns are mainly governed by the fluid displacement and the static angle of the granular media. A strong hysteresis affects the evolution of steep ripples. When the acceleration of the sand bed reaches a critical value, the final pattern is modified by the superficial fluidization of the sand layer. PMID:11970264

  17. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    PubMed

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. PMID:25863324

  18. Three-dimensional mapping of red stingray ( Dasyatis akajei) movement with reference to bottom topography

    NASA Astrophysics Data System (ADS)

    Otaki, Takayoshi; Hamana, Masahiro; Tanoe, Hideaki; Miyazaki, Nobuyuki; Shibuno, Takuro; Komatsu, Teruhisa

    2015-06-01

    Most demersal fishes maintain strong relations with bottom substrates and bottom depths and/or topography during their lives. It is important to know these relations to for understand their lives. In Tokyo Bay, red stingray, Dasyatis akajei, classified as near-threatened species by IUCN, has increased since the 1980s. It is a top predator and engages in ecosystem engineer by mixing the sand bed surface through burring behavior, and greatly influences a coastal ecosystem. It is reported that this species invades in plage and tidal flats and has sometimes injured beachgoers and people gathering clams in Tokyo bay. Thus, it is necessary to know its behavior and habitat use to avoid accidents and to better conserve the biodiversity of ecosystems. However, previous studies have not examined its relationship with the bottom environment. This study aims to describe its behavior in relation to the bottom environment. We sounded three dimensional bottom topography of their habitat off Kaneda Cove in Tokyo Bay with interferometric sidescan sonar system and traced the movement of red stingrays by attaching a data logger system to survey their migration. The results revealed that red stingray repeated vertical movement between the surface and bottom, and used not only sand beds but also rocky beds.

  19. Sonic sands.

    PubMed

    Andreotti, Bruno

    2012-02-01

    Many desert sand dunes emit a loud sound with a characteristic tremolo around a well-defined frequency whenever sand is avalanching on their slip face. This phenomenon, called the 'song of dunes', has been successfully reproduced in the lab, on a smaller scale. In all cases, the spontaneous acoustic emission in air is due to a vibration of the sand, itself excited by a granular shear flow. This review presents a complete characterization of the phenomenon-frequency, amplitude, source shape, vibration modes, instability threshold-based on recent studies. The most prominent characteristics of acoustic propagation in weakly compressed granular media are then presented. Finally, this review describes the different mechanisms proposed to explain booming avalanches. Measurements performed to test these theories against data allow one to contrast explanations that must be rejected-sound resonating in a surface layer of the dune, for instance-with those that still need to be confirmed to reach a scientific consensus-amplification of guided elastic waves by friction, in particular. PMID:22790349

  20. Granular size segregation in underwater sand ripples.

    PubMed

    Rousseaux, G; Caps, H; Wesfreid, J-E

    2004-02-01

    We report an experimental study of a binary sand bed under an oscillating water flow. The formation and evolution of ripples is observed. The appearance of a granular segregation is shown to strongly depend on the sand bed preparation. The initial wavelength of the mixture is measured. In the final steady state, a segregation in volume is observed instead of a segregation at the surface as reported before. The correlation between this phenomenon and the fluid flow is emphasised. Finally, different "exotic" patterns and their geophysical implications are presented. PMID:15052430

  1. Numerical modeling of subaqueous sand dune morphodynamics

    NASA Astrophysics Data System (ADS)

    Doré, Arnaud; Bonneton, Philippe; Marieu, Vincent; Garlan, Thierry

    2016-03-01

    The morphodynamic evolution of subaqueous sand dunes is investigated, using a 2-D Reynolds-averaged Navier-Stokes numerical model. A laboratory experiment where dunes are generated under stationary unidirectional flow conditions is used as a reference case. The model reproduces the evolution of the erodible bed until a state of equilibrium is reached. In particular, the simulation exhibits the different stages of the bed evolution, e.g., the incipient ripple generation, the nonlinear bed form growing phase, and the dune field equilibrium phase. The results show good agreement in terms of dune geometrical dimensions and time to equilibrium. After the emergence of the first ripple field, the bed growth is driven by cascading merging sequences between bed forms of different heights. A sequence extracted from the simulation shows how the downstream bed form is first eroded before merging with the upstream bed form. Superimposed bed forms emerge on the dune stoss sides during the simulation. An analysis of the results shows that they emerge downstream of a slight deflection on the dune profile. The deflection arises due to a modification of the sediment flux gradient consecutive to a reduction in the turbulence relaxation length while the upstream bed form height decreases. As they migrate, superimposed bed forms grow on the dune stoss side and eventually provoke the degeneration of the dune crest. Cascading merging sequences and superimposed bed forms dynamics both influence the dune field evolution and size and therefore play a fundamental role in the dune field self-organization process.

  2. Bed bugs.

    PubMed

    Foulke, Galen T; Anderson, Bryan E

    2014-09-01

    The term bed bug is applied to 2 species of genus Cimex: lectularius describes the common or temperate bed bug, and hemipterus its tropical cousin. Cimex lectularius is aptly named; its genus and species derive from the Latin words for bug and bed, respectively. Though the tiny pest is receiving increased public attention and scrutiny, the bed bug is hardly a new problem. PMID:25577850

  3. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2011-01-01

    Domestic production of industrial sand and gravel in 2010 was about 26.5 Mt (29.2 million st), a 6-percent increased from 2009. Certain end uses of industrial sand and gravel, such as sand for container glass, golf course sand, recreational sand, specialty glass and water filtration, showed increased demand in 2010.

  4. Red Bluff, Marion County, Mississippi: a Citronelle braided-stream deposit

    SciTech Connect

    Smith, M.L.; Meylan, M.A.

    1983-09-01

    Red Bluff is an erosional escarpment located on the western margin of the Pearl River flood plain in northwestern Marion County, Mississippi. The sand grains are composed primarily of quartz, with small amounts of heavy minerals and feldspar. The gravel is composed of varying percentages of chert, flint, jasper, rip-up clasts, quartz, and tripoli, including a small fraction of silicified Paleozoic fossils. Grain-size analysis of the sediment and investigation of the sedimentary structures suggest a braided-fluvial environment of deposition. The most conspicuous sedimentary structures at Red Bluff are graded bedding, low-angle to medium-angle cross-bedding, and well-developed paleochannels. A statistical comparison (discriminant analysis) of the seven most abundant heavy minerals of Red Bluff, with the same suite of heavy minerals found at the type section of the Citronelle Formation (Pliocene-Pleistocene), and outcrops of a known Miocene coarse clastic unit indicates a correlation of Red Bluff to the Citronelle Formation. These heavy minerals are kyanite, staurolite, rutile, tourmaline, zircon, black opaques (primarily ilmenite and magnetite), and white opaques (primarily leucoxene). The suite of heavy minerals present at Red Bluff belongs to the east Gulf province. This metamorphic assemblage of heavy minerals implies the source area of the sediments at Red Bluff to be the southern Appalachians. The silicified pebble-size Devonian-Mississippian fossils were derived most likely from formations flanking the southern Appalachians in northern Alabama.

  5. Sand Diver

    NASA Astrophysics Data System (ADS)

    Scott, Alan J.

    2005-01-01

    A few years ago, I was preparing to teach a summer enrichment program for middle school students at the University of Wisconsin-Stout. With swimming on the minds of most kids during the summer, I thought buoyancy would be a fun topic to discuss. An interesting way to introduce this concept is by discussing the beer-drinking balloonist who, in a lawn chair, floated to 11,000 feet above Los Angeles in 1997. However, I needed a hands-on project and was not about to go purchase some lawn chairs to duplicate this experiment. A simple submersible called the "Sand Diver" was designed and is now used as a hands-on activity for my introductory physics course.

  6. Occurrence of Radium-224, Radium-226 and Radium-228 in Water from the Vincentown and Wenonah-Mount Laurel Aquifers, the Englishtown Aquifer System, and the Hornerstown and Red Bank Sands, Southwestern and South-Central New Jersey

    USGS Publications Warehouse

    dePaul, Vincent T.; Szabo, Zoltan

    2007-01-01

    This investigation is the first regionally focused study of the presence of natural radioactivity in water from the Vincentown and Wenonah-Mount Laurel aquifers, Englishtown aquifer system, and the Hornerstown and Red Bank Sands. Geologic materials composing the Vincentown and Wenonah-Mount Laurel aquifers and the Hornerstown and Red Bank Sands previously have been reported to contain radioactive (uranium-enriched) phosphatic strata, which is common in deposits from some moderate-depth coastal marine environments. The decay of uranium and thorium gives rise to natural radioactivity and numerous radioactive progeny, including isotopes of radium. Naturally occurring radioactive isotopes, especially those of radium, are of concern because radium is a known human carcinogen and ingestion (especially in water used for drinking) can present appreciable health risks. A regional network in southwestern and south-central New Jersey of 39 wells completed in the Vincentown and Wenonah-Mount Laurel aquifers, the Englishtown aquifer system, and the Hornerstown and Red Bank Sands was sampled for determination of gross alpha-particle activity; concentrations of radium radionuclides, major ions, and selected trace elements; and physical properties. Concentrations of radium-224, radium-226, and radium-228 were determined for water from 28 of the 39 wells, whereas gross alpha-particle activity was determined for all 39. The alpha spectroscopic technique was used to determine concentrations of radium-224, which ranged from less than 0.5 to 2.7 pCi/L with a median concentration of less than 0.5pCi/L, and of radium-226, which ranged from less than 0.5 to 3.2 pCi/L with a median concentration of less than 0.5 pCi/L. The beta-counting technique was used to determine concentrations of radium-228. The concentration of radium-228 ranged from less than 0.5 to 4.3 pCi/L with a median of less than 0.5. Radium-228, when quantifiable, had the greatest concentration of the three radium radioisotopes in 9 of the 12 samples (75 percent). The concentration of radium-224 exceeded that of radium-226 in five of the six (83 percent) samples when both were quantifiable. The radium concentration distribution differed by aquifer, with the highest Ra-228 concentrations present in the Englishtown aquifer system and the highest Ra-226 concentrations present in the Wenonah-Mount Laurel aquifer. Radium-224 generally contributed a considerable amount of gross alpha-particle activity to water produced from all the sampled aquifers, but was not the dominant radionuclide as it is in water from the Kirkwood-Cohansey aquifer system, nor were concentrations greater than 1 pCi/L of radium-224 widespread. Gross alpha-particle activity was found to exceed the U.S Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) of 15 pCi/L in one sample (16 pCi/L) from the Vincentown aquifer. A greater part of the gross alpha-particle activity in water from the Wenonah-Mount Laurel aquifer resulted from the decay of Ra-226 than did the gross alpha-particle activity in the other sampled aquifers; this relation is consistent with the concentration distribution of the Ra-226 itself. Concentrations of radium-224 correlate strongly with those of both radium-226 and radium-228 (Spearman correlation coefficients, r, +0.86 and +0.66, respectively). The greatest concentrations of radium-224, radium-226, and radium-228 were present in the most acidic ground water. All radium-224, radium-226, and radium-228 concentrations greater than 2.5 pCi/L were present in ground-water samples with a pH less than 5.0. The presence of combined radium-226 and radium-228 concentrations greater than 5 pCi/L in samples from the Vincentown and Wenonah-Mount Laurel aquifers and the Englishtown aquifer system was not nearly as common as in samples from the Kirkwood-Cohansey aquifer system, likely because of the slightly higher pH of water from these aquifers relative to that of Kirkwood-Cohansey aqu

  7. Solids-liquid separation of swine manure with polymer treatment and sand filtration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small particles typical of liquid swine manure often clog sand filter beds and fine filters. We evaluated the effectiveness of polymer flocculants to improve drainage and filtration performance of sand filter beds by increasing the effective particle size. A pilot unit was evaluated at the Swine U...

  8. Controls on the abruptness of gravel-sand transitions

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Church, M. A.; Lamb, M. P.; Domarad, N.; Rennie, C. D.

    2014-12-01

    As gravel-bedded rivers fine downstream, they characteristically exhibit an abrupt transition from gravel- to sand-bed. This is the only abrupt transition in grain-size that occurs in the fluvial system and has attracted considerable attention. A number of competing theories have been proposed to account for the abruptness of the transition, including base-level control, attrition of ~10mm gravel to produce sand, and sediment sorting processes. The prevailing theory for the emergence of abrupt transitions is size selective sorting of bimodal sediment wherein gravel deposits due to downstream declining shear stress, fining the bedload until a sand-bed emerges. We explored this hypothesis by examining grain-size, shear stress, gravel mobility and sand suspension thresholds through the gravel-sand transition (GST) of the Fraser River, British Columbia. The Fraser GST is an arrested gravel wedge with patches of gravel downstream of the wedge forming a diffuse extension. There is an abrupt change in bed slope through the transition that leads to an abrupt change in shear stress. The GST, bed-slope change and backwater caused by the ocean are all coincident spatially, which enhances the sharpness of the GST. Interestingly, the bimodal reach of the river occurs downstream of the GST and exhibits no downstream gradients in shear stress, suspended sediment flux, gravel mobility or sand suspension thresholds. This calls into question the prevailing theory for the emergence of an abrupt GST by size selective sorting. We provide evidence, both empirical and theoretical, that suggests the emergence of an abrupt GST is caused by rapid deposition of sand when fine gravel deposits. We argue that the emergence of gravel-sand transitions is a consequence of gravel-bedded rivers adopting a steeper slope than sand-bedded rivers. The abruptness arises because the bed slope required to convey the gravel load fixes the distal location of a terminal gravel wedge, and once the river has lost the capacity to carry the gravel mixture, the river adopts the lower slope required to pass the sand load. Progressive downstream fining of a gravel-sand mixture is not a necessary condition for the emergence of a gravel-sand transition.

  9. The extraction of bitumen from western oil sands. Final report, July 1989--September 1993

    SciTech Connect

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1994-03-01

    Research and development of surface extraction and upgrading processes of western tar sands are described. Research areas included modified hot water, fluidized bed, and rotary kiln pyrolysis of tar sands for extraction of bitumen. Bitumen upgrading included solvent extraction of bitumen, and catalytic hydrotreating of bitumen. Characterization of Utah tar sand deposits is also included.

  10. Sand dunes as migrating strings

    NASA Astrophysics Data System (ADS)

    Guignier, L.; Niiya, H.; Nishimori, H.; Lague, D.; Valance, A.

    2013-05-01

    We develop a reduced complexity model for three-dimensional sand dunes, based on a simplified description of the longitudinal and lateral sand transport. The spatiotemporal evolution of a dune migrating over a nonerodible bed under unidirectional wind is reduced to the dynamics of its crest line, providing a simple framework for the investigation of three-dimensional dunes, such as barchan and transverse dunes. Within this model, we derive analytical solutions for barchan dunes and investigate the stability of a rectilinear transverse dune against lateral fluctuations. We show, in particular, that the latter is unstable only if the lateral transport on the dune slip face prevails over that on the upwind face. We also predict the wavelength and the characteristic time that control the subsequent evolution of an unstable transverse dune into a wavy ridge and the ultimate fragmentation into barchan dunes.

  11. Sand dunes as migrating strings.

    PubMed

    Guignier, L; Niiya, H; Nishimori, H; Lague, D; Valance, A

    2013-05-01

    We develop a reduced complexity model for three-dimensional sand dunes, based on a simplified description of the longitudinal and lateral sand transport. The spatiotemporal evolution of a dune migrating over a nonerodible bed under unidirectional wind is reduced to the dynamics of its crest line, providing a simple framework for the investigation of three-dimensional dunes, such as barchan and transverse dunes. Within this model, we derive analytical solutions for barchan dunes and investigate the stability of a rectilinear transverse dune against lateral fluctuations. We show, in particular, that the latter is unstable only if the lateral transport on the dune slip face prevails over that on the upwind face. We also predict the wavelength and the characteristic time that control the subsequent evolution of an unstable transverse dune into a wavy ridge and the ultimate fragmentation into barchan dunes. PMID:23767529

  12. Bed Bugs FAQs

    MedlinePlus

    ... gov . Parasites - Bed Bugs Parasites Home Share Compartir Bed Bugs FAQs On this Page What are bed bugs? ... are bed bugs treated and prevented? What are bed bugs? Bed bugs ( Cimex lectularius ) are small, flat, parasitic ...

  13. Diagenetic effects on porosity-permeability relationships in red beds of the Lower Triassic Bunter Sandstone Formation in the North German Basin

    NASA Astrophysics Data System (ADS)

    Olivarius, Mette; Weibel, Rikke; Hjuler, Morten L.; Kristensen, Lars; Mathiesen, Anders; Nielsen, Lars H.; Kjøller, Claus

    2015-05-01

    Carbonate and anhydrite cement, clay clasts and inter-granular clay are the main components that reduce reservoir quality in the studied Bunter Sandstone Formation. The impacts of these parameters on porosity and permeability are determined by combining petrographic mineral quantification with conventional core analysis of samples from the Danish part of the North German Basin. The depositional environments are considered because they largely control the distribution of cements, clays and grain sizes. The lateral variability of depositional environments is defined by the position in the basin and the proximity to the source areas. The stratigraphic distribution of depositional environments is related both to local topography and to climate because high aridity promoted aeolian deposition. The Bunter Sandstone Formation has high porosity and permeability in most of the sandstone intervals in the northern North German Basin. The reservoir quality is good as long as the cements and clays are present as confined bodies that leave the remaining pore spaces available for flow. In contrast, inter-granular clay and pervasive cementation hinder virtually all flow through the sandstone. The ephemeral fluvial deposits have an average porosity and permeability of 20.3% and 810 mD, respectively, and the values are 24.6% and 807 mD for the aeolian sandstones, excluding the unconsolidated aeolian sands which presumably have higher porosity and permeability. The aeolian sandstones of the Volpriehausen Member have very good reservoir quality since they have a thickness of about 25 m, are laterally continuous, are largely clay-free and the cement occurs in small amounts. The sandstones of the Solling Member consist mainly of ephemeral fluvial deposits, which generally have good reservoir quality. However, some intervals have high contents of inter-granular clays or pervasive carbonate, anhydrite or halite cement and these components reduce the permeability significantly. The lateral distribution of the ephemeral fluvial sandstones is variable and therefore difficult to predict when planning a geothermal exploration well. Thus, the Volpriehausen Member is the preferred target.

  14. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2013-01-01

    Domestic production of industrial sand and gravel in 2012 was about 49.5 Mt (55 million st), increasing 13 percent compared with that of 2011. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  15. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2012-01-01

    Domestic production of industrial sand and gravel in 2011 was about 30 Mt (33 million st), increasing slightly compared with 2010. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  16. The extraction of bitumen from western oil sands: Volume 1. Final report

    SciTech Connect

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains an executive summary and reports for five of these projects. 137 figs., 49 tabs.

  17. The extraction of bitumen from western oil sands: Volume 2. Final report

    SciTech Connect

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

  18. Payload Bay and Great Western Sand Sea, Algeria, Africa

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Patterns of yellow and orange dunes of the Great Western Sand Sea of Algeria (29.5N, 1.5W) contrast with the black folded sedimentary rocks in the central Sahara Desert. A small dry riverbed, along the line between the thick sands and the black rocks brings in sediment from the Atlas Mountains of Morocco. Southwest winds blow sand from the bed to form a thick sand sheet on the downwind side of the river to contrast with the thin upwind dune strips.

  19. Wet sand flows better than dry sand

    NASA Astrophysics Data System (ADS)

    Wagner, Christian

    2015-03-01

    Wet sand that does not contain too much water is known to be stiff enough to build sand castles or in physical words has a significant yield stress. However, we could recently show that there are quite a few conditions under which such wet sand opposes less resistant to flow than its dry counterpart. This effect might have been already known to the old Egyptians: The Ancient painting of El Bersheh at the tomb of Tehutihetep shows that there was liquid poured in front of the sledge that was used to transport heavy weight stones and statues. While archeologist have attributed this to a sacral ceremony, our data clearly show that wetting the sand ground drastically decreases the effective sliding friction coefficient. We first study the stress-strain behavior of sand with and without small amounts of liquid under steady and oscillatory shear. Using a technique to quasistatically push the sand through a tube with an enforced parabolic (Poiseuille-like) profile, we minimize the effect of avalanches and shear localization. We observe that the resistance against deformation of the wet (partially saturated) sand is much smaller than that of the dry sand, and that the latter dissipates more energy under flow. Second we show experimentally that the sliding friction on sand is greatly reduced by the addition of some--but not too much--water. The formation of capillary water bridges increases the shear modulus of the sand, which facilitates the sliding.

  20. Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye acid red 18: comparison of using two types of packing media.

    PubMed

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    Two integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor (FB-SBBR) were operated to evaluate decolorization and biodegradation of azo dye Acid Red 18 (AR18). Volcanic pumice stones and a type of plastic media made of polyethylene were used as packing media in FB-SBBR1 and FB-SBBR2, respectively. Decolorization of AR18 in both reactors followed first-order kinetic with respect to dye concentration. More than 63.7% and 71.3% of anaerobically formed 1-naphthylamine-4-sulfonate (1N-4S), as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase in FB-SBBR1 and FB-SBBR2, respectively. Based on statistical analysis, performance of FB-SBBR2 in terms of COD removal as well as biodegradation of 1N-4S was significantly higher than that of FB-SBBR1. Spherical and rod shaped bacteria were the dominant species of bacteria in the biofilm grown on the pumice stones surfaces, while, the biofilm grown on surfaces of the polyethylene media had a fluffy structure. PMID:23138064

  1. Sand-flat/playa mud-flat-lacustrine cycles in Fundy rift basin (Triassic-Jurassic), Nova Scotia: implications for climatic and tectonic controls

    SciTech Connect

    Mertz, K.A. Jr.; Hubert, J.F.

    1989-03-01

    Blomidon Formation red beds comprise over 200 m-scale cycles of (1) sand-flat sandstone (distal alluvial-fan deposits) and (2) playa sandy mudstone and/or lacustrine claystones. Rift basin subsidence and local sagging along the Glooscap fault system generated sand-flat/playa mud-flat cycles by shifting loci of active fan sedimentation toward and away from the playa surface as fan lobes migrated toward topographic lows. Episodes of intense aridity are recorded in the sand-flat and playa mud-flat deposits where amalgamated sheetflood packages are characterized by pervasive evaporite mineralization (principally gypsum) controlled by subsurface evolution of a Ca-SO/sub 4/-Na-Cl brine. Aridity is further evidenced by significant disruption of sedimentary fabrics beneath evaporite crusts, deep mud cracks, eolian sandstone layers and patches, and precipitation of authigenic calcium and magnesium-rich illite/smectite and analcime. Carbon isotopic data from early formed, low-magnesium calcite cements (pre-gypsum) reflect slightly to moderately elevated subsurface salinities that accompanied initial brine evolution. During relatively wetter periods, lacustrine platy claystones accumulated in shallow, oxidizing lakes that lapped onto the sand flats. Claystone units lack evaporite minerals and textures, and many units are partially burrowed. Carbon isotopic data from calcite cements are consistently lighter than sand-flat/playa mud-flat calcites and were in equilibrium with relatively fresh subsurface pore waters.

  2. Sand boils induced by the 1993 Mississippi River flood: Could they one day be misinterpreted as earthquake-induced liquefaction?

    USGS Publications Warehouse

    Li, Y.; Craven, J.; Schweig, E.S.; Obermeier, S.F.

    1996-01-01

    In areas that are seismically active but lacking clear surficial faulting, many paleoearthquake studies depend on the interpretation of ancient liquefaction features (sand blows) as indicators of prehistoric seismicity. Sand blows, however, can be mimicked by nonseismic sand boils formed by water seeping beneath levees during floods. We examined sand boils induced by the Mississippi River flood of 1993 in order to compare their characteristics with sand blows of the New Madrid earthquakes of 1811-1812. We found a number of criteria that allow a distinction between the two types of deposits. (1) Earthquake-induced liquefaction deposits are broadly distributed about an epicentral area, whereas flood-induced sand boils are limited to a narrow band along a river's levee. (2) The conduits of most earthquake-induced sand blows are planar dikes, whereas the conduits of flood-induced sand boils are most commonly tubular. (3) Depression of the preearthquake ground surface is usual for sand blows, not for sand boils. (4) Flood-induced sand boils tend to be better sorted and much finer than sand-blow deposits. (5) Source beds for earthquake-induced deposits occur at a wide range of depths, whereas the source bed for sand boils is always near surface. (6) Materials removed from the walls surrounding the vent of a sand blow are seen inside sand blows, but are rarely seen inside sand boils. In general, flood-induced sand boils examined are interpreted to represent a less-energetic genesis than earthquake-induced liquefaction.

  3. Assessment of different bedding systems for lactating cows in freestall housing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare different bedding systems for lactating cows in freestall housing. Bedding systems included new sand (NS), recycled byproducts of manure separation (organic solids [OS] and recycled sand [RS]), and foam-core mattresses with a shallow layer of OS (MS). The e...

  4. Periodic Trajectories in Aeolian Sand Transport

    NASA Astrophysics Data System (ADS)

    Valance, A.; Jenkins, J. T.

    2014-12-01

    Saltation is the primary mode of aeolian sand transport and refers to the hoping motion of grains over the bed [1]. We develop a simple model for steady, uniform transport in aeolian saltation over a horizontal bed that is based on the computation of periodic particle trajectories in a turbulent shearing flow [2]. The wind and the particles interact through drag, and the particles collide with the bed. We consider collisions with a rigid, bumpy bed, from which the particles rebound, and an erodible particle bed, for which a collision involves both rebound and particle ejection. The difference in the nature of the collisions results in qualitative differences in the nature of the solutions for the periodic trajectories and, in particular, to differences in the dependence of the particle flow rate on the strength of the turbulent shearing. We also discuss the pertinence of this model to describe bedload transport in water. References:[1] R. A. Bagnold, « The physics of blown sand and desert dunes » , Methuen, New York (1941).[2] J.T Jenkins and A. Valance. Periodic trajectories in Aeolian saltation transport. Physics of Fluids, 2014, 26, pp. 073301

  5. Sand waves, bars, and wind-blown sands of the Rio Orinoco, Venezuela and Colombia

    USGS Publications Warehouse

    Nordin, Carl F.; Perez-Hernandez, David

    1989-01-01

    During March 1982, a reconnaissance study was carried out along a reach of the Rio Orinoco between Puerto Ayacucho and Ciudad Bolivar. This was the low-flow season. Samples of bed material and suspended sediments were collected, sonic records of the bed were obtained at several locations, and the exposed bars and sand waves were studied at four locations. Sounding records were obtained at two of these locations during June and November when flow covered the bars, and additional studies were made on the ground at some of these same sites during March 1983. The bed of the river is mostly sand with small quantities, about 5 percent by weight on average, of gravel. Suspended- sediment concentrations were low, ranging between 20 milligrams per liter above Rio Apure to almost 40 milligrams per liter below its confluence with the Rio Orinoco. The annual sediment load is estimated to be 240x10 6 megagrams per year. During the dry season, 35 percent or more of the bed is exposed in the form of large bars composed of many sand waves. Trade winds blow upriver and there is substantial upriver transport of river sediments by the wind. If the bars contain very coarse sands and fine gravel, deflation forms a lag deposit that armors the bar surface and prevents further erosion. Theoretical calculations show that the lower limit for the fraction of the bed that needs to be covered with nonmoving particles to prevent further erosion and the smallest size of the armor particles depend only on wind speed. Calculations of bed-material transport were made for a typical wide and narrow section of the river; the annual load, excluding the wash load, is about 30 x 10 6 megagrams per year. A new definition for wash load is proposed; it is material that can be suspended as soon as its motion is initiated. For the Rio Orinoco, this is material finer than 0.1 millimeters.

  6. Introduction to Bed Bugs

    MedlinePlus

    ... preventing infestations, increased resistance of bed bugs to pesticides, and ineffective pest control practices. The good news ... Bed Bugs Do-it-yourself Bed Bug Control Pesticides to Control Bed Bugs Bed Bug Information Clearinghouse ...

  7. Sedimentological, Mineralogical and Geochemical Characterization of Sand Dunes in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Benaafi, Mohammed; Abdullatif, Osman

    2014-05-01

    Sedimentological, mineralogical, morphological and geochemical studies of sand dunes from ten locations in Saudi Arabia were conducted in order to determine the differences between them and to find out the provenance and tectonic setting of these sand dunes. Sixty seven samples were collected from different sand dunes types ranging in morphology from linear, barchans, parabolic to stars dunes. In overall, the sand dunes are fine to coarse grained mean grain size, moderately sorted, near symmetrical skewness with mesokurtic distribution characterized sand dunes in most locations. The sand dunes grains are subrounded in all locations except in the Red sea, Qassim, central Arabia and the eastern province which showed sub-angular grains. The main mineral compositions of studied aeolian sand dunes are quartz, feldspar, calcite, and mica. Quartz is the dominant mineral in locations with significant amount of feldspars and mica in Najran, Red sea and Central Arabia locations. Moreover, calcite is present in Sakaka and NW Empty Quarter (Jafurah). Basement related sand dunes in Najran, Central Arabia and Red sea locations are sub-mature in terms of their mineralogical maturity. Whereas, sand dunes in other locations are texturally mature except those from the Red sea which showed sub-mature sand. The sands are classified as quartz arenite, except in the basement related sand dunes in Najran, central Arabia and the Red sea are ranging from sub-arkose, sub-litharenite and lithraenite. Morphologically, parallel to sub-parallel sand ridges with NE-SW orientation occurred in east and north parts of Empty Quarter (Najran and Jafurah) and NW-SE orientation in Dahna and Nafud deserts in central and north regions of Saudi Arabia. Parabolic sand dunes characterized the Nafud desert (Hail, Sakaka, Tayma locations). Barchans and star sand dunes characterize the Empty Quarter (Jafurah). Major, trace, and rare earth elements studies were carried out to determine the composition, provenance and tectonic history of the sand dunes. Geochemical analysis indicated that most of sand dunes are quartz arenite type, except in the Red sea, basement related central Saudi Arabia and Najran areas, the sand dunes are sub-arkoses, sub-litharenite and litharenite. The concentration of major,trace and rare elements showed active continental margins as a tectonic setting of Red sea, basement related Najran and central Arabia sand dune. In contrast, passive continental margins for the other locations. The distribution of major, trace and rare earth elements showed similarity in chemical composition between basement related sand dunes in Red sea, Najran and central Arabia.

  8. Exposed Tsunami Sand Layers

    An outcrop composed of six tsunami deposits on the inland side of the lowland backing Stardust Bay over 0.5 miles from the sea. Brown soils developed into the top of each sand sheet and black tephra (air fall volcanic ash) layers between two of the sand deposits aided correlation of the six sand she...

  9. Sand for Traction

    Steam engines used high-grade silica sand for traction on the rails. Sand was stored in a dome on top of the engine and, as the train traveled the tracks, the sand would be sprinkled down pipes to land on the tracks in front of the wheels. This would aid the wheels in gripping the tracks, especially...

  10. China Dust and Sand

    Atmospheric Science Data Center

    2013-04-16

    article title:  Dust and Sand Sweep Over Northeast China     ... (MISR) captured these views of the dust and sand that swept over northeast China on March 10, 2004. Information on the ... available at JPL March 10, 2004 - Dust and sand sweep the northeast region. project:  MISR ...

  11. The extraction of bitumen from western oil sands. Quarterly report, April--June 1993

    SciTech Connect

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1993-07-01

    Accomplishments are briefly described for the following tasks: environmental impact statement; coupled fluidized bed bitumen recovery and coked sand combustion; water-based recovery of bitumen; rotary kiln process for recovery of bitumen and combustion of coke sand; recovery of bitumen from oil sands using fluidized bed reactors and combustion of spent sands in transport reactors; recovery of bitumen from oil sand and upgrading of bitumen by solvent extraction; catalytic and thermal upgrading of bitumens and bitumen-derived liquids; evaluation of Utah`s major oil sand deposits for the production of asphalt, high energy jet fuels and other specialty products; development of mathematical models for bitumen recovery and processing; completion of the cost examination study of the pilot plant restoration; development studies of equipment for three-product gravity separation of bitumen and sand; determine thickener requirements; and environmental studies of the North Salt Lake pilot plant rehabilitation and eventual operation and those environmental problems associated with eventual commercial products.

  12. A unified framework for stability of channel bifurcations in gravel and sand fluvial systems

    NASA Astrophysics Data System (ADS)

    Bolla Pittaluga, Michele; Coco, Giovanni; Kleinhans, Maarten G.

    2015-09-01

    Bifurcating rivers shape natural landscapes by distributing water and sediments on fluvial plains and in deltas. Symmetrical bifurcations were often found to be unstable so that one branch downstream of the bifurcation enlarged while the other dwindled. A unified theory able to predict bifurcation stability in both gravel bed and sand bed rivers is still lacking. Here we develop a new theory for the stability of bifurcations for the entire range of gravel bed to sand bed rivers. The theory indicates opposite behavior of gravel bed and sand bed rivers: we predict that symmetrical bifurcations are inherently stable for intermediate Shields stresses but are inherently unstable for the low and high Shields stresses found in the majority of rivers on Earth. In the latter conditions asymmetrical bifurcations are stable. These predictions are corroborated by observations and have ramifications for many environmental problems in fluviodeltaic settings.

  13. The role of biophysical cohesion on subaqueous bed form size

    NASA Astrophysics Data System (ADS)

    Parsons, Daniel R.; Schindler, Robert J.; Hope, Julie A.; Malarkey, Jonathan; Baas, Jaco H.; Peakall, Jeffrey; Manning, Andrew J.; Ye, Leiping; Simmons, Steve; Paterson, David M.; Aspden, Rebecca J.; Bass, Sarah J.; Davies, Alan G.; Lichtman, Ian D.; Thorne, Peter D.

    2016-02-01

    Biologically active, fine-grained sediment forms abundant sedimentary deposits on Earth's surface, and mixed mud-sand dominates many coasts, deltas, and estuaries. Our predictions of sediment transport and bed roughness in these environments presently rely on empirically based bed form predictors that are based exclusively on biologically inactive cohesionless silt, sand, and gravel. This approach underpins many paleoenvironmental reconstructions of sedimentary successions, which rely on analysis of cross-stratification and bounding surfaces produced by migrating bed forms. Here we present controlled laboratory experiments that identify and quantify the influence of physical and biological cohesion on equilibrium bed form morphology. The results show the profound influence of biological cohesion on bed form size and identify how cohesive bonding mechanisms in different sediment mixtures govern the relationships. The findings highlight that existing bed form predictors require reformulation for combined biophysical cohesive effects in order to improve morphodynamic model predictions and to enhance the interpretations of these environments in the geological record.

  14. Paleoenvironment and depositional environment of Miocene Olcese Sand, Bakersfield, California

    SciTech Connect

    Olson, H.C.

    1986-04-01

    The Olcese Sand near Bakersfield, California, contains evidence of a range of paleoenvironments including nonmarine, estuarine, and outer shelf depositional settings. Foraminifera from surface and subsurface samples place the Olcese in the Saucesian and Relizian of the California benthic stages. A pumice bed in the Olcese has been dated by fission track methods at 15.5 Ma. The Olcese Sand interfingers with the underlying Freeman Silt and the overlying Round Mountain Silt. In the type area, in Round Mountain oil field, the Olcese is 300-360 m thick. The Olcese is subdivided into three environmental facies. In the Knob Hill Quadrangle, the lower Olcese consists of (1) thinly bedded to blocky white tuffaceous silt and sand, or (2) planar cross-bedded fine to coarse-grained sand with pumice pebbles lining the bedding surfaces. Fossil mollusks and skate teeth indicate a shallow marine environment for the lower Olcese. Although the Olcese is predominantly a marine unit, the middle Olcese is nonmarine, with lenses of marine deposition. The middle Olcese is well exposed in the Knob Hill, Oil Center, and Rio Bravo Ranch Quadrangles, and is characterized by fine to coarse sand with occasional gravel lenses, strong cross-bedding, and a blue-gray color. The upper Olcese is a very fine to medium-grained, marine sand that fines upward into a sandy siltstone southward toward the Kern River. Foraminifera and mollusks from outcrops in the Rio Bravo Ranch Quadrangle indicate outer shelf to estuarine environments for the upper Olcese. The varying environments in the Olcese Sand reflect slight but frequent fluctuations in water depth and can be used to interpret the basin-margin history.

  15. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-`red beds' association in a global context: a case for the world-wide signal enhanced by a local environment

    NASA Astrophysics Data System (ADS)

    Melezhik, Victor A.; Fallick, Anthony E.; Medvedev, Pavel V.; Makarikhin, Vladimir V.

    1999-12-01

    The Palaeoproterozoic positive excursion of δ 13Ccarb is now considered as three positive shifts of δ 13Ccarb separated by returns to 0‰, which all occurred between 2.40 and 2.06 Ma. This isotopic event is unique in terms of both duration (>300 Ma) and 13C enrichment (up to +18‰). The mechanism responsible for one of the most significant carbon isotopic shifts in Earth history remains highly debatable. To date, δ 13C of +10‰ to +15‰ cannot be balanced by organic carbon burial ( forg) as there is no geological evidence for an enhanced C org accumulation prior to or synchronous with the excursion. Instead, termination of these excursions is followed by formation of a vast reservoir of 13C-depleted organic material (-45‰ at Shunga) and by one of the earliest known oil-generation episodes at 2.0 Ga. None of the three positive excursions of δ 13Ccarb is followed by a negative isotopic shift significantly below 0‰, as has always been observed in younger isotopic events, reflecting an overturn of a major marine carbon reservoirs. This may indicate that forg was constant: implying that the mechanism involved in the production of C org was different. Onset of intensive methane cycling resulting in Δc change is another possibility. The majority of sampled 13Ccarb-rich localities represents shallow-water stromatolitic dolostones, `red beds' and evaporites formed in restricted intracratonic basins, and may not reflect global δ 13Ccarb values. Closely spaced drill core samples ( n=73) of stromatolitic dolostones from the >1980±27 Ma Tulomozerskaya Formation in the Onega palaeobasin, Russian Karelia, have been analysed for δ 13Ccarb and δ 18Ocarb in order to demonstrate that different processes were involved in the formation of 13Ccarb-rich carbonates. The 800 m-thick magnesite-stromatolite-dolomite-`red beds' succession formed in a complex combination of environments on the Karelian craton: peritidal shallow marine, low-energy protected bights, barred basins, evaporative ephemeral ponds, coastal sabkhas and playa lakes. The carbonate rocks exhibit extreme 13C enrichment with δ 13C values ranging from +5.7 to +17.2‰ vs. V-PDB (mean+9.9±2.3‰) and δ 18O from 18.6 to 26.0‰ vs. V-SMOW (mean 22.0±1.6‰). The Tulomozerskaya isotopic excursion is characteristic of the global 2.4-2.06 Ga positive shifts of carbonate 13C/ 12C, although it reveals the greatest enrichment in 13C known from this interval. An external basin(s) is considered to have provided an enhanced C org burial and global seawater enrichment in 13C: the global background value for the isotopic shift at Tulomozero time (ca. 2.0 Ga) is roughly estimated at around +5‰. An explosion of stromatolite-forming microbial communities in shallow-water basins, evaporative and partly restricted environments, high bioproductivity, enhanced uptake of 12C, and pene-contemporaneous recycling of organic material in cyanobacterial mats with the production and consequent loss of CO 2 (and CH 4?) are believed to be additional local factors which may have enhanced δ 13C from +5‰ up to +17‰. Such factors should be taken into account when interpreting carbon isotopic data and attempting to discriminate between the local enrichment in 13C and globally enhanced δ 13C values. We propose that many previously reported δ 13C values from other localities, where environmental interpretations are not available or have not been taken into account may not represent the global δ 13C values.

  16. Water resources of Red River Parish, Louisiana

    USGS Publications Warehouse

    Newcome, Roy; Page, Leland Vernon

    1963-01-01

    Red River Parish is on the eastern flank of the Sabine uplift in northwestern Louisiana. The 'area is underlain by lignitic clay and sand of Paleocene and Eocene age which dip to the east at the rate of about 30 feet per mile. The Red River is entrenched in these rocks in the western part of the parish. Alternating valley filling and erosion during the Quaternary period have resulted in the present lowland with flanking terraces. In the flood-plain area moderate to large quantities of very hard, iron-bearing water, suitable for irrigation, are available to wells in the alluvial sand and gravel of Quaternary age. The aquifer ranges in thickness from 20 to slightly more than 100 feet. It is recharged by downward seepage of rainfall through overlying clay and silt, by inflow from older sands adjacent to and beneath the entrenched valley, and by infiltration from the streams where the water table is below stream level during flood stages or as a result of pumping. Water levels are highest in the middle of the valley. Ground water moves mainly toward the Red River on the east and Bayou Pierre on the west, but small amounts move down the valley. Computations based on water-level and aquifer-test data indicate that the Quaternary alluvium contains more than 330 billion gallons of ground water in storage and that the maximum discharge of ground water to the streams is slightly more than 30 mgd (million gallons per day). At times of high river stage, surface water flows into the aquifer at a rate that depends in part upon the height and duration of the river stage. Moderate supplies of soft, iron-bearing water may be obtained from dissected Pleistocene terrace deposits that flank the flood plains of the Red River and Black Lake Bayou. However, the quantity of water that can be pumped from these deposits varies widely from place to place because of differences in the areal extent and saturated thickness of the segments of the deposits; this extent and thickness are governed in turn by the amount of erosion the deposits have undergone. Beds of fine-grained lignitic sands of Tertiary age contain water of generally good quality to depths of 150 to 450 feet. The thinness and low permeability of the sands restrict their development to low-yield wells. Water from these sands in the western part of the parish, where they lie beneath the alluvial valley, is more mineralized than that from the younger Tertiary sands exposed in the east-central area. Streamflow records have been collected on the principal streams in Red River Parish since 1939. Additional spot low-flow data were obtained on several small streams originating within the parish for a study made in connection with the preparation of this report. Quality-of-water data for streams in the parish were collected on an occasional spot-sampling basis prior to and during this investigation. The largest source of surface water in the parish is the Red River, which drains approximately 63,400 square miles upstream from the parish. The Red River has an average flow of about 13,100 cfs (cubic feet per second), or about 8,500 mgd. Many of the streams that drain the upland area are not dependable sources of supply because their flows are not well sustained during dry seasons. The average annual precipitation over the parish is about 52 inches, of which about 17 inches becomes runoff; this runoff is equivalent to a continuous flow of about 1.25 cfs per square mile. Seasonal and annual runoff varies, but no significant trends have been noticed. The principal surface-water problems in the parish pertain to flood control, drainage, irrigation, and navigation. Flood problems have been alleviated considerably by the operation of Denison Dam (Lake Texoma), the completion of levees on the Red River, channel improvements on Bayou Pierre, and the completion of Wallace Lake reservoir on Cypress Bayou. There are wet lands along the Red River that would be very productive if properly drained

  17. The Unified Gravel-Sand (TUGS) Model: Simulating the Transport of Gravel-Sand Mixtures in Rivers

    NASA Astrophysics Data System (ADS)

    Cui, Y.

    2006-12-01

    TUGS Model was developed by employing the surface-based bedload equation of Wilcock and Crowe (2003) and linking grain size distributions in the bedload, surface layer, and subsurface sediment deposit with the gravel transfer function of Hoey and Ferguson (1994) and Toro-Escobar et al. (1996), and a hypothetical sand transfer function. The unmodified model was applied to simulate the sedimentation process in Marmot Reservoir, Sandy River, Oregon and produced similar stratified sediment deposit as observed through coring exercises. The model was also examined with three runs of large-scale flume experiments conducted at St. Anthony Falls Laboratory (SAFL) by Seal et al. (1995). With a very minor modification to Wilcock and Crowe (2003) equation, the model excellently reproduced the longitudinal profiles, gravel grain size distributions and sand fractions in the deposits for all the three SAFL runs. Following its examination, TUGS model was applied to simulate the sediment transport dynamics in the Sandy River, Oregon under a few hypothetical scenarios, focusing on the dynamics of sand fractions in gravel-bedded channel deposits. Results of the exploratory runs on the Sandy River indicate that (a) surface and subsurface sand fractions generally increase in the downstream direction, similar to observed in the field; (b) sand fraction in the deposit is positively correlated with sand supply as expected; (c) extremely high sand supply under similar gravel supply and hydrologic conditions can transform the river into predominantly sand-bedded; (d) increased discharge under the same sand and gravel supply conditions results in decreased sand fraction in the deposit as expected; and (e) there can be significant increase in surface and subsurface sand fractions in the backwater zones near the mouth of the river as expected.

  18. Experimental study of transverse bed motion in rotary kilns

    NASA Astrophysics Data System (ADS)

    Henein, H.; Brimacombe, J. K.; Watkinson, A. P.

    1983-06-01

    Slumping and rolling beds have been studied extensively in a continuous pilot kiln and batch rotary cylinders. Solids investigated include nickel oxide pellets, limestone, sand, and gravel. The effect of variables such as rotational speed, bed depth, cylinder diameter, particle size, and particle shape on bed motion has been determined. For a given material, the different modes of bed motion can be delineated conveniently on a Bed Behavior Diagram which is a plot of bed depth vs rotational speed. The scaling of bed behavior with respect to particle size and cylinder diameter requires similarity of Froude number modified by (D/d p)1/2, and pct fill. Measurements of key variables characterizing slumping and rolling beds have also been made.

  19. Experimental and modeling study of residual liquid recovery from spent sand in bitumen extraction processes from oil sands.

    PubMed

    Faradonbeh, Moosa Rabiei; Dong, Mingzhe; Harding, Thomas G; Abedi, Jalal

    2013-02-19

    Disposing solid residue with high liquid content into the environment may impact the immediate ecosystem and its surroundings. In bitumen recovery process from oil sands, it is environmentally and economically desirable to effectively recover as much of the liquid trapped in the spent solids as possible, prior to releasing it into the environment. An experiment was designed to investigate the effect of capillary force to enhance liquid recovery by using a thin, semipermeable layer as the membrane. The results indicate that by employing a membrane at the outlet, and pressurizing the air above the sand bed, the average liquid saturation can be decreased by 50%; however, the maximum pressure applied is restricted by the physical characteristics of the membrane. A mathematical model is developed to predict the liquid saturation profile along the sand pack during transient and steady-state conditions, and results are validated against measured average saturation using two different sand types. Results suggest that more liquid can be recovered from the spent sand bed by increasing the height of the bed; however, the required time to achieve the maximum recovery is increased as well. This method can be applied to reduce the liquid content of spent sand from any process before it is disposed of, thereby reducing possible hazards which may affect the environment. PMID:23293943

  20. Aeolian Sand Transport with Collisional Suspension

    NASA Technical Reports Server (NTRS)

    Jenkins, James T.; Pasini, Jose Miguel; Valance, Alexandre

    2004-01-01

    Aeolian transport is an important mechanism for the transport of sand on Earth and on Mars. Dust and sand storms are common occurrences on Mars and windblown sand is responsible for many of the observed surface features, such as dune fields. A better understanding of Aeolian transport could also lead to improvements in pneumatic conveying of materials to be mined for life support on the surface of the Moon and Mars. The usual view of aeolian sand transport is that for mild winds, saltation is the dominant mechanism, with particles in the bed being dislodged by the impact of other saltating particles, but without in-flight collisions. As the wind becomes stronger, turbulent suspension keeps the particles in the air, allowing much longer trajectories, with the corresponding increase in transport rate. We show here that an important regime exists between these two extremes: for strong winds, but before turbulent suspension becomes dominant, there is a regime in which in-flight collisions dominate over turbulence as a suspension mechanism, yielding transport rates much higher than those for saltation. The theory presented is based on granular kinetic theory, and includes both turbulent suspension and particle-particle collisions. The wind strengths for which the calculated transport rates are relevant are beyond the published strengths of current wind tunnel experiments, so these theoretical results are an invitation to do experiments in the strong-wind regime. In order to make a connection between the regime of saltation and the regime of collisional suspension, it is necessary to better understand the interaction between the bed and the particles that collide with it. This interaction depends on the agitation of the particles of the bed. In mild winds, collisions with the bed are relatively infrequent and the local disturbance associated with a collision can relax before the next nearby collision. However, as the wind speed increases, collision become more frequent and the agitation need not decay completely. In the regime of collisional suspension, the particles near the surface of the bed are assumed to be in a state of constant agitation. We indicate the conditions at the bed corresponding to the limits of saltation and collisional suspension and outline experiments, simulations, and modeling that have been undertaken to bridge these limits.

  1. Numerical modeling of wind-blown sand on Mars.

    PubMed

    Huang, HaoJie; Bo, TianLi; Zheng, XiaoJing

    2014-09-01

    Recent observation results show that sand ripples and dunes are movable like those on Earth under current Martian climate. And the aeolian process on Mars therefore is re-attracting the eyes of scientific researchers in different fields. In this paper, the spatial and temporal evolution of wind-blown sand on Mars is simulated by the large-eddy simulation method. The simulations are conducted under the conditions of both friction wind speed higher and lower than the "fluid threshold", respectively. The fluid entrainment of the sand particles, the processes among saltation sand particles and sand bed, and the negative feedback of sand movement to flow field are considered. Our results show that the "overshoot" phenomenon also exists in the evolution of wind-blown sand on Mars both temporally and spatially; impact entrainment affects the sand transport rate on Mars when the wind speed is smaller or larger than the fluid threshold; and both the average saltation length and height are one order of magnitudes larger than those on Earth. Eventually, the formulas describing the sand transport rate, average saltation length and height on Mars are given, respectively. PMID:25236498

  2. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2006-01-01

    In 2005, domestic production of industrial sand and gravel was about 31 Mt, a 5% increase from 2004. This increase was bouyed by robust construction and petroleum sectors of the US economy. Based on estimated world production figures, the United States was the world's leading producer and consumer of industrial sand and gravel. In the short term, local shortages of industrial sand and gravel will continue to increase.

  3. RETRACTED: The influence of sand diameter and wind velocity on sand particle lift-off and incident angles in the windblown sand flux

    NASA Astrophysics Data System (ADS)

    Bo, Tian-Li; Zheng, Xiao-Jing; Duan, Shao-Zhen; Liang, Yi-Rui

    2013-05-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Editors-in-Chief. This article also contains significant similarity with parts of text, written by the same author(s), that have appeared in Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, The influence of wind velocity and sand grain diameter on the falling velocities of sand particles, Powder Technology, Volume 241, June 2013, Pages 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Analysis of sand particles' lift-off and incident velocities in wind-blown sand flux, Acta Mechanica Sinica, April 2013, Volume 29, Issue 2, pp 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Influence of sand grain diameter and wind velocity on lift-off velocities of sand particles, The European Physical Journal E, May 2013, 36:50. Tian-Li Bo, Shao-Zhen Duan, Xiao-Jing Zheng, Yi-Rui Liang, The influence of sand bed temperature on lift-off and falling parameters in windblown sand flux, Geomorphology, Volume 204, 1 January 2014, Pages 477-484. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  4. Beds unblocked.

    PubMed

    Bates, Jane

    2016-03-30

    The patient in bay 3 had been kept awake all night because the others around her had been crying out. The ward was frantic 24/7 with new admissions and crises. The patient was exhausted, vulnerable and longed for some sleep. But she was stuck in that bed because no one could organise a care package that would enable her to cope safely at home. PMID:27027175

  5. Numerical simulation of turbulence and sediment transport of medium sand

    NASA Astrophysics Data System (ADS)

    Schmeeckle, Mark W.

    2014-06-01

    A model of sand transport in water is produced by combining a turbulence-resolving large eddy simulation (LES) with a discrete element model (DEM) prescribing the motion of individual grains of medium sand. The momentum effect of each particle on the fluid is calculated at the LES cell containing the particle, and the fluid velocity and pressure, interpolated to each particle center, is used to derive fluid force on each particle in the DEM. Eleven numerical experiments are conducted of an initially flat bed of particles. The experiments span a range of motion, from essentially no motion to vigorous suspension. Hydraulic roughness is found to increase abruptly at the transition from bed load to suspended load transport. Suspended sediment extracts momentum from the flow and decreases the rate of shear. Whereas, slightly higher in the flow, vertical drag by suspended grains damps turbulence and increases the rate of shear. Vertical sediment diffusivity and effective particle settling velocity are much smaller than is commonly assumed in suspended sediment models. The bed load experiments suggest that saltation by itself is a poor model of bed load sand transport. In contrast to expectations from saltation models, the peak bed load flux occurs at essentially the same level as the bed, and grains move slowly in frequent contact with other grains. Higher- and faster-moving bed load grains that can be considered to be in saltation represent a smaller portion of the total flux. Entrainment of bed load grains occurs in response to fluid penetration of the bed by high-vorticity turbulence structures embedded within broader high speed fluid regions referred to as a sweeps or high-speed wedges.

  6. Sand dunes on the central Delmarva Peninsula, Maryland and Delaware

    USGS Publications Warehouse

    Denny, Charles Storrow; Owens, James Patrick

    1979-01-01

    Inconspicuous ancient sand dunes are present in parts of the central Delmarva Peninsula, Maryland and Delaware. Many dunes are roughly V-shaped, built by northwest winds, especially on the east sides of some of the large rivers. On the uplands, the form and spacing of the dunes are variable. A surficial blanket composed mainly of medium and fine-grained sand-the Parsonsburg Sand-forms both the ancient dunes and the broad plains between the dunes. The sand that forms the dunes is massive and intensely burrowed in the upper part; traces of horizontal or slightly inclined bedding appear near the base. Quartz is the dominant mineral constituent of the sand. Microline is abundant in the very fine to fine sand fraction. The heavy-mineral assemblages (high zircon, tourmaline, rutile) are more mature than in most of the possible source rocks. The most abundant minerals in the clay-sized fraction are dioctahedral vermiculite, kaolinite, illite, montmorillonite, and gibbsite. The first four minerals are common in deposits of late Wisconsin and Holocene age. The gibbsite may be detrital, coming from weathered rocks of Tertiary age. The soil profile in the dune sand is weakly to moderately developed. At or near the base of the Parsonsburg Sand are peaty beds that range in age from about 30,000 to about 13,000 radiocarbon years B.P. Microfloral assemblages in the peaty beds suggest that the dunes on the uplands formed in a spruce parkland during the late Wisconsin glacial maximum. The river dunes may also be of late Wisconsin age, but could be Holocene.

  7. Field assessment of alternative bed-load transport estimators

    USGS Publications Warehouse

    Gaeuman, G.; Jacobson, R.B.

    2007-01-01

    Measurement of near-bed sediment velocities with acoustic Doppler current profilers (ADCPs) is an emerging approach for quantifying bed-load sediment fluxes in rivers. Previous investigations of the technique have relied on conventional physical bed-load sampling to provide reference transport information with which to validate the ADCP measurements. However, physical samples are subject to substantial errors, especially under field conditions in which surrogate methods are most needed. Comparisons between ADCP bed velocity measurements with bed-load transport rates estimated from bed-form migration rates in the lower Missouri River show a strong correlation between the two surrogate measures over a wide range of mild to moderately intense sediment transporting conditions. The correlation between the ADCP measurements and physical bed-load samples is comparatively poor, suggesting that physical bed-load sampling is ineffective for ground-truthing alternative techniques in large sand-bed rivers. Bed velocities measured in this study became more variable with increasing bed-form wavelength at higher shear stresses. Under these conditions, bed-form dimensions greatly exceed the region of the bed ensonified by the ADCP, and the magnitude of the acoustic measurements depends on instrument location with respect to bed-form crests and troughs. Alternative algorithms for estimating bed-load transport from paired longitudinal profiles of bed topography were evaluated. An algorithm based on the routing of local erosion and deposition volumes that eliminates the need to identify individual bed forms was found to give results similar to those of more conventional dune-tracking methods. This method is particularly useful in cases where complex bed-form morphology makes delineation of individual bed forms difficult. ?? 2007 ASCE.

  8. Fluidized bed incineration of a slurry waste from caprolactam production

    SciTech Connect

    Cammarota, A.; D'Amore, M.; Donsi, G.; Massimilla, L.

    1980-08-01

    Caprolactam tails are a slurry waste produced in the SNIA process for the synthesis of caprolactam. They contain about 65% water, 25% ash and 10% combustible matter. The ashes are low melting, due to the presence of sodium compounds. The incineration of this waste is carried out at temperatures below 600/sup 0/C in beds of silica sand, using a laboratory scale apparatus with a 40 mm ID fluidization column. Variables investigated include sand particle size, slurry flow rate, bed temperature, bed height. The concentrations of CO/sub 2/ and CO are determined continuously in the flue gases. Bed solids are sampled periodically to determine the carbon content. Results of experiments show that the low temperature incineration on a bed of inert solids is a useful technique for the disposal of caprolactam tails. 8 refs.

  9. Steam sand dryer in northeast part of sand tower. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Steam sand dryer in northeast part of sand tower. View to northeast - Duluth & Iron Range Rail Road Company Shops, Sand Tower, Southwest of downtown Two Harbors, northwest of Agate Bay, Two Harbors, Lake County, MN

  10. Submarine sand sampler

    SciTech Connect

    Casciano, F.M.

    1980-08-19

    A subsurface sampler which obtains samples of sand from offshore deposits is described. A 27-foot tube within a tube is lowered to the ocean floor while suspended from flotation tanks. The sampler is free of suspension cables and thus is detached from boat motions. Surface sand is sucked up through the suction tube and pumped to a container on deck by a jet pump. A jet pump is actuated by high pressure drive water sent down a three inch hose to the top of the sampler, through the void between the two pipes, and to an annular jet nozzle. The nozzle directs the flow upward in the two-inch center pipe through a venturi-shaped throat piece. The throat piece causes sand to be sucked up the suction tube and transported in a slurry through the inner pipe and a two-inch slurry hose to the surface. A manifold valve in the inner pipe shuts off upward flow, jetting water from the lower intake and flowing away sand to let the sampler drop deeper into a deposit. Upward pointing nozzles on the outer pipe provide an upward flow of water around the periphery of the sampler, preventing sand from collapsing around the sampler embedding it in the sand. A sharpened cutting tip helps break up compacted sand. A mercury switch senses deviation from vertical, and a sonar device measures distance of the tip of the sampler pipe from the sand surface.

  11. An Affair with Sand.

    ERIC Educational Resources Information Center

    Stroud, Sharon

    1980-01-01

    Described is a resource idea developed for the teaching of oceanography to junior high students. Sand is studied to help make the study of beaches more relevant to students who may have never seen an ocean. Sand samples are brought into the classroom from various coastal cities, then analyzed and compared. (Author/DS)

  12. Processing of tar sands

    SciTech Connect

    Audeh, C.A.

    1980-04-08

    Petroliferous material of tar sands is processed to recover both low and higher boiling distillate material in a sequential combination operation involving thermal distillation and solvent extraction. Residue of solvent extraction is gasified with hot sand product of gasification step used in the thermal distillation operation.

  13. Sand Bank Weakly Nonlinear Stability Analysis

    NASA Astrophysics Data System (ADS)

    Tambroni, N.; Blondeaux, P.

    2006-12-01

    In the continental shelf, tidal currents often give rise to large scale periodic bed forms named sand banks. Sand banks are long ridges (length of the order of several tens of kilometers) with a spacing (crest to crest distance) up to 10 km and a height up to several tens of meters. Their crests are almost aligned with the tidal currents, forming small positive or negative angles. Although reliable models based on linear stability analyses exist to predict the main geometrical characteristics of the sand banks as they start to appear, little is known on the morphodynamic processes that shape and maintain these bed forms in equilibrium conditions. A weakly nonlinear analysis is a powerful tool to investigate the equilibrium configuration attained by unstable bottom perturbations when the parameters of the problem are close to the critical values. However difficulties arise to apply a weakly nonlinear analysis of sand bank dynamics because the linear approaches predict infinite wavelengths of the most unstable mode close to the critical conditions. Here we first revisit the linear approach of Hulscher et al. (1993, Cont. Shelf Res. 13). In particular the time development of small amplitude bottom perturbations forced by tidal currents is studied using a different parameterization of both the bed shear stress and the sediment transport predictor which provides vanishing values of the sediment transport rate when the bottom shear stress is smaller than a critical value and accounts for the deviation of the sediment transport rate from the depth averaged velocity. With these improvements, both clockwise and counterclockwise sand banks are predicted. Moreover the wavelength of the most unstable mode close to the critical conditions turns out to be finite. This result opens the possibility to carry out a weakly nonlinear stability analysis. Then the time development of the most unstable mode is studied for values of the parameters close to the marginal conditions. The analysis provides estimates of the sand bank equilibrium amplitude and predicts equilibrium profiles characterized by crests sharper than the troughs, a feature often observed in field surveys.

  14. 1. View looking east from sand bar on west side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View looking east from sand bar on west side of bridge, upstream in the bed of Sugar Creek. West elevation of the bridge - Vigo County Bridge No. 139, Spanning Sugar Creek at Seventy-fourth Place, Terre Haute, Vigo County, IN

  15. Drying of solids in fluidized beds

    SciTech Connect

    Kannan, C.S.; Thomas, P.P.; Varma, Y.B.G.

    1995-09-01

    Fluidized bed drying is advantageously adopted in industrial practice for drying of granular solids such as grains, fertilizers, chemicals, and minerals either for long shelf life or to facilitate further processing or handling. Solids are dried in batch and in continuous fluidized beds corresponding to cross-flow and countercurrent flow of phases covering a wide range in drying conditions. Materials that essentially dry with constant drying rate and then give a falling drying rate approximately linear with respect to solids moisture content (sand) as well as those with an extensive falling rate period with the subsequent falling rate being a curve with respect to the moisture content (mustard, ragi, poppy seeds) are chosen for the study. The performance of the continuous fluidized bed driers is compared with that of batch fluidized bed driers; the performance is predicted using batch kinetics, the residence time distribution of solids, and the contact efficiency between the phases.

  16. Large-eddy simulation of sand dune morphodynamics

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Sotiropoulos, Fotis; St. Anthony Falls Laboratory, University of Minnesota Team

    2015-11-01

    Sand dunes are natural features that form under complex interaction between turbulent flow and bed morphodynamics. We employ a fully-coupled 3D numerical model (Khosronejad and Sotiropoulos, 2014, Journal of Fluid Mechanics, 753:150-216) to perform high-resolution large-eddy simulations of turbulence and bed morphodynamics in a laboratory scale mobile-bed channel to investigate initiation, evolution and quasi-equilibrium of sand dunes (Venditti and Church, 2005, J. Geophysical Research, 110:F01009). We employ a curvilinear immersed boundary method along with convection-diffusion and bed-morphodynamics modules to simulate the suspended sediment and the bed-load transports respectively. The coupled simulation were carried out on a grid with more than 100 million grid nodes and simulated about 3 hours of physical time of dune evolution. The simulations provide the first complete description of sand dune formation and long-term evolution. The geometric characteristics of the simulated dunes are shown to be in excellent agreement with observed data obtained across a broad range of scales. This work was supported by NSF Grants EAR-0120914 (as part of the National Center for Earth-Surface Dynamics). Computational resources were provided by the University of Minnesota Supercomputing Institute.

  17. Crest line minimal model for sand dune

    NASA Astrophysics Data System (ADS)

    Guignier, Lucie; Valance, Alexandre; Lague, Dimitri

    2013-04-01

    In desert, complex patterns of dunes form. Under unidirectional wind, transverse rectilinear dunes or crescent shaped dunes called barchan dunes can appear, depending on the amount of sediment available. Most rectilinear transverse sand dunes are observed to fragment, for example at White Sands (New Mexico, United States of America) or Walvis Bay (Namibia). We develop a reduced complexity model to investigate the morphodynamics of sand dunes migrating over a non-erodible bed under unidirectional wind. The model is simply based on two physical ingredients, namely, the sand capture process at the slip face and the cross-wind sand transport. The efficiency of the sand capture process is taken to be dependent of the dune height and lateral diffusion is considered on both the windward and lee sides of the dune. In addition, the dune cross section is assumed to be scale invariant and is approximated by a triangular shape. In this framework, the dune dynamics is reduced to the motion of a string representing the dune crest line and is expressed as a set of two coupled nonlinear differential equations. This simple model reveals its ability to reproduce basic features of barchan and transverse dunes. Analytical predictions are drawn concerning dune equilibrium shape, stability and long-term dynamics. We derive, in particular, analytical solutions for barchan dunes, yielding explicit relationships between their shape and the lateral sand diffusion; and analytical predictions for the migration speed and equilibrium sand flux. A stability analysis of a rectilinear transverse dune allows us to predict analytically the wavelength emerging from fluctuations of the dune crest. We also determine the characteristic time needed for the rectilinear dune to fragment into a multitude of barchan dunes. These outcomes show that extremely simple ingredients can generate complex patterns for migrating dunes. From several dune field data, we are able to determine values of the model parameters and in particular the intensity of the lateral sand diffusion on upwind and downwind sides of the dune, bringing a new light on sediment transport processes.

  18. Effect of bed permeability and hyporheic flow on turbulent flow over bed forms

    NASA Astrophysics Data System (ADS)

    Blois, Gianluca; Best, James L.; Sambrook Smith, Gregory H.; Hardy, Richard J.

    2014-09-01

    This paper uses particle imaging velocimetry to provide the first measurements detailing the flow field over a porous bed in the presence of bed forms. The results demonstrate that flow downstream of coarse-grained bed forms on permeable beds is fundamentally different to that over impermeable beds. Most significantly, the leeside flow separation cell is greatly modified by jets of fluid emerging from the subsurface, such that reattachment of the separated flow does not occur and the Reynolds stresses bounding the separation zone are substantially lessened. These results shed new light on the underlying flow physics and advance our understanding of both ecological and geomorphological processes associated with permeable bed forms. Water fluxes at the bed interface are critically important for biogeochemical cycling in all rivers, yet mass and momentum exchanges across the bed interface are not routinely incorporated into flow models. Our observations suggest that ignoring such exchange processes in coarse-grained rivers may overlook important implications. These new results also provide insight to explain the distinctive morphology of coarse-grained bed forms, the production of openwork textures in gravels, and the absence of ripples in coarse sands, all of which have implications for modeling and prediction of sediment entrainment and flow resistance.

  19. Basaltic island sand provenance

    SciTech Connect

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  20. The role of velocity, pressure, and bed stress fluctuations in bed load transport over bed forms: numerical simulation downstream of a backward-facing step

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2015-02-01

    Bed load transport over ripples and dunes in rivers exhibits strong spatial and temporal variability due to the complex turbulence field caused by flow separation at bedform crests. A turbulence-resolving flow model downstream of a backward-facing step, coupled with a model integrating the equations of motion of individual sand grains, is used to investigate the physical interaction between bed load motion and turbulence downstream of separated flow. Large bed load transport events are found to correspond to low-frequency positive pressure fluctuations. Episodic penetration of fluid into the bed increases the bed stress and moves grains. Fluid penetration events are larger in magnitude near the point of reattachment than farther downstream. Models of bed load transport over ripples and dunes must incorporate the effects of these penetration events of high stress and sediment flux.

  1. The role of velocity, pressure, and bed stress fluctuations in bed load transport over bed forms: numerical simulation downstream of a backward-facing step

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2014-07-01

    Bed load transport over ripples and dunes in rivers exhibits strong spatial and temporal variability due to the complex turbulence field caused by flow separation at bedform crests. A turbulence-resolving flow model downstream of a backward-facing step, coupled with a model integrating the equations of motion of individual sand grains, is used to investigate the physical interaction between bed load motion and turbulence downstream of separated flow. Large bed load transport events are found to correspond to low-frequency, positive pressure fluctuations. Episodic penetration of fluid into the bed increases the bed stress and moves grains. Fluid penetration events are larger in magnitude near the point of reattachment than further downstream. Models of bed load transport over ripples and dunes must incorporate the effects of these penetration events of high stress and sediment flux.

  2. Sand sheets show chevrons

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    In Saharan Africa, sand sheets stretch in virtually flat expanses for hundreds of kilometers. The sheets have been considered devoid not only of life but of regional landforms that might provide insight into the wind-driven processes of erosion and transport by which deserts sustain themselves and grow. Now a fresh, computer-enhanced look at satellite images of sand sheets in Egypt and Sudan by Ted Maxwell of the Smithsonian Institution's Center for Earth and Planetary Studies (Washington, D.C,) and C. Vance Haynes of the University of Arizona (Tucson) has led to the discovery of huge, flat sand dunes.

  3. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2010-01-01

    Domestic production of industrial sand and gravel in 2009 was about 27 Mt (30 million st), declining by 10 percent compared with 2008. Certain end uses of industrial sand and gravel, such as foundry and glassmaking sand, may have declined by a factor greater than 10 percent in 2009. U.S. apparent consumption was 24.7 Mt (27.2 million st) in 2009, down by 10 percent from the previous year, and imports declined to 83 kt (91,000 st).

  4. Detection of the bottom facies characteristics at El Zeit Bay, Red Sea, by using a single-beam acoustic sound

    NASA Astrophysics Data System (ADS)

    Hamouda, Amr Z.; El-Wahhab, Mahamed Abd

    2012-02-01

    El Zeit Bay is a semi-closed area with a rectangular shape which south side is connected witu northwestern side of Red Sea. The study was done to detect the characteristics of the bottom facies at El Zeit Bay. Single-beam seabed echoes combined with diving survey and sediments analyses were used to detect sea bed characteristics. The seabed floor of the study area is characterized by three physiographical distinct bottom facies; sand facies: floral facies and coral patches facies. Sand facies lies at very shallow water it extended from shore line to depth about 2 m. It has very fine sand size intercalated by mud sediments. It is characterized by very poor benthos. Floral bottom facies has medium sand which characterized by rich floral vegetation this flora appear in scattered and irregular forms. It is observed at an average depth from 4 m to 6 m. Coral patches facies is characterized by the presence of coarse sediments. The coral reef covers about 40% of the study area (29.5% hard corals and 10.5% is soft ones) while the rest of the area (60%) is characterized by different benthos. In communities general, his area characterized by high biodiversity.

  5. Growth performance and health of dairy calves bedded with different types of materials.

    PubMed

    Panivivat, R; Kegley, E B; Pennington, J A; Kellogg, D W; Krumpelman, S L

    2004-11-01

    Granite fines, sand, rice hulls, long wheat straw, and wood shavings were compared as bedding for 60 female dairy calves. Growth, health, stress indices, and behavior of newly born calves, along with physical characteristics and bacterial counts of bedding, were evaluated for 42 d during August to October, 2002. Overall average daily gain and dry matter intake of calves did not differ due to bedding type, although during wk 2 calves housed on rice hulls had the greatest dry matter intake and those housed on wood shavings had the lowest. During wk 2, calves housed on granite fines and sand were treated more often for scours, and calves housed on long wheat straw received the fewest antibiotic treatments (week by bedding material interaction). Granite fines formed a harder surface than other bedding, and calves housed on granite fines scored the dirtiest. When bedding materials were evaluated, sand was scored to be the dirtiest, while pens bedded with rice hulls, long wheat straw, and wood shavings scored cleaner. Long wheat straw had the warmest surface temperature, and rice hulls and wood shavings were warmer than granite fines and sand. Serum cortisol, alpha(1)-acid glycoprotein, immunoglobulin G concentrations, and the neutrophil:lymphocyte ratio were not affected by bedding type. On d 0, coliform counts were greatest in rice hulls. After use, coliform counts were greatest in long wheat straw (week by bedding material interaction). On d 42, the concentration of ammonia at 10 cm above the bedding was lowest for long wheat straw. Growth performance of calves bedded for 42 d with 5 bedding types did not differ; however, the number of antibiotic treatments given for scours was greatest on granite fines and sand; coliform counts in the bedding were highest in rice hulls before use and in long wheat straw after 42 d of use. PMID:15483157

  6. Hydraulic Fracturing Sand

    Fine-grained silica sand is mixed with chemicals and water before being pumped into rock formations to prevent the newly created artificial fractures from closing after hydraulic fracturing is completed....

  7. Vent of Sand Volcano

    Vent of sand volcano produced by liquefaction is about 4 ft across in strawberry field near Watsonville. Strip spanning vent is conduit for drip irrigation system. Furrow spacing is about 1.2 m (4 ft) on center....

  8. Sand consolidation methods

    SciTech Connect

    Friedman, R.H.

    1984-01-24

    Methods are provided for selectively consolidating sand grains within a subterranean formation. First an acidic salt catalyst such as ZnCl/sub 2/ is injected into the subterranean formation, wherein the acidic salt catalyst is adsorbed to the surface of the sand grains. Next a polymerizable resin composition such as furfuryl alcohol oligomer is introduced into the well formation. Polymerization of the resin occurs upon exposure to the elevated well temperatures and contact with the acid salt catalyst adsorbed to the sand grains. The polymerized resin serves to consolidate the surfaces of the sand grains while retaining permeability through the pore spaces. An ester of a weak organic acid is included with the resin compositions to control the extent of a polymerization by consuming the water by-product formed druing the polymerization reaction.

  9. Foundry sand reclamation

    SciTech Connect

    Filipovitch, A.J.; Bleuenstein, J.M.

    1984-05-22

    A dry method of conditioning spent foundry sand is disclosed. After having sized the sand and removal of tramp metallic elements, the sand is subjected to a sequence of squeezing under a high-stress low kinetic energy system for a period of 5-30 minutes, and then propelled against a target with high-kinetic energy in the presence of a suction for several minutes. This sequence can be preferably repeated to increase the quality of the resulting product which should have 0.1% or less of fine particles, a pH of 6-9, a clay content and organic combustible content of substantially zero. The reclaimed sand will exhibit a density of at least 100 grams/biscuit when compacted for core making or molding.

  10. Sand Volcano Following Earthquake

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Sand boil or sand volcano measuring 2 m (6.6 ft.) in length erupted in median of Interstate Highway 80 west of the Bay Bridge toll plaza when ground shaking transformed loose water-saturated deposit of subsurface sand into a sand-water slurry (liquefaction) in the October 17, 1989, Loma Prieta earthquake. Vented sand contains marine-shell fragments. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: J.C. Tinsley, U.S. Geological Survey)

  11. Giant sand waves at the mouth of San Francisco Bay

    USGS Publications Warehouse

    Barnard, P.L.; Hanes, D.M.; Rubin, D.M.; Kvitek, R.G.

    2006-01-01

    A field of giant sand waves, among the largest in the world, recently was mapped in high resolution for the first time during a multibeam survey in 2004 and 2005 through the strait of the Golden Gate at the mouth of San Francisco Bay in California (Figure la). This massive bed form field covers an area of approximately four square kilometers in water depths ranging from 30 to 106 meters, featuring more than 40 distinct sand waves with crests aligned approximately perpendicular to the dominant tidally generated cross-shore currents, with wavelengths and heights that measure up to 220 meters and 10 meters, respectively. Sand wave crests can be traced continuously for up to two kilometers across the mouth of this energetic tidal inlet, where depth-averaged tidal currents through the strait below the Golden Gate Bridge exceed 2.5 meters per second during peak ebb flows. Repeated surveys demonstrated that the sand waves are active and dynamic features that move in response to tidally generated currents. The complex temporal and spatial variations in wave and tidal current interactions in this region result in an astoundingly diverse array of bed form morphologies, scales, and orientations. Bed forms of approximately half the scale of those reported in this article previously were mapped inside San Francisco Bay during a multibeam survey in 1997 [Chin et al., 1997].

  12. Selective bed-load transport in Las Vegas Wash, a gravel-bed stream

    NASA Astrophysics Data System (ADS)

    Duan, Jennifer G.; Scott, Steve

    2007-09-01

    SummaryBed-load measurements collected at the Las Vegas Wash, a gravel-bed stream near Las Vegas, Nevada, were used to study selective transport of sand and gravel in uni-modal or weakly bi-modal river sediment. Measurements showed that size selectivity in a sediment mixture decreases as shear stress increases. Transport of variously sized sediment particles approaches equal mobility as the transported bed load is composed approximately of the same size particles as surface-bed material. Consequently, a hiding function was derived to account for the increase or reduction in reference shear stress for an individual size class in a sediment mixture as compared with that in an uniformly sized sediment. An empirical equation for determining fractional bed-load transport rate was then formulated by correlating the dimensionless, fractional bed-load transport rate with the dimensionless bed-shear stress. This equation indicated that the hiding function depends not only on the size of individual size class but also on the flow depth used to quantify the magnitude of shear stress. The present study contributes to the body of knowledge used in predicting selective transport of sediment mixtures in gravel-bed streams.

  13. Loading and Unloading Weaned Pigs: Effects of Bedding Types, Ramp Angle, and Bedding Moisture.

    PubMed

    Garcia, Arlene; McGlone, John J

    2014-01-01

    The use of non-slip surfaces during loading and unloading of weaned pigs plays an important role in animal welfare and economics of the pork industry. Currently, the guidelines available only suggest the use of ramps below 20 to load and unload pigs. Three ramp angles (0, 10 or 20), five bedding materials (nothing, sand, feed, wood shavings or wheat straw hay), two moistures (dry or wet bedding; >50% moisture) over two seasons (>23.9 C summer, <23.9 C winter) were assessed for slips/falls/vocalizations (n = 6,000 pig observations). "Score" was calculated by the sum of slips, falls, and vocalizations. With the exception of using feed as a bedding, all beddings provided some protection against elevated slips, falls, and vocalizations (P < 0.01). Providing bedding reduced (P < 0.05) scores regardless of whether the bedding was dry or wet. Scores increased as the slope increased (P < 0.01). Provision of bedding, other than feed, at slopes greater than zero, decreased slips, falls and vocalizations. The total time it took to load and unload pigs was affected by bedding type, ramp angle, and season (P < 0.05). Minimizing slips, falls, and vocalizations when loading and unloading pigs improved animal welfare. PMID:26479010

  14. Collapsing granular beds: the role of interstitial air.

    PubMed

    Homan, Tess; Gjaltema, Christa; van der Meer, Devaraj

    2014-05-01

    A prefluidized sand bed consisting of fine particles compactifies when it is subjected to a shock. We observe that the response depends on both the shock strength and the ambient pressure, where, counterintuitively, at high ambient pressure the compaction is larger, which we connect to a decrease of the static friction inside the bed. We find that the interstitial air is trapped inside the bed during and long after compaction. We deduce this from measuring the pressure changes above and below the bed: The top pressure decreases abruptly, on the time scale of the compaction, whereas that below the bed slowly rises to a maximum. Subsequently, both gently relax to ambient values. We formulate a one-dimensional diffusion model that uses only the change in bed height and the ambient pressure as an input, and we show that it leads to a fully quantitative understanding of the measured pressure variations. PMID:25353784

  15. Kentucky tar sand project

    SciTech Connect

    Kelley, M.N.; Jones, H.D. II; Lewis, F.W.

    1985-03-01

    Engineering details and pilot-plant results from a pioneering investigation based on a Kentucky tar-sand reserve are presented. The tar sand deposits of Kentucky are generally situated in the southeastern rim of the Illinois Basin along the southern boundary of the Western Coal Field region. In a recent study of US tar sand reserves, it was reported that over 3.4 billion barrels of oil are in Kentucky tar sand deposits alone. In the 22,000 acres, estimated reserves are over 100 million barrels of recoverable heavy oil. The oil-impregnated section of the deposit ranges in heavy oil content from five gallons per ton to over fifteen gallons per ton. The ore body is up to thirty-five feet thick and the overall stripping ratio for a commercial plant is estimated to be one cubic yard of undisturbed overburden material per ton of tar sand ore. A shovel and truck-type strip mining operation would be used to provide feedstock to the plant.

  16. RUN OUTS OCCUR WHEN IRON HAS UNSEATED MOLDING SAND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RUN OUTS OCCUR WHEN IRON HAS UNSEATED MOLDING SAND AND RUN OUT OF THE MOLD UNDER POURING JACKETS AND SPILLS ONTO THE MOLDING PLATFORM. WORKERS GENERALLY WAIT SEVERAL MINUTES FOR THE IRON TO SOLIDIFY AND, WHILE IT IS STILL RED-HOT, REMOVE IT FROM THE PLATFORM AND SCRAP THE MOLD. - Southern Ductile Casting Company, Centerville Foundry, 101 Airport Road, Centreville, Bibb County, AL

  17. The extraction of bitumen from western oil sands. Quarterly report, July--September, 1993

    SciTech Connect

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1993-11-01

    This report cites task number followed by a brief statement of each task and the action taken this quarter. The tasks are: NEPA environmental information statement; coupled fluidized-bed bitumen recovery and coked sand combustion; water-based recovery of bitumen; rotary kiln process for recovery of bitumen and combustion of coke sand; recovery of bitumen from oil sands using fluidized bed reactors and combustion of spent sands in transport reactors; recovery of bitumen from oil sand and upgrading of bitumen by solvent extraction; catalytic and thermal upgrading of bitumens and bitumen-derived liquids; evaluation of Utah`s major oil sand deposits for the production of asphalt, high energy jet fuels, and other specialty products; development of mathematical models for bitumen recovery and processing; completion of the cost estimation study of the pilot plant restoration; development studies of equipment for three-product gravity separation of bitumen and sand; development studies of disposal of sand by conveying or pumping of high solids concentration sand-water slurries; and environmental studies of the North Salt Lake pilot plant rehabilitation and eventual operation and those environmental problems associated with eventual commercial products.

  18. Birthmarks - red

    MedlinePlus

    Red birthmarks are skin markings created by blood vessels close to the skin surface. They develop before ... There are two main categories of birthmarks: Red birthmarks are made ... vascular birthmarks. Pigmented birthmarks are areas in which ...

  19. Eye redness

    MedlinePlus

    Bloodshot eyes; Red eyes; Scleral infection; Conjunctival infection ... There are many causes of a red eye or eyes. Some are medical emergencies and some are a cause for concern, but not an emergency. Others are nothing to worry about. ...

  20. Incident Angle of Saltating Particles in Wind-Blown Sand

    PubMed Central

    Fu, Lin-Tao; Bo, Tian-Li; Gu, Hai-Hua; Zheng, Xiao-Jing

    2013-01-01

    Incident angle of saltating particles plays a very important role in aeolian events. In this paper, the incident angles of sand particles near the sand bed were measured in wind tunnel. It reveals that the incident angles range widely from 0° to 180° and thereby the means of angles are larger than published data. Surprisingly, it is found the proportion that angles of 5°–15° occupy is far below previous reports. The measuring height is probably the most important reason for the measurement differences between this study and previous investigations. PMID:23874470

  1. Predicted and observed cyclic performance of piles in calcareous sand

    SciTech Connect

    Al-Douri, R.H.; Poulos, H.G. )

    1995-01-01

    The performance of small-scale model piles jacked into calcareous sand and tested under cyclic axial loadings is presented in this paper. The calcareous sand beds used for the tests have been prepared from reconstituted soil that has been consolidated under different overburden pressures using a test vessel of special design. The study is focused on the accumulation of permanent displacement of the piles under both uniform and nonuniform amplitude cyclic loadings. A numerical analysis is employed to predict the cyclic behavior of the model piles, using input parameters derived from the experimental results. Comparisons between the measured and predicted results show reasonable agreement.

  2. BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTH. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTH. THE SUCTION (INTAKE) HOSE IS SEEN AT THE LEFT RESTING ON THE FILTER BED SURFACE; THE DISCHARGE HOSE IS AT THE RIGHT, RUNNING FROM THE BOTTOM OF THE CENTRAL VERTICAL AXLE TO THE CENTRIFUGAL PUMP. FROM THE PUMP WATER IS DISCHARGED THROUGH THE HORIZONTAL PIPE LOCATED UNDER THE EDGE OF PLATFORM DECK INTO THE WASTE-WATER TROUGH (NOT SEEN IN THIS VIEW). - Yuma Main Street Water Treatment Plant, Blaisdell Slow Sand Filter Washing Machine, Jones Street at foot of Main Street, Yuma, Yuma County, AZ

  3. Direct numerical simulations of aeolian sand ripples

    PubMed Central

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno

    2014-01-01

    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  4. Direct numerical simulations of aeolian sand ripples.

    PubMed

    Durán, Orencio; Claudin, Philippe; Andreotti, Bruno

    2014-11-01

    Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement toward the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by midair collisions. Finally, we provide quantitative support for the use of the propagation of these ripples as a proxy for remote measurements of sediment transport. PMID:25331873

  5. Frosted Sand Dunes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] (Released 22 July 2002) This image, located near 79.6 N and 142.7 E, displays sand dunes covered in CO2 frost. This is a region of Mars that contains circumpolar sand seas. The large sand deposits and the high winds that circulate around the pole allow for the formation of a huge dune field that surrounds the north polar cap. As the northern hemisphere progresses towards winter, CO2 frost condenses out of the atmosphere and covers the dunes. During northern spring, the CO2 sublimates and the dunes are once again uncovered and active. This image was taken as northern spring progresses and the crests of the dunes are just starting to be exposed. The dark dune material absorbs sunlight more efficiently than the brighter frost, aiding in the sublimation of the remaining frost.

  6. Red Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  The Red Sea     View Larger Image ... Multi-angle Imaging SpectroRadiometer (MISR) image of the Red Sea was acquired on August 13, 2000. Located between the East African coast and the Saudi Arabian peninsula, the Red Sea got its name because the blooms of a type of algae,  Trichodesmium ...

  7. Red clover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover (Trifolium pratense L.) is an important forage legume grown on approximately 4 million hectares worldwide. An estimated 2.8 million kg of red clover seed per year was produced worldwide in 2005-2007. This amount of seed would be enough to maintain approximately 4 million hectares of red...

  8. Asbestos in play sand

    SciTech Connect

    Langer, A.M.; Nolan, R.P.

    1987-04-02

    A letter in the New England Journal of Medicine (Oct. 2 issue) stated that a carbonate sand marketed in New Jersey was contaminated with 2 to 4 percent tremolite asbestos. The authors were called on by one of the federal agencies to repeat the analysis of this sand, specifically for its asbestos content. The sand was pulverized and immersed in oils with known refractive indexes, and the predominant amphibole was characterized by polarized light microscopy. The optical characteristics were noted, and the indexes of refraction were measured and found to be consistent with tremolite. On the basis of optical characterization, the authors concluded that all the tremolite visualized with light microscopy consisted of large, single cleavage fragments and was not asbestiform. They used the technique of x-ray diffraction, as did the author of the original report, which showed the presence of an amphibole mineral (probably tremolite) in the carbonate sand. The technique was not used, and cannot be used, to distinguish between the tremolite habits (asbestiform or nonasbestiform). An acid-insoluble residue, recovered from the carbonate sand, was examined by analytic electron microscopy. The tremolite grains were observed to consist of single untwinned, crystalline fragments. Few defects were noted. Selected area electron diffraction nets were indicative of fragments lying near or at the common amphibole cleavage plane. These characteristics are consistent with cleavage fragments and not asbestos. Aspect ratios reflected short particles (less than 5.1). On the basis of their examination of the carbonate play sand, they conclude that it did not contain tremolite asbestos.

  9. Ganges Chasma Sand Sheet

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Today's sand sheet is located in the Ganges Chasma portion of Valles Marineris. As with yesterday's image, note that the dune forms are seen only at the margin and that the interior of the sand sheet at this resolution appears to completely lack dune forms.

    Image information: VIS instrument. Latitude -6.4, Longitude 310.7 East (49.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Sand Dunes with Frost

    NASA Technical Reports Server (NTRS)

    2004-01-01

    9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

  11. A sand budget for Marble Canyon, Arizona: implications for long-term monitoring of sand storage change

    USGS Publications Warehouse

    Grams, Paul E.

    2013-01-01

    Recent U.S. Geological Survey research is providing important insights into how best to monitor changes in the amount of tributary-derived sand stored on the bed of the Colorado River and in eddies in Marble Canyon, Arizona. Before the construction of Glen Canyon Dam and other dams upstream, sandbars in Glen, Marble, and Grand Canyons were replenished each year by sediment-rich floods. Sand input into the Colorado River is crucial to protecting endangered native fish, animals, and plants and cultural and recreational resources along the river in Glen Canyon National Recreation Area and Grand Canyon National Park.

  12. Reefs, sand and reef-like sand: A comparison of the benthic biodiversity of habitats in the Dutch Borkum Reef Grounds

    NASA Astrophysics Data System (ADS)

    Coolen, Joop W. P.; Bos, Oscar G.; Glorius, Sander; Lengkeek, Wouter; Cuperus, Joël; van der Weide, Babeth; Agüera, Antonio

    2015-09-01

    Reefs play an important role in the distribution of species associated with hard substrates and are of value for biodiversity conservation. High densities of the habitat building annelid Lanice conchilega also increase local biodiversity. This study describes the benthic biodiversity of a rocky reef and its surrounding sand bottom with dense L. conchilega beds in the Borkum Reef Grounds, north of the island of Schiermonnikoog in the Dutch North Sea. A side-scan sonar survey revealed distinct seabed areas with high acoustic reflections, indicating the presence of hard substrate on the sandy seafloor. To ground truth the side-scan sonar data and make an inventory of the biodiversity of the observed habitats, a multi-method sampling approach (box corer, SCUBA airlift sampler and visual transects, drop-down camera) was used. This revealed (1) rocky reefs: a combination of gravel, stones and rocks; (2) individual rocks in a sandy environment; (3) sand with dense L. conchilega beds (> 1500 ind·m- 2) and (4) sand bottom habitat. A total of 193 taxa were found with many unique species per habitat. Species richness was significantly higher on sand when compared to the rocky reef (NB-GLM; p = 0.006), caused by the presence of dense L. conchilega beds (Poisson GLM; p < 0.001). Including dense L. conchilega beds as an additional habitat showed that these held a higher species richness than the rocky reefs (NB-GLM; p = 0.002), while sand without dense L. conchilega beds did not (NB-GLM; p = 0.14). Since the rocky reefs were present on a sandy bottom, the local biodiversity more than doubled with the presence of rocky reefs. The nMDS plot clearly separated the sand and rocky reef communities and also showed a clustering of dense L. conchilega beds within the sand samples. Each method detected unique species, demonstrating the value of a multi-method approach compared to e.g. box coring alone. This study identified several species previously unknown to the Borkum Reefs Grounds area. The total area of rocky reefs in the southern part of the Dutch Borkum Reef area is estimated to be 9.8 km2 and of L. conchilega beds with densities > 1500 ind·m- 2 to be 74 km2. Further research should focus on the possible function of L. conchilega as an ecosystem engineer creating intermediate sand-reef systems. For mapping these L. conchilega beds, we advise using side-scan sonar imaging combined with ground truthing by drop-down cameras.

  13. In situ measurements of advective solute transport in permeable shelf sands

    NASA Astrophysics Data System (ADS)

    Reimers, Clare E.; Stecher, Hilmar A.; Taghon, Gary L.; Fuller, Charlotte M.; Huettel, Markus; Rusch, Antje; Ryckelynck, Natacha; Wild, Christian

    2004-01-01

    Solute transport rates within the uppermost 2 cm of a rippled continental shelf sand deposit, with a mean grain size of 400-500 ?m and permeabilities of 2.0-2.410 -11 m 2, have been measured in situ by detecting the breakthrough of a pulse of iodide after its injection into the bottom water. These tracer experiments were conducted on the USA Middle Atlantic Bight shelf at a water depth of 13 m using a small tethered tripod that carried a close-up video camera, acoustic current meter, motorized 1.5 liter "syringe", and a microprofiling system for positioning and operating a solid-state voltammetric microelectrode. When triggered on shipboard, the syringe delivered a 0.21 M solution of potassium iodide and red dye through five nozzles positioned around and above the buried tip of the voltammetric sensor for 0.65-5 min. Bottom turbulence rapidly mixed and dispersed the tracer, which then was carried into the bed by interfacial water flows associated with ripple topography. The advective downward transport to the sensor tip was timed by a sequence of repetitive voltammetric scans. The distance-averaged vertical velocity, expressed as the depth of the sensor tip in the sand divided by the time to iodide breakthrough, was found to vary from 6 to 53 cm h -1 and generally to decrease with sediment depth. Because of episodic pumping and dispersion associated with the greatest 5% of wave heights and current speeds recorded, some concentration vs. time responses showed evidence of uneven solute migration. For reasons of mass balance, the advective flow field in the surface layers of permeable beds includes regions of water intrusion, horizontal pore-water flow and upwelling which also may explain some of the observed uneven migration. Pore-water advection was also evident in oxygen profiles measured before and after tracer injection with the voltammetric sensor. These profiles showed irregular distributions and oxygen penetration depths of 4-4.5 cm. Sand cores from the study site subjected to continuous pore fluid pumping showed that oxygen consumption was positively correlated with flow rate. The effect was calculated to be equivalent to increasing the benthic oxygen flux by 0.029 mmol m -2 d -1 for every 1 liter m -2 d -1 flushed through a 4 cm thick oxic zone. Thus, it is concluded that in situ oxygen consumption rates must be highly variable and dependent on the prevalent wave and current conditions.

  14. Loading and Unloading Weaned Pigs: Effects of Bedding Types, Ramp Angle, and Bedding Moisture

    PubMed Central

    Garcia, Arlene; McGlone, John J.

    2014-01-01

    Simple Summary Current guidelines suggest the use of ramps below 20° to load and unload pigs; they do not suggest the use of any specific bedding. Bedding types (nothing, feed, sand, wood shavings, and hay) were tested with four week old weaned pigs to determine which was most effective in reducing slips, falls, and vocalizations at three ramp angles, two moistures, over two seasons. Slips, falls, and vocalizations were summed to establish a scoring system to evaluate treatments. Scores increased in a linear fashion as ramp slope increased. The amount of time it took to load and unload pigs was affected by bedding type and ramp angle. Overall, the use of selected bedding types minimized slips, falls, and vocalizations and improved animal welfare. Abstract The use of non-slip surfaces during loading and unloading of weaned pigs plays an important role in animal welfare and economics of the pork industry. Currently, the guidelines available only suggest the use of ramps below 20° to load and unload pigs. Three ramp angles (0°, 10° or 20°), five bedding materials (nothing, sand, feed, wood shavings or wheat straw hay), two moistures (dry or wet bedding; >50% moisture) over two seasons (>23.9 °C summer, <23.9 °C winter) were assessed for slips/falls/vocalizations (n = 6,000 pig observations). “Score” was calculated by the sum of slips, falls, and vocalizations. With the exception of using feed as a bedding, all beddings provided some protection against elevated slips, falls, and vocalizations (P < 0.01). Providing bedding reduced (P < 0.05) scores regardless of whether the bedding was dry or wet. Scores increased as the slope increased (P < 0.01). Provision of bedding, other than feed, at slopes greater than zero, decreased slips, falls and vocalizations. The total time it took to load and unload pigs was affected by bedding type, ramp angle, and season (P < 0.05). Minimizing slips, falls, and vocalizations when loading and unloading pigs improved animal welfare. PMID:26479010

  15. Internal architecture and mobility of tidal sand ridges in the East China Sea

    NASA Astrophysics Data System (ADS)

    Liu, Zhenxia; Berné, Serge; Saito, Yoshiki; Yu, Hua; Trentesaux, Alain; Uehara, Katsuto; Yin, Ping; Paul Liu, J.; Li, Chaoxing; Hu, Guanghai; Wang, Xiangqin

    2007-07-01

    On the basis of bathymetric and seismic data and data from piston cores collected by the Chinese-French marine geology and geophysics investigation of 1996, we discuss the internal architecture and mobility of tidal sand ridges in the East China Sea (ECS). We characterized the sand ridges on the middle to outer shelf of the ECS as tide-dominated sand ridges with southwest dipping beds, indicating that the regional net sediment transport is toward the southwest. As the sand ridges gradually migrate toward the southwest, new sand ridges are continually replacing old ones, and several generations of sand ridges have developed in the study area. High-resolution seismic data, acoustic Doppler current profiler data, and two 14C-dated piston cores, DGKS9614 and DGKS9612—from a sand ridge swale and crest, respectively—show that these sand ridges, which are at water depths of 90-100 m, have been migrating for the last ca. 2-3 kyr at least, though these ridges have previously been interpreted as moribund or relict. Sequence stratigraphic interpretation of seismic profiles and core data show that tidal ridges in the ECS evolved from muddier sand ridges formed during the last transgression to sandier shelf sand ridges in response to the shoreline retreat, which resulted in a decrease of riverine muddy sediments and recycling of sandy materials by tidal currents. Most active sand ridge formation occurred during the last transgression, but the present sand ridges on the middle to outer shelf are still being influenced by the modern hydrodynamics. Therefore, these sand ridges on the ECS shelf should be referred to as "quasi-active sand ridges" rather than as moribund or relict sand ridges.

  16. Effect of Bedding Material on Flies, and Behavior and Innate Immunity of Calves Reared in Hutches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy calf hutches are often bedded with straw (STR), but sand (SND) and wood shavings (SHV) are becoming more common. The objective was to compare 3 beddings for presence of flies and measures of innate immunity and behavior of calves. Hutches were blocked by location and each of 3 hutches in a blo...

  17. Effect of Bedding Material on Flies, and Behavior and Innate Immunity of Calves Reared in Hutches.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy calf hutches are often bedded with straw (STR), but sand (SND) and wood shavings (SHV) are becoming more common. The objective was to compare 3 beddings for presence of flies and measures of innate immunity and behavior of calves. Hutches were blocked by location and each of 3 hutches in a blo...

  18. Effect of Bedding Material on Performance, Health, and Hide Contamination of Calves Reared in Hutches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy calf hutches are often bedded with straw (STR), but sand (SND) and wood shavings (SHV) are becoming more common. This study compared 3 different beddings for growth and health of calves and microbial presence on their hides. Hutches were blocked by location and each of 3 hutches in a block w...

  19. Catalytic Pyrolysis of Oak via Pyroprobe and Bench Scale, Packed Bed Pyrolysis Reactors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pyrolytic conversion of oak sawdust at 500°C in flowing He over eight proprietary catalysts is described and compared to the control bed material, quartz sand. The reactions were conducted and compared in two reactors, an analytical, ug-scale pyroprobe reactor and a bench, g-scale packed bed re...

  20. Aeolian sand ripples: experimental study of fully developed states.

    PubMed

    Andreotti, Bruno; Claudin, Philippe; Pouliquen, Olivier

    2006-01-20

    We report an experimental investigation of aeolian sand ripples, performed both in a wind tunnel and on stoss slopes of dunes. Starting from a flat bed, we can identify three regimes: appearance of an initial wavelength, coarsening of the pattern, and finally saturation of the ripples. We show that both initial and final wavelengths, as well as the propagative speed of the ripples, are linear functions of the wind velocity. Investigating the evolution of an initially corrugated bed, we exhibit nonlinear stable solutions for a finite range of wavelengths, which demonstrates the existence of a saturation in amplitude. These results contradict most of the models. PMID:16486644

  1. Ganges Chasma Sands

    NASA Technical Reports Server (NTRS)

    2005-01-01

    8 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, windblown sand in the form of dunes and a broad, relatively flat, sand sheet in Ganges Chasma, part of the eastern Valles Marineris trough complex. The winds responsible for these dunes blew largely from the north. Sand dunes on Mars, unlike their Earthly counterparts, are usually dark in tone. This is a reflection of their composition, which includes minerals that are more rich in iron and magnesium than the common silica-rich dunes of Earth. Similar dark sands on Earth are found in volcanic regions such as Iceland and Hawaii. A large dune field of iron/magnesium-rich grains, in the form fragments of the volcanic rock, basalt, occurs south of Moses Lake, Washington, in the U.S.

    Location near: 7.7oS, 45.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Spring

  2. The Engineering of Sand.

    ERIC Educational Resources Information Center

    Pilkey, Orrin H.

    1989-01-01

    Discussed are beach replenishment, and hard structures in relation to the sand transportation system. Failures of current engineering practices and the resulting costs to the taxpayer are stressed. Equations and parameters used to make predictions of beach durability are criticized. (CW)

  3. Sand Penetration Experiments

    NASA Astrophysics Data System (ADS)

    Bless, Stephan; Berry, Don; Lawhorn, William

    2009-06-01

    In an experimental program, steel bullets and short cylinders, and tungsten alloy rods were shot into dry silica sand at 600 to 1100 m/s. The rods included finsets that were designed for aerodynamic stabilization. The fins also apparently provided trajectory stabilization within the sand as well. Time-of-arrival screens allowed measurement of velocity. Analysis of those data indicated that drag coefficients increased as projectiles slowed down. Comparison with previous data indicates there was a slight increase in drag coefficient of rods over expected values for unfinned rods; however, the net result was penetration normalized by length was as high as 40, depending on nose shape. It was found that when the velocity exceeded about 80 m/s (which is close to the speed of sound in sand) sand particles were broken down into their constituent grains, resulting in a decrease in size by about 1000. Normalized penetration is expected to scale as kinetic energy per unit area, and it was significantly higher for the rods than for the other projectiles. This is attributed to stabilization from interaction of the fins with the cavity wall.

  4. Building with Sand

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2010-01-01

    Children playing in damp sand invariably try to make a tower or a tunnel. By providing experiences with a variety of materials, alone and together, teachers set up the conditions for children to learn through their senses and ensure that a class approaches a topic with a common set of experiences to build on. Learning about the properties of…

  5. Sand and sandstone

    SciTech Connect

    Pettijohn, F.J.; Potter, P.E.; Siever, R.

    1987-01-01

    Here is a new, second edition of a classical textbook in sedimentology, petrology, and petrography of sand and sandstones. It has been extensively revised and updated, including: new techniques and their utility; new literature; new illustrations; new, explicitly stated problems for the student; and a wider scope.

  6. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  7. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  8. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Bedding, bed linens, and towels. 2902.15 Section 2902... PROCUREMENT Designated Items § 2902.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  9. Extracting Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Ford, L. B.; Daly, D.

    1984-01-01

    Recovery of oil from tar sands possible by batch process, using steam produced by solar heater. In extraction process, solar heater provides steam for heating solvent boiler. Boiling solvent removes oil from tar sands in Soxhlet extractor.

  10. Origin of hysteresis in bed form response to unsteady flows

    NASA Astrophysics Data System (ADS)

    Martin, Raleigh L.; Jerolmack, Douglas J.

    2013-03-01

    Field and laboratory studies indicate that changes in riverbed morphology often lag changes in water discharge. This lagged response produces hysteresis in the relationship between water discharge and bed form geometry. To understand these phenomena, we performed flume experiments to observe the response of a sand bed to step increases and decreases in water discharge. For an abrupt rise in discharge, we observed that bed forms grew rapidly by collision and merger of bed forms migrating with different celerities. Growth rate slowed as bed forms approached equilibrium with the higher discharge regime. After an abrupt discharge drop, bed form decay occurred through formation of smaller secondary bed forms, in equilibrium with the lower discharge, which cannibalized the original, relict features. We present a simple model framework to quantitatively predict time scales of bed form adjustment to flow changes, based on equilibrium bed form heights, lengths, and celerities at low and high flows. For rising discharge, the model assumes that all bed form collisions result in irreversible merger, due to a dispersion of initial celerities. For falling discharge, we derive a diffusion model for the decay of relict high-stage features. Our models predict the form and time scale of experimental bed form adjustments. Additional experiments applying slow and fast triangular flood waves show that bed form hysteresis occurs only when the time scale of flow change is faster than the modeled (and measured) bed form adjustment time. We show that our predicted adjustment time scales can also be used to predict the occurrence of bed form hysteresis in natural floods.

  11. Northern Sand Sea

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    This VIS image was taken at 82 degrees North latitude during Northern spring. The image is completely dominated by dunes. In sand seas, it is very common for a single type of dune to occur, and for a single predominate wind to control the alignment of the dunes.

    Image information: VIS instrument. Latitude 82.2, Longitude 152.5 East (207.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Retention capacity of natural sands for the treatment of waters containing arsenic trace levels

    NASA Astrophysics Data System (ADS)

    Le Hécho, I.; Chappaz, A.; Potin-Gautier, M.; Behra, P.

    2003-05-01

    The aim of this work is to study the As retention capacity of two natural sand, a quartz sand and a volcanic red sand. Sorption experiments were performed in batch reactors at a constant ionic strength (0.010 M Na03). pH was controlled by acid or base microadditions. As, Fe, Al and Si were analysed in the aqueous phase to control their fate. Kinetic experiments of arsenic sorption showed that a fast step followed by a slow one could be observed depending on the sand. In the most rapid step, the formation of monodentate complexes could be the main phenomenon while in the slowest one bidendate and binuclear complexes could predominate. During As (V) sorption, the analyses of Al, Fe and Si showed that the dissolution of the different minerals present in the sands as Al, Si and Fe (hydr) oxides was not affected by As (V) sorption. From the point of view of the surface reactivity, the quartz sand bas more available sites for arsenic sorption than the volcanic sand However, the red soil shows a better retelltion capacity as expressed in amount of As per solid mass unit : 666 nmol g^{-1} and 9.4 nmol g^{-1} for the red soil and the quartz sand, respectively, for a contact time of 288 h.

  13. Phase diagrams of dune shape and orientation depending on sand availability

    PubMed Central

    Gao, Xin; Narteau, Clément; Rozier, Olivier; du Pont, Sylvain Courrech

    2015-01-01

    New evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism and the subsequent dune orientation. Here we numerically investigate the development of bedforms in bidirectional wind regimes for two different conditions of sand availability: an erodible sand bed or a localized sand source on a non-erodible ground. These two conditions of sand availability are associated with two independent dune growth mechanisms and, for both of them, we present the complete phase diagrams of dune shape and orientation. On an erodible sand bed, linear dunes are observed over the entire parameter space. Then, the divergence angle and the transport ratio between the two winds control dune orientation and dynamics. For a localized sand source, different dune morphologies are observed depending on the wind regime. There are systematic transitions in dune shape from barchans to linear dunes extending away from the localized sand source, and vice-versa. These transitions are captured fairly by a new dimensionless parameter, which compares the ability of winds to build the dune topography in the two modes of dune orientation. PMID:26419614

  14. Production of bitumen-derived hydrocarbon liquids from Utah's tar sands: Final report

    SciTech Connect

    Oblad, A.G.; Hanson, F.V.

    1988-07-01

    In previous work done on Utah's tar sands, it had been shown that the fluidized-bed pyrolysis of the sands to produce a bitumen-derived hydrocarbon liquid was feasible. The research and development work conducted in the small-scale equipment utilized as feed a number of samples from the various tar sand deposits of Utah elsewhere. The results from these studies in yields and quality of products and the operating experience gained strongly suggested that larger scale operation was in order to advance this technology. Accordingly, funding was obtained from the State of Utah through Mineral Leasing Funds administered by the College of Mines and Earth Sciences of the University of Utah to design and build a 4-1/2 inch diameter fluidized-bed pilot plant reactor with the necessary feeding and recovery equipment. This report covers the calibration and testing studies carried out on this equipment. The tests conducted with the Circle Cliffs tar sand ore gave good results. The equipment was found to operate as expected with this lean tar sand (less than 5% bitumen saturation). The hydrocarbon liquid yield with the Circle Cliffs tar sand was found to be greater in the pilot plant than it was in the small unit at comparable conditions. Following this work, the program called for an extensive run to be carried out on tar sands obtained from a large representative tar sand deposit to produce barrel quantities of liquid product. 10 refs., 45 figs., 11 tabs.

  15. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  16. The Rheology of Acoustically Fluidized Sand

    NASA Astrophysics Data System (ADS)

    Conrad, J. W.; Melosh, J.

    2013-12-01

    The collapse of large craters and the formation of central peaks and peak rings is well modeled by numerical computer codes that incorporate the acoustic fluidization mechanism to temporarily allow the fluid-like flow of rock debris immediately after crater excavation. Furthermore, long runout landslides require a similar mechanism to explain their almost frictionless movement, which is probably also a consequence of their granular composition coupled with internal vibrations. Many different investigators have now confirmed the ability of vibrations to fluidize granular materials. Yet it still remains to fully describe the rheology of vibrated sand as a function of stress, frequency and amplitude of the vibrations in the sand itself. We constructed a rotational viscometer to quantitatively investigate the relation between the stress and strain rate in a horizontal bed of strongly vibrated sand. In addition to the macroscopic stain rate, the amplitude and frequency of the vibrations produced by a pair of pneumatic vibrators were also measured with the aid of miniaturized piezoelectric accelerometers (B&K 4393) whose output was recorded on a digital storage oscilloscope. The initial gathering of the experimental data was difficult due to granular memory, but by having the sand compacted vibrationally for 8 minutes before each run the scatter of data was reduced and we were able to obtain consistent results. Nevertheless, our major source of uncertainty was variations in strain rate from run to run. We find that vibrated sand flows like a highly non-Newtonian fluid, in which the shear strain rate is proportional to stress to a power much greater than one, where the precise power depends on the amplitude and frequency of the applied vibrations. Rapid flow occurs at stresses less than half of the static yield stress (that is, the yield stress when no vibration is applied) when strong vibrations are present. For a Newtonian fluid, such as water, the relation between strain rate and stress is linear. In our experiments we found that the shear strain rate is proportional to shear stress raised to the powers 5.9 and 8.4 at frequencies of 8.5 kHz and 7.4 kHz and increasing amplitude of vibration, respectively. This demonstrates that vibrated sand behaves as a strongly nonlinear pseudo-plastic material that, like glacier ice, can also be approximated as a Bingham material with a rate-dependent yield stress. The flow of acoustically fluidized granular materials provides a reasonable explanation of crater collapse, long runout landslides, and other events involving large masses of granular material.

  17. Effects of stratification in a fluidized bed bioreactor during treatment of metalworking wastewater

    SciTech Connect

    Schreyer, H.B.; Coughlin, R.W.

    1999-04-20

    During wastewater treatment, biofilm-coated sand particles stratified in a fluidized bed bioreactor (FBB); particles coated by thicker biofilm segregated toward the top of the bed. Stratification was so well developed that at least two co-existing regions of significantly different mean biofilm thickness were visually distinct within the operating FBB. The observed stratification is attributed to differences in forces of drag, buoyancy, shear, and collisional impact, as well as differences of collision rate within the different regions. Particles with thick biofilm near the top of the bed consumed substrate at significantly lower rates per unit biomass than particles with thin biofilm near the bottom of the bed, thereby suggesting that substrate mass-transfer resistance through biofilm may limit biodegradation rates in the upper portion of the FBB. Large agglomerates of biomass floc and sand, which formed at the top of the fluidized bed, and sand particles with thick biofilm were susceptible to washout from the FBB, causing operational and treatment instability. Radial injection of supplemental liquid feed near the top of the bed increased shear and mixing, thereby preventing formation and washout of agglomerates and thickly coated sand particles. Supplemental liquid injection caused the mean specific biomass loading on the sand to increase and also increased the total biomass inventory in the FBB. Rates of biodegradation in the FBB appeared to be limited by penetration of substrates into the biofilm and absorption of oxygen from air into the wastewater.

  18. National Metal Casting Research Institute final report. Volume 1, Sand reclamation

    SciTech Connect

    Vondra, L.F.; Burningham, J.S.

    1995-08-01

    A mobile thermal foundry sand reclamation unit was designed and constructed. This unit consisted of thermal and mechanical sand reclamation equipment installed on the bed of a 50 foot low-boy trailer. It was transported to a number of Midwest foundries for on-site demonstration of the sand reclamation process. This allowed participating foundries to have their own refuse sand (10-100 tons) processed and then reused in production for evaluation. The purpose for building the unit was to demonstrate to foundries through ``hands on`` experience that refuse sands can be reclaimed and successfully reused particularly in regard to product quality. Most of the participating foundries indicated a high level of satisfaction with the reclaimed sand. Laboratory testing of samples of the used sand, before and after processing by the demonstration unit, verified the usability of the reclaimed sand. One of the foundries participating was a brass foundry, the sand from this foundry contained lead and is classified as a hazardous material. After reclamation the sand was no longer hazardous and could also be reused in the foundry.

  19. Sand hazards on tourist beaches.

    PubMed

    Heggie, Travis W

    2013-01-01

    Visiting the beach is a popular tourist activity worldwide. Unfortunately, the beach environment is abundant with hazards and potential danger to the unsuspecting tourist. While the traditional focus of beach safety has been water safety oriented, there is growing concern about the risks posed by the sand environment on beaches. This study reports on the death and near death experience of eight tourists in the collapse of sand holes, sand dunes, and sand tunnels. Each incident occurred suddenly and the complete burial in sand directly contributed to the victims injury or death in each case report. PMID:23290717

  20. Bed material agglomeration during fluidized bed combustion

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  1. Windblown Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-557, 27 November 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows sand dunes and large ripples in a crater in the Hellespontus region of Mars. The winds that formed these dunes generally blew from the left/lower-left (west/southwest). Unlike the majority of dunes on Earth, sand dunes on Mars are mostly made up of dark, rather than light, grains. This scene is located near 50.3oS, 327.5oW. The image covers an area 3 km (1.9 mi) wide, and is illuminated by sunlight from the upper left.

  2. PROCESSING OF MONAZITE SAND

    DOEpatents

    Calkins, G.D.; Bohlmann, E.G.

    1957-12-01

    A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.

  3. Is promise of Alberta's tar sands nearing reality

    SciTech Connect

    Stauffer, T.

    1993-10-15

    Alberta's far north shares a vital element with Saudi Arabia: Many hundreds of billions of barrels of oil. The Energy Resources and Conservation Board counts one trillion barrels, four to five times above Saudi Arabia's reserves. To date, though, it has not been economic to tap these reserves, which are in the form of tar sands. Now, however, a new process, proven at the pilot stage, finally may transform these resources into a possible competitor to OPEC. Its unpronounceable acronym, SAGD, stands for steam-assisted gravity drainage. The SAGD technique involves a couple of major innovations. First, it reverses the traditional approach. Instead of mining the sands from the surface downward, the systems developed and proven by the Alberta Oil Sands Technology and Research Authority (AOSTRA) starts from the bottom up. The oil is produced from underneath the bedded tar sands. Second, the system is intrinsically small scale. It does not rely upon megaprojects to try to realize economies of scale. The earlier surface-mining projects were sized at 100,000-200,000 barrels per day (b/d). In contrast, the optimum economic scale of the SAGD system is roughly 30,000 b/d, making it a more manageable and less risky technology. SAGD involves the marriage of conventional shaft and tunnel mining with the new precision possible in horizontal drilling. The cost savings are dramatic, and the environmental insult from the operation is greatly reduced. Instead of stripping overburden and then strip-mining the tarry sands, the SAGD technique starts underground with tunnels drilled beneath the tar sands strata. From the tunnels, pairs of horizontal wells are drilled up into the beds. Steam injected into the upper well fluidizes the tar, creating a void, from which the liquid tar flows down into the lower producing well.

  4. Enuresis (Bed-Wetting)

    MedlinePlus

    ... their development. Bed-wetting is more common among boys than girls. What causes bed-wetting? A number of things ... valves in boys or in the ureter in girls or boys Abnormalities in the spinal cord A small bladder ...

  5. Practice Hospital Bed Safety

    MedlinePlus

    ... Home For Consumers Consumer Updates Practice Hospital Bed Safety Share Tweet Linkedin Pin it More sharing options ... the complexity of the bed." back to top Safety Tips CDRH offers the following safety tips for ...

  6. Fluidized bed combustion

    SciTech Connect

    Sowards, N.K.; Murphy, M.L.

    1992-04-07

    This patent describes a method of incinerating a fuel containing difficult to remove tramp comprising wire. It comprises placing of a fluid bed within a downwardly and inwardly tapered centrally hollow air distributor disposed within a lower portion of a vessel; introducing fuel comprising combustible material and tramp comprising wire into the fluid bed; incinerating the combustible material in the fluid bed accommodating downward migration within the fluid bed of the wire without a central obstruction to such migration; in the course of performing the incinerating step, fluidizing the bed solely by introducing inwardly at several tiered locations directed air into the bed only around the tapered periphery along the lower portion of the vessel from a plurality of inwardly and downwardly parallel sites as causing the bed material and tramp to migrate downwardly and inwardly without central bed obstruction toward a discharge site.

  7. Intricately Rippled Sand Deposits

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for Intricately Rippled Sand Deposits (QTVR)

    NASA's Mars Exploration Rover Spirit welcomed the beginning of 2006 on Earth by taking this striking panorama of intricately rippled sand deposits in Gusev Crater on Mars. This is an approximate true-color rendering of the 'El Dorado' ripple field provided by Spirit over the New Year's holiday weekend. The view spans about 160 degrees in azimuth from left to right and consists of images acquired by Spirit's panoramic camera on Spirit's 708th and 710th Martian days, or sols, (Dec. 30, 2005 and Jan. 1, 2006). Spirit used the Pancam's 750-nanometer, 530-nanometer and 430-nanometer filters to capture the colors on Mars. Scientists have eliminated seams between individual frames in the sky portion of the mosaic to better simulate the vista a person standing on Mars would see. Spirit spent several days acquiring images, spectral data, and compositional and mineralogical information about these large sand deposits before continuing downhill toward 'Home Plate.'

  8. Processes limiting mussel bed restoration in the Wadden-Sea

    NASA Astrophysics Data System (ADS)

    de Paoli, Hélène; van de Koppel, Johan; van der Zee, Els; Kangeri, Arno; van Belzen, Jim; Holthuijsen, Sander; van den Berg, Aniek; Herman, Peter; Olff, Han; van der Heide, Tjisse

    2015-09-01

    This paper reports on experimental restoration of mussel beds in the Wadden Sea and the processes that might limit successful restoration of this foundation species (i.e. substrate, predation, hydrodynamics). The importance of substrate, predation, hydrodynamic conditions and location on mussel restoration success was studied using artificially created mussel beds. Experimental beds established on a stable substrate (coir net) were compared with control beds established on sand, at three locations in the Wadden Sea. Their persistence was followed over time. The results revealed a near disappearance of all experimental beds in just over 7 months. Providing a stable substrate did not improve mussel survival. Predation could not explain the disappearance of the beds, as the maximal predation rate by birds was found to be insufficient to have a significant effect on mussel cover. Differences in wave conditions alone could also not explain the variation in decline of mussel cover between the locations. However, the gradual disappearance of mussels from the seaward side of the bed strongly suggested that hydrodynamic conditions (i.e. combined effects of waves and current) played an important role in the poor persistence of the artificial beds. Our results highlight the fact that restoration of mussel beds in dynamic areas cannot simply be implemented by mussel transplantation, particularly if additional measures to prevent wave losses are not taken, even when artificial substrate is provided to facilitate mussel adhesion.

  9. Size distribution of Amazon River bed sediment

    USGS Publications Warehouse

    Nordin, C.F.; Meade, R.H.; Curtis, W.F.; Bosio, N.J.; Landim, P.M.B.

    1980-01-01

    The first recorded observations of bed material of the Amazon River were made in 1843 by Lt William Lewis Herndon of the US Navy, when he travelled the river from its headwaters to its mouth, sounding its depths, and noting the nature of particles caught in a heavy grease smeared to the bottom of his sounding weight1. He reported the bed material of the river to be mostly sand and fine gravel. Oltman and Ames took samples at a few locations in 1963 and 1964, and reported the bed material at O??bidos, Brazil, to be fine sands, with median diameters ranging from 0.15 to 0.25 mm (ref. 2). We present here a summary of particle-size analyses of samples of streambed material collected from the Amazon River and its major tributaries along a reach of the river from Iquitos in Peru, ???3,500 km above Macapa?? Brazil, to a point 220 km above Macapa??3. ?? 1980 Nature Publishing Group.

  10. Red Rock Crab in Puget Sound

    A Red Rock Crab (Romaleon antennarium) captured in a beach seine during a 2012 Bainbridge Island larval forage fish survey.  This survey focused on the abundance, habitat use, and food habits of larval forage fish (surf smelt and sand lance) and was conducted by scientists from...

  11. Making a Bed

    ERIC Educational Resources Information Center

    Wexler, Anthony; Stein, Sherman

    2005-01-01

    The origins of this paper lay in making beds by putting pieces of plywood on a frame: If beds need to be 4 feet 6 inches by 6 feet 3 inches, and plywood comes in 4-foot by 8-foot sheets, how should one cut the plywood to minimize waste (and have stable beds)? The problem is of course generalized.

  12. Time for Bed Game

    MedlinePlus

    ... a Friend Who Cuts? Babysitting: Time for Bed Game KidsHealth > For Teens > Babysitting: Time for Bed Game Print A A A Text Size What Kids ... kids to bed can be tough sometimes! This game introduces children to the concept of getting enough ...

  13. Fluidized Bed Asbestos Sampler Design and Testing

    SciTech Connect

    Karen E. Wright; Barry H. O'Brien

    2007-12-01

    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this concentration. Opportunities for improvement with the fluidized bed include improving reproducibility among replicates, increasing mass recovery, improving the lid gasket seal.

  14. Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local cementation of sand grains within the discrete layers that explains the increase in velocity and decrease in porosity. The subsurface layering may influence the speed of dune migration and therefore have important consequences on desertification. The positive qualitative and quantitative correlation between the subsurface layering in the dune and the manifestation of the booming sound implies a close relation between environmental factors and the booming emission. In this thesis, the frequency of booming is correlated with the depth of the waveguide and the seismic velocities. The variability on location and season suggests that the waveguide theory successfully unravels the phenomenon of booming sand dunes.

  15. Phosphorus accummulation in reed bed treatment filter

    NASA Astrophysics Data System (ADS)

    Karczmarczyk, A.; Baryła, A.

    2009-04-01

    Introduction Constructed wetlands are well known method for alternative wastewater treatment in rural areas in Poland. There are mainly used as a biological treatment step of domestic wastewater. The most popular are subsurface flow constructed wetlands (reed bed systems) with bed filled with site soil (mainly clayey sand or sandy clay). Over 30 such plants with daily flow above 5 m3 per day is operated in Poland. Object and goal of research Many researches have been made on estimation constructed wetlands treatment efficiency, however there are mostly concentrated on inlet outlet concentration compartments. In this study preliminary results of phosphorus accumulation in the bed of horizontal subsurface flow constructed wetland are presented. Monitored plant treats wastewater from 150 inhabitants in the volume of 14 m3 d-1 at average and is under operation from December 1998. The goal of research was to asses the distribution of phosphorus in the wetland bed after 8 years of treatment of domestic wastewater. Obtained results are shown on the background of organic matter (TOC) distribution. The methods applied The bed of the constructed wetland (30 m width and 33 m length) was divided by net of 20 points. In every point two soil samples, one from the depth of 0-10 cm and one from the depth of 20-30 cm, were collected. The samples were analyzed for organic matter and total phosphorus content. Investigation findings The results showed variation of measured indexes on the length and depth of treatment bed. In generally, the highest accumulation occurred near the inlet zone of wetland. The relation is rather clear in case of organic matter, but in case of phosphorus high contents were also observed at the outlet zone of wetland. Higher organic matter concentrations were observed in deeper layer (20-30 cm) than in upper layer (0-10 cm) of the bed.

  16. Bathing a patient in bed

    MedlinePlus

    Bed bath; Sponge bath ... beds to bathe. For these people, daily bed baths can help keep their skin healthy, control odor, ... pain, plan to give the patient a bed bath after the person has received pain medicine and ...

  17. Getting Rid of Bed Bugs

    MedlinePlus

    ... Bed Bugs Do-it-yourself Bed Bug Control Pesticides to Control Bed Bugs Bed Bug Information Clearinghouse ... Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems ...

  18. The role of biophysical cohesion on subaqueous bed form size

    PubMed Central

    Schindler, Robert J.; Hope, Julie A.; Malarkey, Jonathan; Baas, Jaco H.; Peakall, Jeffrey; Manning, Andrew J.; Ye, Leiping; Simmons, Steve; Paterson, David M.; Aspden, Rebecca J.; Bass, Sarah J.; Davies, Alan G.; Lichtman, Ian D.; Thorne, Peter D.

    2016-01-01

    Abstract Biologically active, fine‐grained sediment forms abundant sedimentary deposits on Earth's surface, and mixed mud‐sand dominates many coasts, deltas, and estuaries. Our predictions of sediment transport and bed roughness in these environments presently rely on empirically based bed form predictors that are based exclusively on biologically inactive cohesionless silt, sand, and gravel. This approach underpins many paleoenvironmental reconstructions of sedimentary successions, which rely on analysis of cross‐stratification and bounding surfaces produced by migrating bed forms. Here we present controlled laboratory experiments that identify and quantify the influence of physical and biological cohesion on equilibrium bed form morphology. The results show the profound influence of biological cohesion on bed form size and identify how cohesive bonding mechanisms in different sediment mixtures govern the relationships. The findings highlight that existing bed form predictors require reformulation for combined biophysical cohesive effects in order to improve morphodynamic model predictions and to enhance the interpretations of these environments in the geological record. PMID:27011393

  19. Spontaneous Emergence of Order in Vibrated Sand*

    NASA Astrophysics Data System (ADS)

    Swinney, Harry L.

    2004-05-01

    Granular media such as sand, pharmaceuticals, cereal, cosmetics, and asteroids are involved in many processes, yet granular media remain less well understood than fluids and solids. Vertically oscillating granular layers provide a test bed for theory and modeling of granular dynamics. Experiments on vertically oscillating granular layers have revealed a variety of spatial patterns that emerge spontaneously as a function of the container acceleration amplitude and frequency: stripes, squares, hexagons, spirals, and oscillons (localized structures). Molecular dynamics simulations yield results in quantitative accord with laboratory observations. Since the gradients of density and velocity are large over a particle mean free path, the applicability of continuum theory has been questionable. However, hydrodynamic equations proposed for dissipative particles yield results in surprising qualitative accord with the laboratory observations. *Work in collaboration with C. Bizon, D. Goldman, W.D. McCormick, S.J. Moon, E. Rericha, M. Shattuck, and J. Swift. Supported by DOE.

  20. Red Sky with Red Mesa

    ScienceCinema

    None

    2014-06-23

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  1. Red Sky with Red Mesa

    SciTech Connect

    2011-04-14

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  2. Red Capes, Red Herrings, and Red Flags.

    ERIC Educational Resources Information Center

    Fiske, Donald W.

    The argument that the personality structures obtained from retrospective ratings reflect semantic similarity structures has been as provocative as a red cape in the bull ring. High congruence between those two kinds of structures seems well established. What is less clear is how and why those structures differ from that for immediate judgments of…

  3. Reconnaissance examination of selected oil-sand outcrops in Wyoming

    SciTech Connect

    Ver Ploeg, A.

    1986-08-01

    Numerous surface occurrences of oil sands and oil seeps have been reported in the geologic literature for Wyoming. Seventy-eight reported occurrences are listed in Wyoming Geological Survey Open-File Report 82-5. Most of the listed deposits are taken from old references with vague descriptions and locations. Field reconnaissance examinations of selected oil-sand occurrences were conducted to describe them better and to assess their potential economic importance. A reconnaissance geologic map of each examined deposit was constructed, and the deposits were sampled and described. Ten occurrences were described during the 1984 and 1985 field seasons. The oil-sand occurrences were all sandstone reservoirs ranging from Pennsylvanian to Tertiary. Based on these reconnaissance examinations, only three occurrences appeared to be potentially significant. The Rattlesnake Hills occurrence, west of Casper, is an asymmetrical anticline with oil-impregnated sands in the Mesaverde Formation, Frontier Formation, and, most extensively, the Muddy Sandstone. Other formations in the structure contain minor amounts of oil staining. The Muddy Creek occurrence, southwest of Rawlins, contains oil-impregnated sandstones in the lower Wasatch Formation. This stratigraphically controlled trap dips to the west into the Washakie basin. The Conant Creek occurrence, southeast of Riverton, includes stratigraphically controlled oil sands in the relatively flat Wagon Bed Formation.

  4. Multiple dust sources in the Sahara Desert: The importance of sand dunes

    NASA Astrophysics Data System (ADS)

    Crouvi, Onn; Schepanski, Kerstin; Amit, Rivka; Gillespie, Alan R.; Enzel, Yehouda

    2012-07-01

    We determine the current sources of dust in the Sahara Desert using quantitative correlation between the number of days with dust storms (NDS), derived from remote-sensing data of high temporal resolution, with the distribution of the soil types and geomorphic units. During 2006-8 the source of over 90% of the NDS was found to be sand dunes, leptosols, calcisols, arenosols, and rock debris. In contrast to previous studies, only few dust storms originated from playas and dry lake beds. Land erodibility was estimated by regressing the NDS to the number of days with high-speed wind events, and was found to be high for sand dunes. Clay and fine-silt grains and aggregates are scarce in sand dunes, which most likely produce dust particles through aeolian abrasion of sand grains. Thus, saltating sand grains impacting clay aggregates on playa surfaces cannot be the sole process for generating dust in the Sahara.

  5. Map showing high-purity silica sand of Middle Ordovician age in the Midwestern states

    USGS Publications Warehouse

    Ketner, Keith B.

    1979-01-01

    Certain quartz sands of Middle Ordovician age in the Midwestern States are well known for their purity and are exploited for a wide variety of industrial uses. The principal Middle Ordovician formations containing high-purity sands are the St. Peter Sandstone which crops out extensively from Minnesota to Arkansas; the Everton Formation principally of Arkansas; and the Oil Creek, McLish, and Tulip Creek Formations (all of the Simpson Group) of Oklahoma. The St. Peter and sandy beds in the other formations are commonly called "sandstones," but a more appropriate term is "sands" for in most fresh exposures they are completely uncemented or very weakly cemented. On exposure to air, uncemented sands usually become "case hardened" where evaporating ground water precipitates mineral matter at the surface; but this is a surficial effect. This report summarizes the available information on the extent of exposures, range of grain size, and chemical composition of the Middle Ordovician sands.

  6. Simulation on hydraulic scale model of sand and silt transport in the lower Mississippi River

    SciTech Connect

    Alam, S.; Laukhuff, R.L. Jr.

    1995-12-31

    Since many years river sediment transport of sand and silt has been successfully reproduced on scale models by using light density materials. Compared to geometric distortion of the model scales where the secondary currents are not correctly reproduced, the sediment density distortion enables a more precise simulation of total sediment transport process (bed load and suspended load). The paper discussed among other model studies carried out with light density material the model study of the old River Control outflow channel improvement and bank stabilization studies using a 1 to 100 scale physical model. Some of the aspects of the channel bed and bank evolution could not have been simulated if the model bed material behaved always as bed load. Because in a river or channel carrying sand and silt, depending on the flow turbulence the same material at times my represent the bed load and at another time the suspended load. On a scale model only certain type of light density material is capable of such representation. Various model studies to date enables us to confirm that, 1 to 100 scale model using treated sawdust of given grain size distribution and specific weight, reproduces correctly the river sand and silt transport in the Old River Control area of the Lower Mississippi River. The paper also discusses the use of a midget echosounder system for quick and precise hydroelectric survey of the model bed and bank morphology variations and evaluation of scour and deposit volumes after running a given flood hydrograph.

  7. Sand dollar sites orogenesis

    NASA Astrophysics Data System (ADS)

    Amos, Dee

    2013-04-01

    The determinology of the humble sand dollars habitat changing from inception to the drastic evolution of the zone to that of present day. Into the cauldron along the southern Californian 'ring of fire' lithosphere are evidence of geosynclinals areas, metasedimentary rock formations and hydrothermal activity. The explanation begins with 'Theia' and the Moon's formation, battles with cometary impacts, glacial ages, epochs with evolutionary bottlenecks and plate tectonics. Fully illustrated the lecture includes localised diagrams and figures with actual subject photographic examples of plutonic, granitic, jade and peridodite. Finally, the origins of the materials used in the lecture are revealed for prosecution by future students and the enjoyment of interested parties in general.

  8. Defrosting Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-434, 27 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows retreating patches of frost on a field of large, dark sand dunes in the Noachis region of Mars. Large, windblown ripples of coarse sediment are also seen on some of the dunes. This dune field is located in a crater at 47.5oS, 326.3oW. The scene is illuminated by sunlight from the upper left.

  9. Ganges Rocks and Sand

    NASA Technical Reports Server (NTRS)

    2005-01-01

    17 January 2004 The top half of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows wind-eroded remnants of sedimentary rock outcrops in Ganges Chasma, one of the troughs of the Valles Marineris system. The lower half shows a thick accumulation of dark, windblown sand. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left. These features are located near 7.6oS, 49.4oW.

  10. Fortune Cookie Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-432, 25 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a field of small barchan sand dunes in the north polar region near 71.7oN, 51.3oW. Some of them are shaped like fortune cookies. The message these dunes provide: winds blow through this region from the lower right toward the upper left. The steep slip face slopes of these dunes, which point toward the upper left, indicate the wind direction. The scene is illuminated by sunlight from the upper right. The image is 3 km (1.9 mi) wide.

  11. Sand Dunes, Afghanistan

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This ASTER image covers an area of 10.5 x 15 km in southern Afghanistan and was acquired on August 20, 2000. The band 3-2-1 composite shows part of an extensive field of barchan sand dunes south of Kandahar. The shape of the dunes indicates that the prevailing wind direction is from the west. The image is located at 30.7 degrees north latitude and 65.7 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  12. Compressive behavior of fine sand.

    SciTech Connect

    Martin, Bradley E.; Kabir, Md. E.; Song, Bo; Chen, Wayne

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  13. Bed material agglomeration during fluidized bed combustion. Technical progress report, 1 July, 1993--30 September, 1993

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.D.

    1993-11-01

    Agglomerates formed in laboratory coal combustion tests were analyzed to determine the chemical and mineral reactions which lead to the cohesion of bed particles. Combustion tests were conducted at 75, 90, 100, and 120% theoretical air values. The test at 75% theoretical air resulted in the formation of bed agglomerates within 30 minutes. Agglomerates which formed at the lower theoretical air values were compared to unagglomerated bed samples by X-ray diffraction analyses. Polished thin sections of the agglomerates were made for optical and scanning electron microscopy. The results of these analyses indicate there were, in a broad sense, two types of mineralogic reactions which lead to the cohesion of bed particles in the agglomerates. One mechanism of cohesion resulted from the melting of bed particles to form a viscous material which bridged other bed particles. Based on the chemical composition of the glass (which resulted from the melt), this material was probably derived from aluminosilicate minerals in the sand bed or from clays within the coal. Because of the high iron content in these glasses (4 to 5 wt%), it is likely that iron pyrites in the coal were involved in fluxing reactions. In addition, MgO appears to be relatively high in the glasses. It is suspected that Ca-Mg carbonates (dolomite) from the bed sand are also involved in mineralogic reactions with the aluminosilicate melt. The second type of mineralogic reaction appears to be a reaction involving calcium and magnesium with other bed particles and with the aluminosilicate melt to form new mineral phases. Although the composition of these phases is somewhat variable, some resemble single-chain silicates or pyroxenes.

  14. Red leaks

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco

    2007-07-01

    The aim of this program is to measure the red leaks in the 8 WFPC2 UV filters {F122M, F300W, F255W, F218W, F185W, F170W, F160BW, F122M}. We will use red crossing filters to isolate and directly measure the leaks. No observations of this kind have ever been performed with WFPC2 to check the red leaks in the UV filters, most of them being extensively used by GO/GTO programs. A previous calibration program has only imaged spectrophotometric standard stars with UV filters {no filter crossing} thus the red leak is hard to measure using those data. The throughput curves for some of the UV filters {F300W, F255W, F218W, F185W} in synphot have incomplete information, some of them have gaps in the measurements as wide as 3000A.

  15. Red Clover

    MedlinePlus

    ... for menopausal hot flashes: systematic review and meta-analysis . Journal of the American Medical Association . 2006;295(17):2057–2071. Red clover. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on July ...

  16. Exercise Training During Bed Rest Attenuates Deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Hargens, Alan R. (Technical Monitor)

    1995-01-01

    A 30-day 6 deg. head-down bed rest study was conducted to evaluate high-intensity, short-duration, alternating isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent isokinetic exercise (IKE) training regiments designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (acclimation) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volume, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (a) attenuated the decrease in peak VO2 by 50%, (b) attenuated loss of red cell volume by 40%, but had no effect on loss of plasma volume, (c) induced positive body water balance, (d) had no adverse effect on quality of sleep or concentration, and (e) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regiments, and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.

  17. Magnetization carriers and remagnetization of bedded chert

    NASA Astrophysics Data System (ADS)

    Abrajevitch, Alexandra; Hori, Rie S.; Kodama, Kazuto

    2011-05-01

    Bedded chert is the only sediment type representative of the Paleozoic to early Mesozoic pelagic marine environment. Because of their association with ophiolites and island arc rocks, presence of datable microfossils and paleohorizontal reference provided by well-developed bedding surfaces, bedded chert sequences are often targeted for paleomagnetic tectonic studies. However, processes of magnetization acquisition in biosiliceous sediments, and consequently, the significance of their magnetic record, are not well understood. Our rock magnetic study of a Triassic-Jurassic radiolarian chert sequence, the Mino Terrane, Central Japan, shows that the ferrimagnetic assemblage of the gray chert units is of detrital origin, while the red chert's assemblage is dominated by authigenic phases - pigmentary hematite and biogenic magnetite - which contribute to the natural remanent magnetization. The presence of magnetofossils places red oxic chert in the category of prospective environmental archives. Magnetite-producing magnetotactic bacteria were apparently able to tolerate elevated concentrations of dissolved silica as well as a steep redox gradient in sedimentary pore-waters during the deposition of red chert layers. A strong uniaxial anisotropy due to chain-alignment of the biogenic magnetite grains likely contributes to the acquisition of anomalously stable partial thermoviscous magnetization by chert even at low metamorphic temperatures.

  18. Model of Fluidized Bed Containing Reacting Solids and Gases

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A mathematical model has been developed for describing the thermofluid dynamics of a dense, chemically reacting mixture of solid particles and gases. As used here, "dense" signifies having a large volume fraction of particles, as for example in a bubbling fluidized bed. The model is intended especially for application to fluidized beds that contain mixtures of carrier gases, biomass undergoing pyrolysis, and sand. So far, the design of fluidized beds and other gas/solid industrial processing equipment has been based on empirical correlations derived from laboratory- and pilot-scale units. The present mathematical model is a product of continuing efforts to develop a computational capability for optimizing the designs of fluidized beds and related equipment on the basis of first principles. Such a capability could eliminate the need for expensive, time-consuming predesign testing.

  19. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  20. Fluidized bed combustion

    SciTech Connect

    Sowards, N.K.; Murphy, M.L.

    1991-10-29

    This patent describes a vessel. It comprises a fluid bed for continuously incinerating fuel comprising tire segments and the like which comprise metallic wire tramp and for concurrently removing tramp and bed materials at a bottom effluent exit means of the vessel, the vessel further comprising static air distributor means at the periphery of the bed comprising a substantially centrally unobstructed relatively large central region in which the fluid bed and fuel only are disposed and through which bed material and tramp migrate without obstruction to and through the effluent exit means, downwardly and inwardly stepped lower vessel wall means and a plurality of peripherally located centrally directed vertically and horizontally offset spaced air influent means surrounding the central region and associated with the stepped lower vessel wall means by which the bed is supported and fluidized.

  1. Near Bed Turbulent Coherent Structures and Sea Bed Evolution Due to Long and Short Waves

    NASA Astrophysics Data System (ADS)

    Carlson, E.; Foster, D. L.

    2014-12-01

    The influence of long and short waves on the generation and evolution of near bed turbulent coherent structures and the sea floor geometry has remained an important but often poorly resolved parameterization within tsunami and wave propagation models. A laboratory study to examine the near bed turbulent evolution and sediment bed response was conducted at near field scale. Two-dimensional observations of the flow field were obtained with a submerged Particle Imaging Velocimetry system looking at a 9 cm by 17 cm region just above a movable ripple sand bed subjected to forcing caused by free-surface gravity waves with 30 cm wave height and a 4 second period. Robust particle tracking techniques and high resolution cameras allowed for millimeter scale resolution of the velocity field and sea floor evolution. Periods of high suspension were concomitant with high near-bed velocities as observed with a high resolution acoustic Doppler profiler. The growth of the boundary layer was particularly observable during the longer duration offshore directed flow. The vortex is created during flow reversal in the ripple trough, growing to roughly the height of the ripple. The coherent structure is ejected during the subsequent half wave cycle and sheared apart at the peak of the onshore directed flow. The high shear associated with the vortices are correlated to sediment suspension and subsequent sediment transport resulting in an onshore migration rate of 1.5 mm/min.

  2. Operation Characteristics in a Fluidized Bed Gasifier with Triple-beds and Dual Circulation

    NASA Astrophysics Data System (ADS)

    Murakami, Takahiro; Asai, Minoru; Suzuki, Yoshizo

    A new type of circulating fluidized bed gasifier was proposed. The main features of this proposed gasifier are the adoption of a triple-beds structure (comprising pyrolyzer, gasifier, and combustor), the separation of a circulation path for tar-absorbing material and that for the fuel and silica sand. Independent circulation systems are employed for the fuel system and for the tar-absorbing particles, and the pyrolyzer and gasifier each have a two-stage fluidized bed: the lower stage is for the fuel system and the upper stage is for the tar-absorbing system. The two circulation systems each have an independent combustor. This new gasifier is called “a fluidized bed gasifier with triple-beds and dual circulation”. The objectives of this work are to clarify the operation characteristics by using a laboratory-scale cold model. As a result, the stable circulation of the particle in upper and lower stages was able to be verified. Additionally, a wide range of the particle circulation rate, which contains the target value, was obtained. The particle circulation rate can be arranged by pressure drop of riser.

  3. Science Learning in the Sand.

    ERIC Educational Resources Information Center

    Sexton, Ursula

    1997-01-01

    Presents activities that allow students to think about the Earth in a contextual manner and become familiar with constructive and destructive processes as they relate to sand - its origins, cyclical processes, and yielding of new products. Explores the bigger idea with a developmentally appropriate study of water, rocks, sand, physical phenomena,…

  4. Sand and Dust on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Haberle, Robert M.

    1991-01-01

    Mars is a planet of high scientific interest. Various studies are currently being made that involve vehicles that have landed on Mars. Because Mars is known to experience frequent wind storms, mission planners and engineers require knowledge of the physical and chemical properties of Martian windblown sand and dust, and the processes involved in the origin and evolution of sand and dust storms.

  5. Sand fly control in Kenya with residual pesticide application on HESCO barriers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    US military operations in hot-arid regions still face significant impacts from mosquito and sand fly vectors of diseases. Personal protective measures (PPM) such as DEET or treated bed nets and clothing can reduce contact with disease vectors and nuisance insects; however, irregular use of PPM coupl...

  6. How do fish hide in the sand: erosion by an oscillating foil

    NASA Astrophysics Data System (ADS)

    Sauret, Alban; Morize, Cyprien; Quibeuf, Guillaume; Gondret, Philippe

    2015-11-01

    In a large number of natural and technological situations, a granular bed can be resuspended by a fluid flow. In some situations, this resuspension may be to avoid, for instance when a helicopter lands in sandy environments and the generated sand cloud limits the visibility, which can lead to catastrophic events. Here, we focus on a unique situation, in which the resuspension of particles is both sought after and well controlled. Indeed, some bottom-dwelling fish, such as the flounders and stingrays, generate a flow capable of resuspending sand, to bury themselves and avoid predators. By flapping their fins with oscillating motions, they create vortices and a recirculating flow that lifts the sand particles up and deposits them on top of their backs. A simple model experiment has been developed to study this situation: a rigid or flexible foil is placed above a sand bed to mimic the fin motion. We experimentally characterized the influence of the amplitude and frequency of the motion, the distance to the granular bed and the nature of the granular material on the onset of erosion. These experimental findings are rationalized to predict the required motion to erode and resuspend the granular bed.

  7. Dark Sand Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    18 March 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a field of low-albedo (i.e., dark) sand dunes in a crater in Noachis Terra. Dunes on Earth are usually light while those on Mars are usually dark. This contrast results from a difference in the mineral composition. Earth dunes often contain abundant quartz, which appears light, while martian dunes typically contain minerals and rock fragments abundant in iron- and magnesium-rich minerals, which are usually dark. This dune field is located near 41.7oS, 319.8oW. The steeper slopes on these dunes, known as slip faces, point toward the lower left (southwest), indicating the dominant winds come from the northeast (upper right). This picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

  8. Field observations of wind profiles and sand fluxes above the windward slope of a sand dune before and after the establishment of semi-buried straw checkerboard barriers

    NASA Astrophysics Data System (ADS)

    Zhang, Chunlai; Li, Qing; Zhou, Na; Zhang, Jiaqiong; Kang, Liqiang; Shen, Yaping; Jia, Wenru

    2016-03-01

    Straw checkerboard barriers are effective and widely used measures to control near-surface sand flow. The present study measured the wind profiles and sand mass flux above the windward slope of a transverse dune before and after the establishment of semi-buried straw checkerboards. The 0.2 m high checkerboards enhanced the aerodynamic roughness length to larger than 0.02 m, which was two to three orders of magnitude higher than that of the bare sand. The modified Charnock model predicted the roughness length of the sand bed during saltation well, with Cm = 0.138 ± 0.003. For the checkerboards, z0 increased slowly to a level around 0.037 m with increasing wind velocity and the rate of increase tended to slow down in strong wind. The barriers reduced sand flux and altered its vertical distribution. The total height-integrated dimensionless mass flux of saltating particles (q0) above bare sand followed the relationship ln q0 = a + b(u∗t/u∗) + c(u∗t/u∗)2, with a peak at u∗/u∗t ≈ 2, whereas a possible peak appeared at u∗/u∗t ≈ 1.5 above 1 m × 1 m straw checkerboards. The vertical distribution of mass flux above these barriers resembled an "elephant trunk", with maximum mass flux at 0.05-0.2 m above the bed, in contrast with the continuously and rapidly decreasing mass flux with increasing height above the bare sand. The influences of the barriers on the wind and sand flow prevent dune movement and alter the evolution of dune morphology.

  9. Unchanging Desert Sand Dunes

    NASA Astrophysics Data System (ADS)

    Gadhiraju, S.; Banerjee, B.; Buddhiraju, K.; Shah, V.

    2013-12-01

    Deserts are one of the major landforms on earth. They occupy nearly 20% of the total land area but are relatively less studied. With the rise in human population, desert regions are being gradually occupied for settlement posing a management challenge to the concerned authorities. Unrestrained erosion is generally a feature of bare dunes. Stabilized dunes, on the other hand, do not undergo major changes in textures, and can thus facilitate the growth of vegetation. Keeping in view of the above factors, better mapping and monitoring of deserts and particularly of sand dunes is needed. Mapping dunes using field instruments is very arduous and they generate relatively sparse data. In this communication, we present a method of clustering and monitoring sand dunes through imagery captured by remote sensing sensors. Initially Radon spectrum of an area is obtained by decomposition of the image into various projections sampled at finer angular directions. Statistical features such as mode, entropy and standard deviation of Radon spectrum are used in delineation and clustering of regions with different dune orientations. These clustered boundaries are used to detect if there are any changes occurring in the dune regions. In the experiment's, remote sensing data covering various dune regions of the world are observed for possible changes in dune orientations. In all the cases, it is seen that there are no major changes in desert dune orientations. While these findings have implications for understanding of dune geomorphology and changes occurring in dune directions, they also highlight the importance of a wider study of dunes and their evolution both at regional and global scales. Results for Dataset 1 & Dataset 2 Results for Dataset 3

  10. Sand and Water

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 7 November 2003

    This image shows a relatively small crater (35 km across) in the heavily cratered terrain of the southern highlands. At the midlatitudes, this area is known both for its water-formed gullies and its sand dunes. This crater shows spectacular examples of both. In fact, the gullies running down the northern edge of the crater made it to the cover of Science magazine on June 30, 2000. The large dark spot in the floor of the crater is sand that has accumulated into one large dune with a single curvilinear crest.

    Image information: VIS instrument. Latitude -54.9, Longitude 17.5 East (342.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Experimental measurement of wind-sand flux and sand transport for naturally mixed sands.

    PubMed

    Zhou, You-He; Guo, Xiang; Zheng, Xiao Jing

    2002-08-01

    This article presents an experimental test and a program to empirically fit experimental data for the horizontal flux of wind-blown sand passing through a unit area along a vertical direction per unit time. The experimental data for the sand flow flux as a function of the height for naturally mixed sands, which were chosen from a sand dune at the southeastern edge of the Tengger desert, were measured with a sand collector in a field wind tunnel. On the basis of the experimental data and a least squares method, a fitting program is proposed here and, further, an explicit form of an empirical formula varying with height and axial wind velocity or friction velocity for the flux structure of the sands is gained. After that, we obtain an explicit form of the empirical equation for the measurement of streamwise sand transport per unit width and unit time by integrating the empirical formula for sand flux along the height direction and considering the contribution of sand creep. Finally, we evaluate the effectiveness of the predictions of some equations, especially the well-known Bagnold equation and Kawamura equation, for predicting streamwise wind-sand transport using the empirical equation obtained for mixed sands. The results show that the predictions from Bagnold's equation in the region of friction velocity u(*)>0.47 m/s and Kawamura's equation in the region u(*t)

  12. Role of vision and mechanoreception in bed bug, Cimex lectularius L. behavior.

    PubMed

    Singh, Narinderpal; Wang, Changlu; Cooper, Richard

    2015-01-01

    The role of olfactory cues such as carbon dioxide, pheromones, and kairomones in bed bug, Cimex lectularius L. behavior has been demonstrated. However, the role of vision and mechanoreception in bed bug behavior is poorly understood. We investigated bed bug vision by determining their responses to different colors, vertical objects, and their ability to detect colors and vertical objects under low and complete dark conditions. Results show black and red paper harborages are preferred compared to yellow, green, blue, and white harborages. A bed bug trapping device with a black or red exterior surface was significantly more attractive to bed bugs than that with a white exterior surface. Bed bugs exhibited strong orientation behavior toward vertical objects. The height (15 vs. 30 cm tall) and color (brown vs. black) of the vertical object had no significant effect on orientation behavior of bed bugs. Bed bugs could differentiate color and detect vertical objects at very low background light conditions, but not in complete darkness. Bed bug preference to different substrate textures (mechanoreception) was also explored. Bed bugs preferred dyed tape compared to painted tape, textured painted plastic, and felt. These results revealed that substrate color, presence of vertical objects, and substrate texture affect host-seeking and harborage-searching behavior of bed bugs. Bed bugs may use a combination of vision, mechanoreception, and chemoreception to locate hosts and seek harborages. PMID:25748041

  13. Role of Vision and Mechanoreception in Bed Bug, Cimex lectularius L. Behavior

    PubMed Central

    Singh, Narinderpal; Wang, Changlu; Cooper, Richard

    2015-01-01

    The role of olfactory cues such as carbon dioxide, pheromones, and kairomones in bed bug, Cimex lectularius L. behavior has been demonstrated. However, the role of vision and mechanoreception in bed bug behavior is poorly understood. We investigated bed bug vision by determining their responses to different colors, vertical objects, and their ability to detect colors and vertical objects under low and complete dark conditions. Results show black and red paper harborages are preferred compared to yellow, green, blue, and white harborages. A bed bug trapping device with a black or red exterior surface was significantly more attractive to bed bugs than that with a white exterior surface. Bed bugs exhibited strong orientation behavior toward vertical objects. The height (15 vs. 30 cm tall) and color (brown vs. black) of the vertical object had no significant effect on orientation behavior of bed bugs. Bed bugs could differentiate color and detect vertical objects at very low background light conditions, but not in complete darkness. Bed bug preference to different substrate textures (mechanoreception) was also explored. Bed bugs preferred dyed tape compared to painted tape, textured painted plastic, and felt. These results revealed that substrate color, presence of vertical objects, and substrate texture affect host-seeking and harborage-searching behavior of bed bugs. Bed bugs may use a combination of vision, mechanoreception, and chemoreception to locate hosts and seek harborages. PMID:25748041

  14. Transient response of sand bedforms to changes in flow

    NASA Astrophysics Data System (ADS)

    Martin, R. L.; Jerolmack, D. J.

    2011-12-01

    Lowland rivers commonly experience discharge variability spanning more than an order of magnitude, producing correspondingly large changes in bed morphology. However, field and lab studies indicate that bedform geometries lag changes in flow, producing hysteretic relationships between bed morphology, roughness, and water discharge. The ability of bedforms to maintain equilibrium with hydrodynamic flow variability thus depends on the timescale of transient bedform adjustment to flow. Here, we present results of flume experiments carried out at the Saint Anthony Falls Laboratory, University of Minnesota, in which we continuously tracked adjustment of sand bedform morphologies to abrupt changes in water discharge. We show how the timescale of bedform adjustment is driven by three primary factors: 1. directionality of adjustment, 2. preexisting bedform geometry, and 3. sediment flux. Directionality of adjustment (rising versus falling water discharge) determines whether bedforms grow quickly by irreversible merger (rising flows) or shrink slowly through secondary bedform cannibalization of relict larger bedforms (falling flows). Preexisting bedform geometry (height and length) determines the amount of bed deformation required for adjustment to new equilibrium, and sediment flux determines the rate at which this change is affected. These three factors all favor faster adjustment of bedforms to rising flows. We experimentally demonstrate this bedform adjustment hysteresis through a variety of increasing and decreasing discharge changes, across both sand ripple and dune regimes. Finally, we propose and validate a simple conceptual model for estimating the adjustment timescale based on sediment flux and equilibrium bedform geometry.

  15. The Influence of Roughness and Pyrethroid Formulations on Bed Bug (Cimex lectularius L.) Resting Preferences

    PubMed Central

    Hottel, Benjamin A.; Pereira, Roberto M.; Koehler, Philip G.

    2015-01-01

    Two-choice tests were conducted to examine the effect of surface roughness on the resting preference of bed bugs, Cimex lectularius L., on copper, basswood, and acrylic materials. The influence of pyrethroid formulation applications on resting preferences was also evaluated. Bed bugs were given the choice of resting between two sanded halves of each material tested. One half was sanded with a P60 grit sandpaper and the other with a less rough P600 grit sandpaper. A significantly higher proportion of bed bugs chose to rest on the rougher P60 grit sanded half of all materials tested. Pyrethroid applications were made to either the P60 grit half or both halves of acrylic arenas and resting preferences were again assessed. Behavioral responses of bed bugs to pyrethroid formulation applications varied depending on the bed bug strain used and the formulation applied. Bed bugs would still rest on the P60 grit half when Suspend SC formulation (0.06% deltamethrin) was applied; however, an avoidance response was observed from a bed bug strain susceptible to D-Force aerosol formulations (0.06% deltamethrin). The avoidance behavior is likely attributed to one, more than one, or even an interaction of multiple spray constituents and not the active ingredient. PMID:26463196

  16. The Influence of Roughness and Pyrethroid Formulations on Bed Bug (Cimex lectularius L.) Resting Preferences.

    PubMed

    Hottel, Benjamin A; Pereira, Roberto M; Koehler, Philip G

    2015-01-01

    Two-choice tests were conducted to examine the effect of surface roughness on the resting preference of bed bugs, Cimex lectularius L., on copper, basswood, and acrylic materials. The influence of pyrethroid formulation applications on resting preferences was also evaluated. Bed bugs were given the choice of resting between two sanded halves of each material tested. One half was sanded with a P60 grit sandpaper and the other with a less rough P600 grit sandpaper. A significantly higher proportion of bed bugs chose to rest on the rougher P60 grit sanded half of all materials tested. Pyrethroid applications were made to either the P60 grit half or both halves of acrylic arenas and resting preferences were again assessed. Behavioral responses of bed bugs to pyrethroid formulation applications varied depending on the bed bug strain used and the formulation applied. Bed bugs would still rest on the P60 grit half when Suspend SC formulation (0.06% deltamethrin) was applied; however, an avoidance response was observed from a bed bug strain susceptible to D-Force aerosol formulations (0.06% deltamethrin). The avoidance behavior is likely attributed to one, more than one, or even an interaction of multiple spray constituents and not the active ingredient. PMID:26463196

  17. Numerical simulation of bed morphodynamics in natural waterways: From ripples to dunes

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, F.; Khosronejad, A.

    2012-12-01

    We develop and validate a 3D numerical model for coupled simulations of turbulence and sand-bed morphodynamics in natural waterways under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (FSI-CURVIB) method of Khosronejad et al. (Adv. in Water Res., 2011). The mobile channel bed is discretized with an unstructured triangular grid and treated as the sharp-interface immersed boundary embedded in a background curvilinear mesh. Transport of bed load and suspended load sediments are combined in the non-equilibrium form of the Exner-Poyla for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress and velocity vector induced by the turbulent flow field. Both unsteady RANS and large-eddy simulation (LES) models are implemented to simulate the effects of turbulence. Simulations are carried out for a wide range of waterways, from small scale streams to large-scale rivers with and without embedded in stream structures, and the simulated sand-waves are quantitatively compared to available measurements. It is shown that the model can accurately capture sand-wave formation, growth, and migration processes observed in nature. The simulated bed-forms are found to have amplitude and wave length scales ranging from the order of centimeters up to several meters.

  18. The grain size gap and abrupt gravel-sand transitions in rivers due to suspension fallout

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Venditti, Jeremy G.

    2016-04-01

    Median grain sizes on riverbeds range from boulders in uplands to silt in lowlands; however, rivers with ~1-5 mm diameter bed sediment are rare. This grain size gap also marks an abrupt transition between gravel- and sand-bedded reaches that is unlike any other part of the fluvial network. Abrupt gravel-sand transitions have been attributed to rapid breakdown or rapid transport of fine gravel, or a bimodal sediment supply, but supporting evidence is lacking. Here we demonstrate that rivers dramatically lose the ability to transport sand as wash load where bed shear velocity drops below ~0.1 m/s, forcing an abrupt transition in bed-material grain size. Using thresholds for wash load and initial motion, we show that the gap emerges only for median bed-material grain sizes of ~1-5 mm due to Reynolds number dependencies in suspension transport. The grain size gap, therefore, is sensitive to material properties and gravity, with coarser gaps predicted on Mars and Titan.

  19. Response of phlebotomine sand flies to light-emitting diode-modified light traps in southern Egypt.

    PubMed

    Hoel, D F; Butler, J F; Fawaz, E Y; Watany, N; El-Hossary, S S; Villinski, J

    2007-12-01

    Centers For Disease Control and Prevention (CDC) light traps were modified for use with light-emitting diodes (LED) and compared against a control trap (incandescent light) to determine the effectiveness of blue, green, and red lights against standard incandescent light routinely used for sand fly surveillance. Light traps were baited with dry ice and rotated through a 4 x 4 Latin square design during May, June, and July, 2006. Trapping over 12 trap nights yielded a total of 2,298 sand flies in the village of Bahrif, 6 km north of Aswan on the east bank of the Nile River in southern Egypt. Phlebotomus papatasi comprised 94.4% of trap collections with five other species collected in small numbers. Over half (55.13%) of all sand flies were collected from red light traps and significantly more sand flies (P < 0.05) were collected from red light traps than from blue, green, or incandescent light traps. Red light traps collected more than twice as many sand flies as control (incandescent) traps and > 4 x more than blue and green light traps. Results indicate that LED red light is a more effective substitute for standard incandescent light when surveying in areas where P. papatasi is the predominant sand fly species. Each LED uses approximately 15% of the energy that a standard CDC lamp consumes, extending battery life and effective operating time of traps. Our prototype LED-modified traps performed well in this hot, arid environment with no trap failures. PMID:18260521

  20. Fixed bed hydrocracking process

    SciTech Connect

    MacLean, A.J.; Holloway, R.L.; Lawson, V.A.; Cronen, J.W.

    1990-02-20

    This patent describes a process for converting a gas oil range petroleum feedstock into lighter petroleum products. It comprises: charging the gas oil range petroleum feedstock and hydrogen to a first fixed bed hydrocracking zone containing a hydrocracking catalyst at hydrocracking conditions to produce a first hydrocracking zone product stream; separating the first fixed bed hydrocracking zone product stream in a fractionation zone into a petroleum products stream and a bottoms stream; charging the bottoms stream and hydrogen to a second fixed bed hydrocracking zone containing a hydrocracking catalyst at hydrocracking conditions to produce a second fixed bed hydrocracking zone product stream; cooling the second fixed bed hydrocracking zone product stream to a temperature below about 250{degrees}F; recycling a first portion of the cooled second fixed bed hydrocracking zone product stream to the fractionation zone; removing materials having a boiling range from about 500{degrees} to about 650{degrees}F and a heavy bottoms stream having a boiling point above about 1050{degrees}F from a second portion of the cooled second fixed bed hydrocracking zone product stream to product a treated second portion; and recycling the treated second portion to the first fixed bed hydrocracking zone.

  1. Bed wetting at home

    MedlinePlus

    ... have your child take an active part in cleaning up from the bed wetting (such as helping to strip the bed and put the sheets in the laundry). Reward your child for dry nights. Some families use a chart or diary ...

  2. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  3. Filtration of nano-particles by a gas-solid fluidized bed.

    PubMed

    Liu, Kuang-Yu; Wey, Ming-Yen

    2007-08-17

    The filtration of 80 nm SiO2 and Al(2)O(3) particles in a gas stream using fluidized beds was studied. Silica sand and activated carbon (A.C.) were adopted as bed materials to filtrate 80 nm SiO2 and Al(2)O(3) particles. The collected particles were elutriated from the fluidized bed, so the filtration was a dynamic process and the variations of the removal efficiency with time were studied. Experimental results showed that the filtrations of 80 nm SiO2 and Al(2)O(3) particles with a bed material of silica sand were not dynamic processes but the filtration by A.C. was. The removal efficiencies for SiO2 and Al(2)O(3) particles using silica sand as bed material were held steady and found to be equal, between 86 and 93%. A.C. is considered to be more efficient than silica sand because it has a high specific surface area. However, the experimental data yield conflicting results. The removal efficiency of Al(2)O(3) particles fell from 92% initially to 80% at the end of test-a little lower than that obtained by filtration using silica sand. A higher voidage of A.C. than silica sand weakens the removal of nanoparticles since the diffusion mechanism dominates. The removal efficiency of SiO2 by A.C. decayed from 83 to 40% with time passed. The huge differences between the filtration efficiency of SiO2 and that of Al(2)O(3) particles by A.C. was associated with the extensive segregation of SiO2 and A.C. particles, which caused more SiO2 particles to move to the top of the bed, where they were elutriated. The weak inter-particle force for SiO2 decreased the removal efficiency also. PMID:17303329

  4. Sex-Associated Effects on Hematologic and Serum Chemistry Analytes in Sand Rats (Psammomys obesus)

    PubMed Central

    Kane, Julie D; Steinbach, Thomas J; Sturdivant, Rodney X; Burks, Robert E

    2012-01-01

    We sought to determine whether sex had a significant effect on the hematologic and serum chemistry analytes in adult sand rats (Psammomys obesus) maintained under normal laboratory conditions. According to the few data available for this species, we hypothesized that levels of hematologic and serum chemistry analytes would not differ significantly between clinically normal male and female sand rats. Data analysis revealed several significant differences in hematologic parameters between male and female sand rats but none for serum biochemistry analytes. The following hematologic parameters were greater in male than in female sand rats: RBC count, hemoglobin, hematocrit, red cell hemoglobin content, and percentage monocytes. Red cell distribution width, hemoglobin distribution width, mean platelet volume, and percentage lymphocytes were greater in female than in male sand rats. The sex of adult sand rats is a source of variation that must be considered in terms of clinical and research data. The data presented here likely will prove useful in the veterinary medical management of sand rat colonies and provide baseline hematologic and serum chemistry analyte information for researchers wishing to use this species. PMID:23294882

  5. Sand, Syrup and Supervolcanoes

    NASA Astrophysics Data System (ADS)

    Kennedy, B.; Jellinek, M.; Stix, J.

    2006-12-01

    Supervolcanic eruptions are amongst the most awesome events in the history of the Earth. A supervolcano can erupt thousands of cubic kilometers of ash devastating entire countries and changing the climate for decades. During the eruption, the magma chamber partially empties and collapses. As the chamber collapses at depth, a massive subsidence pit develops at the surface, called a caldera, some calderas can be the size of the entire San Francisco Bay Area. Fortunately, a supervolcano of this size has not erupted since the development of modern man. Due to the infrequency and massive scale of these eruptions, volcanologists do not yet fully understand how calderas form and how the eruption is affected by the roof collapse and vice versa. Therefore, simple analogue experiments are amongst the best ways to understand these eruptions. We present two of these experiments that can be fun, cheap, and helpful to high school and university instructors to demonstrate caldera formation. The first experiment illustrates how magma chamber roofs collapse to produce different style calderas, the second experiment demonstrates how the magma in the chamber affects the collapse style and magma mixing during a supervolcanic eruption. The collapse of a magma chamber can be demonstrated in a simple sandbox containing a buried balloon filled with air connected to a tube that leads out of the sandbox. At this small scale the buried balloon is a good analogue for a magma chamber and sand has an appropriate strength to represent the earths crust. Faults propagate through the sand in a similar way to faults propagating through the crust on a larger scale. To form a caldera just let the air erupt out of the balloon. This experiment can be used to investigate what controls the shape and structure of calderas. Different shaped balloons, and different burial depths all produce sand calderas with different sizes and structures. Additionally, experiments can be done that erupt only part of the volume of the balloon. These sandbox experiments can be compared to natural calderas and help us understand their internal structure. The second experiment helps us understand how magma behaves during collapse. For this experiment we allowed dense cylindrical blocks to sink into syrup solutions filled with poppy seeds. We mix the syrup with warm water to reduce its viscosity. A series of sinking experiments can be done at different viscosities to investigate different regimes of fluid flow. A key parameter used to the character of the flow of magma is the Reynolds number, the ratio between inertial and viscous forces. The experiments show how the Reynolds number of the magma affects the speed and the style that the block sinks, and also how the magma behaves in the chamber. Fast subsidence in low viscosity fluid (high Reynolds numbers) produces seed vortices in the syrup, indicating mixing. This experiment helps us understand the interplay between eruption and collapse and why mixed magma frequently erupts from calderas. These two simple experiments not only demonstrate caldera formation, but also can be used to get quantative information about the processes governing caldera formation.

  6. Prospect evaluation of BED 3 and Sitra oilfields, Abu Gharadig Basin, North Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Salem, Ibrahim; Ghazala, Hosni; El Diasty, Waleed

    2015-12-01

    The occurrence of hydrocarbons is closely linked to the elements of petroleum system history of the BED 3 and Sitra 8 oilfields, which has created multiple reservoir and seal combinations. BED 3 Field and Sitra concessions occupy the northwestern part of the Abu Gharadig Basin and extends between latitudes 29°45‧ and 30°05‧N and longitudes 27°30‧ and 28°10‧E. The comprehensive integration of the geo-related data and the interpretation of the well logging, geochemical, seismic data in time domain and depth and sealing mechanisms explain the occurrence of hydrocarbons in some certain reservoirs during cretaceous age and other reservoirs in the same fields don't have any hydrocarbon accumulation. Detailed seismic data interpretation was performed for the target units of BED 3 and Sitra 8 oilfields in time domain and converted to depth domain. Sitra 8 Field is a three-way dip closure bounded by NW-SE faults while BED 3 field is represented by a WNW-ESE trending horst dipping to the east. The Albian-Cenomanian Kharita Formation has a high energy shallow marine shelf environment and considered as the main pay zone in the BED 3 oilfield. On the other hand, Kharita sands are dry in the Sitra 8 Field. Also, the shallow marine shale, sandstone, limestone and dolomite interbeds of the Abu Roash G Member are another hydrocarbon bearing reservoir in the Sitra 8 Field. Sealing mechanisms were applied to explain why certain reservoirs have hydrocarbon and others don't. Allan's juxtaposition diagram for the main faults in the study area shows that Kharita sands in BED 3 area have excellent juxtaposition as Kharita juxtapose to upper Bahariya and intra Bahariya, which consist of shale and limestone. Abu Roash G sands in BED 3 area have bad juxtaposition as the Abu Roash G juxtapose to Abu Roash C sand (sand juxtaposed sand). Allan's diagram shows that the Abu Roash G reservoir (main target) in Sitra 8 is juxtaposing Abu Roash D which is composed of limestone and shale, which acts as very good seal rock, while the Kharita reservoir is juxtaposing Abu Roash G sand (sand juxtaposed sand) from the crest position which can explain the bad juxtaposition.

  7. Red blood cell decreases of microgravity

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1985-01-01

    Postflight decreases in red blood cell mass (RBCM) have regularly been recorded after exposure to microgravity. These 5-25 percent decreases do not relate to the mission duration, workload, caloric intake or to the type of spacecraft used. The decrease is accompanied by normal red cell survivals, increased ferritin levels, normal radioactive iron studies, and increases in mean red blood cell volume. Comparable decreases in red blood cell mass are not found after bed rest, a commonly used simulation of the microgravity state. Inhibited bone marrow erythropoiesis has not been proven to date, although reticulocyte numbers in the peripheral circulation are decreased about 50 percent. To date, the cause of the microgravity induced decreases in RBCM is unknown. Increased splenic trapping of circulating red blood cells seem the most logical way to explain the results obtained.

  8. Modeling a dynamically varying mixed sediment bed with erosion, deposition, bioturbation, consolidation, and armoring

    NASA Astrophysics Data System (ADS)

    Sanford, Lawrence P.

    2008-10-01

    Erosion and deposition of bottom sediments reflect a continual, dynamic adjustment between the fluid forces applied to a sediment bed and the condition of the bed itself. Erosion of fine and mixed sediment beds depends on their composition, their vertical structure, their disturbance/recovery history, and the biota that inhabit them. This paper presents a new one-dimensional (1D), multi-layer sediment bed model for simulating erosion and deposition of fine and mixed sediments subject to consolidation, armoring, and bioturbation. The distinguishing characteristics of this model are a greatly simplified first-order relaxation treatment for consolidation, a mud erosion formulation that adapts to both Type I and II erosion behavior and is based directly on observations, a continuous deposition formulation for mud that can mimic exclusive erosion and deposition behavior, and straightforward inclusion of bioturbation effects. Very good agreement with two laboratory data sets on consolidation effects is achieved by adjusting only the first-order consolidation rate r c. Full model simulations of three idealized cases based on upper Chesapeake Bay, USA observations are presented. In the mud only case, fluid stresses match mud critical stresses at maximum erosion. A consolidation lag results in higher suspended sediment concentrations after erosional events. Erosion occurs only during accelerating currents and deposition does not occur until just before slack water. In the mixed mud and sand case without bioturbation, distinct layers of high and low sand content form and mud suspension is strongly limited by sand armoring. In the mixed mud and sand case with bioturbation, suspended mud concentrations are greater than or equal to either of the other cases. Low surface critical stresses are mixed down into the bed, constrained by the tendency to return towards equilibrium. Sand layers and the potential for armoring of the bed develop briefly, but mix rapidly. This model offers a relatively simple and robust tool for simulating the complex interactions that can affect muddy and mixed sediment bed erodibility.

  9. Development of an internally circulating fluidized bed combustor for treatment of industrial solid wastes

    SciTech Connect

    Mukadi, L.; Lavallee, R.J.; Legros, R.; Guy, C.

    1997-12-31

    A novel thermal treatment technology for low heating value wastes has been tested at the pilot scale level. The first application deals with reclamation of foundry sand. This waste is produced after several cycles of mold making and the resulting spent foundry sand particles is covered with an organic resin. Because of this resin, the waste is classified special waste and this leads to high landfilling costs, not taking into account the replacement cost of this sand for the foundries. The internally circulating fluidized bed (ICFB) unit showed excellent performances for treating spent foundry sand. The high temperature contact between the solids and the flame region of a natural gas burner provided high combustion efficiency while, maintaining high overall energy efficiency. Indeed only a small region of the reactor that is the base of the river is kept at high temperature. The remainder of the unit can be kept at lower temperature, which is not possible in conventional fluidized beds normally used for foundry sand thermal reclamation where the entire bed is maintained at the treatment temperature. The specific energy consumption is therefore very competitive for the ICFB and emission levels were low in CO and NOx. A brief economical assessment of using an ICFB for thermal reclamation of spent foundry sand shows relatively short payback times for a typical foundry.

  10. Saltation of non-spherical sand particles.

    PubMed

    Wang, Zhengshi; Ren, Shan; Huang, Ning

    2014-01-01

    Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement. PMID:25170614

  11. Facies and architecture of deep-water Sandstone lobes: Comparison of a shale-rich and a sand-rich system

    SciTech Connect

    Schuppers, J.D. )

    1993-09-01

    Two different foreland-basin deep-water sandstone systems have been studied for reservoir characterization purposes: the Broto lobes of the Eocene Hecho group, spain, and two sand bodies of the Oligocene-Miocene Arakintos Sandstone, Greece. The shale-rich Broto lobes are characterized by distinct vertical developments in terms of facies and expression of heterogeneity. Bed-thickness trends, lateral extent of sand beds, and facies variability are related to overall sand/shale ratio. A feature common to most of the sandstone packages is the occurrence of a basal slump and/or pebbly mudstone. The dominant sediment source is considered fluvial. Variation in sand quality within and between lobes is high. Deposition is considered to be strongly controlled by tectonics. The sand-rich Arakintos Sandstone consists of massive and pebbly sandstones, forming thick, sandy sheets alternating with relatively coarse-grained, thin-bedded turbidites. Facies, geometries, vertical organization, and the relation between grain size and bed thickness indicate a constrained development of the lobes, partly influenced by preexisting topography. A coastal sediment source is inferred. Little variation exists in sand quality within and between the lobes. The overall regularity in terms of facies, and the absence of slumps, suggest that fluctuations in relative sea level may have formed a major control on deposition. The two lobe systems illustrate the effect of tectonics, sediment type, topographic confinement, and possible sea level on facies and sand body architecture of deep-water sandstone lobes.

  12. Tanning Bed Perception Survey

    PubMed Central

    Mcquinn, Donna; Lohse, Christine; Hassani, John

    2015-01-01

    Objective: This study was intended to investigate the perception of tanning bed use among college students. Design: A 15-question survey was given to young adults regarding tanning perceptions. Setting: Rochester Community College in Rochester, Minnesota. Participants: Forty-four respondents between 18 and 51 years of age. Measurements: Data was collected via a self-reported questionnaire. Results: In this study, 50 percent of participants were not educated on the risks of melanoma, and 68 percent were not interested in receiving information on melanoma and completing a follow-up survey. More specifically, 63 percent versus 89 percent of participants with no tanning bed versus some tanning bed use did not want information regarding melanoma, respectively. This study also shows that more tanning bed users believe tanning helps prevent burning than non-tanning bed users. Fifty-seven percent of the 35 participants who had never used a tanning bed thought that they never prevent sunburn, while only 11 percent of the nine participants who had used a tanning bed in the past thought that they never prevent sunburn, which was statistically significant. PMID:25852811

  13. Oscillation-induced sand ripples in a circular geometry.

    PubMed

    Rousseaux, Germain; Kruithof, Joachim; Jenffer, Patrice; Wesfreid, José Eduardo

    2008-07-01

    This study deals with the observation of sand ripples in a circular geometry under oscillatory flow. We characterize the observed patterns as a function of the excitation parameters. We report the time evolution of the corrugated front invading the flat bed. These experiments reveal unambiguously, because of the gradient of shear stress, the existence of two separated thresholds: one for grain motion and the other for the appearance of ripples. In addition, we display the phase diagram of this instability as a function of the Froude number and a Reynolds number. PMID:18764045

  14. Aeolian sand ripples around plants.

    PubMed

    Zhang, Qian-Hua; Miao, Tian-De

    2003-05-01

    Plants in the desert may locally change the aeolian process, and hence the pattern of sand ripples traveling nearby. The effect of plants on ripples is investigated using a coupled map lattice model with nonuniform coupling coefficients. PMID:12786143

  15. Sand release apparatus and method

    SciTech Connect

    Hall, L.D.

    1991-05-28

    This patent describes a sand release apparatus for enabling the release of a pump. It comprises first and second telescoped tubular sleeves; a first restricting means; sleeve located drain opening means and means for enabling controlled separation of the pump from the apparatus at a specified joint. This patent also describes a method for releasing a pump determined to be sand locked. It comprises applying an upward force on the sucker rod string to break a shear pin restricting relative axial extension of telescoped sleeve members connected in the well below the pump; extending the telescoped sleeve members to expose drain openings to permit sand to flow away from the annular space; and disconnecting from the tubing string below the pump to pull the pump free of the sand locked condition.

  16. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Calkins, G.D.

    1957-10-29

    A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.

  17. Diurnal patterns of blowing sand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diurnal pattern of blowing sand results from a complex process that involves an interaction between solar heating, thermal instability, atmospheric turbulence, wind strength, and surface threshold conditions. During the day, solar heating produces thermal instability, which enhances the convect...

  18. Linking bed morphology changes of two sediment mixtures to sediment transport predictions in unsteady flows

    NASA Astrophysics Data System (ADS)

    Waters, Kevin A.; Curran, Joanna Crowe

    2015-04-01

    Flume experiments were conducted to measure bed morphology adjustments in sand/gravel and sand/silt sediment mixtures during repeated hydrographs and to link these changes to sediment transport patterns over multiple time scales. Sediment composition and hydrograph flow magnitude greatly influenced channel morphology, which impacted sediment yield, hysteresis, and transport predictions. Bed load yields were larger and more variable for the sand/silt mixture, as gravel in the sand/gravel sediment inhibited grain entrainment, limited bed form growth, and acted to stabilize the bed. Hysteresis patterns varied due to bed form and surface structure adjustments, as well as the stabilizing effect of antecedent low flows. Using half the data set, a dimensionless fractional transport equation was derived based on excess shear stress. Dimensionless reference shear stresses were estimated in two ways: as bulk values from all transport measurements and by applying a separate limb approach in which values were estimated for each limb of each hydrograph. For the other half of the data set, transport predictions with the separate limb approach were more accurate than those from six existing transport equations and the fractional relationship applied with bulk reference shear stresses. Thus, hydrograph limb-dependent dimensionless reference shear stress links changing bed morphology and sediment transport, providing a parameter to improve transport predictions during individual flood events and in unsteady flow regimes. This approach represents a framework with which to develop site-specific transport relationships for varying flow regimes, particularly in cases where detailed bed morphology measurements are not feasible and heterogeneous sediment complicates bed structure over time.

  19. Modern Graywacke-Type Sands.

    PubMed

    Hollister, C D; Heezen, B C

    1964-12-18

    A preliminary study of more than 100 deep-sea cores from abyssal plains has revealed two examples of recent muddy sands of the graywacke type which, together with the microcrystalline matrix, form a bimodal-size distribution sands have a well-sorted framework of quartz, feldspar, and rock fragments which, together with the microcrystalline matrix, form a bimodal-size distribution that is also typical of ancient graywackes. The matrix is considered to be primary. PMID:17775982

  20. Near-shore sand thickness and stratigraphy mapping with a submerged GPR antenna system; southeast Lake Michigan

    SciTech Connect

    Sauck, W.A.; Seng, D.L. )

    1994-04-01

    Twenty-one shore perpendicular profiles, spaced at nominal 5 km intervals, have been surveyed with a bottom-sled mounted Ground Penetrating Radar (GPR) antenna system between Benton Harbor, MI, and Gary, IN. Either a commercial 500 MHz or a custom 145 MHz antenna were used. The bottom sled also carried an upward looking SONAR transducer to give concurrent water depth, and was towed from the beach out to water depths of 6 meters or more, usually ending about 500 meters from shore. Bedding structures and details are clearly visible on the GPR sections within the sand bars and sand blankets. Bottom morphology and the nature of the sand bodies change markedly from the NE to the SW limits of the survey area. At the NE profiles there are multiple, pronounced (or high amplitude) offshore bars, with the substrate (glacial clay, shale, or silty sand) exposed or nearly exposed between bars. Internal structure is generally foreset or cross bedding in the bars. Sand was thin or missing immediately to the Sw of several other jetty structures in addition to the one at St. Joseph. In general the sand bars became much less pronounced to the SW, and internal structures were dominated by parallel bedding and subtle angular unconformities. Near St. Joseph, the exposed substrate is almost certainly being eroded, even to water depths as great as 6 meters. Thus, the equilibrium bottom profile continues to deepen shoreward, causing the continued threat of bluff erosion in spite of annual beach nourishment efforts at this site.

  1. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. PMID:25446789

  2. Dust and Sand Mixing

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 10 November 2003

    The bright and dark tones observed in this THEMIS image of part of an unnamed impact crater (85 km in diameter) near the larger impact crater Schiaparelli are due to variable amounts of bright dust and dark sand covering the surface. Wind Shadows observed around small impact craters at the top of the image and small grooves and ripple-like marks observed throughout the scene illustrate dynamic and continued aeolian processes on Mars.

    Image information: VIS instrument. Latitude -1.4, Longitude 10.9 East (349.1 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Differences in macrofaunal and seagrass assemblages in seagrass beds with and without seaweed farms

    NASA Astrophysics Data System (ADS)

    Eklöf, J. S.; de la Torre Castro, M.; Adelsköld, L.; Jiddawi, N. S.; Kautsky, N.

    2005-05-01

    Since it was introduced to Zanzibar (Tanzania), seaweed farming has significantly contributed to local, socio-economic development. However, several investigations have shown impacts on the coastal environment near where the farms are located. As many seaweed farms are located on seagrass beds, there is a risk that seaweed farming could affect seagrass beds, and thereby disturb important ecosystem functions and the flow of ecological goods and services. This study compares characteristics of macrophytes (focusing on seagrasses), benthic macrofauna and sediment in seagrass beds, with and without seaweed farms, and a sand bank without vegetation in Chwaka Bay, Zanzibar. The results showed that seagrass beds underneath seaweed farms generally had less seagrass and macroalgae, finer sediment, lower sediment organic matter content and a reduced abundance and biomass of macrofauna, than seagrass beds without seaweed farms. Further, the macrofaunal community structure in seaweed farms showed more similarities to that on the sand bank than in the unfarmed seagrass beds. Most of the dissimilarity was attributable to Lucinidae (suspension-feeding bivalves), which were almost absent in the seaweed farms, resulting in the large difference in biomass between the seaweed farms and the unfarmed seagrass beds. When interpreted together with information from farmers, the observed pattern is believed to be caused by the seaweed farming activities. This indicates that more research is needed to establish the effects of seaweed farming on seagrass beds, and that more attention should be given to the location of farms and the choice of farming methods.

  4. Tapered bed bioreactor

    DOEpatents

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  5. Particle fuel bed tests

    SciTech Connect

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H/sub 2/ for 12 hours with no visible reaction or weight loss.

  6. Bed rest during pregnancy

    MedlinePlus

    ... provider before you start any activity: Squeezing stress balls Pressing your hands and feet against the bed ... limit yourself from doing any of these: Cooking Light chores Walking Bathing or showering Driving Having sex ...

  7. Moving-bed sorbents

    SciTech Connect

    Ayala, R.E.; Gupta, R.P.; Chuck, T.

    1995-12-01

    The objective of this program is to develop mixed-metal oxide sorbent formulations that are suitable for moving-bed, high-temperature, desulfurization of coal gas. Work continues on zinc titanates formulations and Z-sorb III sorbent.

  8. Agglomeration characteristics of silica sand-rice husk ash mixtures at elevated temperatures

    SciTech Connect

    Mansaray, K.G.; Ghaly, A.E.

    1998-08-01

    Rice husk, a major by-product of the rice milling process, can be a significant energy resource in rice producing countries because of its high energy content. Fluidized bed gasifiers have been proposed for the recovery of energy from rice husk. The major advantage of fluidized bed gasifiers over fixed bed gasifiers is the high mass and heat transfer capability due to very high percentage of inert bed material such as silica sand. In addition, the vigorous mixing and agitation of solid particles in fluidized beds promote a uniform temperature distribution and a high conversion efficiency. However, attempts to utilize rice husk as a feed in fluidized bed gasifiers have been unsuccessful because of the high ash content of rice husk that may result in the agglomeration of inert bed materials at high temperatures. In this work, the effect of rice husk ash content on the agglomeration characteristics of silica sand was investigated at various temperatures using a muffle furnace. A light microscope, an environmental scanning electron microscope, and an energy dispersive X-ray analyzer were used to characterize the structural changes and elemental makeup of the samples. There was no indication of agglomeration below 850 C, but at temperatures of 850--1,000 C the silica sand loosely agglomerated in the presence of rice husk ash at all levels of ash content. The effect was more pronounced at 1,000 C. The chemical interaction of the SiO{sub 2} and the low melting temperature mineral oxides present in notably low concentrations in rice husk ash, appeared to be the mechanism resulting in the formation of the loose agglomerates.

  9. Sea bed mechanics

    SciTech Connect

    Sleath, J.F.A.

    1984-01-01

    This book provides a discussion on sea bed processes with engineering applications. It brings together the material currently available only in technical reports of research papers. It provides formulae and background references necessary for design calculation of problems such as sea bed or coastal erosion, and sub-marine pipeline stability. It also covers dissipation of wave energy, formation of ripples and dunes, and the transportation of sediments.

  10. Measuring bed load discharge in rivers: bedload-surrogate monitoring workshop Minneapolis, Minnesota, 11-14 April 2007

    USGS Publications Warehouse

    Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2007-01-01

    The International Bedload-Surrogate Monitoring Workshop (http://www.nced.umn.edu/BRIC_2007.html), organized by the Bedload Research International Cooperative (BRIC; www.bedloadresearch.org), was held to assess and abet progress in continuous, semiautomated, or fully automated (surrogate) technologies for monitoring bed load discharge in gravel-, sand-, and mixed gravel-sand-bedded rivers. Direct bed load measurements, particularly at medium and high flows, during which most bed load occurs, tend to be time-consuming, expensive, and potentially hazardous. Surrogate technologies developed largely over the past decade and used at a number of research sites around the world show considerable promise toward providing relatively dense, robust, and quantifiably reliable bed load data sets. However, information on the efficacy of selected technologies for use in monitoring programs is needed, as is identification of the ways and means for bringing the most promising and practical of the technologies to fruition.

  11. Large-Scale Sediment Routing: Development of a One-Dimensional Model Incorporating Sand Storage

    NASA Astrophysics Data System (ADS)

    Wiele, S. M.; Wilcock, P. R.; Grams, P. E.

    2005-12-01

    Routing sediment through long reaches and networks requires a balance between model efficiency, data availability, and accurate representation of sediment flux and storage. The first two often constrain the appropriate model to one dimension, but such models are unable to capture changes in sediment storage in side-channel environments, which are typically driven by two-dimensional transport fields. Side-channel environments are especially important in canyon channels. Routing of sand in canyon channels can be further complicated by transport of sand over a cobble or boulder bed and by remote locations, which can hinder measurement of channel shape. We have produced a one-dimensional model that routes water and sand through the Colorado River below Glen Canyon Dam in Arizona. Our model differs from conventional one-dimensional models in several significant ways: (1) exchange of sand between the main downstream current and eddies, which cannot be directly represented by a one-dimensional model, is included by parameterizing predictions over a wide range of conditions from a multidimensional model; (2) suspended-sand transport over an extremely rough and sparsely sand-covered bed, which is not accurately represented in conventional sand-transport relations or boundary conditions, is calculated in our model with newly developed algorithms (see Grams and others, this meeting); (3) the channel is represented by reach-averaged properties, thereby reducing data requirements and increasing model efficiency; and (4) the model is coupled with an unsteady-flow model, thereby accounting for frequent changes in discharge produced by variations in releases in this power-producing regulated river. Numerical models can contribute to the explanation of observed changes in sand storage, extrapolate field observations to unobserved flows, and evaluate alternative dam-operation strategies for preserving the sand resource. Model applications can address several significant management issues: (1) the potentially rapid migration of tributary sand inputs through the system, which has important implications for the engineering and institutional basis for dam operations; (2) the effect of timing, magnitude, and duration of dam-release alternatives on building sand bars; and (3) the linkages between dam operations, sand deposits, and the biological, recreational, and archaeological resources along the river corridor.

  12. Internal structures and developing mechanisms of tidal sand ridges in the East China Sea

    NASA Astrophysics Data System (ADS)

    Liu, Z.

    2004-12-01

    *Abstract:* The internal structures of the tidal sand ridges in the East China Sea are characterized by the southwest-dipping beddings and several erosion surfaces, which resulted in young sand ridges overlying old ones and forming a unique multi-layer complex structure. These characteristics reveal the multi-phase development of the tidal sand ridges, and their multi-repetitive forming history of accumulation, erosion and accumulation. There are two mechanisms interpreting the migration and evolution of these sand ridges. One mechanism concerns the evolution tidal sand ridge itself. The tidal current difference along two flanks of a ridge makes the sediments migrate toward the side with lower current speed. This is so-called auto-cyclic process of sand ridge developing. For the tidal sand ridges in the East China Sea, one side is dominated by flood currents in a NW direction, the other side is dominated by ebb current in a SE direction. Due to the influences of topography gradient of the continental shelf and the runoff from Chinese main land, the velocity of the ebb currents is larger than that of the flood currents, so the sediment is transported to southwest continuously, and it is a certainty for the sand ridges migrate toward SW and form the beddings inclining toward SW. The other mechanism is allo-cyclic process, which relates to global or regional hydrodynamic changes, such as sea-level fluctuations or storm waves. The post-glacial sea level rose rapidly in a stepwise pattern caused by the four postglacial melting water pulses (MWP-1A, 1B, 1C, 1D) (Liu et al., 2004) and it should play an important role in this mechanism. Both mechanisms exist in the development of the tidal sand ridges in the East China Sea, so there is some difficulties to distinguish them clearly. It is obvious that the tidal sand ridges of the East China Sea have evolved continuously since the postglacial period; four stages of sand ridges have formed in sequence: younger ridges overlaid the old ones and finally formed the multi-layer complex structure. *Key words:* East China Sea, tidal sand ridge, internal structure, auto-cyclic processes, allo-cyclic process

  13. Bed rest and immunity

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald; Aviles, Hernan; Butel, Janet S.; Shearer, William T.; Niesel, David; Pandya, Utpal; Allen, Christopher; Ochs, Hans D.; Blancher, Antoine; Abbal, Michel

    2007-02-01

    Space flight has been shown to result in altered immune responses. The current study was designed to investigate this possibility by using the bed rest model of some space flight conditions. A large number of women are included as subjects in the study. The hypothesis being tested is: 60 days head-down tilt bed rest of humans will affect the immune system and resistance to infection. Blood, urine and saliva samples will be obtained from bed rest subjects prior to, at intervals during, and after completion of 60 days of head-down tilt bed rest. Leukocyte blastogenesis, cytokine production and virus reactivation will be assessed. The ability of the subjects to respond appropriately to immunization with the neoantigen bacteriophage φX-174 will also be determined. Bed rest is being carried out at MEDES, Toulouse France, and the University of Texas Medical Branch, Galveston, TX. The studies to be carried out in France will also allow assessment of the effects of muscle/bone exercise and nutritional countermeasures on the immune system in addition to the effects of bed rest.

  14. Finite height behaviour of tidal sand ridges: a nonlinear model study

    NASA Astrophysics Data System (ADS)

    Yuan, Bing; de Swart, Huib; Panades, Carles

    2015-04-01

    Tidal sand ridges are observed on the continental shelves with sandy beds where the tidal current is larger than about 0.5 m s-1. Examples are the shelves of the North Sea and the East China Sea. These rhythmic seabed features have a typical wavelength (the distance from crest to crest) of 5-10 km and a height of order 10 m. So far, the long-term evolution of offshore tidal sand ridges has only been studied by using highly simplified models, in which tidal currents are rectilinear, and the sand transport formulation does not include a critical shear stress for sediment erosion. Furthermore, the topography is assumed to be uniform in one of the horizontal dimensions. However, field observations show that tidal currents are generally elliptical, and tidal sand ridges are actually 3D features. In this work, an idealised nonlinear numerical model is used to study the finite height behaviour of offshore tidal sand ridges. Specific aims are to quantify the effect of tidal characteristics and critical shear stress of sediment erosion on the nonlinear evolution of tidal sand ridges, both in the cases of 2D and 3D ridges. It is found out that if elliptical tides are imposed, the finite height of the ridges becomes lower, while if the critical shear stress is accounted for, the height of the ridges becomes higher and the crest becomes flatter. When the topography is allowed to vary in two horizontal dimensions, indeed quasi-3D sand ridges emerge.

  15. Control of bed height in a fluidized bed gasification system

    DOEpatents

    Mehta, Gautam I.; Rogers, Lynn M.

    1983-12-20

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  16. Aeolian processes over gravel beds: Field wind tunnel simulation and its application atop the Mogao Grottoes, China

    NASA Astrophysics Data System (ADS)

    Zhang, Weimin; Tan, Lihai; Zhang, Guobin; Qiu, Fei; Zhan, Hongtao

    2014-12-01

    The aeolian processes of erosion, transport and deposition are threatening the Mogao Grottoes, a world culture heritage site. A field wind tunnel experiment was conducted atop the Mogao Grottoes using weighing sensors to quantify aeolian processes over protective gravel beds. Results reveal that aeolian erosion and deposition over gravel beds are basically influenced by gravel coverage and wind speed. Erosion is a main aeolian process over gravel beds and its strength level is mainly determined by gravel coverage: strong (<30%), medium (30-50%) and slight (>50%). Aeolian deposition only occurs when gravel coverage is equal to or greater than 30% and wind speeds are between 8 and 12 m s-1, and this process continues until the occurrence of the equilibrium coverage. In addition, the change in conditions of external sand supply affects the transition between aeolian deposition and erosion over gravel beds, and the quantity of sand transport at the height of 0-24 mm is an important indicator of aeolian deposition and erosion over gravel beds. Our results also demonstrate that making the best use of wind regime atop the Mogao Grottoes and constructing an artificial gobi surface in staggered arrays, with 30% coverage and 30-mm-high gravels and in 40 mm spacing can trap westerly invading sand flow and enable the stronger easterly wind to return the deposited sand on the gravel surface back to the Mingsha Mountain so as to minimize the damage of the blown sand flux to the Mogao Grottoes.

  17. Physical modelling of sand injectites

    NASA Astrophysics Data System (ADS)

    Rodrigues, N.; Cobbold, P. R.; Løseth, H.

    2009-09-01

    Sand injectites are structures that result from intrusion of fluidized sand into fractures. We have studied them in the Tampen Spur area of the North Sea, and have reproduced them experimentally, by driving compressed air through layers of sand, glass microspheres, and silica powder. The silica powder was cohesive and capable of hydraulic fracturing, whereas the sand and glass microspheres were almost non-cohesive and therefore able to fluidize. The models were dynamically similar to their natural counterparts, for as long as equilibrium was static. When the processes became dynamic, so that inertial forces were significant, the scaling was approximate and the corresponding Reynolds numbers differed. The experimental apparatus was a square box, 1 m × 1 m wide, resting on a grid of fluid diffusers. During the experiments, the fluid pressure increased, until it attained and surpassed the weight of overburden. Flat-lying hydraulic fractures, containing air, formed within cohesive and least permeable layers. Heterogeneities in material properties and layer thicknesses were responsible for localizing fracture networks. When any one network broke through to the surface, rapid flow of air through the fractures fluidized the underlying mobile materials and even depleted some of the layers. Some of the fluidized material extruded at the surface through vents, forming volcanoes and sheets. The remainder lodged at depth, forming sand injectites or laccoliths. Conical sand injectites formed preferentially, where layers had high resistance to bending. Laccoliths formed nearer the surface, where overlying layers had low resistance to bending. The experimental sand injectites were broadly similar to those in the Tampen Spur area of the North Sea, as well as other areas.

  18. Sand waves in environmental flows: Insights gained by coupling large-eddy simulation with morphodynamics

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Khosronejad, Ali

    2016-02-01

    Sand waves arise in subaqueous and Aeolian environments as the result of the complex interaction between turbulent flows and mobile sand beds. They occur across a wide range of spatial scales, evolve at temporal scales much slower than the integral scale of the transporting turbulent flow, dominate river morphodynamics, undermine streambank stability and infrastructure during flooding, and sculpt terrestrial and extraterrestrial landscapes. In this paper, we present the vision for our work over the last ten years, which has sought to develop computational tools capable of simulating the coupled interactions of sand waves with turbulence across the broad range of relevant scales: from small-scale ripples in laboratory flumes to mega-dunes in large rivers. We review the computational advances that have enabled us to simulate the genesis and long-term evolution of arbitrarily large and complex sand dunes in turbulent flows using large-eddy simulation and summarize numerous novel physical insights derived from our simulations. Our findings explain the role of turbulent sweeps in the near-bed region as the primary mechanism for destabilizing the sand bed, show that the seeds of the emergent structure in dune fields lie in the heterogeneity of the turbulence and bed shear stress fluctuations over the initially flatbed, and elucidate how large dunes at equilibrium give rise to energetic coherent structures and modify the spectra of turbulence. We also discuss future challenges and our vision for advancing a data-driven simulation-based engineering science approach for site-specific simulations of river flooding.

  19. Wave-induced ripples development in mixed clay-sand substrates

    NASA Astrophysics Data System (ADS)

    Wu, Xuxu; Parsons, Daniel; Baas, Jaco Hugo; McLelland, Stuart; Amoudry, Laurent; Mouazé, Dominique; Eggenhuisen, Jorris; Cartigny, Matthieu; Ruessink, Gerben

    2015-04-01

    Wave-induced ripples development in mixed clay-sand substrates A large-scale flume experiment (as part of EU HYDRALAB IV) was conducted in the Total Environment Simulator, University of Hull from 27th August to 25th September, 2013. The purpose of the experiments was to provide full quantification of near-bed turbulence and sediment transport interactions over rippled beds of clay-sand mixtures under oscillatory flow conditions. A series of state-of-the-art measurements were employed to quantify interactions of near-bed hydrodynamics, sediment transport, and turbulence over rippled beds formed by wave action. The experimental results demonstrate the significant influence of the amount of cohesive materials in the substrate on bedform evolution under regular surface waves. Most importantly, the time of initial ripples appearance is delayed around 30 minutes in substrates with higher percentages of cohesive clays (Run 5, 5.3%; Run 6, 5.5%) compared with experiments conducted with well-sorted sand (a median diameter of ~ 496

  20. Controls on the composition of fluvial sands from a tropical weathering environment: sands of the Orinoco River drainage basin, Venezuela and Colombia

    USGS Publications Warehouse

    Johnsson, M.J.; Stallard, R.F.; Lundberg, N.

    1991-01-01

    On the alluvial plains of the western Llanos, storage of orogenically derived sediment allows time for substantial chemical weathering. Through reworking of the alluvial sequences, freshly eroded sediment is exchanged for older, compositionally more mature material. The chemically weathered component increases as rivers cross the Llanos, resulting in an increase in overall compositional maturity of bed-load sand away from the orogenic terranes. -from Authors

  1. Sand Dunes in Noachis Terra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    11 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-toned sand dunes in a crater in eastern Noachis Terra. Most big martian dunes tend to be dark, as opposed to the more familiar light-toned dunes of Earth. This difference is a product of the composition of the dunes; on Earth, most dunes contain abundant quartz. Quartz is usually clear (transparent), though quartz sand grains that have been kicked around by wind usually develop a white, frosty surface. On Mars, the sand is mostly made up of the darker minerals that comprise iron- and magnesium-rich volcanic rocks--i.e., like the black sand beaches found on volcanic islands like Hawaii. Examples of dark sand dunes on Earth are found in central Washington state and Iceland, among other places. This picture is located near 49.0oS, 326.3oW. Sunlight illuminates this scene from the upper left; the image covers an area 3 km (1.9 mi) wide.

  2. Fluidized bed combustion of solid organic wastes and low-grade coals: Research and modeling

    SciTech Connect

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Stanchits, L.K.

    1995-12-31

    Experimental studies were carried out to investigate devolatilization and combustion of single spherical particles of wood, hydrolytic lignin from ethanol production, leather processing sewage sludge, and low-grade Belarusian brown coals in a fluidized bed of sand. A two-phase model of fluidized bed combustion of biowaste is proposed. The model takes into account combustion of both volatiles and char in the bed as well as in the freeboard. Experimentally obtained characteristics of devolatilization and char combustion are used as parameters of the model proposed.

  3. Sewage plume in a sand and gravel aquifer, Cape Cod, Massachusetts

    USGS Publications Warehouse

    LeBlanc, Denis R.

    1984-01-01

    Secondarily treated domestic sewage has been disposed of on surface sand beds at the sewage treatment facility at Otis Air Force Base, Massachusetts, since 1936. Infiltration of the sewage through the sand beds into the underlying unconfined sand and gravel aquifer has resulted in a plume of sewage-contaminated ground water that is 2,500 to 3,500 feet wide, 75 feet thick, and more than 11,000 feet long. The plume extends south and southwest of the sand beds in the same direction as the regional flow of ground water, and is overlain by 20 to 50 feet of ground water derived from precipitation that recharges the aquifer. The bottom of the plume generally coincides with the contact between the permeable sand and gravel and underlying finer grained sediments. The distributions in the aquifer of specific conductance, temperature, boron, chloride, sodium, phosphorus, nitrogen (total of all species), ammonia, nitrate, dissolved oxygen, and detergents are used to delineate the plume. In ground water outside the plume, the detergent concentration is less than 0.1 milligrams per liter as MBAS (methylene blue active substances), the ammonia-nitrogen concentration is less than 0.1 milligrams per liter, the boron concentration is less than 50 micrograms per liter, and specific conductance is less than 80 mircromhos per centimeter. In the center of the plume, detergent concentrations as high as 2.6 milligrams per liter as MBAS, ammonia-nitrogen concentrations as high as 20 milligrams per liter, boron concentrations as high as 400 micrograms per liter, and specific conductance as high as 405 micromhos per centimeter were measured. Chloride, sodium, and boron are transported by the southward-flowing ground water without significant retardation, and seem to be diluted only by hydrodynamic dispersion. The movement of phosphorus is greatly restricted by sorption. Phosphorus concentrations do not exceed 0.05 milligrams per liter farther than 2,500 feet from the sand beds. Detergent concentrations in the plume are highest between 3,000 and 10,000 feet from the sand beds and reflect the introduction of nonbiodegradable detergents in 1946 and the conversion to biodegradable detergents in 1964. The center of the plume as far as 5,000 feet from the sand beds contains nitrogen as ammonia, but no nitrate and no dissolved oxygen. Ammonia is gradually oxidized to nitrate between 5,000 and 8,000 feet from the sand beds, and at distances greater than 8,000 feet oxidation of ammonia is essentially complete. Ammonia also is oxidized to nitrate along the top and sides of the plume within 5,000 of the beds where the contaminated ground water mixes with uncontaminated ground water that contains up to 11 milligrams per liter dissolved oxygen.

  4. EVALUATION OF ANAEROBIC, EXPANDED-BED CONTRACTORS FOR MUNICIPAL WASTEWATER TREATMENT

    EPA Science Inventory

    The anaerobic expanded-bed contactors for treating dilute municipal wastes were evaluated. A 334-liter diatomaceous earth, a 334 liter granular activated carbon, a set of two 66-liter sand, and two 3-liter diatomaceous earth reactor systems were used. For the most part the feed w...

  5. Drying Beds. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    Provided in this lesson is introductory material on sand and surfaced sludge drying beds. Typical construction and operation, proper maintenance, and safety procedures are considered. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a description of the lesson, estimated presentation time,…

  6. Sands at Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth; Knoll, Andrew H.; Farmer, Jack; Arvidson, Raymond; Grin, Edmond; Li, Ronxing; Fenton, Lori; Cohen, Barbara; Bell, James F.; Aileen Yingst, R.

    2014-05-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  7. Paleocene-eocene lignite beds of southwest Alabama: Parasequence beds in highstand systems tracts

    SciTech Connect

    Mancini, E.A.; Tew, B.H. ); Carroll, R.E. )

    1993-09-01

    In southwest Alabama, lignite beds are present in at least four stratigraphic intervals that span approximately 8 m.y. of geologic time. Lignite is found in the Paleocene Oak Hill Member and Coal Bluff Member of the Naheola Formation of the Midway Group and the Paleocene Tuscahoma Sand and the Eocene Hatchetigbee Formation of the Wilcox Group. Lignite beds range in thickness from 0.5 to 11 ft and consist of 32-53% moisture, 13-39% volatile matter, 4-36% fixed carbon, and 5-51% ash. These Paleocene and Eocene lignite beds occur as parasequence deposits in highstand systems tracts of four distinct third-order depositional sequences. The lignite beds are interpreted as strata within highstand systems tract parasequences that occur in mud-dominated regressive intervals. Lignite beds were deposited in coastal marsh and low-lying swamp environments as part of deltaic systems that prograded into southwestern Alabama from the west. As sediment was progressively delivered into the basin from these deltas, the effects of relative sea level rise during an individual cycle were overwhelmed, producing a net loss of accommodation and concomitant overall basinward progradation of the shoreline (regression). Small-scale fluctuations in water depth resulting from the interaction of eustasy, sediment yield, and subsidence led to cyclical flooding of the low-lying coastal marshes and swamps followed by periods of progradational and regression. Highstand systems tract deposition within a particular depositional sequence culminated with a relative sea level fall that resulted in a lowering of base level and an abrupt basinward shift in coastal onlap. Following sea level fall and the subsequent accumulation of the lowstand deposits, significant relative sea level rise resulted in the marine inundation of the area previously occupied by coastal marshes and swamps and deposition of the transgressive systems tract of the overlying sequence.

  8. Spatial Distribution of Bed Particles in Natural Boulder-Bed Streams

    NASA Astrophysics Data System (ADS)

    Clancy, K. F.; Prestegaard, K. L.

    2001-12-01

    The Wolman pebble count is used to obtain the size distribution of bed particles in natural streams. Statistics such as median particle size (D50) are used in resistance calculations. Additional information such as bed particle heterogeneity may also be obtained from the particle distribution, which is used to predict sediment transport rates (Hey, 1979), (Ferguson, Prestegaard, Ashworth, 1989). Boulder-bed streams have an extreme range of particles in the particle size distribution ranging from sand size particles to particles larger than 0.5-m. A study of a natural boulder-bed reach demonstrated that the spatial distribution of the particles is a significant factor in predicting sediment transport and stream bed and bank stability. Further experiments were performed to test the limits of the spatial distribution's effect on sediment transport. Three stream reaches 40-m in length were selected with similar hydrologic characteristics and spatial distributions but varying average size particles. We used a grid 0.5 by 0.5-m and measured four particles within each grid cell. Digital photographs of the streambed were taken in each grid cell. The photographs were examined using image analysis software to obtain particle size and position of the largest particles (D84) within the reach's particle distribution. Cross section, topography and stream depth were surveyed. Velocity and velocity profiles were measured and recorded. With these data and additional surveys of bankfull floods, we tested the significance of the spatial distributions as average particle size decreases. The spatial distribution of streambed particles may provide information about stream valley formation, bank stability, sediment transport, and the growth rate of riparian vegetation.

  9. Treatment bed microbiological control

    NASA Technical Reports Server (NTRS)

    Janauer, Gilbert E.; Fitzpatrick, Timothy W.; Kril, Michael B.; Wilber, Georgia A.; Sauer, Richard L.

    1987-01-01

    The effects of microbial fouling on treatment bed (TB) performance are being studied. Fouling of activated carbon (AC) and ion exchange resins (IEX) by live and devitalized bacteria can cause decreased capacity for selected sorbates with AC and IEX TB. More data are needed on organic species removal in the trace region of solute sorption isotherms. TB colonization was prevented by nonclassical chemical disinfectant compositions (quaternary ammonium resins) applied in suitable configurations. Recently, the protection of carbon beds via direct disinfectant impregnation has shown promise. Effects (of impregnation) upon bed sorption/removal characteristics are to be studied with representative contaminants. The potential need to remove solutes added or produced during water disinfection and/or TB microbiological control must be investigated.

  10. Sand transport in the lower Mississippi River does not yield to dams: Applications for building deltaic land in Louisiana

    NASA Astrophysics Data System (ADS)

    Nittrouer, J. A.; Viparelli, E.

    2013-12-01

    The Mississippi Delta is presently undergoing a catastrophic drowning, whereby 5000 km2 of low-lying wetlands have converted to open water. This land loss is primarily the result of: a) relative sea-level rise, occurring due to the combined effect of rapid subsidence associated with subsurface fluids extraction and eustatic rise; b) leveeing and damming of the river and its tributaries, which restricts sediment delivery to and dispersal within the delta; and c) severe excavation of the delta for navigation channels. It has been argued that continued net land loss of the Mississippi Delta is inevitable due to declining measured total (sand and mud) suspended sediment loads over the past 6 decades. However, recent research has documented that the key to delta growth is deposition of sand, which accounts for ~50-70% of modern and ancient (up to 9 m.a.) Mississippi Delta deposits, but comprises only ~20% of the sampled portion of the total load. Here we present new analysis of existing data to show that sand transport has not diminished since dam construction. Furthermore, we produce a numerical model based on the mass balance of bed material loads over the lower 1600 km of the Mississippi River to show that mining of sand from the channel bed continues to replenish downstream sand loads. For example, our model results indicate that it requires approximately 240 years for a reduced sand load to reach the delta apex. Furthermore, our calculations indicate that sand load at the delta apex is reduced by a noticeable amount (17%) only after about 600 years. We also show how channel bed elevations are predicted to change over the lower 1600 km of the river channel due to channel mining. Channel-bed degradation is greatest at the upstream end of the study reach and decreases downstream. After 300 years the wave of significant degradation has just passed ~800 km downstream, or roughly half of our model domain. These results are in contrast to the measurements which concern the reduction of total suspended sediment load, and here we provide a reasonable hypothesis to help explain: sand possesses a much slower time scale of movement through a sand-bed river compared to mud, because sand exchanges with the bed, building dunes and bars that migrate gradually downstream, whereas the mud travels the length of the system in suspension as washload. This produces orders-of-magnitude difference in transport timescales between mud -- which accounts for ~80% of the total suspended sediment load of the Mississippi River -- and sand (bedload and suspended load). Combined with the abundance and availability of sand to be mined within the main channel, the river effectively buffers the reduction of sand load arising due to main-channel dams. Thus the bed of the lower Mississippi River downstream will provide a stable supply of sand to the delta for the foreseeable future.

  11. Armoring, stability, and transport driven by fluid flow over a granular bed

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Kudrolli, Arshad

    2015-03-01

    We discuss experiments investigating the evolution of a granular bed by a fluid flow as a function of shear rate at the fluid-bed interface. This is a model system to investigate a variety of physical examples including wind blowing over sand, sediment transport in rivers, tidal flows interacting with beaches, flows in slurry pipelines, and sand proppants in hydraulic fracturing. In order to examine the onset and entrainment of the granular bed under steady state conditions, we have constructed a novel conical rheometer system which allows a variable amount of shear to be applied to the granular bed. The grain-fluid system is index matched so that we can visualize the grains away from the sides as well as visualize the fluid flow above and below the interface by using fluorescent tracer particles. We demonstrate that the onset of erosion arises as particles rotate out of their stable position highlighting the importance of torque balance to onset. We find significant armoring of the bed, as the bed is sheared by the fluid flow. Above onset, at least three distinct regions of bed mobility can be found. We will discuss the measured integrated granular flux as a function of shear rate and compare them with empirical laws found in the geophysical literature. Supported by NSF Grant Number CBET 1335928.

  12. Volatiles combustion in fluidized beds. Final technical report, 4 September 1992--4 June 1995

    SciTech Connect

    Pendergrass, R.A. II; Raffensperger, C.; Hesketh, R.P.

    1996-02-29

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization are being conducted to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. A review of the work conducted under this grant is presented in this Final Technical Report. Both experimental and theoretical work have been conducted to examine the inhibition of the combustion by the fluidized bed material, sand. It has been shown that particulate phase at incipient fluidization inhibits the combustion of propane by free radical destruction at the surface of sand particles within the particulate phase. The implications of these findings is that at bed temperatures lower than the critical temperatures, gas combustion can only occur in the bubble phase or at the top surface of a bubbling fluidized bed. In modeling fluidized bed combustion this inhibition by the particulate phase should be included.

  13. General Suppression of Escherichia coli O157:H7 in Sand-Based Dairy Livestock Bedding▿ †

    PubMed Central

    Westphal, Andreas; Williams, Michele L.; Baysal-Gurel, Fulya; LeJeune, Jeffrey T.; McSpadden Gardener, Brian B.

    2011-01-01

    Sand bedding material is frequently used in dairy operations to reduce the occurrence of mastitis and enhance cow comfort. One objective of this work was to determine if sand-based bedding also supported the microbiologically based suppression of an introduced bacterial pathogen. Bedding samples were collected in summer, fall, and winter from various locations within a dairy operation and tested for their ability to suppress introduced populations of Escherichia coli O157:H7. All sources of bedding displayed a heat-sensitive suppressiveness to the pathogen. Differences in suppressiveness were also noted between different samples at room temperature. At just 1 day postinoculation (dpi), the recycled sand bedding catalyzed up to a 1,000-fold reduction in E. coli counts, typically 10-fold greater than the reduction achieved with other substrates, depending on the sampling date. All bedding substrates were able to reduce E. coli populations by over 10,000-fold within 7 to 15 dpi, regardless of sampling date. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to identify bacterial populations potentially associated with the noted suppression of E. coli O157:H7 in sand bedding. Eleven terminal restriction fragments (TRFs) were overrepresented in paired comparisons of suppressive and nonsuppressive specimens at multiple sampling points, indicating that they may represent environmentally stable populations of pathogen-suppressing bacteria. Cloning and sequencing of these TRFs indicated that they represent a diverse subset of bacteria, belonging to the Cytophaga-Flexibacter-Bacteroidetes, Gammaproteobacteria, and Firmicutes, only a few of which have previously been identified in livestock manure. Such data indicate that microbial suppression may be harnessed to develop new options for mitigating the risk and dispersal of zoonotic bacterial pathogens on dairy farms. PMID:21257815

  14. Nail bed onychomatricoma.

    PubMed

    Wang, Lei; Gao, Tianwen; Wang, Gang

    2014-10-01

    Onychomatricoma is a rare tumor originating from the nail matrix, and, in rare conditions, from the ventral aspect of the proximal nailfold. Here we report a rare case of a 51-year-old man presenting with melanonychia mainly involving the distal nail plate. Histopathologic examination showed typical findings of onychomatricoma mainly involving the nail bed, while the nail matrix was largely uninvolved. We also identified fungal infection in a focal area of the distal nail plate. Our findings indicate that onychomatricoma can develop in the surrounding epithelial tissue of the nail unit, including the nail bed, and suggest that fungal infection may represent a secondary phenomenon of onychomatricoma. PMID:25039855

  15. National test bed concept

    NASA Technical Reports Server (NTRS)

    Meyer, Roger; Mcilwain, Melvin

    1991-01-01

    Information on the National Test Bed concept is given in outline form. Program objectives include the development of a national test bed for propulsion system testing, the efficient utilization of NASA's limited funding for future propulsion system development and sustained flight support, ensuring that adequate test facilities are available within NASA to support future propulsion systems, and the development and maintenance within NASA and the private sector of the technical skills and expertise for future propulsion system development. Proposed actions and programs as well as major milestones are outlined.

  16. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  17. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  18. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  19. Fluid bed material transfer method

    DOEpatents

    Pinske, Jr., Edward E.

    1994-01-01

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  20. Distributor for multistage fluidized beds

    SciTech Connect

    Wormser, A.

    1992-06-16

    This patent describes a multibed fluidized bed system. It comprises a fluidized bed vessel having a casing surrounding a first distributor and a second distributor downstream from the first distributor; a first bed material placed on the first distributor and a second bed material placed on the second distributor; each of the bed materials having an angle of repose; and wherein the angle formed by the substantially straight elongated tubular passages and the upper surface is less than the angle of repose of the second bed material.

  1. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  2. MONITORING WYOMING'S RED DESERT WATERSHEDS USING VERY-LARGE SCALE AERIAL PHOTOGRAPHY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wyoming's Red Desert is "One of America's most extraordinary empty places. ... thousands of square miles spread out across sage (brush)-covered hills, sand dunes and canyons" (Frank Clifford, Los Angeles Times). To the BLM, the Red Desert is 15 million acres of public rangeland to be assessed, monit...

  3. Effect of sand and rubber surface on the lying behavior of lame dairy cows in hospital pens.

    PubMed

    Bak, A S; Herskin, M S; Jensen, M B

    2016-04-01

    Housing lame cows in designated hospital pens with a soft surface may lessen the pain the animals feel when lying and changing position. This study investigated the effect of the lying surface on the behavior of lame cows in hospital pens. Thirty-two lame dairy cows were kept in individual hospital pens, provided with either 30-cm deep-bedded sand or 24-mm rubber mats during 24 h in a crossover design. On each surface, the lying behavior of each cow was recorded during 18 h. On deep-bedded sand, cows lay down more and changed position more often than when housed on the rubber surface. Furthermore, a shorter duration of lying down and getting up movements and a shorter duration of lying intention movements were observed. These results suggest that lame dairy cows are more reluctant to change position on rubber compared with sand, and that sand is more comfortable to lie on. Thus, deep bedding such as sand may provide better lying comfort for lame cows than an unbedded rubber surface. PMID:26830744

  4. Diurnal patterns of blowing sand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diurnal pattern of blowing sand results from a complex process that involves the interaction between the sun, wind, and earth. During the day, solar heating produces thermal instability, which enhances the convective mixing of high momentum winds from the upper levels of the atmosphere to the s...

  5. Geology on a Sand Budget

    ERIC Educational Resources Information Center

    Kane, Jacqueline

    2004-01-01

    Earth science teachers know how frustrating it can be to spend hundreds of dollars on three-dimensional (3-D) models of Earth's geologic features, to use the models for only a few class periods. To avoid emptying an already limited science budget, the author states that teachers can use a simple alternative to the expensive 3-D models--sand. She…

  6. Sand and Water Table Play

    ERIC Educational Resources Information Center

    Wallace, Ann H.; White, Mary J.; Stone, Ryan

    2010-01-01

    The authors observed preschoolers engaged at the sand and water table to determine if math could be found within their play. Wanting to understand how children interact with provided materials and what kinds of math ideas they explore during these interactions, the authors offer practical examples of how such play can promote mathematical…

  7. Registration of 'Centennial' Sand Bluestem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Centennial’ sand bluestem (PI 670042, Andropogon hallii Hack.) is a synthetic variety selected for greater percentage seed germination and percentage seedling establishment under field conditions. Centennial was tested under the experimental designation of ‘AB-Medium Syn-2’. Two cycles of recurren...

  8. About White Sands Missile Range

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Information on the White Sands Missile Range is given in viewgraph form. Navy programs, test sites, rocket programs, research rockets' booster capacity, current boost capabilities, ordnance and payload assembly areas, commercial space launch history and agreements, and lead times are among the topics covered.

  9. Seeing Red

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This New Horizons image of Jupiter's volcanic moon Io was taken at 13:05 Universal Time during the spacecraft's Jupiter flyby on February 28, 2007. It shows the reddish color of the deposits from the giant volcanic eruption at the volcano Tvashtar, near the top of the sunlit crescent, as well as the bluish plume itself and the orange glow of the hot lava at its source. The relatively unprocessed image on the left provides the best view of the volcanic glow and the plume deposits, while the version on the right has been brightened to show the much fainter plume, and the Jupiter-lit night side of Io.

    New Horizons' color imaging of Io's sunlit side was generally overexposed because the spacecraft's color camera, the super-sensitive Multispectral Visible Imaging Camera (MVIC), was designed for the much dimmer illumination at Pluto. However, two of MVIC's four color filters, the blue and 'methane' filter (a special filter designed to map methane frost on the surface of Pluto at an infrared wavelength of 0.89 microns), are less sensitive than the others, and thus obtained some well-exposed views of the surface when illumination conditions were favorable. Because only two color filters are used, rather than the usual three, and because one filter uses infrared light, the color is only a rough approximation to what the human eye would see.

    The red color of the Tvashtar plume fallout is typical of Io's largest volcanic plumes, including the previous eruption of Tvashtar seen by the Galileo and Cassini spacecraft in 2000, and the long-lived Pele plume on the opposite side of Io. The color likely results from the creation of reddish three-atom and four-atom sulfur molecules (S3 and S4) from plume gases rich in two-atom sulfur molecules (S2 After a few months or years, the S3 and S4 molecules recombine into the more stable and familiar yellowish form of sulfur consisting of eight-atom molecules (S8), so these red deposits are only seen around recently-active Io volcanos. Though the plume deposits are red, the plume itself is blue, because it is composed of very tiny particles that preferentially scatter blue light, like smoke. Also faintly visible in the left image is the pale-colored Prometheus plume, almost on the edge of the disk on the equator at the 9 o'clock position.

    Io was 2.4 million kilometers from the spacecraft when the picture was taken, and the center of Io's disk is at 77 degrees West longitude, 5 degrees South latitude. The solar phase angle was 107 degrees.

  10. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    SciTech Connect

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-01-01

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450[degree], over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  11. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    SciTech Connect

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-03-01

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450{degree}, over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  12. Pliocene Lignite Bed

    Seam or bed of Pliocene lignite from a mine in the Balkan endemic nephropathy (BEN) area of Romania. Rainwater falling onto the surface penetrates into the ground, becoming ground water, and leaches toxic organic substances from this coal. The ground water continues to BEN villages in the valleys be...

  13. EXPANDED BED BIOLOGICAL TREATMENT

    EPA Science Inventory

    A three-year pilot-scale research investigation at the EPA Lebanon Pilot Plant was conducted to evaluate the feasibility of a unique biological secondary treatment process, designated the Expanded Bed Biological Treatment Process (EBBT). The EBBT process is a three-phase (oxygen/...

  14. ELECTRIFIED BED EVALUATION

    EPA Science Inventory

    The report gives results of an evaluation of a prototype electrified bed (EFB) particulate collection device. The 500 cfm unit, which uses mechanical and electrical mechanisms for collection, was installed at an asphalt roofing plant during the tests. Fractional efficiency was de...

  15. Bed composition generation for morphodynamic modeling: Case study of San Pablo Bay in California, USA

    USGS Publications Warehouse

    van der Wegen, M.; Dastgheib, A.; Jaffe, B.E.; Roelvink, D.

    2011-01-01

    Applications of process-based morphodynamic models are often constrained by limited availability of data on bed composition, which may have a considerable impact on the modeled morphodynamic development. One may even distinguish a period of "morphodynamic spin-up" in which the model generates the bed level according to some ill-defined initial bed composition rather than describing the realistic behavior of the system. The present paper proposes a methodology to generate bed composition of multiple sand and/or mud fractions that can act as the initial condition for the process-based numerical model Delft3D. The bed composition generation (BCG) run does not include bed level changes, but does permit the redistribution of multiple sediment fractions over the modeled domain. The model applies the concept of an active layer that may differ in sediment composition above an underlayer with fixed composition. In the case of a BCG run, the bed level is kept constant, whereas the bed composition can change. The approach is applied to San Pablo Bay in California, USA. Model results show that the BCG run reallocates sand and mud fractions over the model domain. Initially, a major sediment reallocation takes place, but development rates decrease in the longer term. Runs that take the outcome of a BCG run as a starting point lead to more gradual morphodynamic development. Sensitivity analysis shows the impact of variations in the morphological factor, the active layer thickness, and wind waves. An important but difficult to characterize criterion for a successful application of a BCG run is that it should not lead to a bed composition that fixes the bed so that it dominates the "natural" morphodynamic development of the system. Future research will focus on a decadal morphodynamic hindcast and comparison with measured bathymetries in San Pablo Bay so that the proposed methodology can be tested and optimized. ?? 2010 The Author(s).

  16. Sand Impact Tests of a Half-Scale Crew Module Boilerplate Test Article

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.; Hardy, Robin C.

    2012-01-01

    Although the Orion Multi-Purpose Crew Vehicle (MPCV) is being designed primarily for water landings, a further investigation of launch abort scenarios reveals the possibility of an onshore landing at Kennedy Space Center (KSC). To gather data for correlation against simulations of beach landing impacts, a series of sand impact tests were conducted at NASA Langley Research Center (LaRC). Both vertical drop tests and swing tests with combined vertical and horizontal velocity were performed onto beds of common construction-grade sand using a geometrically scaled crew module boilerplate test article. The tests were simulated using the explicit, nonlinear, transient dynamic finite element code LS-DYNA. The material models for the sand utilized in the simulations were based on tests of sand specimens. Although the LSDYNA models provided reasonable predictions for peak accelerations, they were not always able to track the response through the duration of the impact. Further improvements to the material model used for the sand were identified based on results from the sand specimen tests.

  17. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems.

    PubMed

    Paredes, L; Fernandez-Fontaina, E; Lema, J M; Omil, F; Carballa, M

    2016-05-01

    In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. PMID:26897407

  18. Sedimentary structures and textures of Rio Orinoco channel sands, Venezuela and Colombia

    USGS Publications Warehouse

    McKee, Edwin Dinwiddie

    1989-01-01

    Most sedimentary structures represented in sand bodies of the Rio Orinoco are tabular-planar cross-strata which, together with some wedge-planar cross-strata, are the products of sand-wave deposition. Locally, in areas of river meander where point bars characteristically form, trough structures forming festoon patterns are numerous. At a few localities, sets of nearly horizontal strata occur between tabular-planar sets and are interpreted to be the deposits of very fast currents of the upper flow regime; elsewhere, uncommon lenses and beds of silt, clay, or organic matter consisting of leaves and twigs, seem to be the result of quiet-water settling through gravity. By far the most common grain size represented in the tabular-planar and wedge-planar cross-strata of the sandwave deposits is medium sand (? - ? millimeter) as determined by screen analyses. Many samples, however, also contain moderate quantities of coarse or very coarse sand. Eolian dunes on top of the sand-wave deposits are dominantly fine grained. The river channel sands were determined to be largely moderately well sorted, although in some places they were mostly well sorted, and in others, mostly moderately sorted.

  19. Short-term impact of deep sand extraction and ecosystem-based landscaping on macrozoobenthos and sediment characteristics.

    PubMed

    de Jong, Maarten F; Baptist, Martin J; Lindeboom, Han J; Hoekstra, Piet

    2015-08-15

    We studied short-term changes in macrozoobenthos in a 20m deep borrow pit. A boxcorer was used to sample macrobenthic infauna and a bottom sledge was used to sample macrobenthic epifauna. Sediment characteristics were determined from the boxcore samples, bed shear stress and near-bed salinity were estimated with a hydrodynamic model. Two years after the cessation of sand extraction, macrozoobenthic biomass increased fivefold in the deepest areas. Species composition changed significantly and white furrow shell (Abra alba) became abundant. Several sediment characteristics also changed significantly in the deepest parts. Macrozoobenthic species composition and biomass significantly correlated with time after cessation of sand extraction, sediment and hydrographical characteristics. Ecosystem-based landscaped sand bars were found to be effective in influencing sediment characteristics and macrozoobenthic assemblage. Significant changes in epifauna occurred in deepest parts in 2012 which coincided with the highest sedimentation rate. We recommend continuing monitoring to investigate medium and long-term impacts. PMID:26119627

  20. Modern shallow-water graded sand layers from storm surges, Bering Shelf: a mimic of Bouma sequences and turbidite systems.

    USGS Publications Warehouse

    Nelson, C.H.

    1982-01-01

    A sequence of graded sand layers, interbedded with mud, extends offshore over 100km from the Yukon Delta shoreline across the flat, shallow epicontinental shelf of the northern Bering Sea, Alaska. Proximal graded sand beds on the delta-front platform near the shoreline are coarser, thicker and contain more complete vertical sequences of sedimentary structures than distal beds. The sequence of graded sands appears to be related to the major storm surges that occur every several years. The major storms increase the average 10-m water depth in southern Norton Sound as much as 5m and cause fluctuations in pore pressure from wave cyclic loading that may liquefy the upper 2 to 3m of sediment. -from Author

  1. Stochastic analysis of particle movement over a dune bed

    USGS Publications Warehouse

    Lee, Baum K.; Jobson, Harvey E.

    1977-01-01

    Stochastic models are available that can be used to predict the transport and dispersion of bed-material sediment particles in an alluvial channel. These models are based on the proposition that the movement of a single bed-material sediment particle consists of a series of steps of random length separated by rest periods of random duration and, therefore, application of the models requires a knowledge of the probability distributions of the step lengths, the rest periods, the elevation of particle deposition, and the elevation of particle erosion. The procedure was tested by determining distributions from bed profiles formed in a large laboratory flume with a coarse sand as the bed material. The elevation of particle deposition and the elevation of particle erosion can be considered to be identically distributed, and their distribution can be described by either a ' truncated Gaussian ' or a ' triangular ' density function. The conditional probability distribution of the rest period given the elevation of particle deposition closely followed the two-parameter gamma distribution. The conditional probability distribution of the step length given the elevation of particle erosion and the elevation of particle deposition also closely followed the two-parameter gamma density function. For a given flow, the scale and shape parameters describing the gamma probability distributions can be expressed as functions of bed-elevation. (Woodard-USGS)

  2. Direct combustion of olive cake using fluidized bed combustor

    SciTech Connect

    Khraisha, Y.H.; Hamdan, M.A.; Qalalweh, H.S.

    1999-05-01

    A fluidized bed combustor of 0.146 m diameter and 1 m length was fabricated from stainless steel to burn olive cake. Initially, and in order to obtain fluidization, the system was operated under cold conditions using a sand with particle size in the range of 500 to 710 microns. The continuous combustion experiments were carried out under controlled conditions, such that the effects of bed temperature, olive cake feed rate, fluidization velocity, and particle size on combustion efficiency and flue gas composition were investigated. It was found that the combustion efficiency decreases with the bed temperature, fluidization velocity, and the feed rate, while it increases with the particle size used. Further, the gas products analysis carried out using a gas chromatography analyzer have shown a nonmeasured amount of SO{sub 2}, and small amounts of CO. Finally, the temperature distribution along the bed indicated that the temperature throughout the bed is fairly uniform, demonstrating a good mixing of reactants, which is important for efficient combustion.

  3. Formation of aeolian ripples and sand sorting.

    PubMed

    Manukyan, Edgar; Prigozhin, Leonid

    2009-03-01

    We present a continuous model capable of demonstrating some salient features of aeolian sand ripples: the realistic asymmetric ripple shape, coarsening of the ripple field at the nonlinear stage of ripple growth, saturation of ripple growth for homogeneous sand, typical size segregation of sand, and formation of armoring layers of coarse particles on ripple crests and windward slopes if the sand is inhomogeneous. PMID:19391931

  4. How to Find Bed Bugs

    MedlinePlus

    ... are a poor indicator of a bed bug infestation. Bed bug bites can look like bites from other insects (such as mosquitoes or chiggers), rashes (such as eczema or fungal infections), or even hives. Some people do not ...

  5. Cardiovascular consequences of bed rest: effect on maximal oxygen uptake

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1997-01-01

    Maximal oxygen uptake (VO2max) is reduced in healthy individuals confined to bed rest, suggesting it is independent of any disease state. The magnitude of reduction in VO2max is dependent on duration of bed rest and the initial level of aerobic fitness (VO2max), but it appears to be independent of age or gender. Bed rest induces an elevated maximal heart rate which, in turn, is associated with decreased cardiac vagal tone, increased sympathetic catecholamine secretion, and greater cardiac beta-receptor sensitivity. Despite the elevation in heart rate, VO2max is reduced primarily from decreased maximal stroke volume and cardiac output. An elevated ejection fraction during exercise following bed rest suggests that the lower stroke volume is not caused by ventricular dysfunction but is primarily the result of decreased venous return associated with lower circulating blood volume, reduced central venous pressure, and higher venous compliance in the lower extremities. VO2max, stroke volume, and cardiac output are further compromised by exercise in the upright posture. The contribution of hypovolemia to reduced cardiac output during exercise following bed rest is supported by the close relationship between the relative magnitude (% delta) and time course of change in blood volume and VO2max during bed rest, and also by the fact that retention of plasma volume is associated with maintenance of VO2max after bed rest. Arteriovenous oxygen difference during maximal exercise is not altered by bed rest, suggesting that peripheral mechanisms may not contribute significantly to the decreased VO2max. However reduction in baseline and maximal muscle blood flow, red blood cell volume, and capillarization in working muscles represent peripheral mechanisms that may contribute to limited oxygen delivery and, subsequently, lowered VO2max. Thus, alterations in cardiac and vascular functions induced by prolonged confinement to bed rest contribute to diminution of maximal oxygen uptake and reserve capacity to perform physical work.

  6. Cracks and fins in sulfate sand: Evidence for recent mineral-atmospheric water cycling in Meridiani Planum outcrops?

    NASA Astrophysics Data System (ADS)

    Chavdarian, Gregory V.; Sumner, Dawn Y.

    2006-04-01

    Gypsum dunes at White Sands National Monument, New Mexico, provide an excellent analog to sulfate-rich eolian outcrops on Meridiani Planum, Mars, as characterized by the Rover Opportunity. Numerous outcrops imaged by Opportunity contain polygonal cracks that crosscut bedding and extend across most surfaces of boulders. Some of these cracks are associated with millimeter-thick platy fins that protrude as much as a few centimeters above outcrops. Similar cracks crosscut bedding at White Sands on erosional stoss slopes and in pedestals of cemented dune sand. The cracks at White Sands form in response to cementation of damp gypsum sand followed by contraction due to dehydration. During warm seasons, cracked sand is dry and cracks rarely grow, although some may form after rainstorms. Two types of fins form along cracks and differentially eroded laminae. White fins represent subsurface differential cementation along cracks followed by differential erosion. Tan fins form due to cementation of crack edges and laminae on exposed dune surfaces. Wind-blown sediment adheres to damp tan fins. Similar processes may be important for crack and fin formation in Meridiani Planum outcrops, implying recent water cycling between sulfate outcrops and the Martian atmosphere.

  7. Sand Dome on a Steam Engine

    Steam engines used high-grade silica sand for traction on the rails. Sand was stored in a dome on top of the engine and, as the train traveled the tracks, the sand would be sprinkled down pipes to land on the tracks in front of the wheels. This would aid the wheels in gripping the tracks, especially...

  8. Treating tar sands formations with karsted zones

    SciTech Connect

    Vinegar, Harold J.; Karanikas, John Michael

    2010-03-09

    Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

  9. Holocene stratigraphy of the Alabama inner continental shelf: Influence of shelf sand ridges on determining lithofacies architecture

    SciTech Connect

    Davies, D.J.; Parker, S.J. . Energy and Coastal Geology Div.)

    1993-03-01

    Surface and subsurface distribution of lithofacies from Holocene sediments of the AL inner continental shelf was determined from a series of 59 vibracores and associated surface sediment grab sediments. Five Holocene lithofacies composed of 12 discrete microfacies were delineated based on grain size, color, sedimentary structures, shell content, and fabric of samples. These lithofacies include: (1) Graded Shelly Sand Lithofacies; (2) Clean Sand Lithofacies; (3) Dirty Sand Lithofacies; (4) Biogenic Sediment Lithofacies; and (5) Muddy Sediment Lithofacies. These represent four major depositional environments: The Shelf Sand Sheet Environment (lithofacies 1 and 2); the Sand Ridge Environment (lithofacies 1, 2, and 3); the Bay/Lagoon Environment (lithofacies 3, 4 and 5); and the Muddy Shelf Environment (lithofacies 5). East of the Main Pass of Mobile Bay, the seafloor is composed of a clean Shelf Sand Sheet with oblique shelf sand ridges; Clean Sand and Graded Shelly Sand are the dominant surface sediment types. Coarse shell beds that grade up to quartz sand units (total thickness 0.1 to 3+m) interpreted as tempestites comprise most of the upper portion of the ridges. West of the Pass, the muddier lithofacies (3 and 5) dominate surface samples. Microfacies at depth represent the early Holocene transgressive systems tract; these include the Muddy Shelf Depositional Environment and the filled estuaries and bays of the flooded Pleistocene fluvial valleys represented by the Bay/Lagoon Depositional Environment. The AL inner shelf provides an excellent model of the variability of sedimentation mode in time and space during deposition of a transgressive systems tract. Development of the palimpsest sand sheet/ridge complex progressed on the eastern shelf due to shut off of sediment influx, westward longshore currents, and episodic incidence of major hurricanes. On the western shelf a patchy distribution of muddier sediments developed from input of floodwaters from Mobile Bay.

  10. Comparisons of housing, bedding, and cooling options for dairy calves.

    PubMed

    Hill, T M; Bateman, H G; Aldrich, J M; Schlotterbeck, R L

    2011-04-01

    Housing, bedding, and summer cooling were management options evaluated. Holstein calves (42±2 kg of body weight) initially 2 to 5 d of age were managed in southwest Ohio in poly hutches or wire mesh pens in a curtain-sided nursery with no supplemental heat. Calves were fed milk replacer (27% crude protein, 17% fat fed at 0.657 kg of dry matter per calf daily), starter (20% crude protein dry matter, textured, fed free-choice), and water (free-choice). Measurements were for 56 d. In trial 1, 28 calves per treatment were bedded with straw and housed in either hutches or nursery pens. This trial was conducted from September to March; the average temperature was 8°C and ranged from -17 to 31°C. In trial 2a, 16 calves per treatment were managed in nursery pens bedded with straw, in nursery pens bedded with sand, or in hutches bedded with sand. This trial was conducted from May to September; the average temperature was 21°C and ranged from 7 to 33°C. In trial 2b, 26 calves per treatment were housed in nursery pens and bedded with straw. This trial was conducted from May to September; the average temperature was 22°C and ranged from 8 to 34°C. One treatment was cooled with fans between 0800 and 1700 h and the other was not. Data were analyzed as repeated measures in a completely randomized block design by trial, with calf as the experimental unit. In trial 3, air in the nursery and calf hutches used above was sampled 35 d apart for calves aged 5 and 40 d. Air in individual hutches on 2 commercial farms was sampled for 5- and 40-d-old calves for 2 hutch types. Air in the multi-calf hutches was sampled for calves of 75 and 110 d of age. Bacterial concentrations of air samples were analyzed (log10) as odds ratios by Proc Logistic in SAS software (SAS Institute Inc., Cary, NC); differences were declared at P<0.05. In trial 1, weight gain of calves in nursery pens was 6% greater and feed efficiency was 4% greater than that of calves in hutches. In trial 2a, weight gain and starter intake of calves in the nursery with straw bedding were greater and scouring was less than that in calves bedded with sand in the nursery or hutches. The relative humidity was greater in the hutches than in the nursery pens. In trial 2b, weight gain, feed efficiency, and hip width change were greater and breaths per minute were less for calves cooled with fans compared with calves that were not cooled. In trial 3, airborne bacteria concentrations were greater in the hutches than in the nursery pens. Straw bedding (vs. sand), nursery pens (vs. hutches), and summer daytime cooling with fans improved calf weight gain. PMID:21427006

  11. EPA-Registered Bed Bug Products

    MedlinePlus

    ... Bugs EPA Registered Bed Bug Products EPA-Registered Bed Bug Products Resources Bed Bug Main Page Top Ten ... Where you can use the pesticide Pesticide type Bed Bug Search Tool Enter the information as described in ...

  12. Protecting Your Home from Bed Bugs

    MedlinePlus

    ... Bed Bugs Do-it-yourself Bed Bug Control Pesticides to Control Bed Bugs Bed Bug Information Clearinghouse ... Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems ...

  13. Does carbon monoxide burn inside a fluidized bed; A new model for the combustion of coal char particles in fluidized beds

    SciTech Connect

    Hayhurst, A.N. )

    1991-05-01

    Beds of silica sand were fluidized by mixtures of C{sub 3}H{sub 8}, CH{sub 4}, or CO with air. Staring from cold the way such a bed behaved before it reached a steady state was observed visually. In addition, high-speed cine films were taken, as well as measurements of the loudness of the noise emitted. These beds behave in a way indicating that such hot gas mixtures at up to 1000{degrees}C do not burn in the interstices between the sand particles. Instead, combustion occurs either above the bed or in the ascending bubbles. Measurements of the diameter (d{sub ig}) of a bubble made immediately prior to ignition confirmed that the ignition temperature (T{sub ig}) of the bubble varies with d{sub ig} {proportional to} exp (E{sub ig}/RT{sub ig}), so that larger bubbles ignite at lower temperatures. It proved possible to generate combustion of these gas mixtures in the particulate phase by adding Pt-coated catalyst pellets. This leads to a new model for the burning of char particles in a fluidized bed. In the model, char is first oxidized to CO with the reaction C{sub s} + 1/20{sup b} {yields} CO occurring mainly inside the pores of each particle. The resulting CO burns either above the bed or in bubbles rising up the bed, but not in the particulate phase. Considerable uncertainties exist as to the correct values of Nusselt and Sherwood numbers, as well as of, e.g., the intrinsic rate constant for the initial production of CO. However, the model is capable of predicting the temperatures observed for char particles burning in fluidized beds. This paper addresses some of the problems of O{sub 2} diffusing inside the pores of a char particle and then reacting to give CO.

  14. Proppant selection for fracturing and sand control

    SciTech Connect

    Sparlin, D.D.; Hagen, R.W. Jr. )

    1995-01-01

    Starting with definitions of gravel, sand and proppants, this article proceeds to discuss the basic design dilemma of selecting proppant size to achieve the optimum permeability of larger particles vs. higher strength and sand screening ability of smaller sizes. Equations for preventing sand invasion by velocity control are introduced and tables of data give engineers actual design information; tips on table use are included. Hydraulic frac/gravel pack treatments are accepted means of obtaining high well productivity and sand control. A one-step, tip-screenout efficiently creates a short fracture through near-wellbore formation damage and packs the screen/casing annulus to prevent sand production.

  15. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  16. Using high-resolution suspended-sediment measurements to infer changes in the topographic distribution and grain size of bed sediment in the Colorado River downstream from Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Topping, D. J.; Rubin, D. M.; Melis, T. S.; Wright, S. A.

    2004-12-01

    Eddy sandbars and other sandy deposits in and along the Colorado River in Grand Canyon National Park (GCNP) were an integral part of the pre-dam riverscape, and are still important for habitat, protection of archeological sites, and recreation. Recent work has shown that eddy bars are dynamic landforms and represent the bulk of the ecosystem's sand reserves. These deposits began eroding following the 1963 closure of Glen Canyon Dam that reduced the supply of sand at the upstream boundary of GCNP by about 94% and are still eroding today. Sand transport in the post-dam river is limited by episodic resupply from tributaries, and is equally regulated by the discharge of water and short-term changes in the grain size of sand available for transport (Rubin and Topping, WRR, 2001). During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. This prohibits the computation of sand-transport rates in the Colorado River using stable relations between water discharge and sand transport (i.e., sediment rating curves) and requires a more continuous method for measuring sand transport. To monitor suspended sediment at higher (i.e., 15-minute) resolutions, we began testing a laser-acoustic system at four locations along the Colorado River in Grand Canyon in August 2002. Because they are much easier to acquire, the high-resolution suspended-sediment datasets collected using the laser-acoustic systems greatly outnumber (by >5 orders of magnitude) direct grain-size measurements of the upstream bed sediment. Furthermore, suspension processes effectively provide an average "sample" of the bed sediment on the perimeter of the upstream channel and the underwater portions of the banks and eddy bars. Thus, it is advantageous to analyze suspended-sediment concentration and grain-size data to infer changes in the topographic distribution and grain size of the upstream bed sediment. Rubin and Topping (2001) developed and tested a theory-based technique that can be used for this purpose. Their parameter "β " is a nondimensional measure of the average bed-surface grain-size that interacts with the suspended sediment in the flow. Analyses of the laser-acoustic datasets indicate that, when the Colorado River is relatively enriched with respect to finer sand, the discharge of water, and the concentration and grain size of the suspended sand are all positively correlated. During these periods, β is negatively correlated with discharge, indicating that the sand on the bed is finer at higher elevations along the banks. Although water discharge and the concentration of suspended sand remain positively correlated when the river is relatively depleted in finer sand, grain size of suspended sand then becomes negatively correlated with both the discharge of water and suspended-sand concentration. The greater decrease in β as a function of discharge demonstrates the decrease in the grain size of the bed sand as a function of elevation is much greater under sand-depleted conditions than under sand-enriched conditions. Thus, these analyses indicate that, during periods of erosion, sand is winnowed preferentially from lower elevations along the river.

  17. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  18. A thick Tethyan multi-bed tsunami deposit preserving a dinosaur megatracksite within a coastal lagoon (Barremian, eastern Spain)

    NASA Astrophysics Data System (ADS)

    Navarrete, Rocío; Liesa, Carlos L.; Castanera, Diego; Soria, Ana R.; Rodríguez-López, Juan P.; Canudo, José I.

    2014-11-01

    A Thick multiple-bed tsunami deposit consisting of sandstones and conglomerates has been discovered and investigated in the Camarillas Formation (~ 130.6-128.4 Ma, Barremian age) in eastern Spain. The tsunami deposit is interbedded within red mudstones deposited in mud flats of a back-barrier system. It crops out along 7 km in length and at its base a great number of dinosaur tracks assigned to sauropods, ornithopods and theropods have been preserved as natural casts; then constituting an exceptional regional megatracksite associated with tsunami deposits. On the basis of sedimentological features and the lateral and vertical architecture of the involved lithofacies, up to five couplets of inflow-backflow deposits, formed by a tsunami wave train, have been recognized overlying the tracks. Although sedimentation mainly took place during backflow currents, inflows led to the removal of sand from a fronting barrier island and the rip-up of lagoonal carbonate and clay pebbles, depositing them in the protected back-barrier lagoon. Its unusually great thickness is interpreted, among others, as being the result of the filling of the previous low topography of the back-barrier lagoon.

  19. Thermal Properties of oil sand

    NASA Astrophysics Data System (ADS)

    LEE, Y.; Lee, H.; Kwon, Y.; Kim, J.

    2013-12-01

    Thermal recovery methods such as Cyclic Steam Injection or Steam Assisted Gravity Drainage (SAGD) are the effective methods for producing heavy oil or bitumen. In any thermal recovery methods, thermal properties (e.g., thermal conductivity, thermal diffusivity, and volumetric heat capacity) are closely related to the formation and expansion of steam chamber within a reservoir, which is key factors to control efficiency of thermal recovery. However, thermal properties of heavy oil or bitumen have not been well-studied despite their importance in thermal recovery methods. We measured thermal conductivity, thermal diffusivity, and volumetric heat capacity of 43 oil sand samples from Athabasca, Canada, using a transient thermal property measurement instrument. Thermal conductivity of 43 oil sand samples varies from 0.74 W/mK to 1.57 W/mK with the mean thermal conductivity of 1.09 W/mK. The mean thermal diffusivity is 5.7×10-7 m2/s with the minimum value of 4.2×10-7 m2/s and the maximum value of 8.0×10-7 m2/s. Volumetric heat capacity varies from 1.5×106 J/m3K to 2.11×106 J/m3K with the mean volumetric heat capacity of 1.91×106 J/m3K. In addition, physical and chemical properties (e.g., bitumen content, electric resistivity, porosity, gamma ray and so on) of oil sand samples have been measured by geophysical logging and in the laboratory. We are now proceeding to investigate the relationship between thermal properties and physical/chemical properties of oil sand.

  20. Test bed concentrator mirrors

    NASA Astrophysics Data System (ADS)

    Argoud, M. J.

    1980-05-01

    The test bed concentrator (TBC) was des point focusing distributed receiver (PFDR) systems. The reflective surface of the concentrator was fabricated using mirror facet designs and techniques. The facets are made by bonding mirrored glass to spherically-conducted substrates. Several aspects of earlier work were reevaluated for application to the TBC: optimum glass block size, material selection, environmental test, optical characteristics, and reliability. A detailed explanation of tooling, substrate preparation, testing techniques, and mirror assembly is presented.

  1. Behavior of Windblown Sand on Mars: Results from Single-Particle Experiments

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Borucki, J.; Sagan, C.

    1999-01-01

    Experiments are investigating the behavior of individual sand grains in the high-energy martian aeolian regime. Energy partitioning during impact of a saltating grain determines grain longevity, but it also influences the way in which the bed becomes mobilized by reptation. When single grains of sand are fired into loose beds, the bed can absorb up to 90% of the impact energy by momentum transfer to other grains; it has been discovered that the impacting grains cause circular craters even at low impact angles. Hundreds of grains can be splashed by a single high-velocity (100 m/s) impact causing more bed disturbance through reptation than previously thought. The research is supported by NASA's PG&G Program. Because the martian aeolian environment in both high energy and of long duration, the most mobile fractions of windblown sand should have eradicated themselves by attrition, unless sand supply has kept pace with destruction. It is therefore important to understand the rate of grain attrition in order to make sense of the existence of vast dune fields on Mars. Attrition, has been addressed in other studies, but precise data for a single saltating grain striking a loose bed of sand have not been acquired -- the quintessential case to be understood for dunes on Mars. To acquire these data, we are employing a compound crossbow which has the bolt-firing mechanism replaced with a pneumatically-automated sabot system. The sabot can launch individual grains of sand of any size between several millimeters and about 50 microns, at velocities up to 100m/s. This is around the maximum velocity expected for saltating grains on Mars. The sabot sled is equipped with photoelectric sensors for measuring shot velocity. Baffling of the grain's exit orifice has enabled projection of single grains without significant aerodynamic effects from the sabot. Grains are fired into loose beds of sand at about 15 degrees from the horizontal (typical saltation trajectory at impact) while being filmed on high-speed video. High-intensity pulse illumination for the grains is triggered by the solenoid-operated bow trigger. A 45 degree mirror over the impact site provides simultaneous horizontal and vertical images of the impact on each video frame. UV fluorescence is enabling grain and grain-fragment recovery. At 100 m/s, grains of all sizes shatter into many fragments when the sand is replaced with a solid target. Kinetic energy of the grains at this velocity exceeds the critical energy for catastrophic failure of minerals. Although probably exceptional as a grain speed, it suggests that conditions on Mars might elevate materials into an attrition regime not encountered on other planets; individual grains blown across rock pavements on Mars will have short lifespans. When experimental grains impact loose (dune) sand, much, if not most of the kinetic energy is converted into momentum of other grains. Using high-speed filming, the energy involved in splashing grains at the impact site can be derived from the size of the crater, the speed of the splashed grains, and the rebound speed of the impactor. The amount of energy partitioned into material failure (as opposed to momentum) is too small a fraction of the total to be calculated under these circumstances. This does not necessarily mean that little damage occurs to the grains (the full extent of the damage has yet to be determined) because only a small fraction of the impact energy is required for inducing brittle fracture. Damage is orders of magnitude less than during impact against solid surfaces.

  2. Coal Bed Aquifer Tests: a Case Study

    NASA Astrophysics Data System (ADS)

    Weeks, E. P.

    2005-12-01

    Coal bed methane development is proceeding at a rapid pace in the USA and in several other countries. Development of coal bed methane requires the simultaneous co-production of water in a manner that maximizes the amount of drawdown while minimizing the amount of water pumped. Determination of optimal well spacing and production rates to achieve such drawdowns requires knowledge of the hydraulic properties of the coal aquifer. Natural closely spaced fractures, termed cleats, develop during coal formation as an orthogonal fracture network that creates anisotropic transmissivity. Water held in the matrix porosity of the coal is released slowly to the cleat system during pumping, resulting in coal beds behaving as dual-porosity aquifers. Knowledge of the magnitude and orientation of the principal axes of the transmissivity tensor, as well as of the late-time dual-porosity storage coefficient, are needed to optimally design well fields for the exploitation of coal bed methane. An aquifer test with three observation wells was conducted to determine these properties for a 7.6- m thick coal bed located in the Powder River Basin, southeast Montana. The test results exhibit all the features that would be expected for a test on an anisotropic dual-porosity medium. However, the test was initially misinterpreted, providing a cautionary tale. The initial interpretation assumed a single-porosity aquifer, and the late-time break in slope was assumed to represent the effects of a hidden boundary. Despite their apparent plausibility, the results of the analysis raised several red flags. An attempt to determine the location of the hidden boundary failed, the indicated specific storage was implausibly small, and the analysis of recovery data provided transmissivity values that were in disagreement with those determined from the drawdown analysis. Reanalysis of the test using type curves developed for a dual-porosity aquifer resulted in a transmissivity value that is about 25% smaller and a storage coefficient about 4 times larger (and of more plausible magnitude), than was determined from the single-porosity aquifer analysis. Values for the anisotropy ratio and orientation of the major transmissivity axis are nearly identical for the two analyses, however. A post-mortem analysis of the recovery data indicates that a reliable value for transmissivity will be obtained only if very late recovery data are available. In summary, multiple-well aquifer tests on coal aquifers can provide very useful information for the design of coal-bed methane well fields. However, as for all aquifer tests, misinterpretation will result if all aspects of the prevailing hydrogeologic conditions are not fully taken into account.

  3. Drag Reduction using Superhydrophobic Sanded Teflon

    NASA Astrophysics Data System (ADS)

    Song, Dong; Daniello, Robert; Rothstein, Jonathan

    2013-11-01

    In this talk, we present a series of microfluidic experiments designed to investigate drag reduction using series of roughened Teflon surfaces. The Teflon surfaces where made superhydrophobic by imparting surface texture through sanding with sand papers with a range of grit sizes. Our previous work showed that there exists an optimal sand paper grit (240 grit) for eliminating contact angle hysteresis. We will show that a Teflon surface roughened with the same sand paper grit also maximizes the drag reduction and the slip length observed in laminar flows. Increasing or decreasing the grit size was found to reduce the drag reduction and slip length. A number of different sanding protocols were investigated including sanding preferentially in the flow direction, normal to the flow direction and with a randomized circular pattern. Of these three techniques, sanding in the flow direction was found to maximize the slip length.

  4. High-temperature sand consolidation

    SciTech Connect

    Friedman, R.H.; Suries, B.W.; Kleke, D.E.

    1987-05-01

    A sand consolidation system has been developed that is stable to wellbore temperatures of 700/sup 0/F (371/sup 0/C). Two improvements in technique have contributed to this development. First, a controlled quantity of catalyst is absorbed on the sand. Consequently, consolidation occurs only on or very near the sand grains, resulting in a high-permeability consolidation. Second, the reaction is driven to completion by avoiding, insofar as possible, the adverse effect of water. The resin used for the consolidation is a very viscous derivative of furfuryl alcohol that requires a diluent to make it injectable. The diulent used to reduce viscosity is a hydrolyzable ester. The diluted fluid, which is sill more viscous than water, displaces much of the water present in the pore space. During the catalyzed consolidation, water produced by the polymerization is removed by reaction with the diluent (hydrolysis of the ester). The high-molecular-weight polymeric consolidation is better able to resist the high temperatures encountered in steam-displacement producing wells. Adaptation of the technology has been made so that the process can also be used in low-temperature wells. Because of the catalysis method, long shelf life is guaranteed for the consolidating formation.

  5. Sand Sheet on Crater Floor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    As with yesterday's image, this dune field is located inside a crater, in this case an unnamed crater at 26 degrees North latitude. In this VIS image the dunes are coalescing into a sand sheet, note the lack of dune forms to the north of the small hills. The presence of ridges and hills in the area is affecting the dune shapes.

    Image information: VIS instrument. Latitude 26.4, Longitude 62.7 East (297.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Effect Of Leg Exercise On Vascular Volumes During Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.

    1993-01-01

    Report describes experiments on effects of no-exercise regimen and of two leg-exercise regimens on volumes of plasma, volumes of red blood cells, densities of bodies, and water balances of 19 men (32 to 42 years old) confined to minus 6 degrees-head-down bed rest for 30 days. Purpose of study to determine whether either or both exercise regimens maintain plasma volume and to relate levels of hypovolemia to body fluid balances. Results showed during bed rest, plasma volume maintained in isotomic group but not in other two groups, and no significant differences in body densities, body weights, or water balances among three groups. Concludes isotonic-exercise regimen better than isokinetic-exercise regimen for maintaining plasma volume during prolonged exposure to bed rest.

  7. Large-eddy simulation of coupled turbulence, free surface, and sand wave evolution in an open channel

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Sotiropoulos, Fotis; St. Anthony Falls Lab Team

    2013-11-01

    We develop and validate a coupled 3D numerical model for carrying out three-phase large-eddy simulations of turbulence, free-surface, and sand waves-bed morphodynamics under live bed conditions. We employ the Fluid-Structure Interaction Curvilinear Immersed Boundary (CURVIB) method of Khosronejad et al. (Adv. in Wat. Res., 2011). The LES is implemented in the context of the CURVIB method using wall modeling (Kang and Sotiropoulos, Adv. in Wat. Res., 2011). Free-surface motion is simulated by coupling the CURVIB method with a two-phase level set approach as in Kang and Sotiropoulos (Adv. in Wat. Res., 2012). Transport of bed load and suspended load sediments are combined in the non-equilibrium form of the Exner for the bed surface elevation, which evolves due to the spatio-temporally varying bed shear stress field induced by the turbulent flow. Simulations are carried out for the experiments of Venditti et al. (2005). It is shown that the model can accurately capture sand-wave initiation, growth, and migration processes observed in the experiment. The effects of free-surface on bed-form dynamics is also quantified by comparing the three-phase simulation results with two-phase simulations using a fixed rigid-lid as the free surface. This work is supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33.

  8. DCS of Syrtis Major Sand Migration

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 2, 2004 This image shows two representations of the same infra-red image of craters and lava flow features in Syrtis Major. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    The prominent rim of the large crater at the top of the image is blocking migrating sand from entering the crater. This produces a very distinct compositional boundary between the pink/magenta basaltic sand and the green dust covering the crater rim and floor. Many of the smaller craters in this region have dust trails behind them, indicating the prevailing wind direction. At the top of the image, the prevailing wind direction is to the northwest, while at the bottom of the image, the prevailing winds have shifted towards the southwest.

    Image information: IR instrument. Latitude 9.2, Longitude 68.4 East (291.6 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Removal of lead ions by keramzite sand coated with electroplating sludge under dynamic conditions.

    PubMed

    Stefanova, R Y

    2001-01-01

    Column studies were performed to determine the effect of bed height, linear flow rate, adsorbent particle size and initial metal ion concentration on lead removal by keramzite sand coated with electroplating sludge. The Bed depth service time (BDST) model applied to the data at 2% breakthrough gave the best approximation to the experimental results compared with other investigated breakthrough points. The adsorption performance of the thermally modified coated keramzite columns could be well described by the Wolborska model up to 50% breakthrough point. The application of this model allowed determination of the kinetic coefficients of external mass transfer in the fixed bed and the time for protective action of the sorbent layers. The experimental results support the assumption that the external mass transfer of the solute through the hydrodynamic boundary layer is the rate-limiting step. It has been established that the keramzite sand coated with electroplating sludge (particle size 0.5-0.8 mm) can be successfully used for lead removal from dilute metal ion solutions at linear flow rate 4-6 cm/min and empty bed contact time > or = 3 min. PMID:11759900

  10. Accretion of mudstone beds from migrating floccule ripples.

    PubMed

    Schieber, Juergen; Southard, John; Thaisen, Kevin

    2007-12-14

    Mudstones make up the majority of the geological record. However, it is difficult to reconstruct the complex processes of mud deposition in the laboratory, such as the clumping of particles into floccules. Using flume experiments, we have investigated the bedload transport and deposition of clay floccules and find that this occurs at flow velocities that transport and deposit sand. Deposition-prone floccules form over a wide range of experimental conditions, which suggests an underlying universal process. Floccule ripples develop into low-angle foresets and mud beds that appear laminated after postdepositional compaction, but the layers retain signs of floccule ripple bedding that would be detectable in the rock record. Because mudstones were long thought to record low-energy conditions of offshore and deeper water environments, our results call for reevaluation of published interpretations of ancient mudstone successions and derived paleoceanographic conditions. PMID:18079398

  11. The effect of ash and filter media characteristics on particle filtration efficiency in fluidized bed.

    PubMed

    Wey, Ming-Yen; Chen, Ke-Hao; Liu, Kuang-Yu

    2005-05-20

    The phenomenon of filtering particles by a fluidized bed is complex and the parameters that affect the control efficiency of filtration have not yet been clarified. The major objective of the study focuses on the effect of characteristics of ash and filter media on filtration efficiency in a fluidized bed. The performance of the fluidized bed for removal of particles in flue gas at various fluidized operating conditions, and then the mechanisms of collecting particles were studied. The evaluated parameters included (1) various ashes (coal ash and incinerator ash); (2) bed material size; (3) operating gas velocity; and (4) bed temperature. The results indicate that the removal efficiency of coal ash increases initially with gas velocity, then decreases gradually as velocity exceeds some specific value. Furthermore, the removal of coal ash enhance with silica sand size decreasing. When the fluidized bed is operated at high temperature, diffusion is a more important mechanism than at room temperature especially for small particles. Although the inertial impaction is the main collection mechanism, the "bounce off" effect when the particles collide with the bed material could reduce the removal efficiency significantly. Because of layer inversion in fluidized bed, the removal efficiency of incinerator ash is decreased with increasing of gas velocity. PMID:15885419

  12. Bed drain cover assembly for a fluidized bed

    DOEpatents

    Comparato, Joseph R.; Jacobs, Martin

    1982-01-01

    A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

  13. Lithostratigraphic analysis of sand and silt facies from NGHP 01 gas hydrate accumulations in the Krishna-Godavari Basin

    NASA Astrophysics Data System (ADS)

    Rose, K. K.; Boswell, R. M.; Johnson, J.; Nghp 01, S.

    2008-12-01

    In 2006, an international effort led by the Indian National Gas Hydrate Program (NGHP) and the U.S. Geological Survey conducted the first large-scale exploration of gas hydrate accumulations. Seven sites were drilled within the Krishna-Godavari (KG) basin, a large syn-tectonic rift basin off the eastern shore of India, with the deepest hole penetrating ~300 mbsf. The sedimentary section in the KG basin includes up to 7 kilometers of Late Carboniferous to Holocene sediments from which commercial oil and natural gas production has been established. Detailed lithologic descriptions and physical properties measurements obtained from cores were combined with electrical log data to characterize the sedimentology and stratigraphy at each site. Our analyses indicate that sediments within the Gas Hydrate stability zone (GHSZ) in the KG basin record a Quaternary (<2MYA) history of deposition dominated by dark grey to black colored nannofossil bearing to rich clay and silty clay sourced from the nearby Krishna and Godavari Rivers. Relatively minor amounts of silt to fine sand beds and lamina (1-5 cm thick) were also observed as well as visible terrestrial organic material. The most pervasive mode of gas hydrate occurrence observed during NGHP-01 in the KG basin sites were disseminated hydrates in low-permeability silt-clay facies. Secondary gas hydrate accumulations were recovered in fracture fill, nodular and lens-like occurrences, or as pore-filling cement in the more permeable sand-silt beds and lamina. Thin sand beds and lamina were recovered at 6 of the 7 sites in the KG basin. ~330 sand beds were reported for all 6 sites with a typical bed thickness of ~3 cm. Net sand to gross sediment ratios ranged from 0.026 to 0.405. No major sand beds (>1 m thick) were recovered at any of the sites. Underlying the GHSZ in the KG basin are Pliocene and Pleistocene age sediments deposited during low-stand conditions. However, rising sea-level from the late Pleistocene to the present resulted in a gradual decrease in the volume of coarse grained material transported across the shelf, and slope related deposition during the Holocene has largely been controlled by episodic failure of shelf-edge deltaic deposits via turbidity flows in slope channels. At two KG sites, significantly greater net sand to gross sediment ratios were observed, perhaps indicating a closer proximity of those sites to turbidite channel-levee systems. While the channels may contain sand facies, given the slope dominant location of the NGHP well locations, it is likely that transported sand bypassed the well sites and was deposited in base-of-slope fans in deeper water to the east. Therefore, exploration for gas hydrate-bearing sands in the KG region should focus on the identification and location of the slope levee sand deposits or toe of slope sand rich fans within the GHSZ. gas/FutureSupply/MethaneHydrates/projects/DOEProjects/NETL-

  14. Bed Rest Muscular Atrophy

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    2000-01-01

    A major debilitating response from prolonged bed rest (BR) is muscle atrophy, defined as a "decrease in size of a part of tissue after full development has been attained: a wasting away of tissue as from disuse, old age, injury or disease". Part of the complicated mechanism for the dizziness, increased body instability, and exaggerated gait in patients who arise immediately after BR may be a result of not only foot pain, but also of muscular atrophy and associated reduction in lower limb strength. Also, there seems to be a close association between muscle atrophy and bone atrophy. A discussion of many facets of the total BR homeostatic syndrome has been published. The old adage that use determines form which promotes function of bone (Wolff's law) also applies to those people exposed to prolonged BR (without exercise training) in whom muscle atrophy is a consistent finding. An extreme case involved a 16-year-old boy who was ordered to bed by his mother in 1932: after 50 years in bed he had "a lily-white frame with limbs as thin as the legs of a ladder-back chair". These findings emphasize the close relationship between muscle atrophy and bone atrophy. In addition to loss of muscle mass during deconditioning, there is a significant loss of muscle strength and a decrease in protein synthesis. Because the decreases in force (strength) are proportionately greater than those in fiber size or muscle cross-sectional area, other contributory factors must be involved; muscle fiber dehydration may be important.

  15. Coal Bed Methane Primer

    SciTech Connect

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

  16. Combustion of oil palm solid wastes in fluidized bed combustor

    SciTech Connect

    Shamsuddin, A.H.; Sopian, K.

    1995-12-31

    The palm oil industry of Malaysia is the largest in the world producing about 55% of the world production. The industry has approximately 270 mills throughout the country with processing sizes ranging from 10 tonnes/hour to 120 tonnes/hour. All mills produce solid wastes, about 50% of the fresh fruit bunches in terms of weight. The solid wastes produced are in the form of empty fruit bunches, fibers and shells. These wastes have high energy value, ranging from 14 to 18 MJ/kg. The industry is currently self-sufficient in terms of energy. Fibers and shell wastes are being used as boiler fuel to raise steam for electrical power production and process steam. However, the combustion technology currently being employed is obsolete with low efficiency and polluting. A fluidized bed combustor pilot plant is designed and constructed at Combustion Research Laboratory, Universiti Kebangsaan Malaysia. The combustor is made up of 600 mm {times} 900 mm rectangular bed filled with sand up to 400 mm height, static. A bank of heat transfer tubes is imbedded in the bed, designed to absorb 50% of heat released by the fuel in the bed. The remaining heat is transferred in tubes placed on the wall of the freeboard area. Experimental studies were carried out in the pilot plant using palm oil solid wastes. The combustion temperatures were maintained in the range 800--900 C. The performance of the combustor was evaluated in terms of combustion and boiler efficiencies and flue gas emissions monitored.

  17. Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples.

    PubMed

    Wang, Zhendi; Yang, C; Parrott, J L; Frank, R A; Yang, Z; Brown, C E; Hollebone, B P; Landriault, M; Fieldhouse, B; Liu, Y; Zhang, G; Hewitt, L M

    2014-04-30

    To facilitate monitoring efforts, a forensic chemical fingerprinting methodology has been applied to characterize and differentiate pyrogenic (combustion derived) and biogenic (organism derived) hydrocarbons from petrogenic (petroleum derived) hydrocarbons in environmental samples from the Canadian oil sands region. Between 2009 and 2012, hundreds of oil sands environmental samples including water (snowmelt water, river water, and tailings pond water) and sediments (from river beds and tailings ponds) have been analyzed. These samples were taken from sites where assessments of wild fish health, invertebrate communities, toxicology and detailed chemistry are being conducted as part of the Canada-Alberta Joint Oil Sands Monitoring Plan (JOSMP). This study describes the distribution patterns and potential sources of PAHs from these integrated JOSMP study sites, and findings will be linked to responses in laboratory bioassays and in wild organisms collected from these same sites. It was determined that hydrocarbons in Athabasca River sediments and waters were most likely from four sources: (1) petrogenic heavy oil sands bitumen; (2) biogenic compounds; (3) petrogenic hydrocarbons of other lighter fuel oils; and (4) pyrogenic PAHs. PAHs and biomarkers detected in snowmelt water samples collected near mining operations imply that these materials are derived from oil sands particulates (from open pit mines, stacks and coke piles). PMID:24632369

  18. Reevaluation of Stevens sand potential - Maricopa depocenter, southern San Joaquin basin, California

    SciTech Connect

    Kolb, M.M.; Parks, S.L. )

    1991-02-01

    During the upper Miocene in the Southern San Joaquin basin surrounding highlands contributed coarse material to a deep marine basin dominated by fine grained silicious bioclastic deposition. these coarse deposits became reservoirs isolated within the silicious Antelope Shale Member of the Monterey Formation. In the southern Maricopa depocenter these Stevens sands are productive at Yowlumne, Landslide, Aqueduct, Rio Viejo, San Emidio Nose, Paloma, and Midway-Sunset fields, and are major exploration targets in surrounding areas. In the ARCO Fee lands area of the southern Maricopa depocenter, Stevens sands occur as rapidly thickening lens-shaped bodies that formed as channel, levee, and lobe deposits of deep-marine fan systems. These fans were fed from a southerly source, with apparent transport in a north-northwesterly direction. Sands deflect gently around present-day structural highs indicating that growth of structures influenced depositional patterns. Correlations reveal two major fan depositional intervals bounded by regional N, O, and P chert markers. Each interval contains numerous individual fan deposits, with many lobes and channels recognizable on three-dimensional seismic data. In addition to these basinal sand plays presently being evaluated, ARCO is pursuing a relatively new trend on Fee lands along the southern basin margin, where correlation to mountain data reveals Stevens sands trend into the steeply dipping beds of the mountain front. This area, the upturned Stevens,' has large reserve potential and producing analogies at Metson, Leutholtz, Los Lobos, and Pleito Ranch fields.

  19. Sand as a stable and sustainable resource for nourishing the Mississippi River delta

    NASA Astrophysics Data System (ADS)

    Nittrouer, Jeffrey A.; Viparelli, Enrica

    2014-05-01

    The Mississippi River delta is undergoing a catastrophic drowning, whereby 5,000 km2 of low-lying wetlands have converted to open water over at least the past eight decades, as a result of many anthropogenic and natural factors. Continued net land loss has been thought inevitable due to a decline in the load of total suspended sediment--both sand and mud--carried by the river. However, sand--which accounts for ~50-70% of modern and ancient Mississippi delta deposits but comprises only ~20% of the sampled portion of the total load--could be more important than mud for subaerial delta growth. Historically, half of the Mississippi River sediment load is supplied by the Missouri River. Here we analyse suspended sediment load data from two locations downstream from the lowest Missouri River dam to show that the measured sand load in the lower 1,100 km of the Mississippi River has not significantly diminished since dam construction. A one-dimensional numerical model of river morphodynamics predicts that the sand load feeding the delta will decrease only gradually over the next several centuries, with an estimated decline from current values of no more than about 17% within the coming six centuries. We conclude that the lower Mississippi River channel holds a significant reservoir of sand that is available to replenish diminished loads via bed scour and substantially mitigate land loss.

  20. The Dark Surfaces of Mars: Mantles and Sand Sheets

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] (A) Sinus Sabaeus, dark mantle and bright drifts.

    [figure removed for brevity, see original site] (B) Sinus Sabaeus, dark mantle with cracks.

    [figure removed for brevity, see original site] (C) Ganges Chasma Sand Sheet.

    [figure removed for brevity, see original site] (D) Ganges Chasma 3-D Context.

    When seen through a telescope from Earth, Mars reveals a pattern of bright and dark regions. Early astronomers speculated that the dark regions were seas. Later astronomers suggested that the dark regions were vast tracts of vegetation. As recently as the early 1960s, it still seemed possible to a few astronomers that the dark regions had some kind of plant life because they seemed to darken each summer as if plants were growing in response to sunlight.

    Since the Mariner missions to Mars (1965-1972), purely geological explanations have been proposed to explain the dark regions and the changes we see in them. In particular, dust storms have been observed on Mars. Thus wind and dust storms are the suspected culprits that created the 19th Century illusion that something was growing and changing with each martian season. Just as there are 'hurricane seasons' and 'monsoon seasons' on Earth, there may be 'dust storm seasons' on Mars.

    The dark regions of Mars are now being seen in greater detail than ever before by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC). As expected, none of these areas are covered by vegetation! But what has been a surprise is the great variety of dark surfaces seen. Before MGS, most had been thinking that these areas are sandy because all of the large martian sand dunes are dark, too. But in many cases, dark dunes and sand are not found in the MOC images--such areas instead are thickly blanketed by a cracked, crusty covering of what may be fine silt instead of sand. Other areas--in particular the floor of Ganges Chasma in the Valles Marineris region--show thick accumulations of windblown sand.

    The first two pictures presented here (A and B, above) show dark, blanketed or mantled surfaces in the Sinus Sabaeus region (310o-350o W longitude and 5o-12oS latitude) of Mars. This dark material in some places has bright dunes on top of it (top, left picture), and in other places appears to have narrow cracks running through it (top, right picture). If the dark material consisted of sand, it would show drifts and tails formed around and behind obstacles as are seen in the thick sand sheets of Ganges Chasma (C and D, above). Because wind transports sand close to the ground, it interacts with obstacles such as the bright mounds in Figure C (above) to make drifts and tails.

    The top left picture is MOC image AB1-11105 located in Sinus Sabaeus near 7.0oS, 343.4oW. The top right picture is also in Sinus Sabaeus and is MOC image M00-01078 near 10.0oS, 329.1oW. The bottom left pair of images show a thick sheet of dark sand in Ganges Chasma. The bottom right picture is a stereo anaglyph (use 3-d red/blue glasses) MOC wide angle view showing the locations of the two Ganges Chasma images. Ganges Chasma is around 7oS, 50oW. All pictures are illuminated from the left. The AB1 images were taken in January 1998, the M00 images are from April 1999.

  1. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  2. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  3. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  4. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  5. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  6. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  7. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  8. The Agglomeration in the Fluidized Bed Boiler During the Co-Combustion of Biomass with Peat

    NASA Astrophysics Data System (ADS)

    Heikkinen, Ritva E. A.; Virtanen, Mika E.; Patrikainen, H. Tapio; Laitinen, Risto S.

    The formation of bed material coatings during the co-combustion of peat and biomass is caused by iron, calcium, aluminum and silicon. No signs of sodium or calcium sulfates were observed in bed material samples. Sulfates were observed in fly ash samples, when the amount of wood was 55% of the fuel mixture. Thus the bed material agglomeration during peat and biomass co-combustion is due to the partial melting of aluminosilicates, rather than the formation of low melting salts. Iron is found from the bed material coatings and may act as a flux in the melting processes of the silicates. When the agglomeration progresses, the coated sand particles are molten on the surface as seen from the increased amounts of potassium, sodium and calcium. The role of iron is not so significant in the adhesive material.

  9. Geological and oceanographic perspectives on event bed formation during Hurricane Katrina

    NASA Astrophysics Data System (ADS)

    Keen, T. R.; Furukawa, Y.; Bentley, S. J.; Slingerland, R. L.; Teague, W. J.; Dykes, J. D.; Rowley, C. D.

    2006-12-01

    Storm deposits in ancient shelf sediments typically form thick sequences of interbedded sand and mud deposited during shoreline regression, whereas modern shelf sediments are generally thin veneers deposited during shoreline transgression. In this paper we present a preliminary comparison between ancient and modern storm beds deposited in these disparate contexts. Hurricane Katrina deposited a storm bed on the Louisiana shelf with a maximum observed thickness of 0.58 m, which thinned to approximately 0.1 m at 200 km west of landfall. This thickness is similar to event beds observed in both ancient and modern sediments. Using data for tropical cyclone landfalls in the Gulf of Mexico, we estimate the return time for a storm of this size to be 40-50 years in this region. This estimated frequency for deposition of storm beds is useful in evaluating ancient storm sequences that were deposited during similar climatic conditions.

  10. Production Mechanisms for the Sand on Titan and the Prospects for a Global Sand Sea

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Lorenz, Ralph D.; Radebaugh, Jani; Hayes, Alexander G.; MacKenzie, Shannon

    2014-11-01

    With ~15% of its surface covered by sand seas, Titan turns out to be the Arrakis of the solar system. How the sand particles that make up the dunes are created, however, remains an outstanding question. Titan's haze particles are organic in composition as required by spectral analysis of dunes, however they have diameters of ~1um, and are 10,000,000 times too small by mass to directly represent the ~200-um sand particles. In addition to previous suggestions that sand could come from sintering of sand particles or by burial, lithification, and subsequent erosion (more like typical sands on Earth), we suggest two new mechanisms for production of sand in association with Titan's liquid reservoirs. Dissolution and reprecipitation as evaporite forms the gypsum dunes of White Sands, NM, USA on Earth, and could play a role on Titan as well. Alternatively, haze particles in the lakes and seas could aggregate into larger particles via flocculation, a mechanism seen to occur on Earth in Morocco. Each of these sand particle production ideas has associated predictions that can be tested by future observations. The lack of evident sand sources in VIMS data implies that Titan's sand seas may be old and their continuous interconnectedness across the Dark Equatorial Belt implies that all of the equatorial dunefields may represent a single compositionally uniform sand sea. We will present possibilities for sands from this sea to bridge the large gap across Xanadu, including barchan chains and fluvial transport.

  11. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  12. Surface instability in windblown sand.

    PubMed

    Kurtze, D A; Both, J A; Hong, D C

    2000-06-01

    We investigate the formation of ripples on the surface of windblown sand based on the one-dimensional model of Nishimori and Ouchi [Phys. Rev. Lett. 71, 197 (1993)], which contains the processes of saltation and grain relaxation. We carry out a nonlinear analysis to determine the propagation speed of the restabilized ripple patterns, and the amplitudes and phases of their first, second, and third harmonics. The agreement between the theory and our numerical simulations is excellent near the onset of the instability. We also determine the Eckhaus boundary, outside which the steady ripple patterns are unstable. PMID:11088369

  13. Genetic features of soils on marine sands and their windblown derivatives on the White Sea coast (the Kola Peninsula)

    NASA Astrophysics Data System (ADS)

    Pereverzev, V. N.; Kazakov, L. A.; Chamin, V. A.

    2011-01-01

    The Quaternary deposits on the Tersk coast of the White Sea are represented by marine deposits (the Tersk sands) enriched in the sea-sorted eluvium of the red Tersk sandstone. These deposits and the soils developed from them are characterized by the predominance of the fine sand fraction and the absence of gravel and the coarser fractions. The sediments derived from the red Tersk sandstone have an impoverished chemical composition (the silica content reaches 75-80%). The iron-illuvial podzols developed from them are characterized by the slightly pronounced differentiation of the main oxides and by the eluvial-illuvial redistribution of the amorphous Al and Fe compounds. Sandy soils—psammozems—with undifferentiated soil profiles are developed from windblown sands subjected to afforestation and from coastal marine sands under a relatively thin natural plant cover. Iron-illuvial podzols buried under a thin sand layer preserve the Al-Fe-humus type of the profile differentiation. In the recently deposited sand layer, the eluvial-illuvial redistribution of the chemical elements is absent.

  14. Shannon Sandstone, Powder River basin: hydrodynamic control of sand body geometry and facies sequences in western interior Cretaceous seaway

    SciTech Connect

    Gaynor, G.C.; Swift, D.J.P.

    1983-08-01

    The Campanian Shannon Sandstone Member of the Cody Shale forms the reservoir for several significant oil fields in the western Powder River basin of Wyoming. Linear Shannon sand bodies were deposited on the muddy shelf of the Cretaceous Interior Seaway up to 200 km (125 mi) east of the paleoshoreline. Three major facies types are recognized in cores, in subsurface wireline logs, and in outcrop. In a typical coarsening-upward vertical sequence, a large-scale cross-bedded facies overlies a thin-bedded facies which in turn overlies a bioturbated facies. These facies are genetically related lateral equivalents. The Shannon appears to have been deposited by intermittent storm flows in an outer shelf environment where the water was deep enough for sharp-crested rather than hummocky megaripples to develop. Numerical modeling of geostrophic circulation due to wind stress forcing of Campanian shelf waters demonstrates a good correlation between measured paleotransport indicators and model results. In this model, storm currents decelerating across the crest of subtle topographic highs on the shelf surface would deposit preferentially the coarser fraction of their transported load, so that the aggrading sea floor would become enriched in sand. When a portion of the Campanian shelf attained a critical sand content, large-scale linear sand bodies were triggered, which were dynamically analogous to the sand ridges of modern storm-dominated shelves.

  15. Fluidized bed boiler feed system

    DOEpatents

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  16. A misdiagnosed nail bed melanoma.

    PubMed

    Elloumi-Jellouli, Amel; Triki, Salma; Driss, M; Derbel, F; Zghal, Mohammed; Mrad, K; Rhomdhnane, Kh Ben

    2010-01-01

    Nail bed melanoma or subungual melanoma is frequently misdiagnosed compared to other melanoma in other anatomic sites. We report the case of a 48-year-old woman presenting with a dystrophic and pigmented lesion of her fourth finger nail. This initial presentation had been mistaken for onychomycosis, but biopsy of nail bed and nail matrix confirmed nail bed melanoma. This case is presented to help increase the awareness of atypical presentations of acral melanoma. PMID:20673541

  17. Intertidal sand body migration along a megatidal coast, Kachemak Bay, Alaska

    USGS Publications Warehouse

    Adams, P.N.; Ruggiero, P.; Schoch, G.C.; Gelfenbaum, G.

    2007-01-01

    Using a digital video-based Argus Beach Monitoring System (ABMS) on the north shore of Kachemak Bay in south central Alaska, we document the timing and magnitude of alongshore migration of intertidal sand bed forms over a cobble substrate during a 22-month observation period. Two separate sediment packages (sand bodies) of 1-2 m amplitude and ???200 m wavelength, consisting of well-sorted sand, were observed to travel along shore at annually averaged rates of 278 m/yr (0.76 m/d) and 250 m/ yr (0.68 m/d), respectively. Strong seasonality in migration rates was shown by the contrast of rapid winter and slow summer transport. Though set in a megatidal environment, data indicate that sand body migration is driven by eastward propagating wind waves as opposed to net westward directed tidal currents. Greatest weekly averaged rates of movement, exceeding 6 m/d, coincided with wave heights exceeding 2 m suggesting a correlation of wave height and sand body migration. Because Kachemak Bay is partially enclosed, waves responsible for sediment entrainment and transport are locally generated by winds that blow across lower Cook Inlet from the southwest, the direction of greatest fetch. Our estimates of sand body migration translate to a littoral transport rate between 4,400-6,300 m3/yr. Assuming an enclosed littoral cell, minimal riverine sediment contributions, and a sea cliff sedimentary fraction of 0.05, we estimate long-term local sea cliff retreat rates of 9-14 cm/yr. Applying a numerical model of wave energy dissipation to the temporally variable beach morphology suggests that sand bodies are responsible for enhancing wave energy dissipation by ???13% offering protection from sea cliff retreat. Copyright 2007 by the American Geophysical Union.

  18. Intertidal sand body migration along a megatidal coast, Kachemak Bay, Alaska

    NASA Astrophysics Data System (ADS)

    Adams, Peter N.; Ruggiero, Peter; Schoch, G. Carl; Gelfenbaum, Guy

    2007-06-01

    Using a digital video-based Argus Beach Monitoring System (ABMS) on the north shore of Kachemak Bay in south central Alaska, we document the timing and magnitude of alongshore migration of intertidal sand bed forms over a cobble substrate during a 22-month observation period. Two separate sediment packages (sand bodies) of 1-2 m amplitude and 200 m wavelength, consisting of well-sorted sand, were observed to travel along shore at annually averaged rates of 278 m/yr (0.76 m/d) and 250 m/yr (0.68 m/d), respectively. Strong seasonality in migration rates was shown by the contrast of rapid winter and slow summer transport. Though set in a megatidal environment, data indicate that sand body migration is driven by eastward propagating wind waves as opposed to net westward directed tidal currents. Greatest weekly averaged rates of movement, exceeding 6 m/d, coincided with wave heights exceeding 2 m suggesting a correlation of wave height and sand body migration. Because Kachemak Bay is partially enclosed, waves responsible for sediment entrainment and transport are locally generated by winds that blow across lower Cook Inlet from the southwest, the direction of greatest fetch. Our estimates of sand body migration translate to a littoral transport rate between 4,400-6,300 m3/yr. Assuming an enclosed littoral cell, minimal riverine sediment contributions, and a sea cliff sedimentary fraction of 0.05, we estimate long-term local sea cliff retreat rates of 9-14 cm/yr. Applying a numerical model of wave energy dissipation to the temporally variable beach morphology suggests that sand bodies are responsible for enhancing wave energy dissipation by 13% offering protection from sea cliff retreat.

  19. On the relationship between bedload and suspended sand transport on the inner shelf, Long Island, New York

    NASA Astrophysics Data System (ADS)

    Vincent, Christopher E.; Young, Robert A.; Swift, Donald J. P.

    1982-05-01

    Data obtained by a near-bottom Profiling Concentration and Velocity system (PCV), deployed in 10 m water depth at a site 1 km from the Long Island coastline, are used to examine links between bedload and suspended sand concentrations. Calculations of bedload areal concentration C* are based on the empirical results of Vincent et al. (1981) and use the theoretical formulations of Grant and Madsen (1978, 1979) to describe the interaction between wave and current boundary layers. Suspended sand concentrations were obtained directly from an Acoustic Concentration Meter (ACM). Average suspended sand profiles Cz were found to fit closely to a log-linear profile Cz = C1(1 - A loge z/Z1), where C1 is the sand concentration at a height z1 = 1 cm from the bed and A is empirically determined as 0.22±0.005. A linear correlation is observed between the areal bedload concentration C* (the volume of bedload per unit area of the bed) and the suspended sand concentration 1 cm above the bed C1, with a correlation coefficient of 0.82 (significant at the 1% level), and supports the hypothesis of Einstein (1950) that bedload and suspended load are related through bedload concentration. It is also shown that the sedment threshold criterion of Komar and Miller (1973), when expressed as a ratio (here called the Komar ratio), can be used as a useful predictor for C1 under conditions where the wave orbital currents are much greater than the mean flow. These relationships offer the opportunity for the calculation of both bedload and suspended sand transport rates from measurements of the steady current velocity and wave parameters, combined with information defining the surficial sediments and local bottom topography.

  20. Field Observation and Numerical Modeling of Bed-Material Transport Dynamics in the Lower Mississippi River

    NASA Astrophysics Data System (ADS)

    Ramirez, M. T.; Allison, M. A.; Meselhe, E. A.

    2012-12-01

    Understanding specific pathways for sand transport through the lower reaches of large rivers like the Mississippi is a key to addressing (1) significant source-to-sink geologic problems for sediment and particulate organic carbon and (2) environmental restoration efforts in deltas under threat from climate change. Five field studies were performed in the Mississippi River 75-100 km upstream of the Gulf of Mexico outlet in 2010 and 2011 at discharges ranging from 18,500 to 32,000 m3 s-1 to examine sand transport phenomena in the river channel. These studies utilized multibeam sonar bathymetric surveys, acoustic Doppler current profiler measurements of current velocity and acoustic backscatter, point-integrated isokinetic suspended sediment sampling, and channel-bed grab sampling to examine fluid flow and suspended/bedload sediment transport. Substantial interaction was observed between flow conditions in the river (boundary shear stress, turbulence intensity), channel-bed morphology (size and extent of sandy bedforms), and bed-material sand transport (quantity, transport mode, and spatial distribution). A lateral shift was observed in the region of maximum dune size and water column turbulence intensity from deep to shallow areas of lateral sand bars as water discharge increased, and is associated with the expansion of the bar top area experiencing critical shear stress conditions. Bed material was transported both in traction and in suspension at these water discharges, with the highest suspended mass flux rates associated with the part of the channel cross-section where the largest dunes were present, as a result of a relationship between bed shear stress, dune size, and turbulence intensity. We posit that the downriver flux of sand grains alternates between these two modes over relatively short spatial (up to a few km) and temporal scales. These results complicate the task of using cross-sectional flux measurements taken in lower reaches of large river channels to infer bed-material discharge to the ocean because the transport trajectories and velocities of individual grains can vary appreciably. This suggests that 3D numerical simulations, calibrated and validated by comprehensive field measurements, will provide the path forward in understanding bed material fluxes in these systems. These model simulations, utilizing Delft3D and Flow3D and these observational data, are under development to investigate the relationship between flow conditions and sediment transport at finer spatial scales.

  1. Sewage plume in a sand and gravel aquifer, Cape Cod, Massachusetts

    USGS Publications Warehouse

    LeBlanc, D.R.

    1982-01-01

    Secondarily treated domestic sewage has been disposed of to a sand and gravel aquifer by infiltration through sand beds at Otis Air Force Base, Massachusetts, since 1936. The disposal has formed a plume of contaminated ground water that is more than 11 ,000 feet long, is 2,500 to 3,500 feet wide and 75 feet thick, and is overlain by 20 to 50 feet of uncontaminated ground water derived from precipitation. The distributions of specific conductance, temperature, boron chloride, sodium, phosphorus, nitrogen, ammonia, nitrate, dissolved oxygen, and detergents are used to delineate the plume. The center of the plume contains up to 2.6 milligrams per liter detergents as MBAS (methylene blue active substances), 0.4 milligram per liter boron, 20 milligrams per liter ammonia-nitrogen, and specific conductance as high as 405 micromhos per centimeter. Corresponding levels in uncontaminated ground water are less than 0.1 milligram per liter detergents, less than 0.1 ammonia-nitrogen, less than 0.05 milligram per liter boron, and less than 80 micromhos per centimeter specific conductance. Chloride, sodium, and boron concentrations seem to be affected only by hydrodynamic dispersion. Phosphorus movement is greatly retarded by sorption. Detergent concentrations exceed 0.5 milligram per liter from 3 ,000 to 10,000 feet from the sand beds and reflect the use of nonbiodegradable detergents from 1946 through 1964. The center of the plume as far as 5,000 feet from the sand beds contains nitrogen as ammonia, no nitrate, and no dissolved oxygen. Ammonia is oxidized to nitrate gradually with distance from the center of the plume. (USGS)

  2. Debris-bed friction of hard-bedded glaciers

    USGS Publications Warehouse

    Cohen, D.; Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Jackson, M.; Moore, P.L.

    2005-01-01

    [1] Field measurements of debris-bed friction on a smooth rock tablet at the bed of Engabreen, a hard-bedded, temperate glacier in northern Norway, indicated that basal ice containing 10% debris by volume exerted local shear traction of up to 500 kPa. The corresponding bulk friction coefficient between the dirty basal ice and the tablet was between 0.05 and 0.08. A model of friction in which nonrotating spherical rock particles are held in frictional contact with the bed by bed-normal ice flow can account for these measurements if the power law exponent for ice flowing past large clasts is 1. A small exponent (n < 2) is likely because stresses in ice are small and flow is transient. Numerical calculations of the bed-normal drag force on a sphere in contact with a flat bed using n = 1 show that this force can reach values several hundred times that on a sphere isolated from the bed, thus drastically increasing frictional resistance. Various estimates of basal friction are obtained from this model. For example, the shear traction at the bed of a glacier sliding at 20 m a-1 with a geothermally induced melt rate of 0.006 m a-1 and an effective pressure of 300 kPa can exceed 100 kPa. Debris-bed friction can therefore be a major component of sliding resistance, contradicting the common assumption that debris-bed friction is negligible. Copyright 2005 by the American Geophysical Union.

  3. Visual accumulation tube for size analysis of sands

    USGS Publications Warehouse

    Colby, B.C.; Christensen, R.P.

    1956-01-01

    The visual-accumulation-tube method was developed primarily for making size analyses of the sand fractions of suspended-sediment and bed-material samples. Because the fundamental property governing the motion of a sediment particle in a fluid is believed to be its fall velocity. the analysis is designed to determine the fall-velocity-frequency distribution of the individual particles of the sample. The analysis is based on a stratified sedimentation system in which the sample is introduced at the top of a transparent settling tube containing distilled water. The procedure involves the direct visual tracing of the height of sediment accumulation in a contracted section at the bottom of the tube. A pen records the height on a moving chart. The method is simple and fast, provides a continuous and permanent record, gives highly reproducible results, and accurately determines the fall-velocity characteristics of the sample. The apparatus, procedure, results, and accuracy of the visual-accumulation-tube method for determining the sedimentation-size distribution of sands are presented in this paper.

  4. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  5. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  6. Method for packing chromatographic beds

    DOEpatents

    Freeman, David H.; Angeles, Rosalie M.; Keller, Suzanne

    1991-01-01

    Column chromatography beds are packed through the application of static force. A slurry of the chromatography bed material and a non-viscous liquid is filled into the column plugged at one end, and allowed to settle. The column is transferred to a centrifuge, and centrifuged for a brief period of time to achieve a predetermined packing level, at a range generally of 100-5,000 gravities. Thereafter, the plug is removed, other fixtures may be secured, and the liquid is allowed to flow out through the bed. This results in an evenly packed bed, with no channeling or preferential flow characteristics.

  7. Fluidized bed deposition of diamond

    DOEpatents

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  8. A branching process model for sand avalanches

    SciTech Connect

    Garcia-Pelayo, R.; Salazar, I.; Schieve, W.C. )

    1993-07-01

    An analytically solvable model for sand avalanches of noninteracting grains of sand, based on the Chapman-Kolmogorov equations, is presented. For a single avalanche, distributions of lifetimes, sizes of overflows and avalanches, and correlation functions are calculated. Some of these are exponentials, some are power laws. Spatially homogeneous distributions of avalanches are also studied. Computer simulations of avalanches of interacting grains of sand are compared to the solutions to the Chapman-Kolmogorov equations. It is found that within the range of parameters explored in the simulation, the approximation of noninteracting grains of sand is a good one. 20 refs., 4 figs.

  9. The Holocene evolution of the beach and inland aeolian sand of the north-central Mediterranean coast of Israel

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Sivan, Dorit; Bookman, Revital; Shteinberg, Gilad

    2015-04-01

    Israel's coastal geomorphology, situated within a Mediterranean climate zone, is characterized by parallel Pleistocene aeolianite ridges, coastal cliffs of aeolianite, and sandy beaches. Lobe-like fields of predominantly stable transverse and parabolic quartz sand dunes protrude 2-7 km inland from the current Mediterranean Sea coastline. However, their migration and accumulation history is still not well-defined. This study focuses on the Holocene appearance, chronology and drivers of beach sand deposition and inland aeolian sand transport along the Caesarea-Hadera dunefield in the north-central coastal plain of Israel. In order to achieve these goals, a detailed field survey and sampling campaign was carried out along a west-east and southwest-northeast transect, loyal to the advancement orientations of the currently stable dunes and directions of dominant sand transporting winds. Beach sand, a foredune, a linear dune, and interdunes of parabolic and transverse dunes were sampled down to their aeolianite or red loam (locally named hamra) palaeosol substrate by drilling and analyzing exposed sections. The sampled sediments were sedimentologically analyzed and twenty-five were dated by optically stimulated luminescence (OSL). The results indicate that beach sand started to accumulate rapidly around 6 ka probably in response to global sea level stabilization. Until around 4 ka, thin sand sheets encroached 2-3 km inland. Sand ages in the range of 1.2-1.1 ka (8th-9th century CE -- Early Moslem period) were found throughout the study area, suggesting a major mobilization of sand, followed by stabilization around 0.6 ka and pedogenesis. By 1.2 ka, the sands had reached their current extent of 5-7 km inland, suggesting transport in a southwest-northeast orientation similar to the advancement orientation of the current transverse and parabolic dunes. The particle-size distributions of the fine to medium-sized aeolian sand showed minor variation linked to inland transport distance and age and did not significantly differ from the values of beach sand. The spatial distribution and temporal clustering of the 1.2-1.1 ka ages does not seem stochastic. However, this age range does not coincide with any local or regional climate change or anthropogenic anomaly that could explain the enhanced sand mobility. Assuming no late Holocene change in coastal sand supply and availability, sand transport may have been due to short term climate (multi-annual) episodes of increased windiness that may have followed short-term or cumulative removal of stabilizing dune vegetation by man, a hypothesis that requires further investigation.

  10. Numerical simulation of turbulence and sediment transport of medium sand

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2012-12-01

    Eleven numerical simulations, ranging from no transport to bedload to vigorous suspension transport, are presented of a combined large eddy simulation (LES) and distinct element model (DEM) of an initially flat bed of medium sand. The fluid and particles are fully coupled in momentum. The friction coefficient, defined here as the squared ratio of the friction velocity to the depth-averaged velocity, is in good agreement with well-known rough bed relations at no transport and increases with the intensity of bedload transport. The friction coefficient nearly doubles in value at the onset of sediment suspension owing to a rapid increase of the depth over which particles and fluid exchange momentum. The friction coefficient decreases with increasing suspension intensity because of increasingly stable stratification. Fluid Reynolds stress and time-averaged velocity profiles in the bedload regime agree well with previous experiments and simulations. Also consistent with previous studies of suspended sediment, there is an increase in slope of the lower portion of the velocity profile that has been modeled in the past using stably stratified eddy viscosity closures or an adjusted von Karman constant. Stokes numbers in the simulations, using an estimated lagrangian integral time scale, are less than unity. As such, particles faithfully follow the fluid, except for particle settling and grain-grain interactions near the bed. Fluid-particle velocity correlation coefficients approach one in portions of the flow where volumetric sediment concentrations are below about ten percent. Bedload entrainment is critically connected to vertical velocity fluctuations. When a fluid packet approaches the bed from the interior of the flow (i.e. a sweep), fluid is forced into the bed, and at the edges of the sweep, fluid is forced out of the bed. Much of the particle entrainment occurs at these sweep edges. Fluid velocity statistics following the particles reveal that moving bedload particles are preferentially concentrated in zones of upward fluid velocity. This may explain previous observations noting a rapid vertical rise at the beginning of saltation trajectories. The simulations described here have no lift forces. Because of the short particle time scales relative to that of the turbulent structures, high transport stage bedload entrainment zones involve mutual interaction between turbulence structures and bed deformation. These deformation structures appear as depressed areas of the bed at the center of the sweep and raised areas of entraining particles at the edges of the sweep penetration. Suspended sediment entrainment structures are similar to these bedload entrainment structures but have much larger scales. Preferential concentration of suspended grains in zones of upward moving fluid dampens turbulence intensities and momentum transport. Much of the suspended transport takes place within this highly concentrated near-bed zone of damped turbulence. Particle-fluid correlation coefficients are relatively low in the lower portion of this highly concentrated suspended sediment zone, owing to particle-particle interactions. As such, Rouse-like profiles utilizing eddy viscosity closures, adjusted according to flux Richardson numbers, do not adequately describe the physics of this zone.

  11. Sand Dunes in Kaiser Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Full size (780 KBytes) This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) high resolution image shows a field of dark sand dunes on the floor of Kaiser Crater in southeastern Noachis Terra. The steepest slopes on each dune, the slip faces, point toward the east, indicating that the strongest winds that blow across the floor of Kaiser move sand in this direction. Wind features of three different scales are visible in this image: the largest (the dunes) are moving across a hard surface (light tone) that is itself partially covered by large ripples. These large ripples appear not to be moving--the dunes are burying some and revealing others. Another type of ripple pattern is seen on the margins of the dunes and where dunes coalesce. They are smaller (both in their height and in their separation) than the large ripples. These are probably coarse sediments that are moving with the dunes. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated from the upper left.

  12. An evaluation of the Rouse theory for sand transport in the Oka estuary, Spain

    NASA Astrophysics Data System (ADS)

    Al-Ragum, A.; Monge-Ganuzas, M.; Amos, C. L.; Cearreta, A.; Townend, I.; Manca, E.

    2014-04-01

    The Rouse profile has been traditionally used to represent the vertical distribution of suspended sand in a marine benthic boundary layer. Yet it is one of the biggest unknowns in estuarine morphodynamics, largely due to uncertainties of the ratio of the sediment fall velocity to bed friction on which the Rouse exponent (R=ws/βku*) is based. A field campaign was carried out at three different locations in the Oka estuary, northern Spain, in order to examine these uncertainties. Each location differed in grain size and flow condition thus offering a wide range of settings. The first survey was inside the estuary (wave sheltered, flood tide dominated and relatively broad estuary section), the second was at the distal ebb delta (ebb tide dominated and narrow estuary section), and the third was over the wave exposed proximal ebb delta (wave/flood tidal current combined flows and open sea). The aim of this study is to evaluate the applicability of the Rouse (1937) theory for the distribution of sand in suspension throughout a turbulent benthic boundary layer. A modified version of a Helley-Smith sampler was used to trap sand and measure the vertical distribution of sand in the water column. As well, a 1200 ADCP was used to measure flow velocity and backscatter together with an ADV (turbulence). The sand traps were found to have a sampling efficiency of 44%. The grain size at all stations was finer near the surface and coarser near the bed. The sand transport inside the estuary (Station 1) is inwards dominant. By contrast, the sand concentration during the ebb tide was ten times higher than during the flood tide at Station 2 and even higher at Station 3, which suggests that the sand transport over the ebb delta is seawards. The average Rouse parameters for Stations 1, 2, and 3 are 0.48±0.035, 0.78±0.23, and 0.46±0.06 respectively, which correspond to a coefficient of proportionality of the movability number, (χ) of 4 (Van Rijn, 1993). These differ from previous findings of Villatoro et al. (2010) and Amos et al. (2010b).

  13. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding. (3... minimum biobased content is 12 percent and shall be based on the amount of qualifying biobased carbon in the finished product as a percent of the weight (mass) of the total organic carbon in the...

  14. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding. (3... minimum biobased content is 12 percent and shall be based on the amount of qualifying biobased carbon in the finished product as a percent of the weight (mass) of the total organic carbon in the...

  15. Wave-Induced Suspended Sand Transport Around Ripples in the Near Shore Zone

    NASA Astrophysics Data System (ADS)

    Ahmari, A.; Oumeraci, H.

    2010-12-01

    The importance of the suspended sediment transport by waves implies a strong need to analyse reliably the suspended sediment concentration as the major part of the total wave-induced sediment load in the near shore zone. Sediment entrainment processes due to the oscillatory flow above rippled and plane sea beds are fundamentally different. Above plane sea beds and over short crested 3D ripples, where the sheet flow and the bed load regime respectively dominates, the momentum transfer is primarily caused by turbulent diffusion. In contrast, above a sea bed covered with long crested vortex ripples, the coherent vortex mechanisms due to the flow separation at the steep ripple crests generate sediment-laden vortices in the near-bed zone, which are detached from the ripple crest, ejected into the water column and finally shed at the time of the flow reversal. Experiments with movable sand bed were carried out recently in the Large Wave Flume (GWK) of the Coastal Research Centre (FZK) to model physically the near shore processes associated with the sediment transport above sandy rippled sea beds. The observations were made under regular and irregular waves. Two multi frequency Acoustic Backscatter Systems (ABS), four Optical point Sensors (Optical Turbidity meters) and one Transverse Suction System (TSS) were used to measure the Suspended Sediment Concentrations (SSC), whereas two Electromagnetic Current Meters (ECMs) measured the simultaneous orbital velocity components near the sea bed and 23 pieces wave gauges fitted on the wall side along the entire beach profile recorded the free water surface elevations during each test. A comparative analysis of SSC-measurements using mechanical, optical and acoustical techniques well-illustrates why the acoustic measuring technique (ABS) represents the most appropriate technique for the measurement of the suspension processes, especially over the rippled beds. Moreover, the high-resolution temporal and spatial structures of the intra wave suspension field during a wave cycle around a steep vortex ripple conducted with ABS provided a quantitative evidence of the appropriateness of the acoustical technique to analyse the flow separation, the lee side-vortex generation and the sediment-rich vortex shedding at the time of the flow reversal. In fact, a reliable and detailed description of these mechanisms is extremely important to better understand the temporal and spatial distribution of suspended load, especially above steep ripples, and to develop more physically-based predictive models. This work has been partly supported by European Community's Sixth Framework Program in the Joint Research Activity SANDS, which is a part of the Integrated Infrastructure Initiative HYDRALAB III, Contract no. 022441 (R113) and by the BMBF supported project ModPro.

  16. Central Asian sand seas climate change as inferred from OSL dating

    NASA Astrophysics Data System (ADS)

    Maman, Shimrit; Tsoar, Haim; Blumberg, Dan; Porat, Naomi

    2014-05-01

    Luminescence dating techniques have become more accessible, widespread, more accurate and support studies of climate change. Optically stimulated luminescence (OSL) is used to determine the time elapsed since quartz grains were last exposed to sunlight, before they were buried and the dune stabilized. Many sand seas have been dated extensively by luminescence, e.g., the Kalahari, Namib the Australian linear dunes and the northwestern Negev dune field, Israel. However, no ages were published so far from the central Asian sand seas. The lack of dune stratigraphy and numerical ages precluded any reliable assessment of the paleoclimatic significance of dunes in central Asia. Central Asian Sand seas (ergs) have accumulated in the Turan basin, north-west of the Hindu Kush range, and span from south Turkmenistan to the Syr-Darya River in Kazakhstan. These ergs are dissected by the Amu-Darya River; to its north lies the Kyzylkum (red sands) and to its south lies the Karakum (black sands). Combined, they form one of the largest sand seas in the world. This area is understudied, and little information has been published regarding the sands stabilization processes and deposition ages. In this study, OSL ages for the Karakum and Kyzylkum sands are presented and analysis of the implications of these results is provided. Optical dates obtained in this study are used to study the effects climatic changes had on the mobility and stability of the central Asian sand seas. Optically stimulated luminescence ages derived from the upper meter of the interdune of 14 exposed sections from both ergs, indicate extensive sand and dune stabilization during the mid-Holocene. This stabilization is understood to reflect a transition to a warmer, wetter, and less windy climate that generally persisted until today. The OSL ages, coupled with a compilation of regional paleoclimatic data, corroborate and reinforce the previously proposed Mid-Holocene Liavliakan phase, known to reflect a warmer, wetter, and less windy climate that persists until today and resulted in dune stabilization around the Mid-Holocene. This study, solidifies our results regarding the Kyzylkum and Karakum sand seas dynamics, ages, and emphasizes the importance of regional climatic control on aeolian activity.

  17. Blood volume responses of men and women to bed rest

    NASA Technical Reports Server (NTRS)

    Fortney, S. M.; Turner, C.; Steinmann, L.; Driscoll, T.; Alfrey, C.

    1994-01-01

    This paper reviews a series of studies that indicate that estrogens play an important role in blood volume regulation. The first study illustrates that the plasma volume (PV) of ambulatory women fluctuates during the menstrual cycle, increasing during periods of elevated estrogens. In the second study, it was shown that exogenous and endogenous elevations in blood estrogens attenuate the decrease in PV during bed rest. In the third study, the hypothesis was tested that women, who naturally have a higher blood estrogen content compared with men, will have a smaller loss of PV during bed rest. Ten men and ten women underwent a 13-day, 6 degrees head-down bed rest. Plasma volume and red cell mass (RCM) were measured before and after bed rest using 125I and 51Cr labeling, respectively. Before bed rest, the men and women had similar blood volume (BV) and PV (mL/kg body weight), but the women had a smaller (P < .01) RCM (22.2 +/- 0.9 versus 26.2 +/- 0.8 mL/kg, mean +/- SE). During bed rest, the decrease in RCM (mL/kg) was similar in men and women. However, the decrease in BV was greater in men (8.0 +/- 0.8 mL/kg versus 5.8 +/- 0.8 mL/kg), because of a greater reduction in PV (6.3 +/- 0.6 mL/kg versus 4.1 +/- 0.6 mL/kg). Because the decline in BV has been proposed to contribute to the cardiovascular deconditioning after bed rest, it is possible that women may experience less cardiac and circulatory strain on reambulation.