Science.gov

Sample records for red sea urchin

  1. Sea urchin granuloma.

    PubMed

    Rossetto, André Luiz; de Macedo Mora, Jamesson; Haddad Junior, Vidal

    2006-01-01

    Injuries caused by venomous and poisonous aquatic animals may provoke important morbidity in humans. The phylum Echinoderma include more than 6000 species of starfish, sea urchins, sand dollars, and sea cucumbers some of which have been found responsible for injuries to humans. Initial injuries by sea urchins are associated with trauma and envenomation, but later effects can be observed. Sea urchin granuloma is a chronic granulomatous skin disease caused by frequent and successive penetration of sea urchin spines which have not been removed from wounds. The authors report a typical case of sea urchin granuloma in a fisherman and its therapeutic implications. PMID:17086323

  2. [Juvenile production of the red sea urchin Strongylocentrotus franciscanus (Echinodermata: Echinoidea) in Baja California, Mexico].

    PubMed

    Salas-Garza, A; Carpizo-Ituarte, E; Parés-Sierra, G; Martínez-López, R; Quintana-Rodríguez, R

    2005-12-01

    The red sea urchin Strongylocentrotusfranciscanus (Agassiz 1863) is harvested commercially in Baja California, Mexico, since 1970; however, in the last ten years the capture per unit effort (CPUE) has decreased from 310 kg/fishing unit/day to 120 kg/fishing unit/day. For this reason, actions were taken to develop a culture technology allowing massive production of juveniles for re-stocking natural populations or for growing them commercially. We summarize some of the basic studies and main achievements in this effort. In Baja California, considerably faster larval development (approximately 21 days) has been attained than in the US northwest coast (62 days). Spawning of red sea urchins was routinely induced with KCI while egg fertilization was performed using a 100,000-sperm/ml solution. Six microalgae species were tested and Rhodomonas sp. produced the best larval development. The mean survival rate at the end of the larval period was 25%, but results varied widely with bactch. From the feed ratios tested, best results were obtained using 7000 cel/ml during the first week of larval development, followed by 10,000 cel/ml during the second and 15,000 cel/ml during the third week. KCl proved the most consistent metamorphic inducer, regularly yielding metamorphosis percentages higher than 90%. Metamorphosis was considered complete when the functional jaw that juveniles use for first benthic feeding appeared (as soon as 20 days after induction). With this method several thousands of red sea urchin juveniles were produced. They reached up to 1.5 mm in size during the first 50 days of culture after metamorphosis, showing the great potential for mass production of this species in the laboratory. PMID:17469265

  3. Poster: the sea urchin.

    PubMed

    2006-11-10

    The announcement of the sequencing of the genome of the sea urchin Strongylocentrotus purpuratus is the latest glowing chapter in the long history of contributions from sea urchin researchers to fundamental principles of cell biology, developmental biology, and gene regulation. A poster created for the print Science presents a timeline of the past and a glimpse into the next stage of research that is being opened up through genomic insights; a PDF of that poster is available for our subscribers. We have also created, for all site visitors, an interactive version of the poster, including additional images, video, and Web resources. Interactive poster (free; requires Flash 8 or higher). PDF of print poster (subscription required). PMID:17095688

  4. Sea Urchin Morphogenesis.

    PubMed

    McClay, David R

    2016-01-01

    In the sea urchin morphogenesis follows extensive molecular specification. The specification controls the many morphogenetic events and these, in turn, precede patterning steps that establish the larval body plan. To understand how the embryo is built it was necessary to understand those series of molecular steps. Here an example of the historical sequence of those discoveries is presented as it unfolded over the last 50 years, the years during which major progress in understanding development of many animals and plants was documented by CTDB. In sea urchin development a rich series of experimental studies first established many of the phenomenological components of skeletal morphogenesis and patterning without knowledge of the molecular components. The many discoveries of transcription factors, signals, and structural proteins that contribute to the shape of the endoskeleton of the sea urchin larva then followed as molecular tools became available. A number of transcription factors and signals were discovered that were necessary for specification, morphogenesis, and patterning. Perturbation of the transcription factors and signals provided the means for assembling models of the gene regulatory networks used for specification and controlled the subsequent morphogenetic events. The earlier experimental information informed perturbation experiments that asked how patterning worked. As a consequence it was learned that ectoderm provides a series of patterning signals to the skeletogenic cells and as a consequence the skeletogenic cells secrete a highly patterned skeleton based on their ability to genotypically decode the localized reception of several signals. We still do not understand the complexity of the signals received by the skeletogenic cells, nor do we understand in detail how the genotypic information shapes the secreted skeletal biomineral, but the current knowledge at least outlines the sequence of events and provides a useful template for future

  5. Do genes lie? Mitochondrial capture masks the Red Sea collector urchin's true identity (Echinodermata: Echinoidea: Tripneustes).

    PubMed

    Bronstein, Omri; Kroh, Andreas; Haring, Elisabeth

    2016-11-01

    Novel COI and bindin sequences of the Red Sea collector echinoid Tripneustes gratilla elatensis are used to show that (1) discordance between mitochondrial and nuclear loci exists in this echinoid genus, (2) Tripneustes gratilla as currently defined possibly comprises a complex of cryptic species, and (3) Red Sea Tripneustes form a genetically distinct clade in the bindin tree, which diverged from other Tripneustes clades at least 2-4million years ago. Morphological reassessment of T. gratilla elatensis shows perfect congruence between identification based on skeletal features and genetic data based on a nuclear marker sequence. Hence the Red Sea Tripneustes subspecies established by Dafni in 1983 is a distinct biological unit. All T. g. elatensis samples analyzed are highly similar to or share mtDNA haplotypes with Philippine T. g. gratilla, as do representatives from other edge-of-range occurrences. This lack of genetic structure in Indo-Pacific Tripneustes is interpreted as a result of wide-spread mitochondrial introgression. New fossil specimens from the Red Sea area confirm the sympatric occurrence of T. g. elatensis and T. g. gratilla in the northern Red Sea during Late Pleistocene, identifying a possible timing for the introgression. In addition, present-day distribution shows a contact zone in the Southern Red Sea (in the Dahlak Archipelago). T. g. elatensis, is yet another example of a Red Sea taxon historically identified as conspecific with its Indo-Pacific relatives, but which turned out to be a morphologically and genetically distinct endemic taxon, suggesting that the level of endemism in the Red Sea may still be underestimated. PMID:27475495

  6. Photoperiod, temperature, and food availability as drivers of the annual reproductive cycle of the sea urchin Echinometra sp. from the Gulf of Aqaba (Red Sea)

    NASA Astrophysics Data System (ADS)

    Bronstein, Omri; Loya, Yossi

    2015-03-01

    In spite of the efforts invested in the search for the environmental factors that regulate discrete breeding periods in marine invertebrates, they remain poorly understood. Here, we present the first account of the annual reproductive cycle of the pantropical sea urchin Echinometra sp. from the Gulf of Aqaba/Eilat (Red Sea) and explore some of the main environmental variables that drive echinoid reproduction. Monthly measurements of gonado-somatic indexes and histological observations of 20 specimens revealed a single seasonal reproductive cycle, with gametogenesis in males and females being highly synchronized. Gametogenesis commenced in June and peak spawning occurred between September and October. Gonado-somatic indexes were significantly correlated with seawater temperatures but not with photoperiod. The latter cycle lagged behind the gonado-somatic cycle by two months, suggesting that the onset of gametogenesis corresponds to shortening day length, while spawning may be driven by warming seawater temperatures. Gonads remained quiescent throughout the winter and spring (January through May) when temperatures were at their lowest. Chlorophyll- a concentrations increased significantly in the months following spawning (October through January). These high concentrations are indicative of high phytoplankton abundance and may reflect the increase in food availability for the developing larvae. Of the external test dimensions, length presented the highest correlation to body weight, indicating length as the best predictor for body size in Echinometra. Neither sexual dimorphism nor size differences between males and females were detected, and the sex ratios were approximately 1:1 in three distant Echinometra populations. Environmentally regulated reproduction, as occurs in sea urchins, might face severe outcomes due to anthropogenic disturbances to the marine environment. Consequently, there is a need to deepen our understanding of the mechanisms that drive and

  7. Micromechanics of Sea Urchin Spines

    PubMed Central

    Tsafnat, Naomi; Fitz Gerald, John D.; Le, Hai N.; Stachurski, Zbigniew H.

    2012-01-01

    The endoskeletal structure of the Sea Urchin, Centrostephanus rodgersii, has numerous long spines whose known functions include locomotion, sensing, and protection against predators. These spines have a remarkable internal microstructure and are made of single-crystal calcite. A finite-element model of the spine’s unique porous structure, based on micro-computed tomography (microCT) and incorporating anisotropic material properties, was developed to study its response to mechanical loading. Simulations show that high stress concentrations occur at certain points in the spine’s architecture; brittle cracking would likely initiate in these regions. These analyses demonstrate that the organization of single-crystal calcite in the unique, intricate morphology of the sea urchin spine results in a strong, stiff and lightweight structure that enhances its strength despite the brittleness of its constituent material. PMID:22984468

  8. Traditional Chinese medicine--sea urchin.

    PubMed

    Shang, Xiao-Hui; Liu, Xiao-Yu; Zhang, Jian-Peng; Gao, Yun; Jiao, Bing-Hua; Zheng, Heng; Lu, Xiao-Ling

    2014-01-01

    The sea urchin is an ancient, common, seafloor-dwelling marine invertebrate that belongs to the phylum Echinodermata. There are multiple species of sea urchin with resources that are widely distributed in China, where they were used in ancient times as Traditional Chinese Medicine for treating a variety of diseases. At present, it is known that the shell, spine and gonad of the sea urchin have many medicinal values determined through modern research. In this paper, we summarized the major chemical constituents and medicinal value of the sea urchin. PMID:24873818

  9. Red Sea

    Atmospheric Science Data Center

    2013-04-16

    article title:  The Red Sea     View Larger Image ... Imaging SpectroRadiometer (MISR) image of the Red Sea was acquired on August 13, 2000. Located between the East African coast and the Saudi Arabian peninsula, the Red Sea got its name because the blooms of a type of algae,  Trichodesmium ...

  10. Phylogenomics of strongylocentrotid sea urchins

    PubMed Central

    2013-01-01

    Background Strongylocentrotid sea urchins have a long tradition as model organisms for studying many fundamental processes in biology including fertilization, embryology, development and genome regulation but the phylogenetic relationships of the group remain largely unresolved. Although the differing isolating mechanisms of vicariance and rapidly evolving gamete recognition proteins have been proposed, a stable and robust phylogeny is unavailable. Results We used a phylogenomic approach with mitochondrial and nuclear genes taking advantage of the whole-genome sequencing of nine species in the group to establish a stable (i.e. concordance in tree topology among multiple lies of evidence) and robust (i.e. high nodal support) phylogenetic hypothesis for the family Strongylocentrotidae. We generated eight draft mitochondrial genome assemblies and obtained 13 complete mitochondrial genes for each species. Consistent with previous studies, mitochondrial sequences failed to provide a reliable phylogeny. In contrast, we obtained a very well-supported phylogeny from 2301 nuclear genes without evidence of positive Darwinian selection both from the majority of most-likely gene trees and the concatenated fourfold degenerate sites: ((P. depressus, (M. nudus, M. franciscanus), (H. pulcherrimus, (S. purpuratus, (S. fragilis, (S. pallidus, (S. droebachiensis, S. intermedius)). This phylogeny was consistent with a single invasion of deep-water environments followed by a holarctic expansion by Strongylocentrotus. Divergence times for each species estimated with reference to the divergence times between the two major clades of the group suggest a correspondence in the timing with the opening of the Bering Strait and the invasion of the holarctic regions. Conclusions Nuclear genome data contains phylogenetic signal informative for understanding the evolutionary history of this group. However, mitochondrial genome data does not. Vicariance can explain major patterns observed in the

  11. Sea urchin egg fertilization and development

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1971-01-01

    The effects of subgravity (much less than unit gravity) on fertilization, cell division, differentiation, and growth of a relatively simple biological system (eggs of the sea urchin Arbacia punctulata) were considered. The experiment was flown on Gemini 3 and recovered as scheduled. However, the experiment objectives were not achieved, primarily for mechanical reasons.

  12. The impact of rising sea temperature on innate immune parameters in the tropical subtidal sea urchin Lytechinus variegatus and the intertidal sea urchin Echinometra lucunter.

    PubMed

    Branco, Paola Cristina; Borges, João Carlos Shimada; Santos, Marinilce Fagundes; Jensch Junior, Bernard Ernesto; da Silva, José Roberto Machado Cunha

    2013-12-01

    Ocean temperatures are rising throughout the world, making it necessary to evaluate the impact of these temperature changes on sea urchins, which are well-known bioindicators. This study evaluated the effect of an increase in temperature on the immune response of the subtidal Lytechinus variegatus and the intertidal Echinometra lucunter sea urchins. Both species were exposed to 20 (control), 25 and 30 °C temperatures for 24 h, 2, 7 and 14 days. Counting of coelomocytes and assays on the phagocytic response, adhesion and spreading of coelomocytes were performed. Red and colorless sphere cells were considered biomarkers for heat stress. Moreover, a significant decrease in the phagocytic indices and a decrease in both cell adhesion and cell spreading were observed at 25 and 30 °C for L. variegatus. For E. lucunter, the only alteration observed was for the cell proportions. This report shows how different species of sea urchins respond immunologically to rising temperatures. PMID:24080411

  13. Extending the viability of sea urchin gametes.

    PubMed

    Spiegler, M A; Oppenheimer, S B

    1995-04-01

    The sea urchin is the material of choice for studying many early developmental events. Methods to extend the viability of sea urchin gametes have not received much attention, but it is well known that the eggs are easily damaged by freezing. This study was designed to extend the viability of Lytechinus pictus eggs and sperm without freezing. Gamete viability measurements were based on relative numbers of fertilized vs unfertilized eggs, percentage fertilization, and on observations of embryonic development. Results indicate that gametes can be stored longer and at lower temperatures than previously described. Sperm were consistently kept viable for at least 12 days with little decrease in viability when stored in glass test tubes or plastic petri dishes and submerged in ice inside a refrigerator at 0 +/- 1 degree C. In one experiment, sperm stored in glass test tubes on ice remained viable up to 20 days after extraction. Eggs were maintained from 1 to 7 days, rather than the 1 day or so previously reported, when stored in glass test tubes submerged in ice in a refrigerator at 0 +/- 1 degree C. Results of egg and sperm experiments varied at different times in the season. Such variations may be caused by seasonal cytoplasmic changes, population differences, or the time mature individuals were maintained unfed in aquaria prior to use. Results from this study should be useful for a variety of research, mariculture, and teaching applications in which sea urchin supplies are limited or when the same gamete population is required for subsequent experiments. PMID:7743818

  14. Evolutionary crossroads in developmental biology: sea urchins

    PubMed Central

    McClay, David R.

    2011-01-01

    Embryos of the echinoderms, especially those of sea urchins and sea stars, have been studied as model organisms for over 100 years. The simplicity of their early development, and the ease of experimentally perturbing this development, provides an excellent platform for mechanistic studies of cell specification and morphogenesis. As a result, echinoderms have contributed significantly to our understanding of many developmental mechanisms, including those that govern the structure and design of gene regulatory networks, those that direct cell lineage specification, and those that regulate the dynamic morphogenetic events that shape the early embryo. PMID:21652646

  15. Pantropic retroviruses as a transduction tool for sea urchin embryos.

    PubMed

    Core, Amanda B; Reyna, Arlene E; Conaway, Evan A; Bradham, Cynthia A

    2012-04-01

    Sea urchins are an important model for experiments at the intersection of development and systems biology, and technical innovations that enhance the utility of this model are of great value. This study explores pantropic retroviruses as a transduction tool for sea urchin embryos, and demonstrates that pantropic retroviruses infect sea urchin embryos with high efficiency and genomically integrate at a copy number of one per cell. We successfully used a self-inactivation strategy to both insert a sea urchin-specific enhancer and disrupt the endogenous viral enhancer. The resulting self-inactivating viruses drive global and persistent gene expression, consistent with genomic integration during the first cell cycle. Together, these data provide substantial proof of principle for transduction technology in sea urchin embryos. PMID:22431628

  16. Identification of sea urchin sperm adenylate cyclase

    PubMed Central

    1990-01-01

    Calmodulin (CaM) affinity chromatography of a detergent extract of sea urchin sperm yielded approximately 20 major proteins. One of these proteins, of Mr 190,000, was purified and used to immunize rabbits. After absorption with living sperm, the serum reacted monospecifically on one- and two-dimensional Western immunoblots with the Mr 190,000 protein. The anti-190-kD serum inhibited 94% of the adenylate cyclase (AC) activity of the CaM eluate. An immunoaffinity column removed 95% of the AC activity, and the purified (but inactive) Mr 190,000 protein was eluted from the column. The antiserum also inhibited 23% of the activity of bovine brain CaM-sensitive AC and 90% of the activity of horse sperm CaM-sensitive AC. These data support the hypothesis that the Mr 190,000 protein is sea urchin sperm AC. Although this AC bound to CaM, it was not possible to demonstrate directly a Ca2+ or CaM sensitivity. However, two CaM antagonists, calmidazolium and chlorpromazine, both inhibited AC activity, and the inhibition was released by added CaM, suggesting the possibility of regulation of this AC by CaM. Indirect immunofluorescence showed the Mr 190,000 protein to be highly concentrated on only the proximal half of the sea urchin sperm flagellum. This asymmetric localization of AC may be important to its function in flagellar motility. This is the first report of the identification of an AC from animal spermatozoa. PMID:2121742

  17. Can sea urchins beat the heat? Sea urchins, thermal tolerance and climate change

    PubMed Central

    2015-01-01

    The massive die-off of the long-spined sea urchin, Diadema antillarum, a significant reef grazer, in the mid 1980s was followed by phase shifts from coral dominated to macroalgae dominated reefs in the Caribbean. While Diadema populations have recovered in some reefs with concomitant increases in coral cover, the additional threat of increasing temperatures due to global climate change has not been investigated in adult sea urchins. In this study, I measured acute thermal tolerance of D. antillarum and that of a sympatric sea urchin not associated with coral cover, Echinometra lucunter, over winter, spring, and summer, thus exposing them to substantial natural thermal variation. Animals were taken from the wild and placed in laboratory tanks in room temperature water (∼22 °C) that was then heated at 0.16–0.3 °C min−1 and the righting behavior of individual sea urchins was recorded. I measured both the temperature at which the animal could no longer right itself (TLoR) and the righting time at temperatures below the TLoR. In all seasons, D. antillarum exhibited a higher mean TLoR than E. lucunter. The mean TLoR of each species increased with increasing environmental temperature revealing that both species acclimatize to seasonal changes in temperatures. The righting times of D. antillarum were much shorter than those of E. lucunter. The longer relative spine length of Diadema compared to that of Echinometra may contribute to their shorter righting times, but does not explain their higher TLoR. The thermal safety margin (the difference between the mean collection temperature and the mean TLoR) was between 3.07–3.66 °C for Echinometra and 3.79–5.67 °C for Diadema. While these thermal safety margins exceed present day temperatures, they are modest compared to those of temperate marine invertebrates. If sea temperatures increase more rapidly than can be accommodated by the sea urchins (either by genetic adaptation, phenotypic plasticity, or both), this

  18. Can sea urchins beat the heat? Sea urchins, thermal tolerance and climate change.

    PubMed

    Sherman, Elizabeth

    2015-01-01

    The massive die-off of the long-spined sea urchin, Diadema antillarum, a significant reef grazer, in the mid 1980s was followed by phase shifts from coral dominated to macroalgae dominated reefs in the Caribbean. While Diadema populations have recovered in some reefs with concomitant increases in coral cover, the additional threat of increasing temperatures due to global climate change has not been investigated in adult sea urchins. In this study, I measured acute thermal tolerance of D. antillarum and that of a sympatric sea urchin not associated with coral cover, Echinometra lucunter, over winter, spring, and summer, thus exposing them to substantial natural thermal variation. Animals were taken from the wild and placed in laboratory tanks in room temperature water (∼22 °C) that was then heated at 0.16-0.3 °C min(-1) and the righting behavior of individual sea urchins was recorded. I measured both the temperature at which the animal could no longer right itself (T LoR) and the righting time at temperatures below the T LoR. In all seasons, D. antillarum exhibited a higher mean T LoR than E. lucunter. The mean T LoR of each species increased with increasing environmental temperature revealing that both species acclimatize to seasonal changes in temperatures. The righting times of D. antillarum were much shorter than those of E. lucunter. The longer relative spine length of Diadema compared to that of Echinometra may contribute to their shorter righting times, but does not explain their higher T LoR. The thermal safety margin (the difference between the mean collection temperature and the mean T LoR) was between 3.07-3.66 °C for Echinometra and 3.79-5.67 °C for Diadema. While these thermal safety margins exceed present day temperatures, they are modest compared to those of temperate marine invertebrates. If sea temperatures increase more rapidly than can be accommodated by the sea urchins (either by genetic adaptation, phenotypic plasticity, or both), this

  19. For the Classroom: The Sea Urchin Fertilization and Embryology Lab.

    ERIC Educational Resources Information Center

    Brevoort, Douglas

    1984-01-01

    The sea urchin provides an ideal embryology laboratory because it is visually representative of the fertilization process in higher animals. Procedures for conducting such a laboratory (including methods for securing specimens) are provided. (JN)

  20. The Sea Urchin Embryo: A Remarkable Classroom Tool.

    ERIC Educational Resources Information Center

    Oppenheimer, Steven B.

    1989-01-01

    Discussed are the uses of sea urchins in research and their usefulness and advantages in the classroom investigation of embryology. Ideas for classroom activities and student research are presented. Lists 25 references. (CW)

  1. Sea urchin puncture resulting in PIP joint synovial arthritis: case report and MRI study.

    PubMed

    Liram, N; Gomori, M; Perouansky, M

    2000-01-01

    Of the 600 species of sea urchins, approximately 80 may be venomous to humans. The long spined or black sea urchin, Diadema setosum may cause damage by the breaking off of its brittle spines after they penetrate the skin. Synovitis followed by arthritis may be an unusual but apparently not a rare sequel to such injury, when implantation occurs near a joint. In this case report, osseous changes were not seen by plain x-rays. Magnetic resonance imaging (MRI) was used to expose the more salient features of both soft tissue and bone changes of black sea urchin puncture injury 30 months after penetration. In all likelihood, this type of injury may be more common than the existing literature at present suggests. It is believed to be the first reported case in this part of the world as well as the first MRI study describing this type of joint pathology. Local and systemic reactions to puncture injuries from sea urchin spines have been described previously. These may range from mild, local irritation lasting a few days to granuloma formation, infection and on occasions systemic illness. The sea urchin spines are composed of calcium carbonate with proteinaceous covering. The covering tends to cause immune reactions of variable presentation. There are only a handful of reported cases with sea urchin stings on record, none of them from the Red Sea. However, this condition is probably more common than is thought and can present difficulty in diagnosis. In this case report, the inflammation responded well to heat treatment, mobilization and manipulation of the joint in its post acute and chronic stages. As some subtle changes in soft tissues and the changes in bone were not seen either on plain x-rays or ultrasound scan, gadolinium-enhanced MRI was used to unveil the marked changes in the joint. PMID:10689244

  2. Effects of five southern California macroalgal diets on consumption, growth, and gonad weight, in the purple sea urchin Strongylocentrotus purpuratus

    PubMed Central

    Byrnes, Jarrett E.K.; Reed, Daniel C.

    2015-01-01

    Consumer growth and reproductive capacity are direct functions of diet. Strongylocentrotid sea urchins, the dominant herbivores in California kelp forests, strongly prefer giant kelp (Macrocystis pyrifera), but are highly catholic in their ability to consume other species. The biomass of Macrocystis fluctuates greatly in space and time, and the extent to which urchins can use alternate species of algae or a mixed diet of multiple algal species to maintain fitness when giant kelp is unavailable is unknown. We experimentally examined the effects of single and mixed species diets on consumption, growth and gonad weight in the purple sea urchin Strongylocentrotus purpuratus. Urchins were fed single species diets consisting of one of four common species of macroalgae (the kelps Macrocystis pyrifera and Pterygophora californica, and the red algae Chondracanthus corymbiferus and Rhodymenia californica (hereafter referred to by genus)) or a mixed diet containing all four species ad libitum over a 13-week period in a controlled laboratory setting. Urchins fed Chondracanthus, Macrocystis and a mixed diet showed the highest growth (in terms of test diameter, wet weight and jaw length) and gonad weight, while urchins fed Pterygophora and Rhodymenia showed the lowest. Urchins consumed their preferred food, Macrocystis, at the highest rate when offered a mixture, but consumed Chondracanthus or Macrocystis at similar rates when the two algae were offered alone. The differences in urchin feeding behavior and growth observed between these diet types suggest the relative availability of the algae tested here could affect urchin populations and their interactions with the algal assemblage. The fact that the performance of urchins fed Chondracanthus was similar or higher than those fed the preferred Macrocystis suggests that the availability of the former could could sustain growth and reproduction of purple sea urchins during times of low Macrocystis abundance as is common following

  3. Cryopreservation of sea urchin (Evechinus chloroticus) sperm.

    PubMed

    Adams, Serean L; Hessian, Paul A; Mladenov, Philip V

    2004-01-01

    A method was developed for cryopreserving sperm of the sea urchin, Evechinus chloroticus. Sperm fertilisation ability, mitochondrial function and membrane integrity were assessed before and after cryopreservation. Highest post-thaw fertilisation ability was achieved with lower concentrations (2.5%-7.5%) of dimethyl sulphoxide (DMSO). In contrast, post-thaw mitochondrial function and membrane integrity were higher for sperm frozen in intermediate and high DMSO concentrations (5%-15%). Surprisingly, some sperm frozen in seawater only, without DMSO, were able to survive post-thawing, although the fertilisation ability (10(6) sperm/ml; approximately 50% fertilisation), mitochondrial function and membrane integrity of these sperm were notably lower than of sperm frozen with DMSO (10(6) sperm cells/ml; 2.5%-7.5% DMSO; >85% fertilisation) at the concentrations tested. Amongst sperm from individual males, fertilisation ability varied before and after cryopreservation for both males frozen with and without cryoprotectant. Specific differences among males also varied. Sperm mitochondrial function and membrane integrity was similar among males before cryopreservation but differed considerably after cryopreservation. Cryopreserved sperm were able to fertilise eggs and develop to pluteus stage larvae. This study has practical applications and will provide benefits such as reduced broodstock conditioning costs, control of parental input and opportunities for hybridisation studies. PMID:15375439

  4. Motility and centrosomal organization during sea urchin and mouse fertilization

    NASA Technical Reports Server (NTRS)

    Schatten, Heide; Schatten, Gerald

    1986-01-01

    It is noted that microfilaments are essential for incorporation of sperm in sea urchins and for pronuclear apposition in mice. The ability of sea urchin sperm to fertilize eggs is lowered by latrunculin, giving evidence that acrosomal microfilaments are of importance to the process of fertilization. Due to the uncertainty regarding the presence of microfilaments in various mammalian sperm, it is interesting that latrunculin does not noticeably affect the ability of mouse sperm to fertilize oocytes. The movements of the sperm and egg nuclei at the time of sea urchin fertilization are dependent on microtubules arranged into a radial monastral array (the sperm aster). In the mouse egg, microtubule activity is also required during pronuclear apposition, but they are arranged by a number of egg cytoplasmic sites. Results of the investigations show that both microtubules and microfilaments are necessary for the successful completion of fertilization in both mice and sea urchins, but at different stages. Also, it is demonstrated that centrosomes are contributed by the sperm in the process of sea urchin fertilization, but in mammals they may be inherited maternally.

  5. Unique system of photoreceptors in sea urchin tube feet

    PubMed Central

    Ullrich-Lüter, Esther M; Dupont, Sam; Arboleda, Enrique; Hausen, Harald; Arnone, Maria Ina

    2011-01-01

    Different sea urchin species show a vast variety of responses to variations in light intensity; however, despite this behavioral evidence for photosensitivity, light sensing in these animals has remained an enigma. Genome information of the recently sequenced purple sea urchin (Strongylocentrotus purpuratus) allowed us to address this question from a previously unexplored molecular perspective by localizing expression of the rhabdomeric opsin Sp-opsin4 and Sp-pax6, two genes essential for photoreceptor function and development, respectively. Using a specifically designed antibody against Sp-Opsin4 and in situ hybridization for both genes, we detected expression in two distinct groups of photoreceptor cells (PRCs) located in the animal's numerous tube feet. Specific reactivity of the Sp-Opsin4 antibody with sea star optic cushions, which regulate phototaxis, suggests a similar visual function in sea urchins. Ultrastructural characterization of the sea urchin PRCs revealed them to be of a microvillar receptor type. Our data suggest that echinoderms, in contrast to chordates, deploy a microvillar, r-opsin–expressing PRC type for vision, a feature that has been so far documented only in protostome animals. Surprisingly, sea urchin PRCs lack any associated screening pigment. Indeed, one of the tube foot PRC clusters may account for directional vision by being shaded through the opaque calcite skeleton. The PRC axons connect to the animal internal nervous system, suggesting an integrative function beyond local short circuits. Because juveniles display no phototaxis until skeleton completion, we suggest a model in which the entire sea urchin, deploying its skeleton as PRC screening device, functions as a huge compound eye. PMID:21536888

  6. Innate immune response in the sea urchin Echinometra lucunter (Echinodermata).

    PubMed

    de Faria, Marcos Tucunduva; da Silva, José Roberto Machado Cunha

    2008-05-01

    Echinometra lucunter, (Pindá) is a sea urchin encountered in the Brazilian coast and exposed to high and low temperatures related to low and high tides. Despite their great distribution and importance, few studies have been done on the biological function of their coelomocytes. Thus, Echinometra lucunter perivisceral coelomocytes were characterized under optical and transmission electron microscopy. Phagocytic amoebocytes in the perivisceral coelom were labelled by injecting ferritin, and ferritin labelled phagocytic amoebocytes were found in the peristomial connective tissue after injecting India ink into the tissue, indicating the amoebocytes ability to respond to an inflammatory stimulus. Results showed that the phagocytic amoebocytes were the main inflammatory cells found in the innate immune response of E. lucunter. While other works have recorded these phenomena in sea urchins found in moderate and constant temperature, this study reports on these same phenomena in a tropical sea urchin under great variation of temperature, thus providing new data to inflammatory studies in invertebrate pathology. PMID:17988681

  7. Fish predation on sea urchins on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Young, M. A. L.; Bellwood, D. R.

    2012-09-01

    Predators are important for regulating adult sea urchin densities. Here, we employ remote underwater video cameras to record diurnal predation on tethered sea urchins at Lizard Island on the Great Barrier Reef (GBR). We identified four fish predators of adult sea urchins ( Balistoides viridescens, Balistapus undulatus, Lethrinus atkinsoni and Choerodon schoenleinii). Predator activity appeared to be site-specific. Balistoides viridescens and B. undulatus (f: Balistidae) were the two most important predators of Echinometra mathaei with the former handling E. mathaei significantly faster (mean 0.7 min) than B. undulatus (5.2 min). Balistoides viridescens also successfully preyed on 70 % of detections, while C. schoenleinii, B. undulatus and L. atkinsoni preyed on just 33, 17 and <1 %, respectively. Additionally, B. viridescens were behaviourally dominant among predator species and were observed as aggressors in 30 encounters with B. undulatus and 8 encounters with L. atkinsoni. In only one encounter was B. viridescens the recipient of any aggression (from B. undulatus). In terms of relative vulnerability, of the three sea urchin species examined, E. mathaei were more vulnerable to predation than Diadema setosum or Echinothrix calamaris, with mean handling times of 1.2, 4.8 and 10.3 min, respectively. Balistoides viridescens and B. undulatus both appear to be able to play an important role as predators of sea urchins on the relatively intact coral reefs of Lizard Island. However, B. viridescens emerge as the most efficient predator in terms of handling speed and the proportion of detections preyed upon. They were also the behaviourally dominant predator. This preliminary study of the predators of sea urchins on the GBR highlights the potential significance of relatively scarce but functionally important species.

  8. Perturbations to the hedgehog pathway in sea urchin embryos.

    PubMed

    Warner, Jacob F; McClay, David R

    2014-01-01

    The Hedgehog pathway has been shown to be an important developmental signaling pathway in many organisms (Ingham and McMahon. Genes Dev 15:3059-3087, 2001). Recently that work has been extended to developing echinoderm embryos (Walton et al. Dev Biol 331(1):26-37, 2009). Here we describe several methods to perturb the Hedgehog signaling pathway in the sea urchin. These include microinjection of Morpholinos and mRNA constructs as well as treatments with small molecule inhibitors. Finally we provide simple methods for assaying Hedgehog phenotypes in the sea urchin embryo. PMID:24567217

  9. Functional Studies of Regulatory Genes in the Sea Urchin Embryo

    NASA Astrophysics Data System (ADS)

    Cavalieri, Vincenzo; Bernardo, Maria Di; Spinelli, Giovanni

    Sea urchin embryos are characterized by an extremely simple mode of development, rapid cleavage, high transparency, and well-defined cell lineage. Although they are not suitable for genetic studies, other approaches are successfully used to unravel mechanisms and molecules involved in cell fate specification and morphogenesis. Microinjection is the elective method to study gene function in sea urchin embryos. It is used to deliver precise amounts of DNA, RNA, oligonucleotides, peptides, or antibodies into the eggs or even into blastomeres. Here we describe microinjection as it is currently applied in our laboratory and show how it has been used in gene perturbation analyses and dissection of cis-regulatory DNA elements.

  10. A new computational growth model for sea urchin skeletons.

    PubMed

    Zachos, Louis G

    2009-08-01

    A new computational model has been developed to simulate growth of regular sea urchin skeletons. The model incorporates the processes of plate addition and individual plate growth into a composite model of whole-body (somatic) growth. A simple developmental model based on hypothetical morphogens underlies the assumptions used to define the simulated growth processes. The data model is based on a Delaunay triangulation of plate growth center points, using the dual Voronoi polygons to define plate topologies. A spherical frame of reference is used for growth calculations, with affine deformation of the sphere (based on a Young-Laplace membrane model) to result in an urchin-like three-dimensional form. The model verifies that the patterns of coronal plates in general meet the criteria of Voronoi polygonalization, that a morphogen/threshold inhibition model for plate addition results in the alternating plate addition pattern characteristic of sea urchins, and that application of the Bertalanffy growth model to individual plates results in simulated somatic growth that approximates that seen in living urchins. The model suggests avenues of research that could explain some of the distinctions between modern sea urchins and the much more disparate groups of forms that characterized the Paleozoic Era. PMID:19376133

  11. Global regime shift dynamics of catastrophic sea urchin overgrazing

    PubMed Central

    Ling, S. D.; Scheibling, R. E.; Rassweiler, A.; Johnson, C. R.; Shears, N.; Connell, S. D.; Salomon, A. K.; Norderhaug, K. M.; Pérez-Matus, A.; Hernández, J. C.; Clemente, S.; Blamey, L. K.; Hereu, B.; Ballesteros, E.; Sala, E.; Garrabou, J.; Cebrian, E.; Zabala, M.; Fujita, D.; Johnson, L. E.

    2015-01-01

    A pronounced, widespread and persistent regime shift among marine ecosystems is observable on temperate rocky reefs as a result of sea urchin overgrazing. Here, we empirically define regime-shift dynamics for this grazing system which transitions between productive macroalgal beds and impoverished urchin barrens. Catastrophic in nature, urchin overgrazing in a well-studied Australian system demonstrates a discontinuous regime shift, which is of particular management concern as recovery of desirable macroalgal beds requires reducing grazers to well below the initial threshold of overgrazing. Generality of this regime-shift dynamic is explored across 13 rocky reef systems (spanning 11 different regions from both hemispheres) by compiling available survey data (totalling 10 901 quadrats surveyed in situ) plus experimental regime-shift responses (observed during a total of 57 in situ manipulations). The emergent and globally coherent pattern shows urchin grazing to cause a discontinuous ‘catastrophic’ regime shift, with hysteresis effect of approximately one order of magnitude in urchin biomass between critical thresholds of overgrazing and recovery. Different life-history traits appear to create asymmetry in the pace of overgrazing versus recovery. Once shifted, strong feedback mechanisms provide resilience for each alternative state thus defining the catastrophic nature of this regime shift. Importantly, human-derived stressors can act to erode resilience of desirable macroalgal beds while strengthening resilience of urchin barrens, thus exacerbating the risk, spatial extent and irreversibility of an unwanted regime shift for marine ecosystems.

  12. Sea-urchin-like iron oxide nanostructures for water treatment.

    PubMed

    Lee, Hyun Uk; Lee, Soon Chang; Lee, Young-Chul; Vrtnik, Stane; Kim, Changsoo; Lee, Sanggap; Lee, Young Boo; Nam, Bora; Lee, Jae Won; Park, So Young; Lee, Sang Moon; Lee, Jouhahn

    2013-11-15

    To obtain adsorbents with high capacities for removing heavy metals and organic pollutants capable of quick magnetic separation, we fabricated unique sea-urchin-like magnetic iron oxide (mixed γ-Fe2O3/Fe3O4 phase) nanostructures (called u-MFN) with large surface areas (94.1m(2) g(-1)) and strong magnetic properties (57.9 emu g(-1)) using a simple growth process and investigated their potential applications in water treatment. The u-MFN had excellent removal capabilities for the heavy metals As(V) (39.6 mg g(-1)) and Cr(VI) (35.0 mg g(-1)) and the organic pollutant Congo red (109.2 mg g(-1)). The u-MFN also displays excellent adsorption of Congo red after recycling. Because of its high adsorption capacity, fast adsorption rate, and quick magnetic separation from treated water, the u-MFN developed in the present study is expected to be an efficient magnetic adsorbent for heavy metals and organic pollutants in aqueous solutions. PMID:24021165

  13. Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus.

    PubMed

    Gildor, Tsvia; Malik, Assaf; Sher, Noa; Avraham, Linor; Ben-Tabou de-Leon, Smadar

    2016-02-01

    Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes. PMID:26671332

  14. Sea urchin immune cells as sentinels of environmental stress.

    PubMed

    Pinsino, Annalisa; Matranga, Valeria

    2015-03-01

    Echinoderms, an ancient and very successful phylum of marine invertebrates, play a central role in the maintenance of ecosystem integrity and are constantly exposed to environmental pressure, including: predation, changes in temperature and pH, hypoxia, pathogens, UV radiation, metals, toxicants, and emerging pollutants like nanomaterials. The annotation of the sea urchin genome, so closely related to humans and other vertebrate genomes, revealed an unusually complex immune system, which may be the basis for why sea urchins can adapt to different marine environments and survive even in hazardous conditions. In this review, we give a brief overview of the morphological features and recognized functions of echinoderm immune cells with a focus on studies correlating stress and immunity in the sea urchin. Immune cells from adult Paracentrotus lividus, which have been introduced in the last fifteen years as sentinels of environmental stress, are valid tools to uncover basic molecular and regulatory mechanisms of immune responses, supporting their use in immunological research. Here we summarize laboratory and field studies that reveal the amenability of sea urchin immune cells for toxicological testing. PMID:25463510

  15. Toxicity of bauxite manufacturing by-products in sea urchin embryos.

    PubMed

    Pagano, Giovanni; Meriç, Süreyya; De Biase, Antonella; laccarino, Mario; Petruzzelli, Domenico; Tünay, Olcay; Warnau, Michel

    2002-01-01

    By-products from a bauxite manufacturing plant located in Seydişehir, Turkey, were investigated for their composition and any toxicity to sea urchin embryogenesis. Samples from three other bauxite plants located in France, Greece, and Italy were simultaneously tested for toxicity in sea urchin embryos. Samples included sludge and solid residues in the plant and sediment and water columns from two holding ponds (red sludge or cryolite residues). Samples were analyzed for their inorganic content by inductively coupled plasma optical emission spectroscopy (ICP-OES). Analyses were carried out either following strong acid extraction or after release of soluble components from seawater-suspended pellets. Toxicity was tested by sea urchin bioassays, to evaluate the following endpoints: (a) acute and/or developmental toxicity, (b) changes in fertilization success, and (c) transmissible damage from sperm to offspring. The results revealed the following: (1) inorganic analysis, following strong acid extraction, showed a prevalence of Al and Fe; (2) seawater release of soluble contaminants was confined to Fe and Mn, whereas Al levels were not changed by suspending increasing sample amounts in seawater; (3) the most severe toxicity to sea urchin embryos was exerted by a 2% water column from the red sludge holding pond and by soil and sludge collected near the plant reactor; (4) sludge supernatant was the most toxic sample to sperm and offspring. The data showed a prevailing association of free Fe (and possibly Mn) levels with Seydişehir sample toxicity. The water column of the red sludge holding pond showed both excess levels of free Al and high pH, thus suggesting a combined effect. The differences in sample toxicity in the Seydişehir plant compared with other bauxite manufacturing plants suggest a possible variable toxicity as related to bauxite ore composition and/or manufacturing processes. PMID:11800547

  16. Mass isolation and culture of sea urchin micromeres.

    PubMed

    Harkey, M A; Whiteley, A H

    1985-02-01

    A procedure is described for large-scale isolation of micromeres from 16-cell stage sea urchin embryos. One to two grams of greater than 99% pure, viable micromeres (2.3 to 4.6 X 10(8) cells) are routinely isolated in a single preparation. In culture, these cells uniformly proceed through their normal development, in synchrony with micromeres in whole embryos, ultimately differentiating typical larval skeletal structures. The attributes of this procedure are: (a) the very early time of isolation of the cells, directly after the division that establishes the cell line; (b) the large yield of cells; (c) the purity of the preparation of cell; and (d) their synchronous development in culture through skeletogenesis. The procedure greatly aids in making sea urchin micromeres a favorable material for molecular analysis of development. PMID:4008427

  17. Microgravity effects of sea urchin fertilization and development

    NASA Technical Reports Server (NTRS)

    Steffen, S.; Simerly, C.; Schatten, H.; Schatten, G.; Fiser, R.

    1992-01-01

    Gravity has been a pervasive influence on all living systems and there is convincing evidence to suggest that it alters fertilization and embryogenesis in several developmental systems. Notwithstanding the global importance of gravity on development, it has only been recently possible to begin to design experiments which might directly investigate the specific effects of this vector. The goal of this research program is to explore and understand the effects of gravity on fertilization and early development using sea urchins as a model system. Sea urchin development has several advantages for this project including the feasibility of maintaining and manipulating these cells during spaceflight, the high percentage of normal fertilization and early development, and the abundant knowledge about molecular, biochemical, and cellular events during embryogenesis which permits detailed insights into the mechanism by which gravity might interfere with development. Furthermore, skeletal calcium is deposited into the embryonic spicules within a day of fertilization permitting studies of the effects of gravity on bone calcium deposition.

  18. Imaging neural development in embryonic and larval sea urchins.

    PubMed

    Krupke, Oliver; Yaguchi, Shunsuke; Yaguchi, Junko; Burke, Robert D

    2014-01-01

    Imaging is a critical tool in neuroscience, and our understanding of the structure and function of sea urchin nervous systems owes much to this approach. In particular, studies of neural development have been facilitated by methods that enable the accurate identification of specific types of neurons. Here we describe methods that have been successfully employed to study neural development in sea urchin embryos. Altering gene expression in part of an embryo is facilitated by injection of reagents into individual blastomeres, which enables studies of cell autonomous effects and single embryo rescue experiments. The simultaneous localization of an in situ RNA hybridization probe and a cell type specific antigen has enabled studies of gene expression in specific types of neurons. Fixatives and antibodies can be capricious; thus, we provide data on preservation of antigens with commonly used fixatives and buffers. PMID:24567212

  19. The sea urchin Paracentrotus lividus immunological response to chemical pollution exposure: The case of lindane.

    PubMed

    Stabili, Loredana; Pagliara, Patrizia

    2015-09-01

    In the marine environment organochlorine insecticides can be broadly detected in water, sediments, and biota. These pollutants may have major ecological consequences since they may affect marine organisms and endanger organismal growth, reproduction or survival. In this study we investigated the modification of some sea urchin immunological parameters in response to subchronic lindane (γ-HCH) exposure. Adult specimens of the sea urchin Paracentrotus lividus were exposed to two different concentrations (0.1 and 0.5 mg L(-1)) of lindane. After 24 and 48h of treatment, we examined the lindane influence on coelomocytes vitality and enumeration as well on some humoral parameters. Our results showed that the presence of the pesticide affected both cellular and humoral components of the immune system. In particular, P. lividus coelomocytes vitality did not change but a decrease of the total cell number and an increase of the red cells was recorded. Haemolytic and lysozyme-like activities as well as antibacterial activity on Vibrio alginolyticus of treated animals decreased. Sea urchin immunological competence modifications might represent a tool for monitoring disease susceptibility thus providing biological criteria for the implementation of water quality standards to protect marine organisms. PMID:25911048

  20. A Genomic View of the Sea Urchin Nervous System

    PubMed Central

    Burke, RD; Angerer, LM; Elphick, MR; Humphrey, GW; Yaguchi, S; Kiyama, T; Liang, S; Mu, X; Agca, C; Klein, WH; Brandhorst, BP; Rowe, M; Wilson, K; Churcher, AM; Taylor, JS; Chen, N; Murray, G; Wang, D; Mellott, D; Olinski, R; Hallböök, F; Thorndyke, MC

    2007-01-01

    The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones, and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory

  1. Sea urchin fertilization during a KC-135 parabolic flight.

    PubMed

    Schatten, H; Zoran, S; Levine, H G; Anderson, K; Chakrabarti, A

    1999-07-01

    For long-term exposure to space it is crucial to understand the underlying mechanisms for altered physiological functions. We have chosen the sea urchin system to study the effects of microgravity on various cellular processes visible during fertilization and subsequent development. We report here on experiments performed on NASA's KC-135 during parabolic flight trajectories to validate procedures to be implemented as part of the first Aquatic Research Facility Space Shuttle experiment on STS-77. PMID:11543042

  2. Sea Urchins Predation Facilitates Coral Invasion in a Marine Reserve

    PubMed Central

    Coma, Rafel; Serrano, Eduard; Linares, Cristina; Ribes, Marta; Díaz, David; Ballesteros, Enric

    2011-01-01

    Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem. PMID:21789204

  3. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.

    PubMed

    Varrella, Stefano; Romano, Giovanna; Costantini, Susan; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  4. Using sea urchin gametes and zygotes to investigate centrosome duplication.

    PubMed

    Sluder, Greenfield

    2016-01-01

    Centriole structure and function in the sea urchin zygote parallel those in mammalian somatic cells. Here, I briefly introduce the properties and attributes of the sea urchin system that make it an attractive platform for the study of centrosome and centriole duplication. These attributes apply to all echinoderms readily available from commercial suppliers: sea urchins, sand dollars, and starfish. I list some of the practical aspects of the system that make it a cost- and time-effective system for experimental work and then list properties that are a "tool kit" that can be used to conduct studies that would not be practical, or in some cases not possible, with mammalian somatic cells. Since centrioles organize and localize the pericentriolar material that nucleates the astral arrays of microtubules (Bobinnec et al. in J Cell Biol 143(6):1575-1589, 1998), the pattern of aster duplication over several cell cycles can be used as a reliable measure for centriole duplication (Sluder and Rieder in J Cell Biol 100(3):887-896, 1985). Descriptions of the methods my laboratory has used to handle and image echinoderm zygotes are reviewed in Sluder et al. (Methods Cell Biol 61:439-472, 1999). Also included is a bibliography of papers that describe additional methods. PMID:27602205

  5. Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks

    PubMed Central

    Ben-Tabou de-Leon, Smadar

    2016-01-01

    Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change. PMID:26913048

  6. Skeletogenesis in sea urchin larvae under modified gravity conditions

    NASA Astrophysics Data System (ADS)

    Marthy, H.-J.; Gasset, G.; Tixador, R.; Eche, B.; Schatt, P.; Dessommes, A.; Marthy, U.; Bacchieri, R.

    From many points of view, skeletogenesis in sea urchins has been well described. Based on this scientific background and considering practical aspects of sea urchin development (i.e. availability of material, size of larvae, etc.), we wanted to know whether orderly skeletogenesis requires the presence of gravity. The objective has been approached by three experiments successfully performed under genuine microgravity conditions (in the STS-65 IML-2 mission of 1994; in the Photon-10 IBIS mission of 1995 and in the STS-76 S/MM-03 mission of 1996). Larvae of the sea urchin Sphaerechinus granularis were allowed to develop in microgravity conditions for several days from blastula stage onwards (onset of skeletogenesis). At the end of the missions, the recovered skeletal structures were studied with respect to their mineral composition, architecture and size. Live larvae were also recovered for post-flight culture. The results obtained clearly show that the process of mineralisation is independent of gravity: that is, the skeletogenic cells differentiate correctly in microgravity. However, abnormal skeleton architectures were encountered, particularly in the IML-2 mission, indicating that the process of positioning of the skeletogenic cells may be affected, directly or indirectly, by environmental factors, including gravity. Larvae exposed to microgravity from blastula to prism/early pluteus stage for about 2 weeks (IBIS mission), developed on the ground over the next 2 months into normal metamorphosing individuals.

  7. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins

    PubMed Central

    Varrella, Stefano; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  8. Juvenile skeletogenesis in anciently diverged sea urchin clades.

    PubMed

    Gao, Feng; Thompson, Jeffrey R; Petsios, Elizabeth; Erkenbrack, Eric; Moats, Rex A; Bottjer, David J; Davidson, Eric H

    2015-04-01

    Mechanistic understanding of evolutionary divergence in animal body plans devolves from analysis of those developmental processes that, in forms descendant from a common ancestor, are responsible for their morphological differences. The last common ancestor of the two extant subclasses of sea urchins, i.e., euechinoids and cidaroids, existed well before the Permian/Triassic extinction (252 mya). Subsequent evolutionary divergence of these clades offers in principle a rare opportunity to solve the developmental regulatory events underlying a defined evolutionary divergence process. Thus (i) there is an excellent and fairly dense (if yet incompletely analyzed) fossil record; (ii) cladistically confined features of the skeletal structures of modern euechinoid and cidaroid sea urchins are preserved in fossils of ancestral forms; (iii) euechinoids and cidaroids are among current laboratory model systems in molecular developmental biology (here Strongylocentrotus purpuratus [Sp] and Eucidaris tribuloides [Et]); (iv) skeletogenic specification in sea urchins is uncommonly well understood at the causal level of interactions of regulatory genes with one another, and with known skeletogenic effector genes, providing a ready arsenal of available molecular tools. Here we focus on differences in test and perignathic girdle skeletal morphology that distinguish all modern euechinoid from all modern cidaroid sea urchins. We demonstrate distinct canonical test and girdle morphologies in juveniles of both species by use of SEM and X-ray microtomography. Among the sharply distinct morphological features of these clades are the internal skeletal structures of the perignathic girdle to which attach homologous muscles utilized for retraction and protraction of Aristotles׳ lantern and its teeth. We demonstrate that these structures develop de novo between one and four weeks after metamorphosis. In order to study the underlying developmental processes, a method of section whole mount in

  9. The genome of the sea urchin Strongylocentrotus purpuratus.

    PubMed

    Sodergren, Erica; Weinstock, George M; Davidson, Eric H; Cameron, R Andrew; Gibbs, Richard A; Angerer, Robert C; Angerer, Lynne M; Arnone, Maria Ina; Burgess, David R; Burke, Robert D; Coffman, James A; Dean, Michael; Elphick, Maurice R; Ettensohn, Charles A; Foltz, Kathy R; Hamdoun, Amro; Hynes, Richard O; Klein, William H; Marzluff, William; McClay, David R; Morris, Robert L; Mushegian, Arcady; Rast, Jonathan P; Smith, L Courtney; Thorndyke, Michael C; Vacquier, Victor D; Wessel, Gary M; Wray, Greg; Zhang, Lan; Elsik, Christine G; Ermolaeva, Olga; Hlavina, Wratko; Hofmann, Gretchen; Kitts, Paul; Landrum, Melissa J; Mackey, Aaron J; Maglott, Donna; Panopoulou, Georgia; Poustka, Albert J; Pruitt, Kim; Sapojnikov, Victor; Song, Xingzhi; Souvorov, Alexandre; Solovyev, Victor; Wei, Zheng; Whittaker, Charles A; Worley, Kim; Durbin, K James; Shen, Yufeng; Fedrigo, Olivier; Garfield, David; Haygood, Ralph; Primus, Alexander; Satija, Rahul; Severson, Tonya; Gonzalez-Garay, Manuel L; Jackson, Andrew R; Milosavljevic, Aleksandar; Tong, Mark; Killian, Christopher E; Livingston, Brian T; Wilt, Fred H; Adams, Nikki; Bellé, Robert; Carbonneau, Seth; Cheung, Rocky; Cormier, Patrick; Cosson, Bertrand; Croce, Jenifer; Fernandez-Guerra, Antonio; Genevière, Anne-Marie; Goel, Manisha; Kelkar, Hemant; Morales, Julia; Mulner-Lorillon, Odile; Robertson, Anthony J; Goldstone, Jared V; Cole, Bryan; Epel, David; Gold, Bert; Hahn, Mark E; Howard-Ashby, Meredith; Scally, Mark; Stegeman, John J; Allgood, Erin L; Cool, Jonah; Judkins, Kyle M; McCafferty, Shawn S; Musante, Ashlan M; Obar, Robert A; Rawson, Amanda P; Rossetti, Blair J; Gibbons, Ian R; Hoffman, Matthew P; Leone, Andrew; Istrail, Sorin; Materna, Stefan C; Samanta, Manoj P; Stolc, Viktor; Tongprasit, Waraporn; Tu, Qiang; Bergeron, Karl-Frederik; Brandhorst, Bruce P; Whittle, James; Berney, Kevin; Bottjer, David J; Calestani, Cristina; Peterson, Kevin; Chow, Elly; Yuan, Qiu Autumn; Elhaik, Eran; Graur, Dan; Reese, Justin T; Bosdet, Ian; Heesun, Shin; Marra, Marco A; Schein, Jacqueline; Anderson, Michele K; Brockton, Virginia; Buckley, Katherine M; Cohen, Avis H; Fugmann, Sebastian D; Hibino, Taku; Loza-Coll, Mariano; Majeske, Audrey J; Messier, Cynthia; Nair, Sham V; Pancer, Zeev; Terwilliger, David P; Agca, Cavit; Arboleda, Enrique; Chen, Nansheng; Churcher, Allison M; Hallböök, F; Humphrey, Glen W; Idris, Mohammed M; Kiyama, Takae; Liang, Shuguang; Mellott, Dan; Mu, Xiuqian; Murray, Greg; Olinski, Robert P; Raible, Florian; Rowe, Matthew; Taylor, John S; Tessmar-Raible, Kristin; Wang, D; Wilson, Karen H; Yaguchi, Shunsuke; Gaasterland, Terry; Galindo, Blanca E; Gunaratne, Herath J; Juliano, Celina; Kinukawa, Masashi; Moy, Gary W; Neill, Anna T; Nomura, Mamoru; Raisch, Michael; Reade, Anna; Roux, Michelle M; Song, Jia L; Su, Yi-Hsien; Townley, Ian K; Voronina, Ekaterina; Wong, Julian L; Amore, Gabriele; Branno, Margherita; Brown, Euan R; Cavalieri, Vincenzo; Duboc, Véronique; Duloquin, Louise; Flytzanis, Constantin; Gache, Christian; Lapraz, François; Lepage, Thierry; Locascio, Annamaria; Martinez, Pedro; Matassi, Giorgio; Matranga, Valeria; Range, Ryan; Rizzo, Francesca; Röttinger, Eric; Beane, Wendy; Bradham, Cynthia; Byrum, Christine; Glenn, Tom; Hussain, Sofia; Manning, Gerard; Miranda, Esther; Thomason, Rebecca; Walton, Katherine; Wikramanayke, Athula; Wu, Shu-Yu; Xu, Ronghui; Brown, C Titus; Chen, Lili; Gray, Rachel F; Lee, Pei Yun; Nam, Jongmin; Oliveri, Paola; Smith, Joel; Muzny, Donna; Bell, Stephanie; Chacko, Joseph; Cree, Andrew; Curry, Stacey; Davis, Clay; Dinh, Huyen; Dugan-Rocha, Shannon; Fowler, Jerry; Gill, Rachel; Hamilton, Cerrissa; Hernandez, Judith; Hines, Sandra; Hume, Jennifer; Jackson, Laronda; Jolivet, Angela; Kovar, Christie; Lee, Sandra; Lewis, Lora; Miner, George; Morgan, Margaret; Nazareth, Lynne V; Okwuonu, Geoffrey; Parker, David; Pu, Ling-Ling; Thorn, Rachel; Wright, Rita

    2006-11-10

    We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes. PMID:17095691

  10. Regeneration of cilia in heavily irradiated sea urchin embryos

    SciTech Connect

    Rustad, R.C.

    1981-12-01

    Cilia were removed from blastulae, gastrulae, and plutei of the sea urchins Arbacia punctulata and Lytechinus variegatus by shaking the embryos in hypertonic media. Exposure to 50 krad (and in some experiments 100 krad) of ..gamma.. radiation either before or after deciliation had no effect on the time of appearance of regenerating cilia. There were no visually obvious differences in the rate of growth of the cilia in control and irradiated embryos. The cilia commenced beating at the same time, but the initial beating sometimes seemed less vigorous following irradiation. The data support the hypothesis that radiation has no major effect on the assembly from mature basal bodies of the microtubules of cilia.

  11. The Genome of the Sea Urchin Strongylocentrotus purpuratus

    PubMed Central

    2011-01-01

    We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes. PMID:17095691

  12. Neurogenic gene regulatory pathways in the sea urchin embryo.

    PubMed

    Wei, Zheng; Angerer, Lynne M; Angerer, Robert C

    2016-01-15

    During embryogenesis the sea urchin early pluteus larva differentiates 40-50 neurons marked by expression of the pan-neural marker synaptotagmin B (SynB) that are distributed along the ciliary band, in the apical plate and pharyngeal endoderm, and 4-6 serotonergic neurons that are confined to the apical plate. Development of all neurons has been shown to depend on the function of Six3. Using a combination of molecular screens and tests of gene function by morpholino-mediated knockdown, we identified SoxC and Brn1/2/4, which function sequentially in the neurogenic regulatory pathway and are also required for the differentiation of all neurons. Misexpression of Brn1/2/4 at low dose caused an increase in the number of serotonin-expressing cells and at higher dose converted most of the embryo to a neurogenic epithelial sphere expressing the Hnf6 ciliary band marker. A third factor, Z167, was shown to work downstream of the Six3 and SoxC core factors and to define a branch specific for the differentiation of serotonergic neurons. These results provide a framework for building a gene regulatory network for neurogenesis in the sea urchin embryo. PMID:26657764

  13. Differences in trophic position among sympatric sea urchin species

    NASA Astrophysics Data System (ADS)

    Vanderklift, Mathew A.; Kendrick, Gary A.; Smit, Albertus J.

    2006-01-01

    Three species of sea urchin regularly co-occur in high abundances on subtidal rocky reefs in south-western Australia. We used two lines of evidence (stable isotope analysis and gut contents analysis), to test whether these species occupy different trophic positions. We looked at five discrete populations to test whether patterns were consistent. The gut contents of Heliocidaris erythrogramma contained almost exclusively fragments of macroalgae, and the δ15N of muscle was consistent with that expected for a herbivore. In contrast, the gut contents of Phyllacanthus irregularis and Centrostephanus tenuispinus contained a greater proportion of animal tissue, and the δ15N of muscle suggested that animal tissue was an important source of nutrition. Of the three co-occurring sea urchin species, one ( H. erythrogramma) was ecologically dissimilar to the others and occupied a lower trophic position. This pattern was consistent among populations separated by up to 270 km in south-western Australia. Food resource partitioning might be one way in which these species are able to coexist.

  14. Isolating specific embryonic cells of the sea urchin by FACS.

    PubMed

    Juliano, Celina; Swartz, S Zachary; Wessel, Gary

    2014-01-01

    Isolating cells based on specific gene expression enables a focused biochemical and molecular analysis. While cultured cells and hematopoietic cells, for example, are routinely isolated by fluorescence activated cell sorting (FACS), early embryonic cells are a relatively untapped source for FACS applications often because the embryos of many animals are quite limiting. Furthermore, many applications require genetic model organisms in which cells can be labeled by fluorescent transgenes, or antibodies against cell surface antigens. Here we define conditions in the sea urchin embryo for isolation of embryonic cells based on expression of specific proteins. We use the sea urchin embryo for which a nearly unlimited supply of embryonic cells is available and demonstrate the conditions for separation of the embryo into single cells, fixation of the cells for antibody penetration into the cells, and conditions for FACS of a rare cell type in the embryo. This protocol may be adapted for analysis of mRNA, chromatin, protein, or carbohydrates and depends only on the probe availability for the cell of interest. We anticipate that this protocol will be broadly applicable to embryos of other species. PMID:24567215

  15. Hedgehog signaling patterns mesoderm in the sea urchin

    PubMed Central

    Walton, Katherine D.; Warner, Jacob; Hertzler, Philip H.; McClay, David R.

    2009-01-01

    The Hedgehog (Hh) signaling pathway is essential for patterning many structures in vertebrates including the nervous system, chordamesoderm, limb and endodermal organs. In the sea urchin, a basal deuterostome, Hh signaling is shown to participate in organizing the mesoderm. At gastrulation the Hh ligand is expressed by the endoderm downstream of the Brachyury and FoxA transcription factors in the endomesoderm gene regulatory network. The co-receptors Patched (Ptc) and Smoothened (Smo) are expressed by the neighboring skeletogenic and non-skeletogenic mesoderm. Perturbations of Hh, Ptc and Smo cause embryos to develop with skeletal defects and inappropriate non-skeletogenic mesoderm patterning, although initial specification of mesoderm occurs without detectable abnormalities. Perturbations of the pathway caused late defects in skeletogenesis and in the non-skeletogenic mesoderm, including altered numbers of pigment and blastocoelar cells, randomized left-right asymmetry of coelomic pouches, and disorganized circumesophageal muscle causing an inability to swallow. Together the data support the requirement of Hh signaling in patterning each of the mesoderm subtypes in the sea urchin embryo. PMID:19393640

  16. Sea urchin sperm antigens mediating the acrosome reaction

    SciTech Connect

    Trimmer, J.S.

    1987-01-01

    The study of sea urchin sperm antigens mediating the acrosome reactions (AR) has been undertaken. Monoclonal antibodies (mAbs) have been isolated reacting with a number of sperm surface antigens. These mAbs have been used in functional assays to attempt to infer the roles of these proteins in the induction of the AR. These mAbs have also been used to isolate protein for biochemical characterization and reconstitution studies. mAbs reacting with a 210 kD protein of the sea urchin sperm plasma membrane have been used to identify this protein as playing a role in the regulation of ion fluxes during the induction of the AR. mAbs reacting with certain extracellular regions inhibit the induction of: the AR, the long duration {sup 45}Ca{sup 2+} uptake into the mitochondrion, and H{sup +} efflux. Addition of these same mAbs, however, induces an increase in sperm (Ca{sup 2+}){sub i} to levels much higher than those induced by FSG, as monitored by the fluorescent Ca{sup 2+} indicators fura 2 and indo 1. This (Ca{sup 2+}){sub i} increase occurs without an increase in pH{sub i}, and thus allows for the first time the analysis of the effects of increasing sperm (Ca{sup 2+}){sub i} ion the absence of increased pH{sub i}.

  17. Evaluation of mysids and sea urchins exposed to saxitoxins.

    PubMed

    Bernardi Bif, Mariana; Yunes, João Sarkis; Resgalla, Charrid

    2013-11-01

    Saxitoxins are neurotoxins produced by dinoflagellates and cyanobacteria that form toxic blooms in waters. The impact of saxitoxins to the most vulnerable taxa and environment are not well understood. The experimental model was based on the use of toxic cell extracts containing saxitoxins. This extract was utilized for acute and chronic tests with Mysidopsis juniae. Chronic tests were also done with Lytechinus variegatus and Arbacia lixula larvae. Acute test with mysids had a LC₅₀=2.34 μg/L. The chronic test with sea urchins showed morphological abnormalities resulting in malformation of larval appendices at low concentrations of the toxin (EC₅₀=2.96 μg/L for L. variegatus and 2.06 μg/L for A. lixula). Although saxitoxins are considered neurotoxins, both species of sea urchins showed symptoms not related to nerve cells. A. lixula was more sensitive than L. variegatus, proving that its sensitivity should be taken in consideration to be another option to toxicological tests. PMID:23958976

  18. [Morphology of gametes in sea urchins from Peter the Great Bay, Sea of Japan].

    PubMed

    Drozdov, A L; Vinnikova, V V

    2010-01-01

    The fine structure of the gametes in six sea urchin species of the Sea of Japan was studied. The spermatozoons in Strongylocentrotus nudus, S. intermedius, Echinocardium cordatum, Scaphechinus mirabilis, Sc. grizeus and Echinarachnius parma are species-specific. The conical head and symmetrically disposed ring-shape mitochondrion are common to regular sea urchin sperm cells. S. nudus is characterized by the bulb-shaped head of the zoosperm; S. intermedius, by a bullet-shaped one. The zoosperm spearhead and small amount of postacrosome material are common to irregular sea urchins; the sperm width: length ratio varies for different species, with the highest for Sc. mirabilis. The zoosperm of Sc. griseus is characterized by two lipid drops in the cell center. Asymmetrical mitochondrion disposal is usual for E. parma. Actin filaments are found in the postacrosome material in the zoosperm of cordiform sea urchins. The differences in the fine structure of zoosperm in eurybiont species Ech. cordatum inhabiting the Sea of Japan and coastal areas of the Northeast Atlantic may bear record to the complex existence of species Ech. cordatum. The fine structure of zoosperm is unique for each of the studied families, Strongylocentrotidae, Scutellidae, and Loveniidae. The eggs of all the species are characterized by vitelline and tremelloid membranes. The vitelline membrane is formed by cytoplasm protrusions; the area between them is filled with fubrillary material. The tremelloid membrane is formed by fubrillary material associated with apical parts of microvilli of the vitelline membrane. The irregular sea urchins Sc. griseus, Sc. mirabilis and E. parma are characterized by chromatophores situated in the tremelloid membrane, with the highest abundance in Sc. mirabilis. PMID:20184121

  19. Diversification of innate immune genes: lessons from the purple sea urchin.

    PubMed

    Smith, L Courtney

    2010-01-01

    Pathogen diversification can alter infection virulence, which in turn drives the evolution of host immune diversification, resulting in countermeasures for survival in this arms race. Somatic recombination of the immunoglobulin gene family members is a very effective mechanism to diversify antibodies and T-cell receptors that function in the adaptive immune system. Although mechanisms to diversify innate immune genes are not clearly understood, a seemingly unlikely source for insight into innate immune diversification may be derived from the purple sea urchin, which has recently had its genome sequenced and annotated. Although there are many differences, some characteristics of the sea urchin make for a useful tool to understand the human immune system. The sea urchin is phylogenetically related to humans although, as a group, sea urchins are evolutionarily much older than mammals. Humans require both adaptive and innate immune responses to survive immune challenges, whereas sea urchins only require innate immune functions. Genes that function in immunity tend to be members of families, and the sea urchin has several innate immune gene families. One of these is the Sp185/333 gene family with about 50 clustered members that encode a diverse array of putative immune response proteins. Understanding gene diversification in the Sp185/333 family in the sea urchin may illuminate new mechanisms of diversification that could apply to gene families that function in innate immunity in humans, such as the killer immunoglobulin-like receptor genes. PMID:20354110

  20. Induction of innate immune gene expression following methyl methanesulfonate-induced DNA damage in sea urchins.

    PubMed

    Reinardy, H C; Chapman, J; Bodnar, A G

    2016-02-01

    Sea urchins are noted for the absence of neoplastic disease and represent a novel model to investigate cellular and systemic cancer protection mechanisms. Following intracoelomic injection of the DNA alkylating agent methyl methanesulfonate, DNA damage was detected in sea urchin cells and tissues (coelomocytes, muscle, oesophagus, ampullae and gonad) by the alkaline unwinding, fast micromethod. Gene expression analyses of the coelomocytes indicated upregulation of innate immune markers, including genes involved in NF-κB signalling. Results suggest that activation of the innate immune system following DNA damage may contribute to the naturally occurring resistance to neoplastic disease observed in sea urchins. PMID:26911343

  1. Effects of gravity on spicule formation in cultured micromeres of sea urchin embryo

    NASA Astrophysics Data System (ADS)

    Izumi-Kurotani, A.; Kiyomoto, M.; Imai, M.; Eguchi, H.

    2006-01-01

    To investigate the effects of gravity on morphogenesis at the cellular level, we have proposed a new experimental system with micromeres from sea urchin embryos [Izumi-Kurotani, A., Kiyomoto, M. Morphogenesis and gravity in a whole Amphibian Embryo and in isolated blastomeres of sea urchins, in: Marthy, H. -J. (Ed.), Developmental Biology Research in Space. Adv. Space Biol. Med. vol. 9, Elsevier, Amsterdam, pp. 83 99, 2003]. We studied spicule formation in cultured micromeres of sea urchin embryo under various conditions of gravity: hypergravity by a centrifuge and simulated microgravity in a vertical clinostat. Spicule elongation was suppressed under both experimental conditions.

  2. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities

    PubMed Central

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-01-01

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested. PMID:26389925

  3. Pulses of phytoplanktonic productivity may enhance sea urchin abundance and induce state shifts in Mediterranean rocky reefs

    NASA Astrophysics Data System (ADS)

    Cardona, Luis; Moranta, Joan; Reñones, Olga; Hereu, Bernat

    2013-11-01

    This paper tests the hypothesis that increased planktonic primary productivity may enhance sea urchin recruitment and trigger changes in the structure of benthic communities in oligotrophic temperate regions. Underwater surveys were conducted in the marine reserve of northern Minorca (Balearic Archipelago, western Mediterranean) and an adjoining control area in 2005 and 2012 to assess the abundance of fishes and sea urchins and the cover of macroalgae before and after a natural pulse of planktonic primary productivity. The biomass of most fishes, including that of sea urchin predators, increased significantly in the whole area two years after the productivity pulse, without any effect of management or depth. The abundance of sea urchins also increased throughout the whole area two years after the productivity pulse, but the average test diameter decreased, thus revealing improved recruitment. The aggregated cover of erect algae and that of Cystoseira brachycarpa did not change significantly from 2005 to 2012, but the cover of turf-forming algae was negatively correlated with the biomass of sea urchins, whereas the cover of coralline barren was positively correlated with the biomass of sea urchins. The overall evidence indicates that planktonic primary productivity is a key factor in the dynamics of sea urchin populations in oligotrophic regions and that improved sea urchin recruitment after productivity pulses in spring and early summer may result in sea urchin populations sufficiently dense to result in the development of coralline barrens independently on the density of sea urchin predators.

  4. Genomes of Strongylocentrotus franciscanus and Lytechinus variegatus: are there any genomic explanations for the two order of magnitude difference in the lifespan of sea urchins?

    PubMed Central

    Sergiev, Petr V.; Artemov, Artem A.; Prokhortchouk, Egor B.; Dontsova, Olga A.; Berezkin, Grigory V.

    2016-01-01

    Sea urchins are marine invertebrates of extreme diversity of life span. Red sea urchin S. franciscanus is among the longest living creatures of the Ocean. Its lifetime is estimated to exceed a century, while the green sea urchin L. variegatus hardly survives more than four years. We sequenced and compared the genomes of these animals aiming at determination of the genetic basis of their longevity difference. List of genes related to the longevity of other animal species was created and used for homology search among the genomic data obtained in this study. Aminoacid sequences of longevity related proteins of S. franciscanus and L. variegatus as well as from a set of model species, were aligned and grouped on the basis of the species lifespan. Aminoacid residues specific for a longevity group were identified. Proteins containing aminoacids whose identity correlated with the lifespan were clustered on the basis of their function. PMID:26851889

  5. Expression of Pigment Cell-Specific Genes in the Ontogenesis of the Sea Urchin Strongylocentrotus intermedius.

    PubMed

    Ageenko, Natalya V; Kiselev, Konstantin V; Odintsova, Nelly A

    2011-01-01

    One of the polyketide compounds, the naphthoquinone pigment echinochrome, is synthesized in sea urchin pigment cells. We analyzed polyketide synthase (pks) and sulfotransferase (sult) gene expression in embryos and larvae of the sea urchin Strongylocentrotus intermedius from various stages of development and in specific tissues of the adults. We observed the highest level of expression of the pks and sult genes at the gastrula stage. In unfertilized eggs, only trace amounts of the pks and sult transcripts were detected, whereas no transcripts of these genes were observed in spermatozoids. The addition of shikimic acid, a precursor of naphthoquinone pigments, to zygotes and embryos increased the expression of the pks and sult genes. Our findings, including the development of specific conditions to promote pigment cell differentiation of embryonic sea urchin cells in culture, represent a definitive study on the molecular signaling pathways that are involved in the biosynthesis of pigments during sea urchin development. PMID:21804858

  6. Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis).

    PubMed

    Bellas, Juan; Granmo, Ke; Beiras, Ricardo

    2005-11-01

    The effects of the new antifouling compound zinc pyrithione (Zpt) on the embryonic development of sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis) were investigated in laboratory toxicity tests. The median effective concentrations (EC50) were 7.7 nM for sea urchin embryos and 8 nM for mussel embryos. Toxic effects of Zpt on the larval growth of the sea urchin were detected at 0.5 nM. Predicted environmental concentrations of Zpt in pleasure craft harbours are higher than the predicted no effect concentrations for sea urchin and mussel embryos, indicating that Zpt may pose a threat to those species from exposure in the field. PMID:16023145

  7. Sea urchin coelomic fluid agglutinin mediates coelomocyte adhesion.

    PubMed

    Canicattì, C; Pagliara, P; Stabili, L

    1992-08-01

    The sea urchin Paracentrotus lividus coelomic fluid was found to contain agglutinin which agglutinates animal erythrocytes and promotes adhesion of autologous coelomocytes. Hemagglutinating activity depended upon the presence of calcium ions and was relatively heat-stable. Through a combination of methods including ammonium sulfate precipitation and both size exclusion and ion exchange chromatographies, we purified the anti-rabbit agglutinating factor. The intact agglutinin migrates as a single band with an apparent M(r) of over 200,000. Three distinct protein bands with a calculated M(r) of 174,000, 137,000, and 76,000, respectively were observed under reducing conditions. The purified agglutinin strongly promoted the in vitro adhesion of autologous coelomocytes. PMID:1425767

  8. Influence of 60-Hz magnetic fields on sea urchin development

    SciTech Connect

    Zimmerman, S.; Zimmerman, A.M.; Winters, W.D.; Cameron, I.L. )

    1990-01-01

    Continuous exposure of sea urchin (Strongylocentrotus purpuratus) embryos at 18 degrees C to a cyclic 60-Hz magnetic field at 0.1 mT rms beginning 4 min after insemination caused a significant developmental delay during the subsequent 23 hours. No delay in development was recorded for periods up to 18 hours after fertilization. At 18 h, most embryos were in the mesenchyme blastula stage. At 23 h, most control embryos were in mid-gastrula whereas most magnetic-field-exposed embryos were in the early gastrula stage. Thus an estimated 1-h delay occurred between these developmental stages. The results are discussed in terms of possible magnetic-field modification of transcription as well as interference with cell migration during gastrulation. The present study extends and supports the growing body of information about potential effects of exposures to extremely-low-frequency (ELF) magnetic fields on developing organisms.

  9. Digestion in sea urchin larvae impaired under ocean acidification

    NASA Astrophysics Data System (ADS)

    Stumpp, Meike; Hu, Marian; Casties, Isabel; Saborowski, Reinhard; Bleich, Markus; Melzner, Frank; Dupont, Sam

    2013-12-01

    Larval stages are considered as the weakest link when a species is exposed to challenging environmental changes. Reduced rates of growth and development in larval stages of calcifying invertebrates in response to ocean acidification might be caused by energetic limitations. So far no information exists on how ocean acidification affects digestive processes in marine larval stages. Here we reveal alkaline (~pH 9.5) conditions in the stomach of sea urchin larvae. Larvae exposed to decreased seawater pH suffer from a drop in gastric pH, which directly translates into decreased digestive efficiencies and triggers compensatory feeding. These results suggest that larval digestion represents a critical process in the context of ocean acidification, which has been overlooked so far.

  10. Seasonal inhibitory effects of marine plants on sea urchins: structuring communities the algal way.

    PubMed

    Konar, B

    2000-10-01

    Natural and manipulative experiments were used to evaluate the effect of algal cover on sea urchin (Strongylocentrotus polyacanthus) distribution on submarine pinnacles at Shemya Island in the western Aleutian Archipelago. In July, pinnacle tops had dense kelp stands with low densities of sea urchins. In subsequent months, urchin densities increased as annual algal cover declined. In the summer, removal of specific combinations of macroalgae from the pinnacle tops resulted in an increase in urchin density. Artificial structures that imitated certain common seaweeds were placed on pinnacle tops and inhibited urchin movement. Clod cards that were used to measure relative abrasion rates on vegetated and cleared pinnacles demonstrated that algae cause a significant amount of abrasion. This study showed that the physical structure of the dominant annual alga, Desmarestia viridis, is capable of limiting sea urchin distribution, movement, and grazing. In this study, a potential food source actively controlled herbivore distribution and was the primary cause for the persistence of isolated kelp communities surrounded by barrens dominated by sea urchin grazing. PMID:24595832

  11. Activation of maternal centrosomes in unfertilized sea urchin eggs

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Walter, M.; Biessmann, H.; Schatten, G.

    1992-01-01

    Centrosomes are undetectable in unfertilized sea urchin eggs, and normally the sperm introduces the cell's microtubule-organizing center (MTOC) at fertilization. However, artificial activation or parthenogenesis triggers microtubule assembly in the unfertilized egg, and this study explores the reappearance and behavior of the maternal centrosome. During activation with A23187 or ammonia, microtubules appear first at the cortex; centrosomal antigen is detected diffusely throughout the entire cytoplasm. Later, the centrosome becomes more distinct and organizes a radial microtubule shell, and eventually a compact centrosome at the egg center organizes a monaster. In these activated eggs, centrosomes undergo cycles of compaction and decompaction in synchrony with the chromatin, which also undergoes cycles of condensation and decondensation. Parthenogenetic activation with heavy water (50% D2O) or the microtubule-stabilizing drug taxol (10 microM) induces numerous centrosomal foci in the unfertilized sea urchin egg. Within 15 min after incubation in D2O, numerous fine centrosomal foci are detected, and they organize a connected network of numerous asters which fill the entire egg. Taxol induces over 100 centrosomal foci by 15 min after treatment, which organize a corresponding number of asters. The centrosomal material in either D2O- or taxol-treated eggs aggregates with time to form fewer but denser foci, resulting in fewer and larger asters. Fertilization of eggs pretreated with either D2O or taxol shows that the paternal centrosome is dominant over the maternal centrosome. The centrosomal material gradually becomes associated with the enlarged sperm aster. These experiments demonstrate that maternal centrosomal material is present in the unfertilized egg, likely as dispersed undetectable material, which can be activated without paternal contributions. At fertilization, paternal centrosomes become dominant over the maternal centrosomal material.

  12. Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador.

    PubMed

    Cabanillas-Terán, Nancy; Loor-Andrade, Peggy; Rodríguez-Barreras, Ruber; Cortés, Jorge

    2016-01-01

    Sea urchins are important grazers and influence reef development in the Eastern Tropical Pacific (ETP). Diadema mexicanum and Eucidaris thouarsii are the most important sea urchins on the Ecuadorian coastal reefs. This study provided a trophic scenario for these two species of echinoids in the coral-rocky reef bottoms of the Ecuadorian coast, using stable isotopes. We evaluated the relative proportion of algal resources assimilated, and trophic niche of the two sea urchins in the most southern coral-rocky reefs of the ETP in two sites with different disturbance level. Bayesian models were used to estimate the contribution of algal sources, niche breadth, and trophic overlap between the two species. The sea urchins behaved as opportunistic feeders, although they showed differential resource assimilation. Eucidaris thouarsii is the dominant species in disturbed environments; likewise, their niche amplitude was broader than that of D. mexicanum when conditions were not optimal. However, there was no niche overlap between the species. The Stable Isotope Analysis in R (SIAR) indicated that both sea urchins shared limiting resources in the disturbed area, mainly Dictyota spp. (contributions of up to 85% for D. mexicanum and up to 75% for E. thouarsii). The Stable Isotope Bayesian Ellipses in R (SIBER) analysis results indicated less interspecific competition in the undisturbed site. Our results suggested a trophic niche partitioning between sympatric sea urchin species in coastal areas of the ETP, but the limitation of resources could lead to trophic overlap and stronger habitat degradation. PMID:26839748

  13. Micropredation on sea urchins as a potential stabilizing process for rocky reefs

    NASA Astrophysics Data System (ADS)

    Bonaviri, Chiara; Gianguzza, Paola; Pipitone, Carlo; Hereu, Bernat

    2012-10-01

    Rocky reefs can shift from forest, a state dominated by erect algae with high biodiversity, to barren, an impoverished state dominated by encrusting algae. Sea urchins, abundant in barrens, are usually held responsible for the maintenance of this state. Predation by large fish can revert the barren state to forest by controlling sea urchin populations. However, the persistence of a community state sometimes seems to be independent from the presence of such large predators, suggesting the existence of other unknown mechanisms ensuring their stability. Theoretical studies suggest that the settler stage of sea urchins is determinant for maintaining a given rocky reef state. In this study, we have identified several potential invertebrate micropredators of settlers of the sea urchin Paracentrotus lividus and measured their predation activity. Predation rates showed marked differences among species, possibly due to morphological and/or behavioral traits. Micropredators were more abundant in the forest than in barren, and their potential impact on the sea urchin community differed between the two states by two orders of magnitude. These findings suggest a novel self-perpetuating mechanism stabilizing rocky reef systems, where the abundance of micropredators may contribute to shape the sea urchin population, which in turn is responsible for the persistence of the state.

  14. Overgrazing of a large seagrass bed by the sea urchin Lytechinus variegatus in Outer Florida Bay

    USGS Publications Warehouse

    Rose, C.D.; Sharp, W.C.; Kenworthy, W.J.; Hunt, J.H.; Lyons, W.G.; Prager, E.J.; Valentine, J.F.; Hall, M.O.; Whitfield, P.E.; Fourqurean, J.W.

    1999-01-01

    Unusually dense aggregations of the sea urchin Lytechinus variegatus overgrazed at least 0.81 km2 of seagrass habitat in Outer Florida Bay (USA) between August 1997 and May 1998. Initially, sea-urchin densities were as high as 364 sea urchins m-2, but they steadily declined to within a range of 20 to 50 sea urchins m-2 by December 1998. Prior to this event, sea-urchin densities were 95% of the short-shoot apical meristems were removed by sea-urchin grazing in our study area. Such extensive loss may severely limit recovery of this seagrass community by vegetative reproduction. Effects of the removal of seagrass biomass have already resulted in the depletion of epifaunal-infaunal mollusk assemblages and resuspension of fine-grained (<64 ??m) surface sediments - which have caused significant changes in community structure and in the physical properties of the sediments. These changes, coupled with the loss of essential fishery habitat, reductions in primary and secondary production, and degradation of water quality, may lead to additional, longer-term, indirect effects that may extend beyond the boundaries of the grazed areas and into adjacent coastal ecosystems.

  15. Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador

    PubMed Central

    Loor-Andrade, Peggy; Rodríguez-Barreras, Ruber; Cortés, Jorge

    2016-01-01

    Sea urchins are important grazers and influence reef development in the Eastern Tropical Pacific (ETP). Diadema mexicanum and Eucidaris thouarsii are the most important sea urchins on the Ecuadorian coastal reefs. This study provided a trophic scenario for these two species of echinoids in the coral-rocky reef bottoms of the Ecuadorian coast, using stable isotopes. We evaluated the relative proportion of algal resources assimilated, and trophic niche of the two sea urchins in the most southern coral-rocky reefs of the ETP in two sites with different disturbance level. Bayesian models were used to estimate the contribution of algal sources, niche breadth, and trophic overlap between the two species. The sea urchins behaved as opportunistic feeders, although they showed differential resource assimilation. Eucidaris thouarsii is the dominant species in disturbed environments; likewise, their niche amplitude was broader than that of D. mexicanum when conditions were not optimal. However, there was no niche overlap between the species. The Stable Isotope Analysis in R (SIAR) indicated that both sea urchins shared limiting resources in the disturbed area, mainly Dictyota spp. (contributions of up to 85% for D. mexicanum and up to 75% for E. thouarsii). The Stable Isotope Bayesian Ellipses in R (SIBER) analysis results indicated less interspecific competition in the undisturbed site. Our results suggested a trophic niche partitioning between sympatric sea urchin species in coastal areas of the ETP, but the limitation of resources could lead to trophic overlap and stronger habitat degradation. PMID:26839748

  16. Fishing for lobsters indirectly increases epidemics in sea urchins

    USGS Publications Warehouse

    Lafferty, K.D.

    2004-01-01

    Two ecological paradigms, the trophic cascade and the host-density threshold in disease, interact in the kelp-forest ecosystem to structure the community. To investigate what happens when a trophic cascade pushes a host population over a host-threshold density, I analyzed a 20-year data set of kelp forest communities at 16 sites in the region of the Channel Islands National Park, California, USA. Historically, lobsters, and perhaps other predators, kept urchin populations at low levels and kelp forests developed a community-level trophic cascade. In geographic areas where the main predators on urchins were fished, urchin populations increased to the extent that they overgrazed algae and starvation eventually limited urchin-population growth. Despite the limitation of urchin population size by food availability, urchin densities, at times, well exceeded the host-density threshold for epidemics. An urchin-specific bacterial disease entered the region after 1992 and acted as a density-dependent mortality source. Dense populations were more likely to experience epidemics and suffer higher mortality. Disease did not reduce the urchin population at a site to the density that predators previously did. Therefore, disease did not fully replace predators in the trophic cascade. These results indicate how fishing top predators can indirectly favor disease transmission in prey populations.

  17. Regulation of protein synthesis during sea urchin early development

    SciTech Connect

    Kelso, L.C.

    1989-01-01

    Fertilization of the sea urchin egg results in a 20-40 fold increase in the rate of protein synthesis. The masked message hypothesis proposes that mRNAs are masked or unavailable for translation in the egg. We devised an in vivo assay to test this hypothesis. Our results show that masked mRNAs limit protein synthesis in the unfertilized egg. In addition, we show that protein synthesis is also regulated at the level of translational machinery. Following fertilization is a period of rapid cell divisions. This period, known as the rapid cleavage stage, is characterized by the transient synthesis of a novel set of proteins. The synthesis of these proteins is programmed by maternal mRNAs stored in the unfertilized egg. To study the behavior of these mRNAs, we prepared a cDNA library from polysomal poly (A+) RNA from 2-hour embryos. ({sup 32}P) labeled probes, prepared from the cDNA library, were used to monitor the levels of individual mRNAs in polysomes at fertilization and during early development.

  18. The dynamics of secretion during sea urchin embryonic skeleton formation

    SciTech Connect

    Wilt, Fred H.

    2008-05-01

    Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.

  19. Sperm chemotaxis promotes individual fertilization success in sea urchins.

    PubMed

    Hussain, Yasmeen H; Guasto, Jeffrey S; Zimmer, Richard K; Stocker, Roman; Riffell, Jeffrey A

    2016-05-15

    Reproductive success fundamentally shapes an organism's ecology and evolution, and gamete traits mediate fertilization, which is a critical juncture in reproduction. Individual male fertilization success is dependent on the ability of sperm from one male to outcompete the sperm of other males when searching for a conspecific egg. Sperm chemotaxis, the ability of sperm to navigate towards eggs using chemical signals, has been studied for over a century, but such studies have long assumed that this phenomenon improves individual male fitness without explicit evidence to support this claim. Here, we assessed fertilization changes in the presence of a chemoattractant-digesting peptidase and used a microfluidic device coupled with a fertilization assay to determine the effect of sperm chemotaxis on individual male fertilization success in the sea urchin Lytechinus pictus We show that removing chemoattractant from the gametic environment decreases fertilization success. We further found that individual male differences in chemotaxis to a well-defined gradient of attractant correlate with individual male differences in fertilization success. These results demonstrate that sperm chemotaxis is an important contributor to individual reproductive success. PMID:26994183

  20. Induction to maturation of the sea urchin Paracentrotus lividus (Lamarck, 1816) under laboratory conditions.

    PubMed

    Garmendia, Joxe Mikel; Menchaca, Iratxe; Belzunce, María Jesús; Franco, Javier; Revilla, Marta

    2009-12-01

    Laboratory experiments were carried out over two different periods, with the aim of investigating and utilizing the induction to gonadal maturation of the sea urchin Paracentrotus lividus. The final objective was to obtain viable gametes outside the period of natural spawning in the environment; which would allow the utilization of ecotoxicological bioassays with sea urchin larvae at any time of the year. The experiment consisted of maintaining some sea urchins in tanks and providing them with a natural photoperiod, unlimited food and a constant temperature of 20 degrees C. During days 0, 30, 60 and 90, gonads from 15 of these sea urchins were compared with those collected simultaneously in the natural environment. The gametes obtained were used to carry out fecundations, in order to check their viability. The final results obtained were clearly influenced by the gonadal state of the sea urchins at the initial stage of the experiment. The best results were obtained within a time period of 60 days and when the initial gonad index was low. PMID:20088209

  1. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins

    SciTech Connect

    Schatten, G.; Schatten, H.; Simerly, C.; Maul, G.G.; Chaly, N.

    1985-07-01

    Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase. 32 references.

  2. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins

    NASA Technical Reports Server (NTRS)

    Schatten, G.; Schatten, H.; Simerly, C.; Maul, G. G.; Chaly, N.

    1985-01-01

    Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase.

  3. Influence of potentially confounding factors on sea urchin porewater toxicity tests

    USGS Publications Warehouse

    Carr, R.S.; Biedenbach, J.M.; Nipper, M.

    2006-01-01

    The influence of potentially confounding factors has been identified as a concern for interpreting sea urchin porewater toxicity test data. The results from >40 sediment-quality assessment surveys using early-life stages of the sea urchin Arbacia punctulata were compiled and examined to determine acceptable ranges of natural variables such as pH, ammonia, and dissolved organic carbon on the fertilization and embryological development endpoints. In addition, laboratory experiments were also conducted with A. punctulata and compared with information from the literature. Pore water with pH as low as 6.9 is an unlikely contributor to toxicity for the fertilization and embryological development tests with A. punctulata. Other species of sea urchin have narrower pH tolerance ranges. Ammonia is rarely a contributing factor in pore water toxicity tests using the fertilization endpoint, but the embryological development endpoint may be influenced by ammonia concentrations commonly found in porewater samples. Therefore, ammonia needs to be considered when interpreting results for the embryological development test. Humic acid does not affect sea urchin fertilization at saturation concentrations, but it could have an effect on the embryological development endpoint at near-saturation concentrations. There was no correlation between sediment total organic carbon concentrations and porewater dissolved organic carbon concentrations. Because of the potential for many varying substances to activate parthenogenesis in sea urchin eggs, it is recommended that a no-sperm control be included with every fertilization test treatment. ?? 2006 Springer Science+Business Media, Inc.

  4. Preparation and use of sea urchin egg homogenates.

    PubMed

    Morgan, Anthony J; Galione, Antony

    2014-01-01

    Cell homogenates provide a simple and yet powerful means of investigating the actions of Ca(2+)-mobilizing second messengers and their target Ca(2+) stores. The sea urchin egg homogenate is particularly useful and almost unique in retaining robust Ca(2+) responses to all three major messengers, i.e., inositol 1,4,5-trisphosphate (IP3), cyclic ADP-ribose, and nicotinic acid adenine dinucleotide phosphate (NAADP) (Lee and Aarhus. J Biol Chem 270: 2152-2172, 1995). It is not only invaluable for probing the pharmacology and mechanism of action of these messengers, but can also be used to assay Ca(2+) uptake mechanisms (Churchill et al. Cell 111: 703-708, 2002), second messenger production (Morgan et al. Methods in cADPR and NAADP research. In: Putney JW Jr (ed) Methods in calcium signalling, CRC: Boca Raton, FL, 2006), and dynamics of luminal pH (pHL) changes within acidic Ca(2+) stores (Lee and Epel. Dev Biol 98: 446-454, 1983; Morgan and Galione. Biochem J 402: 301-310, 2007). Here, we detail the protocols for preparing and using egg homogenates, wherein eggs are shed and collected into artificial sea water (ASW), dejellied, washed several times in Ca(2+)-free ASW, and then finally washed and resuspended in an intracellular-like medium. Homogenization is effected with a Dounce glass tissue homogenizer (at 50 % (v/v)) and aliquots frozen and stored at -80 °C. For Ca(2+) (or pHL) measurements, homogenate is thawed and sequentially diluted in an intracellular-like medium and the fluorescence of Ca(2+)- or pHL-sensitive dyes monitored in a standard fluorimeter or plate-reader. PMID:24567213

  5. Trophic ecology of the sea urchin Spatangus purpureus elucidated from gonad fatty acids composition analysis.

    PubMed

    Barberá, C; Fernández-Jover, D; López Jiménez, J A; González Silvera, D; Hinz, H; Moranta, J

    2011-05-01

    Irregular sea urchins such as the spatangoid Spatangus purpureus are important bioturbators that contribute to natural biogenic disturbance and the functioning of biogeochemical cycles in soft sediments. In the coastal waters of the Balearic Islands S. purpureus occurs in soft red algal beds, and can reach high densities. The diet of S. purpureus is unknown and it is particularly difficult to analyze the stomach contents of this group; therefore, we analyzed the fatty acid (FA) composition of the gonads and potential food resources in order to assess the trophic relationships of this species. The FA profiles of the gonads of S. purpureus agree well with the FA composition of the potential trophic resources (algae and sediment) and reveals changes between localities with different available resources. Three polyunsaturated FAs mainly contributes in the composition in the S. purpureus gonads: eicosapentaenoic acid (C20:5n-3) and arachidonic acid (C20:4n-6), both abundant in the macroalgal material, and palmitoleic acid (C16:1n-7), which is characteristic of sediment samples. Trophic markers of bacterial input and carnivorous feeding were significantly more abundant in sea urchins caught on bottoms with less vegetation. The current study demonstrates that the FA content of S. purpureus gonads is a useful marker of diet, as differences in the profiles reflected the variations in detritus composition. The results of this study show that this species has omnivorous feeding behavior; however, viewed in conjunction with available abundance data the results suggest that phytodetritus found within algal beds is an important carbon source for this species. PMID:21334740

  6. Analysis of Cytoskeletal and Motility Proteins in the Sea Urchin Genome Assembly

    PubMed Central

    RL, Morris; MP, Hoffman; RA, Obar; SS, McCafferty; IR, Gibbons; AD, Leone; J, Cool; EL, Allgood; AM, Musante; KM, Judkins; BJ, Rossetti; AP, Rawson; DR, Burgess

    2007-01-01

    The sea urchin embryo is a classical model system for studying the role of the cytoskeleton in such events as fertilization, mitosis, cleavage, cell migration and gastrulation. We have conducted an analysis of gene models derived from the Strongylocentrotus purpuratus genome assembly and have gathered strong evidence for the existence of multiple gene families encoding cytoskeletal proteins and their regulators in sea urchin. While many cytoskeletal genes have been cloned from sea urchin with sequences already existing in public databases, genome analysis reveals a significantly higher degree of diversity within certain gene families. Furthermore, genes are described corresponding to homologs of cytoskeletal proteins not previously documented in sea urchins. To illustrate the varying degree of sequence diversity that exists within cytoskeletal gene families, we conducted an analysis of genes encoding actins, specific actin-binding proteins, myosins, tubulins, kinesins, dyneins, specific microtubule-associated proteins, and intermediate filaments. We conducted ontological analysis of select genes to better understand the relatedness of urchin cytoskeletal genes to those of other deuterostomes. We analyzed developmental expression (EST) data to confirm the existence of select gene models and to understand their differential expression during various stages of early development. PMID:17027957

  7. [The action of catecholamine-synthesis inhibitors and of spiperone on sea urchin and mouse embryos].

    PubMed

    Markova, L N; Sakharova, N Iu; Bezuglov, V V

    2000-01-01

    We studied the effects of three inhibitors of catecholamine synthesis on the development of sea urchins Sphaerechinus granularis and Paracentrotus lividus. These drugs affected the early embryogenesis, which was expressed in inhibition of the cleavage divisions, appearance of abnormal embryos, and developmental arrest. The addition of arachidonic acid amide and dopamine to the incubation medium weakened the effects of the inhibitors. Spiperone induced developmental defects in preimplantation mouse embryos and sea urchin embryos. Arachidonic acid amide with dopamine exerted a protective effect against spiperone when introduced to sea urchin embryos at the blastula or late gastrula stages, rather than after fertilization. In murine embryos, this amide induced developmental defects and arrest itself and its effect was reversible. Possible mechanisms underlying the effects of these drugs are discussed. PMID:10732361

  8. Effects of Gravity on Spicule Formation in Cultured Micromeres of Sea Urchin Embryo

    NASA Astrophysics Data System (ADS)

    Izumi-Kurotani, A.; Kiyomoto, M.; Eguchi, H.

    To investigate effect of gravity on morphogenesis at a cellular level, we propose a new experimental system with sea urchin embryos and micromeres. We studied the spicule formation in cultured micromeres of sea urchin embryo under various conditions of gravity; hypergravity by a centrifuge, simulated microgravity in a vertical clinostat, and alterations of the gravity force by a parabolic flight. Spicule elongation was suppressed under these experimental conditions. A spicule of sea urchin embryo consists of CaCO3 crystals in the form of calcite with magnesium and organic substances, called spicule matrix proteins. We also measured the level of expression of spicule matrix proteins by RT-PCR. The expression of a spicule matrix protein, SM30 was suppressed under hypergravity by a centrifuge and after a parabolic flight. These results suggest that each gravity condition can have an effect on the gene expression of spicule matrix protein.

  9. Nanoantenna-like properties of sea-urchin shaped ZnO as a nanolight filter

    NASA Astrophysics Data System (ADS)

    Husn Su, Yen; Chen, Wei-Yu

    2012-09-01

    A light scattering peak of ZnO rods is presented at 543.2 nm. The radiation peaks of ZnO nanospines correspond to 496.6 nm and 630.6 nm due to the breaking of the symmetry of the ZnO rods. The radiation peaks of sea-urchin shaped ZnO was observed and confirmed by utilizing the dipole approximation. Sea-urchin shaped ZnO can tune and then filter different frequencies of light by utilizing incident light to illuminate at the different positions of sea-urchin shaped ZnO which works like a nanolight filter device and has potential applications in photonic computers, bio-light emission device, and solar cells.

  10. Streamlining behaviour of the red urchin Strongylocentrotus franciscanus in response to flow.

    PubMed

    Stewart, Hannah L; Britton-Simmons, Kevin H

    2011-08-15

    This work was motivated by subtidal observations of red urchins (Strongylocentrotus franciscanus) moving their spines into streamlined positions as water current increased in the field. Trials in a flume across flow speeds from 0 to 65 cm s(-1) enabled us to observe the change in overall shape of the urchins and quantify the decrease in spine angle that occurred as flow speeds increased. The effect of this behaviour on drag and lift was measured with physical models made from urchin tests with spines in the `up' position (typical in stagnant and slow velocities) and in the `down' position (typical of posture in high velocities). Streamlining spines decreased the drag, but increased the lift experienced by urchin models at flow speeds between 10 and 40 cm s(-1), current velocities that are commonly encountered by these animals in the field in Washington, USA. Total force (combination of drag and lift) was similar for `up' and `down' models at all flow speeds, lift comprising the majority of the force for `down' models, and drag slightly higher for `up' models. Live urchins in the field routinely adopt a streamlined `down' posture in flow, suggesting that they may be better able to cope with lift than drag. This behaviour, although affecting hydrodynamic forces and enabling S. franciscanus to remain attached to the substratum in high currents, may lead to reduced capture of drift kelp, which is entrapped on upright spines and then eaten, delivery of which is positively related to flow speed. Urchins living in deep subtidal habitats rely on drift kelp capture but must stay attached to the substratum to be successful in a habitat. Therefore, this streamlining behaviour may be an important factor enabling S. franciscanus to persist in deep, high-current areas. PMID:21795560

  11. The contribution of apoptosis and necrosis in freezing injury of sea urchin embryonic cells.

    PubMed

    Boroda, Andrey V; Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2016-08-01

    Sea urchins have recently been reported to be a promising tool for investigations of oxidative stress, UV light perturbations and senescence. However, few available data describe the pathway of cell death that occurs in sea urchin embryonic cells after cryopreservation. Our study is focused on the morphological and functional alterations that occur in cells of these animals during the induction of different cell death pathways in response to cold injury. To estimate the effect of cryopreservation on sea urchin cell cultures and identify the involved cell death pathways, we analyzed cell viability (via trypan blue exclusion test, MTT assay and DAPI staining), caspase activity (via flow cytometry and spectrophotometry), the level of apoptosis (via annexin V-FITC staining), and cell ultrastructure alterations (via transmission electron microscopy). Using general caspase detection, we found that the level of caspase activity was low in unfrozen control cells, whereas the number of apoptotic cells with activated caspases rose after freezing-thawing depending on cryoprotectants used, also as the number of dead cells and cells in a late apoptosis. The data using annexin V-binding assay revealed a very high apoptosis level in all tested samples, even in unfrozen cells (about 66%). Thus, annexin V assay appears to be unsuitable for sea urchin embryonic cells. Typical necrotic cells with damaged mitochondria were not detected after freezing in sea urchin cell cultures. Our results assume that physical cell disruption but not freezing-induced apoptosis or necrosis is the predominant reason of cell death in sea urchin cultures after freezing-thawing with any cryoprotectant combination. PMID:27364314

  12. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs

    NASA Technical Reports Server (NTRS)

    Schatten, Heide; Schatten, Gerald; Balczon, Ron; Simerly, Calvin; Mazia, Daniel

    1986-01-01

    The behavior of centrosomes during the stages of fertilization and cell division in mouse oocytes and in sea urchin eggs was monitored in an immunofluorescence microscope, using autoimmune centrosomal antiserum derived from a patient with scleroderma to label the centrosomal material. These observations showed that centrosomes reproduce during the interphase and aggregate and separate during cell mitosis. Results supported the hypothesis of Mazia (1984), who proposed that centrosomes are 'flexible bodies'. It was also found that, while the sea urchin centrosomes are paternally inherited as was initially proposed by Bovery (1904), the mouse centrosomes are of maternal origin.

  13. Effects of low-intensity pulsed electromagnetic fields on the early development of sea urchins

    SciTech Connect

    Falugi, C.; Grattarola, M.; Prestipino, G.

    1987-06-01

    The effects of weak electromagnetic signals on the early development of the sea urchin Paracentrotus lividus have been studied. The duration and repetition of the pulses were similar to those used for bone healing in clinical practice. A sequence of pulses, applied for a time ranging from 2 to 4 h, accelerates the cleavages of sea urchin embryo cells. This effect can be quantitatively assessed by determining the time shifts induced by the applied electromagnetic field on the completion of the first and second cleavages in a population of fertilized eggs. The exposed embryos were allowed to develop up to the pluteus stage, showing no abnormalities.

  14. Cryptobenthic reef fishes: depth distribution and correlations with habitat complexity and sea urchins.

    PubMed

    Dalben, A; Floeter, S R

    2012-04-01

    In this study, cryptobenthic fish depth patterns and their correlations with habitat complexity and sea urchin densities were investigated. In general, total density, species richness and diversity were higher in the shallower zones (3 m), while evenness was higher at the 10 m depth zone. Among sites, species density was similar at the 10 m zone, but at the 3 m zone it varied greatly. Species-specific depth preferences were found. Correlation between species density and habitat complexity was usually positive. The influence of sea urchin densities on the cryptobenthic fish assemblage was site and species dependent. PMID:22471804

  15. Regulation of DNA synthesis at the first cell cycle in the sea urchin in vivo.

    PubMed

    Kisielewska, Jolanta; Whitaker, Michael

    2014-01-01

    Using fluorescent and non-fluorescent recombinant proteins has proved to be a very successful technique for following postfertilization events, in both male and female pronuclei during the first cell cycle of sea urchin in vivo. Proteins and dyes are introduced by microinjection into the unfertilized egg, and their function can be monitored by fluorescence or confocal/two-photon (2P) and transmitted light microscopy after insemination. Here, we describe expression and purification of GFP/RFP-tagged proteins involved in regulation of DNA replication. We also explain the techniques used to introduce recombinant proteins and fluorescent tubulin into sea urchin eggs and embryos. PMID:24567218

  16. Turbulent shear spurs settlement in larval sea urchins

    PubMed Central

    Gaylord, Brian; Hodin, Jason; Ferner, Matthew C.

    2013-01-01

    Marine invertebrates commonly produce larvae that disperse in ocean waters before settling into adult shoreline habitat. Chemical and other seafloor-associated cues often facilitate this latter transition. However, the range of effectiveness of such cues is limited to small spatial scales, creating challenges for larvae in finding suitable sites at which to settle, especially given that they may be carried many kilometers by currents during their planktonic phase. One possible solution is for larvae to use additional, broader-scale environmental signposts to first narrow their search to the general vicinity of a candidate settlement location. Here we demonstrate strong effects of just such a habitat-scale cue, one with the potential to signal larvae that they have arrived in appropriate coastal areas. Larvae of the purple sea urchin (Strongylocentrotus purpuratus) exhibit dramatic enhancement in settlement following stimulation by turbulent shear typical of wave-swept shores where adults of this species live. This response manifests in an unprecedented fashion relative to previously identified cues. Turbulent shear does not boost settlement by itself. Instead, it drives a marked developmental acceleration that causes “precompetent” larvae refractory to chemical settlement inducers to immediately become “competent” and thereby reactive to such inducers. These findings reveal an unrecognized ability of larval invertebrates to shift the trajectory of a major life history event in response to fluid-dynamic attributes of a target environment. Such an ability may improve performance and survival in marine organisms by encouraging completion of their life cycle in advantageous locations. PMID:23572585

  17. Pattern formation during gastrulation in the sea urchin embryo.

    PubMed

    McClay, D R; Armstrong, N A; Hardin, J

    1992-01-01

    The sea urchin embryo follows a relatively simple cell behavioral sequence in its gastrulation movements. To form the mesoderm, primary mesenchyme cells ingress from the vegetal plate and then migrate along the basal lamina lining the blastocoel. The presumptive secondary mesenchyme and endoderm then invaginate from the vegetal pole of the embryo. The archenteron elongates and extends across the blastocoel until the tip of the archenteron touches and attaches to the opposite side of the blastocoel. Secondary mesenchyme cells, originally at the tip of the archenteron, differentiate to form a variety of structures including coelomic pouches, esophageal muscles, pigment cells and other cell types. After migration of the secondary mesenchyme cells from their original position at the tip of the archenteron, the endoderm fuses with an invagination of the ventral ectoderm (the stomodaem), to form the mouth and complete the process of gastrulation. A larval skeleton is made by primary mesenchyme cells during the time of archenteron and mouth formation. A number of experiments have established that these morphogenetic movements involve a number of cell autonomous behaviors plus a series of cell interactions that provide spatial, temporal and scalar information to cells of the mesoderm and endoderm. The cell autonomous behaviors can be demonstrated by the ability of micromeres or endoderm to perform their morphogenetic functions if either is isolated and grown in culture. The requirement for cell interactions has been demonstrated by manipulative experiments where it has been shown that axial information, temporal information, spatial information and scalar information is obtained by mesoderm and endoderm from other embryonic cells.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1299366

  18. Nocardioides echinoideorum sp. nov., isolated from sea urchins (Tripneustes gratilla).

    PubMed

    Lin, Shih-Yao; Wen, Cheng-Zhe; Hameed, Asif; Liu, You-Cheng; Hsu, Yi-Han; Shen, Fo-Ting; Lai, Wei-An; Young, Chiu-Chung

    2015-06-01

    A Gram-stain-positive, aerobic, non-motile, rod-shaped, yellow-pigment-producing bacterium, (designated strain CC-CZW004T), was isolated from seafood samples (sea urchins) at Penghu Island in Taiwan. Strain CC-CZW004T grew optimally at pH 7.0 and 30 °C in the presence of 3 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-CZW004T with respect to other members of the genus Nocardioides. The novel strain shared highest 16S rRNA gene sequence similarities to Nocardioides daejeonensis JCM 16922T (96.4 %), Nocardioides pacificus JCM 19260T (96.3 %), and Marmoricola scoriae JCM 17444T (96.2 %). The major fatty acids of strain CC-CZW004T consisted of C17:0, C16:1ω5c, C17:1ω8c`, iso-C16:0 and C19:1ω11c/C19:1ω9c (summed feature 6). The diagnostic diamino acid in the cell wall was ll-2,6-diaminopimelic acid. The polar lipid profile was composed of major amounts of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and aminophospholipid. The DNA G+C content was 73.3 mol%. The predominant quinone system was menaquinone (MK-8). On the basis of polyphasic taxonomic evidences presented here, strain CC-CZW004T represents a novel species of the genus Nocardioides, for which the name Nocardioides echinoideorum sp. nov. is proposed. The type strain is CC-CZW004T ( = BCRC 16974T = JCM 30276T). PMID:25805631

  19. Origin and evolutionary plasticity of the gastric caecum in sea urchins (Echinodermata: Echinoidea)

    PubMed Central

    2010-01-01

    Background The digestive tract of many metazoan invertebrates is characterized by the presence of caeca or diverticula that serve secretory and/or absorptive functions. With the development of various feeding habits, distinctive digestive organs may be present in certain taxa. This also holds true for sea urchins (Echinodermata: Echinoidea), in which a highly specialized gastric caecum can be found in members of a derived subgroup, the Irregularia (cake urchins, sea biscuits, sand dollars, heart urchins, and related forms). As such a specialized caecum has not been reported from "regular" sea urchin taxa, the aim of this study was to elucidate its evolutionary origin. Results Using morphological data derived from dissection, magnetic resonance imaging, and extensive literature studies, we compare the digestive tract of 168 echinoid species belonging to 51 extant families. Based on a number of characters such as topography, general morphology, mesenterial suspension, and integration into the haemal system, we homologize the gastric caecum with the more or less pronounced dilation of the anterior stomach that is observed in most "regular" sea urchin taxa. In the Irregularia, a gastric caecum can be found in all taxa except in the Laganina and Scutellina. It is also undeveloped in certain spatangoid species. Conclusions According to our findings, the sea urchin gastric caecum most likely constitutes a synapomorphy of the Euechinoidea. Its occurrence in "regular" euechinoids is linked to the presence of an additional festoon of the anterior stomach in ambulacrum III. Both structures, the additional festoon and the gastric caecum, are absent in the sister taxon to the Euechinoidea, the Cidaroida. Since the degree of specialization of the gastric caecum is most pronounced in the predominantly sediment-burrowing irregular taxa, we hypothesize that its evolution is closely linked to the development of more elaborate infaunal lifestyles. We provide a comprehensive study of

  20. Application of a sea urchin micronucleus assay to monitoring aquatic pollution: influence of sample osmolality.

    PubMed

    Saotome, Kyoko; Hayashi, Makoto

    2003-01-01

    We have improved our sea urchin micronucleus assay for aquatic samples and used it to evaluate marine pollution. We found that the water samples we had collected for 2 years from the Tokyo bay coast near Tokyo, an industrial megalopolis, were positive due to the water samples being hypo-osmotic rather than to chemical pollutants. The evidence was as follows: (i) the osmolality and salinity of the samples were about half that of sea water; (ii) the micronucleus frequency induced in the water sample decreased to the control level when the osmolality was increased to that of sea water; (iii) artificial sea water diluted with distilled water induced micronuclei dilution-dependently. Since micronucleus induction in the sea urchin assay is influenced by sample osmolality, the osmolality must be adjusted to that of sea water for the assay and osmotic pressure must be considered when evaluating water pollution. PMID:12473738

  1. Sea urchin neural development and the metazoan paradigm of neurogenesis.

    PubMed

    Burke, Robert D; Moller, Daniel J; Krupke, Oliver A; Taylor, Valerie J

    2014-03-01

    Summary:Urchin embryos continue to prove useful as a means of studying embryonic signaling and gene regulatory networks, which together control early development. Recent progress in understanding the molecular mechanisms underlying the patterning of ectoderm has renewed interest in urchin neurogenesis. We have employed an emerging model of neurogenesis that appears to be broadly shared by metazoans as a framework for this review. We use the model to provide context and summarize what is known about neurogenesis in urchin embryos. We review morphological features of the differentiation phase of neurogenesis and summarize current understanding of neural specification and regulation of proneural networks. Delta-Notch signaling is a common feature of metazoan neurogenesis that produces committed progenitors and it appears to be a critical phase of neurogenesis in urchin embryos. Descriptions of the differentiation phase of neurogenesis indicate a stereotypic sequence of neural differentiation and patterns of axonal growth. Features of neural differentiation are consistent with localized signals guiding growth cones with trophic, adhesive, and tropic cues. Urchins are a facile, postgenomic model with the potential of revealing many shared and derived features of deuterostome neurogenesis. PMID:25368883

  2. Distribution and abundance of sea urchins in Singapore reefs and their potential ecological impacts on macroalgae and coral communities

    NASA Astrophysics Data System (ADS)

    Goh, Beverly P. L.; Lim, Dawn Y. F.

    2015-06-01

    The sea urchin Diadema setosum is often encountered in the coral reefs in the Southern Islands of Singapore. While sea urchins have been known to play a role in regulating algal communities and influencing coral recruitment in other parts of the world, their role in Singapore reefs has not been determined. This study was conducted to determine the distribution and abundance of sea urchins in Singapore reefs, to examine algal cover, algal biomass, algal species and live coral cover, and to determine any interactions between urchin density and algal communities that may impact coral cover. Several reefs in Singapore were surveyed using belt transects measuring 20 m by 2 m, laid down on the reef crest. Abundance of urchins, algal species, biomass, and live coral cover were determined by the use of quadrats within each belt transect. This study revealed an increasing abundance of the sea urchin Diadema setosum in reefs progressing southwards away from mainland Singapore with low density of urchins occurring in Sisters' Island, St John's Island, Pulau Tekukor, and Kusu Island, and the highest density observed at Raffles Lighthouse. A significant negative linear relationship between algal cover and live coral cover (P < 0.05) was established. The results of this study indicate that sea urchins may not be an important component of the herbivore guild in Singapore.

  3. Effects of protracted cadmium exposure on gametes of the purple sea urchin, Arbacia punctulata

    SciTech Connect

    Bowen, W.J. III; Engel, D.W.

    1996-03-01

    Gametes and larvae of sea urchins and more specifically Arbacia punctulata have been used extensively in embryological studies and toxicity bioassay testing. Most of the experiments and bioassays have used the fertilized eggs of different sea urchin species and measured abnormal growth, malformations, or changes in the rates of growth as a function of contaminant exposure. Guida demonstrated that cupric ion activities of <10{sup -10.5} M caused reductions in the rates of growth of Arbacia Punctulata larvae and caused incomplete or malformed pluteal skeletons. These effects occurred at cupric ion concentrations that were in the same ranges as some measured in the more contaminated estuaries in the northeastern U.S. Sunda and coworkers also used sea urchin embryonic development to test potential trace metal toxicity in water samples collected from those same estuaries, and demonstrated toxicity potentially attributable to dissolved trace metals in the water column. The purpose of these experiments was to determine if protracted sublethal exposure of sexually mature sea urchins to dissolved cadmium in sea water would affect the viability of eggs and sperm, and whether it would affect fertilization and embryonic development and ultimately the larvae. The results of the experiments support the hypothesis that spermatogenesis and oogenesis were affected by cadmium exposure.

  4. Hierarchically assembled Au microspheres and sea urchin-like architectures: formation mechanism and SERS study

    NASA Astrophysics Data System (ADS)

    Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang

    2012-11-01

    The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of

  5. Effects of oil pollution on the development of sex cells in sea urchins

    NASA Astrophysics Data System (ADS)

    Vashchenko, M. A.

    1980-03-01

    The sea urchin Strongylocentrotus nudus is highly sensitive to oil pollution. Experiments were performed in winter, spring and summer over periods of 15 to 45 days. Experimental urchins were kept in water with hydrocarbon concentrations of 10 to 30 mg l-1, and control urchins in pure sea water. Thermal stimulation by Evdokimov's method was applied to obtain mature sexual products during winter and spring tests. Summer investigations were conducted at temperatures of 17 to 18 °C. The gonads were studied histologically and morphometrically, and the sexual cells obtained were analyzed at the embryological level. No histological and morphometrical differences were recorded between sexual cells of controls and experimentals. However, marked hydrocarbon effects were observed in the embryonic development of artificially fertilized cells from experimental urchins. Control embryos developed normally. Embryogenesis of artificially fertilized gametes from control females and experimental males, and vice versa, was found to be distinctly abnormal. Many abnormalities were identified at the first cleavage stage, as well as in blastula, gastrula and pluteus. Fertilization of experimental eggs with experimental sperm resulted in serious disturbances of embryos, followed by the development of non-viable larvae. On the whole, embryogenesis of sexual cells from experimental urchins was characterized by prominent delay, asynchronism and presence of abnormal non-viable larvae. Consequently, long-term effects of sublethal hydrocarbon concentrations resulted in the formation of defective sex cells and high larval mortality.

  6. Solvothermal synthesis and high optical performance of three-dimensional sea-urchin-like TiO{sub 2}

    SciTech Connect

    Zhou, Yi Wang, Yutang; Li, Mengyao; Li, Xuzhi; Yi, Qin; Deng, Pan; Wu, Hongyan

    2015-06-15

    Graphical abstract: I–V characteristics of different TiO{sub 2} microspheres based DSSCs (a) 3D sphere-like, (b) 3D flower-like, (c) 3D sea-urchin-like. - Highlights: • 3D sea-urchin-like TiO{sub 2} was synthesized by solvothermal method. • The effects of preparation parameters on the microstructure of the microspheres were investigated. • The photoelectric properties of 3D sea-urchin-like TiO{sub 2} were studied upon DSSCs. • The PCE of the 3D sea-urchin-like TiO{sub 2} was higher than that of other morphologies. - Abstract: Three-dimensional (3D) sea-urchin-like TiO{sub 2} microspheres were successfully synthesised by solvothermal method. The effects of preparation parameters including reaction temperature, concentration and mass fraction of precursor, and solvent volume on the microstructure of the microspheres were investigated. Results of scanning electron microscopy showed that the preparation parameters played a critical role in the morphology of 3D sea-urchin-like TiO{sub 2}. In addition, when the sea-urchin-like TiO{sub 2} nanostructures were used as the dye-sensitized solar cells (DSSCs) anode, the power-conversion efficiency was higher than that of other morphologies, which was due to the special 3D hierarchical nanostructure, large specific surface area, and enhanced absorption of UV–vis of the TiO{sub 2} nanostructures.

  7. Changes in sea urchins and kelp following a reduction in sea otter density as a result of the Exxon Valdez oil spill

    USGS Publications Warehouse

    Dean, T.A.; Bodkin, J.L.; Jewett, S.C.; Monson, D.H.; Jung, D.

    2000-01-01

    Interactions between sea otters Enhydra lutris, sea urchins Strongylocentrotus droebachiensis, and kelp were investigated following the reduction in sea otter density in Prince William Sound, Alaska, after the Exxon Valdez oil spill in 1989. At northern Knight Island, a heavily oiled portion of the sound, sea otter abundance was reduced by a minimum of 50% by the oil spill, and from 1995 through 1998 remained at an estimated 66% lower than in 1973. Where sea otter densities were reduced, there were proportionally more large sea urchins. However, except in some widely scattered aggregations, both density and biomass of sea urchins were similar in an area of reduced sea otter density compared with an area where sea otters remained about 10 times more abundant. Furthermore, there was no change in kelp abundance in the area of reduced sea otter density. This is in contrast to greatly increased biomass of sea urchins and greatly reduced kelp density observed following an approximate 90% decline in sea otter abundance in the western Aleutian Islands. The variation in community response to a reduction in sea otters may be related to the magnitude of the reduction and the non-linear response by sea urchins to changes in predator abundance. The number of surviving sea otters may have been high enough to suppress sea urchin populations in Prince William Sound, but not in the Aleutians. Alternatively, differences in response may have been due to differences in the frequency or magnitude of sea urchin recruitment. Densities of small sea urchins were much higher in the Aleutian system even prior to the reduction in sea otters, suggesting a higher rate of recruitment.

  8. Characterization of the Sounds Produced by Temperate and Tropical Sea Urchins During Feeding (Diadematidae and Echinometridae).

    PubMed

    Soars, Natalie; Byrne, Maria; Cato, Douglas H

    2016-01-01

    Despite the abundance and ecological importance of sea urchins in eastern Australia, it is not known how they may contribute to ambient noise. The sounds of feeding of two temperate and two tropical species were recorded in captivity. Most sound was produced between 2.3 and 9.2 kHz, but there were differences between species and substrate types. PMID:26611070

  9. Monodictyquinone A: a new antimicrobial anthraquinone from a sea urchin-derived fungus Monodictys sp.

    PubMed

    El-Beih, Ahmed Atef; Kawabata, Tetsuro; Koimaru, Keiichiro; Ohta, Tomihisa; Tsukamoto, Sachiko

    2007-07-01

    A new antimicrobial anthraquinone, 1,8-dihydroxy-2-methoxy-6-methylanthraquinone, monodictyquinone A (1), was isolated from a culture of a marine-derived fungus of the genus Monodictys which was isolated from the sea urchin, Anthocidaris crassispina, along with three known compounds, pachybasin (2), chrysophanol (3), and emodin (4). PMID:17603212

  10. Metal accumulation from dietary exposure in the sea urchin, Strongylocentrotus droebachiensis.

    PubMed

    Bielmyer, Gretchen K; Jarvis, Tayler A; Harper, Benjamin T; Butler, Brittany; Rice, Lawrence; Ryan, Siobhan; McLoughlin, Peter

    2012-07-01

    Metal contamination is a common problem in aquatic environments and may result in metal bioaccumulation and toxicity in aquatic biota. Recent studies have reported the significance of dietary metal accumulation in aquatic food chains, particularly in species of lower trophic levels. This research investigated the accumulation and effects of dietary metals in a macroinvertebrate. The seaweed species Ulva lactuca and Enteromorpha prolifera were concurrently exposed to five metals (copper, nickel, lead, cadmium, and zinc) and then individually fed to the green sea urchin Strongylocentrotus droebachiensis for a period of 2 weeks. Body mass, test length, total length, and coelomic fluid ion concentration and osmolality were measured. The sea urchins were also dissected and their organs (esophagus, stomach, intestine, gonads, and rectum) digested and analyzed for metals. The results demonstrated that metal accumulation and distribution varied between seaweed species and among metals. In general, there were greater concentrations of metals within the sea urchins fed E. prolifera compared with those fed U. lactuca. All of the metals accumulated within at least one organ of S. droebachiensis, with Cu being most significant. These results indicate that E. prolifera may accumulate metals in a more bioavailable form than within U. lactuca, which could impact the grazer. In this study, no significant differences in body length, growth, or coelomic fluid ion concentration and osmolality were detected between the control and metal-exposed sea urchins after the 2-week testing period. This research presents new data concerning metal accumulation in a marine herbivore after dietary metal exposure. PMID:22402781

  11. Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus).

    PubMed

    Rizzo, Francesca; Fernandez-Serra, Montserrat; Squarzoni, Paola; Archimandritis, Aristea; Arnone, Maria I

    2006-12-01

    A systematic search in the available scaffolds of the Strongylocentrotus purpuratus genome has revealed that this sea urchin has 11 members of the ets gene family. A phylogenetic analysis of these genes showed that almost all vertebrate ets subfamilies, with the exception of one, so far found only in mammals, are each represented by one orthologous sea urchin gene. The temporal and spatial expression of the identified ETS factors was also analyzed during embryogenesis. Five ets genes (Sp-Ets1/2, Sp-Tel, Sp-Pea, Sp-Ets4, Sp-Erf) are also maternally expressed. Three genes (Sp-Elk, Sp-Elf, Sp-Erf) are ubiquitously expressed during embryogenesis, while two others (Sp-Gabp, Sp-Pu.1) are not transcribed until late larval stages. Remarkably, five of the nine sea urchin ets genes expressed during embryogenesis are exclusively (Sp-Ets1/2, Sp-Erg, Sp-Ese) or additionally (Sp-Tel, Sp-Pea) expressed in mesenchyme cells and/or their progenitors. Functional analysis of Sp-Ets1/2 has previously demonstrated an essential role of this gene in the specification of the skeletogenic mesenchyme lineage. The dynamic, and in some cases overlapping and/or unique, developmental expression pattern of the latter five genes suggests a complex, non-redundant function for ETS factors in sea urchin mesenchyme formation and differentiation. PMID:16997294

  12. Involvement of l(-)-rhamnose in sea urchin gastrulation. Part II: α-l-Rhamnosidase.

    PubMed

    Liang, Jing; Aleksanyan, Heghush; Metzenberg, Stan; Oppenheimer, Steven B

    2016-06-01

    The sea urchin embryo is recognized as a model system to reveal developmental mechanisms involved in human health and disease. In Part I of this series, six carbohydrates were tested for their effects on gastrulation in embryos of the sea urchin Lytechinus pictus. Only l-rhamnose caused dramatic increases in the numbers of unattached archenterons and exogastrulated archenterons in living, swimming embryos. It was found that at 30 h post-fertilization the l-rhamnose had an unusual inverse dose-dependent effect, with low concentrations (1-3 mM) interfering with development and higher concentrations (30 mM) having little to no effect on normal development. In this study, embryos were examined for inhibition of archenteron development after treatment with α-l-rhamnosidase, an endoglycosidase that removes terminal l-rhamnose sugars from glycans. It was observed that the enzyme had profound effects on gastrulation, an effect that could be suppressed by addition of l-rhamnose as a competitive inhibitor. The involvement of l-rhamnose-containing glycans in sea urchin gastrulation was unexpected, since there are no characterized biosynthetic pathways for rhamnose utilization in animals. It is possible there exists a novel l-rhamnose-containing glycan in sea urchins, or that the enzyme and sugar interfere with the function of rhamnose-binding lectins, which are components of the innate immune system in many vertebrate and invertebrate species. PMID:26168775

  13. Functional traits of two co-occurring sea urchins across a barren/forest patch system

    NASA Astrophysics Data System (ADS)

    Agnetta, D.; Bonaviri, C.; Badalamenti, F.; Scianna, C.; Vizzini, S.; Gianguzza, P.

    2013-02-01

    Temperate rocky reefs may occur in two alternative states (coralline barrens and erect algal forests), whose formation and maintenance are often determined by sea urchin grazing. The two sea urchin species Paracentrotus lividus and Arbacia lixula are considered to play a similar ecological role despite their differing morphological traits and diets. The patchy mosaic areas of Ustica Island, Italy, offer an ideal environment in which to study differences in the performance of P. lividus and A. lixula in barren versus forest states. Results show that the two sea urchin species differ in diet, trophic position, grazing adaptation, movement ability and fitness in both barren and forest patches. We confirmed herbivory in P. lividus and omnivory with a strong tendency to carnivory in A. lixula. When the sea urchin escape response to a predator was triggered, P. lividus responded faster in barren and forest patches. Forest patch restricted movement, especially in A. lixula (velocity in barren ≈ 10-fold greater than in forest). A large Aristotle's lantern, indicative of durophagy, confirmed adaptation of A. lixula to barren state.

  14. Determinants of Paracentrotus lividus sea urchin recruitment under oligotrophic conditions: Implications for conservation management.

    PubMed

    Oliva, Silvia; Farina, Simone; Pinna, Stefania; Guala, Ivan; Agnetta, Davide; Ariotti, Pierre Antoine; Mura, Francesco; Ceccherelli, Giulia

    2016-06-01

    Sea urchins may deeply shape the structure of macrophyte-dominated communities and require the implementation of sustainable management strategies. In the Mediterranean, the identification of the major recruitment determinants of the keystone sea urchin species Paracentrotus lividus is required, so that source areas of the populations can be identified and exploitation or programmed harvesting can be spatially managed. In this study a collection of eight possible determinants, these encompassing both the biotic (larvae, adult sea urchins, fish, encrusting coralline algae, habitat type and spatial arrangement of habitats) and abiotic (substrate complexity and nutritional status) realms was considered at different spatial scales (site, area, transect and quadrat). Data from a survey including sites subject to different levels of human influence (i.e. from urbanized to protected areas), but all corresponding to an oligotrophic and low-populated region were fitted by means of a generalized linear mixed model. Despite the extensive sampling effort of benthic quadrats, an overall paucity of recruits was found, recruits being aggregated in a very small number of quadrats and in few areas. The analysis of data detected substrate complexity, and adult sea urchin and predatory fish abundances as the momentous determinants of Paracentrotus lividus recruitment. Possible mechanisms of influence are discussed beyond the implications of conservation management. PMID:27043483

  15. Rapid aquatic toxicity assay utilizing labeled thymidine incorporation in sea urchin embryos

    SciTech Connect

    Jackim, E.; Nacci, D.

    1984-01-01

    Aquatic toxicity was evaluated in the sea urchin embryo (Arbacea punctulata) by the inhibition of tritiated thymidine incorporation after a brief exposure to toxic chemicals. Arbacia is a useful surrogate species for assay: well-studied, easily cultured and fertile virtually year round. The simplicity and speed of this test system lends itself to screening large numbers of compounds, mixtures or water samples.

  16. Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing.

    PubMed

    Gökirmak, Tufan; Campanale, Joseph P; Reitzel, Adam M; Shipp, Lauren E; Moy, Gary W; Hamdoun, Amro

    2016-06-01

    The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals. PMID:27053522

  17. SpBase: the sea urchin genome database and web site

    PubMed Central

    Cameron, R. Andrew; Samanta, Manoj; Yuan, Autumn; He, Dong; Davidson, Eric

    2009-01-01

    SpBase is a system of databases focused on the genomic information from sea urchins and related echinoderms. It is exposed to the public through a web site served with open source software (http://spbase.org/). The enterprise was undertaken to provide an easily used collection of information to directly support experimental work on these useful research models in cell and developmental biology. The information served from the databases emerges from the draft genomic sequence of the purple sea urchin, Strongylocentrotus purpuratus and includes sequence data and genomic resource descriptions for other members of the echinoderm clade which in total span 540 million years of evolutionary time. This version of the system contains two assemblies of the purple sea urchin genome, associated expressed sequences, gene annotations and accessory resources. Search mechanisms for the sequences and the gene annotations are provided. Because the system is maintained along with the Sea Urchin Genome resource, a database of sequenced clones is also provided. PMID:19010966

  18. Cellular and molecular mechanisms of negligible senescence: insight from the sea urchin

    PubMed Central

    Bodnar, Andrea G.

    2015-01-01

    Sea urchins exhibit a very different life history from humans and short-lived model animals and therefore provide the opportunity to gain new insight into the complex process of aging. Sea urchins grow indeterminately, regenerate damaged appendages, and reproduce throughout their lifespan. Some species show no increase in mortality rate at advanced ages. Nevertheless, different species of sea urchins have very different reported lifespans ranging from 4 to more than 100 years, thus providing a unique model to investigate the molecular, cellular, and physiological mechanisms underlying both lifespan determination and negligible senescence. Studies to date have demonstrated maintenance of telomeres, maintenance of antioxidant and proteasome enzyme activities, and little accumulation of oxidative cellular damage with age in tissues of sea urchin species with different lifespans. Gene expression studies indicate that key cellular pathways involved in energy metabolism, protein homeostasis, and tissue regeneration are maintained with age. Taken together, these studies suggest that long-term maintenance of mechanisms that sustain tissue homeostasis and regenerative capacity is essential for indeterminate growth and negligible senescence, and a better understanding of these processes may suggest effective strategies to mitigate the degenerative decline in human tissues with age. PMID:26136616

  19. Spatial vision in the purple sea urchin Strongylocentrotus purpuratus (Echinoidea).

    PubMed

    Yerramilli, D; Johnsen, S

    2010-01-15

    Recent evidence that echinoids of the genus Echinometra have moderate visual acuity that appears to be mediated by their spines screening off-axis light suggests that the urchin Strongylocentrotus purpuratus, with its higher spine density, may have even more acute spatial vision. We analyzed the movements of 39 specimens of S. purpuratus after they were placed in the center of a featureless tank containing a round, black target that had an angular diameter of 6.5 deg. or 10 deg. (solid angles of 0.01 sr and 0.024 sr, respectively). An average orientation vector for each urchin was determined by testing the animal four times, with the target placed successively at bearings of 0 deg., 90 deg., 180 deg. and 270 deg. (relative to magnetic east). The urchins showed no significant unimodal or axial orientation relative to any non-target feature of the environment or relative to the changing position of the 6.5 deg. target. However, the urchins were strongly axially oriented relative to the changing position of the 10 deg. target (mean axis from -1 to 179 deg.; 95% confidence interval +/- 12 deg.; P<0.001, Moore's non-parametric Hotelling's test), with 10 of the 20 urchins tested against that target choosing an average bearing within 10 deg. of either the target center or its opposite direction (two would be expected by chance). In addition, the average length of the 20 target-normalized bearings for the 10 deg. target (each the vector sum of the bearings for the four trials) were far higher than would be expected by chance (P<10(-10); Monte Carlo simulation), showing that each urchin, whether it moved towards or away from the target, did so with high consistency. These results strongly suggest that S. purpuratus detected the 10 deg. target, responding either by approaching it or fleeing it. Given that the urchins did not appear to respond to the 6.5 deg. target, it is likely that the 10 deg. target was close to the minimum detectable size for this species. Interestingly

  20. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.

    PubMed

    Lin, Che-Yi; Su, Yi-Hsien

    2016-01-15

    Sea urchin embryos are a useful model system for investigating early developmental processes and the underlying gene regulatory networks. Most functional studies using sea urchin embryos rely on antisense morpholino oligonucleotides to knockdown gene functions. However, major concerns related to this technique include off-target effects, variations in morpholino efficiency, and potential morpholino toxicity; furthermore, such problems are difficult to discern. Recent advances in genome editing technologies have introduced the prospect of not only generating sequence-specific knockouts, but also providing genome-engineering applications. Two genome editing tools, zinc-finger nuclease (ZFN) and transcription activator-like effector nucleases (TALENs), have been utilized in sea urchin embryos, but the resulting efficiencies are far from satisfactory. The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system serves as an easy and efficient method with which to edit the genomes of several established and emerging model organisms in the field of developmental biology. Here, we apply the CRISPR/Cas9 system to the sea urchin embryo. We designed six guide RNAs (gRNAs) against the well-studied nodal gene and discovered that five of the gRNAs induced the expected phenotype in 60-80% of the injected embryos. In addition, we developed a simple method for isolating genomic DNA from individual embryos, enabling phenotype to be precisely linked to genotype, and revealed that the mutation rates were 67-100% among the sequenced clones. Of the two potential off-target sites we examined, no off-target effects were observed. The detailed procedures described herein promise to accelerate the usage of CRISPR/Cas9 system for genome editing in sea urchin embryos. PMID:26632489

  1. Advances in the cryopreservation of sea-urchin embryos: Potential application in marine water quality assessment.

    PubMed

    Bellas, Juan; Paredes, Estefanía

    2011-06-01

    Among the most widely used biological techniques in marine pollution assessment, the sea-urchin embryo-larval bioassay is in an advanced developmental stage. Cryopreservation might help to overcome the problem of the spawning seasonality and therefore strengthen the use of those embryo-larval bioassays. This work investigates different factors influencing cryopreservation of sea-urchin embryos, including the cooling rates and holding temperatures, the seeding, or the impact of plunging into liquid nitrogen. The blastula stage yielded better results than the fertilised egg, and the most effective cryoprotectants combination was dimethyl sulfoxide 1.5M plus trehalose 0.04M. The optimised protocol developed begins with an initial hold at 4°C for 2min, followed by cooling at -1°Cmin(-1) to -12°C. At this point a seeding step was incorporated with a 2min hold, followed by a second cooling at -1°Cmin(-1) to -80°C. After a final hold of 2min the cryovials are transferred into liquid nitrogen for storage. Although the cryopreservation processes might cause a delay in the development of sea-urchin embryos, high larval growth (71-98% of controls) was obtained when cryopreserved blastulae were further incubated for 72-96h in artificial seawater. We conclude that embryo-larval bioassays with cryopreserved sea-urchin blastulae are suitable for use in marine pollution monitoring programs and may be considered as an acceptable solution to the reproductive seasonality of sea-urchin species. PMID:21338597

  2. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  3. Modifications to the translational apparatus which affect the regulation of protein synthesis in sea urchin embryos

    SciTech Connect

    Scalise, F.W.

    1988-01-01

    Protein synthesis can be regulated at a number of cellular levels. I have examined how modifications to specific components of the protein synthetic machinery are involved in regulating the efficiency of initiation of translation during early sea urchin embryogenesis. It is demonstrated that Ca{sup 2+} concentrations exceeding 500 uM cause the inhibition of protein synthesis in cell-free translation lysates prepared from sea urchin embryos. Specific changes in the state of phosphorylation of at least 8 proteins occur during this Ca{sup 2+}-mediated repression of translation. Analysis of these proteins has indicated that, unlike mammalian systems, there is no detectable level of Ca{sup 2+}-dependent phosphorylation of the {alpha}subunit eIF-2. Two of the proteins which do become phosphorylated in response to Ca{sup 2+} are calmodulin and an isoelectric form of sea urchin eIF-4D. In addition, 2 proteins which share similarities with kinases involved in the regulation of protein synthesis in mammalian cells, also become phosphorylated. I have investigated the consequences of changes in eIF-4D during sea urchin embryogenesis because it has been proposed that a polyamine-mediated conversion of lysine to hypusine in this factor may enhance translational activity. It is demonstrated that ({sup 3}H) spermidine-derived radioactivity is incorporated into a number of proteins when sea urchin embryos are labeled in vivo, and that the pattern of individual proteins that become labeled changes over the course of the first 30 hr of development.

  4. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    PubMed Central

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G.; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J.R.; Santos, Romana

    2016-01-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  5. Habitat-dependent growth in a Caribbean sea urchin Tripneustes ventricosus: the importance of food type

    NASA Astrophysics Data System (ADS)

    Maciá, Silvia; Robinson, Michael P.

    2008-12-01

    The sea urchin Tripneustes ventricosus is a common, yet relatively poorly known, grazer of seagrass beds and coral reefs throughout the Caribbean. We compared the size and abundance of urchins between adjacent seagrass and coral reef habitats (where macroalgae are the dominant primary producers). We also conducted a laboratory experiment comparing the growth rate of juvenile urchins fed a diet of either macroalgae or seagrass. Reef urchins had significantly larger test diameter than those in the seagrass on some sampling dates. This size difference may be at least partially explained by diet, because laboratory-reared urchins fed macroalgae grew significantly faster than those fed seagrass. The seagrass population, however, was stable over time, whereas the reef population exhibited strong fluctuations in abundance. Overall, our study indicates that both the seagrass and coral reef habitats are capable of supporting healthy, reproductive populations of T. ventricosus. Each, however, appears to offer a distinct advantage: faster growth on the reef and greater population stability in the seagrass.

  6. Complete mitogenome of the edible sea urchin Loxechinus albus: genetic structure and comparative genomics within Echinozoa.

    PubMed

    Cea, Graciela; Gaitán-Espitia, Juan Diego; Cárdenas, Leyla

    2015-06-01

    The edible Chilean red sea urchin, Loxechinus albus, is the only species of its genus and endemic to the Southeastern Pacific. In this study, we reconstructed the mitochondrial genome of L. albus by combining Sanger and pyrosequencing technologies. The mtDNA genome had a length of 15,737 bp and encoded the same 13 protein-coding genes, 22 transfer RNA genes, and two ribosomal RNA genes as other animal mtDNAs. The size of this mitogenome was similar to those of other Echinodermata species. Structural comparisons showed a highly conserved structure, composition, and gene order within Echinoidea and Holothuroidea, and nearly identical gene organization to that found in Asteroidea and Crinoidea, with the majority of differences explained by the inversions of some tRNA genes. Phylogenetic reconstruction supported the monophyly of Echinozoa and recovered the monophyletic relationship of Holothuroidea and Echinoidea. Within Holothuroidea, Bayesian and maximum likelihood analyses recovered a sister-group relationship between Dendrochirotacea and Aspidochirotida. Similarly within Echinoidea, these analyses revealed that L. albus was closely related to Paracentrotus lividus, both being part of a sister group to Strongylocentrotidae and Echinometridae. In addition, two major clades were found within Strongylocentrotidae. One of these clades comprised all of the representative species Strongylocentrotus and Hemicentrotus, whereas the other included species of Mesocentrotus and Pseudocentrotus. PMID:25433433

  7. Acetylcholinesterase Inhibitory Activity of Pigment Echinochrome A from Sea Urchin Scaphechinus mirabilis

    PubMed Central

    Lee, Sung Ryul; Pronto, Julius Ryan D.; Sarankhuu, Bolor-Erdene; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P.; Fedoreyev, Sergey A.; Stonik, Valentin A.; Han, Jin

    2014-01-01

    Echinochrome A (EchA) is a dark-red pigment of the polyhydroxynaphthoquinone class isolated from sea urchin Scaphechinus mirabilis. Acetylcholinesterase (AChE) inhibitors are used in the treatment of various neuromuscular disorders, and are considered as strong therapeutic agents for the treatment of Alzheimer’s disease (AD). Although EchA is clinically used to treat ophthalmic diseases and limit infarct formation during ischemia/reperfusion injury, anti-AChE effect of EchA is still unknown. In this study, we investigated the anti-AChE effect of EchA in vitro. EchA and its exhausted form which lost anti-oxidant capacity did not show any significant cytotoxicy on the H9c2 and A7r5 cells. EchA inhibited AChE with an irreversible and uncompetitive mode. In addition, EchA showed reactive oxygen species scavenging activity, particularly with nitric oxide. These findings indicate new therapeutic potential for EchA in treating reduced acetylcholine-related diseases including AD and provide an insight into developing new AChE inhibitors. PMID:24918454

  8. Acetylcholinesterase inhibitory activity of pigment echinochrome A from sea urchin Scaphechinus mirabilis.

    PubMed

    Lee, Sung Ryul; Pronto, Julius Ryan D; Sarankhuu, Bolor-Erdene; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P; Fedoreyev, Sergey A; Stonik, Valentin A; Han, Jin

    2014-06-01

    Echinochrome A (EchA) is a dark-red pigment of the polyhydroxynaphthoquinone class isolated from sea urchin Scaphechinus mirabilis. Acetylcholinesterase (AChE) inhibitors are used in the treatment of various neuromuscular disorders, and are considered as strong therapeutic agents for the treatment of Alzheimer's disease (AD). Although EchA is clinically used to treat ophthalmic diseases and limit infarct formation during ischemia/ reperfusion injury, anti-AChE effect of EchA is still unknown. In this study, we investigated the anti-AChE effect of EchA in vitro. EchA and its exhausted form which lost anti-oxidant capacity did not show any significant cytotoxicy on the H9c2 and A7r5 cells. EchA inhibited AChE with an irreversible and uncompetitive mode. In addition, EchA showed reactive oxygen species scavenging activity, particularly with nitric oxide. These findings indicate new therapeutic potential for EchA in treating reduced acetylcholine-related diseases including AD and provide an insight into developing new AChE inhibitors. PMID:24918454

  9. Effects of food origin and availability on sea urchin condition and feeding behaviour

    NASA Astrophysics Data System (ADS)

    Livore, Juan P.; Connell, Sean D.

    2012-02-01

    The origin of food is recognised to be an important trait for sedentary consumers that have little control over the source of their food. Elevated herbivory in sea urchins is often linked to poor gonad condition as provoked by reduced food availability, but there is little recognition of the possibility that the origin of food may contribute to their poor condition and elevated feeding. This study assesses the possibility that variation in food availability and origin may together affect urchin condition and feeding rates such that they account for more intensive grazing (by Heliocidaris erythrogramma) on sheltered than exposed coasts (South Australia). We experimentally tested the hypothesis that reduced food availability from sheltered coasts would result in poor gonad condition and greater feeding rate; whilst enhanced food availability from exposed coasts would result in better condition and reduced feeding rates. We found that reduced food had negative effects on condition and positive effects on feeding rates independently of coastal source. Greater food availability did not equate to better condition, rather it was the delivery of more food from exposed than sheltered coasts that translated into the better gonad condition and lower feeding rates. These results suggest that plant origin and availability could help explain the greater impacts of these urchins on sheltered coasts. Whilst other factors such as water energy and sea urchin density may contribute to variation in herbivory our results suggest that origin of food may also play a role in sea urchin condition and behaviour. Understanding how such traits link to large scale features of the environment may improve models that account for variation in strength of consumer effects across landscapes.

  10. Involvement of the cell-specific pigment genes pks and sult in bacterial defense response of sea urchins Strongylocentrotus intermedius.

    PubMed

    Kiselev, Konstantin V; Ageenko, Natalya V; Kurilenko, Valeria V

    2013-03-26

    Bacterial infections are one of the most important problems in mass aquaculture, causing the loss of millions of juvenile organisms. We isolated 22 bacterial strains from the cavity fluid of the sea urchin Strongylocentrotus pallidus and used phylogenetic analysis based on 16S rRNA gene sequences to separate the bacterial strains into 9 genera (Aliivibrio, Bizionia, Colwellia, Olleya, Paenibacillus, Photobacterium, Pseudoalteromonas, Shewanella, and Vibrio). Incubating Strongylocentrotus intermedius larvae with a strain from each of the 9 bacterial genera, we investigated the viability of the larvae, the amount of pigment cells, and the level of polyketide synthase (pks) and sulfotransferase (sult) gene expression. Results of the assay on sea urchin development showed that all bacterial strains, except Pseudoalteromonas and Bizionia, suppressed sea urchin development (resulting in retardation of the embryos' development with cellular disorders) and reduced cell viability. We found that pks expression in the sea urchin larvae after incubation with the bacteria of 9 tested genera was significantly increased, while the sult expression was increased only after the treatment with Pseudoalteromonas and Shewanella. Shikimic acid, which is known to activate the biosynthesis of naphthoquinone pigments, increased the tolerance of the sea urchin embryos to the bacteria. In conclusion, we show that the cell-specific pigment genes pks and sult are involved in the bacterial defense response of sea urchins. PMID:23548362

  11. Ecological energetics of the tropical sea urchin Diadema antillarum Philippi in Barbados, West Indies

    NASA Astrophysics Data System (ADS)

    Hawkins, Christopher M.; Lewis, John B.

    1982-12-01

    The common tropical sea urchin Diadema antillarum Philippi is the dominant herbivore on fringing coral reefs in Barbados, West Indies. The biological importance of Diadema as an agent of energy transfer was evaluated from energy budgets constructed for the population and for individuals of 10 size groups. Monthly energy budgets for urchins of various size groups balance within 1 kcal except for urchins of the largest size group examined. Approximately 20% of the monthly net benthic primary production of the fringing coral reef is consumed by Diadema. This percentage is considerably larger than the 7% reported for the consumption of benthic algal production by a population of the temperate water sea urchin, Strongylocentrotus droebachiensis, feeding in kelp beds but is lower than the 47% reported for the consumption of sea grass by the tropical urchin Lytechinus variegatus. Higher rates of secondary production of Diadema compared to that of Strongylocentrotus may be in part due to higher net and gross growth efficiencies exhibited by Diadema. It is apparent that Diadema is more efficient at converting its algal food resources into urchin biomass than is Strongylocentrotus of similar size. In comparison to Strongylocentrotus and Lytechinus, Diadema releases as much energy to the benthos in the form of fecal pellet detritus as do the other two species. The production of fecal pellet detritus is the most important pathway of energy transfer on the fringing coral reef. Fecal pellet detritus contributes approximately 26 kcal m -2 month -1 to the benthic community. This amount is equivalent to 7·4% of the monthly net primary production of the benthic algae or approximately 37% of the caloric intake of the urchin population. In addition fecal pellet detritus produced by Diadema contains about 10 times the caloric content of surface sediments found to the north and south of the fringing reef and approximately 1·7 times the caloric content of sediments within the reef. The

  12. Involvement of L(-)-rhamnose in sea urchin gastrulation: a live embryo assay.

    PubMed

    Smith, Tiffany N; Oppenheimer, Steven B

    2015-04-01

    The sea urchin embryo is a National Institutes of Health model system that has provided major developments, and is important in human health and disease. To obtain initial insights to identify glycans that mediate cellular interactions, Lytechinus pictus sea urchin embryos were incubated at 24 or 30 h post-fertilization with 0.0009-0.03 M alpha-cyclodextrin, melibiose, L(-)-rhamnose, trehalose, D(+)-xylose or L(-)-xylose in lower-calcium artificial sea water (pH 8.0, 15°C), which speeds the entry of molecules into the interior of the embryos. While α-cyclodextrin killed the embryos, and L(-)-xylose had small effects at one concentration tested, L(-)-rhamnose caused substantially increased numbers of unattached archenterons and exogastrulated embryos at low glycan concentrations after 18-24 h incubation with the sugar. The results were statistically significant compared with the control embryos in the absence of sugar (P < 0.05). The other sugars (melibiose, trehalose, D(+)-xylose) had no statistically significant effects whatsoever at any of the concentrations tested. In total, in the current study, 39,369 embryos were examined. This study is the first demonstration that uses a live embryo assay for a likely role for L(-)-rhamnose in sea urchin gastrula cellular interactions, which have interested investigators for over a century. PMID:24134935

  13. Effects of seawater acidification on gene expression: resolving broader-scale trends in sea urchins.

    PubMed

    Evans, Tyler G; Watson-Wynn, Priscilla

    2014-06-01

    Sea urchins are ecologically and economically important calcifying organisms threatened by acidification of the global ocean caused by anthropogenic CO2 emissions. Propelled by the sequencing of the purple sea urchin (Strongylocentrotus purpuratus) genome, profiling changes in gene expression during exposure to high pCO2 seawater has emerged as a powerful and increasingly common method to infer the response of urchins to ocean change. However, analyses of gene expression are sensitive to experimental methodology, and comparisons between studies of genes regulated by ocean acidification are most often made in the context of major caveats. Here we perform meta-analyses as a means of minimizing experimental discrepancies and resolving broader-scale trends regarding the effects of ocean acidification on gene expression in urchins. Analyses across eight studies and four urchin species largely support prevailing hypotheses about the impact of ocean acidification on marine calcifiers. The predominant expression pattern involved the down-regulation of genes within energy-producing pathways, a clear indication of metabolic depression. Genes with functions in ion transport were significantly over-represented and are most plausibly contributing to intracellular pH regulation. Expression profiles provided extensive evidence for an impact on biomineralization, epitomized by the down-regulation of seven spicule matrix proteins. In contrast, expression profiles provided limited evidence for CO2-mediated developmental delay or induction of a cellular stress response. Congruence between studies of gene expression and the ocean acidification literature in general validates the accuracy of gene expression in predicting the consequences of ocean change and justifies its continued use in future studies. PMID:25070868

  14. RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins.

    PubMed

    Piacentino, Michael L; Zuch, Daniel T; Fishman, Julie; Rose, Sviatlana; Speranza, Emily E; Li, Christy; Yu, Jia; Chung, Oliver; Ramachandran, Janani; Ferrell, Patrick; Patel, Vijeta; Reyna, Arlene; Hameeduddin, Hajerah; Chaves, James; Hewitt, Finnegan B; Bardot, Evan; Lee, David; Core, Amanda B; Hogan, John D; Keenan, Jessica L; Luo, Lingqi; Coulombe-Huntington, Jasmin; Blute, Todd A; Oleinik, Ekaterina; Ibn-Salem, Jonas; Poustka, Albert J; Bradham, Cynthia A

    2016-02-15

    The sea urchin larval skeleton offers a simple model for formation of developmental patterns. The calcium carbonate skeleton is secreted by primary mesenchyme cells (PMCs) in response to largely unknown patterning cues expressed by the ectoderm. To discover novel ectodermal cues, we performed an unbiased RNA-Seq-based screen and functionally tested candidates; we thereby identified several novel skeletal patterning cues. Among these, we show that SLC26a2/7 is a ventrally expressed sulfate transporter that promotes a ventral accumulation of sulfated proteoglycans, which is required for ventral PMC positioning and skeletal patterning. We show that the effects of SLC perturbation are mimicked by manipulation of either external sulfate levels or proteoglycan sulfation. These results identify novel skeletal patterning genes and demonstrate that ventral proteoglycan sulfation serves as a positional cue for sea urchin skeletal patterning. PMID:26755701

  15. Sperm-engulfing response of sea urchin egg surfaces inseminated with acrosome-reacted starfish sperm.

    PubMed

    Kyozuka, K; Osanai, K

    1988-10-01

    Sperm-egg interaction was examined in two interclass combinations of sea urchin (Strongylocentrotus nudus and Hemicentrotus pulcherrimus) eggs and starfish (Asterina pectinifera and Asterias amurensis) sperm. Cross-fertilization was unsuccessful between these combinations. When the vitelline coat-free sea urchin eggs were mixed with acrosome-reacted starfish sperm, the elongated microvilli on the egg surface wrapped the sperm head. This sperm-engulfing response observed on the denuded egg surface was induced only in sperm immediately after initiation of the acrosome reaction. Further fertilization events, such as gamete membrane fusion or discharge of cortical granules, did not proceed. These observations suggest that acrosome-reacted sperm can induce a local response on the heterologous egg surface, that is independent of gamete membrane fusion and egg activation. PMID:3229729

  16. Arylsulfatase of sea urchin sperm--distribution of arylsulfatase in the gonads and gametes of echinoderms.

    PubMed

    Moriya, T; Hoshi, M

    1979-01-01

    1. Fairly high activities of arylsulfatase are found in the sperm and mature testes of all the sea urchins studied; Strongylocentrotus intermedius, Strongylocentrotus nudus, Hemicentrotus pulcherrimus and Anthocidaris crassispina, whereas the activities in the ovaries and eggs of these animals are low. 2. Neither the sand dollar, Clypeaster japonicus nor the starfishes, Asterias amurensis and Asterina pectinifera prove to have considerable activities of the enzyme in their gonads and gametes. 3. Most of the activity of arylsulfatase in the sperm of S. intermedius is found in the seminal plasma, but the significant activity is bound to the spermatozoa. 4. Part, if not all, of the spermatozoa-borne arylsulfatase is suggested to exist on the surface of spermatozoa or in the acrosome or both. 5. The ubiquitous distribution of sperm arylsulfatase in sea urchins on the contrary to its absence in starfish or sand dollar is discussed in connection with the penetration of sperm through egg investments. PMID:318308

  17. Male chromosomes of sea urchin hybrid andromerogones created with cryopreserved sperm.

    PubMed

    Saotome, Kyoko; Kamimura, Ryuichi; Kurokura, Hisashi; Hirano, Reijiro

    2002-02-01

    We developed a method for preparing male chromosomes from sea urchin hybrid andromerogones created with cryopreserved sperm. We obtained hybrid andromerogones by heterospermic insemination of Hemicentrotus pulcherrimus non-nucleate egg fragments produced by centrifuging unfertilized eggs in a stepwise saccharose density gradient. The hybrid andromerogones showed cleavage rates of 1%-93%, cleaved successively into two- and four- blastomeres and developed to early blastulae. The morulae or early blastulae were treated with colchicine (0.1-1.0 mg/ml), dissociated into single blastomeres by pippeting, swollen with 7%-10% sodium citrate for 10 min and fixed with methanol:acetic acid (3:1). The fixed cells were dropped on slides and air-dried. The andromerogones for 5 sperm species showed a half of their respective diploid chromosome numbers without chromosome elimination. This method is applicable for analysis of the haploid male chromosome complement in sea urchin species for which only sperm can be obtained. PMID:12012781

  18. Reduced O2 and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation.

    PubMed

    Agca, Cavit; Klein, William H; Venuti, Judith M

    2009-07-01

    The sea urchin oral-aboral (OA) axis is established in part by Nodal signaling. The OA axis is also influenced by treatments affecting respiration and Nodal transcription is influenced by redox-dependent transcription factors. This suggests that intracellular redox state plays a role in OA axis specification. Since cellular redox state can be altered by the formation of excess reactive oxygen species (ROS), and hypoxia and paraquat generate ROS in cells, we asked whether these treatments affected specification of the OA axis and Nodal expression. Embryos cultured under conditions that elevate ROS, demonstrate perturbed ectoderm specification, but other territories are not affected. Immunohistochemical and Q-RT-PCR analyses revealed that both oral and aboral ectoderm genes are downregulated. Our results argue that elevating ROS in sea urchin embryos by these treatments blocks early steps in ectoderm differentiation preceding the polarization of the ectoderm into oral and aboral territories. PMID:19517573

  19. High ordered biomineralization induced by carbon nanoparticles in the sea urchin Paracentrotus lividus

    NASA Astrophysics Data System (ADS)

    Manno, Daniela; Carata, Elisabetta; Tenuzzo, Bernadetta A.; Panzarini, Elisa; Buccolieri, Alessandro; Filippo, Emanuela; Rossi, Marco; Serra, Antonio; Dini, Luciana

    2012-12-01

    A surprising and unexpected biomineralization process was observed during toxicological assessment of carbon nanoparticles on Paracentrotus lividus (sea urchin) pluteus larvae. The larvae activate a process of defense against external material, by incorporating the nanoparticles into microstructures of aragonite similarly to pearl oysters. Aiming at a better understanding of this phenomenon, the larvae were exposed to increasing concentrations of carbon nanoparticles and the biomineralization products were analyzed by electron microscopy, x-ray diffraction and Raman spectroscopy. In order to evaluate the possible influence of Sp-CyP-1 expression on this biomineralization process by larvae, analyses of gene expression (Sp-CyP-1) and calcein labeling were performed. Overall, we report experimental evidence about the capability of carbon nanoparticles to induce an increment of Sp-CyP-1 expression with the consequent activation of a biomineralization process leading to the production of a new pearl-like biomaterial never previously observed in sea urchins.

  20. Spermidine is bound to a unique protein in early sea urchin embryos

    SciTech Connect

    Canellakis, Z.N.; Bondy, P.K.; Infante, A.A.

    1985-11-01

    Spermidine is rapidly taken up and becomes bound to protein during the very early hours of sea urchin embryogenesis. During the first 6 hr after fertilization of freshly obtained sea urchin eggs (Strongylocentrotus purpuratus), which are incubated in the presence of exogenous (/sup 3/H)-spermidine, up to 7% of the total cell-associated spermidine appears uniquely as spermidine bound in macromolecular form. This unique protein containing spermidine migrates as a single radioactive band in gel electrophoresis. It has a Mr of approximately equal to 30,000 and is readily distinguishable from the protein initiation factor eIF-4D, which has a Mr of 18,000, the only other identifiable protein known to date to be posttranslationally modified by polyamines.

  1. Developmental gene regulatory networks in sea urchins and what we can learn from them.

    PubMed

    Martik, Megan L; Lyons, Deirdre C; McClay, David R

    2016-01-01

    Sea urchin embryos begin zygotic transcription shortly after the egg is fertilized.  Throughout the cleavage stages a series of transcription factors are activated and, along with signaling through a number of pathways, at least 15 different cell types are specified by the beginning of gastrulation.  Experimentally, perturbation of contributing transcription factors, signals and receptors and their molecular consequences enabled the assembly of an extensive gene regulatory network model.  That effort, pioneered and led by Eric Davidson and his laboratory, with many additional insights provided by other laboratories, provided the sea urchin community with a valuable resource.  Here we describe the approaches used to enable the assembly of an advanced gene regulatory network model describing molecular diversification during early development.  We then provide examples to show how a relatively advanced authenticated network can be used as a tool for discovery of how diverse developmental mechanisms are controlled and work. PMID:26962438

  2. Effects of metal ions and CCl/sub 4/ on sea urchin embryo (Paracentrotus lividus)

    SciTech Connect

    Congiu, A.M.; Calendi, E.; Ugazio, G.

    1984-02-01

    The determination of embryotoxicity is an experimental tool for detecting the risks of environmental pollutants. In this study, fertilized eggs of sea urchin have been observed morphologically during exposure to heavy metal salts or carbon tetrachloride, with the purpose of testing possible differences in toxicity of various classes of poisons. Mercuric chloride is the most active salt, still harmful at 0.25 x 10(-6) M, while potassium dichromate, cadmium chloride and lead nitrate block embryo development at concentrations ranging between 0.25 x 10(-4) and 0.25 x 10(-5) M. Carbon tetrachloride per se does not affect the gastrulation at concentrations up to 3,520 ppm, and fails in potentiating the toxicity of the studied metal salts. The selective susceptibility of the development phases of sea urchin embryos to different compounds renders this simple morphological study a sensitive and reliable model for predicting the toxicity of environmental pollutants.

  3. Characteristics of palindromic sequences in DNA of the sea urchin Stronglyocentrotus intermedius

    SciTech Connect

    Brykov, V.A.; Kukhlevskii, A.D.

    1986-03-20

    The fraction of palindromic sequences in the nuclear DNA of the sea urchin S. intermedius was characterized. Using chromatography on hydroxyapatite and treatment with S1 nuclease, it was shown that the fraction of palindromic sequences more than doubles when the sodium concentration in solution is increased or the temperature of reassociation is lowered. The increase is due to the involvement of inverted repeats in reassociation, which are characterized by a substantial nonhomologous character and/or the presence of an extended intervening DNA sequence. It was found by the method of reassociation of a nicked palindrome fraction with an excess of total homologous DNA that most of the inverted repeats in the sea urchin genome are unique sequences. The complexity of the palindrome fraction was estimated at 8.2 x 10/sup 7/ nucleotide pairs, and the number of palindromes per haploid genome approx. 500,000.

  4. Developmental gene regulatory networks in sea urchins and what we can learn from them

    PubMed Central

    Martik, Megan L.; Lyons, Deirdre C.; McClay, David R.

    2016-01-01

    Sea urchin embryos begin zygotic transcription shortly after the egg is fertilized.  Throughout the cleavage stages a series of transcription factors are activated and, along with signaling through a number of pathways, at least 15 different cell types are specified by the beginning of gastrulation.  Experimentally, perturbation of contributing transcription factors, signals and receptors and their molecular consequences enabled the assembly of an extensive gene regulatory network model.  That effort, pioneered and led by Eric Davidson and his laboratory, with many additional insights provided by other laboratories, provided the sea urchin community with a valuable resource.  Here we describe the approaches used to enable the assembly of an advanced gene regulatory network model describing molecular diversification during early development.  We then provide examples to show how a relatively advanced authenticated network can be used as a tool for discovery of how diverse developmental mechanisms are controlled and work. PMID:26962438

  5. Swimming speed alteration in the early developmental stages of Paracentrotus lividus sea urchin as ecotoxicological endpoint.

    PubMed

    Morgana, Silvia; Gambardella, Chiara; Falugi, Carla; Pronzato, Roberto; Garaventa, Francesca; Faimali, Marco

    2016-04-01

    Behavioral endpoints have been used for decades to assess chemical impacts at concentrations unlikely to cause mortality. With recently developed techniques, it is possible to investigate the swimming behavior of several organisms under laboratory conditions. The aims of this study were: i) assessing for the first time the feasibility of swimming speed analysis of the early developmental stage sea urchin Paracentrotus lividus by an automatic recording system ii) investigating any Swimming Speed Alteration (SSA) on P. lividus early stages exposed to a chemical reference; iii) identifying the most suitable stage for SSA test. Results show that the swimming speed of all the developmental stages was easily recorded. The swimming speed was inhibited as a function of toxicant concentration. Pluteus were the most appropriate stage for evaluating SSA in P. lividus as ecotoxicological endpoint. Finally, swimming of sea urchin early stages represents a sensitive endpoint to be considered in ecotoxicological investigations. PMID:26826671

  6. Time course proteomic profiling of cellular responses to immunological challenge in the sea urchin, Heliocidaris erythrogramma.

    PubMed

    Dheilly, Nolwenn M; Haynes, Paul A; Raftos, David A; Nair, Sham V

    2012-06-01

    Genome sequences and high diversity cDNA arrays have provided a detailed molecular understanding of immune responses in a number of invertebrates, including sea urchins. However, complementary analyses have not been undertaken at the level of proteins. Here, we use shotgun proteomics to describe changes in the abundance of proteins from coelomocytes of sea urchins after immunological challenge and wounding. The relative abundance of 345 reproducibly identified proteins were measured 6, 24 and 48 h after injection. Significant changes in the relative abundance of 188 proteins were detected. These included pathogen-binding proteins, such as the complement component C3 and scavenger receptor cysteine rich proteins, as well as proteins responsible for cytoskeletal remodeling, endocytosis and intracellular signaling. An initial systemic reaction to wounding was followed by a more specific response to immunological challenge involving proteins such as apolipophorin, dual oxidase, fibrocystin L, aminopeptidase N and α-2-macroglobulin. PMID:22446733

  7. In the beginning...animal fertilization and sea urchin development.

    PubMed

    Briggs, Elissa; Wessel, Gary M

    2006-12-01

    What I most wished to discover [in my study] was the role that spermatozoids play in fertilization. In order to determine this, I put a droplet of red liquid, and at a small distance, a similar droplet of white liquid in a little trough on the viewing slide of the microscope; then, after covering all of this with a thin strip of glass, I added a drop of sea water. I was then able to watch the spermatozoids advance progressively towards the eggs. Some of [the eggs] were soon encircled by a compact mass of moving corpuscles; others, farther away, only found themselves in contact with a very small number [of sperm]; in both cases, I saw the signs of fertilization. The first apparent effect of this union is the almost immediate appearance of a perfectly transparent envelope that encircles the yolk at a certain distance, which is manifested by the appearance of a circular line. I saw this envelope manifest when in contact with a very small number of spermatozoids (three or four, sometimes even one only). PMID:17070796

  8. The immune gene repertoire encoded in the purple sea urchin genome.

    PubMed

    Hibino, Taku; Loza-Coll, Mariano; Messier, Cynthia; Majeske, Audrey J; Cohen, Avis H; Terwilliger, David P; Buckley, Katherine M; Brockton, Virginia; Nair, Sham V; Berney, Kevin; Fugmann, Sebastian D; Anderson, Michele K; Pancer, Zeev; Cameron, R Andrew; Smith, L Courtney; Rast, Jonathan P

    2006-12-01

    Echinoderms occupy a critical and largely unexplored phylogenetic vantage point from which to infer both the early evolution of bilaterian immunity and the underpinnings of the vertebrate adaptive immune system. Here we present an initial survey of the purple sea urchin genome for genes associated with immunity. An elaborate repertoire of potential immune receptors, regulators and effectors is present, including unprecedented expansions of innate pathogen recognition genes. These include a diverse array of 222 Toll-like receptor (TLR) genes and a coordinate expansion of directly associated signaling adaptors. Notably, a subset of sea urchin TLR genes encodes receptors with structural characteristics previously identified only in protostomes. A similarly expanded set of 203 NOD/NALP-like cytoplasmic recognition proteins is present. These genes have previously been identified only in vertebrates where they are represented in much lower numbers. Genes that mediate the alternative and lectin complement pathways are described, while gene homologues of the terminal pathway are not present. We have also identified several homologues of genes that function in jawed vertebrate adaptive immunity. The most striking of these is a gene cluster with similarity to the jawed vertebrate Recombination Activating Genes 1 and 2 (RAG1/2). Sea urchins are long-lived, complex organisms and these findings reveal an innate immune system of unprecedented complexity. Whether the presumably intense selective processes that molded these gene families also gave rise to novel immune mechanisms akin to adaptive systems remains to be seen. The genome sequence provides immediate opportunities to apply the advantages of the sea urchin model toward problems in developmental and evolutionary immunobiology. PMID:17027739

  9. Aggregation of sea urchin phagocytes is augmented in vitro by lipopolysaccharide.

    PubMed

    Majeske, Audrey J; Bayne, Christopher J; Smith, L Courtney

    2013-01-01

    Development of protocols and media for culturing immune cells from marine invertebrates has not kept pace with advancements in mammalian immune cell culture, the latter having been driven by the need to understand the causes of and develop therapies for human and animal diseases. However, expansion of the aquaculture industry and the diseases that threaten these systems creates the need to develop cell and tissue culture methods for marine invertebrates. Such methods will enable us to better understand the causes of disease outbreaks and to develop means to avoid and remedy epidemics. We report a method for the short-term culture of phagocytes from the purple sea urchin, Strongylocentrotus purpuratus, by modifying an approach previously used to culture cells from another sea urchin species. The viability of cultured phagocytes from the purple sea urchin decreases from 91.6% to 57% over six days and phagocyte morphology changes from single cells to aggregates leading to the formation of syncytia-like structures. This process is accelerated in the presence of lipopolysaccharide suggesting that phagocytes are capable of detecting this molecular pattern in culture conditions. Sea urchin immune response proteins, called Sp185/333, are expressed on the surface of a subset of phagocytes and have been associated with syncytia-like structures. We evaluated their expression in cultured phagocytes to determine their possible role in cell aggregation and in the formation of syncytia-like structures. Between 0 and 3 hr, syncytia-like structures were observed in cultures when only ~10% of the cells were positive for Sp185/333 proteins. At 24 hr, ~90% of the nuclei were Sp185/333-positive when all of the phagocytes had aggregated into syncytia-like structures. Consequently, we conclude that the Sp185/333 proteins do not have a major role in initiating the aggregation of cultured phagocytes, however the Sp185/333 proteins are associated with the clustered nuclei within the

  10. Sea urchin-like cobalt-iron phosphide as an active catalyst for oxygen evolution reaction.

    PubMed

    Mendoza-Garcia, Adriana; Su, Dong; Sun, Shouheng

    2016-02-14

    Sea urchin-like (CoxFe1-x)2P shows Co/Fe-composition dependent catalysis for oxygen evolution reaction (OER) in 0.1 M KOH. The (Co0.54Fe0.46)2P is the most efficient OER catalyst, reaching 10 mA cm(-2) at an overpotential of 0.37 V (vs. RHE). The report offers a new synergistic approach to tune and optimize the electrocatalysis of OER. PMID:26810219

  11. Multidisciplinary screening of toxicity induced by silica nanoparticles during sea urchin development.

    PubMed

    Gambardella, Chiara; Morgana, Silvia; Bari, Gaetano Di; Ramoino, Paola; Bramini, Mattia; Diaspro, Alberto; Falugi, Carla; Faimali, Marco

    2015-11-01

    The aim of this study was to investigate the potential toxicity of Silica nanoparticles (SiO2 NPs) in seawater by using the sea urchin Paracentrotus lividus as biological model. SiO2 NPs exposure effects were identified on the sperm of the sea urchin through a multidisciplinary approach, combining developmental biology, ecotoxicology, biochemistry, and microscopy analyses. The following responses were measured: (i) percentage of eggs fertilized by exposed sperm; (ii) percentage of anomalies and undeveloped embryos and larvae; (iii) enzyme activity alterations (acetylcholinesterase, AChE) in the early developmental stages, namely gastrula and pluteus. Sperms were exposed to seawater containing SiO2 NPs suspensions ranging from 0.0001mg/L to 50mg/L. Fertilization ability was not affected at any concentration, whereas a significant percentage of anomalies in the offspring were observed and quantified by means of EC50 at gastrula stage, including undeveloped and anomalous embryos (EC50=0.06mg/L), and at pluteus stage, including skeletal anomalies and delayed larvae (EC50=0.27mg/L). Moreover, morphological anomalies were observed in larvae at pluteus stage, by immunolocalizing molecules involved in larval development and neurotoxicity effects - such as acetylated tubulin and choline acetyltransferase (ChAT) - and measuring AChE activity. Exposure of sea urchins to SiO2 NPs caused neurotoxic damage and a decrease of AChE expression in a non-dose-dependent manner. In conclusion, through the multidisciplinary approach used in this study SiO2 NPs toxicity in sea urchin offspring could be assessed. Therefore, the measured responses are suitable for detecting embryo- and larval- toxicity induced by these NPs. PMID:26291678

  12. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius.

    PubMed

    Torgasheva, Natalya A; Menzorova, Natalya I; Sibirtsev, Yurii T; Rasskazov, Valery A; Zharkov, Dmitry O; Nevinsky, Georgy A

    2016-06-21

    In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability. PMID:27158700

  13. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo.

    PubMed

    Range, Ryan C; Wei, Zheng

    2016-05-01

    Anterior signaling centers help specify and pattern the early anterior neuroectoderm (ANE) in many deuterostomes. In sea urchin the ANE is restricted to the anterior of the late blastula stage embryo, where it forms a simple neural territory comprising several types of neurons as well as the apical tuft. Here, we show that during early development, the sea urchin ANE territory separates into inner and outer regulatory domains that express the cardinal ANE transcriptional regulators FoxQ2 and Six3, respectively. FoxQ2 drives this patterning process, which is required to eliminate six3 expression from the inner domain and activate the expression of Dkk3 and sFRP1/5, two secreted Wnt modulators. Dkk3 and low expression levels of sFRP1/5 act additively to potentiate the Wnt/JNK signaling pathway governing the positioning of the ANE territory around the anterior pole, whereas high expression levels of sFRP1/5 antagonize Wnt/JNK signaling. sFRP1/5 and Dkk3 levels are rigidly maintained via autorepressive and cross-repressive interactions with Wnt signaling components and additional ANE transcription factors. Together, these data support a model in which FoxQ2 initiates an anterior patterning center that implements correct size and positions of ANE structures. Comparisons of functional and expression studies in sea urchin, hemichordate and chordate embryos reveal striking similarities among deuterostome ANE regulatory networks and the molecular mechanism that positions and defines ANE borders. These data strongly support the idea that the sea urchin embryo uses an ancient anterior patterning system that was present in the common ambulacrarian/chordate ancestor. PMID:26952978

  14. An ultrastructural study of testes permeability in sea urchins, Strongylocentrotus intermedius.

    PubMed

    Kalachev, Alexander V

    2015-01-01

    Permeability of testes in sea urchins, Strongylocentrotus intermedius, was investigated by using an electron-opaque tracer, lanthanum nitrate. This tracer is able to enter the basal compartment of germinative epithelium, where developing germ cells are located. However, its ability to penetrate the gonadal lumen was reduced. An incomplete permeability barrier between the basal compartment and the gonadal lumen is supposed to exist in testes of S. intermedius. PMID:25310892

  15. [Genome sequencing in the sea urchin embryo: what is new concerning the cell cycle?].

    PubMed

    Genevière, Anne-Marie; Aze, Antoine; Even, Yasmine

    2007-01-01

    Sea urchin is a classical research model system in developmental biology; moreover, the external fertilization and growth of embryos, their rapid division cycle, their transparency and the accessibility of these embryos to molecular visualization methods, made them good specimens to analyze the regulatory mechanisms of cell division. These features as well as the phylogenetic position of sea urchin, close to vertebrates but in an outgroup within the deuterostomes, led scientists working on this model to sequence the genome of the species S. purpuratus. The genome contains a full repertoire of cell cycle control genes. A comparison of this toolkit with those from vertebrates, nematodes, drosophila, as well as tunicates, provides new insight into the evolution of cell cycle control. While some gene subtypes have undergone lineage-specific expansions in vertebrates (i.e. cyclins, mitotic kinases,...), others seem to be lost in vertebrates, for instance the novel cyclin B identified in S. purpuratus. On the other hand, some genes which were previously thought to be vertebrate innovations, are also found in sea urchins (i.e. MCM9). To note is also the absence of cell cycle inhibitors of the INK type, which are apparently confined to vertebrates. The uncovered genomic repertoire of cell-cycle regulators will thus provide molecular tools that should further enhance future research on cell cycle control and developmental regulation in this model. PMID:17762822

  16. Cryopreservation of sea urchin embryos (Paracentrotus lividus) applied to marine ecotoxicological studies.

    PubMed

    Paredes, Estefanía; Bellas, Juan

    2009-12-01

    Current strategies for marine pollution monitoring are based on the integration of chemical and biological techniques. The sea urchin embryo-larval bioassays are among the biological methods most widely used worldwide. Cryopreservation of early embryos of sea urchins could provide a useful tool to overcome one of the main limitations of such bioassays, the availability of high quality biological material all year round. The present study aimed to determine the suitability of several permeant (dimethyl sulfoxide, Me(2)SO; propylene glycol, PG; and ethylene glycol, EG) and non-permeant (trehalose, TRE; polyvinylpyrrolidone, PVP) cryoprotectant agents (CPAs) and their combination, for the cryopreservation of eggs and embryos of the sea urchin Paracentrotus lividus. On the basis of the CPAs toxicity, PG and EG, in combination with PVP, seem to be most suitable for the cryopreservation of P. lividus eggs and embryos. Several freezing procedures were also assayed. The most successful freezing regime consisted on cooling from 4 to -12 degrees C at 1 degrees C/min, holding for 2 min for seeding, cooling to -20 degrees C at 0.5 degrees C/min, and then cooling to -35 degrees C at 1 degrees C/min. Maximum normal larvae percentages of 41.5% and 68.5%, and maximum larval growth values of 42.9% and 60.5%, were obtained for frozen fertilized eggs and frozen blastulae, respectively. PMID:19786009

  17. The use of cryopreserved sea urchin embryos (Paracentrotus lividus) in marine quality assessment.

    PubMed

    Paredes, E; Bellas, J

    2015-06-01

    We have established for first time an ecotoxicological bioassay using cryopreserved sea urchin embryos (Paracentotus lividus) and provided a comparison to the already standardized sea urchin embryo-larval bioassay, using selected (organic and inorganic) pollutants and sediment elutriates from 4 different locations from Ria de Vigo harbour (Galicia, NW Iberian Peninsula). A cryopreservation protocol was designed in order to enable the successful cryopreservation and cryobanking of gametes and embryos to be used for marine quality assessment and ensure the accessibility to high quality reproductive material all year round, as an option to conditioning adults for out of season reproduction. The calculated EC50 using the cryopreserved blastula was 53.7 μg L(-1) for copper, 81.0 μg L(-1) for lead, 300.6 μg L(-1) for BP-3 and 300.6 μg L(-1) for 4-MBC. The sensitivity of the classic sea urchin embryo-larval bioassay was compared with the bioassay conducted with cryopreserved blastula. The results showed that the use of cryopreserved blastula bioassay allows detecting lower concentrations of pollutants in comparison with the classic bioassay. PMID:25725396

  18. Microgravity Effecs During Fertilization, Cell Division, Development, and Calcium Metabolism in Sea Urchins

    NASA Technical Reports Server (NTRS)

    Schatten, Heide

    1999-01-01

    Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. For long-term exposure to space it is crucial to understand the underlying mechanisms for altered physiological functions. Fundamental occurrences in cell biology which are likely to depend on gravity include cytoskeletal dynamics, chromatin and centrosome cycling, and ion immobilization. These events can be studied during fertilization and embryogenesis within invertebrate systems. We have chosen the sea urchin system to study the effects of microgravity on cytoskeletal processes and calcium metabolism during fertilization, cell division, development, and embryogenesis. Experiments during an aircraft parabolic flight (KC-135) demonstrated: (1) the viability of sea urchin eggs prior to fertilization, (2) the suitability of our specimen containment system, (3) the feasibility of fertilization in a reduced gravity environment (which was achieved during 25 seconds of reduced gravity under parabolic flight conditions). Two newly developed pieces of spaceflight hardware made further investigations possible on a spaceflight (STS-77); (1) the Aquatic Research Facility (ARF), and (2) the Fertilization Syringe Unit (FSU). The Canadian Space Agency developed ARF to conduct aquatic spaceflight experiments requiring controlled conditions of temperature, humidity, illumination, and fixation at predetermined time points. It contained a control centrifuge which simulated the 1 g environment of earth during spaceflight. The FSU was developed at the Kennedy Space Center (KSC) by the Bionetics Corporation specifically to enable the crew to perform sea urchin fertilization operations in space.

  19. Primary cell cultures from sea urchin ovaries: a new experimental tool.

    PubMed

    Mercurio, Silvia; Di Benedetto, Cristiano; Sugni, Michela; Candia Carnevali, M Daniela

    2014-02-01

    In the present work, primary cell cultures from ovaries of the edible sea urchin Paracentrotus lividus were developed in order to provide a simple and versatile experimental tool for researches in echinoderm reproductive biology. Ovary cell phenotypes were identified and characterized by different microscopic techniques. Although cell cultures could be produced from ovaries at all stages of maturation, the cells appeared healthier and viable, displaying a higher survival rate, when ovaries at early stages of gametogenesis were used. In terms of culture medium, ovarian cells were successfully cultured in modified Leibovitz-15 medium, whereas poor results were obtained in minimum essential medium Eagle and medium 199. Different substrates were tested, but ovarian cells completely adhered only on poly-L-lysine. To improve in vitro conditions and stimulate cell proliferation, different serum-supplements were tested. Fetal calf serum and an originally developed pluteus extract were detrimental to cell survival, apparently accelerating processes of cell death. In contrast, cells cultured with sea urchin egg extract appeared larger and healthier, displaying an increased longevity that allowed maintaining them for up to 1 month. Overall, our study provides new experimental bases and procedures for producing successfully long-term primary cell cultures from sea urchin ovaries offering a good potential to study echinoid oogenesis in a controlled system and to investigate different aspects of echinoderm endocrinology and reproductive biology. PMID:24002666

  20. Pigment cell differentiation in sea urchin blastula-derived primary cell cultures.

    PubMed

    Ageenko, Natalya V; Kiselev, Konstantin V; Dmitrenok, Pavel S; Odintsova, Nelly A

    2014-07-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  1. Morphological evolution in sea urchin development: hybrids provide insights into the pace of evolution.

    PubMed

    Byrne, Maria; Voltzow, Janice

    2004-04-01

    Hybridisations between related species with divergent ontogenies can provide insights into the bases for evolutionary change in development. One example of such hybridisations involves sea urchin species that exhibit either standard larval (pluteal) stages or those that develop directly from embryo to adult without an intervening feeding larval stage. In such crosses, pluteal features were found to be restored in fertilisations of the eggs of some direct developing sea urchins (Heliocidaris erythrogramma) with the sperm of closely (Heliocidaris tuberculata) and distantly (Pseudoboletia maculata) related species with feeding larvae. Such results can be argued to support the punctuated equilibrium model-conservation in pluteal regulatory systems and a comparatively rapid switch to direct development in evolution.1,2 Generation of hybrids between distantly related direct developers may, however, indicate evolutionary convergence. The 'rescue' of pluteal features by paternal genomes may require maternal factors from H. erythrogramma because the larva of this species has pluteal features. In contrast, pluteal features were not restored in hybridisations with the eggs of Holopneustes purpurescens, which lacks pluteal features. How much of pluteal development can be lost before it cannot be rescued in such crosses? The answer awaits hybridisations among indirect and direct developing sea urchins differing in developmental phenotype, in parallel with investigations of the genetic programs involved. PMID:15057932

  2. Pigment Cell Differentiation in Sea Urchin Blastula-Derived Primary Cell Cultures

    PubMed Central

    Ageenko, Natalya V.; Kiselev, Konstantin V.; Dmitrenok, Pavel S.; Odintsova, Nelly A.

    2014-01-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  3. Cell mediated immune response of the Mediterranean sea urchin Paracentrotus lividus after PAMPs stimulation.

    PubMed

    Romero, A; Novoa, B; Figueras, A

    2016-09-01

    The Mediterranean sea urchin (Paracentrotus lividus) is of great ecological and economic importance for the European aquaculture. Yet, most of the studies regarding echinoderm's immunological defense mechanisms reported so far have used the sea urchin Strongylocentrotus purpuratus as a model, and information on the immunological defense mechanisms of Paracentrotus lividus and other sea urchins, is scarce. To remedy this gap in information, in this study, flow cytometry was used to evaluate several cellular immune mechanisms, such as phagocytosis, cell cooperation, and ROS production in P. lividus coelomocytes after PAMP stimulation. Two cell populations were described. Of the two, the amoeboid-phagocytes were responsible for the phagocytosis and ROS production. Cooperation between amoeboid-phagocytes and non-adherent cells resulted in an increased phagocytic response. Stimulation with several PAMPs modified the phagocytic activity and the production of ROS. The premise that the coelomocytes were activated by the bacterial components was confirmed by the expression levels of two cell mediated immune genes: LPS-Induced TNF-alpha Factor (LITAF) and macrophage migration inhibitory factor (MIF). These results have helped us understand the cellular immune mechanisms in P. lividus and their modulation after PAMP stimulation. PMID:27113124

  4. Sea urchin tooth mineralization: Calcite present early in the aboral plumula

    PubMed Central

    Stock, Stuart R.; Veis, Arthur; Xiao, Xianghui; Almer, Jonathan D.; Dorvee, Jason R.

    2012-01-01

    In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: When and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron x-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth. PMID:22940703

  5. [Standardization of larval development of the sea urchin, Paracentrotus lividus, as tool for the assessment sea water quality].

    PubMed

    Pétinay, Stéphanie; Chataigner, Claire; Basuyaux, Olivier

    2009-12-01

    All stages of development of the sea urchin are of interest in ecotoxicology; the largest number of prior works concerns studies on gametes. Previous studies indicated that the use of sea urchin larvae was difficult because of the need to obtain the parent generations and good quality gametes. Progress in sea urchin culture has allowed one to standardize the method. The proposed technique is based on an evaluation of the number of non-developing fertilized eggs, on the frequency of malformations, and on the length of the larvae at 96 hours, using parents raised under well-controlled conditions. Temperature (18-22 degrees C), salinity (28-34 ppt) and pH (8-8.4) have been fixed to standardize the proposed biological test. Thirty micrograms per litre of copper reduce significantly the length of the larvae and could be used as a positive control. On the other hand, reconstituted sea water permits an optimal development of the larvae and may be used as negative control. A seasonal follow-up of water quality has been achieved to validate the use of this technique in a surveillance network of water quality. The method may be used whatever the salinity, including fresh and brackish waters. PMID:19931848

  6. Effect of Diets Supplemented with Different Sources of Astaxanthin on the Gonad of the Sea Urchin Anthocidaris crassispina

    PubMed Central

    Peng, Juan; Yuan, Jian-Ping; Wang, Jiang-Hai

    2012-01-01

    The effect of the microalgae Haematococcus pluvialis and Chorella zofingiensis, and synthetic astaxanthin on the gonad of the sea urchin Anthocidaris crassispina was studied. The basal diet was supplemented with H. pluvialis, C. zofingiensis, or synthetic astaxanthin, at two levels of astaxanthin (approximately 400 mg/kg and 100 mg/kg), to obtain the experimental diets HP1, HP2, CZ1, CZ2, AST1, and AST2, respectively, for two months of feeding experiment. The results showed that the concentrations of astaxanthin in the gonads of the sea urchins fed these experimental diets ranged from 0.15 to 3.01 mg/kg dry gonad weight. The higher astaxanthin levels (>2.90 mg/kg) were found in the gonads of the sea urchins fed the diets HP1 (containing 380 mg/kg of astaxanthins, mostly mono- and diesters) and AST1 (containing 385 mg/kg of synthetic astaxanthin). The lowest astaxanthin level (0.15 mg/kg) was detected in the gonads of the sea urchins fed the diet CZ2 (containing 98 mg/kg of astaxanthins, mostly diesters). Furthermore, the highest canthaxanthin level (7.48 mg/kg) was found in the gonads of the sea urchins fed the diet CZ1 (containing 387 mg/kg of astaxanthins and 142 mg/kg of canthaxanthin), suggesting that astaxanthins, especially astaxanthin esters, might not be assimilated as easily as canthaxanthin by the sea urchins. Our results show that sea urchins fed diets containing astaxanthin pigments show higher incorporation of these known antioxidant constituents, with the resultant seafood products therefore being of potential higher nutritive value. PMID:23016124

  7. Embryonic, Larval, and Early Juvenile Development of the Tropical Sea Urchin, Salmacis sphaeroides (Echinodermata: Echinoidea)

    PubMed Central

    Rahman, M. Aminur; Yusoff, Fatimah Md.; Arshad, A.; Shamsudin, Mariana Nor; Amin, S. M. N.

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10−5 dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition. PMID:23055824

  8. Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea).

    PubMed

    Rahman, M Aminur; Yusoff, Fatimah Md; Arshad, A; Shamsudin, Mariana Nor; Amin, S M N

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10(-5) dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition. PMID:23055824

  9. Sea urchins have teeth? A review of their microstructure, biomineralization, development and mechanical properties

    PubMed Central

    Stock, Stuart R.

    2015-01-01

    Sea urchins possess a set of five teeth which are self-sharpening and which continuously replace material lost through abrasion. The continuous replacement dictates that each tooth consists of the range of developmental states from discrete plates in the plumula, the least mineralized and least mature portion, to plates and needle-prisms separated by cellular syncytia at the beginning of the tooth shaft to a highly dense structure at the incisal end. The microstructures and their development are reviewed prior to a discussion of current understanding of the biomineralization processes operating during tooth formation. For example, the mature portions of each tooth consist of single crystal calcite but the early stages of mineral formation (e.g. solid amorphous calcium carbonate, ions in solution) continue to be investigated. The second stage mineral that cements the disparate plates and prisms together has a much higher Mg content than the first stage prisms and needles and allows the tooth to be self-sharpening. Mechanically, the urchin tooth’s calcite performs better than inorganic calcite, and aspects of tooth functionality that are reviewed include the materials properties themselves and the role of the orientations of the plates and prisms relative to the axes of the applied loads. Although the properties and microarchitecture of sea urchin teeth or other mineralized tissues are often described as optimized, this view is inaccurate because these superb solutions to the problem of constructing functional structures are intermediaries not endpoints of evolution. PMID:24437604

  10. Sea urchin overgrazing of seagrasses: A review of current knowledge on causes, consequences, and management

    NASA Astrophysics Data System (ADS)

    Eklöf, J. S.; de la Torre-Castro, M.; Gullström, M.; Uku, J.; Muthiga, N.; Lyimo, T.; Bandeira, S. O.

    2008-09-01

    Sea urchins are one of the most common seagrass macro-grazers in contemporary seagrass systems. Occasionally their grazing rates exceed seagrass growth rates, a phenomenon sometimes referred to as overgrazing. Because of a reported increasing frequency of overgrazing events, concomitant with loss of seagrass-associated ecosystem services, it has been suggested that overgrazing is one of the key threats to tropical and subtropical seagrasses. In light of this, we review the current knowledge on causes, consequences, and management of sea urchin overgrazing of seagrasses. Initially we argue that the definition of overgrazing must include scale and impairment of ecosystem services, since this is the de facto definition used in the literature, and will highlight the potential societal costs of seagrass overgrazing. A review of 16 identified cases suggests that urchin overgrazing is a global phenomenon, ranging from temperate to tropical coastal waters and involving at least 11 seagrass and 7 urchin species. Even though most overgrazing events seem to affect areas of <0.5 km 2, and recovery often occurs within a few years, overgrazing can have a range of large, long-term indirect effects such as loss of associated fauna and decreased sediment stabilization. A range of drivers behind overgrazing have been suggested, including bottom-up (nutrient enrichment), top-down (reduced predation control due to e.g. overfishing), "side-in" mechanisms (e.g. changes in water temperature) and natural population fluctuations. Based on recent studies, there seems to be fairly strong support for the top-down and bottom-up hypotheses. However, many potential drivers often co-occur and interact, especially in areas with high anthropogenic pressure, suggesting that multiple disturbances—by simultaneously reducing predation control, increasing urchin recruitment and reducing the resistance of seagrasses—could pave the way for overgrazing. In management, the most common response to

  11. MicroRaman, PXRD, EDS and microscopic investigation of magnesium calcite biomineral phases. The case of sea urchin biominerals

    NASA Astrophysics Data System (ADS)

    Borzęcka-Prokop, B.; Wesełucha-Birczyńska, A.; Koszowska, E.

    2007-02-01

    This study concerns Mg-calcite characterization (and in particular molecular structure and microstructural studies of mineral phases) of a sea urchin mineralised test and spines. Sea urchins are spiny sea animals (kingdom Animalia, phylum Echinodermata, class Echinoidea). Microscopic observations, SEM, EDS, PXRD and spectroscopic microRaman methods have been applied to characterize the biomineral parts of the sea urchin. The latter technique is very useful in research of biological systems and especially suitable for monitoring differences within biomineral phases exhibiting varieties of morphological forms. Crystalline magnesium calcium carbonate, Mg xCa 1- xCO 3 (magnesian calcite; space group R-3 cH; a = 4.9594(8) Å, c = 16.886(6) Å), has been identified as the predominant biomineral component.

  12. Multiple Processes Regulate Long-Term Population Dynamics of Sea Urchins on Mediterranean Rocky Reefs

    PubMed Central

    Hereu, Bernat; Linares, Cristina; Sala, Enric; Garrabou, Joaquim; Garcia-Rubies, Antoni; Diaz, David; Zabala, Mikel

    2012-01-01

    We annually monitored the abundance and size structure of herbivorous sea urchin populations (Paracentrotus lividus and Arbacia lixula) inside and outside a marine reserve in the Northwestern Mediterranean on two distinct habitats (boulders and vertical walls) over a period of 20 years, with the aim of analyzing changes at different temporal scales in relation to biotic and abiotic drivers. P. lividus exhibited significant variability in density over time on boulder bottoms but not on vertical walls, and temporal trends were not significantly different between the protection levels. Differences in densities were caused primarily by variance in recruitment, which was less pronounced inside the MPA and was correlated with adult density, indicating density-dependent recruitment under high predation pressure, as well as some positive feedback mechanisms that may facilitate higher urchin abundances despite higher predator abundance. Populations within the reserve were less variable in abundance and did not exhibit the hyper-abundances observed outside the reserve, suggesting that predation effects maybe more subtle than simply lowering the numbers of urchins in reserves. A. lixula densities were an order of magnitude lower than P. lividus densities and varied within sites and over time on boulder bottoms but did not differ between protection levels. In December 2008, an exceptionally violent storm reduced sea urchin densities drastically (by 50% to 80%) on boulder substrates, resulting in the lowest values observed over the entire study period, which remained at that level for at least two years (up to the present). Our results also showed great variability in the biological and physical processes acting at different temporal scales. This study highlights the need for appropriate temporal scales for studies to fully understand ecosystem functioning, the concepts of which are fundamental to successful conservation and management. PMID:22606306

  13. Multiple processes regulate long-term population dynamics of sea urchins on Mediterranean rocky reefs.

    PubMed

    Hereu, Bernat; Linares, Cristina; Sala, Enric; Garrabou, Joaquim; Garcia-Rubies, Antoni; Diaz, David; Zabala, Mikel

    2012-01-01

    We annually monitored the abundance and size structure of herbivorous sea urchin populations (Paracentrotus lividus and Arbacia lixula) inside and outside a marine reserve in the Northwestern Mediterranean on two distinct habitats (boulders and vertical walls) over a period of 20 years, with the aim of analyzing changes at different temporal scales in relation to biotic and abiotic drivers. P. lividus exhibited significant variability in density over time on boulder bottoms but not on vertical walls, and temporal trends were not significantly different between the protection levels. Differences in densities were caused primarily by variance in recruitment, which was less pronounced inside the MPA and was correlated with adult density, indicating density-dependent recruitment under high predation pressure, as well as some positive feedback mechanisms that may facilitate higher urchin abundances despite higher predator abundance. Populations within the reserve were less variable in abundance and did not exhibit the hyper-abundances observed outside the reserve, suggesting that predation effects maybe more subtle than simply lowering the numbers of urchins in reserves. A. lixula densities were an order of magnitude lower than P. lividus densities and varied within sites and over time on boulder bottoms but did not differ between protection levels. In December 2008, an exceptionally violent storm reduced sea urchin densities drastically (by 50% to 80%) on boulder substrates, resulting in the lowest values observed over the entire study period, which remained at that level for at least two years (up to the present). Our results also showed great variability in the biological and physical processes acting at different temporal scales. This study highlights the need for appropriate temporal scales for studies to fully understand ecosystem functioning, the concepts of which are fundamental to successful conservation and management. PMID:22606306

  14. Macro- and microstructural diversity of sea urchin teeth revealed by large-scale mircro-computed tomography survey

    NASA Astrophysics Data System (ADS)

    Ziegler, Alexander; Stock, Stuart R.; Menze, Björn H.; Smith, Andrew B.

    2012-10-01

    Sea urchins (Echinodermata: Echinoidea) generally possess an intricate jaw apparatus that incorporates five teeth. Although echinoid teeth consist of calcite, their complex internal design results in biomechanical properties far superior to those of inorganic forms of the constituent material. While the individual elements (or microstructure) of echinoid teeth provide general insight into processes of biomineralization, the cross-sectional shape (or macrostructure) of echinoid teeth is useful for phylogenetic and biomechanical inferences. However, studies of sea urchin tooth macro- and microstructure have traditionally been limited to a few readily available species, effectively disregarding a potentially high degree of structural diversity that could be informative in a number of ways. Having scanned numerous sea urchin species using micro-computed tomography µCT) and synchrotron µCT, we report a large variation in macro- and microstructure of sea urchin teeth. In addition, we describe aberrant tooth shapes and apply 3D visualization protocols that permit accelerated visual access to the complex microstructure of sea urchin teeth. Our broad survey identifies key taxa for further in-depth study and integrates previously assembled data on fossil species into a more comprehensive systematic analysis of sea urchin teeth. In order to circumvent the imprecise, word-based description of tooth shape, we introduce shape analysis algorithms that will permit the numerical and therefore more objective description of tooth macrostructure. Finally, we discuss how synchrotron µCT datasets permit virtual models of tooth microstructure to be generated as well as the simulation of tooth mechanics based on finite element modeling.

  15. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development

    PubMed Central

    Mocko-Strand, Julie A.; Wang, Jing; Ullrich-Lüter, Esther; Pan, Ping; Wang, Steven W.; Arnone, Maria Ina; Frishman, Laura J.; Klein, William H.

    2016-01-01

    Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures. PMID:26962139

  16. Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin

    PubMed Central

    2010-01-01

    Background Sea urchin is a major model organism for developmental biology and biomineralization research. However, identification of proteins involved in larval skeleton formation and mineralization processes in the embryo and adult, and the molecular characterization of such proteins, has just gained momentum with the sequencing of the Strongylocentrotus purpuratus genome and the introduction of high-throughput proteomics into the field. Results The present report contains the determination of test (shell) and tooth organic matrix phosphoproteomes. Altogether 34 phosphoproteins were identified in the biomineral organic matrices. Most phosphoproteins were specific for one compartment, only two were identified in both matrices. The sea urchin phosphoproteomes contained several obvious orthologs of mammalian proteins, such as a Src family tyrosine kinase, protein kinase C-delta 1, Dickkopf-1 and other signal transduction components, or nucleobindin. In most cases phosphorylation sites were conserved between sea urchin and mammalian proteins. However, the majority of phosphoproteins had no mammalian counterpart. The most interesting of the sea urchin-specific phosphoproteins, from the perspective of biomineralization research, was an abundant highly phosphorylated and very acidic tooth matrix protein composed of 35 very similar short sequence repeats, a predicted N-terminal secretion signal sequence, and an Asp-rich C-terminal motif, contained in [Glean3:18919]. Conclusions The 64 phosphorylation sites determined represent the most comprehensive list of experimentally identified sea urchin protein phosphorylation sites at present and are an important addition to the recently analyzed Strongylocentrotus purpuratus shell and tooth proteomes. The identified phosphoproteins included a major, highly phosphorylated protein, [Glean3:18919], for which we suggest the name phosphodontin. Although not sequence-related to such highly phosphorylated acidic mammalian dental

  17. Substituting mouse transcription factor Pou4f2 with a sea urchin orthologue restores retinal ganglion cell development.

    PubMed

    Mao, Chai-An; Agca, Cavit; Mocko-Strand, Julie A; Wang, Jing; Ullrich-Lüter, Esther; Pan, Ping; Wang, Steven W; Arnone, Maria Ina; Frishman, Laura J; Klein, William H

    2016-03-16

    Pou domain transcription factor Pou4f2 is essential for the development of retinal ganglion cells (RGCs) in the vertebrate retina. A distant orthologue of Pou4f2 exists in the genome of the sea urchin (class Echinoidea) Strongylocentrotus purpuratus (SpPou4f1/2), yet the photosensory structure of sea urchins is strikingly different from that of the mammalian retina. Sea urchins have no obvious eyes, but have photoreceptors clustered around their tube feet disc. The mechanisms that are associated with the development and function of photoreception in sea urchins are largely unexplored. As an initial approach to better understand the sea urchin photosensory structure and relate it to the mammalian retina, we asked whether SpPou4f1/2 could support RGC development in the absence of Pou4f2. To answer this question, we replaced genomic Pou4f2 with an SpPou4f1/2 cDNA. In Pou4f2-null mice, retinas expressing SpPou4f1/2 were outwardly identical to those of wild-type mice. SpPou4f1/2 retinas exhibited dark-adapted electroretinogram scotopic threshold responses, indicating functionally active RGCs. During retinal development, SpPou4f1/2 activated RGC-specific genes and in S. purpuratus, SpPou4f2 was expressed in photoreceptor cells of tube feet in a pattern distinct from Opsin4 and Pax6. Our results suggest that SpPou4f1/2 and Pou4f2 share conserved components of a gene network for photosensory development and they maintain their conserved intrinsic functions despite vast morphological differences in mouse and sea urchin photosensory structures. PMID:26962139

  18. Cloning, Characterization, and Expression Levels of the Nectin Gene from the Tube Feet of the Sea Urchin Paracentrotus Lividus.

    PubMed

    Toubarro, Duarte; Gouveia, Analuce; Ribeiro, Raquel Mesquita; Simões, Nélson; da Costa, Gonçalo; Cordeiro, Carlos; Santos, Romana

    2016-06-01

    Marine bioadhesives perform in ways that manmade products simply cannot match, especially in wet environments. Despite their technological potential, bioadhesive molecular mechanisms are still largely understudied, and sea urchin adhesion is no exception. These animals inhabit wave-swept shores, relying on specialized adhesive organs, tube feet, composed by an adhesive disc and a motile stem. The disc encloses a duo-gland adhesive system, producing adhesive and deadhesive secretions for strong reversible substratum attachment. The disclosure of sea urchin Paracentrotus lividus tube foot disc proteome led to the identification of a secreted adhesion protein, Nectin, never before reported in adult adhesive organs but, that given its adhesive function in eggs/embryos, was pointed out as a putative substratum adhesive protein in adults. To further understand Nectin involvement in sea urchin adhesion, Nectin cDNA was amplified for the first time from P. lividus adhesive organs, showing that not only the known Nectin mRNA, called Nectin-1 (GenBank AJ578435), is expressed in the adults tube feet but also a new mRNA sequence, called Nectin-2 (GenBank KT351732), differing in 15 missense nucleotide substitutions. Nectin genomic DNA was also obtained for the first time, indicating that both Nectin-1 and Nectin-2 derive from a single gene. In addition, expression analysis showed that both Nectins are overexpressed in tube feet discs, its expression being significantly higher in tube feet discs from sea urchins just after collection from the field relative to sea urchin from aquarium. These data further advocate for Nectin involvement in sea urchin reversible adhesion, suggesting that its expression might be regulated according to the hydrodynamic conditions. PMID:27194026

  19. Freezing tolerance of sea urchin embryonic cells: Differentiation commitment and cytoskeletal disturbances in culture.

    PubMed

    Odintsova, Nelly A; Ageenko, Natalya V; Kipryushina, Yulia O; Maiorova, Mariia A; Boroda, Andrey V

    2015-08-01

    This study focuses on the freezing tolerance of sea urchin embryonic cells. To significantly reduce the loss of physiological activity of these cells that occurs after cryopreservation and to study the effects of ultra-low temperatures on sea urchin embryonic cells, we tested the ability of the cells to differentiate into spiculogenic or pigment directions in culture, including an evaluation of the expression of some genes involved in pigment differentiation. A morphological analysis of cytoskeletal disturbances after freezing in a combination of penetrating (dimethyl sulfoxide and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants revealed that the distribution pattern of filamentous actin and tubulin was similar to that in the control cultures. In contrast, very rare spreading cells and a small number of cells with filamentous actin and tubulin were detected after freezing in the presence of only non-penetrating cryoprotectants. The largest number of pigment cells was found in cultures frozen with trehalose or trehalose and dimethyl sulfoxide. The ability to induce the spicule formation was lost in the cells frozen only with non-penetrating cryoprotectants, while it was maximal in cultures frozen in a cryoprotective mixture containing both non-penetrating and penetrating cryoprotectants (particularly, when ethylene glycol was present). Using different markers for cell state assessment, an effective cryopreservation protocol for sea urchin cells was developed: three-step freezing with a low cooling rate (1-2°C/min) and a combination of non-penetrating and penetrating cryoprotectants made it possible to obtain a high level of cell viability (up to 65-80%). PMID:26049089

  20. Habitat and density-dependent growth of the sea urchin Paracentrotus lividus in Galicia (NW Spain)

    NASA Astrophysics Data System (ADS)

    Ouréns, Rosana; Flores, Luis; Fernández, Luis; Freire, Juan

    2013-02-01

    We studied the small-scale spatial variability in the growth of Paracentrotus lividus in two populations in Galicia (NW Spain) by reading growth rings. A tetracycline marking experiment was carried out to verify that the rings form annually. The growth rings were read by two independent readers in order to estimate the uncertainty involved in assigning the age. Of the six growth models evaluated (Tanaka, von Bertalanffy, Gompertz, Richards, logistic and Jolicoeur) the Tanaka function obtained the best fit to the data. This function predicts unlimited growth and a maximum growth rate of 15.00 (± 0.97 SE) mm·year- 1 at 3.09 ± 0.10 years old, which progressively decreases at older ages. However, habitat characteristics lead to intrapopulation variations in this general function. Recruitment seems to occur mainly in shallow waters (≤ 4 m) and when the sea urchins reach 50 mm (approximately 4 years old) they migrate to deeper areas. Sea urchins larger than 50 mm that stayed in shallow waters grew at a rate between 0.41 and 0.43 mm·year- 1 less than the sea urchins that moved to depths of 8 and 12 m. The population density also influenced the growth, and individuals older than 4 years had higher growth rates in high-density patches than in low-density areas. This could be due to the better environmental conditions in aggregation areas, that is, better protection against waves and predators and/or more abundant food.

  1. Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos.

    PubMed

    Karakostis, Konstantinos; Costa, Caterina; Zito, Francesca; Brümmer, Franz; Matranga, Valeria

    2016-06-01

    Carbonic anhydrases (CA) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the sea urchin, CA has a role in the formation of the calcitic skeleton during embryo development. Here, we report a newly identified mRNA sequence from embryos of the sea urchin Paracentrotus lividus, referred to as Pl-can. The complete coding sequence was identified with the aid of both EST databases and experimental procedures. Pl-CAN is a 447 aa-long protein, with an estimated molecular mass of 48.5 kDa and an isoelectric point of 6.83. The in silico study of functional domains showed, in addition to the alpha type CA-specific domain, the presence of an unexpected glycine-rich region at the N-terminal of the molecule. This is not found in any other species described so far, but probably it is restricted to the sea urchins. The phylogenetic analysis indicated that Pl-CAN is evolutionarily closer to human among chordates than to other species. The putative role(s) of the identified domains is discussed. The Pl-can temporal and spatial expression profiles, analyzed throughout embryo development by comparative qPCR and whole-mount in situ hybridization (WMISH), showed that Pl-can mRNA is specifically expressed in the primary mesenchyme cells (PMC) of the embryo and levels increase along with the growth of the embryonic skeleton, reaching a peak at the pluteus stage. A recombinant fusion protein was produced in E. coli and used to raise specific antibodies in mice recognized the endogenous Pl-CAN by Western blot in embryo extracts from gastrula and pluteus. PMID:27230618

  2. Elimination of 2,4,5,2',4',5'-hexachlorobiphenyl by the purple sea urchin, Strongylocentrotus purpuratus, following single exposure

    SciTech Connect

    Tjeerdema, R.S.; Jacobs, R.S.

    1987-06-01

    Understanding the fate of a single PCB isomer in a resident species may aid in assessing the risk to the marine community. Therefore, the elimination of 2,4,5,2',4',5'-hexachlorobiphenyl (HCBP) by the purple sea urchin, Strongylocentrotus purpuratus, following a single exposure, was investigated. The purple sea urchin was chosen because of its economic importance and ability to proliferate in certain polluted conditions. Single exposure may best mimic the effects of intermittent oceanic incineration or disposal, and 2,4,5,2',4',5'-HCBP was chosen due to its presence in common PCB mixtures and high chlorine content, thus strong lipophilicity.

  3. Characterization of the role of cadherin in regulating cell adhesion during sea urchin development.

    PubMed

    Miller, J R; McClay, D R

    1997-12-15

    During development, the modulation of cadherin adhesive function is proposed to control various morphogenetic events including epithelial-mesenchymal conversions and tubulogenesis, although the mechanisms responsible for regulating cadherin activity during these events remain unclear. In order to gain insights into the regulation of cadherin function during morphogenesis, we utilized the sea urchin embryo as a model system to study the regulation of cadherin localization during epithelial-mesenchymal conversion and convergent-extension movements. Polyclonal antibodies raised against the cytoplasmic domain of a cloned sea urchin cadherin recognize three major polypeptides of M(r) 320, 140, and 125 kDa and specifically stain adherens junctions, and to a lesser extent, lateral membrane domains in all epithelial tissues of the embryo. Analysis of embryos during gastrulation demonstrates that changes in cadherin localization are observed in cells undergoing an epithelial-mesenchymal conversion. Ingression of primary mesenchyme cells is accompanied by the rapid loss of junctional cadherin staining and the coincident accumulation of cadherin in intracellular organelles. These data are consistent with the idea that the deadhesion of mesenchymal cells from neighboring epithelial cells involves the regulated endocytosis of cell surface cadherin molecules. Conversely, neither cadherin abundance nor localization is altered in cells of the gut which undergo convergent-extension movements during the formation of the archenteron. This observation indicates that these movements do not require the loss of junctional cadherin molecules. Instead, the necessary balance between adhesion and motility may be achieved by regulating the expression of different subtypes of cadherin molecules or modifying interactions between cadherins and catenins, proteins that bind the cytoplasmic domain of cadherin and are necessary for cadherin adhesive function. To address cadherin function at the

  4. Comparative toxicities of benzene, chlorobenzene, and dichlorobenzenes to sea urchin embryos and sperm

    SciTech Connect

    Pagano, G.; Cipollaro, M.; Corsale, G.; Esposito, A.; Giordano, G.G.; Ragucci, E.; Trieff, N.M.

    1988-04-01

    The leukemogenicity and myelotoxicity of benzene are well-known and the major cause of benzene's banning from most industrial applications. Various benzene derivatives such as alkylbenzenes and chlorobenzenes, however, continue to be used as chemical intermediates, solvents, pesticides, etc. in spite of incomplete knowledge of their chronic toxicity. This study was designed to obtain comparative data on developmental, genetic and reproductive toxicities of benzene (B), chlorobenzene (CB) and dichlorobenzenes (o-, m-, and p-DCB) in the sea urchin bioassay. This test system, permits observation of a number of biological endpoints on mitotic activity, embryogenesis and fertilization, and thus provides multi-parametric toxicological data on xenobiotics.

  5. The role of advection and diffusion in waste disposal by sea urchin embryos

    NASA Astrophysics Data System (ADS)

    Clark, Aaron; Licata, Nicholas

    2014-03-01

    We determine the first passage probability for the absorption of waste molecules released from the microvilli of sea urchin embryos. We calculate a perturbative solution of the advection-diffusion equation for a linear shear profile similar to the fluid environment which the embryos inhabit. Rapid rotation of the embryo results in a concentration boundary layer of comparable thickness to the length of the microvilli. A comparison of the results to the regime of diffusion limited transport indicates that fluid flow is advantageous for efficient waste disposal.

  6. Purple sea urchin Strongylocentrotus purpuratus gamete manipulation using optical trapping and microfluidics

    NASA Astrophysics Data System (ADS)

    Chandsawangbhuwana, Charlie; Shi, Linda Z.; Zhu, Qingyuan; Berns, Michael W.

    2013-04-01

    A system has been developed that allows for optical and fluidic manipulation of gametes. The optical manipulation is performed by using a single-point gradient trap with a 40× oil immersion PH3 1.3 NA objective on a Zeiss inverted microscope. The fluidic manipulation is performed by using a custom microfluidic chamber designed to fit into the short working distance between the condenser and objective. The system is validated using purple sea urchin Strongylocentrotus purpuratus gametes and has the potential to be used for mammalian in vitro fertilization and animal husbandry.

  7. Differential toxicity of three PCB congeners in developing sea urchin embryos and implication of TEQ approach

    SciTech Connect

    Schweitzer, L.; Suffet, I.; Hose, J.; Bay, S.

    1995-12-31

    The relationship between body burden and toxicity of three individual PCB congeners in developing sea urchin embryos was investigated to evaluate the validity of current predictive models of PCB toxicity in an invertebrate system. The uptake and accumulation of radiolabeled PCB congeners from sea water was measured in the sea urchin embryo tissues and the relative toxicity determined. According to the toxic equivalents (TEQ) approach of assessing risk to mammals, congener 77, a nonortho-substituted congener, is predicted to be more toxic than the diortho-substituted congeners 47 and 153. Using a 72 hour embryo development assay, congener 47 was found to be at least four times as toxic as congener 77, with EC50s of 15.7 and > 72.5 mmol/kg, respectively. Congener 153, a hexachlorobiphenyl, was virtually nontoxic even at the highest dose used. Cytologic and cytogenetic anomalies were studied to find a possibly more sensitive endpoint and to suggest a mechanism of toxicity. The cytogenetic analysis revealed that the PCBs inhibited mitosis. At the highest doses, complete mitotic arrest was observed. Congener 77 was found to be at least two times more toxic than congener 153 but not as toxic as congener 47 using mitotic activity as the endpoint. Thus, the two endpoints of toxicity did not change the order in which the congeners are toxic, but established different EC50s. The relative toxicities of these congeners in this study contradict the structure-activity prediction of the mammalian-based TEQ approach.

  8. Aryl sulfate formation in sea urchins (Strongylocentrotus droebachiensis) ingesting marine algae (Fucus distichus) containing 2,6-dimethylnapthalene

    SciTech Connect

    Malins, D.C.; Roubal, W.T.

    1982-04-01

    The metabolism of tritiated 2,6-dimethylnapthalene (2,6-DMN) was studied in sea urchins (Strongylocentrotus droebachiensis) feeding on marine algae (Fucus distichus). The Fucus accumulated this hydrocarbon from sea water without converting it to metabolites. Most of the tritium accumulated by the sea urchins (e.g., 70.8% after 3 days) from feeding on 2,6-DMN-exposed Fucus was present in the exoskeleton (shell and spines). Moreover, after 3 days feeding, about 90% of the tritium in the total metabolite fraction of the gonads and digestive tract of the sea urchin was present as sulfate derivatives. These metabolites were identified through hydrolysis with aryl sulfatase, followed by thin-layer chromatography of the products. After 14 days of feeding, the tritium associated with the sulfate derivatives decreased in the gonads and digestive tract to 61 and 65%, respectively, of the total metabolite fraction. Hydroxy compounds from sulfatase hydrolysis were chromatographed using multiple elutions with toluene. The hydroxy isomers were separated and the R/sub f/ values were compared to those of pure reference compounds. The data indicated that 80% of the 2,6-dimethylnaphtyl sulfate contained the sulfate on the 1 and/or 3 position of the aromatic ring. Moreover, 6-methyl-2-naphthalenemethanol was not detected, which implies that sea urchins, unlike fish, metabolize alkyl-substituted aromatic hydrocarbons primarily through aromatic ring oxidations.

  9. Mechanism of Calcite Co-Orientation in the Sea Urchin Tooth

    SciTech Connect

    Killian, Christopher; Metzler, Rebecca; Gong, Y. U. T.; Olson, Ian; Aizenberg, Joanna; Politi, Yael; Wilt, Fred; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan; Gilbert, P. U. P. A.

    2009-12-01

    Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO{sub 3}) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin (Strongylocentrotus purpuratus), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction ({mu}XRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO{sub 3} is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.

  10. Contribution of hedgehog signaling to the establishment of left-right asymmetry in the sea urchin.

    PubMed

    Warner, Jacob F; Miranda, Esther L; McClay, David R

    2016-03-15

    Most bilaterians exhibit a left-right asymmetric distribution of their internal organs. The sea urchin larva is notable in this regard since most adult structures are generated from left sided embryonic structures. The gene regulatory network governing this larval asymmetry is still a work in progress but involves several conserved signaling pathways including Nodal, and BMP. Here we provide a comprehensive analysis of Hedgehog signaling and it's contribution to left-right asymmetry. We report that Hh signaling plays a conserved role to regulate late asymmetric expression of Nodal and that this regulation occurs after Nodal breaks left-right symmetry in the mesoderm. Thus, while Hh functions to maintain late Nodal expression, the molecular asymmetry of the future coelomic pouches is locked in. Furthermore we report that cilia play a role only insofar as to transduce Hh signaling and do not have an independent effect on the asymmetry of the mesoderm. From this, we are able to construct a more complete regulatory network governing the establishment of left-right asymmetry in the sea urchin. PMID:26872875

  11. Speract, a sea urchin egg peptide that regulates sperm motility, also stimulates sperm mitochondrial metabolism.

    PubMed

    García-Rincón, Juan; Darszon, Alberto; Beltrán, Carmen

    2016-04-01

    Sea urchin sperm have only one mitochondrion, that in addition to being the main source of energy, may modulate intracellular Ca(2+) concentration ([Ca(2+)]i) to regulate their motility and possibly the acrosome reaction. Speract is a decapeptide from the outer jelly layer of the Strongylocentrotus purpuratus egg that upon binding to its receptor in the sperm, stimulates sperm motility, respiration and ion fluxes, among other physiological events. Altering the sea urchin sperm mitochondrial function with specific inhibitors of this organelle, increases [Ca(2+)]i in an external Ca(2+) concentration ([Ca(2+)]ext)-dependent manner (Ardón, et al., 2009. BBActa 1787: 15), suggesting that the mitochondrion is involved in sperm [Ca(2+)]i homeostasis. To further understand the interrelationship between the mitochondrion and the speract responses, we measured mitochondrial membrane potential (ΔΨ) and NADH levels. We found that the stimulation of sperm with speract depolarizes the mitochondrion and increases the levels of NADH. Surprisingly, these responses are independent of external Ca(2+) and are due to the increase in intracellular pH (pHi) induced by speract. Our findings indicate that speract, by regulating pHi, in addition to [Ca(2+)]i, may finely modulate mitochondrial metabolism to control motility and ensure that sperm reach the egg and fertilize it. PMID:26772728

  12. Antiallergic effects of pigments isolated from green sea urchin (Strongylocentrotus droebachiensis) shells.

    PubMed

    Pozharitskaya, Olga N; Shikov, Alexander N; Makarova, Marina N; Ivanova, Svetlana A; Kosman, Vera M; Makarov, Valery G; Bazgier, Václav; Berka, Karel; Otyepka, Michal; Ulrichová, Jitka

    2013-12-01

    This study was undertaken to evaluate possible antiallergic effects of an extract of pigments from green sea urchin (Strongylocentrotus droebachiensis) shells. Effects were studied on animal models - guinea pig ileum contraction, rabbit eyes allergic conjunctivitis, and rabbit local skin irritation. The extract significantly reduced, in a dose-dependent manner, the histamine-induced contractions of the isolated guinea pig ileum with ID50 =1.2 µg/mL (in equivalents of spinochrome B), had an inhibitory effect on the model of ocular allergic inflammation surpassing the reference drug olopatadine, and did not show any irritating effect in rabbits. The extract predominantly contained polyhydroxy-1,4-naphthoquinone which would be responsible for the pharmacological activity. The active compounds of the extract were evaluated in silico with molecular docking. Molecular docking into H1R receptor structures obtained from molecular dynamic simulations showed that all spinochrome derivatives bind to the receptor active site, but spinochrome monomers fit better to it. The results of the present study suggest possibilities for the development of new agents for treating allergic diseases on the base of pigments from sea urchins shells. PMID:24288292

  13. Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin

    PubMed Central

    Yajima, Mamiko; Wessel, Gary M.

    2012-01-01

    The process of germ line determination involves many conserved genes, yet is highly variable. Echinoderms are positioned at the base of Deuterostomia and are crucial to understanding these evolutionary transitions, yet the mechanism of germ line specification is not known in any member of the phyla. Here we demonstrate that small micromeres (SMics), which are formed at the fifth cell division of the sea urchin embryo, illustrate many typical features of primordial germ cell (PGC) specification. SMics autonomously express germ line genes in isolated culture, including selective Vasa protein accumulation and transcriptional activation of nanos; their descendants are passively displaced towards the animal pole by secondary mesenchyme cells and the elongating archenteron during gastrulation; Cadherin (G form) has an important role in their development and clustering phenotype; and a left/right integration into the future adult anlagen appears to be controlled by a late developmental mechanism. These results suggest that sea urchin SMics share many more characteristics typical of PGCs than previously thought, and imply a more widely conserved system of germ line development among metazoans. PMID:22991443

  14. Cloning of the sea urchin mitochondrial RNA polymerase and reconstitution of the transcription termination system

    PubMed Central

    Polosa, Paola Loguercio; Deceglie, Stefania; Falkenberg, Maria; Roberti, Marina; Di Ponzio, Barbara; Gadaleta, Maria Nicola; Cantatore, Palmiro

    2007-01-01

    Termination of transcription is a key process in the regulation of mitochondrial gene expression in animal cells. To investigate transcription termination in sea urchin mitochondria, we cloned the mitochondrial RNA polymerase (mtRNAP) of Paracentrotus lividus and used a recombinant form of the enzyme in a reconstituted transcription system, in the presence of the DNA-binding protein mtDBP. Cloning of mtRNAP was performed by a combination of PCR with degenerate primers and library screening. The enzyme contains 10 phage-like conserved motifs, two pentatricopeptide motifs and a serine-rich stretch. The protein expressed in insect cells supports transcription elongation in a promoter-independent assay. Addition of recombinant mtDBP caused arrest of the transcribing mtRNAP when the enzyme approached the mtDBP-binding site in the direction of transcription of mtDNA l-strand. When the polymerase encountered the protein-binding site in the opposite direction, termination occurred in a protein-independent manner, inside the mtDBP-binding site. Pulse-chase experiments show that mtDBP caused true transcription termination rather than pausing. These data indicate that mtDBP acts as polar termination factor and suggest that transcription termination in sea urchin mitochondria could take place by two alternative modes based on protein-mediated or sequence-dependent mechanisms. PMID:17392338

  15. Synthesis of Novel Sea-Urchin-Like CdS and Their Optical Properties.

    PubMed

    Kamran, Muhammad Arshad; Liu, Ruibin; Shi, Li-Jie; Bukhtiar, Arfan; Li, Jing; Zou, Bingsuo

    2015-06-01

    A novel morphology of CdS sea-urchin-like microstructures is synthesized by simple thermal evaporation process. Microstructures with average size of 20-50 μm are composed of single crystalline CdS nanobelts. The structural, compositional, morphological characterization of the product were examined by X-ray diffraction, energy dispersive X-ray spectroscopy, Raman spectroscopy, scanning electron microscope, transmission electron microscopy and selected area electron diffraction while optical properties are investigated by Photoluminescence spectroscopy and time-resolved Photoluminescence measurements. The tentative growth mechanism for the growth of sea-urchin-like CdS is proposed and described briefly. A strong green emission with a maximum around 517 nm was observed from the individual CdS microstructure at room temperature, which was attributed to band-edge emission of CdS. These Novel structures exhibit excellent lasing (stimulated emission) with low threshold (9.07 μJ cm(-2)) at room temperature. We analyze the physical mechanism of stimulated emission. These results are important in the design of green luminescence, low-threshold laser and display devices in the future. PMID:26369062

  16. Discovery of sea urchin NGFFFamide receptor unites a bilaterian neuropeptide family

    PubMed Central

    Semmens, Dean C.; Beets, Isabel; Rowe, Matthew L.; Blowes, Liisa M.; Oliveri, Paola; Elphick, Maurice R.

    2015-01-01

    Neuropeptides are ancient regulators of physiology and behaviour, but reconstruction of neuropeptide evolution is often difficult owing to lack of sequence conservation. Here, we report that the receptor for the neuropeptide NGFFFamide in the sea urchin Strongylocentrotus purpuratus (phylum Echinodermata) is an orthologue of vertebrate neuropeptide-S (NPS) receptors and crustacean cardioactive peptide (CCAP) receptors. Importantly, this has facilitated reconstruction of the evolution of two bilaterian neuropeptide signalling systems. Genes encoding the precursor of a vasopressin/oxytocin-type neuropeptide and its receptor duplicated in a common ancestor of the Bilateria. One copy of the precursor retained ancestral features, as seen in highly conserved vasopressin/oxytocin–neurophysin-type precursors. The other copy diverged, but this took different courses in protostomes and deuterostomes. In protostomes, the occurrence of a disulfide bridge in neuropeptide product(s) of the precursor was retained, as in CCAP, but with loss of the neurophysin domain. In deuterostomes, we see the opposite scenario—the neuropeptides lost the disulfide bridge, and neurophysin was retained (as in the NGFFFamide precursor) but was subsequently lost in vertebrate NPS precursors. Thus, the sea urchin NGFFFamide precursor and receptor are ‘missing links’ in the evolutionary history of neuropeptides that control ecdysis in arthropods (CCAP) and regulate anxiety in humans (NPS). PMID:25904544

  17. Unusual Gene Order and Organization of the Sea Urchin HoxCluster

    SciTech Connect

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen,Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, KevinJ.; Hood, Leroy

    2005-05-10

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is : 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  18. Unusual Gene Order and Organization of the Sea Urchin Hox Cluster

    SciTech Connect

    Cameron, R A; Rowen, L; Nesbitt, R; Bloom, S; Rast, J P; Berney, K; Arenas-Mena, C; Martinez, P; Lucas, S; Richardson, P M; Davidson, E H; Peterson, K J; Hood, L

    2005-10-11

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3 gene is Hox5. (The gene order is : 5-Hox1, 2, 3, 11/13c, 11/13b, 11/13a, 9/10, 8, 7, 6, 5 - 3). The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  19. Triphenylphosphonium Cations of the Diterpenoid Isosteviol: Synthesis and Antimitotic Activity in a Sea Urchin Embryo Model.

    PubMed

    Strobykina, Irina Yu; Belenok, Mayya G; Semenova, Marina N; Semenov, Victor V; Babaev, Vasiliy M; Rizvanov, Ildar Kh; Mironov, Vladimir F; Kataev, Vladimir E

    2015-06-26

    A series of novel triphenylphosphonium (TPP) cations of the diterpenoid isosteviol (1, 16-oxo-ent-beyeran-19-oic acid) have been synthesized and evaluated in an in vivo phenotypic sea urchin embryo assay for antimitotic activity. The TPP moiety was applied as a carrier to provide selective accumulation of a connected compound into mitochondria. When applied to fertilized eggs, the targeted isosteviol TPP conjugates induced mitotic arrest with the formation of aberrant multipolar mitotic spindles, whereas both isosteviol and the methyltriphenylphosphonium cation were inactive. The structure-activity relationship study revealed the essential role of the TPP group for the realization of the isosteviol effect, while the chemical structure and the length of the linker only slightly influenced the antimitotic potency. The results obtained using the sea urchin embryo model suggested that TPP conjugates of isosteviol induced mitotic spindle defects and mitotic arrest presumably by affecting mitochondrial DNA. Since targeting mitochondria is considered as an encouraging strategy for cancer therapy, TPP-isosteviol conjugates may represent promising candidates for further design as anticancer agents. PMID:26042548

  20. The potential for cryopreserving larvae of the sea urchin, Evechinus chloroticus.

    PubMed

    Adams, Serean L; Hessian, Paul A; Mladenov, Philip V

    2006-02-01

    Larvae of the sea urchin, Evechinus chloroticus, at varying stages of development, were assessed for their potential to survive cryopreservation. Ethylene glycol (EG) and dimethyl sulphoxide (Me2SO), at concentrations of 1-2 M, were evaluated as cryoprotectants (CPAs) in freezing regimes initially based on methods established for freezing larvae of other sea urchin species. Subsequent work varied cooling rate, holding temperature, holding time, and plunge temperature. Ethylene glycol was less toxic to larvae than Me2SO. However, no larvae survived freezing and thawing in EG. Larvae frozen in Me2SO at the gastrula stage and 4-armed pluteus stage regained motility post-thawing. The most successful freezing regime cooled straws containing larvae in 1.5 M Me2SO from 0 to -35 degrees C at 2.5 degrees C min(-1), held at -35 degrees C for 5 min, then plunged straws into liquid nitrogen. Motility was high 2-4 h post-thawing using this regime but decreased markedly within 24 h. Some 4-armed pluteus larvae that survived beyond this time developed through to metamorphosis and settled. Different Me2SO concentrations and supplementary trehalose did not improve long-term survival. Large variation in post-thaw survival was observed among batches of larvae produced from different females. PMID:16321369

  1. Relative effects of gamete compatibility and hydrodynamics on fertilization in the green sea urchin Strongylocentrotus droebachiensis.

    PubMed

    Kregting, Louise T; Thomas, Florence I M; Bass, Anna L; Yund, Philip O

    2014-08-01

    Intraspecific variation in gamete compatibility among male/female pairs causes variation in the concentration of sperm required to achieve equivalent fertilization levels. Gamete compatibility is therefore potentially an important factor controlling mating success. Many broadcast-spawning marine invertebrates, however, also live in a dynamic environment where hydrodynamic conditions can affect the concentration of sperm reaching eggs during spawning. Thus flow conditions may moderate the effects of gamete compatibility on fertilization. Using the green sea urchin Strongylocentrotus droebachiensis as a model system, we assessed the relative effects of gamete compatibility (the concentration of sperm required to fertilize 50% of the eggs in specific male/female pairs; F50) and the root-mean-square of total velocity (urms; 0.01-0.11 m s(-1)) on fertilization in four locations near a spawning female (water column, wake eddy, substratum, and aboral surface) in both unidirectional and oscillatory flows. Percent fertilization decreased significantly with increasing urms at all locations and both flow regimes. However, although gamete compatibility varied by almost 1.5 orders of magnitude, it was not a significant predictor of fertilization for most combinations of position and flow. The notable exception was a significant effect of gamete compatibility on fertilization on the aboral surface under unidirectional flow. Our results suggest that selection on variation in gamete compatibility may be strongest in eggs fertilized on the aboral surface of sea urchins and that hydrodynamic conditions may add environmental noise to selection outcomes. PMID:25216500

  2. H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos.

    PubMed

    Schatzberg, Daphne; Lawton, Matthew; Hadyniak, Sarah E; Ross, Erik J; Carney, Tamara; Beane, Wendy S; Levin, Michael; Bradham, Cynthia A

    2015-10-15

    The bioelectrical signatures associated with regeneration, wound healing, development, and cancer are changes in the polarization state of the cell that persist over long durations, and are mediated by ion channel activity. To identify physiologically relevant bioelectrical changes that occur during normal development of the sea urchin Lytechinus variegatus, we tested a range of ion channel inhibitors, and thereby identified SCH28080, a chemical inhibitor of the H(+)/K(+) ATPase (HKA), as an inhibitor of skeletogenesis. In sea urchin embryos, the primary mesodermal lineage, the PMCs, produce biomineral in response to signals from the ectoderm. However, in SCH28080-treated embryos, aside from randomization of the left-right axis, the ectoderm is normally specified and differentiated, indicating that the block to skeletogenesis observed in SCH28080-treated embryos is PMC-specific. HKA inhibition did not interfere with PMC specification, and was sufficient to block continuing biomineralization when embryos were treated with SCH28080 after the initiation of skeletogenesis, indicating that HKA activity is continuously required during biomineralization. Ion concentrations and voltage potential were abnormal in the PMCs in SCH28080-treated embryos, suggesting that these bioelectrical abnormalities prevent biomineralization. Our results indicate that this effect is due to the inhibition of amorphous calcium carbonate precipitation within PMC vesicles. PMID:26282894

  3. P16 is an essential regulator of skeletogenesis in the sea urchin embryo.

    PubMed

    Cheers, Melani S; Ettensohn, Charles A

    2005-07-15

    The primary mesenchyme cells (PMCs) of the sea urchin embryo undergo a dramatic sequence of morphogenetic behaviors that culminates in the formation of the larval endoskeleton. Recent studies have identified components of a gene regulatory network that underlies PMC specification and differentiation. In previous work, we identified novel gene products expressed specifically by PMCs (Illies, M.R., Peeler, M.T., Dechtiaruk, A.M., Ettensohn, C.A., 2002. Identification and developmental expression of new biomineralization proteins in the sea urchin, Strongylocentrotus purpuratus. Dev. Genes Evol. 212, 419-431). Here, we show that one of these gene products, P16, plays an essential role in skeletogenesis. P16 is not required for PMC specification, ingression, migration, or fusion, but is essential for skeletal rod elongation. We have compared the predicted sequences of P16 from two species and show that this small, acidic protein is highly conserved in both structure and function. The predicted amino acid sequence of P16 and the subcellular localization of a GFP-tagged form of the protein suggest that P16 is enriched in the plasma membrane. It may function to receive signals required for skeletogenesis or may play a more direct role in the deposition of biomineral. Finally, we place P16 downstream of Alx1 in the PMC gene network, thereby linking the network to a specific "effector" protein involved in biomineralization. PMID:15935341

  4. Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin.

    PubMed

    Yajima, Mamiko; Wessel, Gary M

    2012-10-01

    The process of germ line determination involves many conserved genes, yet is highly variable. Echinoderms are positioned at the base of Deuterostomia and are crucial to understanding these evolutionary transitions, yet the mechanism of germ line specification is not known in any member of the phyla. Here we demonstrate that small micromeres (SMics), which are formed at the fifth cell division of the sea urchin embryo, illustrate many typical features of primordial germ cell (PGC) specification. SMics autonomously express germ line genes in isolated culture, including selective Vasa protein accumulation and transcriptional activation of nanos; their descendants are passively displaced towards the animal pole by secondary mesenchyme cells and the elongating archenteron during gastrulation; Cadherin (G form) has an important role in their development and clustering phenotype; and a left/right integration into the future adult anlagen appears to be controlled by a late developmental mechanism. These results suggest that sea urchin SMics share many more characteristics typical of PGCs than previously thought, and imply a more widely conserved system of germ line development among metazoans. PMID:22991443

  5. Expression of recombinant sea urchin cellulase SnEG54 using mammalian cell lines.

    PubMed

    Okumura, Fumihiko; Kameda, Hiroyuki; Ojima, Takao; Hatakeyama, Shigetsugu

    2010-05-01

    We previously identified the cellulase SnEG54 from Japanese purple sea urchin Strongylocentrotus nudus, the molecular mass of which is about 54kDa on SDS-PAGE. It is difficult to express and purify a recombinant cellulase protein using bacteria such as Escherichia coli or yeast. In this study, we generated mammalian expression vectors encoding SnEG54 to transiently express SnEG54 in mammalian cells. Both SnEG54 expressed in mammalian cells and SnEG54 released into the culture supernatant showed hydrolytic activity toward carboxymethyl cellulose. By using a retroviral expression system, we also established a mammalian cell line that constitutively produces SnEG54. Unexpectedly, SnEG54 released into the culture medium was not stable, and the peak time showing the highest concentration was approximately 1-2days after seeding into fresh culture media. These findings suggest that non-mammalian sea urchin cellulase can be generated in human cell lines but that recombinant SnEG54 is unstable in culture medium due to an unidentified mechanism. PMID:20381456

  6. Functional analysis of the sea urchin-derived arylsulfatase (Ars)-element in mammalian cells.

    PubMed

    Watanabe, Satoshi; Watanabe, Sachiko; Sakamoto, Naoaki; Sato, Masahiro; Akasaka, Koji

    2006-09-01

    An insulator is a DNA sequence that has both enhancer-blocking activity, through its ability to modify the influence of neighboring cis-acting elements, and a barrier function that protects a transgene from being silenced by surrounding chromatin. Previously, we isolated and characterized a 582-bp-long element from the sea urchin arylsulfatase gene (Ars). This Ars-element was effective in sea urchin and Drosophila embryos and in plant cells. To investigate Ars-element activity in mammalian cells, we placed the element between the cytomegalovirus enhancer and a luciferase (luc) expression cassette. In contrast to controls lacking the Ars-element, NIH3T3 and 293T cells transfected with the element-containing construct displayed reduced luciferase activities. The Ars-element therefore acts as an enhancer-blocking element in mammalian cells. We assessed the barrier activity of the Ars-element using vectors in which a luc expression cassette was placed between two elements. Transfection experiments demonstrated that luc activity in these vectors was approximately ten-fold higher than in vectors lacking elements. Luc activities were well maintained even after 12 weeks in culture. Our observations demonstrate that the Ars-element has also a barrier activity. These results indicated that the Ars-element act as an insulator in mammalian cells. PMID:16923122

  7. Recombinant sea urchin vascular endothelial growth factor directs single-crystal growth and branching in vitro.

    PubMed

    Knapp, Regina T; Wu, Ching-Hsuan; Mobilia, Kellen C; Joester, Derk

    2012-10-31

    Biomineralization in sea urchin embryos is a crystal growth process that results in oriented single-crystalline spicules with a complex branching shape and smoothly curving surfaces. Uniquely, the primary mesenchyme cells (PMCs) that construct the endoskeleton can be cultured in vitro. However, in the absence of morphogenetic cues secreted by other cells in the embryo, spicules deposited in PMC culture lack the complex branching behavior observed in the embryo. Herein we demonstrate that recombinant sea urchin vascular endothelial growth factor (rVEGF), a signaling molecule that interacts with a cell-surface receptor, induces spiculogenesis and controls the spicule shape in PMC culture. Depending on the rVEGF concentration, PMCs deposit linear, "h"- and "H"-shaped, or triradiate spicules. Remarkably, the change from linear to triradiate occurs with a switch from bidirectional crystal growth parallel to the calcite c axis to growth along the three a axes. This finding has implications for our understanding of how cells integrate morphogenesis on the multi-micrometer scale with control over lattice orientation on the atomic scale. The PMC model system is uniquely suited to investigate this mechanism and develop biotechnological approaches to single-crystal growth. PMID:23066927

  8. Hsp70 as a stress marker of sea urchin coelomocytes in short term cultures.

    PubMed

    Matranga, Valeria; Bonaventura, Rosa; Di Bella, Gloria

    2002-06-01

    Coelomocytes are the immune effectors of the sea urchin and have shown to respond to environmental and experimental challenge by the activation of stress markers. We extended our in vivo studies to in vitro short term cultures of sea urchin coelomocytes by analysing their response to temperature being stress, acid pH and heavy metals, using the hsp70 protein as a stress marker. We found that the in vitro time course of temperature stress recapitulates results obtained in vivo where the highest overexpression was observed after 1 hour. Coelomocytes overexpress hsp70 in a time-dependent manner when cultured for 1 to 6 hr at pH 4.7 +/- 0.2 in isotonic buffer, supplemented with EDTA as anticoagulant. A peak in the level of hsp70 expression was observed at 2 hr of culture, corresponding to a 10-fold increase over the levels of control coelomocytes cultured at pH 7.3 +/- 0.2. The effect of different concentrations of CdCl2 in the culture over a period of 4 hr was also tested. We found that CdCl2 greatly increases the hsp70 expression, with 10(-3) M the dose at which the highest overexpression is observed. PMID:12064441

  9. Annual reversible plasticity of feeding structures: cyclical changes of jaw allometry in a sea urchin

    PubMed Central

    Ebert, Thomas A.; Hernández, José Carlos; Clemente, Sabrina

    2014-01-01

    A wide variety of organisms show morphologically plastic responses to environmental stressors but in general these changes are not reversible. Though less common, reversible morphological structures are shown by a range of species in response to changes in predators, competitors or food. Theoretical analysis indicates that reversible plasticity increases fitness if organisms are long-lived relative to the frequency of changes in the stressor and morphological changes are rapid. Many sea urchin species show differences in the sizes of jaws (demi-pyramids) of the feeding apparatus, Aristotle's lantern, relative to overall body size, and these differences have been correlated with available food. The question addressed here is whether reversible changes of relative jaw size occur in the field as available food changes with season. Monthly samples of the North American Pacific coast sea urchin Strongylocentrotus purpuratus were collected from Gregory Point on the Oregon (USA) coast and showed an annual cycle of relative jaw size together with a linear trend from 2007 to 2009. Strongylocentrotus purpuratus is a long-lived species and under field conditions individuals experience multiple episodes of changes in food resources both seasonally and from year to year. Their rapid and reversible jaw plasticity fits well with theoretical expectations. PMID:24500161

  10. Effects of bisphenol A on the embryonic development of sea urchin (Paracentrotus lividus).

    PubMed

    Ozlem, Cakal Arslan; Hatice, Parlak

    2008-06-01

    Bisphenol A (BPA), is one of the most important industrial chemicals synthesized for diverse applications. In this study, tests for embryotoxic and spermiotoxic effects of BPA were utilized in the sperms and embryos of the sea urchin Paracentrotus lividus. The sperm and eggs of sea urchins were exposed to increasing concentrations of BPA (300-3500 microg/L) under static conditions. The endpoints were successful sperm fertilization, larval malformations, developmental arrest, and embryonic/larval mortality. BPA concentration (300 microg/L) had spermiotoxic and embryotoxic effects on this species. A dose-response related reduction was observed in fertilization success and significant increases in the number of larvae with skeleton malformations at the pluteus stage when the sperms were exposed BPA. The embryotoxicity of BPA is concentration-dependent and significant growth reduction at the early life stages and an increase in larval malformations as skeleton deformities at the pluteus stage were observed. It can be concluded that BPA adversely affects the reproduction and embryonic developmental stages of the P. lividus and this is of great ecological importance due to the hazard at the population level. PMID:18214894

  11. Use of specific glycosidases to probe cellular interactions in the sea urchin embryo.

    PubMed

    Idoni, Brian; Ghazarian, Haike; Metzenberg, Stan; Hutchins-Carroll, Virginia; Oppenheimer, Steven B; Carroll, Edward J

    2010-08-01

    We present an unusual and novel model for initial investigations of a putative role for specifically conformed glycans in cellular interactions. We have used alpha- and ss-amylase and alpha- and ss-glucosidase in dose-response experiments evaluating their effects on archenteron organization using the NIH designated sea urchin embryo model. In quantitative dose-response experiments, we show that defined activity levels of alpha-glucosidase and ss-amylase inhibited archenteron organization in living Lytechinus pictus gastrula embryos, whereas all concentrations of ss-glucosidase and alpha-amylase were without substantial effects on development. Product inhibition studies suggested that the enzymes were acting by their specific glycosidase activities and polyacrylamide gel electrophoresis suggested that there was no detectable protease contamination in the active enzyme samples. The results provide evidence for a role of glycans in sea urchin embryo cellular interactions with special reference to the possible structural conformation of these glycans based on the differential activities of the alpha- and ss-glycosidases. PMID:20435035

  12. Localization and Substrate Selectivity of Sea Urchin Multidrug (MDR) Efflux Transporters*

    PubMed Central

    Gökirmak, Tufan; Campanale, Joseph P.; Shipp, Lauren E.; Moy, Gary W.; Tao, Houchao; Hamdoun, Amro

    2012-01-01

    In this study, we cloned, expressed and functionally characterized Stronglycentrotus purpuratus (Sp) ATP-binding cassette (ABC) transporters. This screen identified three multidrug resistance (MDR) transporters with functional homology to the major types of MDR transporters found in humans. When overexpressed in embryos, the apical transporters Sp-ABCB1a, ABCB4a, and ABCG2a can account for as much as 87% of the observed efflux activity, providing a robust assay for their substrate selectivity. Using this assay, we found that sea urchin MDR transporters export canonical MDR susbtrates such as calcein-AM, bodipy-verapamil, bodipy-vinblastine, and mitoxantrone. In addition, we characterized the impact of nonconservative substitutions in the primary sequences of drug binding domains of sea urchin versus murine ABCB1 by mutation of Sp-ABCB1a and treatment of embryos with stereoisomeric cyclic peptide inhibitors (QZ59 compounds). The results indicated that two substitutions in transmembrane helix 6 reverse stereoselectivity of Sp-ABCB1a for QZ59 enantiomers compared with mouse ABCB1a. This suggests that subtle changes in the primary sequence of transporter drug binding domains could fine-tune substrate specificity through evolution. PMID:23124201

  13. Identification of specific malformations of sea urchin larvae for toxicity assessment: application to marine pisciculture effluents.

    PubMed

    Carballeira, C; Ramos-Gómez, J; Martín-Díaz, L; DelValls, T A

    2012-06-01

    Standard toxicity screening tests are useful tools in the management of impacted coastal ecosystems. To our knowledge, this is the first time that the sea urchin embryo development test has been used to evaluate the potential impact of effluents from land-based aquaculture farms in coastal areas. The toxicity of effluents from 8 land-based turbot farms was determined by calculating the percentage of abnormal larvae, according to two criteria: (a) standard, considering as normal pyramid-shaped larvae with differentiated components, and (b) skeletal, a new criterion that considers detailed skeletal characteristics. The skeletal criterion appeared to be more sensitive and enabled calculation of effective concentrations EC(5), EC(10), EC(20) and EC(50), unlike the classical criterion. Inclusion of the skeleton criterion in the sea urchin embryo development test may be useful for categorizing the relatively low toxicity of discharges from land-based marine fish farms. Further studies are encouraged to establish any causative relationships between pollutants and specific larval deformities. PMID:22341183

  14. Complete mitochondrial genome of Chilean sea urchin: Loxechinus albus (Camarodonta, Parechinidae).

    PubMed

    Jung, Gila; Lee, Youn-Ho

    2015-01-01

    The complete mitochondrial genome of Chilean sea urchin Loxechinus albus, the single species of the genus Loxechinus, is determined. The circular mitogenome is 15,709 bp in length containing 2 rRNA, 22 tRNA and 13 protein coding genes as well as the control region. The gene order is identical to those of described Camarodonta species. There are 24 bp gene overlaps at 6 locations and 124 bp intergenic spacers at 17 boundaries. The nucleotide composition of the genome is 31.2% A, 22.3% C, 29.7% T, and 16.8% G. The A+T bias (60.9%) is similar to that of P. lividus (60.3%) but slightly higher than those of strongylocentrotid species (58.8-59.8%). The mitogenome sequence of L. albus will provide valuable information on the phylogeny and evolution of the genus Loxechinus in relation to other Camarodonta sea urchins. PMID:24409862

  15. Nickel and Copper Toxicity to Embryos of the Long-Spined Sea Urchin, Diadema savignyi.

    PubMed

    Rosen, G; Rivera-Duarte, I; Colvin, M A; Dolecal, R E; Raymundo, L J; Earley, P J

    2015-07-01

    The sensitivity of long-spined sea urchins (Diadema savignyi) collected from Guam (Northern Marianas Islands), USA, to nickel and copper in seawater was explored using 48-h embryo-larval development toxicity tests. The median effective concentrations (EC50) averaged 94 µg L(-1) for nickel, and 19 µg L(-1) from a single exposure to copper, and suggest relatively high sensitivity of this species to nickel compared with other sea urchin genera, but similar sensitivity to copper. Ambient nickel and copper concentrations concurrently sampled from 16 near-shore locations around Guam were one to two orders of magnitude lower than those that would be expected to result in adverse effects to D. savignyi embryos. Although nationally recommended chronic ambient water quality criteria, currently 8.2 and 3.1 µg L(-1) for nickel and copper, respectively, were not exceeded, recently derived qualifying toxicity data should be considered for updating these criteria to ensure protectiveness of sensitive tropical species. PMID:25573279

  16. Cloning of two sea urchin DNA-binding proteins involved in mitochondrial DNA replication and transcription.

    PubMed

    Loguercio Polosa, Paola; Megli, Fiammetta; Di Ponzio, Barbara; Gadaleta, Maria Nicola; Cantatore, Palmiro; Roberti, Marina

    2002-03-01

    The cloning of the cDNA for two mitochondrial proteins involved in sea urchin mtDNA replication and transcription is reported here. The cDNA for the mitochondrial D-loop binding protein (mtDBP) from the sea urchin Strongylocentrotus purpuratus has been cloned by a polymerase chain reaction-based approach. The protein displays a very high similarity with the Paracentrotus lividus homologue as it contains also the two leucine zipper-like domains which are thought to be involved in intramolecular interactions needed to expose the two DNA binding domains in the correct position for contacting DNA. The cDNA for the mitochondrial single-stranded DNA-binding protein (mtSSB) from P. lividus has been also cloned by a similar approach. The precursor protein is 146 amino acids long with a presequence of 16 residues. The deduced amino acid sequence shows the highest homology with the Xenopus laevis protein and the lowest with the Drosophila mtSSB. The computer modeling of the tertiary structure of P. lividus mtSSB shows a structure very similar to that experimentally determined for human mtSSB, with the conservation of the main residues involved in protein tetramerization and in DNA binding. PMID:11943466

  17. Detection of malformations in sea urchin plutei exposed to mercuric chloride using different fluorescent techniques.

    PubMed

    Buttino, Isabella; Hwang, Jiang-Shiou; Romano, Giovanna; Sun, Chi-Kuang; Liu, Tzu-Ming; Pellegrini, David; Gaion, Andrea; Sartori, Davide

    2016-01-01

    Embryos of Mediterranean sea urchin Paracentrotus lividus and subtropical Echinometra mathaei were exposed to 5,10, 15 and 20µgL(-1), and to 1, 2, 3 and 4µgL(-1) mercuric chloride (HgCl2), respectively. The effective concentration (EC50) inducing malformation in 50% of 4-arm pluteus stage (P4) was 16.14µgL(-1) for P. lividus and 2.41µgL(-1) for E. mathaei. Two-photon (TP), second (SHG) and third harmonic generation (THG) microscopy techniques, TUNEL staining, propidium iodide (PI) and Hoechst 33342 probes were used to detect light signals or to stain apoptotic and necrotic cells in fixed and alive plutei. Signals were detected differently in the two species: TP fluorescence, commonly associated with apoptotic cells, did not increase with increasing HgCl2 concentrations in P. lividus and in fact, the TUNEL did not reveal induction of apoptosis. PI fluorescence increased in P. lividus in a dose-dependent manner, suggesting a loss of cell permeability. In E. mathaei plutei TP fluorescence increased at increasing HgCl2 concentrations. THG microscopy revealed skeletal rods in both species. Different fluorescent techniques, used in this study, are proposed as early-warning systems to visualize malformations and physiological responses in sea urchin plutei. PMID:26254716

  18. Sea urchin-like cobalt-iron phosphide as an active catalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Mendoza-Garcia, Adriana; Su, Dong; Sun, Shouheng

    2016-02-01

    Sea urchin-like (CoxFe1-x)2P shows Co/Fe-composition dependent catalysis for oxygen evolution reaction (OER) in 0.1 M KOH. The (Co0.54Fe0.46)2P is the most efficient OER catalyst, reaching 10 mA cm-2 at an overpotential of 0.37 V (vs. RHE). The report offers a new synergistic approach to tune and optimize the electrocatalysis of OER.Sea urchin-like (CoxFe1-x)2P shows Co/Fe-composition dependent catalysis for oxygen evolution reaction (OER) in 0.1 M KOH. The (Co0.54Fe0.46)2P is the most efficient OER catalyst, reaching 10 mA cm-2 at an overpotential of 0.37 V (vs. RHE). The report offers a new synergistic approach to tune and optimize the electrocatalysis of OER. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08763e

  19. Effects of spaceflight conditions on fertilization and embryogenesis in the sea urchin Lytechinus pictus

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Chakrabarti, A.; Taylor, M.; Sommer, L.; Levine, H.; Anderson, K.; Runco, M.; Kemp, R.

    1999-01-01

    Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. Calcium and cytoskeletal events were investigated within sea urchin embryos which were cultured in space under both microgravity and 1 g conditions. Embryos were fixed at time-points ranging from 3 h to 8 days after fertilization. Investigative emphasis was placed upon: (1) sperm-induced calcium-dependent exocytosis and cortical granule secretion, (2) membrane fusion of cortical granule and plasma membranes; (3) microfilament polymerization and microvilli elongation; and (5) embryonic development into morula, blastula, gastrula, and pluteus stages. For embryos cultured under microgravity conditions, the processes of cortical granule discharge, fusion of cortical granule membranes with the plasma membrane, elongation of microvilli and elevation of the fertilization coat were reduced in comparison with embryos cultured at 1 g in space and under normal conditions on Earth. Also, 4% of all cells undergoing division in microgravity showed abnormalities in the centrosome-centriole complex. These abnormalities were not observed within the 1 g flight and ground control specimens, indicating that significant alterations in sea urchin development processes occur under microgravity conditions. Copyright 1999 Academic Press.

  20. Control of protein synthesis in cell-free extracts of sea urchin embryos

    SciTech Connect

    Hansen, L.J.; Huang, W.I.; Jagus, R.

    1986-05-01

    Although the increase in protein synthesis that occurs after fertilization of sea urchin eggs results from increased utilization of stored maternal mRNA, the underlying mechanism is unknown. The authors have prepared cell-free extracts from S.purpuratus and A.puctulata unfertilized eggs and 2-cell embryos that retain the protein synthetic differences observed in vivo. The method is based on that of Dr. Alina Lopo. /sup 35/S methionine incorporation is linear during a 30 min incubation and is 10-20 fold higher in extracts from 2-cell embryos than unfertilized eggs. Addition of purified mRNA does not stimulate these systems, suggesting a regulatory mechanism other than mRNA masking. Addition of rabbit reticulocyte ribosomal salt wash stimulated protein synthesis in extracts from eggs but not embryos, suggesting deficiencies in translational components in unfertilized eggs. Mixing of egg and embryo lysates indicated the presence of a weak protein synthesis inhibitor in eggs. Translational control in developing sea urchin embryos thus appears to be complex, involving both stimulatory and inhibitory factors.

  1. Cilia play a role in breaking left-right symmetry of the sea urchin embryo.

    PubMed

    Takemoto, Ayumi; Miyamoto, Tatsuo; Simono, Fumie; Kurogi, Nao; Shirae-Kurabayashi, Maki; Awazu, Akinori; Suzuki, Ken-Ichi T; Yamamoto, Takashi; Sakamoto, Naoaki

    2016-06-01

    Left-right asymmetry of bilaterian animals is established during early development. In mice, frogs and fishes, the ciliated left-right organizer plays an essential role in establishing bilateral asymmetry, and leftward flow of extracellular fluid generated by ciliary motion results in Nodal activity on the left side. However, H(+) /K(+) -ATPase activity is also involved in the determination of left-right asymmetry in a variety of animals, and it has been thought to be an ancestral mechanism in deuterostomes. In sea urchin, the determination of the left-right asymmetry based on H(+) /K(+) -ATPase activity was already clarified, but it remains to be uncovered whether ciliary motion is involved in the left-right asymmetry of the embryo. Here, we show evidence that ciliary motion is involved in the establishment of left-right asymmetry of sea urchin embryo. Furthermore, we show that the initial cilia generated on small micromeres during the early stage of embryogenesis may be involved in this process. These results suggest that the cilia-mediated mechanism for the determination of left-right asymmetry may be acquired at the base of the deuterostomes. PMID:27028068

  2. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin

    NASA Technical Reports Server (NTRS)

    Arenas-Mena, C.; Cameron, A. R.; Davidson, E. H.

    2000-01-01

    The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five 'posterior' genes of the cluster: SpHox7, SpHox8, SpHox9/10, SpHox11/13a and SpHox11/13b. The five genes exhibit a dynamic, largely mesodermal program of expression. Only SpHox7 displays extensive expression within the pentameral rudiment itself. A spatially sequential and colinear arrangement of expression domains is found in the somatocoels, the paired posterior mesodermal structures that will become the adult perivisceral coeloms. No such sequential expression pattern is observed in endodermal, epidermal or neural tissues of either the larva or the presumptive juvenile sea urchin. The spatial expression patterns of the Hox genes illuminate the evolutionary process by which the pentameral echinoderm body plan emerged from a bilateral ancestor.

  3. Submicrometer structure of sea urchin tooth via remote synchrotron microCT imaging

    NASA Astrophysics Data System (ADS)

    Stock, Stuart R.; Rack, Alexander

    2014-09-01

    Remote electron microscopy sessions are featured at a number of imaging centers. Similarly, many synchrotron light sources offer routine "mail-in" crystallography and powder diffractometry. At imaging beam lines, small numbers of (preliminary) scans are sometimes performed by staff, in the absence of the investigator, to demonstrate feasibility of the proposed study or as an industrial service. In the 1990s, one of us (SRS) participated in processing experiments where samples were couriered between Georgia Tech and SSRL and synchrotron microCT followed the spatial distribution of densification. Here, the authors report results of remote microCT experiments, i.e., where the investigator who knows the sample interacts via the web with the beam line scientist operating the apparatus and provides real-time feedback on where to scan based upon radiographs and on the most recent reconstructions. Local tomography imaged sea urchin teeth with 350 nm isotropic volume element (voxel) at beam line ID-19, ESRF. Sea urchin teeth form by growing parallel plates of high Mg calcite, each of which is 2-5 μm away from its neighbors, and very high Mg calcite columns later link the plates. The remote imaging session focused on tooth positions where the columns were just forming, and column shapes and dimensions were measured, something which has previously only been done with destructive sample preparation and scanning electron microscopy. The experiments were successful despite a separation of 4,400 miles and seven time zones.

  4. A Protocol for Bioinspired Design: A Ground Sampler Based on Sea Urchin Jaws.

    PubMed

    Frank, Michael B; Naleway, Steven E; Wirth, Taylor S; Jung, Jae-Young; Cheung, Charlene L; Loera, Faviola B; Medina, Sandra; Sato, Kirk N; Taylor, Jennifer R A; McKittrick, Joanna

    2016-01-01

    Bioinspired design is an emerging field that takes inspiration from nature to develop high-performance materials and devices. The sea urchin mouthpiece, known as the Aristotle's lantern, is a compelling source of bioinspiration with an intricate network of musculature and calcareous teeth that can scrape, cut, chew food and bore holes into rocky substrates. We describe the bioinspiration process as including animal observation, specimen characterization, device fabrication and mechanism bioexploration. The last step of bioexploration allows for a deeper understanding of the initial biology. The design architecture of the Aristotle's lantern is analyzed with micro-computed tomography and individual teeth are examined with scanning electron microscopy to identify the microstructure. Bioinspired designs are fabricated with a 3D printer, assembled and tested to determine the most efficient lantern opening and closing mechanism. Teeth from the bioinspired lantern design are bioexplored via finite element analysis to explain from a mechanical perspective why keeled tooth structures evolved in the modern sea urchins we observed. This circular approach allows for new conclusions to be drawn from biology and nature. PMID:27166636

  5. Nitric Oxide Mediates the Stress Response Induced by Diatom Aldehydes in the Sea Urchin Paracentrotus lividus

    PubMed Central

    Romano, Giovanna; Costantini, Maria; Buttino, Isabella; Ianora, Adrianna; Palumbo, Anna

    2011-01-01

    Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms. PMID:22022485

  6. Developmental effects of two different copper oxide nanomaterials in sea urchin (Lytechinus pictus) embryos.

    PubMed

    Torres-Duarte, Cristina; Adeleye, Adeyemi S; Pokhrel, Suman; Mädler, Lutz; Keller, Arturo A; Cherr, Gary N

    2016-08-01

    Copper oxide nanomaterials (nano-CuOs) are widely used and can be inadvertently introduced into estuarine and marine environments. We analyzed the effects of different nano-CuOs (a synthesized and a less-pure commercial form), as well as ionic copper (CuSO4) on embryo development in the white sea urchin, a well-known marine model. After 96 h of development with both nano-CuO exposures, we did not detect significant oxidative damage to proteins but did detect decreases in total antioxidant capacity. We show that the physicochemical characteristics of the two nano-CuOs play an essential role in their toxicities. Both nano-CuOs were internalized by embryos and their differential dissolution was the most important toxicological parameter. The synthesized nano-CuO showed greater toxicity (EC50 = 450 ppb of copper) and had increased dissolution (2.5% by weight over 96 h) as compared with the less-pure commercial nano-CuO (EC50 = 5395 ppb of copper, 0.73% dissolution by weight over 96 h). Copper caused specific developmental abnormalities in sea urchin embryos including disruption of the aboral-oral axis as a result in changes to the redox environment caused by dissolution of internalized nano-CuO. Abnormal skeleton formation also occurred. PMID:26643145

  7. Toxicity of four spill-treating agents on bacterial growth and sea urchin embryogenesis.

    PubMed

    Rial, Diego; Murado, Miguel A; Beiras, Ricardo; Vázquez, José A

    2014-06-01

    The toxicity of spill-treating agents (STAs) is a topic that needs to be assessed prior to their potential application in environmental disasters. The aim of the present work was to study the effects of four commercial STAs (CytoSol, Finasol OSR 51, Agma OSD 569 and OD4000) on the growth of marine (Phaeobacter sp., Pseudomonas sp.) and terrestrial (Leuconostoc mesenteroides) bacteria, and sea urchin (Paracentrotus lividus) embryolarval development. In general, STA did not inhibit significantly the biomass production of the tested marine bacteria. Finasol OSR 51 and OD4000 clearly inhibited the growth of L. mesenteroides and an accurate description of the kinetics was provided by a proposed bivariate equation. For this species, a global parameter (EC50,τ) was defined to summarize the set of growth kinetics. Using this parameter Finasol OSR 51 was found to be less toxic (754μL L(-1)) than OD4000 (129μL L(-1)). For the sea urchin embryo assay, the ranking of toxicity as EC50 (μL L(-1)) was Agma OSD 569 (34.0)

  8. Trawling disturbance on the isotopic signature of a structure-building species, the sea urchin Gracilechinus acutus (Lamarck, 1816)

    NASA Astrophysics Data System (ADS)

    González-Irusta, José M.; Preciado, Izaskun; López-López, Lucia; Punzón, Antonio; Cartes, Joan E.; Serrano, Alberto

    2014-08-01

    Bottom trawling is one of the main sources of anthropogenic disturbance in benthic habitats with important direct and indirect effects on the ecosystem functional diversity. In this study, the effect of this impact on a structure-building species, the sea urchin Gracilechinus acutus, was studied in the Central Cantabrian Sea (southern Bay of Biscay) comparing its isotopic signature and additional population descriptors across different trawling pressures. Trawling disturbance had a significant effect on the studied descriptors. In trawling areas, this urchin showed significantly lower values of biomass and mean size and significantly higher values of fullness index. Moreover, the trawling disturbance effect was also significant in the isotopic signature of G. acutus. Urchins inhabiting untrawled areas showed significant lower values of δ15N than urchins dwelling areas under trawling pressure. The urchins' isotopic enrichment increased along the species ontogeny regardless of the trawling effort level. Stable isotope analyses are a suitable tool to detect trawling disturbance on the trophic pathways but do not suffice to explain these changes, especially if there is a lack of baseline information.

  9. Manipulation of Developing Juvenile Structures in Purple Sea Urchins (Strongylocentrotus purpuratus) by Morpholino Injection into Late Stage Larvae

    PubMed Central

    2014-01-01

    Sea urchins have been used as experimental organisms for developmental biology for over a century. Yet, as is the case for many other marine invertebrates, understanding the development of the juveniles and adults has lagged far behind that of their embryos and larvae. The reasons for this are, in large part, due to the difficulty of experimentally manipulating juvenile development. Here we develop and validate a technique for injecting compounds into juvenile rudiments of the purple sea urchin, Strongylocentrotus purpuratus. We first document the distribution of rhodaminated dextran injected into different compartments of the juvenile rudiment of sea urchin larvae. Then, to test the potential of this technique to manipulate development, we injected Vivo-Morpholinos (vMOs) designed to knock down p58b and p16, two proteins involved in the elongation of S. purpuratus larval skeleton. Rudiments injected with these vMOs showed a delay in the growth of some juvenile skeletal elements relative to controls. These data provide the first evidence that vMOs, which are designed to cross cell membranes, can be used to transiently manipulate gene function in later developmental stages in sea urchins. We therefore propose that injection of vMOs into juvenile rudiments, as shown here, is a viable approach to testing hypotheses about gene function during development, including metamorphosis. PMID:25436992

  10. A network of 2-4 nm filaments found in sea urchin smooth muscle. Protein constituents and in situ localization.

    PubMed

    Pureur, R P; Coffe, G; Soyer-Gobillard, M O; de Billy, F; Pudles, J

    1986-01-01

    In this report the coisolation of two proteins from sea urchin smooth muscle of apparent molecular weights (Mr) 54 and 56 kD respectively, as determined on SDS-PAGE, is described. Like the intermediate filament proteins, these two proteins are insoluble in high ionic strength buffer solution. On two-dimensional gel electrophoresis and by immunological methods it is shown that these proteins are not related (by these criteria) to rat smooth muscle desmin (54 kD) or vimentin (56 kD). Furthermore, in conditions where both desmin and vimentin assemble in vitro into 10 nm filaments, the sea urchin smooth muscle proteins do not assemble into filaments. Ultrastructural studies on the sea urchin smooth muscle cell show that the thin and thick filaments organization resembles that described in the vertebrate smooth muscle. However, instead of 10 nm filaments, a network of filaments, 2-4 nm in diameter, is revealed, upon removal of the thin and thick filaments by 0.6 M KCl treatment. By indirect immunofluorescence microscopy, and in particular by immunocytochemical electron microscopy studies on the sea urchin smooth muscle cell, it is shown that the antibodies raised against both 54 and 56 kD proteins appear to specifically label these 2-4 nm filaments. These findings indicate that both the 54 and 56 kD proteins might be constituents of this category of filaments. The possible significance of this new cytoskeletal element, that we have named echinonematin filaments, is discussed. PMID:3509996

  11. EFFECTS OF TRIBUTYLTIN ON CA2+ HOMEOSTASIS AND MECHANISMS CONTROLLING CELL CYCLING IN SEA URCHIN EGGS (R823881)

    EPA Science Inventory

    Abstract

    Tributyltin (TBT) is one of the widespread organotins in the marine environment: we have investigated its cellular targets in the eggs of the marine invertebrate sea urchin Paracentrotus lividus. TBT was used at concentrations ranging from 10-9

  12. Relationships between fish, sea urchins and macroalgae: The structure of shallow rocky sublittoral communities in the Cyclades, Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Giakoumi, Sylvaine; Cebrian, Emma; Kokkoris, Giorgos D.; Ballesteros, Enric; Sala, Enric

    2012-08-01

    Historical overfishing is the most likely explanation for the depletion of the shallow sublittoral communities in many areas not least in the Cyclades Archipelago, Greece. The present study is the first quantitative study of the shallow rocky sublittoral of the Cyclades based on in situ underwater surveys of algal cover, and fish and sea urchin abundance at 181 sampling sites in 25 islands to provide a baseline and investigate the relationship between these communities. Algal turf was the most abundant algal functional group, and canopy algae of the genus Cystoseira were more abundant at the northern islands. A range in fish biomass of almost two orders of magnitude was found across islands, but overall the Cyclades displayed much lower values than fished areas of the Western Mediterranean. We observed apex predators only in 25% of our sampling sites, and their biomass was uncorrelated to total fish biomass, indicating a depleted ecosystem. Sea urchin biomass was also low but similar to values found in other Mediterranean islands and was positively correlated with barrens. We observed a gradient of benthic community complexity from sea urchin barrens to communities dominated by Cystoseira spp. There was no correlation between sea urchins and their predators Diplodus spp., which presented extremely low densities.

  13. Day Pass Down the Red Sea

    NASA Video Gallery

    This video over the southeastern Mediterranean Sea and down the coastline of the Red Sea was taken by the crew of Expedition 29 aboard the International Space Station. This sequence of shots was ta...

  14. A sea urchin lectin, SUL-1, from the Toxopneustid sea urchin induces DC maturation from human monocyte and drives Th1 polarization in vitro.

    PubMed

    Takei, Masao; Nakagawa, Hideyuki

    2006-05-15

    The sea urchin Toxopneustes pileolus belonging to the family Toxopneustidae, they have well-developed globiferous pedicellariae with pharmacologically active substances. We have purified a novel sea urchin lectin-1 (SUL-1) from the large globiferous pedicellariae of T. pileolus. Dendritic cells (DC) are professional APC and play a pivotal role in controlling immune responses. This study investigated whether SUL-1 can drive DC maturation from human immature monocyte-derived DC in vitro. Human monocytes were cultured with GM-CSF and IL-4 for 6 days followed by another 1 day in the presence of SUL-1 or LPS. DC harvested on day 7 were examined using functional assays. The expression levels of CD1a, CD80, CD83, CD86 and HLA-DR as expressed by mean fluorescence intensity (MFI) on DC differentiated from immature DC after culture with 1.0 microg/ml of SUL-1 for 1 day were enhanced and decreased endocytic activity. SUL-1-treated DC also displayed enhanced T cell stimulatory capacity in an MLR, as measured by T cell proliferation. Cell surface expression of CD80, CD83 and CD86 on SUL-1-treated DC was inhibited by anti-DC-SIGN mAb, while anti-DC-SIGN mAb had no influence on allogeneic T cell proliferation by SUL-1-treated DC. DC differentiated with SUL-1 induced the differentiation of naïve T cell towards a helper T cell type 1 (Th1) response at DC/T (1:5) cells ratio depending on IL-12 secretion. In CTL assay, the production of IFN-gamma and 51Cr release on SUL-1-treated DC were more augmented than of immature DC or LPS-treated DC. SUL-1-treated DC expressed CCR7 and had a high migration to MIP-3beta. Intracellular Ca2+ mobilization in SUL-1-treated DC was also induced by MIP-3beta. These results suggest that SUL-1 bindings to DC-SIGN on surface of immature DC may lead to differentiate DC from immature DC. Moreover, it suggests that SUL-1 may be used on DC-based vaccines for cancer immunotherapy. PMID:16197973

  15. A sea urchin lectin, SUL-1, from the Toxopneustid sea urchin induces DC maturation from human monocyte and drives Th1 polarization in vitro

    SciTech Connect

    Takei, Masao . E-mail: mtakei@fz-borstel.de; Nakagawa, Hideyuki

    2006-05-15

    The sea urchin Toxopneustes pileolus belonging to the family Toxopneustidae, they have well-developed globiferous pedicellariae with pharmacologically active substances. We have purified a novel sea urchin lectin-1 (SUL-1) from the large globiferous pedicellariae of T. pileolus. Dendritic cells (DC) are professional APC and play a pivotal role in controlling immune responses. This study investigated whether SUL-1 can drive DC maturation from human immature monocyte-derived DC in vitro. Human monocytes were cultured with GM-CSF and IL-4 for 6 days followed by another 1 day in the presence of SUL-1 or LPS. DC harvested on day 7 were examined using functional assays. The expression levels of CD1a, CD80, CD83, CD86 and HLA-DR as expressed by mean fluorescence intensity (MFI) on DC differentiated from immature DC after culture with 1.0 {mu}g/ml of SUL-1 for 1 day were enhanced and decreased endocytic activity. SUL-1-treated DC also displayed enhanced T cell stimulatory capacity in an MLR, as measured by T cell proliferation. Cell surface expression of CD80, CD83 and CD86 on SUL-1-treated DC was inhibited by anti-DC-SIGN mAb, while anti-DC-SIGN mAb had no influence on allogeneic T cell proliferation by SUL-1-treated DC. DC differentiated with SUL-1 induced the differentiation of naive T cell towards a helper T cell type 1 (Th1) response at DC/T (1:5) cells ratio depending on IL-12 secretion. In CTL assay, the production of IFN-{gamma} and {sup 51}Cr release on SUL-1-treated DC were more augmented than of immature DC or LPS-treated DC. SUL-1-treated DC expressed CCR7 and had a high migration to MIP-3{beta}. Intracellular Ca{sup 2+} mobilization in SUL-1-treated DC was also induced by MIP-3{beta}. These results suggest that SUL-1 bindings to DC-SIGN on surface of immature DC may lead to differentiate DC from immature DC. Moreover, it suggests that SUL-1 may be used on DC-based vaccines for cancer immunotherapy.

  16. Sea urchin larvae decipher the epiphytic bacterial community composition when selecting sites for attachment and metamorphosis.

    PubMed

    Nielsen, Shaun J; Harder, Tilmann; Steinberg, Peter D

    2015-01-01

    Most marine invertebrates have dispersive larvae and relatively immobile adults. These developmental stages are linked by a settlement event, which is often mediated by specific cues in bacterial biofilms. While larvae distinguish between biofilms from different environments, it remains unknown if they receive information from all, only a few or even just a single bacterial species in natural biofilms. Here we asked how specific is larval settlement to the bacterial community structure and/or taxonomically distinguishable groups of bacteria in epiphytic marine biofilms? We used novel multivariate statistical approaches to investigate if larval settlement of two sea urchins correlated with the microbial community composition. Larval settlement of Heliocidaris erythrogramma revealed a strong correlation with the community composition, highlighted by canonical analysis of principle components, a constrained ordination technique. Using this technique, the importance of operational taxonomic units (OTUs) within communities relative to larval settlement was investigated. Larval settlement not only correlated, both positively and negatively, with the epiphytic bacterial community composition but also with the relative abundance of few OTUs within these communities. In contrast, no such correlation was observed for the other urchin, Holopneustes purpurascens, whose larvae likely respond to bacterial biofilms in a more general way and specifically respond to a defined settlement cue of algal origin. PMID:25764535

  17. Large area sub-micron chemical imaging of magnesium in sea urchin teeth.

    PubMed

    Masic, Admir; Weaver, James C

    2015-03-01

    The heterogeneous and site-specific incorporation of inorganic ions can profoundly influence the local mechanical properties of damage tolerant biological composites. Using the sea urchin tooth as a research model, we describe a multi-technique approach to spatially map the distribution of magnesium in this complex multiphase system. Through the combined use of 16-bit backscattered scanning electron microscopy, multi-channel energy dispersive spectroscopy elemental mapping, and diffraction-limited confocal Raman spectroscopy, we demonstrate a new set of high throughput, multi-spectral, high resolution methods for the large scale characterization of mineralized biological materials. In addition, instrument hardware and data collection protocols can be modified such that several of these measurements can be performed on irregularly shaped samples with complex surface geometries and without the need for extensive sample preparation. Using these approaches, in conjunction with whole animal micro-computed tomography studies, we have been able to spatially resolve micron and sub-micron structural features across macroscopic length scales on entire urchin tooth cross-sections and correlate these complex morphological features with local variability in elemental composition. PMID:25557499

  18. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification.

    PubMed

    Mos, Benjamin; Byrne, Maria; Dworjanyn, Symon A

    2016-02-01

    Decreasing oceanic pH (ocean acidification) has emphasised the influence of carbonate chemistry on growth of calcifying marine organisms. However, calcifiers can also change carbonate chemistry of surrounding seawater through respiration and calcification, a potential limitation for aquaculture. This study examined how seawater exchange rate and stocking density of the sea urchin Tripneustes gratilla that were reproductively mature affected carbonate system parameters of their culture water, which in turn influenced growth, gonad production and gonad condition. Growth, relative spine length, gonad production and consumption rates were reduced by up to 67% by increased density (9-43 individuals.m(-2)) and reduced exchange rates (3.0-0.3 exchanges.hr(-1)), but survival and food conversion efficiency were unaffected. Analysis of the influence of seawater parameters indicated that reduced pH and calcite saturation state (ΩCa) were the primary factors limiting gonad production and growth. Uptake of bicarbonate and release of respiratory CO2 by T. gratilla changed the carbonate chemistry of surrounding water. Importantly total alkalinity (AT) was reduced, likely due to calcification by the urchins. Low AT limits the capacity of culture water to buffer against acidification. Direct management to counter biogenic acidification will be required to maintain productivity and reproductive output of marine calcifiers, especially as the ocean carbonate system is altered by climate driven ocean acidification. PMID:26595392

  19. Longevity, life history, and relative body wall size in sea urchins

    SciTech Connect

    Ebert, T.A.

    1982-12-01

    Annual survival rates in 38 populations of 17 sea urchin species in the Indo-West Pacific were related to relative size of the body wall and exposure to the surf. Populations were studied at Hawaii, Enewetak Atok, Queensland, New South Wales and Western Australia, Sri Lanka, Seychelles, Kenya, Zanzibar, and Isaerl (Eilat). Live animals were dissected to determine the size of body components. Parameters of the Richards growth function were determined from animals tagged with tetracycline. Tagged animals were collected after they had been in the field for 1 yr. Growth parameters were used with parameters from size-frequency distributions to estimate Z, the mortality coefficient. Stepwise multiple regression was used to examine the relationship between annual survival probability (p) and two indepencent variables, ..cap alpha.. and E, where E is a subjective measure of exposure to surf (1 = most exposed). Survivorship increases with increased relative size of the body wall and with increased protection from the surf. The positive relationship between survival probability and relative body wall size supports the hypothesis that survival is related to allocation of resources to maintenance. The significane of longevity in urchins probably is that it is related to the predictability of survival of prereproductive individuals. The greater the unpredictability, the longer life must be. Long life requires a greater investment in maintenance mechanisms and hence, among other adaptations, a more massive body wall.

  20. Regulatory logic and pattern formation in the early sea urchin embryo.

    PubMed

    Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S

    2014-12-21

    We model the endomesoderm tissue specification process in the vegetal half of the early sea urchin embryo using Boolean models with continuous-time updating to represent the regulatory network that controls gene expression. Our models assume that the network interaction rules remain constant over time and the dynamics plays out on a predetermined program of cell divisions. An exhaustive search of two-node models, in which each node may represent a module of several genes in the real regulatory network, yields a unique network architecture that can accomplish the pattern formation task at hand--the formation of three latitudinal tissue bands from an initial state with only two distinct cell types. Analysis of an eight-gene model constructed from available experimental data reveals that it has a modular structure equivalent to the successful two-node case. Our results support the hypothesis that the gene regulatory network provides sufficient instructions for producing the correct pattern of tissue specification at this stage of development (between the fourth and tenth cleavages in the urchin embryo). PMID:25093827

  1. Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans.

    PubMed

    Lessios, H A; Kane, J; Robertson, D R

    2003-09-01

    To understand how allopatric speciation proceeds, we need information on barriers to gene flow, their antiquity, and their efficacy. For marine organisms with planktonic larvae, much of this information can only be obtained through the determination of divergence between populations. We evaluated the importance of ocean barriers by studying the mitochondrial DNA phylogeography of Tripneustes, a pantropical genus of shallow water sea urchin. A region of cytochrome oxidase I (COI) was sequenced in 187 individuals from locations around the globe. The COI phylogeny agreed with a previously published phylogeny of bindin that barriers important to the evolution of Tripneustes are: (1) the cold water upwelling close to the tip of South Africa, (2) the Isthmus of Panama, (3) the long stretch of deep water separating the eastern from the western Atlantic, and (4) the freshwater plume of the Orinoco and the Amazon rivers between the Caribbean and the coast of Brazil. These barriers have previously been shown to be important in at least a subset of the shallow water marine organisms in which phylogeography has been studied. In contrast, the Eastern Pacific Barrier, 5000 km of deep water between the central and the eastern Pacific that has caused the deepest splits in other genera of sea urchins, is remarkably unimportant as a cause of genetic subdivision in Tripneustes. There is also no discernible subdivision between the Pacific and Indian Ocean populations of this genus. The most common COI haplotype is found in the eastern, central, and western Pacific as well as the Indian Ocean. Morphology, COI, and bindin data agree that T. depressus from the eastern Pacific and T. gratilla from the western Pacific are, in fact, the same species. The distribution of haplotype differences in the Indo-Pacific exhibits characteristics expected from a sea urchin genus with ephemeral local populations, but with high fecundity, dispersal, and growth: there is little phylogenetic structure

  2. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests

    PubMed Central

    Hamilton, Scott L.; Caselle, Jennifer E.

    2015-01-01

    Size-structured predator–prey interactions can be altered by the history of exploitation, if that exploitation is itself size-selective. For example, selective harvesting of larger sized predators can release prey populations in cases where only large individuals are capable of consuming a particular prey species. In this study, we examined how the history of exploitation and recovery (inside marine reserves and due to fisheries management) of California sheephead (Semicossyphus pulcher) has affected size-structured interactions with sea urchin prey in southern California. We show that fishing changes size structure by reducing sizes and alters life histories of sheephead, while management measures that lessen or remove fishing impacts (e.g. marine reserves, effort restrictions) reverse these effects and result in increases in density, size and biomass. We show that predation on sea urchins is size-dependent, such that the diet of larger sheephead is composed of more and larger sized urchins than the diet of smaller fish. These results have implications for kelp forest resilience, because urchins can overgraze kelp in the absence of top-down control. From surveys in a network of marine reserves, we report negative relationships between the abundance of sheephead and urchins and the abundance of urchins and fleshy macroalgae (including giant kelp), indicating the potential for cascading indirect positive effects of top predators on the abundance of primary producers. Management measures such as increased minimum size limits and marine reserves may serve to restore historical trophic roles of key predators and thereby enhance the resilience of marine ecosystems. PMID:25500572

  3. Best Dressed Test: A Study of the Covering Behavior of the Collector Urchin Tripneustes gratilla

    PubMed Central

    Ziegenhorn, Morgan A.

    2016-01-01

    Many sea urchin genera exhibit cryptic covering behaviors. One such behavior has been documented in the sea urchin Tripneustes gratilla, and previous studies have theorized that this behavior serves as protection from UV radiation. However, other hypotheses have been presented such as protection from predators or added weight to help T. gratilla resist strong currents. A field study was conducted in October-November 2015 in Moorea, French Polynesia to assess urchin covering behavior in natural habitats. The study found that urchins partially underneath rocks covered more, and with more algae, than urchins totally underneath rocks. To test if this behavior was driven by light intensity, a series of 30-minute experimental trials were run on 10 individuals in bright and dim conditions. Individuals were given red and clear plastic, and percent cover of each was recorded. These tests were repeated once fifty percent of spines had been removed from the urchin, in order to determine whether spine loss affects T. gratilla covering behavior. The study found that urchins had a distinct preference for cover that best protects them from UV radiation. Spine loss did not significantly affect urchin ability to cover, and urchins with removed spines still preferred opaque cover. Additionally, covering behavior was mapped onto a phylogeny of echinoderms to determine how it might have evolved. Understanding urchin covering behavior more fully is a step towards an understanding of the evolution of cryptic behavior across species. PMID:27073915

  4. Best Dressed Test: A Study of the Covering Behavior of the Collector Urchin Tripneustes gratilla.

    PubMed

    Ziegenhorn, Morgan A

    2016-01-01

    Many sea urchin genera exhibit cryptic covering behaviors. One such behavior has been documented in the sea urchin Tripneustes gratilla, and previous studies have theorized that this behavior serves as protection from UV radiation. However, other hypotheses have been presented such as protection from predators or added weight to help T. gratilla resist strong currents. A field study was conducted in October-November 2015 in Moorea, French Polynesia to assess urchin covering behavior in natural habitats. The study found that urchins partially underneath rocks covered more, and with more algae, than urchins totally underneath rocks. To test if this behavior was driven by light intensity, a series of 30-minute experimental trials were run on 10 individuals in bright and dim conditions. Individuals were given red and clear plastic, and percent cover of each was recorded. These tests were repeated once fifty percent of spines had been removed from the urchin, in order to determine whether spine loss affects T. gratilla covering behavior. The study found that urchins had a distinct preference for cover that best protects them from UV radiation. Spine loss did not significantly affect urchin ability to cover, and urchins with removed spines still preferred opaque cover. Additionally, covering behavior was mapped onto a phylogeny of echinoderms to determine how it might have evolved. Understanding urchin covering behavior more fully is a step towards an understanding of the evolution of cryptic behavior across species. PMID:27073915

  5. Cytogenetic, cellular, and developmental responses in antarctic sea urchins (Sterechinus neumayeri) following laboratory ultraviolet-B and ambient solar radiation exposures

    SciTech Connect

    Anderson, S.; Hoffman, J.; Wild, G. ); Bosch, I. ); Karentz, D. )

    1993-01-01

    Increasing ultraviolet-B radiation as a consequence of springtime ozone depletion, could harm antarctic ecosystems. This study uses several techniques for studying genotoxic effects to evaluate UV-B effects in sea urchins from Antarctica. 6 refs., 2 figs.

  6. Use of a free ocean CO₂ enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin.

    PubMed

    Barry, James P; Lovera, Chris; Buck, Kurt R; Peltzer, Edward T; Taylor, Josi R; Walz, Peter; Whaling, Patrick J; Brewer, Peter G

    2014-08-19

    The influence of ocean acidification in deep-sea ecosystems is poorly understood but is expected to be large because of the presumed low tolerance of deep-sea taxa to environmental change. We used a newly developed deep-sea free ocean CO2 enrichment (dp-FOCE) system to evaluate the potential consequences of future ocean acidification on the feeding behavior of a deep-sea echinoid, the sea urchin, Strongylocentrotus fragilis. The dp-FOCE system simulated future ocean acidification inside an experimental enclosure where observations of feeding behavior were performed. We measured the average movement (speed) of urchins as well as the time required (foraging time) for S. fragilis to approach its preferred food (giant kelp) in the dp-FOCE chamber (-0.46 pH units) and a control chamber (ambient pH). Measurements were performed during each of 4 trials (days -2, 2, 24, 27 after CO2 injection) during the month-long period when groups of urchins were continuously exposed to low pH or control conditions. Although urchin speed did not vary significantly in relation to pH or time exposed, foraging time was significantly longer for urchins in the low-pH treatment. This first deep-sea FOCE experiment demonstrated the utility of the FOCE system approach and suggests that the chemosensory behavior of a deep-sea urchin may be impaired by ocean acidification. PMID:25051305

  7. Isolation and structural studies of a sulfated sialosphingolipid from the sea urchin Echinocardium cordatum.

    PubMed

    Kochetkov, N K; Smirnova, G P; Chekareva, N V

    1976-02-23

    Three sialosphingolipids have been isolated from a lipid extract of gonads of the sea urchin Echinocardium cordatum by partition dialysis and DEAE-cellulose column chromatography. The structure of the sialosphingolipid containing sulfate group has been established. On the basis of the results of total and partial acid hydrolysis, methanolysis, methylation, periodate oxidation and enzymatic hydrolysis with neuraminidase the sulfated sialosphingolipid was identified as 8-sulfate-sialyl-alpha-(2 leads to 6)glucopyranosyl-(1 leads to 1)ceramide. The long-chain bases were mainly phytosphingosine and its C16 homologue. The fatty acids of the sialosphingolipid were the mixture of normal and alpha-hydroxy fatty acids, their compositions were analysed by gas-liquid chromatography. PMID:1252492

  8. A Presumptive Developmental Role for a Sea Urchin Cyclin B Splice Variant

    PubMed Central

    Lozano, Jean-Claude; Schatt, Philippe; Marquès, François; Peaucellier, Gérard; Fort, Philippe; Féral, Jean-Pierre; Genevière, Anne-Marie; Picard, André

    1998-01-01

    We show that a splice variant–derived cyclin B is produced in sea urchin oocytes and embryos. This splice variant protein lacks highly conserved sequences in the COOH terminus of the protein. It is found strikingly abundant in growing oocytes and cells committed to differentiation during embryogenesis. Cyclin B splice variant (CBsv) protein associates weakly in the cell with Xenopus cdc2 and with budding yeast CDC28p. In contrast to classical cyclin B, CBsv very poorly complements a triple CLN deletion in budding yeast, and its microinjection prevents an initial step in MPF activation, leading to an important delay in oocyte meiosis reinitiation. CBsv microinjection in fertilized eggs induces cell cycle delay and abnormal development. We assume that CBsv is produced in growing oocytes to keep them in prophase, and during embryogenesis to slow down cell cycle in cells that will be committed to differentiation. PMID:9442104

  9. [Embryonic development of the sea urchin after low-temperature preservation].

    PubMed

    Gakhova, E N; Krasts, I V; Naĭdenko, T Kh; Savel'eva, N A; Bessonov, B I

    1988-01-01

    The sea urchin embryos were cooled to -196 degrees by two-step freezing with the use of 1-1.5 M dimethyl sulfoxide as a cryoprotectant. The embryos were equilibrated with the cryoprotectant for 20-30 min at 0 +/- 2 degrees. At -7 degrees ice crystallization was induced and the embryos were cooled to -38-42 degrees at a rate of 6-8 degrees /min. The embryos were then transferred into liquid nitrogen. The embryos were thawed in a water bath at 19 degrees. No less than 90% of the embryos frozen at the stages of blastula, gastrula, or pluteus were capable of recovery and normal development. The length of cryopreservation did not affect the survival of the embryos. PMID:3387042

  10. Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos.

    PubMed

    Materna, Stefan C; Ransick, Andrew; Li, Enhu; Davidson, Eric H

    2013-03-01

    Specification of the non-skeletogenic mesoderm (NSM) in sea urchin embryos depends on Delta signaling. Signal reception leads to expression of regulatory genes that later contribute to the aboral NSM regulatory state. In oral NSM, this is replaced by a distinct oral regulatory state in consequence of Nodal signaling. Through regulome wide analysis we identify the homeobox gene not as an immediate Nodal target. not expression in NSM causes extinction of the aboral regulatory state in the oral NSM, and expression of a new suite of regulatory genes. All NSM specific regulatory genes are henceforth expressed exclusively, in oral or aboral domains, presaging the mesodermal cell types that will emerge. We have analyzed the regulatory linkages within the aboral NSM gene regulatory network. A linchpin of this network is gataE which as we show is a direct Gcm target and part of a feedback loop locking down the aboral regulatory state. PMID:23261933

  11. Transport in technicolor: Mapping ATP-binding cassette transporters in sea urchin embryos

    PubMed Central

    Gökirmak, Tufan; Shipp, Lauren E.; Campanale, Joseph P.; Nicklisch, Sascha C.T.; Hamdoun, Amro

    2014-01-01

    One quarter of eukaryotic genes encode membrane proteins. These include nearly 1000 transporters that translocate nutrients, signaling molecules, and xenobiotics across membranes. While it is well appreciated that membrane transport is critical for development, the specific roles of many transporters have remained cryptic, in part because of their abundance and the diversity of their substrates. Multi-drug resistance ATP-binding cassette (ABC) efflux transporters are one example of cryptic membrane proteins. Although most organisms utilize these ABC transporters during embryonic development, many of these transporters have broad substrate specificity, and their developmental functions remain incompletely understood. Here, we review advances in our understanding of ABC transporters in sea urchin embryos, and methods developed to spatially and temporally map these proteins. These studies reveal that multifunctional transporters are required for signaling, homeostasis, and protection of the embryo, and shed light on how they are integrated into ancestral developmental pathways recapitulated in disease. PMID:25156004

  12. Hydrodynamism and its influence on the reproductive condition of the edible sea urchin Paracentrotus lividus.

    PubMed

    Gianguzza, Paola; Bonaviri, Chiara; Prato, Ermelinda; Fanelli, Giovanni; Chiantore, Mariachiara; Privitera, Davide; Luzzu, Filippo; Agnetta, Davide

    2013-04-01

    Despite the large body of work published in the last two decades on the reproduction of the sea urchin Paracentrotus lividus, the reproductive aspects linked to hydrodynamic conditions and their influence on gonad production remain poorly understood. The present paper aims to evaluate the effect of hydrodynamism on the reproductive cycle of P. lividus. Variability in the gonadosomatic index (GSI) of P. lividus was estimated seasonally from 2007 to 2008 at two shallow sub-littoral flat basaltic areas at Ustica Island (Western Mediterranean). GSI was higher in the sites characterized by low hydrodynamism than in those with high hydrodynamism. Results also suggest a possible role for hydrodynamism in triggering processes of resource limitation (food shortage), probably by interfering with P. lividus feeding activity. PMID:23333347

  13. A presumptive developmental role for a sea urchin cyclin B splice variant.

    PubMed

    Lozano, J C; Schatt, P; Marquès, F; Peaucellier, G; Fort, P; Féral, J P; Genevière, A M; Picard, A

    1998-01-26

    We show that a splice variant-derived cyclin B is produced in sea urchin oocytes and embryos. This splice variant protein lacks highly conserved sequences in the COOH terminus of the protein. It is found strikingly abundant in growing oocytes and cells committed to differentiation during embryogenesis. Cyclin B splice variant (CBsv) protein associates weakly in the cell with Xenopus cdc2 and with budding yeast CDC28p. In contrast to classical cyclin B, CBsv very poorly complements a triple CLN deletion in budding yeast, and its microinjection prevents an initial step in MPF activation, leading to an important delay in oocyte meiosis reinitiation. CBsv microinjection in fertilized eggs induces cell cycle delay and abnormal development. We assume that CBsv is produced in growing oocytes to keep them in prophase, and during embryogenesis to slow down cell cycle in cells that will be committed to differentiation. PMID:9442104

  14. Changes in subcellular elemental distributions accompanying the acrosome reaction in sea urchin sperm

    SciTech Connect

    Cantino, M.E.; Schackmann, R.W.; Johnson, D.E.

    1983-05-01

    Energy-dispersive x-ray microanalysis was used to analyze changes in the subcellular distributions of Na, Mg, P, S, Cl, K, and Ca associated with the acrosome reaction of sea urchin sperm. Within 5 sec after induction of the acrosome reaction, nuclear Na and mitochondrial Ca increased and nuclear and mitochondrial K decreased. Uptake of mitochondrial P was detected after several minutes, and increases in nuclear Mg were detected only after 5-10 min of incubation following induction of the reaction. The results suggest that sudden permeability changes in the sperm plasma membrane are associated with the acrosome reaction, but that complete breakdown of membrane and cell function does not occur for several minutes.

  15. Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus

    PubMed Central

    McCarty, Christopher M.

    2013-01-01

    Cyclin D genes regulate the cell cycle, growth and differentiation in response to intercellular signaling. While the promoters of vertebrate cyclin D genes have been analyzed, the cis-regulatory sequences across an entire cyclin D locus have not. Doing so would increase understanding of how cyclin D genes respond to the regulatory states established by developmental gene regulatory networks, linking cell cycle and growth control to the ontogenetic program. Therefore, we conducted a cis-regulatory analysis on the cyclin D gene, SpcycD, of the sea urchin, Strongylocentrotus purpuratus, during embryogenesis, identifying upstream and intronic sequences, located within six defined regions bearing one or more cis-regulatory modules each. PMID:24090975

  16. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule

    PubMed Central

    Politi, Yael; Metzler, Rebecca A.; Abrecht, Mike; Gilbert, Benjamin; Wilt, Fred H.; Sagi, Irit; Addadi, Lia; Weiner, Steve; Gilbert, P. U. P. A.

    2008-01-01

    Sea urchin larval spicules transform amorphous calcium carbonate (ACC) into calcite single crystals. The mechanism of transformation is enigmatic: the transforming spicule displays both amorphous and crystalline properties, with no defined crystallization front. Here, we use X-ray photoelectron emission spectromicroscopy with probing size of 40–200 nm. We resolve 3 distinct mineral phases: An initial short-lived, presumably hydrated ACC phase, followed by an intermediate transient form of ACC, and finally the biogenic crystalline calcite phase. The amorphous and crystalline phases are juxtaposed, often appearing in adjacent sites at a scale of tens of nanometers. We propose that the amorphous-crystal transformation propagates in a tortuous path through preexisting 40- to 100-nm amorphous units, via a secondary nucleation mechanism. PMID:18987314

  17. Membrane permeability characteristics and osmotic tolerance limits of sea urchin (Evechinus chloroticus) eggs.

    PubMed

    Adams, Serean L; Kleinhans, F W; Mladenov, Philip V; Hessian, Paul A

    2003-08-01

    Development of effective cryopreservation protocols relies on knowledge of the fundamental cryobiological characteristics for a particular cell type. These characteristics include osmotic behaviour, membrane permeability characteristics, and osmotic tolerance limits. Here, we report on measures of these characteristics for unfertilized and fertilised eggs of the sea urchin (Evechinus chloroticus). In NaCl solutions of varying osmolalities, sea urchin eggs behaved as ideal linear osmometers. The osmotically inactive volume (vb) was similar for unfertilized and fertilised eggs, 0.367+/-0.008 (mean+/-SE) and 0.303+/-0.007, respectively. Estimates of water solubility (Lp) and solute permeability (Ps) and their respective activation energies (Ea) for unfertilized and fertilised eggs were determined following exposure to cryoprotectant (CPA) solutions at different temperatures. Irrespective of treatment, fertilised eggs had higher values of Lp and Ps. The presence of a CPA decreased Lp. Among CPAs, solute permeability was highest for propylene glycol followed by dimethyl sulphoxide and then ethylene glycol. Measures of osmotic tolerance limits of the eggs revealed unfertilized eggs were able to tolerate volumetric changes of -20% and +30% of their equilibrium volume; fertilised eggs were able to tolerate changes +/-30%. Using membrane permeability data and osmotic tolerance limits, we established effective methods for loading and unloading CPAs from the eggs. The results of this study establish cryobiological characteristics for E. chloroticus eggs of use for developing an effective cryopreservation protocol. The approach we outline can be readily adapted for determining cryobiological characteristics of other species and cell types, as an aid to successful cryopreservation. PMID:12963407

  18. Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms.

    PubMed

    Garner, Sarah; Zysk, Ivona; Byrne, Glynis; Kramer, Marabeth; Moller, Daniel; Taylor, Valerie; Burke, Robert D

    2016-01-15

    A single origin to the diverse mechanisms of metazoan neurogenesis is suggested by the involvement of common signaling components and similar classes of transcription factors. However, in many forms we lack details of where neurons arise, patterns of cell division, and specific differentiation pathway components. The sea urchin larval nervous system is composed of an apical organ, which develops from neuroepithelium and functions as a central nervous system, and peripheral neurons, which differentiate in the ciliary band and project axons to the apical organ. To reveal developmental mechanisms of neurogenesis in this basal deuterostome, we developed antibodies to SoxC, SoxB2, ELAV and Brn1/2/4 and used neurons that develop at specific locations to establish a timeline for neurogenesis. Neural progenitors express, in turn, SoxB2, SoxC, and Brn1/2/4, before projecting neurites and expressing ELAV and SynB. Using pulse-chase labeling of cells with a thymidine analog to identify cells in S-phase, we establish that neurons identified by location are in their last mitotic cycle at the time of hatching, and S-phase is coincident with expression of SoxC. The number of cells expressing SoxC and differentiating as neurons is reduced in embryos injected with antisense morpholino oligonucleotides to SoxC, SoxB2 or Six3. Injection of RNA encoding SoxC into eggs does not enhance neurogenesis. In addition, inhibition of FGF receptors (SU5402) or a morpholino to FGFR1 reduces expression of SoxC. These data indicate that there are common features of neurogenesis in deuterostomes, and that sea urchins employ developmental mechanisms that are distinct from other ambulacraria. PMID:26511925

  19. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation.

    PubMed

    Adomako-Ankomah, Ashrifia; Ettensohn, Charles A

    2013-10-01

    Growth factor signaling pathways provide essential cues to mesoderm cells during gastrulation in many metazoans. Recent studies have implicated the VEGF and FGF pathways in providing guidance and differentiation cues to primary mesenchyme cells (PMCs) during sea urchin gastrulation, although the relative contributions of these pathways and the cell behaviors they regulate are not fully understood. Here, we show that FGF and VEGF ligands are expressed in distinct domains in the embryonic ectoderm of Lytechinus variegatus. We find that PMC guidance is specifically disrupted in Lv-vegf3 morphants and these embryos fail to form skeletal elements. By contrast, PMC migration is unaffected in Lv-fgfa morphants, and well-patterned but shortened skeletal elements form. We use a VEGFR inhibitor, axitinib, to show that VEGF signaling is essential not only for the initial phase of PMC migration (subequatorial ring formation), but also for the second phase (migration towards the animal pole). VEGF signaling is not required, however, for PMC fusion. Inhibition of VEGF signaling after the completion of PMC migration causes significant defects in skeletogenesis, selectively blocking the elongation of skeletal rods that support the larval arms, but not rods that form in the dorsal region of the embryo. Nanostring nCounter analysis of ∼100 genes in the PMC gene regulatory network shows a decrease in the expression of many genes with proven or predicted roles in biomineralization in vegf3 morphants. Our studies lead to a better understanding of the roles played by growth factors in sea urchin gastrulation and skeletogenesis. PMID:24026121

  20. Evolution of a Novel Muscle Design in Sea Urchins (Echinodermata: Echinoidea)

    PubMed Central

    Ziegler, Alexander; Schröder, Leif; Ogurreck, Malte; Faber, Cornelius; Stach, Thomas

    2012-01-01

    The sea urchin (Echinodermata: Echinoidea) masticatory apparatus, or Aristotle's lantern, is a complex structure composed of numerous hard and soft components. The lantern is powered by various paired and unpaired muscle groups. We describe how one set of these muscles, the lantern protractor muscles, has evolved a specialized morphology. This morphology is characterized by the formation of adaxially-facing lobes perpendicular to the main orientation of the muscle, giving the protractor a frilled aspect in horizontal section. Histological and ultrastructural analyses show that the microstructure of frilled muscles is largely identical to that of conventional, flat muscles. Measurements of muscle dimensions in equally-sized specimens demonstrate that the frilled muscle design, in comparison to that of the flat muscle type, considerably increases muscle volume as well as the muscle's surface directed towards the interradial cavity, a compartment of the peripharyngeal coelom. Scanning electron microscopical observations reveal that the insertions of frilled and flat protractor muscles result in characteristic muscle scars on the stereom, reflecting the shapes of individual muscles. Our comparative study of 49 derived “regular” echinoid species using magnetic resonance imaging (MRI) shows that frilled protractor muscles are found only in taxa belonging to the families Toxopneustidae, Echinometridae, and Strongylocentrotidae. The onset of lobe formation during ontogenesis varies between species of these three families. Because frilled protractor muscles are best observed in situ, the application of a non-invasive imaging technique was crucial for the unequivocal identification of this morphological character on a large scale. Although it is currently possible only to speculate on the functional advantages which the frilled muscle morphology might confer, our study forms the anatomical and evolutionary framework for future analyses of this unusual muscle design among

  1. In vivo mitochondrial DNA-protein interactions in sea urchin eggs and embryos.

    PubMed

    Roberti, M; Polosa, P L; Musicco, C; Milella, F; Qureshi, S A; Gadaleta, M N; Jacobs, H T; Cantatore, P

    1999-01-01

    Footprinting studies with the purine-modifying agent dimethyl sulphate were performed in Paracentrotus lividus eggs and embryos to analyze in vivo the interactions between protein and mitochondrial DNA. Footprinting in the small non-coding region and at the boundary between the ND5 and ND6 genes revealed two strong contact sites corresponding with the in vitro binding sequences of mitochondrial D-loop-Binding Protein (mtDBP). The analysis of the pause region of mtDNA replication showed a strong footprint corresponding with the binding site of the mitochondrial Pause region-Binding Protein-2 (mtPBP-2), but only a very weak signal at the binding site of the mitochondrial Pause region-Binding Protein-1 (mtPBP-1), which in vitro binds DNA with high efficiency. In vitro and in vivo analysis of the 3' end-region of the two rRNA genes showed no significant protein-DNA interactions, suggesting that, in contrast to mammals, the 3' ends of sea urchin mitochondrial rRNAs are not generated by a protein-dependent transcription termination event. These and other data support a model in which expression of mitochondrial genes in sea urchins is regulated post-transcriptionally. Footprinting at the five AT-rich consensus regions allowed the detection of a binding site in the non-coding region for an as-yet unidentified protein, mtAT-1BP. The occupancy of this site appears to be developmentally regulated, being detectable in the pluteus larval stage, but not in unfertilized eggs. PMID:9933356

  2. Regulation of membrane fusion and secretory events in the sea urchin embryo

    SciTech Connect

    Roe, J.L.

    1990-01-01

    Membrane fusion and secretory events play a key role in fertilization and early development in the sea urchin embryo. To investigate the mechanism of membrane fusion, the effect of inhibitors of metalloendoprotease activity was studied on two model systems of cell fusion; fertilization and spiculogenesis by primary mesenchyme cells in the embryo. Both the zinc chelator, 1,10-phenanthroline, and peptide metalloprotease substrates were found to inhibit both fertilization and gamete fusion, while peptides that are not substrates of metalloproteases did not affect either process. Primary mesenchyme cells form the larval skeleton in the embryo by deposition of mineral and an organic matrix into a syncytial cavity formed by fusion of filopodia of these cells. Metalloprotease inhibitors were found to inhibit spiculogenesis both in vivo and in cultures of isolated primary mesenchyme cells, and the activity of a metalloprotease of the appropriate specificity was found in the primary mesenchyme cells. These two studies implicate the activity of a metalloprotease in a necessary step in membrane fusion. Following fertilization, exocytosis of the cortical granules results in the formation of the fertilization envelope and the hyaline layer, that surround the developing embryo. The hatching enzyme is secreted by the blastula stage sea urchin embryo, which proteolyzes the fertilization envelope surrounding the embryo, allowing the embryo to hatch. Using an assay that measures {sup 125}I-fertilization envelope degradation, the hatching enzyme was identified as a 33 kDa metalloprotease, and was purified by ion-exchange and affinity chromatography from the hatching media of Strongylocentrotus purpuratus embryos. The hatching enzyme showed a substrate preference for only a minor subset of fertilization envelope proteins.

  3. Functional analysis of the sea urchin U7 small nuclear RNA

    SciTech Connect

    Gilmartin, G.M.; Schaufele, F.; Schaffner, G.; Birnstiel, M.L.

    1988-03-01

    U7 small nuclear RNA (snRNA) is an essential component of the RNA-processing machinery which generates the 3' end of mature histone mRNA in the sea urchin. The U7 small nuclear ribonucleoprotein particle (snRNP) is classified as a member of the Sm-type U snRNP family by virtue of its recognition by both anti-trimethylguanosine and anti-Sm antibodies. The authors analyzed the function-structure relationship of the U7 snRNP by mutagenesis experiments. These suggested that the U7 snRNP of the sea urchin is composed of three important domains. The fist domain encompasses the 5'-terminal sequence, up to about nucleotides 7, which are accessible to micrococcal nuclease, while the remainder of the RNA is highly protected and hence presumably bound by proteins. This region contains the sequence complementarities between the U7 snRNA and the histone pre-mRNA which have previously been shown to be required for 3' processing. Nucleotides 9 to 20 constitute a second domain which includes sequences for Sm protein binding. The complementarities between the U7 snRNA sequences in this region and the terminal palindrome fo the historne mRNA appear to be fortuitous and play only a secondary, if any, role in 3' processing. The third domain is composed of the terminal palindrome of U7 snRNA, the secondary structure of which must be maintained for the U7 snRNP to function, but its sequence can be drastically altered without any observable effect on snRNP assembly or 3' processing.

  4. Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function.

    PubMed Central

    Wang, R Z; Addadi, L; Weiner, S

    1997-01-01

    The teeth of sea urchins comprise a variety of different structural entities, all of which are composed of magnesium-bearing calcite together with a small amount of organic material. The teeth are worn down continuously, but in such a way that they remain sharp and functional. Here we describe aspects of the structural, compositional and micromechanical properties of the teeth of Paracentrotus lividus using scanning electron microscopy, infrared spectrometry, atomic absorption. X-ray diffraction and microindentation. The S-shaped single crystalline calcitic fibres are one of the main structural elements of the tooth. They extend from the stone part to the keel. The diameter of the fibres increases gradually from less than 1 micron at the stone tip to about 20 microns at the keel end, while their MgCO3 contents decrease from about 13 mol% to about 4.5 mol%. Each fibre is coated by a thin organic sheath and surrounded by polycrystalline calcitic discs containing as much as 35 mol% MgCO3. This structure constitutes a unique kind of gradient fibre-reinforced ceramic matrix composite, whose microhardness and toughness decrease gradually from the stone part to the keel. Primary plates are also important structural elements of the tooth. Each primary plate has a very unusual sandwich-like structure with a calcitic envelope surrounding a thin apparently amorphous CaCO3 layer. This central layer, together with the primary plate/disc interface, improves the toughness of this zone by stopping and blunting cracks. The self-sharpening function of the teeth is believed to result from the combination of the geometrical shape of the main structural elements and their spatial arrangement, the interfacial strength between structural elements, and the hardness gradient extending from the working stone part to the surrounding zones. The sea urchin tooth structure possesses an array of interesting functional design features, some of which may possibly be applicable to materials science

  5. The transcriptome of the NZ endemic sea urchin Kina (Evechinus chloroticus)

    PubMed Central

    2014-01-01

    Background Sea urchins are studied as model organisms for developmental and systems biology and also produce highly valued food products. Evechinus chloroticus (Kina) is a sea urchin species that is indigenous to New Zealand. It is the type member of the Evechinus genus based on its morphological characteristics. Previous research has focused on identifying physical factors affecting commercial roe quality of E. chloroticus, but there is almost no genetic information available for E. chloroticus. E. chloroticus is the only species in its genus and has yet to be subject to molecular phylogenetic analysis. Results In this study we performed a de novo transcriptome assembly of Illumina sequencing data. A total of 123 million 100 base length paired-end reads were generated using RNA-Seq libraries from a range of E. chloroticus tissues from two individuals obtained from Fiordland, New Zealand. The assembly resulted in a set of 75,002 transcripts with an accepted read coverage and length, of which 24,655 transcripts could be functionally annotated using protein similarity. Transcripts could be further annotated with Gene Ontology, KEGG Orthology and InterPro terms. With this sequence data we could perform the first phylogenetic analysis of E. chloroticus to other species of its family using multiple genes. When sequences for the mitochondrial nitrogen dehydrogenase genes were compared, E. chloroticus remained outside of a family level clade, which indicated E. chloroticus is indeed a genetically distinct genus within its family. Conclusions This study has produced a large set of E. chloroticus transcripts/proteins along with functional annotations, vastly increasing the amount of genomic data available for this species. This provides a resource for current and future studies on E. chloroticus, either to increase its commercial value, or its use as a model organism. The phylogenetic results provide a basis for further analysis of relationships between E. chloroticus, its

  6. Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis.

    PubMed

    Li, Chun; Haug, Tor; Moe, Morten K; Styrvold, Olaf B; Stensvåg, Klara

    2010-09-01

    As immune effector molecules, antimicrobial peptides (AMPs) play an important role in the invertebrate immune system. Here, we present two novel AMPs, named centrocins 1 (4.5kDa) and 2 (4.4kDa), purified from coelomocyte extracts of the green sea urchin, Strongylocentrotus droebachiensis. The native peptides are cationic and show potent activities against Gram-positive and Gram-negative bacteria. The centrocins have an intramolecular heterodimeric structure, containing a heavy chain (30 amino acids) and a light chain (12 amino acids). The cDNA encoding the peptides and genomic sequences were cloned and sequenced. One putative isoform (centrocin 1b) was identified and one intron was found in the genes coding for the centrocins. The full length protein sequence of centrocin 1 consists of 119 amino acids, whereas centrocin 2 consists of 118 amino acids which both include a preprosequence of 51 or 50 amino acids for centrocins 1 and 2, respectively, and an interchain of 24 amino acids between the heavy and light chain. The difference of molecular mass between the native centrocins and the deduced sequences from cDNA indicates that the native centrocins contain a post-translational brominated tryptophan. In addition, two amino acids at the C-terminal, Gly-Arg, were removed from the light chains during the post-translational processing. The separate peptide chains of centrocin 1 were synthesized and the heavy chain alone was shown to be sufficient for antimicrobial activity. The genome of the closely related species, the purple sea urchin (S. purpuratus), was shown to contain two putative proteins with high similarity to the centrocins. PMID:20438753

  7. Characterization of the bacterial communities associated with the bald sea urchin disease of the echinoid Paracentrotus lividus.

    PubMed

    Becker, Pierre T; Egea, Emilie; Eeckhaut, Igor

    2008-06-01

    The microbial communities involved in the bald sea urchin disease of the echinoid Paracentrotus lividus are investigated using culture-independent techniques. Lesions of diseased specimens from two locations in France, La Ciotat (Mediterranean Sea) and Morgat (Atlantic Ocean), are examined by Scanning Electron Microscopy (SEM) and the diversity of their microbiota is analysed by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA gene clones libraries construction. Microscopic observations demonstrated that only the central area of the lesions is invaded by bacteria but not the peripheral zone and the surrounding healthy tissues. Molecular analysis identified at least 24 bacterial genomospecies in bald sea urchin lesions: 5 are Alphaproteobacteria, 10 are Gammaproteobacteria, 8 are CFB bacteria and 1 is a Fusobacteria. Out of them, 4 are observed in both locations while 10 occur only in the Atlantic Ocean and 10 only in the Mediterranean Sea. Gammaproteobacteria are the most represented in clones libraries from both locations, with respectively 65% and 43% of the total clones. CFB and Alphaproteobacteria accounted for the majority of the remaining clones and were detected by DGGE in virtually all samples from both stations. Our results demonstrate that bacterial communities observed on diseased individuals of the same echinoid species but originating from distinct locations are not similar and thus support the hypothesis that bacteria involved in the worldwide echinoid disease commonly called the bald sea urchin disease are opportunistic and not specific. PMID:18191940

  8. Dynamics of sea level variations in the coastal Red Sea

    NASA Astrophysics Data System (ADS)

    Churchill, James; Abulnaja, Yasser; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard; Lentz, Steven

    2016-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. While considerable scientific work has been directed at tidal and seasonal variations of Red Sea water level, very little attention has been given to elevation changes in an 'intermediate' frequency band, with periods of 2-30 d, even though motions in this band account for roughly half of the sea level variance in central Red Sea. We examined the sea level signal in this band using AVISO sea level anomaly (SLA) data, COARDAS wind data and measurements from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters. Empirical orthogonal function analysis of the SLA data indicates that longer-period (10-30 d) sea level variations in the intermediate band are dominated by coherent motions in a single mode that extends over most of the Red Sea axis. Idealized model results indicate that this large-scale mode of sea level motion is principally due to variations in the large-scale gradient of the along-axis wind. Our analysis indicates that coastal sea level motions at shorter periods (2-10 d) are principally generated by a combination of direct forcing by the local wind stress and forcing associated with large-scale wind stress gradients. However, also contributing to coastal sea level variations in the intermediate frequency band are mesoscale eddies, which are prevalent throughout the Red Sea basin, have a sea level signal of 10's of cm and produce relatively small-scale (order 50 km) changes in coastal sea level.

  9. Assessment of negative phototaxis in long-term fasted Glyptocidaris crenularis: a new insight into measuring stress responses of sea urchins in aquaculture

    NASA Astrophysics Data System (ADS)

    Tian, Xiaofei; Wei, Jing; Zhao, Chong; Feng, Wenping; Sun, Ping; Chang, Yaqing

    2015-01-01

    A cost-effective method was designed to measure the behavioral response of negative phototaxis to high-intensity illumination in the sea urchin Glyptocidaris crenularis. Ninety sea urchins were randomly and equally divided into two aquaculture environment groups: a fasted group, which was starved during the experiment, and a fed group. After 10 months, the total mortality of each group was recorded. Then, 15 sea urchins were randomly selected from each group and behavioral responses to high-intensity illumination were investigated for each sea urchin. After the behavioral experiment, body measurements of the trial sea urchins were taken. The results reveal that food deprivation significantly affected test diameter ( P<0.01), body weight ( P<0.01), gonad weight ( P<0.01), and gut weight ( P<0.01). Furthermore, food deprivation also affected negative phototaxis behaviors of time to rapid spine movement ( P<0.01), time to the 1 cm position ( P<0.05), and walking distance in 300 s ( P<0.01), but not time to body reaction ( P>0.05). The mortality rates of fasted and fed urchins were 6.7% and 0%, respectively. The present study provides evidence that food deprivation has a significant effect on phenotypic traits and behavioral responses to high-intensity illumination in the sea urchin G. crenularis. With this method, environmental stressors can be easily detected by measuring proper optional indicators. This study provides a new insight into measuring stress responses of sea urchins in aquaculture. However, further studies should be carried out to understand more environmental factors and to compare this potential behavioral method with immune, physiological, and epidemiological approaches.

  10. Assessment of negative phototaxis in long-term fasted Glyptocidaris crenularis: a new insight into measuring stress responses of sea urchins in aquaculture

    NASA Astrophysics Data System (ADS)

    Tian, Xiaofei; Wei, Jing; Zhao, Chong; Feng, Wenping; Sun, Ping; Chang, Yaqing

    2014-09-01

    A cost-effective method was designed to measure the behavioral response of negative phototaxis to high-intensity illumination in the sea urchin Glyptocidaris crenularis. Ninety sea urchins were randomly and equally divided into two aquaculture environment groups: a fasted group, which was starved during the experiment, and a fed group. After 10 months, the total mortality of each group was recorded. Then, 15 sea urchins were randomly selected from each group and behavioral responses to high-intensity illumination were investigated for each sea urchin. After the behavioral experiment, body measurements of the trial sea urchins were taken. The results reveal that food deprivation significantly affected test diameter (P<0.01), body weight (P<0.01), gonad weight (P<0.01), and gut weight (P<0.01). Furthermore, food deprivation also affected negative phototaxis behaviors of time to rapid spine movement (P<0.01), time to the 1 cm position (P<0.05), and walking distance in 300 s (P<0.01), but not time to body reaction (P>0.05). The mortality rates of fasted and fed urchins were 6.7% and 0%, respectively. The present study provides evidence that food deprivation has a significant effect on phenotypic traits and behavioral responses to high-intensity illumination in the sea urchin G. crenularis. With this method, environmental stressors can be easily detected by measuring proper optional indicators. This study provides a new insight into measuring stress responses of sea urchins in aquaculture. However, further studies should be carried out to understand more environmental factors and to compare this potential behavioral method with immune, physiological, and epidemiological approaches.

  11. Decadal stability of Red Sea mangroves

    NASA Astrophysics Data System (ADS)

    Almahasheer, Hanan; Aljowair, Abdulaziz; Duarte, Carlos M.; Irigoien, Xabier

    2016-02-01

    Across the Earth, mangroves play an important role in coastal protection, both as nurseries and carbon sinks. However, due to various human and environmental impacts, the coverage of mangroves is declining on a global scale. The Red Sea is in the northern-most area of the distribution range of mangroves. Little is known about the surface covered by mangroves at this northern limit or about the changes experienced by Red Sea mangroves. We sought to study changes in the coverage of Red Sea mangroves by using multi-temporal Landsat data (1972, 2000 and 2013). Interestingly, our results show that there has been no decline in mangrove stands in the Red Sea but rather a slight increase. The area covered by mangroves is about 69 Km2 along the African shore and 51 Km2 along the Arabian Peninsula shore. From 1972 to 2013, the area covered by mangroves increased by about 0.29% y-1. We conclude that the trend exhibited by Red Sea mangroves departs from the general global decline of mangroves. Along the Red Sea, mangroves expanded by 12% over the 41 years from 1972 to 2013. Losses to Red Sea mangroves, mostly due to coastal development, have been compensated by afforestation projects.

  12. Subtle reproductive impairment through nitric oxide-mediated mechanisms in sea urchins from an area affected by harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Migliaccio, Oriana; Castellano, Immacolata; di Cioccio, Davide; Tedeschi, Gabriella; Negri, Armando; Cirino, Paola; Romano, Giovanna; Zingone, Adriana; Palumbo, Anna

    2016-05-01

    The health of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea, is menaced by several pressures in coastal environments. Here, we aimed at assessing the reproductive ability of apparently healthy P. lividus population in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata. Wide-ranging analyses were performed in animals collected prior to and during the bloom, as well as at several times thereafter, during the reproductive season. Adults showed a low fertilization rate, along with high nitric oxide (NO) levels in the gonads and the nitration of the major yolk protein toposome, which is an important player in sea urchin development. Serious developmental anomalies were observed in the progeny, which persist several months after the bloom. NO levels were high in the different developmental stages, which also showed variations in the transcription of several genes that were found to be directly or indirectly modulated by NO. These results highlight subtle but important reproductive flaws transmitted from the female gonads to the offspring with the NO involvement. Despite a recovery along time after the bloom, insidious damages can be envisaged in the local sea urchin population, with possible reverberation on the whole benthic system.

  13. Subtle reproductive impairment through nitric oxide-mediated mechanisms in sea urchins from an area affected by harmful algal blooms.

    PubMed

    Migliaccio, Oriana; Castellano, Immacolata; Di Cioccio, Davide; Tedeschi, Gabriella; Negri, Armando; Cirino, Paola; Romano, Giovanna; Zingone, Adriana; Palumbo, Anna

    2016-01-01

    The health of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea, is menaced by several pressures in coastal environments. Here, we aimed at assessing the reproductive ability of apparently healthy P. lividus population in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata. Wide-ranging analyses were performed in animals collected prior to and during the bloom, as well as at several times thereafter, during the reproductive season. Adults showed a low fertilization rate, along with high nitric oxide (NO) levels in the gonads and the nitration of the major yolk protein toposome, which is an important player in sea urchin development. Serious developmental anomalies were observed in the progeny, which persist several months after the bloom. NO levels were high in the different developmental stages, which also showed variations in the transcription of several genes that were found to be directly or indirectly modulated by NO. These results highlight subtle but important reproductive flaws transmitted from the female gonads to the offspring with the NO involvement. Despite a recovery along time after the bloom, insidious damages can be envisaged in the local sea urchin population, with possible reverberation on the whole benthic system. PMID:27192939

  14. Subtle reproductive impairment through nitric oxide-mediated mechanisms in sea urchins from an area affected by harmful algal blooms

    PubMed Central

    Migliaccio, Oriana; Castellano, Immacolata; Di Cioccio, Davide; Tedeschi, Gabriella; Negri, Armando; Cirino, Paola; Romano, Giovanna; Zingone, Adriana; Palumbo, Anna

    2016-01-01

    The health of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea, is menaced by several pressures in coastal environments. Here, we aimed at assessing the reproductive ability of apparently healthy P. lividus population in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata. Wide-ranging analyses were performed in animals collected prior to and during the bloom, as well as at several times thereafter, during the reproductive season. Adults showed a low fertilization rate, along with high nitric oxide (NO) levels in the gonads and the nitration of the major yolk protein toposome, which is an important player in sea urchin development. Serious developmental anomalies were observed in the progeny, which persist several months after the bloom. NO levels were high in the different developmental stages, which also showed variations in the transcription of several genes that were found to be directly or indirectly modulated by NO. These results highlight subtle but important reproductive flaws transmitted from the female gonads to the offspring with the NO involvement. Despite a recovery along time after the bloom, insidious damages can be envisaged in the local sea urchin population, with possible reverberation on the whole benthic system. PMID:27192939

  15. Regulative recovery in the sea urchin embryo and the stabilizing role of fail-safe gene network wiring

    PubMed Central

    Smith, Joel; Davidson, Eric H.

    2009-01-01

    Design features that ensure reproducible and invariant embryonic processes are major characteristics of current gene regulatory network models. New cis-regulatory studies on a gene regulatory network subcircuit activated early in the development of the sea urchin embryo reveal a sequence of encoded “fail-safe” regulatory devices. These ensure the maintenance of fate separation between skeletogenic and nonskeletogenic mesoderm lineages. An unexpected consequence of the network design revealed in the course of these experiments is that it enables the embryo to “recover” from regulatory interference that has catastrophic effects if this feature is disarmed. A reengineered regulatory system inserted into the embryo was used to prove how this system operates in vivo. Genomically encoded backup control circuitry thus provides the mechanism underlying a specific example of the regulative development for which the sea urchin embryo has long been famous. PMID:19822764

  16. Gene expression changes associated with the developmental plasticity of sea urchin larvae in response to food availability

    PubMed Central

    Carrier, Tyler J.; King, Benjamin L.; Coffman, James A.

    2016-01-01

    Planktotrophic sea urchin larvae are developmentally plastic: in response to food scarcity, development of the juvenile rudiment is suspended and larvae instead develop elongated arms, increasing feeding capacity and extending larval life. Here, data are presented on the effect of different feeding regimes on gene expression in larvae of the green sea urchin Strongylocentrotus droebachiensis. These data indicate that during periods of starvation, larvae down-regulate genes involved in growth and metabolic activity while up-regulating genes involved in lipid transport, environmental sensing and defense. Additionally, we show that starvation increases FoxO activity, and that in well-fed larvae rapamycin treatment impedes rudiment growth, indicating that the latter requires TOR activity. These results suggest that the developmental plasticity of echinoplutei is regulated by genes known to control aging and longevity in other animals. PMID:26124444

  17. Chromosomal localization and molecular characterization of three different 5S ribosomal DNA clusters in the sea urchin Paracentrotus lividus.

    PubMed

    Caradonna, Fabio; Bellavia, Daniele; Clemente, Ann Maria; Sisino, Giorgia; Barbieri, Rainer

    2007-09-01

    In this paper the chromosomal localization and molecular cloning and characterization of three 5S rDNA clusters of 700 bp (base pairs), 900 bp, and 950 bp in the sea urchin Paracentrotus lividus are reported. Southern blot hybridization demonstrated the existence of three 5S rDNA repeats of differing length in the P. lividus genome. Fluorescence in situ hybridization analysis, performed in parallel on both haploid and diploid metaphases and interphase nuclei using different 5S rDNA units as probes, localized these 5S rDNA clusters in 3 different pairs of P. lividus chromosomes. This is the first complete gene mapping not only in a sea urchin but also in the phylum of echinoderms as a whole. PMID:17893727

  18. Augmentative Biocontrol in Natural Marine Habitats: Persistence, Spread and Non-Target Effects of the Sea Urchin Evechinus chloroticus

    PubMed Central

    Atalah, Javier; Hopkins, Grant A.; Forrest, Barrie M.

    2013-01-01

    Augmentative biocontrol aims to control established pest populations through enhancement of their indigenous enemies. To our knowledge, this approach has not been applied at an operational scale in natural marine habitats, in part because of the perceived risk of adverse non-target effects on native ecosystems. In this paper, we focus on the persistence, spread and non-target effects of the sea urchin Evechinus chloroticus when used as biocontrol agent to eradicate an invasive kelp from Fiordland, New Zealand. Rocky reef macrobenthic assemblages were monitored over 17 months in areas where the indigenous algal canopy was either removed or left intact prior to the translocation of a large number of urchins (>50 ind.·m−2). Urchin densities in treated areas significantly declined ∼9 months after transplant, and began spreading to adjacent sites. At the end of the 17-month study, densities had declined to ∼5 ind.·m−2. Compared to controls, treatment sites showed persistent shifts from kelp forest to urchin barrens, which were accompanied by significant reductions in taxa richness. Although these non-target effects were pronounced, they were considered to be localised and reversible, and arguably outweigh the irreversible and more profound ecological impacts associated with the establishment of an invasive species in a region of high conservation value. Augmentative biocontrol, used in conjunction with traditional control methods, represents a promising tool for the integrated management of marine pests. PMID:24260376

  19. Augmentative biocontrol in natural marine habitats: persistence, spread and non-target effects of the sea urchin Evechinus chloroticus.

    PubMed

    Atalah, Javier; Hopkins, Grant A; Forrest, Barrie M

    2013-01-01

    Augmentative biocontrol aims to control established pest populations through enhancement of their indigenous enemies. To our knowledge, this approach has not been applied at an operational scale in natural marine habitats, in part because of the perceived risk of adverse non-target effects on native ecosystems. In this paper, we focus on the persistence, spread and non-target effects of the sea urchin Evechinus chloroticus when used as biocontrol agent to eradicate an invasive kelp from Fiordland, New Zealand. Rocky reef macrobenthic assemblages were monitored over 17 months in areas where the indigenous algal canopy was either removed or left intact prior to the translocation of a large number of urchins (>50 ind.·m(-2)). Urchin densities in treated areas significantly declined ∼9 months after transplant, and began spreading to adjacent sites. At the end of the 17-month study, densities had declined to ∼5 ind.·m(-2). Compared to controls, treatment sites showed persistent shifts from kelp forest to urchin barrens, which were accompanied by significant reductions in taxa richness. Although these non-target effects were pronounced, they were considered to be localised and reversible, and arguably outweigh the irreversible and more profound ecological impacts associated with the establishment of an invasive species in a region of high conservation value. Augmentative biocontrol, used in conjunction with traditional control methods, represents a promising tool for the integrated management of marine pests. PMID:24260376

  20. First insights into the biochemistry of tube foot adhesive from the sea urchin Paracentrotus lividus (Echinoidea, Echinodermata).

    PubMed

    Santos, R; da Costa, G; Franco, C; Gomes-Alves, P; Flammang, P; Coelho, A V

    2009-01-01

    Sea urchins are common inhabitants of wave-swept shores. To withstand the action of waves, they rely on highly specialized independent adhesive organs, the adoral tube feet. The latter are extremely well-designed for temporary adhesion being composed by two functional subunits: (1) an apical disc that produces an adhesive secretion to fasten the sea urchin to the substratum, as well as a deadhesive secretion to allow the animal to move and (2) a stem that bears the tensions placed on the animal by hydrodynamism. Despite their technological potential for the development of new biomimetic underwater adhesives, very little is known about the biochemical composition of sea urchin adhesives. A characterization of sea urchin adhesives is presented using footprints. The latter contain inorganic residues (45.5%), proteins (6.4%), neutral sugars (1.2%), and lipids (2.5%). Moreover, the amino acid composition of the soluble protein fraction revealed a bias toward six amino acids: glycine, alanine, valine, serine, threonine, and asparagine/aspartic acid, which comprise 56.8% of the total residues. In addition, it also presents higher levels of proline (6.8%) and half-cystine (2.6%) than average eukaryotic proteins. Footprint insolubility was partially overcome using strong denaturing and reducing buffers, enabling the visualization of 13 proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The conjugation of mass spectrometry with homology-database search allowed the identification of six proteins: alpha and beta tubulin, actin, and histones H2B, H3, H2A, and H4, whose location and function in the adhesive are discussed but require further investigation. For the remaining unidentified proteins, five de novo-generated peptide sequences were found that were not present in the available protein databases, suggesting that they might be novel or modified proteins. PMID:19221839

  1. Effects of an oil production effluent on gametogenesis and gamete performance in the purple sea urchin (Strongylocentrotus purpuratus Stimpson)

    SciTech Connect

    Krause, P.R. . Dept. of Biological Sciences)

    1994-07-01

    Adult organisms subjected to chronic discharges from a point source of pollution may exhibit several sublethal responses. One such response is the impairment of gamete production. This may be expressed in the amount and/or quality of gametes produced by adults. In this study the effects of chronic exposure to produced water (an oil production effluent) on the gametogenesis and gamete performance of the purple sea urchin (Strongylocentrotus purpuratus Stimpson) were examined using an in situ caging experiment. Adult purple sea urchins were kept in benthic cages arrayed down-field from a discharging diffuser at 13 sites, with distances ranging from 5 to 1,000 m. Cage exposures were maintained in the field for eight weeks, and each cage held 25 animals. Gametogenesis was examined for each sex by comparing a size-independent measure of relative gonads ass as determined by analysis of covariance. Results showed that there was a significant negative relationship between these estimates of relative gonad mass and distance from the outfall for both sexes, indicating that sea urchins living closer to the outfall produced significantly larger gonads. Gamete performance was measured through a fertilization kinetics bioassay that held the concentration of eggs constant and varied the amount of sperm added. The proportion of eggs fertilized under each sperm concentration was determined and the response fit to a model of fertilizability showed a positive relationship with distance away from the outfall. These findings indicate that although adult sea urchins exposed to a produced water outfall exhibit larger gonads, they suffer a marked decrease in a gamete performance.

  2. Variation in sensitivity to. gamma. -ray-induced chromosomal aberrations during the mitotic cycle of the sea urchin egg

    SciTech Connect

    Ejima, Y.; Nakamura, I.; Shiroya, T.

    1982-11-01

    Sea urchin eggs were irradiated with /sup 137/Cs ..gamma.. rays at various stages of the mitotic cycle, and chromosomal aberrations at the first postirradiation mitosis and embryonic abnormalities at later developmental stages were examined. The radiosensitivity of the eggs to both endpoints varied in parallel with the mitotic stage at the time of irradiation, suggesting a possible relationship between chromosomal damage and embryonic abnormalities.

  3. Metagenomic studies of the Red Sea.

    PubMed

    Behzad, Hayedeh; Ibarra, Martin Augusto; Mineta, Katsuhiko; Gojobori, Takashi

    2016-02-01

    Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied among marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmoregulation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1-3°C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the Red Sea, and

  4. Comparative morphology of the axial complex and interdependence of internal organ systems in sea urchins (Echinodermata: Echinoidea)

    PubMed Central

    Ziegler, Alexander; Faber, Cornelius; Bartolomaeus, Thomas

    2009-01-01

    Background The axial complex of echinoderms (Echinodermata) is composed of various primary and secondary body cavities that interact with each other. In sea urchins (Echinoidea), structural differences of the axial complex in "regular" and irregular species have been observed, but the reasons underlying these differences are not fully understood. In addition, a better knowledge of axial complex diversity could not only be useful for phylogenetic inferences, but improve also an understanding of the function of this enigmatic structure. Results We therefore analyzed numerous species of almost all sea urchin orders by magnetic resonance imaging, dissection, histology, and transmission electron microscopy and compared the results with findings from published studies spanning almost two centuries. These combined analyses demonstrate that the axial complex is present in all sea urchin orders and has remained structurally conserved for a long time, at least in the "regular" species. Within the Irregularia, a considerable morphological variation of the axial complex can be observed with gradual changes in topography, size, and internal architecture. These modifications are related to the growing size of the gastric caecum as well as to the rearrangement of the morphology of the digestive tract as a whole. Conclusion The structurally most divergent axial complex can be observed in the highly derived Atelostomata in which the reorganization of the digestive tract is most pronounced. Our findings demonstrate a structural interdependence of various internal organs, including digestive tract, mesenteries, and the axial complex. PMID:19508706

  5. High-Density Genetic Mapping with Interspecific Hybrids of Two Sea Urchins, Strongylocentrotus nudus and S. intermedius, by RAD Sequencing.

    PubMed

    Zhou, Zunchun; Liu, Shikai; Dong, Ying; Gao, Shan; Chen, Zhong; Jiang, Jingwei; Yang, Aifu; Sun, Hongjuan; Guan, Xiaoyan; Jiang, Bei; Wang, Bai

    2015-01-01

    Sea urchins have long been used as research model organisms for developmental biology and evolutionary studies. Some of them are also important aquaculture species in East Asia. In this work, we report the construction of RAD-tag based high-density genetic maps by genotyping F1 interspecific hybrids derived from a crossing between a female sea urchin Strongylocentrotus nudus and a male Strongylocentrotus intermedius. With polymorphisms present in these two wild individuals, we constructed a female meiotic map containing 3,080 markers for S. nudus, and a male meiotic map for S. intermedius which contains 1,577 markers. Using the linkage maps, we were able to anchor a total of 1,591 scaffolds (495.9 Mb) accounting for 60.8% of the genome assembly of Strongylocentrotus purpuratus. A genome-wide scan resulted in the identification of one putative QTL for body size which spanned from 25.3 cM to 30.3 cM. This study showed the efficiency of RAD-Seq based high-density genetic map construction using F1 progenies for species with no prior genomic information. The genetic maps are essential for QTL mapping and are useful as framework to order and orientate contiguous scaffolds from sea urchin genome assembly. The integration of the genetic map with genome assembly would provide an unprecedented opportunity to conduct QTL analysis, comparative genomics, and population genetics studies. PMID:26398139

  6. Production, Characterization and Biocompatibility of Marine Collagen Matrices from an Alternative and Sustainable Source: The Sea Urchin Paracentrotus lividus

    PubMed Central

    Di Benedetto, Cristiano; Barbaglio, Alice; Martinello, Tiziana; Alongi, Valentina; Fassini, Dario; Cullorà, Emanuele; Patruno, Marco; Bonasoro, Francesco; Barbosa, Mario Adolfo; Candia Carnevali, Maria Daniela; Sugni, Michela

    2014-01-01

    Collagen has become a key-molecule in cell culture studies and in the tissue engineering field. Industrially, the principal sources of collagen are calf skin and bones which, however, could be associated to risks of serious disease transmission. In fact, collagen derived from alternative and riskless sources is required, and marine organisms are among the safest and recently exploited ones. Sea urchins possess a circular area of soft tissue surrounding the mouth, the peristomial membrane (PM), mainly composed by mammalian-like collagen. The PM of the edible sea urchin Paracentrotus lividus therefore represents a potential unexploited collagen source, easily obtainable as a food industry waste product. Our results demonstrate that it is possible to extract native collagen fibrils from the PM and produce suitable substrates for in vitro system. The obtained matrices appear as a homogeneous fibrillar network (mean fibril diameter 30–400 nm and mesh < 2 μm) and display remarkable mechanical properties in term of stiffness (146 ± 48 MPa) and viscosity (60.98 ± 52.07 GPa·s). In vitro tests with horse pbMSC show a good biocompatibility in terms of overall cell growth. The obtained results indicate that the sea urchin P. lividus can be a valuable low-cost collagen source for mechanically resistant biomedical devices. PMID:25255130

  7. Production, characterization and biocompatibility of marine collagen matrices from an alternative and sustainable source: the sea urchin Paracentrotus lividus.

    PubMed

    Benedetto, Cristiano Di; Barbaglio, Alice; Martinello, Tiziana; Alongi, Valentina; Fassini, Dario; Cullorà, Emanuele; Patruno, Marco; Bonasoro, Francesco; Barbosa, Mario Adolfo; Carnevali, Maria Daniela Candia; Sugni, Michela

    2014-09-01

    Collagen has become a key-molecule in cell culture studies and in the tissue engineering field. Industrially, the principal sources of collagen are calf skin and bones which, however, could be associated to risks of serious disease transmission. In fact, collagen derived from alternative and riskless sources is required, and marine organisms are among the safest and recently exploited ones. Sea urchins possess a circular area of soft tissue surrounding the mouth, the peristomial membrane (PM), mainly composed by mammalian-like collagen. The PM of the edible sea urchin Paracentrotus lividus therefore represents a potential unexploited collagen source, easily obtainable as a food industry waste product. Our results demonstrate that it is possible to extract native collagen fibrils from the PM and produce suitable substrates for in vitro system. The obtained matrices appear as a homogeneous fibrillar network (mean fibril diameter 30-400 nm and mesh < 2 μm) and display remarkable mechanical properties in term of stiffness (146 ± 48 MPa) and viscosity (60.98 ± 52.07 GPa·s). In vitro tests with horse pbMSC show a good biocompatibility in terms of overall cell growth. The obtained results indicate that the sea urchin P. lividus can be a valuable low-cost collagen source for mechanically resistant biomedical devices. PMID:25255130

  8. Gal4-gene-dependent alterations of embryo development and cell growth in primary culture of sea urchins.

    PubMed

    Bulgakov, V P; Odintsova, N A; Plotnikov, S V; Kiselev, K V; Zacharov, E V; Zhuravlev, Y N

    2002-10-01

    Primary cell cultures from sea urchins have a low proliferative level that prevents the establishment of long-term cultures. To increase expression levels of the genes regulating cell growth in sea urchins, and thus enhance cell growth, we used the transcriptional activator gene Gal4 found earlier in yeast. Sea urchin embryos were treated with plasmid DNA containing the Gal4 gene. Expression of the transgene was confirmed by reverse transcriptase polymerase chain reaction. When the fully functional gene was used, embryos effectively formed teratoma-like structures after 50 to 55 hours of cultivation. In contrast, the Gal4 gene, devoid of acidic activating regions, possessed little activity as a teratogen. The Gal4-treated cells in blastula-derived culture showed higher DNA synthesis and higher proliferative activity than control cells. We suggest that formation of the teratoma-like structures in embryos, activation of DNA synthesis, and significant increase of cell number in embryo-derived cell cultures could be attributed to Gal4 gene action. PMID:14961241

  9. Seawi—a sea urchin piwi/argonaute family member is a component of MT-RNP complexes

    PubMed Central

    RODRIGUEZ, ALEXIS J.; SEIPEL, SUSAN A.; HAMILL, DANIELLE R.; ROMANCINO, DANIELE P.; DI CARLO, MARTA; SUPRENANT, KATHY A.; BONDER, EDWARD M.

    2005-01-01

    The piwi/argonaute family of proteins is involved in key developmental processes such as stem cell maintenance and axis specification through molecular mechanisms that may involve RNA silencing. Here we report on the cloning and characterization of the sea urchin piwi/argonaute family member seawi. Seawi is a major component of microtubule-ribonucleoprotein (MT-RNP) complexes isolated from two different species of sea urchin, Strongylocentrotus purpuratus and Paracentrotus lividus. Seawi co-isolates with purified ribosomes, cosediments with 80S ribosomes in sucrose density gradients, and binds microtubules. Seawi possesses the RNA binding motif common to piwi family members and binds P. lividus bep4 mRNA, a transcript that co-isolates with MT-RNP complexes and whose translation product has been shown to play a role in patterning the animal–vegetal axis. Indirect immunofluorescence studies localized seawi to the cortex of unfertilized eggs within granule-like particles, the mitotic spindle during cell division, and the small micromeres where its levels were enriched during the early cleavage stage. Lastly, we discuss how seawi, as a piwi/argonaute family member, may play a fundamentally important role in sea urchin animal–vegetal axis formation and stem cell maintenance. PMID:15840816

  10. Chemical Synthesis of Sea-Urchin Shaped 3D-MnO2 Nano Structures and Their Application in Supercapacitors.

    PubMed

    Singu, Bal Sydulu; Hong, Sang Eun; Yoon, Kuk Ro

    2016-06-01

    Sea-urchin shaped α-MnO2 hierarchical nano structures have been synthesized by facile thermal method without using any hard or soft template under the mild conditions. The structural and morphology of the 3D-MnO2 was characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). From the XRD analysis indicates that MnO2 present in the α form. Morphology analysis shows that α-MnO2 sea-urchins are made by stacked nanorods, the diameter and length of the stacked nanorods present in the range of 50-120 nm and 200-400 nm respectively. The electrochemical behaviour of α-MnO2 has been investigated by cyclic voltammetry (CV) and charge-discharge (CD). The specific capacitance, energy density and power density are 212.0 F g(-1), 21.2 Wh kg(-1) and 1200 W kg(-1) respectively at the current density of 2 A g(-1). The retention of the specific capacitance after completion of 1000 charge-discharge cycles is around 97%. The results reveal that the prepared Sea-urchin shaped α-MnO2 has high specific capacitance and exhibit excellent cycle life. PMID:27427676

  11. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7.

    PubMed

    Ruocco, Nadia; Varrella, Stefano; Romano, Giovanna; Ianora, Adrianna; Bentley, Matt G; Somma, Domenico; Leonardi, Antonio; Mellone, Stefano; Zuppa, Antonio; Costantini, Maria

    2016-07-01

    Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments. PMID:27130972

  12. Induction of DNA-protein cross-links in developing embryos of the purple sea urchin, Strongylocentrotus purpuratus

    SciTech Connect

    Garman, G.D.; Cherr, G.N.; Anderson, S.L.

    1994-12-31

    Exposure to environmental agents during embryonic development may result in DNA-protein cross-linking (DPC), as has been demonstrated for mammalian cell lines. In the latter, formation of DPC`s upon exposure to a wide variety of agents, including some metals, has been observed. To determine whether DPCs could be detected in the sea urchin embryo during development, the authors adapted a mammalian cell assay utilizing potassium-SDS precipitation and a DNA fluorochrome to quantify relative amounts of free and protein-bound DNA. Sea urchin embryos exposed to a known DPC agent, nickel, through gastrulation exhibited a dose-dependent increase in DPCs, as well as an increase in developmental abnormalities. Morphological studies demonstrated that stage-specific exposure to Ni prior to gastrulation resulted in similar levels of abnormal pluteus larval development as compared to embryos exposed through gastrulation. Sea urchin embryos exhibit temporal differences in DNA transcription and gene expression during development, and these could be affected by modifications in DNA-protein interactions. Therefore, the authors are investigating the hypothesis that the similarities in morphological responses observed may relate to susceptibility of a critical stage of development.

  13. Maintenance of somatic tissue regeneration with age in short- and long-lived species of sea urchins.

    PubMed

    Bodnar, Andrea G; Coffman, James A

    2016-08-01

    Aging in many animals is characterized by a failure to maintain tissue homeostasis and the loss of regenerative capacity. In this study, the ability to maintain tissue homeostasis and regenerative potential was investigated in sea urchins, a novel model to study longevity and negligible senescence. Sea urchins grow indeterminately, regenerate damaged appendages and reproduce throughout their lifespan and yet different species are reported to have very different life expectancies (ranging from 4 to more than 100 years). Quantitative analyses of cell proliferation and apoptosis indicated a low level of cell turnover in tissues of young and old sea urchins of species with different lifespans (Lytechinus variegatus, Strongylocentrotus purpuratus and Mesocentrotus franciscanus). The ability to regenerate damaged tissue was maintained with age as assessed by the regrowth of amputated spines and tube feet (motor and sensory appendages). Expression of genes involved in cell proliferation (pcna), telomere maintenance (tert) and multipotency (seawi and vasa) was maintained with age in somatic tissues. Immunolocalization of the Vasa protein to areas of the tube feet, spines, radial nerve, esophagus and a sub-population of circulating coelomocytes suggests the presence of multipotent cells that may play a role in normal tissue homeostasis and the regenerative potential of external appendages. The results indicate that regenerative potential was maintained with age regardless of lifespan, contrary to the expectation that shorter lived species would invest less in maintenance and repair. PMID:27095483

  14. High-Density Genetic Mapping with Interspecific Hybrids of Two Sea Urchins, Strongylocentrotus nudus and S. intermedius, by RAD Sequencing

    PubMed Central

    Dong, Ying; Gao, Shan; Chen, Zhong; Jiang, Jingwei; Yang, Aifu; Sun, Hongjuan; Guan, Xiaoyan; Jiang, Bei; Wang, Bai

    2015-01-01

    Sea urchins have long been used as research model organisms for developmental biology and evolutionary studies. Some of them are also important aquaculture species in East Asia. In this work, we report the construction of RAD-tag based high-density genetic maps by genotyping F1 interspecific hybrids derived from a crossing between a female sea urchin Strongylocentrotus nudus and a male Strongylocentrotus intermedius. With polymorphisms present in these two wild individuals, we constructed a female meiotic map containing 3,080 markers for S. nudus, and a male meiotic map for S. intermedius which contains 1,577 markers. Using the linkage maps, we were able to anchor a total of 1,591 scaffolds (495.9 Mb) accounting for 60.8% of the genome assembly of Strongylocentrotus purpuratus. A genome-wide scan resulted in the identification of one putative QTL for body size which spanned from 25.3 cM to 30.3 cM. This study showed the efficiency of RAD-Seq based high-density genetic map construction using F1 progenies for species with no prior genomic information. The genetic maps are essential for QTL mapping and are useful as framework to order and orientate contiguous scaffolds from sea urchin genome assembly. The integration of the genetic map with genome assembly would provide an unprecedented opportunity to conduct QTL analysis, comparative genomics, and population genetics studies. PMID:26398139

  15. A member of the Tlr family is involved in dsRNA innate immune response in Paracentrotus lividus sea urchin.

    PubMed

    Russo, Roberta; Chiaramonte, Marco; Matranga, Valeria; Arizza, Vincenzo

    2015-08-01

    The innate immune response involves proteins such as the membrane receptors of the Toll-like family (TLRs), which trigger different intracellular signalling pathways that are dependent on specific stimulating molecules. In sea urchins, TLR proteins are encoded by members of a large multigenic family composed of 60-250 genes in different species. Here, we report a newly identified mRNA sequence encoding a TLR protein (referred to as Pl-Tlr) isolated from Paracentrotus lividus immune cells. The partial protein sequence contained the conserved Toll/IL-1 receptor (TIR) domain, the transmembrane domain and part of the leucine repeats. Phylogenetic analysis of the Pl-Tlr protein was accomplished by comparing its sequence with those of TLRs from different classes of vertebrates and invertebrates. This analysis was suggestive of an evolutionary path that most likely represented the course of millions of years, starting from simple organisms and extending to humans. Challenge of the sea urchin immune system with poly-I:C, a chemical compound that mimics dsRNA, caused time-dependent Pl-Tlr mRNA up-regulation that was detected by QPCR. In contrast, bacterial LPS injury did not affect Pl-Tlr transcription. The study of the Tlr genes in the sea urchin model system may provide new perspectives on the role of Tlrs in the invertebrate immune response and clues concerning their evolution in a changing world. PMID:25907136

  16. Dust Storm, Red Sea and Saudi Arabia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Outlined against the dark blue water of the Red Sea, a prominent dust storm is making its way across the Red Sea into Saudi Arabia (22.0N, 39.0E) between the Islamic holy cities of Medinah and Mecca. Funneled through a gap in the coastal ranges of southern Sudan near the Ethiopian border, dust storms frequently will blow counter to the prevailing tropical easterly winds of the region.

  17. A Method for Preparation, Storage and Activation of Large Populations of Immotile Sea Urchin Sperm

    NASA Technical Reports Server (NTRS)

    Bracho, Geracimo E.; Fritch, Jennifer J.; Tash, Joseph S.

    1997-01-01

    Reversible protein phosphorylation is associated with initiation and modulation of sperm flagellar motility. Many studies aimed at examining the signal transduction mechanisms underlying the expression of motility have relied on detergent-permeabilized sperm reactivated with exogenous 32 P-ATP. However, the reactivation conditions allow variable levels of motility to be expressed and phosphorylation of many proteins that appear to be unrelated to sperm motility. Thus, identification of the few relevant proteins is difficult. We have developed a method to collect and keep sperm immotile until reactivated for analysis to normal motility levels. Artificial sea water (ASW) buffered with 5 mM 2-[N-morpholino]ethanesulfonic acid at pH 6.0 and containing 50 mM KCI, allows collection and storage of immotile sea urchin sperm for up to 96 h at 4-5 C. Motility under these conditions is essentially zero, but sperm is rapidly reactivated to normal motility by diluting with ASW to standard pH (8.0) and KCI concentration (10 mM).

  18. Physiological compensation for environmental acidification is limited in the deep-sea urchin Strongylocentrotus fragilis

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Lovera, C.; Whaling, P. J.; Buck, K. R.; Pane, E. F.; Barry, J. P.

    2013-05-01

    Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ). Deep-sea animals - particularly, calcifiers - are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of hypercapnia and hypoxia on the deep-sea urchin Strongylocentrotus fragilis, during two long-term exposure experiments (1 month and 4 month) at three levels of reduced pH at in situ O2 levels of approx. 10% saturation, and also to control pH at 100% O2 saturation. During the first experiment, internal acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by reduced pH, due in part to low non-bicarbonate extracellular fluid buffering capacity. During the second experiment, longer-term effects of hypercapnia and variable O2 on locomotion, feeding, growth, and gonadosomatic index (GSI) were investigated; results show significant mortality and correlation of all measured parameters with environmental acidification at pH 6.6. Transient adverse effects on locomotion and feeding were seen at pH 7.2, without compromise of growth or GSI. Based on the expected changes in ocean pH and oxygen, results suggest extinction of S. fragilis in the eastern North Pacific is unlikely. Rather, we expect a shoaling and contraction of its bathymetric range.

  19. Initial stages of calcium uptake and mineral deposition in sea urchin embryos

    PubMed Central

    Vidavsky, Netta; Addadi, Sefi; Mahamid, Julia; Shimoni, Eyal; Ben-Ezra, David; Shpigel, Muki; Weiner, Steve; Addadi, Lia

    2014-01-01

    Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. We reconstructed various stages of the formation pathway of calcium carbonate from calcium ions in sea water to mineral deposition and integration into the forming spicules. Monitoring calcium uptake with the fluorescent dye calcein shows that calcium ions first penetrate the embryo and later are deposited intracellularly. Surprisingly, calcium carbonate deposits are distributed widely all over the embryo, including in the primary mesenchyme cells and in the surface epithelial cells. Using cryo-SEM, we show that the intracellular calcium carbonate deposits are contained in vesicles of diameter 0.5–1.5 μm. Using the newly developed airSEM, which allows direct correlation between fluorescence and energy dispersive spectroscopy, we confirmed the presence of solid calcium carbonate in the vesicles. This mineral phase appears as aggregates of 20–30-nm nanospheres, consistent with amorphous calcium carbonate. The aggregates finally are introduced into the spicule compartment, where they integrate into the growing spicule. PMID:24344263

  20. The Influence of Physical Factors on Kelp and Sea Urchin Distribution in Previously and Still Grazed Areas in the NE Atlantic

    PubMed Central

    Rinde, Eli; Christie, Hartvig; Fagerli, Camilla W.; Bekkby, Trine; Gundersen, Hege; Norderhaug, Kjell Magnus; Hjermann, Dag Ø.

    2014-01-01

    The spatial distribution of kelp (Laminaria hyperborea) and sea urchins (Strongylocentrotus droebachiensis) in the NE Atlantic are highly related to physical factors and to temporal changes in temperature. On a large scale, we identified borders for kelp recovery and sea urchin persistence along the north-south gradient. Sea urchin persistence was also related to the coast-ocean gradient. The southern border corresponds to summer temperatures exceeding about 10°C, a threshold value known to be critical for sea urchin recruitment and development. The outer border along the coast-ocean gradient is related to temperature, wave exposure and salinity. On a finer scale, kelp recovery occurs mainly at ridges in outer, wave exposed, saline and warm areas whereas sea urchins still dominate in inner, shallow and cold areas, particularly in areas with optimal current speed for sea urchin foraging. In contrast to other studies in Europe, we here show a positive influence of climate change to presence of a long-lived climax canopy-forming kelp. The extent of the coast-ocean gradient varies within the study area, and is especially wide in the southern part where the presence of islands and skerries increases the area of the shallow coastal zone. This creates a large area with intermediate physical conditions for the two species and a mosaic of kelp and sea urchin dominated patches. The statistical models (GAM and BRT) show high performance and indicate recovery of kelp in 45–60% of the study area. The study shows the value of combining a traditional (GAM) and a more complex (BRT) modeling approach to gain insight into complex spatial patterns of species or habitats. The results, methods and approaches are of general ecological relevance regardless of ecosystems and species, although they are particularly relevant for understanding and exploring the corresponding changes between algae and grazers in different coastal areas. PMID:24949954

  1. The influence of physical factors on kelp and sea urchin distribution in previously and still grazed areas in the NE Atlantic.

    PubMed

    Rinde, Eli; Christie, Hartvig; Fagerli, Camilla W; Bekkby, Trine; Gundersen, Hege; Norderhaug, Kjell Magnus; Hjermann, Dag Ø

    2014-01-01

    The spatial distribution of kelp (Laminaria hyperborea) and sea urchins (Strongylocentrotus droebachiensis) in the NE Atlantic are highly related to physical factors and to temporal changes in temperature. On a large scale, we identified borders for kelp recovery and sea urchin persistence along the north-south gradient. Sea urchin persistence was also related to the coast-ocean gradient. The southern border corresponds to summer temperatures exceeding about 10°C, a threshold value known to be critical for sea urchin recruitment and development. The outer border along the coast-ocean gradient is related to temperature, wave exposure and salinity. On a finer scale, kelp recovery occurs mainly at ridges in outer, wave exposed, saline and warm areas whereas sea urchins still dominate in inner, shallow and cold areas, particularly in areas with optimal current speed for sea urchin foraging. In contrast to other studies in Europe, we here show a positive influence of climate change to presence of a long-lived climax canopy-forming kelp. The extent of the coast-ocean gradient varies within the study area, and is especially wide in the southern part where the presence of islands and skerries increases the area of the shallow coastal zone. This creates a large area with intermediate physical conditions for the two species and a mosaic of kelp and sea urchin dominated patches. The statistical models (GAM and BRT) show high performance and indicate recovery of kelp in 45-60% of the study area. The study shows the value of combining a traditional (GAM) and a more complex (BRT) modeling approach to gain insight into complex spatial patterns of species or habitats. The results, methods and approaches are of general ecological relevance regardless of ecosystems and species, although they are particularly relevant for understanding and exploring the corresponding changes between algae and grazers in different coastal areas. PMID:24949954

  2. The Red Sea Modeling and Forecasting System

    NASA Astrophysics Data System (ADS)

    Hoteit, Ibrahim; Gopalakrishnan, Ganesh; Latif, Hatem; Toye, Habib; Zhan, Peng; Kartadikaria, Aditya R.; Viswanadhapalli, Yesubabu; Yao, Fengchao; Triantafyllou, George; Langodan, Sabique; Cavaleri, Luigi; Guo, Daquan; Johns, Burt

    2015-04-01

    Despite its importance for a variety of socio-economical and political reasons and the presence of extensive coral reef gardens along its shores, the Red Sea remains one of the most under-studied large marine physical and biological systems in the global ocean. This contribution will present our efforts to build advanced modeling and forecasting capabilities for the Red Sea, which is part of the newly established Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). Our Red Sea modeling system compromises both regional and nested costal MIT general circulation models (MITgcm) with resolutions varying between 8 km and 250 m to simulate the general circulation and mesoscale dynamics at various spatial scales, a 10-km resolution Weather Research Forecasting (WRF) model to simulate the atmospheric conditions, a 4-km resolution European Regional Seas Ecosystem Model (ERSEM) to simulate the Red Sea ecosystem, and a 1-km resolution WAVEWATCH-III model to simulate the wind driven surface waves conditions. We have also implemented an oil spill model, and a probabilistic dispersion and larval connectivity modeling system (CMS) based on a stochastic Lagrangian framework and incorporating biological attributes. We are using the models outputs together with available observational data to study all aspects of the Red Sea circulations. Advanced monitoring capabilities are being deployed in the Red Sea as part of the SAMERCK, comprising multiple gliders equipped with hydrographical and biological sensors, high frequency (HF) surface current/wave mapping, buoys/ moorings, etc, complementing the available satellite ocean and atmospheric observations and Automatic Weather Stations (AWS). The Red Sea models have also been equipped with advanced data assimilation capabilities. Fully parallel ensemble-based Kalman filtering (EnKF) algorithms have been implemented with the MITgcm and ERSEM for assimilating all available multivariate satellite and in-situ data sets. We

  3. Profiling DNA damage and repair capacity in sea urchin larvae and coelomocytes exposed to genotoxicants.

    PubMed

    Reinardy, Helena C; Bodnar, Andrea G

    2015-11-01

    The ability to protect the genome from harmful DNA damage is critical for maintaining genome stability and protecting against disease, including cancer. Many echinoderms, including sea urchins, are noted for the lack of neoplastic disease, but there are few studies investigating susceptibility to DNA damage and capacity for DNA repair in these animals. In this study, DNA damage was induced in adult sea urchin coelomocytes and larvae by exposure to a variety of genotoxicants [UV-C (0-3000 J/m(2)), hydrogen peroxide (0-10mM), bleomycin (0-300 µM) and methylmethanesulfonate (MMS, 0-30 mM)] and the capacity for repair was measured over a 24-h period of recovery. Larvae were more sensitive than coelomocytes, with higher levels of initial DNA damage (fast micromethod) for all genotoxicants except MMS and increased levels of mortality 24h following treatment for all genotoxicants. The larvae that survived were able to efficiently repair damage within 24-h recovery. The ability to repair DNA damage differed depending on treatments, but both larvae and coelomocytes were able to most efficiently repair H2O2-induced damage. Time profiles of expression of a panel of DNA repair genes (ddb1, ercc1, xpc, xrcc1, pcna, ogg1, parp1, parp2, ape, brca1, rad51, xrcc2, xrcc3, xrcc4, xrcc5, xrcc6 and gadd45), throughout the period of recovery, showed greater gene induction in coelomocytes compared with larvae, with particularly high expression of xrcc1, ercc1, parp2 and pcna. The heterogeneous response of larvae to DNA damage may reflect a strategy whereby a subset of the population is equipped to withstand acute genotoxic stress, while the ability of coelomocytes to resist and repair DNA damage confirm their significant role in protection against disease. Consideration of DNA repair capacity is critical for understanding effects of genotoxicants on organisms, in addition to shedding light on life strategies and disease susceptibility. PMID:26175033

  4. Innate immune complexity in the purple sea urchin: diversity of the sp185/333 system.

    PubMed

    Smith, L Courtney

    2012-01-01

    The California purple sea urchin, Strongylocentrotus purpuratus, is a long-lived echinoderm with a complex and sophisticated innate immune system. There are several large gene families that function in immunity in this species including the Sp185/333 gene family that has ∼50 (±10) members. The family shows intriguing sequence diversity and encodes a broad array of diverse yet similar proteins. The genes have two exons of which the second encodes the mature protein and has repeats and blocks of sequence called elements. Mosaics of element patterns plus single nucleotide polymorphisms-based variants of the elements result in significant sequence diversity among the genes yet maintains similar structure among the members of the family. Sequence of a bacterial artificial chromosome insert shows a cluster of six, tightly linked Sp185/333 genes that are flanked by GA microsatellites. The sequences between the GA microsatellites in which the Sp185/333 genes and flanking regions are located, are much more similar to each other than are the sequences outside the microsatellites suggesting processes such as gene conversion, recombination, or duplication. However, close linkage does not correspond with greater sequence similarity compared to randomly cloned and sequenced genes that are unlikely to be linked. There are three segmental duplications that are bounded by GAT microsatellites and include three almost identical genes plus flanking regions. RNA editing is detectible throughout the mRNAs based on comparisons to the genes, which, in combination with putative post-translational modifications to the proteins, results in broad arrays of Sp185/333 proteins that differ among individuals. The mature proteins have an N-terminal glycine-rich region, a central RGD motif, and a C-terminal histidine-rich region. The Sp185/333 proteins are localized to the cell surface and are found within vesicles in subsets of polygonal and small phagocytes. The coelomocyte proteome shows full

  5. Applied DC magnetic fields cause alterations in the time of cell divisions and developmental abnormalities in early sea urchin embryos

    SciTech Connect

    Levin, M.; Ernst, S.G.

    1997-05-01

    Most work on magnetic field effects focuses on AC fields. The present study demonstrates that exposure to medium-strength (10 mT--0.1 T) static magnetic fields can alter the early embryonic development of two species of sea urchin embryos. Batches of fertilized eggs from two species of urchin were exposed to fields produced by permanent magnets. Samples of the continuous cultures were scored for the timing of the first two cell divisions, time of hatching, and incidence of exogastrulation. It was found that static fields delay the onset of mitosis in both species by an amount dependent on the exposure timing relative to fertilization. The exposure time that caused the maximum effect differed between the two species. Thirty millitesla fields, but not 15 mT fields, caused an eightfold increase in the incidence of exogastrulation in Lytechinus pictus, whereas neither of these fields produced exogastrulation in Strongylocentrotus purpuratus.

  6. Maternal Exposure to Cadmium and Manganese Impairs Reproduction and Progeny Fitness in the Sea Urchin Paracentrotus lividus.

    PubMed

    Migliaccio, Oriana; Castellano, Immacolata; Cirino, Paola; Romano, Giovanna; Palumbo, Anna

    2015-01-01

    Metal contamination represents one of the major sources of pollution in marine environments. In this study we investigated the short-term effects of ecologically relevant cadmium and manganese concentrations (10(-6) and 3.6 x 10(-5) M, respectively) on females of the sea urchin Paracentrotus lividus and their progeny, reared in the absence or presence of the metal. Cadmium is a well-known heavy metal, whereas manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. The effects of these agents were examined on both P. lividus adults and their offspring following reproductive state, morphology of embryos, nitric oxide (NO) production and differential gene expression. Here, we demonstrated that both metals differentially impaired the fertilization processes of the treated female sea urchins, causing modifications in the reproductive state and also affecting NO production in the ovaries. A detailed analysis of the progeny showed a high percentage of abnormal embryos, associated to an increase in the endogenous NO levels and variations in the transcriptional expression of several genes involved in stress response, skeletogenesis, detoxification, multi drug efflux processes and NO production. Moreover, we found significant differences in the progeny from females exposed to metals and reared in metal-containing sea water compared to embryos reared in non-contaminated sea water. Overall, these results greatly expanded previous studies on the toxic effects of metals on P. lividus and provided new insights into the molecular events induced in the progeny of sea urchins exposed to metals. PMID:26125595

  7. Assessment of the toxic effect exerted by fluorescent pseudomonads on embryos and larvae of the sea urchin Strongylocentrotus nudus.

    PubMed

    Beleneva, I A; Shamshurina, E V; Eliseikina, M G

    2015-05-01

    Strains of bacteria capable of growing on artificial culture media were isolated from the fouling of brass plates submerged in Nha Trang Bay, South China Sea, and from tissues of the seastar Distolasterias nipon, caught in Peter the Great Bay, Sea of Japan. According to the complex of data of genetic and physiological/biochemical analyzes, two strains of cultivated bacteria were identified by us as the species Pseudomonas aeruginosa, two strains as Pseudomonas fluorescens, and one strain as Ruegeria sp. It was shown that the cultivated strains of P. aeruginosa released exotoxins, particularly phenazine pigments, into the environment. Production of the toxins did not depend on presence of a target organism in the system and was aimed at regulation of interactions in the microbial community. The toxicity of the studied natural isolates of fluorescent pseudomonads was analyzed by using embryos and larvae of the sea urchin Strongylocentrotus nudus, which are the sensitive and dynamic toxicological sea-urchin embryo test (SET) system. As was established, exotoxins produced by the strains of P. aeruginosa inhibit activity of cilia in sea urchin larvae, as well as disturb processes of cell differentiation in embryos and larvae. Their toxic influence is accompanied by disturbances of protein synthesis and the disruptions of cytoskeleton in the course of zygote cleavage and larval development. Unlike P. aeruginosa, the strains of P. fluorescens and Ruegeria sp. did not exert the toxic effect on SET. The obtained data allow considering objects of the environment as the natural reservoir of opportunistic microorganisms posing a potential threat to human, whereas the use of SET for determination of toxicity of isolated bacteria provides an opportunity to study the mechanisms of their interactions with organisms in marine ecosystems. PMID:25728358

  8. Maternal Exposure to Cadmium and Manganese Impairs Reproduction and Progeny Fitness in the Sea Urchin Paracentrotus lividus

    PubMed Central

    Migliaccio, Oriana; Castellano, Immacolata; Cirino, Paola; Romano, Giovanna; Palumbo, Anna

    2015-01-01

    Metal contamination represents one of the major sources of pollution in marine environments. In this study we investigated the short-term effects of ecologically relevant cadmium and manganese concentrations (10-6 and 3.6 x 10-5 M, respectively) on females of the sea urchin Paracentrotus lividus and their progeny, reared in the absence or presence of the metal. Cadmium is a well-known heavy metal, whereas manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. The effects of these agents were examined on both P. lividus adults and their offspring following reproductive state, morphology of embryos, nitric oxide (NO) production and differential gene expression. Here, we demonstrated that both metals differentially impaired the fertilization processes of the treated female sea urchins, causing modifications in the reproductive state and also affecting NO production in the ovaries. A detailed analysis of the progeny showed a high percentage of abnormal embryos, associated to an increase in the endogenous NO levels and variations in the transcriptional expression of several genes involved in stress response, skeletogenesis, detoxification, multi drug efflux processes and NO production. Moreover, we found significant differences in the progeny from females exposed to metals and reared in metal-containing sea water compared to embryos reared in non-contaminated sea water. Overall, these results greatly expanded previous studies on the toxic effects of metals on P. lividus and provided new insights into the molecular events induced in the progeny of sea urchins exposed to metals. PMID:26125595

  9. Purification and physical chemical characterization of 23S glycoprotein from sea urchin (Anthocidaris crassispina) eggs.

    PubMed

    Giga, Y; Ikai, A

    1985-07-01

    A large glycoprotein with a sedimentation coefficient, S(0)20,w, of 23.3S was purified to homogeneity from sea urchin eggs (Anthocidaris crassispina) by gel filtration on Sepharose CL-4B and ion-exchange chromatography on DEAE-cellulose. The molecular weight of the protein was 700,000 as determined by sedimentation equilibrium. On polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS) it showed a single band with an apparent molecular weight of 180,000 or 360,000 in the presence or absence of 2-mercaptoethanol, respectively. The protein consisted of four polypeptides of equal molecular weight, which were disulfide bonded in pairs. Its carbohydrate content as determined by the phenol-sulfuric acid method was 20% of the total weight. The amino acid and carbohydrate compositions, circular dichroic spectrum and electron microscopic image are also presented. The protein showed many structural similarities with the previously purified major glycoprotein (MCP) in the coelomic fluid of the same animal in addition to being immunologically cross reactive with it. However, the two proteins were distinct glycoproteins. Their biological functions have not been identified. PMID:4044553

  10. Fine Structure and Molecular Phylogeny of Parametopidium circumlabens (Ciliophora: Armophorea), Endocommensal of Sea Urchins.

    PubMed

    da Silva-Neto, Inácio Domingos; da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; Harada, Maria Lúcia

    2016-01-01

    Metopid armophoreans are ciliates commonly found in anaerobic environments worldwide; however, very little is known of their fine structure. In this study, the metopid Parametopidium circumlabens (Biggar and Wenrich 1932) Aescht, 1980, a common endocommensal of sea urchins, is investigated for the first time with emphasis on transmission electron microscopy, revealing several previously unknown elements of its morphology. Somatic dikinetids of P. circumlabens have a typical ribbon of transverse microtubules, an isolated microtubule near triplets 4 and 5 of the anterior kinetosome, plus two other microtubules between anterior and posterior kinetosomes, a short kinetodesmal striated fiber and long postciliary microtubules. In the dikinetids of the perizonal stripe, the kinetodesmal fiber is very pronounced, and there is a conspicuous microfibrillar network system associated with the kinetosomes. A new structure, shaped as a dense, roughly cylindrical mass surrounded by microtubules, is found associated with the posterior kinetosome of perizonal dikinetids. The paroral membrane is diplostichomonad and the adoral membranelles are of the "paramembranelle" type. Bayesian inference and maximum-likelihood analysis of the 18S-rDNA gene unambiguously placed P. circumlabens as sister group of the cluster formed by ((Atopospira galeata, Atopospira violacea) Metopus laminarius) + Clevelandellida, corroborating its classification within the Metopida. PMID:26111546

  11. Phosphoproteomic network analysis in the sea urchin Strongylocentrotus purpuratus reveals new candidates in egg activation.

    PubMed

    Guo, Hongbo; Garcia-Vedrenne, Ana Elisa; Isserlin, Ruth; Lugowski, Andrew; Morada, Anthony; Sun, Alex; Miao, Yishen; Kuzmanov, Uros; Wan, Cuihong; Ma, Hongyue; Foltz, Kathy; Emili, Andrew

    2015-12-01

    Fertilization triggers a dynamic symphony of molecular transformations induced by a rapid rise in intracellular calcium. Most prominent are surface alterations, metabolic activation, cytoskeletal reorganization, and cell-cycle reentry. While the activation process appears to be broadly evolutionarily conserved, and protein phosphorylation is known to play a key role, the signaling networks mediating the response to fertilization are not well described. To address this gap, we performed a time course phosphoproteomic analysis of egg activation in the sea urchin Strongylocentrotus purpuratus, a system that offers biochemical tractability coupled with exquisite synchronicity. By coupling large-scale phosphopeptide enrichment with unbiased quantitative MS, we identified striking changes in global phosphoprotein patterns at 2- and 5-min postfertilization as compared to unfertilized eggs. Overall, we mapped 8796 distinct phosphosite modifications on 2833 phosphoproteins, of which 15% were differentially regulated in early egg activation. Activated kinases were identified by phosphosite mapping, while enrichment analyses revealed conserved signaling cascades not previously associated with egg activation. This work represents the most comprehensive study of signaling associated with egg activation to date, suggesting novel mechanisms that can be experimentally tested and providing a valuable resource for the broader research community. All MS data have been deposited in the ProteomeXchange with identifier PXD002239 (http://proteomecentral.proteomexchange.org/dataset/PXD002239). PMID:26227301

  12. Nutrient composition and antioxidant activity of gonads of sea urchin Stomopneustes variolaris.

    PubMed

    Archana, Ayyagari; Babu, K Ramesh

    2016-04-15

    The study investigated, for the first time, proximate nutritional composition and antioxidant activity of gonads from the sea urchin, Stomopneustes variolaris, inhabiting the coastal area of Visakhapatnam (India). Moisture, ash, proteins, lipids and carbohydrate content were 77.53%±0.80, 3.76%±0.25, 12.10%±0.41, 4.98%±0.36 and 1.63%±0.18, respectively, based on dry weight. The gonads were rich in essential amino acids (ca. 32.1% of total amino acids) with the most predominant being phenylalanine, lysine and valine. The essential to non-essential amino acid ratio was 0.5. Polyunsaturated fatty acids (PUFA) constituted 22.01%±2.2 of total fatty acids. The ω6:ω3 ratio was 0.94. Total phenol content of the gonad was 9.90±0.01 mg GAE/g and the IC50 of the extract, using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, was 57.81 μg/ml. PMID:26616993

  13. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos.

    PubMed

    Chassé, Héloïse; Mulner-Lorillon, Odile; Boulben, Sandrine; Glippa, Virginie; Morales, Julia; Cormier, Patrick

    2016-01-01

    The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism. PMID:26962866

  14. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos

    PubMed Central

    Boulben, Sandrine; Glippa, Virginie; Morales, Julia; Cormier, Patrick

    2016-01-01

    The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism. PMID:26962866

  15. Primary mesenchyme cell-ring pattern formation in 2D-embryos of the sea urchin.

    PubMed

    Katow, H; Nakajima, Y; Uemura, I

    2000-02-01

    Primary mesenchyme cell (PMC) migration during PMC-ring pattern formation was analyzed using computer-assisted time-lapse video microscopy in spread embryos (2D-embryo) of the sea urchin, Mespilia globulus, and a computer simulation. The PMC formed a near normal ring pattern in the 2D-embryos, which were shown to be an excellent model for the examination of cell behavior in vivo by time-lapse computer analysis. The average migration distance of the ventro-lateral PMC aggregate-forming cells (AFC) and that of the dorso-ventral PMC cable-forming cells (CFC) showed no significant difference. All PMC took a rather straightforward migration path to their destinations with little lag time after ingression. This in vivo cell behavior fitted well to a computer simulation with a non-diffusable chemotaxis factor in the cyber-cell migration field. This simulation suggests that PMC recognize their destination from a very early moment of cell migration from the vegetal plate, and implicates that a chemoattractive region is necessary for making the PMC migration pattern. The left- and right-lateral AFC and dorso and ventral CFC were each derived from an unequally divided one-quarter segment of the vegetal plate. This suggests that AFC and CFC have a distinctive ancestor in the vegetal plate, and the PMC are a heterogeneous population at least in terms of their destination in the PMC-ring pattern. PMID:10831039

  16. Multidrug Efflux Transporters Limit Accumulation of Inorganic, but Not Organic, Mercury in Sea Urchin Embryos

    PubMed Central

    Bošnjak, Ivana; Uhlinger, Kevin R.; Heim, Wesley; Smital, Tvrtko; Franekić-Čolić, Jasna; Coale, Kenneth; Epel, David; Hamdoun, Amro

    2011-01-01

    Mercuric compounds are persistent global pollutants that accumulate in marine organisms and in humans who consume them. While the chemical cycles and speciation of mercury in the oceans are relatively well described, the cellular mechanisms that govern which forms of mercury accumulate in cells and why they persist are less understood. In this study we examined the role of multidrug efflux transport in the differential accumulation of inorganic (HgCl2) and organic (CH3HgCl) mercury in sea urchin (Strongylocentrotus purpuratus) embryos. We found that inhibition of MRP/ABCC-type transporters increases intracellular accumulation of inorganic mercury but had no effect on accumulation of organic mercury. Similarly, pharmacological inhibition of metal conjugating enzymes by ligands GST/GSH significantly increases this antimitotic potency of inorganic mercury, but had no effect on the potency of organic mercury. Our results point to MRP-mediated elimination of inorganic mercury conjugates as a cellular basis for differences in the accumulation and potency of the two major forms of mercury found in marine environments. PMID:19924972

  17. The DEAD-box RNA helicase Vasa functions in embryonic mitotic progression in the sea urchin

    PubMed Central

    Yajima, Mamiko; Wessel, Gary M.

    2011-01-01

    Vasa is a broadly conserved ATP-dependent RNA helicase that functions in the germ line of organisms from cnidarians to mammals. Curiously, Vasa is also present in the somatic cells of many animals and functions as a regulator of multipotent cells. Here, we report a mitotic function of Vasa revealed in the sea urchin embryo. We found that Vasa protein is present in all blastomeres of the early embryo and that its abundance oscillates with the cell cycle. Vasa associates with the spindle and the separating sister chromatids at metaphase, and then quickly disappears after telophase. Inhibition of Vasa protein synthesis interferes with proper chromosome segregation, arrests cells at M-phase, and delays overall cell cycle progression. Cdk activity is necessary for the proper localization of Vasa, implying that Vasa is involved in the cyclin-dependent cell cycle network, and Vasa is required for the efficient translation of cyclinB mRNA. Our results suggest an evolutionarily conserved role of Vasa that is independent of its function in germ line determination. PMID:21525076

  18. Central Spindle Self-Organization and Cytokinesis in Artificially Activated Sea Urchin Eggs.

    PubMed

    Henson, John H; Buckley, Mary W; Yeterian, Mesrob; Weeks, Richard M; Simerly, Calvin R; Shuster, Charles B

    2016-04-01

    The ability of microtubules of the mitotic apparatus to control the positioning and initiation of the cleavage furrow during cytokinesis was first established from studies on early echinoderm embryos. However, the identity of the microtubule population that imparts cytokinetic signaling is unclear. The two main--and not necessarily mutually exclusive--candidates are the central spindle and the astral rays. In the present study, we examined cytokinesis in ammonia-activated sea urchin eggs, which lack paternally derived centrosomes and undergo mitosis mediated by unusual anastral, bipolar mini-spindles. Live cell imaging and immunolabeling for microtubules and the centralspindlin constituent and kinesin-related protein, MKLP1, demonstrated that furrowing in ammonia-activated eggs was associated with aligned arrays of centralspindlin-linked, opposed bundles of antiparallel microtubules. These autonomous, zipper-like arrays were not associated with a mitotic apparatus, but did possess characteristics similar to the central spindle region of control, fertilized embryos. Our results highlight the self-organizing nature of the central spindle region and its ability to induce cytokinesis-like furrowing, even in the absence of a complete mitotic apparatus. PMID:27132131

  19. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos

    PubMed Central

    Katow, Hideki

    2015-01-01

    Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research. PMID:26716069

  20. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos

    PubMed Central

    Ruocco, Nadia; Costantini, Maria; Santella, Luigia

    2016-01-01

    The diffuse use of lithium in a number of industrial processes has produced a significant contamination of groundwater and surface water with it. The increased use of lithium has generated only scarce studies on its concentrations in ambient waters and on its effects on aquatic organisms. Only few contributions have focused on the toxicity of lithium in marine organisms (such as marine animals, algae and vegetables), showing that the toxic effect depends on the animal species. In the present study we describe the morphological and the molecular effects of lithium chloride (LiCl), using the sea urchin Paracentrotus lividus as a model organism. We show that LiCl, if added to the eggs before fertilization, induces malformations in the embryos in a dose-dependent manner. We have also followed by RT qPCR the expression levels of thirty seven genes (belonging to different classes of functional processes, such as stress, development, differentiation, skeletogenesis and detoxifications) to identify the molecular targets of LiCl. This study opens new perspectives for the understanding of the mechanism of action of lithium on marine organisms. The findings may also have relevance outside the world of marine organisms since lithium is widely prescribed for the treatment of human bipolar disorders. PMID:27562248

  1. Storage, ultrastructural targeting and function of toposomes and hyalin in sea urchin embryogenesis.

    PubMed

    Gratwohl, E K; Kellenberger, E; Lorand, L; Noll, H

    1991-02-01

    This study compares by immunogold labeling the ultrastructural localization of a hexameric 22S glycoprotein, called toposome, with that of hyalin in unfertilized eggs and cells of hatched sea urchin blastulae. Nearly all hyalin is present in the electron translucent compartment of the cortical granules and in the translucent non-cortical pigment granules. In the blastula both of these intracellular stores have vanished and hyalin now forms a broad band below the apical lamina. By contrast, in the egg toposomes are present on the surface, as well as stored in yolk granules and in the electron dense lamellar compartment of the cortical granules. In the hatched blastula, toposomes that have been modified by limited proteolysis in the yolk granules, are associated with the plasma membranes of all newly formed cells, while the toposomes originating from the cortical granules have been incorporated as unmodified 160 kDa polypeptides into an extracellular double layer enveloping the embryo on the outside of the hyaline layer. From evidence discussed in detail, we conclude that the extracellular toposomes rivet the apical lamina to the surface and underlying cytoskeleton of the microvilli, while the modified toposomes from the yolk granules are responsible for position specific intercellular adhesion as they are released to the surface of newly formed cells. We propose that all the material stored in yolk granules is utilized for the assembly of new membranes. PMID:1709570

  2. Scanning electron microscopy of high-pressure-frozen sea urchin embryos.

    PubMed

    Walther, P; Chen, Y; Malecki, M; Zoran, S L; Schatten, G P; Pawley, J B

    1993-12-01

    High-pressure-freezing permits direct cryo-fixation of sea urchin embryos having a defined developmental state without the formation of large ice crystals. We have investigated preparation protocols for observing high-pressure-frozen and freeze-fractured samples in the scanning electron microscope. High-pressure-freezing was superior to other freezing protocols, because the whole bulk sample was reasonably well frozen and the overall three-dimensional shape of the embryos was well preserved. The samples were either dehydrated by freeze-substitution and critical-point-drying, or imaged in the partially hydrated state, using a cold stage in the SEM. During freeze-substitution the samples were stabilized by fixatives. The disadvantage of this method was that shrinking and extraction effects, caused by the removal of the water, could not be avoided. These disadvantages were avoided when the sample was imaged in the frozen-hydrated state using a cold-stage in the SEM. This would be the method of choice for morphometric studies. Frozen-hydrated samples, however, were very beam sensitive and many structures remained covered by the ice and were not visible. Frozen-hydrated samples were partially freeze-dried to make visible additional structures that had been covered by ice. However, this method also caused drying artifacts when too much water was removed. PMID:8023095

  3. Preservation and visualization of the sea urchin embryo blastocoelic extracellular matrix.

    PubMed

    Cherr, G N; Summers, R G; Baldwin, J D; Morrill, J B

    1992-06-15

    Several methods were utilized to visualize the structure and orientation of the blastocoelic extracellular matrix (ECM) in Strongylocentrotus purpuratus embryos at the mesenchyme blastula stage. Rapid freezing in liquid propane cooled to LN2 temperatures followed by freeze substitution was used to preserve the ECM without shrinkage due to dehydration. Scanning, transmission, and light microscopy were employed to elucidate the ECMs' structure. The blastocoelic ECM consisted of parallel fibrillar sheets that were interconnected by finer filaments and oriented along the animal-vegetal axis. The ECM completely filled the blastocoelic cavity as viewed by scanning electron microscopy. The basal lamina could be distinguished from the blastocoelic ECM as a thin coat on the plasma membrane of epithelial cells; the ECM was in contact with this coat. In contrast, the blastocoelic ECM attached directly to the plasma membrane of primary mesenchyme cells (PMC) which did not possess a basal lamina. The blastocoelic ECM was isolated as an intact "bag" and probed in a hydrated state with Con A and alcian blue. Confocal microscopy confirmed that the entire blastocoel was filled with a fibrillar ECM. These approaches offer advantages for future studies of the ECMs of sea urchin embryos and their roles in gastrulation. PMID:1617206

  4. Dual effect of procaine in sea urchin eggs. Inducer and inhibitor of microtubule assembly.

    PubMed

    Coffe, G; Foucault, G; Raymond, M N; Pudles, J

    1985-01-01

    An increase in the amount of cytoplasmic filamentous structures (cytoplasmic matrix and aster) which were recovered after hexylene glycol/Triton X-100 treatment of sea urchin eggs (Paracentrotus lividus) activated by 0.2-2.5 mM procaine was observed. At higher activator concentrations, an opposite effect was observed and formation of these cytoplasmic structures was inhibited in the presence of 10 mM procaine. This inhibitory effect was reversed by diluting the drug in the incubation medium. DNase I inhibition assays on egg homogenates which were performed at different time points of the activation process, show that the same amount of actin was induced to polymerize in eggs activated either by 2.5 or 10 mM procaine. However, colchicine-binding assays on the 100 000 g particulate fractions of these homogenates show that in eggs activated by 10 mM procaine, in contrast to those activated by 2.5 mM, tubulin polymerization was inhibited and microtubules were disassembled. These results show that the dual effect of procaine in the organization of the egg cytoskeleton appears to be related to its effect on the state of tubulin. PMID:4038386

  5. Asymmetric inhibition of spicule formation in sea urchin embryos with low concentrations of gadolinium ion.

    PubMed

    Saitoh, Motoshi; Kuroda, Ritsu; Muranaka, Yoshinori; Uto, Norihiko; Murai, Junko; Kuroda, Hideyo

    2010-12-01

    As gastrulation proceeds during sea urchin embryogenesis, primary mesenchyme cells (PMCs) fuse to form syncytial cables, within which calcium is deposited as CaCO₃, and a pair of spicules is formed. Earlier studies suggested that calcium, previously sequestered by primary mesenchyme cells, is secreted and incorporated into growing spicules. We examined the effects of gadolinium ion (Gd(3+)), a Ca(2+) channel blocker, on spicule formation. Gd(3+) did not lead to a retardation of embryogenesis prior to the initiation of gastrulation and did not inhibit the ingression of PMCs from the blastula wall or their migration along the inner blastocoel surface. However, when embryos were raised in seawater containing submicromolar to a few micromolar Gd(3+), of which levels are considered to be insufficient to block Ca(2+) channels, a pair of triradiate spicules was formed asymmetrically. At 1-3 μmol/L Gd(3+), many embryos formed only one spicule on either the left or right side, or embryos formed a very small second spicule. Induction of the spicule abnormality required the presence of Gd(3+) specifically during late blastula stage prior to spicule formation. An accumulation or adsorption of Gd(3+) was not detected anywhere in the embryos by X-ray microanalysis, which suggests that Ca(2+) channels were not inhibited. These results suggest that Gd(3+) exerts an inhibitory effect on spicule formation through a mechanism that does not involve inhibition of Ca(2+) channels. PMID:21158753

  6. Sea urchin arylsulfatase insulator exerts its anti-silencing effect without interacting with the nuclear matrix.

    PubMed

    Hino, Shinjiro; Akasaka, Koji; Matsuoka, Masao

    2006-03-17

    Chromatin insulators have been shown to stabilize transgene expression. Although insulators have been suggested to regulate the subcellular localization of chromosomes, it is still unclear whether this property is important for their anti-silencing activity. To investigate the underlying mechanisms governing the anti-silencing function of insulators, we studied the association of sea urchin arylsulfatase insulator (ArsI) with the nuclear matrix, which is a key component of the subnuclear localization of the genome. ArsI did not potentiate the nuclear matrix association with the transgene, even though it showed strong anti-silencing activity. This observation was in clear contrast to the results of the experiment using a human interferon-beta scaffold attachment region, in which the anti-silencing effect coincided with the enhanced matrix association. Chromatin immunoprecipitation analyses suggested that the absence of the matrix binding by ArsI was due to a lack of its binding to CCCTC-binding factor (CTCF), a protein known to be associated with matrix binding by chicken beta-globin insulator. Furthermore, ArsI maintained the nucleosome occupancy within the transgene at a constant level during long-term culture, although ArsI itself was not a nucleosome-excluding sequence. Taken together, these results suggest that this insulator exerts its anti-silencing activity by counteracting silencing-associated factors to maintain local chromatin environment, rather than by remodeling the subnuclear localization of the transgene locus. PMID:16426632

  7. Ovothiol isolated from sea urchin oocytes induces autophagy in the Hep-G2 cell line.

    PubMed

    Russo, Gian Luigi; Russo, Maria; Castellano, Immacolata; Napolitano, Alessandra; Palumbo, Anna

    2014-07-01

    Ovothiols are histidine-derived thiols isolated from sea urchin eggs, where they play a key role in the protection of cells toward the oxidative burst associated with fertilization by controlling the cellular redox balance and recycling oxidized glutathione. In this study, we show that treatment of a human liver carcinoma cell line, Hep-G2, with ovothiol A, isolated from Paracentrotus lividus oocytes, results in a decrease of cell proliferation in a dose-dependent manner. The activation of an autophagic process is revealed by phase contrast and fluorescence microscopy, together with the expression of the specific autophagic molecular markers, LC3 II and Beclin-1. The effect of ovothiol is not due to its antioxidant capacity or to hydrogen peroxide generation. The concentration of ovothiol A in the culture media, as monitored by HPLC analysis, decreased by about 24% within 30 min from treatment. The proliferation of normal human embryonic lung cells is not affected by ovothiol A. These results hint at ovothiol as a promising bioactive molecule from marine organisms able to inhibit cell proliferation in cancer cells. PMID:25003791

  8. Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma.

    PubMed

    Wray, G A; Raff, R A

    1989-04-01

    The sea urchin Heliocidaris erythrogramma undergoes direct development, bypassing the usual echinoid pluteus larva. We present an analysis of cell lineage in H. erythrogramma as part of a definition of the mechanistic basis for this evolutionary change in developmental mode. Microinjection of fluoresceinated tracer dye and surface marking with vital dye are used to follow larval fates of 2-cell, 8-cell, and 16-cell blastomeres, and to examine axial specification. The animal-vegetal axis and adult dorsoventral axis are basically unmodified in H. erythrogramma. Animal cell fates are very similar to those of typically developing species; however, vegetal cell fates in H. erythrogramma are substantially altered. Radial differences exist among vegetal blastomere fates in the 8-cell embryo: dorsal vegetal blastomeres contribute proportionately more descendants to ectodermal and fewer to mesodermal fates, while ventral vegetal blastomeres have a complementary bias in fates. In addition, vegetal cell fates are more variable than in typical developers. There are no cells in H. erythrogramma with fates comparable to those of the micromeres and macromeres of typically developing echinoids. Instead, all vegetal cells in the 16-cell embryo can contribute progeny to ectoderm and gut. Alterations have thus arisen in cleavage patterns and timing of cell lineage partitioning during the evolution of direct development in H. erythrogramma. PMID:2924998

  9. Multidrug efflux transporter activity in sea urchin embryos:Does localization provide a diffusive advantage?

    NASA Astrophysics Data System (ADS)

    Song, Xianfeng; Setayeshgar, Sima; Cole, Bryan; Hamdoun, Amro; Epel, David

    2008-03-01

    Experiments have shown upregulation of multidrug efflux transporter activity approximately 30 min after fertilization in the sea urchin embryo [1]. These ATP-hydrolyzing transporter proteins pump moderately hydrophobic molecules out of the cell and represent the cell's first line of defense againstexogenous toxins. It has also been shown that transporters are moved in vesicles along microfilaments and localized to tips of microvilli prior to activation. We have constructed a geometrically realistic model of the embryo, including microvilli, to explore the functional role of this localization in the efficient elimination of toxins from the standpoint of diffusion. We compute diffusion of toxins in extracellular, membrane and intracellular spaces coupled with transporter activity, using experimentally derived values for physical parameters. For transporters uniformly distributed along microvilli and tip-localized transporters we compare regions in parameter space where each distribution provides diffusive advantage, and comment on the physically expected conditions. [1] A. M. Hamdoun, G. N. Cherr, T. A. Roepke and D. Epel, Developmental Biology 276 452 (2004).

  10. Metallic nickel nanoparticles and their effect on the embryonic development of the sea urchin Paracentrotus lividus.

    PubMed

    Kanold, Julia Maxi; Wang, Jiabin; Brümmer, Franz; Šiller, Lidija

    2016-05-01

    The presence of nanoparticles in many industrial applications and daily products is making it nowadays crucial to assess their impact when exposed to the environment. Metallic nickel nanoparticles (Ni NPs) are of high industrial interest due to their ability to catalyze the reversible hydration of CO2 to carbonic acid at ambient conditions. We characterized metallic Ni NPs by XRD, HRTEM and EDS and determined the solubility of free nickel ions from 3 mg/L metallic Ni NPs in seawater by ICP-MS over 96 h, which was below 3%. Further, embryonic development of the sea urchin Paracentrotus lividus was investigated for 48 h in the presence of metallic Ni NPs (0.03 mg/L to 3 mg/L), but no lethal effects were observed. However, 3 mg/L metallic Ni NPs caused a size reduction similar to 1.2 mg/L NiCl2*6 H2O. The obtained results contribute to current studies on metallic Ni NPs and point to their consequences for the marine ecosystem. PMID:26849528

  11. ATP-binding cassette (ABC) transporter expression and localization in sea urchin development

    PubMed Central

    Shipp, Lauren E.; Hamdoun, Amro

    2012-01-01

    Background ATP-binding cassette (ABC) transporters are membrane proteins that regulate intracellular concentrations of myriad compounds and ions. There are >100 ABC transporter predictions in the Strongylocentrotus purpuratus genome, including 40 annotated ABCB, ABCC, and ABCG “multidrug efflux” transporters. Despite the importance of multidrug transporters for protection and signaling, their expression patterns have not been characterized in deuterostome embryos. Results Sea urchin embryos expressed 20 ABCB, ABCC, and ABCG transporter genes in the first 58 hours of development, from unfertilized egg to early prism. We quantified transcripts of ABCB1a, ABCB4a, ABCC1, ABCC5a, ABCC9a, and ABCG2b, and found that ABCB1a mRNA was 10–100 times more abundant than other transporter mRNAs. In situ hybridization showed ABCB1a was expressed ubiquitously in embryos, while ABCC5a was restricted to secondary mesenchyme cells and their precursors. Fluorescent protein fusions showed localization of ABCB1a on apical cell surfaces, and ABCC5a on basolateral surfaces. Conclusions Embryos utilize many ABC transporters with predicted functions in cell signaling, lysosomal and mitochondrial homeostasis, potassium channel regulation, pigmentation, and xenobiotic efflux. Detailed characterization of ABCB1a and ABCC5a revealed that they have different temporal and spatial gene expression profiles and protein localization patterns that correlate to their predicted functions in protection and development, respectively. PMID:22473856

  12. Antimitotic activity of the pyrimidinone derivative py-09 on sea urchin embryonic development.

    PubMed

    Macedo, Dalliane; Mendonça Júnior, Francisco Jaime Bezerra; de Moura, Ricardo Olimpio; Marques-Santos, Luis Fernando

    2016-03-01

    Chemotherapy is the main cancer treatment and consists of drug administration that interferes with several metabolic pathways, leading to tumor cell death. Antimitotic drugs have a relevant role in chemotherapy. This study aimed to investigate the effect of a pyrimidinone derivative (6-(p-Anisyl)-2-(p-chlorophenyl)-4-oxo-3,4-dihydropyrimidine-5-carbonitrile, Py-09) on sea urchin embryonic development model. The effects of the compound were analyzed on fertilization, embryonic development, mitochondrial membrane potential (ΔΨm), production of reactive oxygen species (ROS) and ABC transporter activity. Py-09 inhibited the fertilization and the embryonic development in a time and dose-dependent pattern, with the maximum effect at 50 μM (EC50=12.5 μM). Py-09 induced the loss of ΔΨm without altering ROS intracellular levels. Morphological changes were observed in the pattern of embryo cleavage (unequal cleavage) and at larval stages (fissures of spicules and pigment cell leakage). We also demonstrated that Py-09 is not an ABC transporter substrate and the derivative does not circumvent the MXR phenomenon. Our study reports--for the first time--the antimitotic activity of Py-09 and stimulates new research on the potential of Py-09 as a pharmacological tool for in vitro studies, as well as its use as a new anticancer drug. PMID:26616279

  13. Branching out: origins of the sea urchin larval skeleton in development and evolution

    PubMed Central

    McIntyre, Daniel C.; Lyons, Deirdre C.; Martik, Megan; McClay, David R.

    2014-01-01

    It is a challenge to understand how the information encoded in DNA is used to build a three dimensional structure. To explore how this works the assembly of a relatively simple skeleton has been examined at multiple control levels. The skeleton of the sea urchin embryo consists of a number of calcite rods produced by 64 skeletogenic cells. The ectoderm supplies spatial cues for patterning, essentially telling the skeletogenic cells where to position themselves and providing the factors for skeletal growth. Here we describe the information known about how this works. First the ectoderm must be patterned so that the signaling cues are released from precise positions. The skeletogenic cells respond by initiating skeletogenesis immediately beneath two regions (one on the right and the other on the left side). Growth of the skeletal rods requires additional signaling from defined ectodermal locations, and the skeletogenic cells respond to produce a membrane-bound template in which the calcite crystal grows. Important in this process are three signals, FGF, VEGF, and Wnt5. Each is necessary for explicit tasks in skeleton production. PMID:24549853

  14. Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos

    PubMed Central

    Krupke, Oliver A; Zysk, Ivona; Mellott, Dan O; Burke, Robert D

    2016-01-01

    The mechanisms that underlie directional cell migration are incompletely understood. Eph receptors usually guide migrations of cells by exclusion from regions expressing Ephrin. In sea urchin embryos, pigmented immunocytes are specified in vegetal epithelium, transition to mesenchyme, migrate, and re-enter ectoderm, distributing in dorsal ectoderm and ciliary band, but not ventral ectoderm. Immunocytes express Sp-Eph and Sp-Efn is expressed throughout dorsal and ciliary band ectoderm. Interfering with expression or function of Sp-Eph results in rounded immunocytes entering ectoderm but not adopting a dendritic form. Expressing Sp-Efn throughout embryos permits immunocyte insertion in ventral ectoderm. In mosaic embryos, immunocytes insert preferentially in ectoderm expressing Sp-Efn. We conclude that Sp-Eph signaling is necessary and sufficient for epithelial insertion. As well, we propose that immunocytes disperse when Sp-Eph enhances adhesion, causing haptotactic movement to regions of higher ligand abundance. This is a distinctive example of Eph/Ephrin signaling acting positively to pattern migrating cells. DOI: http://dx.doi.org/10.7554/eLife.16000.001 PMID:27474796

  15. Microgravity effects during fertilization, cell division, development, and calcium metabolism in sea urchins

    NASA Technical Reports Server (NTRS)

    Schatten, Heide

    1996-01-01

    The overall objectives of this project are to explore the role of microgravity during fertilization, early development, cytoskeletal organization, and skeletal calcium deposition in a model development system: the sea urchin eggs and embryos. While pursuing these objectives, we have also helped to develop, test, and fly the Aquatic Research Facility (ARF) system. Cells were fixed at preselected time points to preserve the structures and organelles of interest with regards to cell biology events during development. The protocols used for the analysis of the results had been developed during the earlier part of this research and were applied for post-flight analysis using light and (immuno)fluorescence microscopy, scanning electron microscopy, and transmission electron microscopy. The structures of interest are: microtubules during fertilization, cell division, and cilia movement; microfilaments during cell surface restructuring and cell division; centrosomes and centrioles during cell division, cell differentiation, and cilia formation and movement; membranes, Golgi, endoplasmic reticulum, mitochondria, and chromosomes at all stages of development; and calcium deposits during spicule formation in late-stage embryos. In addition to further explore aspects important or living in space, several aspects of this research are also aimed at understanding diseases that affect humans on Earth which may be accelerated in space.

  16. Ultraviolet radiation-specific DNA damage and embryonic viability in sea urchins from Kasitsna Bay, Alaska

    SciTech Connect

    Theodorakis, C.; Anderson, S.; Shugart, L.R.

    1995-12-31

    Ripe ova and sperm were obtained from Green Sea Urchins (Strongvlocentrotus drochbachiensis) collected from Kasitsna Bay, Alaska, and ova were fertilized in vitro. Embryos were immediately placed in plastic bags secured to floating racks deployed in the bay. The bags were suspended just below the surface of the water and at 1 and 2 meter depths for up to 120 hours. Bags were either left uncovered, covered with Mylar plastic (which blocks out UV-B but not UV-A radiations), or covered with dark plastic. The number of damaged DNA sites was determined by digesting the DNA with enzymes isolated from the bacterium Micrococcus luteus which cleave the DNA at damaged sites. It was found that DNA damage was present in a dose-dependent fashion with the amount of damage in embryos from the uncovered bags > Mylar covered bags > dark covered bags. No dimers were detected from embryos at 1 or 2 m. depths. Also, the number of damaged sites varied from day to day. Finally, the number of damaged sites was positively correlated with percent abnormal embryos in each bag. The results are discussed with relation to monitoring UV-B effects and ecological consequences of enhanced UV-B radiation.

  17. Toxicity of binary mixtures of oil fractions to sea urchin embryos.

    PubMed

    Rial, Diego; Vázquez, José A; Menduiña, Araceli; García, Ana M; González, M Pilar; Mirón, Jesús; Murado, Miguel A

    2013-12-15

    The assumption of additive toxicity for oil compounds is related to a narcotic mode of action. However, the joint toxicity of oil fractions has not been fully investigated. A fractionation of Maya crude oil into aliphatics, aromatics and polars was performed, fractions were dissolved in dimethyl sulfoxide (DMSO) and subsequently toxicity of single fractions and binary mixtures was assessed using the sea urchin embryo test. The descriptive ability of Concentration Addition (CA), Independent Action (IA) and modifications of both models for describing the joint toxicity of mixtures has also been evaluated. The hydrocarbon content extractable with dichloromethane of the fractions dissolved in DMSO was: 12.0 ± 1.8 mg mL(-1), 39.0 ± 0.5 mg mL(-1) and 20.5 ± 2.5 mg mL(-1) for aliphatics, aromatics and polars, respectively. The toxicity of the extracts in DMSO of the fractions as EC50 (μLL(-1)) was: aliphatics (165.8-242.3)

  18. Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos.

    PubMed

    Krupke, Oliver A; Zysk, Ivona; Mellott, Dan O; Burke, Robert D

    2016-01-01

    The mechanisms that underlie directional cell migration are incompletely understood. Eph receptors usually guide migrations of cells by exclusion from regions expressing Ephrin. In sea urchin embryos, pigmented immunocytes are specified in vegetal epithelium, transition to mesenchyme, migrate, and re-enter ectoderm, distributing in dorsal ectoderm and ciliary band, but not ventral ectoderm. Immunocytes express Sp-Eph and Sp-Efn is expressed throughout dorsal and ciliary band ectoderm. Interfering with expression or function of Sp-Eph results in rounded immunocytes entering ectoderm but not adopting a dendritic form. Expressing Sp-Efn throughout embryos permits immunocyte insertion in ventral ectoderm. In mosaic embryos, immunocytes insert preferentially in ectoderm expressing Sp-Efn. We conclude that Sp-Eph signaling is necessary and sufficient for epithelial insertion. As well, we propose that immunocytes disperse when Sp-Eph enhances adhesion, causing haptotactic movement to regions of higher ligand abundance. This is a distinctive example of Eph/Ephrin signaling acting positively to pattern migrating cells. PMID:27474796

  19. Intercalation of sea urchin proteins in calcite: Study of a crystalline composite material

    SciTech Connect

    Berman, A.; Addadi, L.; Leiserowitz, L.; Weiner, S. ); Kvick, A.; Nelson, M. )

    1990-11-02

    Sea urchin skeletal elements are composed of single crystals of calcite. Unlike their synthetic counterparts, these crystals do not have well-developed cleavage and are consequently much more resistant to fracture. This phenomenon is due in part to the presence of acidic glycoproteins occluded within the crystals. By means of x-ray diffraction with synchrotron radiation, it is shown that the presence of the protein in synthetic calcite only slightly decreases the coherence length but significantly increases the angular spread of perfect domains of the crystals. In biogenic calcite, the coherence length is 1/3 to 1/4 as much as that in synthetic calcite and the angular spread is 20 to 50 times as wide. It is proposed that the presence of macromolecules concentrated at mosaic boundaries that are oblique to cleavage planes is responsible for the change in fracture properties. These results may be important in the material sciences, because of the unusual nature of this material, namely, a composite based on the controlled intercalation of macromolecules inside single-crystal lattices. 20 refs., 3 figs.

  20. Effect of phenol on embryo development and expression of metallothionein in the sea urchin Hemicentrotus pulcherrimus

    NASA Astrophysics Data System (ADS)

    Hwang, Un-Ki; Lee, Ju-Wook; Ryu, Hyang-Mi; Kang, Ju-Chan; Kang, Han Seung

    2015-12-01

    In this study, we identified and cloned the sea urchin Hemicentrotus pulcherrimus MT (Hp-MT) mRNA. We examined the gameto- and embryo-toxic effects and the expression of Hp-MT mRNA at various concentrations of phenol in H. pulcherrimus. We found that the normal embryogenesis rate was significantly inhibited when H. pulcherrimus was exposed to phenol (EC50 = 1565.86 ppb, 95% Cl = 1183.47-2037.84 ppb). The no observed effective concentration (NOEC) and the lowest observed effective concentration (LOEC) of the normal embryogenesis rate were < 10 ppb and 100 ppb, respectively. Hp-MT cDNA is 651 bp in length and encodes a protein of 64 amino acids. We found that the expression of Hp-MT mRNA was significantly increased with phenol treatment in a concentrationdependent manner. These results suggest that phenol at greater than 100 ppb has a toxic effect during the early embryonic stages of H. pulcherrimus, and MT mRNA may be used as a biomarker for risk assessment of phenol contamination.

  1. Effects of warm acclimation on physiology and gonad development in the sea urchin Evechinus chloroticus.

    PubMed

    Delorme, Natalí J; Sewell, Mary A

    2016-08-01

    The physiology of the New Zealand sea urchin Evechinus chloroticus was evaluated through feeding, respiration, growth and gonad growth in adult animals acclimated for 90days at 18°C (annual mean temperature) and 24°C (ambient summer temperature (21°C) +3°C). Measured parameters with representative rates of assimilation efficiency were used to calculate scope for growth (SfG) for each treatment. All physiological parameters were negatively affected at 24°C, showing a decrease in feeding rate which coincided with negative growth and gonad development at the end of the acclimation period, and a decrease in respiration rate suggesting metabolic depression. Histology of gonad samples after the acclimation period also showed no gametic material in animals acclimated at 24°C. All animals acclimated at 24°C had negative growth, differing from the calculated SfG which indicated that the animals had sufficient energy for production. The results suggest that calculated SfG in echinoderms should be used together with actual measurements of growth in individuals as, by itself, SfG may underestimate the actual effect of ocean warming when animals are exposed to stressful conditions. Overall, considering the total loss of reproductive output observed in E. chloroticus at higher temperatures, an increase in seawater temperature could dramatically influence the persistence of northern populations of this species, leading to flow-on effects in the subtidal ecosystem. PMID:27043875

  2. Temporal sequence and spatial distribution of early events of fertilization in single sea urchin eggs

    SciTech Connect

    Eisen, A.; Kiehart, D.P.; Wieland, S.J.; Reynolds, G.T.

    1984-11-01

    Measurements and observations of five early events of fertilization, singly and in pairs, from single sea urchin eggs have revealed the precise temporal sequence and spatial distribution of these events. In the Arbacia punctulata egg, a wave of surface contraction occurs coincident with membrane depolarization (t = 0). These two earliest events are followed by the onset of a rapid, propagated increase in cytoplasmic-free calcium at approx.23 s as measured by calcium-aequorin luminescence. The luminescence reaches its peak value by 40 s after the membrane depolarization. The luminescence remains uniformly elevated for some time before its decay over several minutes. The onset of an increase in the pyridin nucleotide (NAD(P)H) fluorescence follows the membrane depolarization at approx.51 s. The fertilization membrane begins its elevation in a wave-like fashion coincidentally with the increase in NAD(P)H fluorescence. Similar results are observed in the Lytechinus variegatus egg. The results suggest that while the increase in cytoplasmic-free calcium may be important for many changes occurring in the egg, the elevated-free calcium is not directly responsible for the propagated wave of cortical granule exocytosis. 32 references, 10 figures.

  3. Cell surface of sea urchin micromeres and primary mesenchyme. [Arbacia punctulata; Strongylocentrotus drobachiensis; Strongylocentrotus purpuratus

    SciTech Connect

    DeSimone, D.W.

    1985-01-01

    The cell surface and extracellular matrix (ECM) of the sea urchin embryo were studied during the early morphogenetic events involved in the differentiation of the micromere cell lineage. Sixteen-cell and early cleavage stage blastomeres were isolated and the protein composition of their cell surfaces examined by /sup 125/I-labelling followed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Micromere-specific cell surface proteins are reported for Arbacia punctulata, Strongylocentrotus droebachiensis, and Strongylocentrotus purpuratus. Cell surface glycoproteins were characterized on the basis of lectin binding specificity with a novel lectin affinity transfer technique. Using this procedure, cell-type specific surface proteins, which are also lectin-binding specific, can be detected. In addition, fluorescein conjugated lectins were microinjected into the blastocoels of living S. drobachiensis and Lytechinus pictus embryos and the patterns of lectin bindings observed by fluorescence microscopy. The evidence presented in this thesis suggests that the differentiation of the primary mesenchyme cells is correlated with changes in the molecular composition of the cell-surface and the ECM.

  4. Genotoxic and developmental effects in sea urchins are sensitive indicators of effects of genotoxic chemicals

    SciTech Connect

    Anderson, S.L. . Energy and Environment Division); Hose, J.E. . Dept. of Biology); Knezovich, J.P. . Health and Ecological Assessment Division)

    1994-07-01

    Purple sea urchin (Strongylocentrotus purpuratus) gametes and embryos were exposed to three known mutagenic chemicals (phenol, benzidine,and pentachlorophenol) over concentration ranges bracketing the effect levels for fertilization success. Normal development and cytogenetic effects (anaphase aberrations) were assessed after the cultures were allowed to develop for 48 h. Using radiolabeled chemicals, the authors also characterized concentrations in the test water as well as doses in the embryos following 2- and 48-h exposures. The authors observed dose responses for all chemicals and all responses, except for phenol, which showed no significant effect on development. Fertilization success was never the most sensitive end point. anaphase aberrations were the most sensitive response for phenol, with an LOEC of 2.5 mg/L exposure concentration. Anaphase aberrations and development were equivalent in sensitivity for benzidine within the tested dose range, and an LOEC of <0.1 mg/L was observed. Development was the most sensitive reasons for pentachlorophenol (LOEC 1 mg/L). the LOEC values for this study were generally lower than comparable data for aquatic life or human health protection. The authors conclude that genotoxicity and development evaluations should be included in environmental management applications and that tests developed primarily for human health protection do not reliably predict the effects of toxic substances on aquatic life.

  5. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos.

    PubMed

    Ruocco, Nadia; Costantini, Maria; Santella, Luigia

    2016-01-01

    The diffuse use of lithium in a number of industrial processes has produced a significant contamination of groundwater and surface water with it. The increased use of lithium has generated only scarce studies on its concentrations in ambient waters and on its effects on aquatic organisms. Only few contributions have focused on the toxicity of lithium in marine organisms (such as marine animals, algae and vegetables), showing that the toxic effect depends on the animal species. In the present study we describe the morphological and the molecular effects of lithium chloride (LiCl), using the sea urchin Paracentrotus lividus as a model organism. We show that LiCl, if added to the eggs before fertilization, induces malformations in the embryos in a dose-dependent manner. We have also followed by RT qPCR the expression levels of thirty seven genes (belonging to different classes of functional processes, such as stress, development, differentiation, skeletogenesis and detoxifications) to identify the molecular targets of LiCl. This study opens new perspectives for the understanding of the mechanism of action of lithium on marine organisms. The findings may also have relevance outside the world of marine organisms since lithium is widely prescribed for the treatment of human bipolar disorders. PMID:27562248

  6. Deployment of a retinal determination gene network drives directed cell migration in the sea urchin embryo

    PubMed Central

    Martik, Megan L; McClay, David R

    2015-01-01

    Gene regulatory networks (GRNs) provide a systems-level orchestration of an organism's genome encoded anatomy. As biological networks are revealed, they continue to answer many questions including knowledge of how GRNs control morphogenetic movements and how GRNs evolve. The migration of the small micromeres to the coelomic pouches in the sea urchin embryo provides an exceptional model for understanding the genomic regulatory control of morphogenesis. An assay using the robust homing potential of these cells reveals a ‘coherent feed-forward’ transcriptional subcircuit composed of Pax6, Six3, Six1/2, Eya, and Dach1 that is responsible for the directed homing mechanism of these multipotent progenitors. The linkages of that circuit are strikingly similar to a circuit involved in retinal specification in Drosophila suggesting that systems-level tasks can be highly conserved even though the tasks drive unrelated processes in different animals. DOI: http://dx.doi.org/10.7554/eLife.08827.001 PMID:26402456

  7. Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis.

    PubMed

    Tu, Qiang; Cameron, R Andrew; Worley, Kim C; Gibbs, Richard A; Davidson, Eric H

    2012-10-01

    A comprehensive transcriptome analysis has been performed on protein-coding RNAs of Strongylocentrotus purpuratus, including 10 different embryonic stages, six feeding larval and metamorphosed juvenile stages, and six adult tissues. In this study, we pooled the transcriptomes from all of these sources and focused on the insights they provide for gene structure in the genome of this recently sequenced model system. The genome had initially been annotated by use of computational gene model prediction algorithms. A large fraction of these predicted genes were recovered in the transcriptome when the reads were mapped to the genome and appropriately filtered and analyzed. However, in a manually curated subset, we discovered that more than half the computational gene model predictions were imperfect, containing errors such as missing exons, prediction of nonexistent exons, erroneous intron/exon boundaries, fusion of adjacent genes, and prediction of multiple genes from single genes. The transcriptome data have been used to provide a systematic upgrade of the gene model predictions throughout the genome, very greatly improving the research usability of the genomic sequence. We have constructed new public databases that incorporate information from the transcriptome analyses. The transcript-based gene model data were used to define average structural parameters for S. purpuratus protein-coding genes. In addition, we constructed a custom sea urchin gene ontology, and assigned about 7000 different annotated transcripts to 24 functional classes. Strong correlations became evident between given functional ontology classes and structural properties, including gene size, exon number, and exon and intron size. PMID:22709795

  8. Stabilization of tubulin mRNA by inhibition of protein synthesis in sea urchin embryos.

    PubMed Central

    Gong, Z Y; Brandhorst, B P

    1988-01-01

    An increased level of unpolymerized tubulin caused by depolymerization of microtubules in sea urchin larvae resulted in a rapid loss of tubulin mRNA, which was prevented by nearly complete inhibition of protein synthesis. Results of an RNA run-on assay indicated that inhibition of protein synthesis does not alter tubulin gene transcription. Analysis of the decay of tubulin mRNA in embryos in which RNA synthesis was inhibited by actinomycin D indicated that inhibition of protein synthesis prevents the destabilization of tubulin mRNA. The effect was similar whether mRNA was maintained on polysomes in the presence of emetine or anisomycin or displaced from the polysomes in the presence of puromycin or pactamycin; thus, the stabilization of tubulin mRNA is not dependent on the state of the polysomes after inhibition of protein synthesis. Even after tubulin mRNA declined to a low level after depolymerization of microtubules, it could be rescued by treatment of embryos with inhibitors of protein synthesis. Tubulin mRNA could be induced to accumulate prematurely in gastrulae but not in plutei if protein synthesis was inhibited, an observation that is indicative of the importance of the autogenous regulation of tubulin mRNA stability during embryogenesis. Possible explanations for the role of protein synthesis in the control of mRNA stability are discussed. Images PMID:3211150

  9. Ovothiol Isolated from Sea Urchin Oocytes Induces Autophagy in the Hep-G2 Cell Line

    PubMed Central

    Russo, Gian Luigi; Russo, Maria; Castellano, Immacolata; Napolitano, Alessandra; Palumbo, Anna

    2014-01-01

    Ovothiols are histidine-derived thiols isolated from sea urchin eggs, where they play a key role in the protection of cells toward the oxidative burst associated with fertilization by controlling the cellular redox balance and recycling oxidized glutathione. In this study, we show that treatment of a human liver carcinoma cell line, Hep-G2, with ovothiol A, isolated from Paracentrotus lividus oocytes, results in a decrease of cell proliferation in a dose-dependent manner. The activation of an autophagic process is revealed by phase contrast and fluorescence microscopy, together with the expression of the specific autophagic molecular markers, LC3 II and Beclin-1. The effect of ovothiol is not due to its antioxidant capacity or to hydrogen peroxide generation. The concentration of ovothiol A in the culture media, as monitored by HPLC analysis, decreased by about 24% within 30 min from treatment. The proliferation of normal human embryonic lung cells is not affected by ovothiol A. These results hint at ovothiol as a promising bioactive molecule from marine organisms able to inhibit cell proliferation in cancer cells. PMID:25003791

  10. Effects of Oscillatory Flow on Fertilization in the Green Sea Urchin Strongylocentrotus droebachiensis

    PubMed Central

    Kregting, Louise T.; Bass, Anna L.; Guadayol, Òscar; Yund, Philip O.; Thomas, Florence I. M.

    2013-01-01

    Broadcast spawning invertebrates that live in shallow, high-energy coastal habitats are subjected to oscillatory water motion that creates unsteady flow fields above the surface of animals. The frequency of the oscillatory fluctuations is driven by the wave period, which will influence the stability of local flow structures and may affect fertilization processes. Using an oscillatory water tunnel, we quantified the percentage of eggs fertilized on or near spawning green sea urchins, Strongylocentrotus droebachiensis. Eggs were sampled in the water column, wake eddy, substratum and aboral surface under a range of different periods (T = 4.5 – 12.7 s) and velocities of oscillatory flow. The root-mean-square wave velocity (rms(uw)) was a good predictor of fertilization in oscillatory flow, although the root-mean-square of total velocity (rms(u)), which incorporates all the components of flow (current, wave and turbulence), also provided significant predictions. The percentage of eggs fertilized varied between 50 – 85% at low flows (rms(uw) <0.02 m s−1), depending on the location sampled, but declined to below 10% for most locations at higher rms(uw). The water column was an important location for fertilization with a relative contribution greater than that of the aboral surface, especially at medium and high rms(uw) categories. We conclude that gametes can be successfully fertilized on or near the parent under a range of oscillatory flow conditions. PMID:24098766

  11. Digitized precision measurements of the movements of sea urchin sperm flagella.

    PubMed Central

    Rikmenspoel, R; Isles, C A

    1985-01-01

    High speed cinemicrographs were made of sea urchin sperm at temperatures varying from 22 to 6 degrees C. Apparatus, combining a television camera and a video digitizer, was constructed to scan individual flagellar images and to digitize the flagellar waveforms. With appropriate smoothing and averaging procedures, the rough data were condensed by a microcomputer into the coordinates of 20 points along a flagellum, spaced 2 microns apart. The curvature of the flagellum at these points was also computed. The coordinates of the flagellar positions were obtained to an accuracy of approximately +/- 0.1 micron, flagellar curvature to an accuracy of approximately +/- 50 cm-1. At all temperatures the amplitude of the flagella was found to vary with time in a purely sinusoidal fashion to within +/- 2%. The local curvature of the flagella had basically a purely sinusoidal time course to within +/- 50 cm-1, but a varying amount of asymmetry was present in the distal and the proximal ends of the flagella. This asymmetry in the curvature was related to the radius of the circular path of the sperm. The flagellar waveforms can probably be summarized in simple algebraic functions. Images FIGURE 1 FIGURE 4 FIGURE 18 PMID:3978210

  12. Features of Red Sea Water Masses

    NASA Astrophysics Data System (ADS)

    Kartadikaria, Aditya; Hoteit, Ibrahim

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ < 26.0. These types of water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  13. Do hatchery-reared sea urchins pose a threat to genetic diversity in wild populations?

    PubMed

    Segovia-Viadero, M; Serrão, E A; Canteras-Jordana, J C; Gonzalez-Wangüemert, M

    2016-04-01

    In salmonids, the release of hatchery-reared fish has been shown to cause irreversible genetic impacts on wild populations. However, although responsible practices for producing and releasing genetically diverse, hatchery-reared juveniles have been published widely, they are rarely implemented. Here, we investigated genetic differences between wild and early-generation hatchery-reared populations of the purple sea urchin Paracentrotus lividus (a commercially important species in Europe) to assess whether hatcheries were able to maintain natural levels of genetic diversity. To test the hypothesis that hatchery rearing would cause bottleneck effects (that is, a substantial reduction in genetic diversity and differentiation from wild populations), we compared the levels and patterns of genetic variation between two hatcheries and four nearby wild populations, using samples from both Spain and Ireland. We found that hatchery-reared populations were less diverse and had diverged significantly from the wild populations, with a very small effective population size and a high degree of relatedness between individuals. These results raise a number of concerns about the genetic impacts of their release into wild populations, particularly when such a degree of differentiation can occur in a single generation of hatchery rearing. Consequently, we suggest that caution should be taken when using hatchery-reared individuals to augment fisheries, even for marine species with high dispersal capacity, and we provide some recommendations to improve hatchery rearing and release practices. Our results further highlight the need to consider the genetic risks of releasing hatchery-reared juveniles into the wild during the establishment of restocking, stock enhancement and sea ranching programs. PMID:26758187

  14. DNA variation and symbiotic associations in phenotypically diverse sea urchin Strongylocentrotus intermedius

    PubMed Central

    Balakirev, Evgeniy S.; Pavlyuchkov, Vladimir A.; Ayala, Francisco J.

    2008-01-01

    Strongylocentrotus intermedius (A. Agassiz, 1863) is an economically important sea urchin inhabiting the northwest Pacific region of Asia. The northern Primorye (Sea of Japan) populations of S. intermedius consist of two sympatric morphological forms, “usual” (U) and “gray” (G). The two forms are significantly different in morphology and preferred bathymetric distribution, the G form prevailing in deeper-water settlements. We have analyzed the genetic composition of the S. intermedius forms using the nucleotide sequences of the mitochondrial gene encoding the cytochrome c oxidase subunit I and the nuclear gene encoding bindin to evaluate the possibility of cryptic species within S. intermedius. We have examined the presence of symbiont microorganisms by means of 16S rRNA sequences. The nucleotide sequence divergence between the morphological forms is low: 0.74% and 0.70% for cytochrome c oxidase subunit I and nuclear gene encoding bindin, respectively, which is significantly below average intrageneric sequence divergence among Strongylocentrotus species. We thus have found no genetic evidence of cryptic species within S. intermedius. Phylogenetic analysis shows that the bacteria symbionts of S. intermedius belong to the phylum Bacteroidetes, but the U and G forms predominantly harbor highly divergent bacterial lineages belonging to two different taxonomic classes, Flavobacteria and Sphingobacteria. We propose that the U and G forms of S. intermedius represent distinct ecomorphological adaptations to contrasting shallow- and deep-water marine environments and might be considered incipient species. We also propose that the symbiotic bacteria likely play an important role in the evolution of morphological divergence of S. intermedius. PMID:18852450

  15. Physiological effects of environmental acidification in the deep-sea urchin Strongylocentrotus fragilis

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Lovera, C.; Whaling, P. J.; Buck, K. R.; Pane, E. F.; Barry, J. P.

    2014-03-01

    Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ). Deep-sea animals are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of elevated pCO2 and variable O2 on the deep-sea urchin Strongylocentrotus fragilis, a species whose range of 200-1200 m depth includes the OMZ and spans a pCO2 range of approx. 600-1200 μatm (approx. pH 7.6 to 7.8). Individuals were evaluated during two exposure experiments (1-month and 4 month) at control and three levels of elevated pCO2 at in situ O2 levels of approx. 10% air saturation. A treatment of control pCO2 at 100% air saturation was also included in experiment two. During the first experiment, perivisceral coelomic fluid (PCF) acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by elevated pCO2, due in part to low non-bicarbonate PCF buffering capacity. During the second experiment, individuals were separated into fed and fasted experimental groups, and longer-term effects of elevated pCO2 and variable O2 on righting time, feeding, growth, and gonadosomatic index (GSI) were investigated for both groups. Results suggest that the acidosis found during experiment one does not directly correlate with adverse effects during exposure to realistic future pCO2 levels.

  16. Bottom Pressure Variability in the Red Sea

    NASA Astrophysics Data System (ADS)

    Limeburner, R.; Abualnaja, Y.; Beardsley, R.

    2012-04-01

    We deployed an array of three bottom pressure/temperature/conductivity (PTC) instruments at Jeddah, Thuwal and Rabigh along the Saudi Arabian coast of the eastern Red Sea for a period of 3 years. This PTC array accurately measured the regional tidal variability of the bottom pressure field and characterized the low frequency along-shore pressure, temperature and salinity gradients and their variability. Surface sea level/height was calculated from the bottom pressure measurements using the hydrostatic equation. On time scales of order 1 day the most energetic component of sea level variability was the semidiurnal and diurnal tides dominated by the M2, N2, K1 and O1 tidal constituents. On time scales of order 10 days the sea level variability was wind driven with setup and set down up to 40 cm due to the local wind stress. On yearly time scales the sea level varied approximately 50 cm and was highest in winter (January-February) and lowest in summer (July-August). Barometric pressure also had an annual cycle of approximately 10 mb and was highest in January thus attenuating the amplitude of the annual sea level variability. Higher sea level in winter months may be due to a convergence in the large-scale Red Sea wind stress. The amplitude of the principal tidal and subtidal sea level variability was coherent at the three sites, but the direction of phase propagation could not be resolved with confidence.

  17. Macrofaunal involvement in the sublittoral decay of kelp debris: The sea urchin Psammechinus miliaris (Gmelin) (Echinodermata: Echinoidea)

    NASA Astrophysics Data System (ADS)

    Bedford, A. P.; Moore, P. G.

    1985-01-01

    Psammechinus miliaris occurs in the Clyde Sea area in large numbers (<18 individuals per 100 g -1 weed dry wt) on sublittoral beds of detached Laminaria saccharina. Its rôle in weed decomposition has been examined by comparing its responses (behavioural choice, growth rate, absorption efficiencies of both carbon and protein, gut retention times and rate of faecal output) to fresh and rotting weed. Younger urchins grew faster than older individuals on a diet of rotting weed but not on fresh weed. Large seasonal variation existed, however, with fast growth occurring in June-August and little, or no, growth in December-February, irrespective of diet. Starved controls did not grow. Correcting for seasonality, rotting kelp still promoted faster growth of young urchins than did fresh weed. Larger (older) individuals showed no difference. Urchins fed fresh weed had significantly longer gut retention times. Protein absorption efficiency was higher on fresh than rotting weed, varying with weed protein content and size of urchin. Very young individuals can only digest high protein weed efficiently, eg. material derived from near the frond meristem. Organic carbon content of rotting weed was significantly lower than fresh weed. Carbon absorption efficiencies were significantly higher on fresh weed which related to organic carbon content. Standard-sized urchins fed rotting weed produced larger dry weights of faeces per day, reflecting increased ingestion rate. In closed-system choice experiments urchins preferred rotting weed kinetically. Size-frequency analysis of field populations suggested that weed beds are principally colonized by larval settlement from the plankton. Mature Psammechinus have evolved different 'strategies' for exploiting fresh and rotting weed. Fresh weed is relatively difficult to digest and long gut retention times allow high protein absorption efficiencies to be attained. Rotting weed has microbial protein in quantities and a lower organic carbon

  18. Habitat traits and patterns of abundance of the purple sea urchin, Paracentrotus lividus (Lamarck, 1816), at multiple scales along the north Portuguese coast

    NASA Astrophysics Data System (ADS)

    Domínguez, Rula; Domínguez Godino, Jorge; Freitas, Cristiano; Machado, Inês; Bertocci, Iacopo

    2015-03-01

    Spatial and temporal patterns of abundance and distribution of sea urchins (Paracentrotus lividus) from intertidal rockpools of the north Portuguese coast were examined in relation to physical (surface, altitude, depth, topographic complexity and exposure) and biological (substrate cover by dominant organisms) habitat traits. The methodology was based on a multi-factorial design where the total number and the abundance of urchins in each of six size classes were sampled over a range of spatial scales, from 10s of cm to kms, and a temporal scale of five months. The results highlighted three main features of the studied system: (1) the largest proportion of variability of sea urchins occurred at the smallest scale examined; (2) urchins from different size classes showed different patterns of abundance in relation to habitat traits; (3) variables normally invoked as potential drivers of distribution of urchins at a range of scales, such as hydrodynamics and shore height, were relatively less important than other abiotic (i.e. pool area, pool mean depth calculated over five replicate measures and sand cover) and biological (i.e. space occupancy by the reef-forming polychaete Sabellaria alveolata and mussels vs. availability of bare rock) variables to provide a considerable contribution to the variability of sea urchins. Intertidal populations of sea urchins are abundant on many rocky shores, where they are socially and economically important as food resource and ecologically key as habitat modelers. This study provides new clues on relatively unstudied populations, with relevant implications for possible management decisions, including the implementation of protection schemes able to preserve the main recruitment, settlement and development areas of P. lividus.

  19. Correlation analyses of covering and righting behaviors to fitness related traits of the sea urchin Glyptocidaris crenularis in diff erent environmental conditions

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Zhang, Lisheng; Zhao, Chong; Feng, Wenping; Sun, Ping; Chang, Yaqing

    2016-03-01

    Complex marine benthic environments shape a number of ecologically important behaviors in sea urchins, including covering and righting behaviors. The present study correlated covering and righting behaviors to a series of fitness-related traits in sea urchins. Righting response time of Glyptocidaris crenularis was significantly positively correlated with body size, but significantly negatively correlated with food consumption. Covering behavior was not significantly correlated with test diameter, test height or body weight, but covering response time was negatively correlated with body weight. A significantly negative correlation was found between righting response time and covering response time. Glyptocidaris crenularis showed a significantly positive correlation in covering response time with and without exposure to poured sand, but no significance in covering ability (number of shells used to cover). The present study provides new insight into internal mechanisms and evolutionary drives of covering and righting behaviors of sea urchins.

  20. Identification and characterization of the poly(A)-binding proteins from the sea urchin: a quantitative analysis.

    PubMed Central

    Drawbridge, J; Grainger, J L; Winkler, M M

    1990-01-01

    Poly(A)-binding proteins (PABPs) are the best characterized messenger RNA-binding proteins of eucaryotic cells and have been identified in diverse organisms such as mammals and yeasts. The in vitro poly(A)-binding properties of these proteins have been studied intensively; however, little is known about their function in cells. In this report, we show that sea urchin eggs have two molecular weight forms of PABP (molecular weights of 66,000 and 80,000). Each of these has at least five posttranslationally modified forms. Both sea urchin PABPs are found in approximately 1:1 ratios in both cytoplasmic and nuclear fractions of embryonic cells. Quantification in eggs and embryos revealed that sea urchin PABPs are surprisingly abundant, composing about 0.6% of total cellular protein. This is 50 times more than required to bind all the poly(A) in the egg based on the binding stoichiometry of 1 PABP per 27 adenosine residues. We found that density gradient centrifugation strips PABP from poly(A) and therefore underestimates the amount of PABP complexed to poly(A)+ RNA in cell homogenates. However, large-pore gel filtration chromatography could be used to separate intact poly(A)-PABP complexes from free PABP. Using the gel filtration method, we found that the threefold increase in poly(A) content of the egg after fertilization is paralleled by an approximate fivefold increase in the amount of bound PABP. Furthermore, both translated and nontranslated poly(A)+ RNAs appear to be complexed to PABP. As expected from the observation that PABPs are so abundant, greater than 95% of the PABP of the cell is uncomplexed protein. Images PMID:2196442

  1. Extracellular Ca2+ influx is crucial for the early embryonic development of the sea urchin Echinometra lucunter.

    PubMed

    de Araújo Leite, Jocelmo Cássio; Marques-Santos, Luis Fernando

    2012-03-01

    The involvement of Ca(2+) in the activation of eggs and in the first steps of the embryonic development of several species is a well-known phenomenon. An association between Ca(2+) sources with the fate of the blastopore during embryonic development has been investigated by several authors. Ca(2+) influx mediated by voltage-gated channels and Ca(2+) mobilization from intracellular stores are the major sources of Ca(2+) to egg activation and succeeding cell divisions. Studies on sea urchins embryonic development show that intracellular Ca(2+) stores are responsible for egg activation and early embryogenesis. In the present work we investigated the involvement of extracellular Ca(2+) in the first stages of the embryonic development of the sea urchin Echinometra lucunter. Divalent cation chelators EDTA and EGTA strongly blocked the early embryonic development. Adding to this, we demonstrated the involvement of voltage-gated Ca(2+) channels in E. lucunter embryogenesis since Ca(2+) channel blockers powerfully inhibited the early embryonic development. Our data also revealed that Ca(2+) influx is crucial for embryonic development during only the first 40 min postfertilization. However, intracellular Ca(2+) remains mandatory to embryonic development 40 min postfertilization, seen that both the intracellular Ca(2+) chelator BAPTA-AM and calmodulin antagonists trifluoperazine and chlorpromazine inhibited the first stages of development when added to embryos culture 50 min postfertilization. Our work highlights the crucial role of extracellular Ca(2+) influx through voltage-gated Ca(2+) channels for the early embryonic development of the sea urchin E. lucunter and characterizes an exception in the phylum Echinodermata. PMID:22532474

  2. An abundance of Epsilonproteobacteria revealed in the gut microbiome of the laboratory cultured sea urchin, Lytechinus variegatus.

    PubMed

    Hakim, Joseph A; Koo, Hyunmin; Dennis, Lacey N; Kumar, Ranjit; Ptacek, Travis; Morrow, Casey D; Lefkowitz, Elliot J; Powell, Mickie L; Bej, Asim K; Watts, Stephen A

    2015-01-01

    In this study, we have examined the bacterial community composition of the laboratory cultured sea urchin Lytechinus variegatus gut microbiome and its culture environment using NextGen amplicon sequencing of the V4 segment of the 16S rRNA gene, and downstream bioinformatics tools. Overall, the gut and tank water was dominated by Proteobacteria, whereas the feed consisted of a co-occurrence of Proteobacteria and Firmicutes at a high abundance. The gut tissue represented Epsilonproteobacteria as dominant, with order Campylobacterales at the highest relative abundance (>95%). However, the pharynx tissue was dominated by class Alphaproteobacteria. The gut digesta and egested fecal pellets had a high abundance of class Gammaproteobacteria, from which Vibrio was found to be the primary genus, and Epsilonproteobacteria, with genus Arcobacter occurring at a moderate level. At the class level, the tank water was dominated by Gammaproteobacteria, and the feed by Alphaproteobacteria. Multi-Dimensional Scaling analysis showed that the microbial community of the gut tissue clustered together, as did the pharynx tissue to the feed. The gut digesta and egested fecal pellets showed a similarity relationship to the tank water. Further analysis of Campylobacterales at a lower taxonomic level using the oligotyping method revealed 37 unique types across the 10 samples, where Oligotype 1 was primarily represented in the gut tissue. BLAST analysis identified Oligotype 1 to be Arcobacter sp., Sulfuricurvum sp., and Arcobacter bivalviorum at an identity level >90%. This study showed that although distinct microbial communities are evident across multiple components of the sea urchin gut ecosystem, there is a noticeable correlation between the overall microbial communities of the gut with the sea urchin L. variegatus culture environment. PMID:26528245

  3. Mature maternal mRNAs are longer than zygotic ones and have complex degradation kinetics in sea urchin.

    PubMed

    Gildor, Tsvia; Malik, Assaf; Sher, Noa; Ben-Tabou de-Leon, Smadar

    2016-06-01

    Early in embryogenesis, maternally deposited transcripts are degraded and new zygotic transcripts are generated during the maternal to zygotic transition. Recent works have shown that early zygotic transcripts are short compared to maternal transcripts, in zebrafish and Drosophila species. The reduced zygotic transcript length was attributed to the short cell cycle in these organisms that prevents the transcription of long primary transcripts (intron delay). Here we study the length of maternal mRNAs and their degradation kinetics in two sea urchin species to further the understanding of maternal gene usage and processing. Early zygotic primary transcripts and mRNAs are shorter than maternal ones in the sea urchin, Strongylocentrotus purpuratus. Yet, while primary transcripts length increases when cell cycle lengthens, typical for intron delay, the relatively short length of zygotic mRNAs is consistent. The enhanced mRNA length is due to significantly longer maternal open reading frames and 3'UTRs compared to the zygotic lengths, a ratio that does not change with developmental time. This implies unique usage of both coding sequences and regulatory information in the maternal stage compared to the zygotic stages. We extracted the half-lifetimes due to maternal and zygotic degradation mechanisms from high-density time course of a set of maternal mRNAs in Paracentrotus lividus. The degradation rates due to maternal and zygotic degradation mechanisms are not correlated, indicating that these mechanisms are independent and relay on different regulatory information. Our studies illuminate specific structural and kinetic properties of sea urchin maternal mRNAs that might be broadly shared by other organisms. PMID:27085752

  4. An abundance of Epsilonproteobacteria revealed in the gut microbiome of the laboratory cultured sea urchin, Lytechinus variegatus

    PubMed Central

    Hakim, Joseph A.; Koo, Hyunmin; Dennis, Lacey N.; Kumar, Ranjit; Ptacek, Travis; Morrow, Casey D.; Lefkowitz, Elliot J.; Powell, Mickie L.; Bej, Asim K.; Watts, Stephen A.

    2015-01-01

    In this study, we have examined the bacterial community composition of the laboratory cultured sea urchin Lytechinus variegatus gut microbiome and its culture environment using NextGen amplicon sequencing of the V4 segment of the 16S rRNA gene, and downstream bioinformatics tools. Overall, the gut and tank water was dominated by Proteobacteria, whereas the feed consisted of a co-occurrence of Proteobacteria and Firmicutes at a high abundance. The gut tissue represented Epsilonproteobacteria as dominant, with order Campylobacterales at the highest relative abundance (>95%). However, the pharynx tissue was dominated by class Alphaproteobacteria. The gut digesta and egested fecal pellets had a high abundance of class Gammaproteobacteria, from which Vibrio was found to be the primary genus, and Epsilonproteobacteria, with genus Arcobacter occurring at a moderate level. At the class level, the tank water was dominated by Gammaproteobacteria, and the feed by Alphaproteobacteria. Multi-Dimensional Scaling analysis showed that the microbial community of the gut tissue clustered together, as did the pharynx tissue to the feed. The gut digesta and egested fecal pellets showed a similarity relationship to the tank water. Further analysis of Campylobacterales at a lower taxonomic level using the oligotyping method revealed 37 unique types across the 10 samples, where Oligotype 1 was primarily represented in the gut tissue. BLAST analysis identified Oligotype 1 to be Arcobacter sp., Sulfuricurvum sp., and Arcobacter bivalviorum at an identity level >90%. This study showed that although distinct microbial communities are evident across multiple components of the sea urchin gut ecosystem, there is a noticeable correlation between the overall microbial communities of the gut with the sea urchin L. variegatus culture environment. PMID:26528245

  5. POPULATION PHARMACOKINETICS OF ENROFLOXACIN AND ITS METABOLITE CIPROFLOXACIN IN THE GREEN SEA URCHIN (STRONGYLOCENTROTUS DROEBACHIENSIS) FOLLOWING INTRACOELOMIC AND IMMERSION ADMINISTRATION.

    PubMed

    Phillips, Brianne E; Harms, Craig A; Lewbart, Gregory A; Lahner, Lesanna L; Haulena, Martin; Rosenberg, Justin F; Papich, Mark G

    2016-03-01

    Sea urchin mass mortality events have been attributed to both infectious and noninfectious etiologies. Bacteria, including Vibrio spp. and Pseudoalteromonas spp., have been isolated during specific mortality events. Aquarium collection sea urchins are also subject to bacterial infections and could benefit from antimicrobial treatment, but pharmacokinetic studies have been lacking for this invertebrate group until recently. This study evaluated the pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin in the green sea urchin (Strongylocentrotus droebachiensis) after intracoelomic injection and medicated bath immersion administration. The utility of a population pharmacokinetic method using nonlinear mixed effects modeling (NLME) was also evaluated. Thirty sea urchins were assigned to either the injection or immersion group. Twelve study animals and three untreated controls were utilized for each administration method: enrofloxacin 10 mg/kg intracoelomic injection or a 6-hr enrofloxacin 10 mg/L immersion. Each animal was sampled four times from 0 to 120 hr. Water samples were collected during immersion treatment and posttreatment time points in both groups. Hemolymph and water sample drug concentrations were analyzed using high-performance liquid chromatography, and pharmacokinetic parameters were determined using an NLME population pharmacokinetic method. Enrofloxacin concentrations were fit to a two-compartment model with first-order input for the intracoelomic injection group. The enrofloxacin elimination half-life (t½), peak hemolymph concentration (CMAX), and area under the curve (AUC) were 38.82 hr, 90.92 μg/ml, and 1,199 hr·μg/ml, respectively. Enrofloxacin was modeled to a one-compartment model with first-order input for the immersion treatment. The enrofloxacin t½, CMAX, and AUC were 33.46 hr, 0.48 μg/ml, and 32.88 hr·μg/ml, respectively. Ciprofloxacin was detected in trace concentrations in all hemolymph samples, indicating

  6. Males and females gonad fatty acids of the sea urchins Paracentrotus lividus and Arbacia lixula (Echinodermata)

    NASA Astrophysics Data System (ADS)

    Martínez-Pita, Inés; García, Francisco J.; Pita, María-Luisa

    2010-06-01

    The aim of this study was to analyze male and female gonad fatty acids of two sea urchin species, Paracentrotus lividus and Arbacia lixula, from the south coast of Spain. Additionally, we investigated possible differences between two locations. The ovaries of both species showed higher percentages of 14:0, 16:0, 16:1n-7, 18:2n-6, 18:3n-3 and 18:4n-3 than testes and lower levels of 18:0, 22:1n-9, 20:4n-6 and 22:5n-3. In P. lividus but not in A. lixula, the level of 20:5n-3 was higher in testes than in ovaries. These differences between sexes probably indicate different requirements of males and females during gametogenesis although the presence of a large number of gametes in the mature gonad may also have influences on fatty acid composition. Significant differences in gonad fatty acid profiles where also found when individuals of P. lividus collected at a location of the Mediterranean region were compared with specimens collected at the Atlantic coast. The most remarkable changes were the lower levels of 14:0, 18:1n-7, 20:1n-9, 20:4n-6 and 22:4n-6 and the higher values of 20:1n-11, 20:5n-3 and 22:6n-3 found in males and females of the Mediterranean specimens compared to those of the Atlantic coast. These differences probably reflect the differences in potential food sources at each location.

  7. Arthrobacter echini sp. nov., isolated from the gut of a purple sea urchin, Heliocidaris crassispina.

    PubMed

    Lee, June-Young; Hyun, Dong-Wook; Soo Kim, Pil; Sik Kim, Hyun; Shin, Na-Ri; Yun, Ji-Hyun; Jung, Mi-Ja; Kim, Min-Soo; Woong Whon, Tae; Bae, Jin-Woo

    2016-04-01

    A novel strain, designated AM23T, was isolated from the gut of a purple sea urchin Heliocidaris crassispina collected from the coastal waters of the Korean island Dokdo. 16S rRNA gene sequence analysis showed that strain AM23T belonged to the genus Arthrobacter in the family Micrococcaceae and shared highest sequence similarity with Arthrobacter agilis DSM 20550T (98.77%). Strain AM23T was catalase-positive, oxidase-negative and grew optimally at 20 °C, in the presence of 1% (w/v) NaCl and at pH 7. The isolate was a Gram-stain-positive, non-motile, strictly aerobic and coccus-shaped bacterium. The major cellular fatty acids were anteiso-C15:0 and iso-C15:0. The polar lipids of strain AM23T were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, one unidentified glycolipid and four unidentified lipids. The components of the cell-wall peptidoglycan were lysine, glutamic acid and alanine and the predominant cell-wall sugars were galactose, mannose, rhamnose and ribose. The major respiratory quinone was identified as menaquinone MK-9(H2). The genomic DNA G+C content was 67.3 mol% and the DNA-DNA hybridization values showed the strain shared less than 29% genomic relatedness with A. agilis DSM 20550T. The results of the phylogenetic, phenotypic and genotypic analysis indicate that strain AM23T represents a novel species in the genus Arthrobacter, for which the name Arthrobacter echini sp. nov. is proposed. The type strain is AM23T (=KACC 18260T=DSM 29493T). PMID:26868361

  8. Symbiosis initiation in the bacterially luminous sea urchin cardinalfish Siphamia versicolor.

    PubMed

    Dunlap, P V; Gould, A L; Wittenrich, M L; Nakamura, M

    2012-09-01

    To determine how each new generation of the sea urchin cardinalfish Siphamia versicolor acquires the symbiotic luminous bacterium Photobacterium mandapamensis, and when in its development the S. versicolor initiates the symbiosis, procedures were established for rearing S. versicolor larvae in an aposymbiotic state. Under the conditions provided, larvae survived and developed for 28 days after their release from the mouths of males. Notochord flexion began at 8 days post release (dpr). By 28 dpr, squamation was evident and the caudal complex was complete. The light organ remained free of bacteria but increased in size and complexity during development of the larvae. Thus, aposymbiotic larvae of the fish can survive and develop for extended periods, major components of the luminescence system develop in the absence of the bacteria and the bacteria are not acquired directly from a parent, via the egg or during mouth brooding. Presentation of the symbiotic bacteria to aposymbiotic larvae at 8-10 dpr, but not earlier, led to initiation of the symbiosis. Upon colonization of the light organ, the bacterial population increased rapidly and cells forming the light-organ chambers exhibited a differentiated appearance. Therefore, the light organ apparently first becomes receptive to colonization after 1 week post-release development, the symbiosis is initiated by bacteria acquired from the environment and bacterial colonization induces morphological changes in the nascent light organ. The abilities to culture larvae of S. versicolor for extended periods and to initiate the symbiosis in aposymbiotic larvae are key steps in establishing the experimental tractability of this highly specific vertebrate and microbe mutualism. PMID:22957874

  9. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae

    PubMed Central

    Katow, Hideki; Katow, Tomoko; Abe, Kouki; Ooka, Shioh; Kiyomoto, Masato; Hamanaka, Gen

    2014-01-01

    Summary The ontogenetic origin of blastocoelar glutamate decarboxylase (GAD)-expressing cells (GADCs) in larvae of the sea urchin Hemicentrotus pulcherrimus was elucidated. Whole-mount in situ hybridisation (WISH) detected transcription of the gene that encodes GAD in H. pulcherrimus (Hp-gad) in unfertilised eggs and all blastomeres in morulae. However, at and after the swimming blastula stage, the transcript accumulation was particularly prominent in clumps of ectodermal cells throughout the embryonic surface. During the gastrula stage, the transcripts also accumulated in the endomesoderm and certain blastocoelar cells. Consistent with the increasing number of Hp-gad transcribing cells, immunoblot analysis indicated that the relative abundance of Hp-Gad increased considerably from the early gastrula stage until the prism stage. The expression pattern of GADCs determined by immunohistochemistry was identical to the pattern of Hp-gad transcript accumulation determined using WISH. In early gastrulae, GADCs formed blastocoelar cell aggregates around the blastopore with primary mesenchyme cells. The increase in the number of blastocoelar GADCs was inversely proportional to the number of ectodermal GADCs ranging from a few percent of total GADCs in early gastrulae to 80% in late prism larvae; this depended on ingression of ectodermal GADCs into the blastocoel. Some of the blastocoelar GADCs were fluorescein-positive in the larvae that developed from the 16-cell stage chimeric embryos; these comprised fluorescein-labeled mesomeres and unlabelled macromeres and micromeres. Our finding indicates that some of the blastocoelar GADCs are derived from the mesomeres and thus they are the new group of mesenchyme cells, the tertiary mesenchyme cells. PMID:24357228

  10. microRNA-31 modulates skeletal patterning in the sea urchin embryo.

    PubMed

    Stepicheva, Nadezda A; Song, Jia L

    2015-11-01

    MicroRNAs (miRNAs) are small non-coding RNAs that repress the translation and reduce the stability of target mRNAs in animal cells. microRNA-31 (miR-31) is known to play a role in cancer, bone formation and lymphatic development. However, studies to understand the function of miR-31 in embryogenesis have been limited. We examined the regulatory role of miR-31 in early development using the sea urchin as a model. miR-31 is expressed at all stages of development and its knockdown (KD) disrupts the patterning and function of primary mesenchyme cells (PMCs), which form the embryonic skeleton spicules. We identified that miR-31 directly represses Pmar1, Alx1, Snail and VegfR7 within the PMC gene regulatory network using reporter constructs. Further, blocking the miR-31-mediated repression of Alx1 and/or VegfR7 in the developing embryo resulted in defects in PMC patterning and skeletogenesis. The majority of the mislocalized PMCs in miR-31 KD embryos did not express VegfR10, indicating that miR-31 regulates VegfR gene expression within PMCs. In addition, miR-31 indirectly suppresses Vegf3 expression in the ectoderm. These results indicate that miR-31 coordinately suppresses genes within the PMCs and in the ectoderm to impact PMC patterning and skeletogenesis. This study identifies the novel function and molecular mechanism of miR-31-mediated regulation in the developing embryo. PMID:26400092

  11. Identification and characterization of proteins with phenoloxidase-like activities in the sea urchin Strongylocentrotus nudus.

    PubMed

    Cheng, Yuhui; Jiang, Jingwei; Dong, Ying; Zhou, Zunchun

    2015-11-01

    Three proteins with PO-like activities in the coelomocytes of sea urchin Strongylocentrotus nudus were identified using electrophoretic method and named as SnPO1, SnPO2 and SnPO3 according to their molecular mass from high to low. The SnPOs were characterized for substrate specificity and the effects of temperature, pH, divalent metal ions and inhibitors on PO activities. They showed oxidative activities to L-3,4-dihydroxyphenylalanine. (l-DOPA), dopamine and hydroquinone, but failed to oxidize tyrosine, which illustrated the three proteins had laccase-like PO activities. The optimum temperature for the activities of SnPO1, SnPO2 and SnPO3 was 75 °C, 70 °C, 40 °C, and the optimum pH was 7.0, 9.0, 8.0, respectively. The SnPOs were notably activated after being incubated in boiled water for 60 min, suggesting that the three proteins are thermophilic. The activity of SnPO1 was greatly enhanced by Cu(2+), Mn(2+) and Fe(2+) and inhibited by Pb(2+), Cd(2+), EDTA, DETC, sodium sulfite and ascorbic acid, but SnPO2 and SnPO3 were not obviously affected by Pb(2+) and Cd(2+), suggesting the three proteins are copper-containing, and the catalytic properties of SnPO1 might be different from those of SnPO2 and SnPO3. Taken together, SnPO1, SnPO2 and SnPO3 might play different roles in the immune and physiological processes of S. nudus. PMID:26314521

  12. Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry.

    PubMed

    Bisht, Ankit; He, Wei; Wang, Xiaotian; Wu, Linda Y L; Chen, Xiaodong; Li, Shuzhou

    2016-05-19

    Label-free and real time far-field super-resolution imaging (hyperlensing) at the nanoscale is of significant interest where sub-λ imaging remains a constraint because of Abbe's diffraction limit. Though by utilizing anisotropic permittivities, metal-dielectric multilayers have been successful in reconstructing high-frequency components of sub-λ objects, yet they remain cumbersome and expensive to make. Most of the multilayer structures require multiple vacuum deposition cycles and are plagued by stringent requirements on the surface roughness of metallic layers. In contrast to the multilayer structure here we propose a 3D hyperbolic metamaterial model composed of metallic nanorods arranged in a sea-urchin geometry as a hyper-lensing device, which is capable of projecting and magnifying diffraction limited information into the far-field at Near-infrared (NIR) frequencies. The hyperlens generates a band of flat hyperbolic dispersions in spherical coordinates, which in turn supports the propagation of high wave-vector spatial harmonics leading to far-field super-resolution imaging. Using full-wave finite-difference time-domain (FDTD) simulations with diffraction limited trimer, quadrumer and ringed objects etched on thin perfect electric conductor (PEC) films, we show that the hyperlens model can achieve magnification factors of up to 10× in the far-field (∼4.5λ from the object's surface) under a light source with a wavelength of 1 μm, with successful resolution down to 220 nm (∼λ/5). The magnified image field distribution projected into the far-field is shown to follow the object under a reduction in the symmetry. These results are important for making progress in the realization of real-time biomolecular imaging systems, eliminating the need for near-field scanning, destructive electron microscopy and various image post-processing techniques. PMID:27149522

  13. Sequence heterogeneity, multiplicity, and genomic organization of. cap alpha. - and. beta. -tubulin genes in Sea Urchins

    SciTech Connect

    Alexandraki, D.; Ruderman, J.V.

    1981-12-01

    The authors analyzed the multiplicity, heterogeneity, and organization of the genes encoding the ..cap alpha.. and ..beta.. tubulins in the sea urchin Lytechinus pictus by using cloned complementary deoxyribonucleic acid (cDNA) and genomic tubulin sequences. cDNA clones were constructed by using immature spermatogenic testis polyadenylic acid-containing ribonucleic acid as a template. ..cap alpha.. and ..beta..-tubulin clones were identified by hybrid selection and in vitro translation of the corresponding messenger ribonucleic acids, followed by immunoprecipitation and two-dimensional gel electrophoresis of the translation products. The ..cap alpha.. cDNA clone contains a sequence that encodes the 48 C-terminal amino acids of ..cap alpha.. tubulin and 104 base pairs of the 3' nontranslated portion of the messenger ribonucleic acid. The ..beta.. cDNA insertion contains the coding sequence for the 100 C-terminal amino acids of ..beta.. tubulin and 83 base pairs of the 3' noncoding sequence. Hybrid selections performed at different criteria demonstrated the presence of several heterogeneous, closely related tubulin messenger ribonucleic acids, suggesting the existence of heterogeneous ..cap alpha..- and ..beta..-tubulin genes. Hybridization analyses indicated that there are at least 9 to 13 sequences for each of the two tubulin gene families per haploid genome. Hybridization of the cDNA probes to both total genomic DNA and cloned germline DNA fragments gave no evidence for close physical linkage of ..cap alpha..-tubulin genes with ..beta..-tubulin genes at the DNA level. In contrast, these experiments indicated that some genes within the same family are clustered.

  14. Differential toxicity of three polychlorinated biphenyl congeners in developing sea urchin embryos

    SciTech Connect

    Schweitzer, L.E.; Suffet, I.H.; Hose, J.E.; Bay, S.M.

    1997-07-01

    The relationship between body burden and toxicity of three individual polychlorinated biphenyl (PCB) congeners in developing sea urchin embryos was investigated to evaluate the validity of current predictive models of PCB toxicity in an invertebrate system. Body burdens of radiolabeled PCB congeners (IUPAC-47, 77, and 153) accumulated from a seawater were used to determine median effective concentrations (EC50s) for developmental and cytogenetic effects following a 72-h exposure. Congener 47, a di-ortho-substituted tetrachlorobiphenyl, was found to be at least four times more toxic than congener 77, a non-ortho-substituted (coplanar) tetrachlorobiphenyl, with EC50s of 47 and >218 mmol/kg, respectively, using an embryo development assay. This result contradicts the structure-activity prediction of the mammalian-based toxic equivalents (TEQs) approach, demonstrating the need for an ecotoxicologic model. Congener 153, a di-ortho-substituted hexachlorobiphenyl, was virtually nontoxic in terms of developmental effects at the highest dose achievable at its limit of water solubility. Cytogenetic analysis was a more sensitive method for assessing toxicity than the embryo development assay. Dose-response relationships were established with mitotic activity being the most sensitive endpoint because the PCBs appeared to inhibit mitosis. At the highest doses, complete mitotic arrest was observed. Congener 77 was found to be at least two times more toxic than congener 153 but not as toxic as congener 47 using mitotic activity as the endpoint for toxicity. Thus, the developmental and cytogenetic endpoints ranked the toxicity of the congeners similarly, but established different EC50s.

  15. Cell-surface proteoglycan in sea urchin primary mesenchyme cell migration

    SciTech Connect

    Lane, M.C.

    1989-01-01

    Early in the development of the sea urchin embryo, the primary mesenchyme cells (PMC) migrate along the basal lamina of the blastocoel. Migration is inhibited in L. pictus embryos cultured in sulfate-free seawater and in S. purpuratus embryos exposed to exogenous {beta}-D-xylosides. An in vitro assay was developed to test the migratory capacity of normal PMC on normal and treated blastocoelic matrix. Sulfate deprivation and exposure to exogenous xyloside render PMC nonmotile on either matrix. Materials removed from the surface of normal PMC by treatment with 1 M urea restored migratory ability to defective cells, whereas a similar preparation isolated from the surface of epithelial cells at the same stage did not. Migration also resumed when cells were removed from the xyloside or returned to normal seawater. The urea extract was partially purified and characterized by radiolabeling, gel electrophoresis, fluorography, ion exchange chromatography, and western blotting. The PMC synthesize a large chondroitin sulfate/dermatan sulfate proteoglycan that is present in an active fraction isolated by chromatography. Chondroitinase ABC digestion of live cells blocked migration reversibly, further supporting the identification of the chondroitin sulfate/dermatan sulfate proteoglycan as the active component in the urea extract. Much of the incorporated sulfate was distributed along the filopodia in {sup 35}SO{sub 4}-labelled PMC by autoradiography. The morphology of normal and treated S. purpuratus PMC was examined by scanning electron microscopy, and differences in spreading, particularly of the extensive filopodia present on the cells, was observed. A model for the role of the chondroitin sulfate/dermatan sulfate proteoglycan in cell detachment during migration is proposed.

  16. A volatile inhibitor immobilizes sea urchin sperm in semen by depressing the intracellular pH

    SciTech Connect

    Johnson, C.H.; Clapper, D.L.; Winkler, M.M.; Lee, H.C.; Epel, D.

    1983-08-01

    Sea urchin spermatozoa are normally immotile in semen, but motility can be initiated by increasing gas flow over the semen--for example, by blowing N2 gas over a thin layer of semen. This result indicates that sperm motility is not O2 limited and suggests that seminal fluid contains a volatile inhibitor of motility which is responsible for the paralysis of sperm in semen. This inhibitor might be carbon dioxide, which reversibly immobilizes sperm. /sup 31/P-NMR measurements of pH show that the sperm intracellular pH (pHi) increases by 0.36 pH unit upon dilution of semen into seawater. Since previous studies have shown that this magnitude of pH increase is sufficient to trigger sperm motility, we suggest that the volatile inhibitor is inhibiting sperm motility in semen by depressing the pHi. A simple hypothesis that explains these observations is that the volatile motility inhibitor is CO/sub 2/, which could acidify pHi as a diffusable weak acid. In this regard, sperm diluted into seawater release acid, and this acid release is related to the pHi increase and motility initiation. In fact, nearly half of the acid released by sperm upon dilution is volatile and may therefore be due to CO/sub 2/ efflux. Most of the acid, however, cannot be attributed to CO/sub 2/ release because it is not volatile. Thus, when sperm are diluted into seawater, they raise their pHi by releasing CO/sub 2/ and protons from the cytoplasm into the surrounding seawater.

  17. Spatiotemporal relationships among early events of fertilization in sea urchin eggs revealed by multiview microscopy.

    PubMed Central

    Suzuki, K; Tanaka, Y; Nakajima, Y; Hirano, K; Itoh, H; Miyata, H; Hayakawa, T; Kinosita, K

    1995-01-01

    Four early events of egg fertilization, changes in intracellular calcium concentration and intracellular pH, reorientation of the surface membrane, and the elevation of the fertilization envelope, were imaged in real time and in pairs in single sea urchin eggs. The paired imaging allowed the correlation of the four events spatially and temporally. Three of them propagated as waves starting at the sperm entry site. The earliest was the calcium wave, visualized with fluorescent indicator dyes. After a delay of 10 s there followed a large decrease in the fluorescence polarization of membrane-bound dyes, which we interpret as arising from membrane reorientation as a result of cortical granule exocytosis and microvillar elongation. With a further delay of 15 s the fertilization envelope was seen to rise in transmitted light. All three waves propagated with similar velocities of approximately 10 microns/s, supporting the view that calcium triggers the latter two events. The fluorescence polarization changed in two steps with a clear pause of 10-20 s in between. The second step, which also propagated as wave, reflects either further elongation of microvilli or straightening of irregular microvilli. This second step was abolished by cytochalasin B and was coincident with an increase in cytoplasmic pH, suggesting that pH-induced actin reorganization may play a role. The cytoplasmic alkalinization, imaged with a fluorescent probe, was quite different from the other events in that it took place homogeneously throughout the egg and slowly (over 100 s). Apparently, the alkalinization is not on a direct downstream pathway of calcium origin. An opposing possibility, that the alkalinization may in fact be triggered by the traveling calcium wave, is also discussed. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:7756541

  18. Genetics of gene expression responses to temperature stress in a sea urchin gene network.

    PubMed

    Runcie, Daniel E; Garfield, David A; Babbitt, Courtney C; Wygoda, Jennifer A; Mukherjee, Sayan; Wray, Gregory A

    2012-09-01

    Stress responses play an important role in shaping species distributions and robustness to climate change. We investigated how stress responses alter the contribution of additive genetic variation to gene expression during development of the purple sea urchin, Strongylocentrotus purpuratus, under increased temperatures that model realistic climate change scenarios. We first measured gene expression responses in the embryos by RNA-seq to characterize molecular signatures of mild, chronic temperature stress in an unbiased manner. We found that an increase from 12 to 18 °C caused widespread alterations in gene expression including in genes involved in protein folding, RNA processing and development. To understand the quantitative genetic architecture of this response, we then focused on a well-characterized gene network involved in endomesoderm and ectoderm specification. Using a breeding design with wild-caught individuals, we measured genetic and gene-environment interaction effects on 72 genes within this network. We found genetic or maternal effects in 33 of these genes and that the genetic effects were correlated in the network. Fourteen network genes also responded to higher temperatures, but we found no significant genotype-environment interactions in any of the genes. This absence may be owing to an effective buffering of the temperature perturbations within the network. In support of this hypothesis, perturbations to regulatory genes did not affect the expression of the genes that they regulate. Together, these results provide novel insights into the relationship between environmental change and developmental evolution and suggest that climate change may not expose large amounts of cryptic genetic variation to selection in this species. PMID:22856327

  19. Sodium and proton transport in flagella isolated from sea urchin spermatozoa.

    PubMed

    Lee, H C

    1984-04-25

    A method was developed to isolate flagella with intact membranes from sea urchin sperm to further study the mechanism of the Na+-dependent H+ extrusion which increases the intracellular pH and triggers motility. Based on cytochrome c oxidase activity and cell count, the flagellar preparation contained at most 0.05% of the sperm heads present in the initial homogenate. The isolated flagella retained a Na+-dependent H+ extrusion mechanism which, like that of intact sperm, was inhibitable by high external potassium and with an ionic selectivity in the order of Na+ greater than Li+ much greater than Rb+ approximately equal to Cs+ (essentially ineffective). Two methods were employed to measure the change in intraflagellar pH (pHi): the accumulation of [14C]methylamine and a spectrofluorimetric technique using acridine orange. Flagella isolated from sperm suspended in Na+-free seawater (pH 7.90) maintained a pHi of 6.72 +/- 0.05 which increased by 0.5 to 0.6 pH unit following a Na+ (10 mM)-dependent release of H+ (114 +/- 18 nmol/mg) and an uptake of 22Na+ (134 +/- 36 nmol/mg). Both ionic movements were inhibitable by high external K+, suggesting a coupled exchange mechanism. This study provides direct evidence for the alkalinization of the flagellar pH under a condition compatible with motility initiation and shows that the isolated flagella is a useful model system for studying its mechanism. PMID:6325412

  20. Vitellibacter echinoideorum sp. nov., isolated from a sea urchin (Tripneustes gratilla).

    PubMed

    Lin, Shih-Yao; Hameed, Asif; Wen, Cheng-Zhe; Liu, You-Cheng; Hsu, Yi-Han; Shen, Fo-Ting; Lai, Wei-An; Young, Chiu-Chung

    2015-07-01

    A Gram-stain-negative, aerobic, rod-shaped, yellow-pigment-producing bacterium (designated strain CC-CZW007(T)) was isolated from seafood samples (sea urchins) at Penghu Island in Taiwan. Strain CC-CZW007(T) grew optimally at pH 7.0 and 30 °C in the presence of 3% (w/v) NaCl. The novel strain shared highest 16S rRNA gene sequence similarity to Vitellibacter vladivostokensis JCM 11732(T) (96.8%), Vitellibacter soesokkakensis KCTC 32536(T) (96.4%), Vitellibacter nionensis KCTC 32420(T) (95.8%) and Vitellibacter aestuarii JCM 15496(T) (95.6%) and lower sequence similarity to members of other genera. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-CZW007(T) with respect to other species of the genus Vitellibacter. The major fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipid profile was composed of major amounts of phosphatidylethanolamine, unidentified lipids and aminolipids; a moderate amount of aminophospholipid was also detected. The DNA G + C content was 34.7 mol%. The predominant quinone system was menaquinone (MK-6). On the basis of polyphasic taxonomic evidence presented here, strain CC-CZW007(T) is proposed to represent a novel species within the genus Vitellibacter, for which the name Vitellibacter echinoideorum sp. nov. is proposed. The type strain is CC-CZW007(T) ( = BCRC 80886(T) = JCM 30378(T)). PMID:25870254

  1. Arenicella chitinivorans sp. nov., a gammaproteobacterium isolated from the sea urchin Strongylocentrotus intermedius.

    PubMed

    Nedashkovskaya, Olga I; Cleenwerck, Ilse; Zhukova, Natalia V; Kim, Seung Bum; de Vos, Paul

    2013-11-01

    A strictly aerobic, Gram-stain-negative, rod-shaped, non-motile and yellow-pigmented bacterial strain, designated KMM 6208(T), was isolated from a sea urchin. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that this novel isolate was affiliated to the class Gammaproteobacteria and formed a robust cluster with Arenicella xantha KMM 3895(T) with 98.2 % 16S rRNA gene sequence similarity. Strain KMM 6208(T) grew in the presence of 0.5-5 % NaCl and at a temperature range of 4-38 °C. The isolate was oxidase-positive and hydrolysed aesculin, casein, chitin, gelatin, starch and Tweens 40 and 80. The prevalent fatty acids of strain KMM 6208(T) were C16 : 1ω7c, iso-C16 : 0, iso-C18 : 0, C18 : 1ω7c and C16 : 0. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified aminophospholipid, and the major isoprenoid quinone was Q-8. The DNA G+C content of strain KMM 6208(T) was 46.3 mol%. The DNA-DNA relatedness value of strain KMM 6208(T) with Arenicella xantha KMM 3895(T) was 5 %. Molecular data in a combination with phenotypic findings strongly suggest inclusion of this novel strain in the genus Arenicella as a representative of a novel species for which the name Arenicella chitinivorans sp. nov. is proposed. The type strain is KMM 6208(T) ( = KCTC 12711(T) = LMG 26983(T)). PMID:23771619

  2. ABCC5 is required for cAMP-mediated hindgut invagination in sea urchin embryos.

    PubMed

    Shipp, Lauren E; Hill, Rose Z; Moy, Gary W; Gökırmak, Tufan; Hamdoun, Amro

    2015-10-15

    ATP-binding cassette (ABC) transporters are evolutionarily conserved proteins that pump diverse substrates across membranes. Many are known to efflux signaling molecules and are extensively expressed during development. However, the role of transporters in moving extracellular signals that regulate embryogenesis is largely unexplored. Here, we show that a mesodermal ABCC (MRP) transporter is necessary for endodermal gut morphogenesis in sea urchin embryos. This transporter, Sp-ABCC5a (C5a), is expressed in pigment cells and their precursors, which are a subset of the non-skeletogenic mesoderm (NSM) cells. C5a expression depends on Delta/Notch signaling from skeletogenic mesoderm and is downstream of Gcm in the aboral NSM gene regulatory network. Long-term imaging of development reveals that C5a knockdown embryos gastrulate, but ∼90% develop a prolapse of the hindgut by the late prism stage (∼8 h after C5a protein expression normally peaks). Since C5a orthologs efflux cyclic nucleotides, and cAMP-dependent protein kinase (Sp-CAPK/PKA) is expressed in pigment cells, we examined whether C5a could be involved in gastrulation through cAMP transport. Consistent with this hypothesis, membrane-permeable pCPT-cAMP rescues the prolapse phenotype in C5a knockdown embryos, and causes archenteron hyper-invagination in control embryos. In addition, the cAMP-producing enzyme soluble adenylyl cyclase (sAC) is expressed in pigment cells, and its inhibition impairs gastrulation. Together, our data support a model in which C5a transports sAC-derived cAMP from pigment cells to control late invagination of the hindgut. Little is known about the ancestral functions of ABCC5/MRP5 transporters, and this study reveals a novel role for these proteins in mesoderm-endoderm signaling during embryogenesis. PMID:26395488

  3. Matrix Metalloproteinases in a Sea Urchin Ligament with Adaptable Mechanical Properties

    PubMed Central

    Ribeiro, Ana R.; Barbaglio, Alice; Oliveira, Maria J.; Ribeiro, Cristina C.; Wilkie, Iain C.; Candia Carnevali, Maria D.; Barbosa, Mário A.

    2012-01-01

    Mutable collagenous tissues (MCTs) of echinoderms show reversible changes in tensile properties (mutability) that are initiated and modulated by the nervous system via the activities of cells known as juxtaligamental cells. The molecular mechanism underpinning this mechanical adaptability has still to be elucidated. Adaptable connective tissues are also present in mammals, most notably in the uterine cervix, in which changes in stiffness result partly from changes in the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). There have been no attempts to assess the potential involvement of MMPs in the echinoderm mutability phenomenon, apart from studies dealing with a process whose relationship to the latter is uncertain. In this investigation we used the compass depressor ligaments (CDLs) of the sea-urchin Paracentrotus lividus. The effect of a synthetic MMP inhibitor - galardin - on the biomechanical properties of CDLs in different mechanical states (“standard”, “compliant” and “stiff”) was evaluated by dynamic mechanical analysis, and the presence of MMPs in normal and galardin-treated CDLs was determined semi-quantitatively by gelatin zymography. Galardin reversibly increased the stiffness and storage modulus of CDLs in all three states, although its effect was significantly lower in stiff than in standard or compliant CDLs. Gelatin zymography revealed a progressive increase in total gelatinolytic activity between the compliant, standard and stiff states, which was possibly due primarily to higher molecular weight components resulting from the inhibition and degradation of MMPs. Galardin caused no change in the gelatinolytic activity of stiff CDLs, a pronounced and statistically significant reduction in that of standard CDLs, and a pronounced, but not statistically significant, reduction in that of compliant CDLs. Our results provide evidence that MMPs may contribute to the variable tensility of the

  4. Geometric control of ciliated band regulatory states in the sea urchin embryo.

    PubMed

    Barsi, Julius C; Li, Enhu; Davidson, Eric H

    2015-03-01

    The trapezoidal ciliated band (CB) of the postgastrular sea urchin embryo surrounds the oral ectoderm, separating it from adjacent embryonic territories. Once differentiated, the CB is composed of densely arranged cells bearing long cilia that endow the larva with locomotion and feeding capability. The spatial pattern from which the CB will arise is first evidenced during pregastrular stages by expression of the pioneer gene onecut. Immediately after gastrulation, the CB consists of four separate regulatory state domains, each of which expresses a unique set of transcription factors: (1) the oral apical CB, located within the apical neurogenic field; (2) the animal lateral CB, which bilaterally separates the oral from aboral ectoderm; (3) the vegetal lateral CB, which bilaterally serves as signaling centers; and (4) the vegetal oral CB, which delineates the boundary with the underlying endoderm. Remarkably, almost all of the regulatory genes specifically expressed within these domains are downregulated by interference with SoxB1 expression, implying their common activation by this factor. Here, we show how the boundaries of the CB subdomains are established, and thus ascertain the design principle by which the geometry of this unique and complex regulatory state pattern is genomically controlled. Each of these boundaries, on either side of the CB, is defined by spatially confined transcriptional repressors, the products of regulatory genes operating across the border of each subdomain. In total this requires deployment of about ten different repressors, which we identify in this work, thus exemplifying the complexity of information required for spatial regulatory organization during embryogenesis. PMID:25655703

  5. Effects of increased pCO2 and geographic origin on purple sea urchin (Strongylocentrotus purpuratus) calcite elemental composition

    NASA Astrophysics Data System (ADS)

    LaVigne, M.; Hill, T. M.; Sanford, E.; Gaylord, B.; Russell, A. D.; Lenz, E. A.; Hosfelt, J. D.; Young, M. K.

    2012-12-01

    Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (such as Mg and Sr) into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore the effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2) on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus). We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low to high magnesium calcites. Mg/Ca and Sr/Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions along the US west coast (Oregon, Northern California, Central California, and Southern California). Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg/Ca and Sr/Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg/Ca or Sr/Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 ppm; pH = 8.02 ± 0.03 1 SD; Ωcalcite = 3.3 ± 0.2 1 SD). However, when reared under elevated CO2 (900 ppm; pH = 7.72 ± 0.03; Ωcalcite = 1.8 ± 0.1), skeletal Sr/Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California) did not exhibit differences in Mg or Sr incorporation under elevated CO2 (Sr/Ca = 2

  6. Observations of the summer Red Sea circulation

    NASA Astrophysics Data System (ADS)

    Sofianos, Sarantis S.; Johns, William E.

    2007-06-01

    Aiming at exploring and understanding the summer circulation in the Red Sea, a cruise was conducted in the basin during the summer of 2001 involving hydrographic, meteorological, and direct current observations. The most prominent feature, characteristic of the summer circulation and exchange with the Indian Ocean, is a temperature, salinity, and oxygen minimum located around a depth of 75 m at the southern end of the basin, associated with Gulf of Aden Intermediate Water inflowing from the Gulf of Aden during the summer season as an intruding subsurface layer. Stirring and mixing with ambient waters lead to marked increases in temperature (from 16.5 to almost 33°C) and salinity (from 35.7 to more than 38 psu) in this layer by the time it reaches midbasin. The observed circulation presents a very vigorous pattern with strong variability and intense features that extend the width of the basin. A permanent cyclone, detected in the northern Red Sea, verifies previous observations and modeling studies, while in the central sector of the basin a series of very strong anticyclones were observed with maximum velocities exceeding 1 m/s. The three-layer flow pattern, representative of the summer exchange between the Red Sea and the Gulf of Aden, is observed in the strait of Bab el Mandeb. In the southern part of the basin the layer flow is characterized by strong banking of the inflows and outflows against the coasts. Both surface and intermediate water masses involved in the summer Red Sea circulation present prominent spatial variability in their characteristics, indicating that the eddy field and mixing processes play an important role in the summer Red Sea circulation.

  7. Patterns of sperm-specific histone variation in sea stars and sea urchins: primary structural homologies in the N-terminal region of spermatogenic H1.

    PubMed

    Massey, C B; Watts, S A

    1992-04-15

    An electrophoretic characterization of histones from pyloric caeca, testes, and sperm of Asterias vulgaris revealed a sperm/testes-specific variant of histone H1 significantly larger than its somatic counterpart from pyloric caeca. Additional proteins were observed in H1 regions of acetic acid-urea polyacrylamide gels in testicular extracts. Sperm or testis-specific variants of H2B observed in sea urchins were not found in the sea star. Evidence presented suggests that sperm- or testes-specific H1 species of intermediate mobility may arise from a single, slow-migrating H1 species (SpH1). Although an increase in nonspecific DNA binding by nuclear proteins must occur during the process of spermatogenesis, different organisms exhibit various patterns of sperm-specific protein mediating differential binding during the process. Sperm-specific variants of both H1 and H2B histones are observed in sea urchins, while the only variant observed in sea stars during spermatogenesis is SpH1. Sequencing of the N-terminus of SpH1 from A. vulgaris revealed a repeating tetrapeptide in residues 3-6 and 8-11 (Ser-Pro-Arg-Lys and Ser-Pro-Lys-Lys, respectively), homologous to repeats in the N-termini of sperm-specific H1s from sea urchins. Primary structure within critical, variable regions of molecules responsible for nonspecific DNA binding appear conserved in many organisms. The occurrence of repeating tetrapeptides in SpH1 and other DNA binding proteins suggests that such domains may function similarly in various chromatins undergoing regulated or reversible condensation. PMID:1583456

  8. Sea urchin development in a global change hotspot, potential for southerly migration of thermotolerant propagules

    NASA Astrophysics Data System (ADS)

    Byrne, M.; Selvakumaraswamy, P.; Ho, M. A.; Woolsey, E.; Nguyen, H. D.

    2011-03-01

    The distribution of the sea urchin Heliocidaris erythrogramma coincides with the southeast Australia global change hot spot where marine ecosystems are warming significantly due to changes in ocean circulation. To address questions on future vulnerabilities, the thermotolerance of the planktonic life phase of H. erythrogramma was investigated in the climate and regionally relevant setting of projected near-future (2100) ocean warming. Experimental treatments ranged from 18 to 26 °C, with 26 °C representing +3-4 °C above recent ambient sea-surface temperatures. Developmental success across all stages (gastrula, 24 h; larva, 72 h; juvenile, 120 h) decreased with increasing temperature. Development was tolerant to a +1-2 °C increase above ambient, but significant deleterious effects were evident at +3-4 °C. However, larvae that developed through the early bottleneck of normal development at 26 °C metamorphosed successfully. The inverse relationship between temperature and planktonic larval duration (PLD) was seen in a 25% decrease in the PLD of H. erythrogramma at 24 and 26 oC. Ocean warming may be advantageous to a subset of larvae through early settlement and reduction of the vulnerable planktonic period. This positive effect of temperature may help buffer the negative effects of ocean warming. In parallel studies with progeny derived from northern (Coffs Harbour) and southern (Sydney) H. erythrogramma, northern embryos had significantly higher thermotolerance. This provides the possibility that H. erythrogramma populations might keep up with a warming world through poleward migration of thermotolerant propagules, facilitated by the strong southward flow of the East Australian Current. It is uncertain whether H. erythrogramma populations at the northern range of this species, with no source of immigrants, will have the capacity to persist in a warm ocean. Due to its extensive latitudinal distribution, its potential developmental thermotolerance and

  9. Selective accumulation of germ-line associated gene products in early development of the sea star and distinct differences from germ-line development in the sea urchin

    PubMed Central

    Fresques, Tara; Zazueta-Novoa, Vanesa; Reich, Adrian; Wessel, Gary M.

    2014-01-01

    Background Echinodermata is a diverse Phylum, a sister group to chordates, and contains diverse organisms that may be useful to understand varied mechanisms of germ-line specification. Results We tested 23 genes in development of the sea star Patiria miniata that fall into five categories: 1) Conserved germ-line factors; 2) Genes involved in the inductive mechanism of germ-line specification; 3) Germ-line associated genes; 4) Molecules involved in left-right asymmetry; and 5) Genes involved in regulation and maintenance of the genome during early embryogenesis. Overall, our results support the contention that the posterior enterocoel is a source of the germ line in the sea star P. miniata. Conclusion The germ line in this organism appears to be specified late in embryogenesis, and in a pattern more consistent with inductive interactions amongst cells. This is distinct from the mechanism seen in sea urchins, a close relative of the sea star clad. We propose that P. miniata may serve as a valuable model to study inductive mechanisms of germ-cell specification and when compared to germ-line formation in the sea urchin S. purpuratus may reveal developmental transitions that occur in the evolution of inherited and inductive mechanisms of germ-line specification. PMID:24038550

  10. Do Cues Matter? Highly Inductive Settlement Cues Don't Ensure High Post-Settlement Survival in Sea Urchin Aquaculture

    PubMed Central

    Mos, Benjamin; Cowden, Kenneth L.; Nielsen, Shaun J.; Dworjanyn, Symon A.

    2011-01-01

    Increasing settlement and post-settlement survival during the critical transition from planktonic larvae to benthic juveniles will increase efficiency for sea urchin aquaculture. This study investigated the effects of temperature and settlement cues on the settlement and post-settlement survival of the sea urchin Tripneustes gratilla during this phase. The current commercial methodology, which utilises natural biofilm settlement plates, was tested and resulted in low settlement (<2%) and poor post-settlement survival (<1% of settled urchins). In laboratory trials, settlement was high and unaffected by temperatures between 24 and 30°C, but significantly decreased at 33°C. Development of spines, however, was significantly affected by temperatures over 29°C. Mirroring this result, post-settlement survival was optimal between 24–28°C. In laboratory assays, the macroalgae Sargassum linearifolium and Corallina officinalis, and seawater conditioned with these algae, induced significantly higher settlement (>90%) than a natural biofilm (∼25%). The addition of macroalgae-conditioned seawater to natural biofilm significantly increased settlement rates (>85%). Mixed consortia and single strains of bacteria isolated from macroalgae, biofilms and adult conspecifics all induced significant settlement, but at significantly lower rates than macroalgae. No evidence was found that higher rates of settlement to bacteria on macroalgae were generated by a cofactor from the macroalgae. Age of bacterial cultures, culturing bacteria on solid and liquid media and concentration of nutrients in cultures had little effect on settlement rates. Finally, macroalgae-conditioned seawater combined with natural biofilm settlement plates induced significantly higher settlement than to the biofilm plates alone in a commercial scale trial. However, high post-settlement mortality resulted in equivalent survival between treatments after 25 days. This study highlights that settlement studies

  11. Understanding the Red Sea nutrient cycle - a first look into nitrogen fixation in the Red Sea

    NASA Astrophysics Data System (ADS)

    Mohamed, Roslinda; Arrieta, Jesus; Alam, Intikhab; Duarte, Carlos

    2016-04-01

    The Red Sea is an elongated and semi-enclosed system bordered by Africa and Saudi Arabia. Positioned in an arid, tropical zone, the system receives high solar irradiance and heat flux, extensive evaporation, low rainfall and therefore high salinity. These harsh environmental conditions has set the Red Sea to be one of the fastest warming and saltiest ecosystem in the world. Although nutrients are known to be at very low concentrations, the ultimately limiting nutrient in the system is still undefined. Therefore, like most other oligotrophic systems, we regard the Red Sea as being nitrogen-limited and we foresee nitrogen fixation as the most probable bottleneck in the Red Sea nitrogen budget. On the basis of metagenomes from pelagic microbial communities along the Red Sea, we looked into the distribution of nitrogenase, an enzyme involved in nitrogen fixation, in this system and provide a first insight into the microbial community that is involved in the process. The implications of this study will not only help improve our understanding of the Red Sea nutrient regime, but may also hint on future ocean responses to rising climates.

  12. Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging

    PubMed Central

    Ziegler, Alexander; Faber, Cornelius; Mueller, Susanne; Bartolomaeus, Thomas

    2008-01-01

    Background Traditional comparative morphological analyses and subsequent three-dimensional reconstructions suffer from a number of drawbacks. This is particularly evident in the case of soft tissue studies that are technically demanding, time-consuming, and often prone to produce artefacts. These problems can partly be overcome by employing non-invasive, destruction-free imaging techniques, in particular micro-computed tomography or magnetic resonance imaging. Results Here, we employed high-field magnetic resonance imaging techniques to gather numerous data from members of a major marine invertebrate taxon, the sea urchins (Echinoidea). For this model study, 13 of the 14 currently recognized high-ranking subtaxa (orders) of this group of animals were analyzed. Based on the acquired datasets, interactive three-dimensional models were assembled. Our analyses reveal that selected soft tissue characters can even be used for phylogenetic inferences in sea urchins, as exemplified by differences in the size and shape of the gastric caecum found in the Irregularia. Conclusion The main focus of our investigation was to explore the possibility to systematically visualize the internal anatomy of echinoids obtained from various museum collections. We show that, in contrast to classical preparative procedures, magnetic resonance imaging can give rapid, destruction-free access to morphological data from numerous specimens, thus extending the range of techniques available for comparative studies of invertebrate morphology. PMID:18651948

  13. Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus).

    PubMed

    Mesarič, Tina; Sepčić, Kristina; Drobne, Damjana; Makovec, Darko; Faimali, Marco; Morgana, Silvia; Falugi, Carla; Gambardella, Chiara

    2015-06-01

    We examined egg fertilisation in purple sea urchin (Paracentrotus lividus) after sperm exposure to carbon-based nanomaterials, carbon black (CB) and graphene oxide (GO), from 0.0001 mg/L to 1.0mg/L. Gastrula stage embryos were investigated for acetylcholinesterase and propionylcholinesterase activities, and their morphological characteristics. Plutei were analysed for morphological abnormalities, with emphasis on skeletal rod formation. Egg fertilisation was significantly affected by CB, at all concentrations tested. Loss of cell adhesion at the gastrula surface was observed in eggs fertilised with sperm treated with CB. However, concentration-dependent morphological anomalies were observed in the gastrulae and plutei formed after sperm exposure to either CB or GO. The activities of both cholinesterases decreased in the gastrulae, although not in a concentration-dependent manner. These effects appear to arise from physical interactions between these carbon-based nanomaterials and the sperm, whereby nanomaterials attached to the sperm surface interfere with fertilisation, which leads to disturbances in the signalling pathways of early embryonic development. Reduced cholinesterase activity in gastrulae from eggs fertilised with nanomaterial-treated sperm confirms involvement of the cholinergic system in early sea urchin development, including skeletogenesis. PMID:25897690

  14. Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization.

    PubMed

    Rao, Ashit; Seto, Jong; Berg, John K; Kreft, Stefan G; Scheffner, Martin; Cölfen, Helmut

    2013-08-01

    The larval spicule matrix protein SM50 is the most abundant occluded matrix protein present in the mineralized larval sea urchin spicule. Recent evidence implicates SM50 in the stabilization of amorphous calcium carbonate (ACC). Here, we investigate the molecular interactions of SM50 and CaCO3 by investigating the function of three major domains of SM50 as small ubiquitin-like modifier (SUMO) fusion proteins - a C-type lectin domain (CTL), a glycine rich region (GRR) and a proline rich region (PRR). Under various mineralization conditions, we find that SUMO-CTL is monomeric and influences CaCO3 mineralization, SUMO-GRR aggregates into large protein superstructures and SUMO-PRR modifies the early CaCO3 mineralization stages as well as growth. The combination of these mineralization and self-assembly properties of the major domains synergistically enable the full-length SM50 to fulfill functions of constructing the organic spicule matrix as well as performing necessary mineralization activities such as Ca(2+) ion recruitment and organization to allow for proper growth and development of the mineralized larval sea urchin spicule. PMID:23796503

  15. Development of a new integrative toxicity index based on an improvement of the sea urchin embryo toxicity test.

    PubMed

    Morroni, L; Pinsino, A; Pellegrini, D; Regoli, F; Matranga, V

    2016-01-01

    The sea urchin embryo toxicity test is classically used to assess the noxious effects of contaminated marine waters and sediments. In Italian guidelines on quality of dredged sediments, the standard toxicity criteria used for this assay are based on a single endpoint at 48 hours of development, corresponding to the pluteus stage. Different typologies of abnormalities, including those which occur at earlier stages, are not categorized, thus preventing the evaluation of the actual teratogenic hazards. A new integrative toxicity index has been developed in this study based on the analysis of two developmental stages, at 24 and 48h post-fertilization, and the differentiation between development delays and germ layers impairments: the new toxicity index is calculated by integrating the frequency of abnormal embryos with the severity of such abnormalities. When tested on dredged sediments, the evaluation of increasing levels of toxicity affecting embryonic outcomes enhanced the capability to discriminate different samples, appearing particularly relevant to validate the sea urchin embryo toxicity assay, and supporting its utility in practical applications such as the sediments classification in harbor areas. PMID:26477574

  16. Chloral hydrate alters the organization of the ciliary basal apparatus and cell organelles in sea urchin embryos

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A.; Schatten, H.; Mitchell, K. D.; Crosser, M.; Taylor, M.

    1998-01-01

    The mitotic inhibitor, chloral hydrate, induces ciliary loss in the early embryo phase of Lytechinus pictus. It causes a breakdown of cilia at the junction of the cilium and the basal body known as the basal plate. This leaves the plasma membrane temporarily unsealed. The basal apparatus accessory structures, consisting of the basal body, basal foot, basal foot cap, striated side arm, and striated rootlet, are either misaligned or disintegrated by treatment with chloral hydrate. Furthermore, microtubules which are associated with the basal apparatus are disassembled. Mitochondria accumulate at the base of cilia - underneath the plasma membrane - and show alterations in their structural organization. The accumulation of mitochondria is observed in 40% of all electron micrograph sections while 60% show the areas mostly devoid of mitochondria. The microvilli surrounding a cilium and striated rootlet remain intact in the presence of chloral hydrate. These results suggest that deciliation in early sea urchin embryos by chloral hydrate is caused by combined effects on the ciliary membrane and on microtubules in the cilia. Furthermore, it is suggested that chloral hydrate can serve as a tool to explore the cytoskeletal mechanisms that are involved in cilia motility in the developing sea urchin embryo.

  17. The growth of Sea-urchin-like AlN nanostructures by modified CVD and their Field Emission properties

    NASA Astrophysics Data System (ADS)

    Guo, Lu`an; Chen, Guangde; Zhu, Youzhang; Duan, Xiangyang; Ye, Honggang

    2015-09-01

    AlN complex nanostructures were fabricated by using chemical vapor deposition (CVD) method which was carried out at a low moderate temperature (~750 °C) and without any catalyst. Field emission scanning electron microscopy (FESEM), X-Ray diffraction, transmission electron microscopy (TEM), and Raman scattering spectrum were used to characterize the microstructures and morphologies of the products. The FESEM results of samples exhibit unordered nanoneedle lawn-like interspersed by the Sea-urchin-like morphology, in which many needle-like nanostructures with the length of 500 nm grow radially from a central nucleus. The results of the X-ray, TEM and Raman scattering spectrum indicate that the samples have a preferential growth along the [0001] direction good quality AlN nanostructure. The field emission device testing shows that the Sea-urchin-like nanostructure has a very low turn-on electric field of 3.6 V/μm (0.01 mA/cm2) and a very high field enhancement factor β (2.1×103) at room temperature. It suggests that it can be used for field emission displays and vacuum microelectronic devices.

  18. Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus

    NASA Technical Reports Server (NTRS)

    Kitajima, T.; Tomita, M.; Killian, C. E.; Akasaka, K.; Wilt, F. H.

    1996-01-01

    We have isolated a cDNA clone for spicule matrix protein, SM30, from sea urchin Hemicentrotus pulcherrimus and have studied the expression of this gene in comparison with that of another spicule matrix protein gene, SM50. In cultured micromeres as well as in intact embryos transcripts of SM30 were first detectable around the onset of spicule formation and rapidly increased with the growth of spicules, which accompanied accumulation of glycosylated SM30 protein(s). When micromeres were cultured in the presence of Zn2+, spicule formation and SM30 expression were suppressed, while both events resumed concurrently after the removal of Zn2+ from the culture medium. Expression of SM50, in contrast, started before the appearance of spicules and was not sensitive to Zn2+. Differences were also observed in adult tissues; SM30 mRNA was detected in spines and tube feet but not in the test, while SM50 mRNA was apparent in all of these mineralized tissues at similar levels. These results strongly suggest that the SM30 gene is regulated by a different mechanism to that of the SM50 gene and that the products of these two genes are differently involved in sea urchin biomineralization. A possible role of SM30 protein in skeleton formation is discussed.

  19. Sea urchin egg mitochondrial DNA contains a short displacement loop (D-loop) in the replication origin region.

    PubMed Central

    Jacobs, H T; Herbert, E R; Rankine, J

    1989-01-01

    Based on solution hybridization using single-stranded probes, native mitochondrial DNA extracted from sea urchin eggs contains a displacement-loop (D-loop) of approximately 70-80 nt. This maps to the single extended unassigned sequence of the genome, between the genes for tRNA(thr) and tRNA(pro), which also appears to contain the origin of first-strand replication. The D-loop commences at or close to a site of supercoil-dependent S1 nuclease hypersensitivity, adjacent to a run of 20 consecutive C residues, terminates near to the boundary of tRNA(thr), and appears to be composed at least partly of RNA, based on the sensitivity of the assays to RNase H. These experiments imply that the mechanisms of replication initiation in sea urchin and vertebrate mtDNAs are very similar, and suggest that the developmental restriction on mtDNA synthesis in eggs and embryos is maintained at the level of D-loop extension. Images PMID:2555781

  20. Jun N-terminal kinase activity is required for invagination but not differentiation of the sea urchin archenteron.

    PubMed

    Long, Jason T; Irwin, Leslie; Enomoto, Addison C; Grow, Zachary; Ranck, Jessica; Peeler, Margaret T

    2015-12-01

    Although sea urchin gastrulation is well described at the cellular level, our understanding of the molecular changes that trigger the coordinated cell movements involved is not complete. Jun N-terminal kinase (JNK) is a component of the planar cell polarity pathway and is required for cell movements during embryonic development in several animal species. To study the role of JNK in sea urchin gastrulation, embryos were treated with JNK inhibitor SP600125 just prior to gastrulation. The inhibitor had a limited and specific effect, blocking invagination of the archenteron. Embryos treated with 2 μM SP600125 formed normal vegetal plates, but did not undergo invagination to form an archenteron. Other types of cell movements, specifically ingression of the skeletogenic mesenchyme, were not affected, although the development and pattern of the skeleton was abnormal in treated embryos. Pigment cells, derived from nonskeletogenic mesenchyme, were also present in SP600125-treated embryos. Despite the lack of a visible archenteron in treated embryos, cells at the original vegetal plate expressed several molecular markers for endoderm differentiation. These results demonstrate that JNK activity is required for invagination of the archenteron but not its differentiation, indicating that in this case, morphogenesis and differentiation are under separate regulation. PMID:26297876

  1. Protein tyrosine and serine–threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: Identification and potential functions

    PubMed Central

    Byrum, C.A.; Walton, K.D.; Robertson, A.J.; Carbonneau, S.; Thomason, R.T.; Coffman, J.A.; McClay, D.R.

    2011-01-01

    Protein phosphatases, in coordination with protein kinases, play crucial roles in regulation of signaling pathways. To identify protein tyrosine phosphatases (PTPs) and serine–threonine (ser–thr) phosphatases in the Strongylocentrotus purpuratus genome, 179 annotated sequences were studied (122 PTPs, 57 ser–thr phosphatases). Sequence analysis identified 91 phosphatases (33 conventional PTPs, 31 dual specificity phosphatases, 1 Class III Cysteine-based PTP, 1 Asp-based PTP, and 25 ser–thr phosphatases). Using catalytic sites, levels of conservation and constraint in amino acid sequence were examined. Nine of 25 receptor PTPs (RPTPs) corresponded to human, nematode, or fly homologues. Domain structure revealed that sea urchin-specific RPTPs including two, PTPRLec and PTPRscav, may act in immune defense. Embryonic transcription of each phosphatase was recorded from a high-density oligonucleotide tiling microarray experiment. Most RPTPs are expressed at very low levels, whereas nonreceptor PTPs (NRPTPs) are generally expressed at moderate levels. High expression was detected in MAP kinase phosphatases (MKPs) and numerous ser–thr phosphatases. For several expressed NRPTPs, MKPs, and ser–thr phosphatases, morpholino antisense-mediated knockdowns were performed and phenotypes obtained. Finally, to assess roles of annotated phosphatases in endomesoderm formation, a literature review of phosphatase functions in model organisms was superimposed on sea urchin developmental pathways to predict areas of functional activity. PMID:17087928

  2. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway

    PubMed Central

    Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria

    2015-01-01

    Titanium dioxide nanoparticles (TiO2NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics, and electronics. However, TiO2NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans, to elucidate a potential pathway that can be involved in the persistent TiO2NP-immune cell interaction in vivo. Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO2NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue. PMID:26412401

  3. Developmental abnormalities and neurotoxicological effects of CuO NPs on the black sea urchin Arbacia lixula by embryotoxicity assay.

    PubMed

    Maisano, Maria; Cappello, Tiziana; Catanese, Eva; Vitale, Valeria; Natalotto, Antonino; Giannetto, Alessia; Barreca, Davide; Brunelli, Elvira; Mauceri, Angela; Fasulo, Salvatore

    2015-10-01

    The embryotoxicity of CuO NPs was evaluated in the black sea urchin Arbacia lixula embryos, by using 24-well plates. Fertilized eggs were exposed to five doses of CuO NPs ranging from 0.07 to 20 ppb, until pluteus stage. CuO NPs suspensions in artificial seawater formed agglomerates of 80-200 nm size, and copper uptake was 2.5-fold up in larvae exposed to high NP concentrations in respect to control. Developmental delay and morphological alteration, including skeletal abnormalities, were observed, as well as impairment in cholinergic and serotonergic nervous systems. These findings suggest the potential of CuO NPs to interfere with the normal neurotransmission pathways, thus affecting larval morphogenesis. Overall, the embryotoxicity tests are effective for evaluation of nanoparticle effects on the health of aquatic biota. Furthermore, as the black sea urchin A. lixula demonstrated to be vulnerable to NP exposure, it may be a valid bioindicator in marine biomonitoring and ecotoxicological programmes. PMID:26026240

  4. Red algal exotics on North Sea coasts

    NASA Astrophysics Data System (ADS)

    Maggs, Christine A.; Stegenga, Herre

    1998-09-01

    A total of ten red seaweed species are recognized as introduced into the North Sea from other parts of the world. These are Asparagopsis armata and Bonnemaisonia hamifera (Bonnemaisoniales), Grateloupia doryphora (Halymeniales), Antithamnionella spirographidis, Antithamnionella ternifolia, Anotrichium furcellatum, Dasya baillouviana, ?Dasysiphonia sp., Polysiphonia harveyi and Polysiphonia senticulosa (Ceramiales). The oldest of these is B. hamifera, introduced prior to 1890, while the most recent, ?Dasysiphonia sp., was first found in 1994 and still requires taxonomic investigation. A variety of distribution patterns is seen, with geographical ranges varying from general within the North Sea to very restricted. The diversity of introduced red algae on eastern coasts of the North Sea is much greater than in the west. The most likely explanation for this pattern is that French coasts were the initial site of introduction for many of the seaweeds, which were then distributed northwards by the residual surface currents. Their increasing success in the Netherlands has probably been promoted by the drastically changed local hydrodynamic conditions which have also permitted the recent introduction of many native European species. Of the biological features of species that may favour their success as introductions, clonal vegetative propagation, often with specialized propagules or fragmentation mechanisms, is almost ubiquitous. Low-temperature tolerances can be inferred, but data are sparse. Many of the alien red algae in the North Sea contain anti-grazing compounds such as bromophenols, which may contribute to their invasive potential by deterring grazing sufficiently to permit establishment of an inoculum.

  5. Formation and spreading of Red Sea Outflow Water in the Red Sea

    NASA Astrophysics Data System (ADS)

    Zhai, Ping; Bower, Amy S.; Smethie, William M.; Pratt, Larry J.

    2015-09-01

    Hydrographic data, chlorofluorocarbon-12 (CFC-12) and sulfur hexafluoride (SF6) measurements collected in March 2010 and September-October 2011 in the Red Sea, as well as an idealized numerical experiment are used to study the formation and spreading of Red Sea Outflow Water (RSOW) in the Red Sea. Analysis of inert tracers, potential vorticity distributions, and model results confirm that RSOW is formed through mixed-layer deepening caused by sea surface buoyancy loss in winter in the northern Red Sea and reveal more details on RSOW spreading rates, pathways, and vertical structure. The southward spreading of RSOW after its formation is identified as a layer with minimum potential vorticity and maximum CFC-12 and SF6. Ventilation ages of seawater within the RSOW layer, calculated from the partial pressure of SF6 (pSF6), range from 2 years in the northern Red Sea to 15 years at 17°N. The distribution of the tracer ages is in agreement with the model circulation field which shows a rapid transport of RSOW from its formation region to the southern Red Sea where there are longer circulation pathways and hence longer residence time due to basin wide eddies. The mean residence time of RSOW within the Red Sea estimated from the pSF6 age is 4.7 years. This time scale is very close to the mean transit time (4.8 years) for particles from the RSOW formation region to reach the exit at the Strait of Bab el Mandeb in the numerical experiment.

  6. Invertebrate bioassays with North Sea water samples. I. Structural effects on embryos and larvae of serpulids, oysters and sea urchins

    NASA Astrophysics Data System (ADS)

    Klöckner, K.; Rosenthal, H.; Willführ, J.

    1985-03-01

    Structural effects of bottom and surface water samples from two dumping grounds in the inner German Bight on the development of three meroplanktonic organisms (Pomatoceros triqueter: Polychaeta, Psammechinus miliaris: Echinodermata and Crassostrea gigas, Mollusca) were investigated. The titaniumdioxide dumping site was sampled immediately after dumping (within the visible waste trail 1 km behind the vessel), and 10 h after dumping. Samples were taken in the sewage sludge deposition area in the intervals between the usual dumping activities, regardless of the exact dumping schedule. The preserved bioassay test organisms were inspected microscopically to count percentages of “normal” larval hatch in test water samples, reference water samples and laboratory aged control water samples (5 to 10 replicates). The relative water quality at various dumping sites was expressed in terms of “net risk”-values (Woelke, 1972) compared to hatching rates observed in the controls. Larval development of P. triqueter was significantly suppressed (up to -22 % “net risk”) in trail water of the titanium dioxide dump site while the development of sea urchin larvae was still affected in the 10 h surface samples. Hatching of all test organisms in bottom-water samples from the centre of the sewage sludge dump site was affected to different degrees when compared to reference areas about 4 km north or 6 km northwest of the dumping area. The general usefulness of standardized bioassay procedures in pollution monitoring programmes is discussed. The results presented here call for further verification to minimize experimental background variability and to enlarge the catalogue of suitable effects criteria.

  7. RAPID AQUATIC TOXICITY ASSAY USING INCORPORATION OF TRITIATED-THYMIDINE INTO SEA URCHIN, 'ARBACIA PUNCTULATA', EMBRYO: EVALUATION OF TOXICANT EXPOSURE PROCEDURES

    EPA Science Inventory

    Toxicity of substances in seawater was measured using growth inhibition of embryonic sea urchins during a short period after fertilization. Growth of Arbacia punctulata embryos was monitored by incorporation of tritium-labeled thymidine. The paper presents a comparison of toxican...

  8. Extraordinary Diversity of Immune Response Proteins among Sea Urchins: Nickel-Isolated Sp185/333 Proteins Show Broad Variations in Size and Charge.

    PubMed

    Sherman, Lauren S; Schrankel, Catherine S; Brown, Kristy J; Smith, L Courtney

    2015-01-01

    Effective protection against pathogens requires the host to produce a wide range of immune effector proteins. The Sp185/333 gene family, which is expressed by the California purple sea urchin Strongylocentrotus purpuratus in response to bacterial infection, encodes a highly diverse repertoire of anti-pathogen proteins. A subset of these proteins can be isolated by affinity to metal ions based on multiple histidines, resulting in one to four bands of unique molecular weight on standard Western blots, which vary depending on the individual sea urchin. Two dimensional gel electrophoresis (2DE) of nickel-isolated protein samples followed by Western blot was employed to detect nickel-isolated Sp185/333 (Ni-Sp185/333) proteins and to evaluate protein diversity in animals before and after immune challenge with marine bacteria. Ni-Sp185/333 proteins of the same molecular weight on standard Western blots appear as a broad complex of variants that differ in pI on 2DE Western blots. The Ni-Sp185/333 protein repertoire is variable among animals, and shows a variety of changes among individual sea urchins in response to immune challenges with both the same and different species of bacteria. The extraordinary diversity of the Ni-Sp185/333 proteins may provide significant anti-pathogen capabilities for sea urchins that survive solely on innate immunity. PMID:26406912

  9. Extraordinary Diversity of Immune Response Proteins among Sea Urchins: Nickel-Isolated Sp185/333 Proteins Show Broad Variations in Size and Charge

    PubMed Central

    Sherman, Lauren S.; Schrankel, Catherine S.; Brown, Kristy J.; Smith, L. Courtney

    2015-01-01

    Effective protection against pathogens requires the host to produce a wide range of immune effector proteins. The Sp185/333 gene family, which is expressed by the California purple sea urchin Strongylocentrotus purpuratus in response to bacterial infection, encodes a highly diverse repertoire of anti-pathogen proteins. A subset of these proteins can be isolated by affinity to metal ions based on multiple histidines, resulting in one to four bands of unique molecular weight on standard Western blots, which vary depending on the individual sea urchin. Two dimensional gel electrophoresis (2DE) of nickel-isolated protein samples followed by Western blot was employed to detect nickel-isolated Sp185/333 (Ni-Sp185/333) proteins and to evaluate protein diversity in animals before and after immune challenge with marine bacteria. Ni-Sp185/333 proteins of the same molecular weight on standard Western blots appear as a broad complex of variants that differ in pI on 2DE Western blots. The Ni-Sp185/333 protein repertoire is variable among animals, and shows a variety of changes among individual sea urchins in response to immune challenges with both the same and different species of bacteria. The extraordinary diversity of the Ni-Sp185/333 proteins may provide significant anti-pathogen capabilities for sea urchins that survive solely on innate immunity. PMID:26406912

  10. Sequential expression of germ-layer specific molecules in the sea urchin embryo.

    PubMed

    Wessel, G M; McClay, D R

    1985-10-01

    Described are two germ-layer specific molecules that appear coincident with the formation of two germ layer cell lineages in the sea urchin embryo. Meso1 is a molecule of 380 kDa that is first detected at the time of primary mesenchyme cell delamination from the wall of the blastula. Endo1 is a molecule of 320 kDa that appears on endoderm cells at the time of archenteron formation a few hours after Meso1 appears. Both antigens are identified by monoclonal antibodies. The appearance of these antigens is described by immunofluorescence microscopy, and quantitative data on their localization has been obtained by ultrastructural immunoelectron microscopy. The synthesis of the molecules has been followed by pulse-chase immunoprecipitation. Meso1 is first expressed in trans Golgi-like saccules, is concentrated in peripheral low electron-dense vesicles, and is found throughout the plasma membrane of the mesenchymal cells and their filopodial extensions. Newly translated Meso1 can first be immunoprecipitated upon differentiation of the mesoderm cell lineage, and pulse-chase studies suggest that the determinant is the result of a post-translational modification. [35S]Methionine pulses early in development followed by a chase to the mesenchyme blastula or prism stage show that at least a portion of the molecule is translated well in advance of the mesenchyme blastula stage. Endo1, in contrast, does not appear to be translated until the onset of gastrulation, just preceding the post-translational expression of the Endo1 determinant. Endo1 is localized to the apical and basolateral cell surfaces of the midgut and hindgut. No label is detected in foregut cells, demonstrating a heterogeneity of cell populations within the endoderm cell lineage corresponding to a difference in morphology. In addition, Endo1 is shown to be the result of new transcription by the embryonic genome. Even though the function of neither molecule is known, together they show the spatial and temporal

  11. Absence of postzygotic isolating mechanisms: evidence from experimental hybridization between two species of tropical sea urchins.

    PubMed

    Rahman, M Aminur; Uehara, Tsuyoshi; Arshad, Aziz; Yusoff, Fatimah Md; Shamsudin, Mariana Nor

    2012-10-01

    Two reef margin species of tropical sea urchins, Echinometra sp. C (Ec) and Echinometra oblonga (Eo), occur sympatrically on Okinawa intertidal reefs in southern Japan. Hybridization between these species was examined through a series of cross-fertilization experiments. At limited sperm concentrations, where conspecific crosses reached near 100% fertilization, both heterospecific crosses showed high fertilization rates (81%-85%). The compatibility of the gametes demonstrated that if gamete recognition molecules are involved in fertilization of these species, they are not strongly species-specific. We found that conspecific crosses reached peak fertilization levels much faster than did heterospecific crosses, indicating the presence of a prezygotic barrier to hybridization in the gametes. Larval survival, metamorphosis, and juvenile and adult survival of hybrid groups were nearly identical to those of their parent species. Hybrids from crosses in both directions developed normally through larval stages to sexually mature adults, indicating that neither gametic incompatibility nor hybrid inviability appeared to maintain reproductive isolation between these species. In adults, Ec×Ec crosses gave the highest live weight, followed by Eo (ova)×Ec (sperm), Ec (ova)×Eo (sperm), and Eo×Eo. Other growth performance measures (viz., test size, Aristotle's lantern length, and gonad index) of hybrid groups and their parental siblings showed the same trends. The phenotypic color patterns of the hybrids were closer to the maternal coloration, whereas spine length, tube-foot and gonad spicule characteristics, pedicellaria valve length, and gamete sizes showed intermediate features. Adult F(1) hybrids were completely fertile and displayed high fertilization success in F(1) backcrosses, eliminating the likelihood that hybrid sterility is a postzygotic mechanism of reproductive isolation. Conversely, intensive surveys failed to find hybrid individuals in the field, suggesting the

  12. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo

    NASA Technical Reports Server (NTRS)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; Otim, Ochan; Brown, C. Titus; Livi, Carolina B.; Lee, Pei Yun; Revilla, Roger; Schilstra, Maria J.; Clarke, Peter J C.; Rust, Alistair G.; Pan, Zhengjun; Arnone, Maria I.; Rowen, Lee; Cameron, R. Andrew; McClay, David R.; Hood, Leroy; Bolouri, Hamid

    2002-01-01

    We present the current form of a provisional DNA sequence-based regulatory gene network that explains in outline how endomesodermal specification in the sea urchin embryo is controlled. The model of the network is in a continuous process of revision and growth as new genes are added and new experimental results become available; see http://www.its.caltech.edu/mirsky/endomeso.htm (End-mes Gene Network Update) for the latest version. The network contains over 40 genes at present, many newly uncovered in the course of this work, and most encoding DNA-binding transcriptional regulatory factors. The architecture of the network was approached initially by construction of a logic model that integrated the extensive experimental evidence now available on endomesoderm specification. The internal linkages between genes in the network have been determined functionally, by measurement of the effects of regulatory perturbations on the expression of all relevant genes in the network. Five kinds of perturbation have been applied: (1) use of morpholino antisense oligonucleotides targeted to many of the key regulatory genes in the network; (2) transformation of other regulatory factors into dominant repressors by construction of Engrailed repressor domain fusions; (3) ectopic expression of given regulatory factors, from genetic expression constructs and from injected mRNAs; (4) blockade of the beta-catenin/Tcf pathway by introduction of mRNA encoding the intracellular domain of cadherin; and (5) blockade of the Notch signaling pathway by introduction of mRNA encoding the extracellular domain of the Notch receptor. The network model predicts the cis-regulatory inputs that link each gene into the network. Therefore, its architecture is testable by cis-regulatory analysis. Strongylocentrotus purpuratus and Lytechinus variegatus genomic BAC recombinants that include a large number of the genes in the network have been sequenced and annotated. Tests of the cis-regulatory predictions of

  13. Molecular biodiversity of Red Sea demosponges.

    PubMed

    Erpenbeck, Dirk; Voigt, Oliver; Al-Aidaroos, Ali M; Berumen, Michael L; Büttner, Gabriele; Catania, Daniela; Guirguis, Adel Naguib; Paulay, Gustav; Schätzle, Simone; Wörheide, Gert

    2016-04-30

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters. PMID:26776057

  14. Shifting environmental baselines in the Red Sea.

    PubMed

    Price, A R G; Ghazi, S J; Tkaczynski, P J; Venkatachalam, A J; Santillan, A; Pancho, T; Metcalfe, R; Saunders, J

    2014-01-15

    The Red Sea is among the world's top marine biodiversity hotspots. We re-examined coastal ecosystems at sites surveyed during the 1980s using the same methodology. Coral cover increased significantly towards the north, mirroring the reverse pattern for mangroves and other sedimentary ecosystems. Latitudinal patterns are broadly consistent across both surveys and with results from independent studies. Coral cover showed greatest change, declining significantly from a median score of 4 (1000-9999 m(2)) to 2 (10-99m(2)) per quadrat in 2010/11. This may partly reflect impact from coastal construction, which was evident at 40% of sites and has significantly increased in magnitude over 30 years. Beach oil has significantly declined, but shore debris has increased significantly. Although substantial, levels are lower than at some remote ocean atolls. While earlier reports have suggested that the Red Sea is generally healthy, shifting environmental baselines are evident from the current study. PMID:24246651

  15. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus.

    PubMed

    Evans, Tyler G; Padilla-Gamiño, Jacqueline L; Kelly, Morgan W; Pespeni, Melissa H; Chan, Francis; Menge, Bruce A; Gaylord, Brian; Hill, Tessa M; Russell, Ann D; Palumbi, Stephen R; Sanford, Eric; Hofmann, Gretchen E

    2015-07-01

    Advances in nucleic acid sequencing technology are removing obstacles that historically prevented use of genomics within ocean change biology. As one of the first marine calcifiers to have its genome sequenced, purple sea urchins (Strongylocentrotus purpuratus) have been the subject of early research exploring genomic responses to ocean acidification, work that points to future experiments and illustrates the value of expanding genomic resources to other marine organisms in this new 'post-genomic' era. This review presents case studies of S. purpuratus demonstrating the ability of genomic experiments to address major knowledge gaps within ocean acidification. Ocean acidification research has focused largely on species vulnerability, and studies exploring mechanistic bases of tolerance toward low pH seawater are comparatively few. Transcriptomic responses to high pCO₂ seawater in a population of urchins already encountering low pH conditions have cast light on traits required for success in future oceans. Secondly, there is relatively little information on whether marine organisms possess the capacity to adapt to oceans progressively decreasing in pH. Genomics offers powerful methods to investigate evolutionary responses to ocean acidification and recent work in S. purpuratus has identified genes under selection in acidified seawater. Finally, relatively few ocean acidification experiments investigate how shifts in seawater pH combine with other environmental factors to influence organism performance. In S. purpuratus, transcriptomics has provided insight into physiological responses of urchins exposed simultaneously to warmer and more acidic seawater. Collectively, these data support that similar breakthroughs will occur as genomic resources are developed for other marine species. PMID:25773301

  16. Hyperlensing at NIR frequencies using a hemispherical metallic nanowire lens in a sea-urchin geometry

    NASA Astrophysics Data System (ADS)

    Bisht, Ankit; He, Wei; Wang, Xiaotian; Wu, Linda Y. L.; Chen, Xiaodong; Li, Shuzhou

    2016-05-01

    Label-free and real time far-field super-resolution imaging (hyperlensing) at the nanoscale is of significant interest where sub-λ imaging remains a constraint because of Abbe's diffraction limit. Though by utilizing anisotropic permittivities, metal-dielectric multilayers have been successful in reconstructing high-frequency components of sub-λ objects, yet they remain cumbersome and expensive to make. Most of the multilayer structures require multiple vacuum deposition cycles and are plagued by stringent requirements on the surface roughness of metallic layers. In contrast to the multilayer structure here we propose a 3D hyperbolic metamaterial model composed of metallic nanorods arranged in a sea-urchin geometry as a hyper-lensing device, which is capable of projecting and magnifying diffraction limited information into the far-field at Near-infrared (NIR) frequencies. The hyperlens generates a band of flat hyperbolic dispersions in spherical coordinates, which in turn supports the propagation of high wave-vector spatial harmonics leading to far-field super-resolution imaging. Using full-wave finite-difference time-domain (FDTD) simulations with diffraction limited trimer, quadrumer and ringed objects etched on thin perfect electric conductor (PEC) films, we show that the hyperlens model can achieve magnification factors of up to 10× in the far-field (~4.5λ from the object's surface) under a light source with a wavelength of 1 μm, with successful resolution down to 220 nm (~λ/5). The magnified image field distribution projected into the far-field is shown to follow the object under a reduction in the symmetry. These results are important for making progress in the realization of real-time biomolecular imaging systems, eliminating the need for near-field scanning, destructive electron microscopy and various image post-processing techniques.Label-free and real time far-field super-resolution imaging (hyperlensing) at the nanoscale is of significant interest

  17. Episodic sea-floor spreading in the Southern Red Sea

    NASA Astrophysics Data System (ADS)

    Almalki, Khalid A.; Betts, Peter G.; Ailleres, Laurent

    2014-03-01

    The Red Sea represents the most spectacular example of a juvenile ocean basin on the modern Earth. Synthesis of regional aeromagnetic data, gravity data, seismic refraction data coupled with structural mapping from the Farasan Islands suggest that the opening of the Red Sea is complex and episodic. Modeling of magnetic and gravity data constrained by seismic refraction data reveals the Arabian Shelf is underlain by oceanic and transitional crust and that mafic diking and intrusions are focused at the continental-transitional crust boundary. This relationship is interpreted to indicate that early Miocene diking along the Arabian Escarpment heralded termination of oceanic basin formation and a shift in the locus of extension focused from a central mid-ocean ridge spreading center to the continental-transitional crust zone. Uplift along the Arabian Escarpment caused erosion and Middle to Late Miocene sedimentation of the Farasan Bank onto existing oceanic crust, suggesting that the extensive sedimentary banks of the southern Red Sea are not passive margins. Re-initiation of spreading occurred at ca 5 Ma. Pliocene to Pleistocene Shelf reef systems (Farasan Islands), developed on the flanks of the spreading ridge, are extensively overprinted by normal faults, suggesting that not all crustal extension is accommodated by active spreading.

  18. Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and anti-adhesive activity

    PubMed Central

    Karakostis, Kostantinos; Costa, Caterina; Zito, Francesca; Matranga, Valeria

    2015-01-01

    Galectin family members specifically bind beta-galactoside derivatives and are involved in different cellular events, including cell communication, signalling, apoptosis, and immune responses. Here, we report a tandem-repeat type galectin from the Paracentrotus lividus sea urchin embryo, referred to as Pl-GAL-8. The 933nt sequence encodes a protein of 34.73 kDa, containing the conserved HFNPRF and WGxExR motifs in the two highly similar carbohydrate-recognition domains (CRD). The three-dimensional protein structure model of the N-CRD confirms the high evolutionary conservation of carbohydrate binding sites. The temporal gene expression is regulated during development and transcripts localize at the tip of the archenteron at gastrula stage, in a subset of the secondary mesenchyme cells that differentiate into blastocoelar (immune) cells. Functional studies using a recombinant Pl-GAL-8 expressed in bacteria demonstrate its hemo-agglutinating activity on human red blood cells through the binding to lactose, as well as its ability in inhibiting the adhesion of human Hep-G2 cells to the substrate. The recent implications in autoimmune diseases and inflammatory disorders make Gal-8 an attractive candidate for therapeutic purposes. Our results offer a solid basis for addressing the use of the new Pl-GAL-8 in functional and applicative studies, respectively in the developmental and biomedical fields. PMID:26640155

  19. Diepoxybutane and mitomycin C toxicity is associated with the induction of oxidative DNA damage in sea urchin embryos.

    PubMed

    Pagano, G; Degan, P; De Biase, A; Iaccarino, M; Warnau, M

    2001-12-01

    Diepoxybutane (DEB)- and mitomycin C (MMC)-associated toxicity was investigated in embryos from the sea urchin (SU) species Sphaerechinus granularis. DEB- and MMC-induced toxicity resulted in S. granularis embryos and larvae at concentrations ranging 10(-5) to 10(-4) M DEB, and 3 x 10(-6) to 3 x 10(-5) M MMC, in terms of larval malformations, developmental arrest and mortality. The formation of DNA oxidative damage, 8-hydroxy-2'-deoxyguanosine (8-OHdG) was measured in DEB- and in MMC-exposed embryos (at gastrula stage). A dose-dependent increase in 8-OHdG levels was observed that was significantly correlated with DEB- and MMC-induced developmental defects. The results lend further support to the body of evidence associating both DEB and MMC toxicity with oxidative stress, including DNA oxidative damage. PMID:11936580

  20. Functional variants of 5S rRNA in the ribosomes of common sea urchin Paracentrotus lividus.

    PubMed

    Dimarco, Eufrosina; Cascone, Eleonora; Bellavia, Daniele; Caradonna, Fabio

    2012-10-15

    We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus; this study, performed at DNA level only, lends itself as starting point to verify that these clusters could contain transcribed genes, then, to demonstrate the presence of heterogeneity at functional RNA level, also. In the present work we report in P. lividus ribosomes the existence of several transcribed variants of the 5S rRNA and we associate all transcribed variants to the cluster to which belong. Our finding is the first demonstration of the presence of high heterogeneity in functional 5S rRNA molecules in animal ribosomes, a feature that had been considered a peculiarity of some plants. PMID:22967708

  1. SEM and x-ray microanalysis of cellular differentiation in Sea Urchin Embryos: a frozen hydrated study

    SciTech Connect

    Klein, S.B.

    1985-12-01

    Quantitative studies of major chemical element distribution among individual differentiating cells were attempted using scanning electron microscopy. Frozen hydrated embryos of the sea urchin Strongelocentrotus purpuratus were examined at three stages: blastula, mesenchyme blastula, and early gastrula. The blastocoel matrix contained large beads of approximately 1 ..mu..m diameter. The cells of the archenteron lacked well defined cell boundaries. Characteristic levels of beam damage and charging provided structural information. The primary mesenchyme cells within the blastocoel were particularly susceptible to both effects. Damaging effects were noted in material stored in liquid nitrogen longer than three months. Ice crystal growth, shrinkage, elemental shift, density changes and charge accumulation may take place in these stored specimens. 151 refs., 50 figs., 3 tabs.

  2. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the

  3. Fluctuation of the CaS -sequestering activity of permeabilized sea urchin embryos during the cell cycle

    SciTech Connect

    Suprynowicz, F.A.; Mazia, D.

    1985-04-01

    The authors have followed the sequestration of CaS by intracellular compartments in sea urchin embryos through the first cell cycles. To gain biochemical access to these compartments, the embryos were permeabilized by brief exposure to an intense electric field. Sequestration was determined as the retention of tracer, UVCa, after filtration of aliquots on Millipore filters. The permeabilized cells sequester CaS at a constant rate for at least 20 min. The CaS -sequestering activities of embryos that are permeabilized at successive stages of the first cell cycle (one-cell stage) progressively increase to 5 times the initial level. The rate of sequestration is maximal during telophase and, in some populations of zygotes, is nearly as great throughout prophase. Over the course of the second cell cycle (two-cell stage), the activity undergoes a 2-fold oscillation that bears the same temporal relationship to mitosis as the previous fluctuation.

  4. First Morphological and Molecular Evidence of the Negative Impact of Diatom-Derived Hydroxyacids on the Sea Urchin Paracentrotus lividus

    PubMed Central

    Varrella, Stefano; Romano, Giovanna; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria

    2016-01-01

    Oxylipins (including polyunsaturated aldehydes [PUAs], hydoxyacids, and epoxyalcohols) are the end-products of a lipoxygenase/hydroperoxide lyase metabolic pathway in diatoms. To date, very little information is available on oxylipins other than PUAs, even though they represent the most common oxylipins produced by diatoms. Here, we report, for the first time, on the effects of 2 hydroxyacids, 5- and 15-HEPE, which have never been tested before, using the sea urchin Paracentrotus lividus as a model organism. We show that HEPEs do induce developmental malformations but at concentrations higher when compared with PUAs. Interestingly, HEPEs also induced a marked developmental delay in sea urchin embryos, which has not hitherto been reported for PUAs. Recovery experiments revealed that embryos do not recover following treatment with HEPEs. Finally, we report the expression levels of 35 genes (involved in stress, development, differentiation, skeletogenesis, and detoxification processes) to identify the molecular targets affected by HEPEs. We show that the 2 HEPEs have very few common molecular targets, specifically affecting different classes of genes and at different times of development. In particular, 15-HEPE switched on fewer genes than 5-HEPE, upregulating mainly stress-related genes at a later pluteus stage of development. 5-HEPE was stronger than 15-HEPE, targeting 24 genes, mainly at the earliest stages of embryo development (at the blastula and swimming blastula stages). These findings highlight the differences between HEPEs and PUAs and also have important ecological implications because many diatom species do not produce PUAs, but rather these other chemicals are derived from the oxidation of fatty acids. PMID:26984781

  5. Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B

    PubMed Central

    Russo, Roberta; Zito, Francesca; Costa, Caterina; Bonaventura, Rosa

    2010-01-01

    Members of the 14-3-3 protein family are involved in many important cellular events, including stress response, survival and apoptosis. Genes of the 14-3-3 family are conserved from plants to humans, and some members are responsive to UV radiation. Here, we report the isolation of the complete cDNA encoding the 14-3-3 epsilon isoform from Paracentrotus lividus sea urchin embryos, referred to as Pl14-3-3ε, and the phylogenetic relationship with other homologues described in different phyla. Pl14-3-3ε mRNA levels were measured by QPCR during development and found to increase from the mesenchyme blastula to the prism stage. In response to UV-B (312 nm) exposure, early stage embryos collected 2 h later showed a 2.3-fold (at 400 J/m2) and a 2.7-fold (at 800 J/m2) increase in Pl14-3-3ε transcript levels compared with controls. The spatial expression of Pl14-3-3ε mRNA, detected by whole mount in situ hybridization in both control and UV-B exposed embryos, harvested at late developmental stages, showed transcripts to be located in the archenteron of gastrula stage and widely distributed in all germ layers, respectively. The Pl14-3-3ε mRNA delocalization parallels the failure in archenteron elongation observed morphologically, as well as the lack of specific endoderm markers, investigated by indirect immuno-fluorescence on whole mount embryos. Results confirm the involvement of 14-3-3ε in the stress response elicited by UV-B and demonstrate, for the first time, its contribution at the transcriptional level in the sea urchin embryo. PMID:20607471

  6. Tissue regeneration and biomineralization in sea urchins: role of Notch signaling and presence of stem cell markers.

    PubMed

    Reinardy, Helena C; Emerson, Chloe E; Manley, Jason M; Bodnar, Andrea G

    2015-01-01

    Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages) and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa) were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes) suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions. PMID:26267358

  7. Expression of tryptophan 5-hydroxylase gene during sea urchin neurogenesis and role of serotonergic nervous system in larval behavior.

    PubMed

    Yaguchi, Shunsuke; Katow, Hideki

    2003-11-10

    Tryptophan 5-hydroxylase (TPH) is the rate-limiting enzyme in the biosynthesis of serotonin. cDNA cloning of TPH was carried out, and the occurrence of spatiotemporal transcription of TPH message was examined in larvae of the sea urchin, Hemicentrotus pulcherrimus (HpTPH), with in situ hybridization by using the tyramide signal amplification (TSA) technique and Northern hybridization. Based on deduced amino acids sequence of HpTPH, phylogenetically sea urchin locates at the closest position to vertebrates among invertebrates, and HpTPH had common conserved sequences in a catalytic domain. Initiation of HpTPH transcription occurred at the late gastrula stage exclusively in serotonin cells of apical ganglion (SAG) that was composed of a cluster of HpTPH-positive cells and the negative cells in between. In situ hybridization showed that the mRNA expression pattern was similar to the immunohistochemical localization of serotonin cells reported before (Bisgrove and Burke [1986] Dev. Growth Differ. 28:557-569; Yaguchi et al. [2000] Dev. Growth Differ. 42:479-488). p-Chlorophenylalanine (CPA), an irreversible inhibitor of TPH activity, considerably decreased serotonin content in the serotonin cells, whereas the HpTPH expression pattern and timing, and the extension of neurofibers from SAG cells were apparently unaffected, suggesting CPA exclusively perturbed synthesis of serotonin but not nervous system organization. CPA-treated larvae did not swim, despite the occurrence of ciliary beating in culture chamber, suggesting that proper serotonin synthesis is necessary for normal swimming of the larvae. PMID:14528449

  8. Molecular cloning of five individual stage- and tissue-specific mRNA sequences from sea urchin pluteus embryos.

    PubMed Central

    Fregien, N; Dolecki, G J; Mandel, M; Humphreys, T

    1983-01-01

    Five developmentally regulated sea urchin mRNA sequences which increase in abundance between the blastula and pluteus stages of development were isolated by molecular cloning of cDNA. The regulated sequences all appeared in moderately abundant mRNA molecules of pluteus cells and represented 4% of the clones tested. There were no regulated sequences detected in the 40% of the clones which hybridized to the most abundant mRNA, and the screening procedures were inadequate to detect possible regulation in the 20 to 30% of the clones presumably derived from rare-class mRNA. The reaction of 32P[cDNA] from blastula and pluteus mRNA to dots of the cloned DNAs on nitrocellulose filters indicated that the mRNAs complementary to the different cloned pluteus-specific sequences were between 3- and 47-fold more prevalent at the pluteus stage than at the blastula stage. Polyadenylated RNA from different developmental stages was transferred from electrophoretic gels to nitrocellulose filters and reacted to the different cloned sequences. The regulated mRNAs were undetectable in the RNA of 3-h embryos, became evident at the hatching blastula stage, and reached a maximum in abundance by the gastrula or pluteus stage. Certain of the clones reacted to two sizes of mRNA which did not vary coordinately with development. Transfers of RNA isolated from each of the three cell layers of pluteus embryos that were reacted to the cloned sequences revealed that two of the sequences were found in the mRNA of all three layers, two were ectoderm specific, and one was endoderm specific. Four of the regulated sequences were complementary to one or two major bands and one to at least 50 bands on Southern transfers of restriction endonuclease-digested total sea urchin DNA. Images PMID:6688291

  9. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites.

    PubMed

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-03-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future. PMID:26884248

  10. Tissue Regeneration and Biomineralization in Sea Urchins: Role of Notch Signaling and Presence of Stem Cell Markers

    PubMed Central

    Reinardy, Helena C.; Emerson, Chloe E.; Manley, Jason M.; Bodnar, Andrea G.

    2015-01-01

    Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages) and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa) were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes) suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions. PMID:26267358

  11. Family Growth and Survival Response to Two Simulated Water Temperature Environments in the Sea Urchin Strongylocentrotus intermedius.

    PubMed

    Chang, Yaqing; Tian, Xiaofei; Zhang, Weijie; Han, Fenjie; Chen, Shun; Zhou, Mi; Pang, Zhenguo; Qi, Shoubing; Feng, Wenping

    2016-01-01

    Heat tolerance is a target trait in the selective breeding of the sea urchin Strongylocentrotus intermedius, as it plays an important role in the survival and growth of cultured S. intermedius during summer. We investigated family growth and survival response to two temperature treatments to evaluate the genotype by temperature interaction (GEI) in the family selection of S. intermedius. Sea urchins from 11 families were exposed to two simulated water temperature environments-high temperature (HE) and control temperature (CE)-for 12 months, with each experiment divided into four periods (P1, stress-free period I; P2, stress-full high period; P3, stress-response period; and P4, stress-free period II) based on the temperature changes and the survival. Test diameter (TD), body weight (BW), and survival rate (SR) in HE and CE were measured monthly. Effects of family, temperature, and family-temperature interaction on TD, BW, SR, and specific growth rate (SGR) for BW were examined. In CE, BW differed significantly between families in P2, P3, and P4, while TD differed significantly between families in P3 and P4 (p < 0.05). In HE, family had significant effects on BW in P4, and on TD in P3 and P4, while temperature had significant effects on SR, TD, and BW in P3 and P4 (p < 0.05). GEI effects were not significant for TD or BW; however, family ranking changes revealed the existence of GEI in SR. The GEI results indicate the necessity of applying family selection in CE and HE for SR, but not for TD or BW. These results may provide a guide for aquaculture and selective breeding of S. intermedius under temperature pressure. PMID:27589722

  12. Species and gamete-specific fertilization success of two sea urchins under near future levels of pCO2

    NASA Astrophysics Data System (ADS)

    Sung, Chan-Gyung; Kim, Tae Won; Park, Young-Gyu; Kang, Seong-Gil; Inaba, Kazuo; Shiba, Kogiku; Choi, Tae Seob; Moon, Seong-Dae; Litvin, Steve; Lee, Kyu-Tae; Lee, Jung-Suk

    2014-09-01

    Since the Industrial Revolution, rising atmospheric CO2 concentration has driven an increase in the partial pressure of CO2 in seawater (pCO2), thus lowering ocean pH. We examined the separate effects of exposure of gametes to elevated pCO2 and low pH on fertilization success of the sea urchin Strongylocentrotus nudus. Sperm and eggs were independently exposed to seawater with pCO2 levels ranging from 380 (pH 7.96-8.3) to 6000 ppmv (pH 7.15-7.20). When sperm were exposed, fertilization rate decreased drastically with increased pCO2, even at a concentration of 450 ppmv (pH range: 7.94 to 7.96). Conversely, fertilization of Hemicentrotus pulcherrimus was not significantly changed even when sperm was exposed to pCO2 concentrations as high as 750 ppmv. Exposure of S. nudus eggs to seawater with high pCO2 did not affect fertilization success, suggesting that the effect of increased pCO2 on sperm is responsible for reduced fertilization success. Surprisingly, this result was not related to sperm motility, which was insensitive to pCO2. When seawater was acidified using HCl, leaving pCO2 constant, fertilization success in S. nudus remained high (> 80%) until pH decreased to 7.3. While further studies are required to elucidate the physiological mechanism by which elevated pCO2 impairs sperm and reduces S. nudus fertilization, this study suggests that in the foreseeable future, sea urchin survival may be threatened due to lower fertilization success driven by elevated pCO2 rather than by decreased pH in seawater.

  13. First Morphological and Molecular Evidence of the Negative Impact of Diatom-Derived Hydroxyacids on the Sea Urchin Paracentrotus lividus.

    PubMed

    Varrella, Stefano; Romano, Giovanna; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G; Costantini, Maria

    2016-06-01

    Oxylipins (including polyunsaturated aldehydes [PUAs], hydoxyacids, and epoxyalcohols) are the end-products of a lipoxygenase/hydroperoxide lyase metabolic pathway in diatoms. To date, very little information is available on oxylipins other than PUAs, even though they represent the most common oxylipins produced by diatoms. Here, we report, for the first time, on the effects of 2 hydroxyacids, 5- and 15-HEPE, which have never been tested before, using the sea urchin Paracentrotus lividus as a model organism. We show that HEPEs do induce developmental malformations but at concentrations higher when compared with PUAs. Interestingly, HEPEs also induced a marked developmental delay in sea urchin embryos, which has not hitherto been reported for PUAs. Recovery experiments revealed that embryos do not recover following treatment with HEPEs. Finally, we report the expression levels of 35 genes (involved in stress, development, differentiation, skeletogenesis, and detoxification processes) to identify the molecular targets affected by HEPEs. We show that the 2 HEPEs have very few common molecular targets, specifically affecting different classes of genes and at different times of development. In particular, 15-HEPE switched on fewer genes than 5-HEPE, upregulating mainly stress-related genes at a later pluteus stage of development. 5-HEPE was stronger than 15-HEPE, targeting 24 genes, mainly at the earliest stages of embryo development (at the blastula and swimming blastula stages). These findings highlight the differences between HEPEs and PUAs and also have important ecological implications because many diatom species do not produce PUAs, but rather these other chemicals are derived from the oxidation of fatty acids. PMID:26984781

  14. Calcium uptake and release by isolated cortices and microsomes from the unfertilized egg of the sea urchin strongylocentrotus droebachiensis

    SciTech Connect

    Oberdorf, J.A.

    1986-01-01

    Two subcellular fractions of the sea urchin egg were studied for their potential role in regulating the transient rise in cytosolic calcium that accompanies fertilization. Isolated cortices from unfertilized sea urchin eggs sequester calcium in an ATP dependent manner when incubated in a medium containing free calcium levels characteristic of the resting cell. This ATP dependent calcium uptake activity, measured in the presence of 5mM Na Azide to prevent mitochondrial accumulation, was increased by oxalate, and was blocked by 150 ..mu..M quercetin and 50 ..mu..M vanadate. Cortices preloaded with /sup 45/Ca in the presence of ATP dramatically increased their rate of calcium efflux upon the addition of (1) the calcium ionophore A23187 (10 ..mu..M), (2) trifluoperazine (200 ..mu..M), (3) concentrations of free calcium that activated cortical granule exocytosis, and (4) the calcium mobilizing agent inositol trisphosphate (IP3). This pool of calcium is most likely sequestered in the portion of the egg's endoplasmic reticulum (ER) that remains associated with the cortical region during its isolation. They have developed a method for obtaining a high yield of purified microsomal vesicles from whole eggs. This preparation also demonstrates ATP dependent calcium sequestering activity which increases in the presence of oxalate and has similar sensitivities to calcium transport inhibitors, however the isolated microsomal vesicles did not show any detectable release of calcium when exposed to IP3. Procedures originally developed for purifying calsequestrin were used to partially purify a 58,000 MW protein from the egg's microsomal vesicles.

  15. Cathepsin B/X is secreted by Echinometra lucunter sea urchin spines, a structure rich in granular cells and toxins

    PubMed Central

    2013-01-01

    Background Echinometra lucunter is a common American sea urchin responsible for the majority of the marine accidents in Brazil. Although not lethal, these accidents are reported to be extremely painful. Recently, our group described the presence of toxins in its spines that contribute to the pathological reactions. Additionally, we have observed that the E. lucunter spines can regenerate when broken. In the present work we evaluated the enzymatic activities of sea urchin spine extracts in order to identify an enzyme that could contribute not only to the toxicity, but also participate in the spine growth and regeneration. Results The spine aqueous extract was tested for peptidase activity, with synthetic substrates, in the presence and absence of inhibitors and activators. For proper enzyme classification, the FRET-substrate cleavage pattern, pH-dependency activity and Western-blot analyses were performed. The spine extract was able to cleave Z-R-MCA and Abz-GIVRAK(Dnp)-OH following pre-incubation with DTT, and was inhibited by E-64. Furthermore, the double-peaked pH curve (5 and 7) and the cleavage site proportion (4:6, R↓A:A↓K) indicate the presence of both mono and dicarboxypeptidase activities. Moreover, in Western-blot analysis, the spine extract was positive for anti-cathepsin B antibody. Conclusions E. lucunter spines extracts presented a cysteine peptidase activity that was identified as cathepsin B/X that would participate in the remodeling and growth processes of the spine, as well as in the inflammatory response to the accident. PMID:24341625

  16. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus.

    PubMed

    Della Torre, C; Bergami, E; Salvati, A; Faleri, C; Cirino, P; Dawson, K A; Corsi, I

    2014-10-21

    Nanoplastic debris, resulted from runoff and weathering breakdown of macro- and microplastics, represents an emerging concern for marine ecosystems. The aim of the present study was to investigate disposition and toxicity of polystyrene nanoparticles (NPs) in early development of sea urchin embryos (Paracentrotus lividus). NPs with two different surface charges where chosen, carboxylated (PS-COOH) and amine (PS-NH2) polystyrene, the latter being a less common variant, known to induce cell death in several in vitro cell systems. NPs stability in natural seawater (NSW) was measured while disposition and embryotoxicity were monitored within 48 h of postfertilization (hpf). Modulation of genes involved in cellular stress response (cas8, 14-3-3ε, p-38 MAPK, Abcb1, Abcc5) was investigated. PS-COOH forms microaggregates (PDI > 0.4) in NSW, whereas PS-NH2 results are better dispersed (89 ± 2 nm) initially, though they also aggregated partially with time. Their respectively anionic and cationic nature was confirmed by ζ-potential measurements. No embryotoxicity was observed for PS-COOH up to 50 μg mL(-1) whereas PS-NH2 caused severe developmental defects (EC50 3.85 μg mL(-1) 24 hpf and EC50 2.61 μg mL(-1) 48 hpf). PS-COOH accumulated inside embryo's digestive tract while PS-NH2 were more dispersed. Abcb1 gene resulted up-regulated at 48 hpf by PS-COOH whereas PS-NH2 induced cas8 gene at 24 hpf, suggesting an apoptotic pathway. In line with the results obtained with the same PS NPs in several human cell lines, also in sea urchin embryos, differences in surface charges and aggregation in seawater strongly affect their embryotoxicity. PMID:25260196

  17. Characterization of the Highly Variable Immune Response Gene Family, He185/333, in the Sea Urchin, Heliocidaris erythrogramma

    PubMed Central

    Roth, Mattias O.; Wilkins, Adam G.; Cooke, Georgina M.; Raftos, David A.; Nair, Sham V.

    2014-01-01

    This study characterizes the highly variable He185/333 genes, transcripts and proteins in coelomocytes of the sea urchin, Heliocidaris erythrogramma. Originally discovered in the purple sea urchin, Strongylocentrotus purpuratus, the products of this gene family participate in the anti-pathogen defenses of the host animals. Full-length He185/333 genes and transcripts are identified. Complete open reading frames of He185/333 homologues are analyzed as to their element structure, single nucleotide polymorphisms, indels and sequence repeats and are subjected to diversification analyses. The sequence elements that compose He185/333 are different to those identified for Sp185/333. Differences between Sp185/333 and He185/333 genes are also evident in the complexity of the sequences of the introns. He185/333 proteins show a diverse range of molecular weights on Western blots. The observed sizes and pIs of the proteins differ from predicted values, suggesting post-translational modifications and oligomerization. Immunofluorescence microscopy shows that He185/333 proteins are mainly located on the surface of coelomocyte subpopulations. Our data demonstrate that He185/333 bears the same substantial characteristics as their S. purpuratus homologues. However, we also identify several unique characteristics of He185/333 (such as novel element patterns, sequence repeats, distribution of positively-selected codons and introns), suggesting species-specific adaptations. All sequences in this publication have been submitted to Genbank (accession numbers JQ780171-JQ780321) and are listed in table S1. PMID:25333281

  18. Primary production in the northern Red Sea

    NASA Astrophysics Data System (ADS)

    Qurban, Mohammed Ali; Balala, Arvin C.; Kumar, Sanjeev; Bhavya, P. S.; Wafar, Mohideen

    2014-04-01

    Rates of uptake of carbon and nitrogen (ammonium, nitrate and urea) by phytoplankton, along with concentrations of nutrients and chlorophyll a, in the Saudi Arabian waters of the northern Red Sea (23 °N-28 °N) were measured in autumn, 2012. Concentrations of nitrate, nitrite and phosphate within the euphotic zone were in trace amounts while those of silicon were in excess of 0.5 μmol L- 1. Concentrations of chlorophyll (Chl a) were very low within the euphotic zone (0.01-0.6 μg L- 1 at discrete depths and 1.53-21.5 mg m- 2 as column-integrated values). A deep chlorophyll maximum and a nitrite maximum were present between 60 and 80 m at almost all of the stations occupied. Rates of carbon uptake at discrete depths ranged from 0.02 to 3 μg C L- 1 h- 1. Chl-normalized carbon uptake rates related with ambient light in a Michaelis-Menten kinetic pattern. About 80% of the carbon uptake was attributable to the < 20 μm fraction. Ammonium and urea were the nitrogen compounds taken up in preference by phytoplankton and accounted for close to 90% of the total N uptake. Considered together, these results indicate that the waters of the northern Red Sea are oligotrophic and that the primary production is strongly N-controlled. Analyses of the data and interpretation of the results led to the following speculations: (1) the perceived north-south gradient in Chl a (and possibly in primary production) in the Red Sea is maintained by circulation of Chl- and nutrient-rich waters through a series of gyres, (2) there is a greater role for heterotrophy and microbial loop in the trophic dynamics, and (3) in situ nitrification in the euphotic zone is an important source of N for phytoplankton and consequently export of carbon to deep sea could be lesser than that indicated by f-ratios.

  19. Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence

    PubMed Central

    Wheeler, Jeanette D.; Chan, Kit Yu Karen; Anderson, Erik J.; Mullineaux, Lauren S.

    2016-01-01

    ABSTRACT Many marine organisms have complex life histories, having sessile adults and relying on the planktonic larvae for dispersal. Larvae swim and disperse in a complex fluid environment and the effect of ambient flow on larval behavior could in turn impact their survival and transport. However, to date, most studies on larvae–flow interactions have focused on competent larvae near settlement. We examined the importance of flow on early larval stages by studying how local flow and ontogeny influence swimming behavior in pre-competent larval sea urchins, Arbacia punctulata. We exposed larval urchins to grid-stirred turbulence and recorded their behavior at two stages (4- and 6-armed plutei) in three turbulence regimes. Using particle image velocimetry to quantify and subtract local flow, we tested the hypothesis that larvae respond to turbulence by increasing swimming speed, and that the increase varies with ontogeny. Swimming speed increased with turbulence for both 4- and 6-armed larvae, but their responses differed in terms of vertical swimming velocity. 4-Armed larvae swam most strongly upward in the unforced flow regime, while 6-armed larvae swam most strongly upward in weakly forced flow. Increased turbulence intensity also decreased the relative time that larvae spent in their typical upright orientation. 6-Armed larvae were tilted more frequently in turbulence compared with 4-armed larvae. This observation suggests that as larvae increase in size and add pairs of arms, they are more likely to be passively re-oriented by moving water, rather than being stabilized (by mechanisms associated with increased mass), potentially leading to differential transport. The positive relationship between swimming speed and larval orientation angle suggests that there was also an active response to tilting in turbulence. Our results highlight the importance of turbulence to planktonic larvae, not just during settlement but also in earlier stages through morphology

  20. Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence.

    PubMed

    Wheeler, Jeanette D; Chan, Kit Yu Karen; Anderson, Erik J; Mullineaux, Lauren S

    2016-05-01

    Many marine organisms have complex life histories, having sessile adults and relying on the planktonic larvae for dispersal. Larvae swim and disperse in a complex fluid environment and the effect of ambient flow on larval behavior could in turn impact their survival and transport. However, to date, most studies on larvae-flow interactions have focused on competent larvae near settlement. We examined the importance of flow on early larval stages by studying how local flow and ontogeny influence swimming behavior in pre-competent larval sea urchins, Arbacia punctulata We exposed larval urchins to grid-stirred turbulence and recorded their behavior at two stages (4- and 6-armed plutei) in three turbulence regimes. Using particle image velocimetry to quantify and subtract local flow, we tested the hypothesis that larvae respond to turbulence by increasing swimming speed, and that the increase varies with ontogeny. Swimming speed increased with turbulence for both 4- and 6-armed larvae, but their responses differed in terms of vertical swimming velocity. 4-Armed larvae swam most strongly upward in the unforced flow regime, while 6-armed larvae swam most strongly upward in weakly forced flow. Increased turbulence intensity also decreased the relative time that larvae spent in their typical upright orientation. 6-Armed larvae were tilted more frequently in turbulence compared with 4-armed larvae. This observation suggests that as larvae increase in size and add pairs of arms, they are more likely to be passively re-oriented by moving water, rather than being stabilized (by mechanisms associated with increased mass), potentially leading to differential transport. The positive relationship between swimming speed and larval orientation angle suggests that there was also an active response to tilting in turbulence. Our results highlight the importance of turbulence to planktonic larvae, not just during settlement but also in earlier stages through morphology-flow interactions

  1. Polyalkoxybenzenes from plants. 5. Parsley seed extract in synthesis of azapodophyllotoxins featuring strong tubulin destabilizing activity in the sea urchin embryo and cell culture assays.

    PubMed

    Semenova, Marina N; Kiselyov, Alex S; Tsyganov, Dmitry V; Konyushkin, Leonid D; Firgang, Sergei I; Semenov, Roman V; Malyshev, Oleg R; Raihstat, Mikhail M; Fuchs, Fabian; Stielow, Anne; Lantow, Margareta; Philchenkov, Alex A; Zavelevich, Michael P; Zefirov, Nikolay S; Kuznetsov, Sergei A; Semenov, Victor V

    2011-10-27

    A series of 4-azapodophyllotoxin derivatives with modified rings B and E have been synthesized using allylpolyalkoxybenzenes from parsley seed oil. The targeted molecules were evaluated in vivo in a phenotypic sea urchin embryo assay for antimitotic and tubulin destabilizing activity. The most active compounds identified by the in vivo sea urchin embryo assay featured myristicin-derived ring E. These molecules were determined to be more potent than podophyllotoxin. Cytotoxic effects of selected molecules were further confirmed and evaluated by conventional assays with A549 and Jurkat human leukemic T-cell lines including cell growth inhibition, cell cycle arrest, cellular microtubule disruption, and induction of apoptosis. The ring B modification yielded 6-OMe substituted molecule as the most active compound. Finally, in Jurkat cells, compound induced caspase-dependent apoptosis mediated by the apical caspases-2 and -9 and not caspase-8, implying the involvement of the intrinsic caspase-9-dependent apoptotic pathway. PMID:21916509

  2. Expression, purification, crystallization and preliminary X-ray analysis of the olfactomedin domain from the sea urchin cell-adhesion protein amassin

    SciTech Connect

    Hillier, Brian J.; Sundaresan, Vidyasankar; Stout, C. David; Vacquier, Victor D.

    2006-01-01

    The olfactomedin (OLF) domain from the sea urchin cell-adhesion protein amassin has been crystallized. A native data set extending to 2.7 Å has been collected using an in-house X-ray source. A family of animal proteins is emerging which contain a conserved protein motif known as an olfactomedin (OLF) domain. Novel extracellular protein–protein interactions occur through this domain. The OLF-family member amassin, from the sea urchin Strongylocentrotus purpuratus, has previously been identified to mediate a rapid cell-adhesion event resulting in a large aggregation of coelomocytes, the circulating immune cells. In this work, heterologous expression and purification of the OLF domain from amassin was carried out and initial crystallization trials were performed. A native data set has been collected, extending to 2.7 Å under preliminary cryoconditions, using an in-house generator. This work leads the way to the determination of the first structure of an OLF domain.

  3. Anti-mitotic activity towards sea urchin embryos in extracts from the marine haptophycean Phaeocystis pouchetii (Hariot) Lagerheim collected along the coast of northern Norway.

    PubMed

    Hansen, Espen; Eilertsen, Hans Chr; Ernstsen, Arild; Genevière, Anne-Marie

    2003-06-01

    The marine bloom-forming alga Phaeocystis pouchetii is suspected to produce some toxic compound responsible for reduced growth, fecundity and survival of other marine organisms. Sea urchin early development was used as a model to investigate the degree and nature of toxicity. Colonial cells of P. pouchetii were collected during its spring-bloom along the coast of northern Norway and maintained in culture for a short period of time in order to evaluate the concentration of toxic compounds present inside the cells or excreted to the surrounding seawater medium. Cells were harvested by filtration and toxins were extracted separately from the collected cells and the filtrate using organic solvents. We found that extracts from the filtered seawater at a concentration corresponding to 9.0 x 10(5) cells ml(-1) completely blocked cell divisions in embryos of the sea urchin Sphaerechinus granularis, whereas extracts from intact algal cells were only mildly cytotoxic. When the extracts from seawater culture medium were purified by RP-HPLC, cytotoxic activity towards S. granularis embryos was recovered in three consecutive fractions. Moreover, unfertilised eggs incubated in the active HPLC fractions became unproductive, whereas incubation of sperm gave a reduced fertilisation rate. This anti-proliferative effect was further characterized by immunofluorescence staining of sea urchin embryos. DNA labelling revealed that incubating sea urchin embryos in the purified algal extracts inhibited both pronuclei migration and fusion. Incorporation and detection of the DNA-base analogue 5-bromo-2-deoxyuridine showed that DNA-replication was blocked. Furthermore, staining of alpha-tubulin subunits demonstrated that embryonic tubulin organisation was altered. We conclude that P. pouchetii produce some anti-mitotic compound, and that senescent colonial cells to a great extent excrete this compound to their surroundings. PMID:12782080

  4. Identification of a New Sea Urchin Ets Protein, SpEts4, by Yeast One-Hybrid Screening with the Hatching Enzyme Promoter

    PubMed Central

    Wei, Zheng; Angerer, Robert C.; Angerer, Lynne M.

    1999-01-01

    We report the use of a yeast one-hybrid system to isolate a transcriptional regulator of the sea urchin embryo hatching enzyme gene, SpHE. This gene is asymmetrically expressed along the animal-vegetal axis of sea urchin embryos under the cell-autonomous control of maternal regulatory activities and therefore provides an excellent entry point for understanding the mechanism that establishes animal-vegetal developmental polarity. To search for transcriptional regulators, we used a fragment of the SpHE promoter containing several individual elements instead of the conventional bait that contains a multimerized cis element. This screen yielded a number of positive clones that encode a new member of the Ets family, named SpEts4. This protein contains transcriptional activation activity, since expression of reporter genes in yeast does not depend on the presence of the yeast GAL4 activation domain. Sequences in the N-terminal region of SpEts4 mediate the activation activity, as shown by deletion or domain-swapping experiments. The newly identified DNA binding protein binds with a high degree of specificity to a SpHE promoter Ets element and forms a complex with a mobility identical to that obtained with 9-h sea urchin embryo nuclear extracts. SpEts4 positively regulates SpHE transcription, since mutation of the SpEts4 site in SpHE promoter transgenes reduces promoter activity in vivo while SpEts4 mRNA coinjection increases its output. As expected for a positive SpHE transcriptional regulator, the timing of SpEts4 gene expression precedes the transient expression of SpHE in the very early sea urchin blastula. PMID:9891061

  5. Comparison of the receptor FGFRL1 from sea urchins and humans illustrates evolution of a zinc binding motif in the intracellular domain

    PubMed Central

    2009-01-01

    Background FGFRL1, the gene for the fifth member of the fibroblast growth factor receptor (FGFR) family, is found in all vertebrates from fish to man and in the cephalochordate amphioxus. Since it does not occur in more distantly related invertebrates such as insects and nematodes, we have speculated that FGFRL1 might have evolved just before branching of the vertebrate lineage from the other invertebrates (Beyeler and Trueb, 2006). Results We identified the gene for FGFRL1 also in the sea urchin Strongylocentrotus purpuratus and cloned its mRNA. The deduced amino acid sequence shares 62% sequence similarity with the human protein and shows conservation of all disulfides and N-linked carbohydrate attachment sites. Similar to the human protein, the S. purpuratus protein contains a histidine-rich motif at the C-terminus, but this motif is much shorter than the human counterpart. To analyze the function of the novel motif, recombinant fusion proteins were prepared in a bacterial expression system. The human fusion protein bound to nickel and zinc affinity columns, whereas the sea urchin protein barely interacted with such columns. Direct determination of metal ions by atomic absorption revealed 2.6 mole zinc/mole protein for human FGFRL1 and 1.7 mole zinc/mole protein for sea urchin FGFRL1. Conclusion The FGFRL1 gene has evolved much earlier than previously assumed. A comparison of the intracellular domain between sea urchin and human FGFRL1 provides interesting insights into the shaping of a novel zinc binding domain. PMID:20021659

  6. Sea urchins in a high-CO2 world: the influence of acclimation on the immune response to ocean warming and acidification.

    PubMed

    Brothers, C J; Harianto, J; McClintock, J B; Byrne, M

    2016-08-31

    Climate-induced ocean warming and acidification may render marine organisms more vulnerable to infectious diseases. We investigated the effects of warming and acidification on the immune response of the sea urchin Heliocidaris erythrogramma Sea urchins were gradually introduced to four combinations of temperature and pHNIST (17°C/pH 8.15, 17°C/pH 7.6, 23°C/pH 8.15 and 23°C/pH 7.6) and then held in temperature-pH treatments for 1, 15 or 30 days to determine if the immune response would adjust to stressors over time. Coelomocyte concentration and type, phagocytic capacity and bactericidal activity were measured on day 1, 15 and 30 with different sea urchins used each time. At each time point, the coelomic fluid of individuals exposed to increased temperature and acidification had the lowest coelomocyte concentrations, exhibited lower phagocytic capacities and was least effective at inhibiting bacterial growth of the pathogen Vibrio anguillarum Over time, increased temperature alleviated the negative effects of acidification on phagocytic activity. Our results demonstrate the importance of incorporating acclimation time to multiple stressors when assessing potential responses to future ocean conditions and indicate that the immune response of H. erythrogramma may be compromised under near-future ocean warming and acidification. PMID:27559066

  7. Sea urchin mtDBP is a two-faced transcription termination factor with a biased polarity depending on the RNA polymerase

    PubMed Central

    Fernandez-Silva, Patricio; Polosa, Paola Loguercio; Roberti, Marina; Di Ponzio, Barbara; Gadaleta, Maria Nicola; Montoya, Julio; Cantatore, Palmiro

    2001-01-01

    The sea urchin mitochondrial displacement (D)-loop binding protein mtDBP has been previously identified and cloned. The polypeptide (348 amino acids) displays a significant homology with the human mitochondrial transcription termination factor mTERF. This similarity, and the observation that the 3′ ends of mitochondrial RNAs coded by opposite strands mapped in correspondence of mtDBP-binding sites, suggested that mtDBP could function as transcription termination factor in sea urchin mitochondria. To investigate such a role we tested the capability of mtDBP bound to its target sequence in the main non-coding region to affect RNA elongation by mitochondrial and bacteriophage T3 and T7 RNA polymerases. We show that mtDBP was able to terminate transcription bidirectionally when initiated by human mitochondrial RNA polymerase but only unidirectionally when initiated by T3 or T7 RNA polymerases. Time-course experiments indicated that mtDBP promotes true transcription termination rather than transcription pausing. These results indicate that mtDBP is able to function as a bipolar transcription termination factor in sea urchin mitochondria. The functional significance of such an activity could be linked to the previously proposed dual role of the protein in modulating mitochondrial DNA transcription and replication. PMID:11713324

  8. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min-1 and turnover frequency is 5457 h-1.

  9. Factors governing the deep ventilation of the Red Sea

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Vassilis P.; Zhan, Peng; Sofianos, Sarantis S.; Raitsos, Dionysios E.; Qurban, Mohammed; Abualnaja, Yasser; Bower, Amy; Kontoyiannis, Harilaos; Pavlidou, Alexandra; Asharaf, T. T. Mohamed; Zarokanellos, Nikolaos; Hoteit, Ibrahim

    2015-11-01

    A variety of data based on hydrographic measurements, satellite observations, reanalysis databases, and meteorological observations are used to explore the interannual variability and factors governing the deep water formation in the northern Red Sea. Historical and recent hydrographic data consistently indicate that the ventilation of the near-bottom layer in the Red Sea is a robust feature of the thermohaline circulation. Dense water capable to reach the bottom layers of the Red Sea can be regularly produced mostly inside the Gulfs of Aqaba and Suez. Occasionally, during colder than usual winters, deep water formation may also take place over coastal areas in the northernmost end of the open Red Sea just outside the Gulfs of Aqaba and Suez. However, the origin as well as the amount of deep waters exhibit considerable interannual variability depending not only on atmospheric forcing but also on the water circulation over the northern Red Sea. Analysis of several recent winters shows that the strength of the cyclonic gyre prevailing in the northernmost part of the basin can effectively influence the sea surface temperature (SST) and intensify or moderate the winter surface cooling. Upwelling associated with periods of persistent gyre circulation lowers the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme heat loss by the sea surface. In addition, the occasional persistence of the cyclonic gyre feeds the surface layers of the northern Red Sea with nutrients, considerably increasing the phytoplankton biomass.

  10. Echinometra sea urchins acclimatized to elevated pCO2 at volcanic vents outperform those under present-day pCO2 conditions.

    PubMed

    Uthicke, Sven; Ebert, Thomas; Liddy, Michelle; Johansson, Charlotte; Fabricius, Katharina E; Lamare, Miles

    2016-07-01

    Rising atmospheric CO2 concentrations will significantly reduce ocean pH during the 21st century (ocean acidification, OA). This may hamper calcification in marine organisms such as corals and echinoderms, as shown in many laboratory-based experiments. Sea urchins are considered highly vulnerable to OA. We studied an Echinometra species on natural volcanic CO2 vents in Papua New Guinea, where they are CO2 -acclimatized and also subjected to secondary ecological changes from elevated CO2 . Near the vent site, the urchins experienced large daily variations in pH (>1 unit) and pCO2 (>2000 ppm) and average pH values (pHT 7.73) much below those expected under the most pessimistic future emission scenarios. Growth was measured over a 17-month period using tetracycline tagging of the calcareous feeding lanterns. Average-sized urchins grew more than twice as fast at the vent compared with those at an adjacent control site and assumed larger sizes at the vent compared to the control site and two other sites at another reef near-by. A small reduction in gonad weight was detected at the vents, but no differences in mortality, respiration, or degree of test calcification were detected between urchins from vent and control populations. Thus, urchins did not only persist but actually 'thrived' under extreme CO2 conditions. We suggest an ecological basis for this response: Increased algal productivity under increased pCO2 provided more food at the vent, resulting in higher growth rates. The wider implication of our observation is that laboratory studies on non-acclimatized specimens, which typically do not consider ecological changes, can lead to erroneous conclusions on responses to global change. PMID:26762613

  11. Training Course on the Marine Ecology of the Red Sea. Red Sea & Gulf of Aden Programme (PERSGA).

    ERIC Educational Resources Information Center

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents a training course on the marine ecology of the Red Sea designed by the Arab League Educational, Cultural and Scientific Organization (ALECSO) in collaboration with the Marine Science Department of UNESCO for the Program for Environmental Studies, Red Sea and Gulf of Aden (PERSGA). It was hosted by the Marine Science Station,…

  12. Long-term mesocosms study of the effects of ocean acidification on growth and physiology of the sea urchin Echinometra mathaei.

    PubMed

    Moulin, Laure; Grosjean, Philippe; Leblud, Julien; Batigny, Antoine; Collard, Marie; Dubois, Philippe

    2015-02-01

    Recent research on the impact of ocean acidification (OA) has highlighted that it is important to conduct long-term experiments including ecosystem interactions in order to better predict the possible effects of elevated pCO2. The goal of the present study was to assess the long-term impact of OA on a suite of physiological parameters of the sea urchin Echinometra mathaei in more realistic food conditions. A long-term experiment was conducted in mesocosms provided with an artificial reef in which the urchins principally fed on algae attached to the reef calcareous substrate. Contrasted pH conditions (pH 7.7 vs control) were established gradually over six months and then maintained for seven more months. Acid-base parameters of the coelomic fluid, growth and respiration rate were monitored throughout the experiment. Results indicate that E. mathaei should be able to regulate its extracellular pH at long-term, through bicarbonate compensation. We suggest that, within sea urchins species, the ability to accumulate bicarbonates is related to their phylogeny but also on the quantity and quality of available food. Growth, respiration rate and mechanical properties of the test were not affected. This ability to resist OA levels expected for 2100 at long-term could determine the future of coral reefs, particularly reefs where E. mathaei is the major bioeroder. PMID:25490159

  13. Gamete cryobanks for laboratory research: developing a rapid and easy-to-perform protocol for the cryopreservation of the sea urchin Paracentrotus lividus (Lmk, 1816) spermatozoa.

    PubMed

    Fabbrocini, Adele; D'Adamo, Raffaele; Pelosi, Sergio; Oliveira, Luis F J; Silvestri, Fausto; Sansone, Giovanni

    2014-08-01

    Gamete cryopreservation is a biotechnology that can guarantee a continuous supply of gametes, regardless of the seasonal reproductive cycle. In this study we developed a protocol for the cryopreservation of the sea urchin Paracentrotuslividus spermatozoa, with a view to the creation of cryobanks of semen to be used as a model system in laboratory research and ecotoxicological tests. All the key phases of the procedure were separately considered and the effect on sperm motility was evaluated by means of computer assisted analysis. The best results were obtained using 7% dimethylsulfoxide in 1% NaCl plus 0.04 M trehalose as the extender, at a freezing rate of -20 °C/min. On thawing, in semen samples cryopreserved in accordance with this protocol the velocity parameters of the sub-population of rapid sperm (best performing spermatozoa) did not significantly differ from semen on collection; in addition also the fertilization ability was restored, and about 50% of normal developed plutei larvae were obtained by thawed semen. The developed protocol is rapid and easy-to-perform; moreover, the use of gametes from reared urchins makes it unnecessary to continuously collect specimens from natural populations, making this procedure a promising starting point for the creation of alternative and more sustainable methodologies in laboratory research on sea urchin gametes and embryos. PMID:24997279

  14. Pollutant resilience in embryos of the Antarctic sea urchin Sterechinus neumayeri reflects maternal antioxidant status.

    PubMed

    Lister, Kathryn N; Lamare, Miles D; Burritt, David J

    2015-04-01

    Legacy pollutants, including polycyclic aromatic hydrocarbons (PAHs) and metals, can occur in high concentrations in some Antarctic marine environments, particularly near scientific research stations. Oxidative stress is an important unifying feature underlying the toxicity of many chemical contaminants to aquatic organisms. However, the potential impacts of pollutants on the oxidative physiology of Antarctic marine invertebrates are not well documented. Sterechinus neumayeri is a common animal in the shallow subtidal benthos surrounding Antarctica, and is considered an important keystone species. The aim of the present study was to collect baseline oxidative biomarker data for S. neumayeri and to investigate the impacts of field exposure to chemical contaminants on gamete health and parent-to-offspring transfer of oxidative stress resilience. We analysed antioxidant enzyme activities, levels of the molecular antioxidant glutathione, protein carbonylation, lipid peroxidation and levels of 8-OHdG as oxidative stress biomarkers in S. neumayeri from a contaminant-impacted site near McMurdo Station and a relatively pristine site at Cape Evans. Biomarkers were analysed in adult gamete tissue and in early stage embryos exposed to AN8 fuel oil. PAHs were quantified as a proxy for contamination and were found to be elevated in urchins from the contaminated site (up to 231.67ng/g DW). These contaminant-experienced adult urchins produced eggs with greater levels of a broad suite of antioxidants, particularly superoxide dismutase, catalase and glyoxalase-I, than those from Cape Evans. In addition, embryos that were derived from contaminant-experienced mothers were endowed with higher baseline levels of antioxidants, which conferred an enhanced capacity to minimize oxidative damage to lipids, proteins and DNA when exposed to AN8 fuel. This pattern was strongest following exposure to 900ppm AN8, where lipid and protein damage was 5-7 times greater than baseline levels in

  15. Effects of produced water on reproduction and early life stages of the purple sea urchin (Strongylocentrotus purpuratus): Field and laboratory tests

    SciTech Connect

    Krause, P.R.

    1993-01-01

    This dissertation focuses on the effects of produced water (an oil-production effluent) on reproduction in the purple sea urchin (Strongy-locentrotus purpuratus) using both field and laboratory experiments. The author investigated the effects of chronic exposure to produced water on the gametogenesis and gamete performance using an in-situ caging experiment. He found a significant negative relationship between gonad mass and cage distance for both sexes, indicating that urchins living closer to the outfall produced significantly larger gonads. He also found significant differences in the fertilizability of eggs between cages and this showed a positive relationship with distance from the outfall. These findings indicate that while urchins exposed to a produced water outfall produce large gonads, they suffer a marked decrease in gamete performance. In a subsequent study the author explored whether and how brief exposure to a range of concentrations of produced water affected gametes and early larval stages of the purple sea urchin. Specifically, he exposed separately and together, eggs, sperm, and zygotes to ascertain the relative sensitivities of these life stages to produced water at durations and concentrations realistic to each state. He also explored the nature of the biological responses, and the potential for delayed expression. I found that both apparent fertilization and embryonic developmental success showed decreased performance with increasing produced water concentrations. Produced water exposure effectively slowed embryological developmental rates, but did not affect embryo survivorship. The spatial and temporal variability in toxicity of receiving waters was addressed using a fertilization bioassay. Receiving waters were collected along a transect down-field from the discharge on three dates while the outfall was actively discharging, and on one date while the plant was not discharging.

  16. Ectopic hbox12 Expression Evoked by Histone Deacetylase Inhibition Disrupts Axial Specification of the Sea Urchin Embryo.

    PubMed

    Cavalieri, Vincenzo; Spinelli, Giovanni

    2015-01-01

    Dorsal/ventral patterning of the sea urchin embryo depends upon the establishment of a Nodal-expressing ventral organizer. Recently, we showed that spatial positioning of this organizer relies on the dorsal-specific transcription of the Hbox12 repressor. Building on these findings, we determined the influence of the epigenetic milieu on the expression of hbox12 and nodal genes. We find that Trichostatin-A, a potent and selective histone-deacetylases inhibitor, induces histone hyperacetylation in hbox12 chromatin, evoking broad ectopic expression of the gene. Transcription of nodal concomitantly drops, prejudicing dorsal/ventral polarity of the resulting larvae. Remarkably, impairing hbox12 function, either in a spatially-restricted sector or in the whole embryo, specifically rescues nodal transcription in Trichostatin-A-treated larvae. Beyond strengthen the notion that nodal expression is not allowed in the presence of functional Hbox12 in the same cells, these results highlight a critical role of histone deacetylases in regulating the spatial expression of hbox12. PMID:26618749

  17. Comparative toxicities of aluminum and zinc from sacrificial anodes or from sulfate salt in sea urchin embryos and sperm.

    PubMed

    Caplat, Christelle; Oral, Rahime; Mahaut, Marie-Laure; Mao, Andrea; Barillier, Daniel; Guida, Marco; Della Rocca, Claudio; Pagano, Giovanni

    2010-09-01

    The toxicity of aluminum or zinc from either sacrificial anodes (SA) or their sulfate salts (SS) was evaluated in sea urchin (Paracentrotus lividus) embryos or sperm exposed to Al(III) or Zn(II) (SA or SS, 0.1-10 microM), scoring developmental defects (DDs), fertilization rate (FR), and mitotic abnormalities. A significant DD increase was observed in SS, but not SA Al(III)- and Zn(II)-exposed embryos vs. controls. Both Al(III) and Zn(II), up to 10 microM, from SA and SS, inhibited mitotic activity and induced mitotic aberrations in exposed embryos. SA-Al(III)-exposed sperm displayed a significant FR increase, unlike Al(III) sulfate overlapping with controls. Both SA-Zn(II) and Zn(II) sulfate sperm exposure resulted in a significant FR increase. The offspring of SA-Al(III)-exposed sperm displayed a significant DD decrease, unlike Al(III) sulfate exposure. Zinc sulfate sperm exposure resulted in a significant increase in offspring DDs, whereas SA-Zn(II) sperm exposure decreased DDs. Together, exposures to SA-dissolved Al(III) or Zn(II) resulted in lesser, if any toxicity, up to hormesis, compared to SS. Studies of metal speciation should elucidate the present results. PMID:20650532

  18. microRNAs regulate β-catenin of the Wnt signaling pathway in early sea urchin development

    PubMed Central

    Stepicheva, Nadezda; Nigam, Priya A.; Siddam, Archana; Peng, ChiehFu; Song, Jia L.

    2015-01-01

    Development of complex multicellular organisms requires careful regulation at both transcriptional and post-transcriptional levels. Post-transcriptional gene regulation is in part mediated by a class of non-coding RNAs of 21–25 nucleotides in length known as microRNAs (miRNAs). β-catenin, regulated by the canonical Wnt signaling pathway, has a highly evolutionarily conserved function in patterning early metazoan embryos, in forming the Anterior-Posterior axis, and in establishing the endomesoderm. Using reporter constructs and site-directed mutagenesis, we identified at least three miRNA binding sites within the 3’ untranslated region (3’UTR) of the sea urchin β-catenin. Further, blocking these three miRNA binding sites within the β-catenin 3’UTR to prevent regulation of endogenous β-catenin by miRNAs resulted in a minor increase in β-catenin protein accumulation that is sufficient to induce aberrant gut morphology and circumesophageal musculature. These phenotypes are likely the result of increased transcript levels of Wnt responsive endomesodermal regulatory genes. This study demonstrates the importance of miRNA regulation of β-catenin in early development. PMID:25614238

  19. Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus

    PubMed Central

    Robach, J. S.; Stock, S. R.; Veis, A.

    2009-01-01

    Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates; prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies. PMID:19616101

  20. A toxic substance from the sea urchin Toxopneustes pileolus induces histamine release from rat peritoneal mast cells.

    PubMed

    Takei, M; Nakagawa, H; Kimura, A; Endo, K

    1991-03-01

    A toxic substance (P-II fraction), fractionated from the pedicellariae of the sea urchin Toxopneustes pileolus, dose-dependently caused the histamine release from rat peritoneal mast cells. The histamine release induced by P-II fraction increased with time, while compound 48/80 caused a more rapid histamine release. The dose-response curve for P-II fraction was studied with concentration 0.03-2.0 mg/ml. This reaction was dependent on Ca2+ and temperature. When glucose (5.5 mM) was omitted during the incubation step, the histamine release induced by P-II fraction was significantly reduced as compared to that of compound 48/80. Pyruvate reversed this reduction. On the other hand, the histamine release induced by P-II fraction was effectively potentiated by the addition of glucose (11.0 mM), but not that by compound 48/80. These results suggest that P-II fraction-induced histamine release differs from that of compound 48/80 disregards to the effects of glucose, because this histamine release appears to be more sensitive to the glycolytic pathway than compound 48/80-induced histamine release. PMID:1713736

  1. Effects of simulated weathering on the toxicity of selected crude oils and their components to sea urchin embryos.

    PubMed

    Rial, Diego; Radović, Jagoš R; Bayona, Josep M; Macrae, Kenneth; Thomas, Kevin V; Beiras, Ricardo

    2013-09-15

    Artificial weathering of Angolan crude and a Heavy Fuel Oil (HFO) was performed by evaporation and photooxidation. The aliphatic, aromatic, polar and asphaltene fractions of the fresh and weathered oils were isolated. The toxicity of the water accommodated fraction or an oil/fraction dissolved in DMSO was assessed using the sea urchin embryo test. Photooxidation was observed to decrease the aromatics content and increase polar compounds. A slight reduction in the toxicity of Angolan crude was observed following weathering for the water-accommodated fraction and the extract in DMSO, but no effect was seen for the Heavy Fuel Oil. For aliphatic compounds, the toxicity decreased in the order fresh>evaporated>photooxidated for both Angolan crude and HFO. Weathering slightly increased the toxicity of the aromatic and polar fractions of the oil. The aromatic fractions were responsible for most of the toxicity and the polar compounds were the second most important toxic components, despite having less or similar abundance than the aliphatic fraction. The toxic contribution of the aromatic compounds was higher for the HFO than for the Angolan crude. A decrease in the toxicity of Angolan crude following weathering correlated with a reduction in the toxicity of the aliphatic fraction. PMID:23747464

  2. Ars insulator identified in sea urchin possesses an activity to ensure the transgene expression in mouse cells.

    PubMed

    Tajima, Shoji; Shinohara, Keiko; Fukumoto, Maiko; Zaitsu, Reiko; Miyagawa, Junichi; Hino, Shinjiro; Fan, Jun; Akasaka, Koji; Matsuoka, Masao

    2006-04-01

    Sea urchin arylsulfatase (Ars) gene locus has features of an insulator, i.e., blocking of enhancer and promoter interaction, and protection of a transgene against positional effects [Akasaka et al. (1999) Cell. Mol. Biol. 45, 555-565]. To examine the effect of Ars insulator on long-term expression of a transgene, the insulator was inserted into LTR of retrovirus vector harboring hrGFP gene as a reporter, and then introduced into mouse myoblast cells. The isolated clones transduced with the reporter gene with or without Ars insulator were cultured for more than 20 wk in the absence of a selection reagent, and the expression of hrGFP was periodically determined. Expression of hrGFP in four clones transduced with the reporter gene without Ars insulator was completely silenced after 20 wk of culture. On the other hand, hrGFP was expressed in all clones with Ars insulator inserted in one of the two different orientations. Histone H3 deacetylation and DNA methylation of the 5'LTR promoter region, signs for heterochromatin and silencing, were suppressed in the clones that were expressing hrGFP. Ars insulator is effective in maintaining a transgene in mouse cells in an orientation-dependent manner, and will be a useful tool to ensure stable expression of a transgene. PMID:16672271