Sample records for reduce building energy

  1. Demonstration of reduced-order urban scale building energy models

    DOE PAGES

    Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew; ...

    2017-09-08

    The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less

  2. Demonstration of reduced-order urban scale building energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew

    The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less

  3. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Charles; Green, Andrew S.; Dahle, Douglas

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achievingmore » savings in non-building applications.« less

  4. Reducing Building HVAC Costs with Site-Recovery Energy

    ERIC Educational Resources Information Center

    Pargeter, Stephen J.

    2012-01-01

    Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…

  5. How effective is group feedback in encouraging occupants of an office building to reduce energy consumption?

    NASA Astrophysics Data System (ADS)

    Shah, Ushik D.

    Lighting contributes to a high percentage of the total energy use in office buildings. The lack of financial incentive often dissuades office workers from trying to save electricity at their work place. This thesis aims at reducing the total power consumed by an office building by using persuasive technologies on the occupants to promote environmentally conscious and energy saving behavior. A three week field study was conducted by providing occupants of an office building feedback about their energy consumption along with messages to encourage them to save energy. Feedback was provided via television screens and flyers placed strategically at the study location, the fourth floor of the Knoy Hall of Technology, Purdue University, West Lafayette campus. The results obtained from the analysis of data showed no change in energy consumption post intervention. Group feedback thus proved to be ineffective in encouraging occupants of this office building to reduce their energy consumption. This thesis presents the findings of the study and discusses recommendations and future scope for similar studies.

  6. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sha; Tan, Qing; Evans, Meredydd

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, buildingmore » energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.« less

  7. IN2 Profile: Reducing Energy Prices for Commercial Buildings with NETenergy’s Black ICE Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deru, Michael; Pintar, Mike

    To cool a commercial building properly and cost-effectively, the owners of NETenergy have created a thermal battery that works much like an electrical battery except instead of storing energy electrically, it stores energy thermally. Through the Wells Fargo Innovation Incubator (IN²) program, NETenergy will be able to advance modeling of their system and increase product development. The IN² program launched in October 2014 and is part of Wells Fargo’s 2020 Environmental Commitment to provide $100 million to environmentally-focused nonprofits and universities. The goal is to create an ecosystem that fosters and accelerates the commercialization of promising commercial buildings technologies thatmore » can provide scalable solutions to reduce the energy impact of buildings. According to the Department of Energy, nearly 40 percent of energy consumption in the U.S. today comes from buildings at an estimated cost of $413 billion.« less

  8. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi,more » to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.« less

  9. Energy in buildings: Efficiency, renewables and storage

    NASA Astrophysics Data System (ADS)

    Koebel, Matthias M.

    2017-07-01

    This lecture summary provides a short but comprehensive overview on the "energy and buildings" topic. Buildings account for roughly 40% of the global energy demands. Thus, an increased adoption of existing and upcoming materials and solutions for the building sector represents an enormous potential to reduce building related energy demands and greenhouse gas emissions. The central question is how the building envelope (insulation, fenestration, construction style, solar control) affects building energy demands. Compared to conventional insulation materials, superinsulation materials such as vacuum insulation panels and silica aerogel achieve the same thermal performance with significantly thinner insulation layers. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduce thermal losses by up to an order of magnitude compared to old single pane windows, while vacuum insulation and aerogel filled glazing could reduce these even further. Electrochromic and other switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems into the building energy supply, buildings can become both producers and consumers of energy. Combined with dynamic user behavior, temporal variations in the production of renewable energy require appropriate storage solutions, both thermal and electrical, and the integration of buildings into smart grids and energy district networks. The combination of these measures allows a reduction of the existing building stock by roughly a factor of three —a promising, but cost intensive way, to prepare our buildings for the energy turnaround.

  10. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Evan

    2009-07-16

    available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the

  11. Energy balance framework for Net Zero Energy buildings

    EPA Science Inventory

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  12. An Innovative Enhanced Wall to Reduce the Energy Demand in Buildings

    NASA Astrophysics Data System (ADS)

    Fantozzi, F.; Filipeschi, S.; Mameli, M.; Nesi, S.; Cillari, G.; Mantelli, M. B. H.; Milanez, F. H.

    2017-01-01

    Energy saving in buildings is one of most important issues for European countries. Although in the last years many studies have been carried out in order to reach the zero-consumption house the energy rate due to passive solar heating could be further enhanced. This paper proposes a method for increasing the energy rate absorbed by opaque walls by using a two phase loop thermosyphon connecting the internal and the external façade of a prefabricated house wall. The evaporator zone is embedded into the outside facade and the condenser is indoor placed to heat the domestic environment. The thermosyphon has been preliminary designed and implanted into a wall for a prefabricated house in Italy. An original dynamic thermal model of the building equipped with the thermosyphon wall allowed the evolution of the indoor temperature over time and the energy saving rates. The transient behaviour of the building has been simulated during the winter period by using the EnergyPlusTM software. The annual saving on the heating energy is higher than 50% in the case of a low consumption building.

  13. Energy Efficiency Building Code for Commercial Buildings in Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, John; Greenberg, Steve; Rubinstein, Francis

    2000-09-30

    1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

  14. Sault Tribe Building Efficiency Energy Audits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider willmore » be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.« less

  15. Analysis and Optimization of Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  16. Asheville, North Carolina: Reducing Electricity Demand through Building Programs & Policies (City Energy: From Data to Decisions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    This fact sheet "Asheville, North Carolina: Reducing Electricity Demand through Building Programs & Policies" explains how the City of Asheville used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  17. Building Energy Codes: Policy Overview and Good Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sadie

    2016-02-19

    Globally, 32% of total final energy consumption is attributed to the building sector. To reduce energy consumption, energy codes set minimum energy efficiency standards for the building sector. With effective implementation, building energy codes can support energy cost savings and complementary benefits associated with electricity reliability, air quality improvement, greenhouse gas emission reduction, increased comfort, and economic and social development. This policy brief seeks to support building code policymakers and implementers in designing effective building code programs.

  18. Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-04-01

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use inmore » retail spaces are poorly understood.« less

  19. Functional materials for energy-efficient buildings

    NASA Astrophysics Data System (ADS)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  20. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century,more » driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after

  1. NASA Net Zero Energy Buildings Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pless, S.; Scheib, J.; Torcellini, P.

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategicmore » approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.« less

  2. The effectiveness of energy management system on energy efficiency in the building

    NASA Astrophysics Data System (ADS)

    Julaihi, F.; Ibrahim, S. H.; Baharun, A.; Affendi, R.; Nawi, M. N. M.

    2017-10-01

    Energy plays a key role in achieving the desired economic growth for the country. Worldwide industries use 40 percent energy for material and consumption protection to fulfil human needs which contributes almost 37 percent of global greenhouse gases emissions. One of the approach in order to reduce the emission of greenhouse gases to the environment is by conserving energy. This could be executed by implementing energy management especially in commercial and office buildings as daily electricity consumption is high in this type of building. Energy management can also increase the efficiency of energy in the building. Study has been conducted to investigate the performance on implementation of energy management system in office building. Energy management is one of the contemporary challenges, thus study adopts an exploratory approach by using a tool developed by UNIDO called EnMS or Energy Management System. Findings show that by implementing energy management can reduce electricity consumption up to 30%. However, serious initiatives by the organization are needed to promote the effectiveness of energy management.

  3. Indoor radon problem in energy efficient multi-storey buildings.

    PubMed

    Yarmoshenko, I V; Vasilyev, A V; Onishchenko, A D; Kiselev, S M; Zhukovsky, M V

    2014-07-01

    Modern energy-efficient architectural solutions and building construction technologies such as monolithic concrete structures in combination with effective insulation reduce air permeability of building envelope. As a result, air exchange rate is significantly reduced and conditions for increased radon accumulation in indoor air are created. Based on radon survey in Ekaterinburg, Russia, remarkable increase in indoor radon concentration level in energy-efficient multi-storey buildings was found in comparison with similar buildings constructed before the-energy-saving era. To investigate the problem of indoor radon in energy-efficient multi-storey buildings, the measurements of radon concentration have been performed in seven modern buildings using radon monitoring method. Values of air exchange rate and other parameters of indoor climate in energy-efficient buildings have been estimated. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Review of the Application of Green Building and Energy Saving Technology

    NASA Astrophysics Data System (ADS)

    Tong, Zhineng

    2017-12-01

    The use of energy-saving technologies in green buildings should run through the entire process of building design, construction and use, enabling green energy-saving technologies to maximize their effectiveness in construction. Realize the sustainable development of green building, reduce energy consumption, reduce people’s interference with the natural environment, suitable for people living in “green” building.

  5. Advanced building energy management system demonstration for Department of Defense buildings.

    PubMed

    O'Neill, Zheng; Bailey, Trevor; Dong, Bing; Shashanka, Madhusudana; Luo, Dong

    2013-08-01

    This paper presents an advanced building energy management system (aBEMS) that employs advanced methods of whole-building performance monitoring combined with statistical methods of learning and data analysis to enable identification of both gradual and discrete performance erosion and faults. This system assimilated data collected from multiple sources, including blueprints, reduced-order models (ROM) and measurements, and employed advanced statistical learning algorithms to identify patterns of anomalies. The results were presented graphically in a manner understandable to facilities managers. A demonstration of aBEMS was conducted in buildings at Naval Station Great Lakes. The facility building management systems were extended to incorporate the energy diagnostics and analysis algorithms, producing systematic identification of more efficient operation strategies. At Naval Station Great Lakes, greater than 20% savings were demonstrated for building energy consumption by improving facility manager decision support to diagnose energy faults and prioritize alternative, energy-efficient operation strategies. The paper concludes with recommendations for widespread aBEMS success. © 2013 New York Academy of Sciences.

  6. Analysis of the Dependence between Energy Demand Indicators in Buildings Based on Variants for Improving Energy Efficiency in a School Building

    NASA Astrophysics Data System (ADS)

    Skiba, Marta; Rzeszowska, Natalia

    2017-09-01

    One of the five far-reaching goals of the European Union is climate change and sustainable energy use. The first step in the implementation of this task is to reduce energy demand in buildings to a minimum by 2021, and in the case of public buildings by 2019. This article analyses the possibility of improving energy efficiency in public buildings, the relationship between particular indicators of the demand for usable energy (UE), final energy (FE) and primary energy (PE) in buildings and the impact of these indicators on the assessment of energy efficiency in public buildings, based on 5 variants of extensive thermal renovation of a school building. The analysis of the abovementioned variants confirms that the thermal renovation of merely the outer envelope of the building is insufficient and requires the use of additional energy sources, for example RES. Moreover, each indicator of energy demand in the building plays a key role in assessing the energy efficiency of the building. For this reason it is important to analyze each of them individually, as well as the dependencies between them.

  7. Energy Management in Municipal Buildings.

    ERIC Educational Resources Information Center

    Massachusetts State Dept. of Community Affairs, Boston. Energy Conservation Project.

    This manual is written for the manager or supervisor responsible for instituting an energy management program for municipal buildings. An introduction discusses the management issues facing municipal government in dealing with the need to reduce energy consumption. The guide reviews methods for central coordination of activity to ensure that…

  8. Building energy analysis tool

    DOEpatents

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  9. Energy consumption program: A computer model simulating energy loads in buildings

    NASA Technical Reports Server (NTRS)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  10. Design and optimization of zero-energy-consumption based solar energy residential building systems

    NASA Astrophysics Data System (ADS)

    Zheng, D. L.; Yu, L. J.; Tan, H. W.

    2017-11-01

    Energy consumption of residential buildings has grown fast in recent years, thus raising a challenge on zero energy residential building (ZERB) systems, which aim at substantially reducing energy consumption of residential buildings. Thus, how to facilitate ZERB has become a hot but difficult topic. In the paper, we put forward the overall design principle of ZERB based on analysis of the systems’ energy demand. In particular, the architecture for both schematic design and passive technology is optimized and both energy simulation analysis and energy balancing analysis are implemented, followed by committing the selection of high-efficiency appliance and renewable energy sources for ZERB residential building. In addition, Chinese classical residential building has been investigated in the proposed case, in which several critical aspects such as building optimization, passive design, PV panel and HVAC system integrated with solar water heater, Phase change materials, natural ventilation, etc., have been taken into consideration.

  11. Energy savings modelling of re-tuning energy conservation measures in large office buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS’s capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energy’s building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy asmore » an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated – each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC

  12. External shading devices for energy efficient building

    NASA Astrophysics Data System (ADS)

    Shahdan, M. S.; Ahmad, S. S.; Hussin, M. A.

    2018-02-01

    External shading devices on a building façade is an important passive design strategy as they reduce solar radiation. Although studies have proven the benefits of external shading devices, many are designed solely for aesthetic purposes without fully considering its high potential to reduce solar radiation and glare. Furthermore, explorations into shading devices by the design team are mostly left too late in the design development phases. Hence, the paper looks into the effectiveness of external shading devices on a building towards more energy efficient building. The study aims to analyse the effects of various configurations of external shading devices towards the energy consumption of a case study building based on computer simulations. This study uses Building Information Modelling (BIM) through Autodesk Revit software as simulation tool. The constant variables for the simulation are the orientation of the building, types of glazing used by the building and the internal loads of the building. Whereas, the manipulated variable is the types of shading device used. The data were sorted according to the categories and translated into a chart. Analysis of the findings indicate that shading devices with different configurations show significant results in the energy consumption and the best configuration is the egg-crate shading devices. The study recommends that the consideration for shading device as a passive design strategy needs to be developed at the early stage of the building design.

  13. Software augmented buildings: Exploiting existing infrastructure to improve energy efficiency and comfort in commercial buildings

    NASA Astrophysics Data System (ADS)

    Balaji, Bharathan

    Commercial buildings consume 19% of energy in the US as of 2010, and traditionally, their energy use has been optimized through improved equipment efficiency and retrofits. Beyond improved hardware and infrastructure, there exists a tremendous potential in reducing energy use through better monitoring and operation. We present several applications that we developed and deployed to support our thesis that building energy use can be reduced through sensing, monitoring and optimization software that modulates use of building subsystems including HVAC. We focus on HVAC systems as these constitute 48-55% of building energy use. Specifically, in case of sensing, we describe an energy apportionment system that enables us to estimate real-time zonal HVAC power consumption by analyzing existing sensor information. With this energy breakdown, we can measure effectiveness of optimization solutions and identify inefficiencies. Central to energy efficiency improvement is determination of human occupancy in buildings. But this information is often unavailable or expensive to obtain using wide scale sensor deployment. We present our system that infers room level occupancy inexpensively by leveraging existing WiFi infrastructure. Occupancy information can be used not only to directly control HVAC but also to infer state of the building for predictive control. Building energy use is strongly influenced by human behaviors, and timely feedback mechanisms can encourage energy saving behavior. Occupants interact with HVAC using thermostats which has shown to be inadequate for thermal comfort. Building managers are responsible for incorporating energy efficiency measures, but our interviews reveal that they struggle to maintain efficiency due to lack of analytical tools and contextual information. We present our software services that provide energy feedback to occupants and building managers, improves comfort with personalized control and identifies energy wasting faults. For wide

  14. Energy efficiency evaluation of hospital building office

    NASA Astrophysics Data System (ADS)

    Fitriani, Indah; Sangadji, Senot; Kristiawan, S. A.

    2017-01-01

    One of the strategy employed in building design is reducing energy consumption while maintaining the best comfort zone in building indoor climate. The first step to improve office buildings energy performance by evaluating its existing energy usage using energy consumption intensity (Intensitas Konsumsi Energi, IKE) index. Energy evaluation of office building for hospital dr. Sayidiman at Kabupaten Magetan has been carried out in the initial investigation. The office building is operated with active cooling (air conditioning, AC) and use limited daylighting which consumes 14.61 kWh/m2/month. This IKE value is attributed into a slightly inefficient category. Further investigation was carried out by modeling and simulating thermal energy load and room lighting in every building zone using of Ecotect from Autodesk. Three scenarios of building energy and lighting retrofit have been performed simulating representing energy efficiency using cross ventilation, room openings, and passive cooling. The results of the numerical simulation indicate that the third scenario by employing additional windows, reflector media and skylight exhibit the best result and in accordance with SNI 03-6575-2001 lighting standard. Total thermal load of the existing building which includes fabric gains, indirect solar gains, direct solar gains, ventilation fans, internal gains, inter-zonal gains and cooling load were 162,145.40 kWh. Based on the three scenarios, the thermal load value (kWh) obtained was lowest achieved scenario 2 with the thermal value of 117,539.08 kWh.The final results are interpreted from the total energy emissions evaluated using the Ecotect software, the heating and cooling demand value and specific design of the windows are important factors to determine the energy efficiency of the buildings.

  15. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in

  16. An IoT-Based Gamified Approach for Reducing Occupants’ Energy Wastage in Public Buildings

    PubMed Central

    Dimitriou, Nikos; Vasilakis, Kostas; Schoofs, Anthony; Nikiforakis, Manolis; Pursche, Fabian; Deliyski, Nikolay; Taha, Amr; Kotsopoulos, Dimosthenis; Bardaki, Cleopatra; Kotsilitis, Sarantis; Garbi, Anastasia

    2018-01-01

    Conserving energy amenable to the activities of occupants in public buildings is a particularly challenging objective that includes associating energy consumption to particular individuals and providing them with incentives to alter their behavior. This paper describes a gamification framework that aims to facilitate achieving greater energy conservation in public buildings. The framework leverages IoT-enabled low-cost devices, to improve energy disaggregation mechanisms that provide energy use and—consequently—wastage information at the device, area and end-user level. The identified wastages are concurrently targeted by a gamified application that motivates respective behavioral changes combining team competition, virtual rewards and life simulation. Our solution is being developed iteratively with the end-users’ engagement during the analysis, design, development and validation phases in public buildings located in three different countries: Luxembourg (Musée National d’Histoire et d’Art), Spain (EcoUrbanBuilding, Institut Català d’Energia headquarters, Barcelona) and Greece (General Secretariat of the Municipality of Athens). PMID:29439414

  17. An IoT-Based Gamified Approach for Reducing Occupants' Energy Wastage in Public Buildings.

    PubMed

    Papaioannou, Thanasis G; Dimitriou, Nikos; Vasilakis, Kostas; Schoofs, Anthony; Nikiforakis, Manolis; Pursche, Fabian; Deliyski, Nikolay; Taha, Amr; Kotsopoulos, Dimosthenis; Bardaki, Cleopatra; Kotsilitis, Sarantis; Garbi, Anastasia

    2018-02-10

    Conserving energy amenable to the activities of occupants in public buildings is a particularly challenging objective that includes associating energy consumption to particular individuals and providing them with incentives to alter their behavior. This paper describes a gamification framework that aims to facilitate achieving greater energy conservation in public buildings. The framework leverages IoT-enabled low-cost devices, to improve energy disaggregation mechanisms that provide energy use and-consequently-wastage information at the device, area and end-user level. The identified wastages are concurrently targeted by a gamified application that motivates respective behavioral changes combining team competition, virtual rewards and life simulation. Our solution is being developed iteratively with the end-users' engagement during the analysis, design, development and validation phases in public buildings located in three different countries: Luxembourg (Musée National d'Histoire et d'Art), Spain (EcoUrbanBuilding, Institut Català d'Energia headquarters, Barcelona) and Greece (General Secretariat of the Municipality of Athens).

  18. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema

    None

    2018-06-06

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  19. Commercial Buildings Energy Consumption Survey - Office Buildings

    EIA Publications

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  20. Building Energy Asset Score for Building Owners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for building owners.

  1. Impacts of Model Building Energy Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athalye, Rahul A.; Sivaraman, Deepak; Elliott, Douglas B.

    The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO 2 emissions atmore » the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.« less

  2. Low Energy Building for High Energy People.

    ERIC Educational Resources Information Center

    American School and University, 1982

    1982-01-01

    The Huston Huffman Center at the University of Oklahoma's Norman campus has a jogging track as well as facilities for exercise and court games that are fully accessible to the handicapped. The building is set eight feet in the ground both to reduce its bulk and to conserve energy. (Author/MLF)

  3. ACMV Energy Analysis for Academic Building: A Case Study

    NASA Astrophysics Data System (ADS)

    Hywel, R.; Tee, B. T.; Arifin, M. Y.; Tan, C. F.; Gan, C. K.; Chong, CT

    2015-09-01

    Building energy audit examines the ways actual energy consumption is currently used in the facility, in the case of a completed and occupied building and identifies some alternatives to reduce current energy usage. Implementation of energy audit are practically used to analyze energy consumption pattern, monitoring on how the energy used varies with time in the building, how the system element interrelate, and study the effect of external environment towards building. In this case study, a preliminary energy audit is focusing on Air-Conditioning & Mechanical Ventilation (ACMV) system which reportedly consumed 40% of the total energy consumption in typical building. It is also the main system that provides comfortable and healthy environment for the occupants. The main purpose of this study is to evaluate the current ACMV system performance, energy optimization and identifying the energy waste on UTeM's academic building. To attain this, the preliminary data is collected and then analyzed. Based on the data, economic analysis will be determined before cost-saving methods are being proposed.

  4. NREL’s Advanced Analytics Research for Energy-Efficient Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutscher, Chuck; Livingood, Bill; Wilson, Eric

    At NREL, we believe in building better buildings. More importantly, high-performance buildings that can do more and be smarter than ever before. Forty percent of the total energy consumption in the United States comes from buildings. Working together, we can dramatically shrink that number. But first, it starts with the research: our observations, experiments, modeling, analysis, and more. NREL’s advanced analytics research has already proven to reduce energy use, save money, and stabilize the grid.

  5. Engaging Tenants in Reducing Plug Load Energy Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schantz, Marta; Langner, Rois

    Plug and Process Loads (PPLs) account for an increasingly large percentage of commercial building energy use in the U.S. due to the rising number of energy intensive plug-in devices. In addition, buildings are becoming more and more efficient and plug load energy use has become an increasingly pertinent component to achieving aggressive energy targets and netzero energy status. For multi-tenant buildings, controlling plug loads in tenant spaces can be a significant challenge. Luckily, there are a number of PPL reduction strategies, best practices, and lessons learned from numerous commercial real estate and higher education leaders who have successfully engaged buildingmore » occupants and tenants in reducing PPL energy use. This paper provides actionable PPL reduction strategies and best practices that building owners and managers can immediately apply to their own buildings.« less

  6. Implementing nationally determined contributions: building energy policies in India’s mitigation strategy

    NASA Astrophysics Data System (ADS)

    Yu, Sha; Evans, Meredydd; Kyle, Page; Vu, Linh; Tan, Qing; Gupta, Ashu; Patel, Pralit

    2018-03-01

    The Nationally Determined Contributions are allowing countries to examine options for reducing emissions through a range of domestic policies. India, like many developing countries, has committed to reducing emissions through specific policies, including building energy codes. Here we assess the potential of these sectoral policies to help in achieving mitigation targets. Collectively, it is critically important to see the potential impact of such policies across developing countries in meeting national and global emission goals. Buildings accounted for around one third of global final energy use in 2010, and building energy consumption is expected to increase as income grows in developing countries. Using the Global Change Assessment Model, this study finds that implementing a range of energy efficiency policies robustly can reduce total Indian building energy use by 22% and lower total Indian carbon dioxide emissions by 9% in 2050 compared to the business-as-usual scenario. Among various policies, energy codes for new buildings can result in the most significant savings. For all building energy policies, well-coordinated, consistent implementation is critical, which requires coordination across different departments and agencies, improving capacity of stakeholders, and developing appropriate institutions to facilitate policy implementation.

  7. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd

    2014-04-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, ismore » developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.« less

  8. Smart Building: Decision Making Architecture for Thermal Energy Management

    PubMed Central

    Hernández Uribe, Oscar; San Martin, Juan Pablo; Garcia-Alegre, María C.; Santos, Matilde; Guinea, Domingo

    2015-01-01

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction. PMID:26528978

  9. Smart Building: Decision Making Architecture for Thermal Energy Management.

    PubMed

    Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo

    2015-10-30

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  10. How School Facilities Managers and Business Officials Are Reducing Operating Costs and Saving Money. Energy-Smart Building Choices.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This guide addresses contributions that school facility administrators and business officials can make in an effort to reduce operating costs and free up money for capital improvements. The guide explores opportunities available to utilize energy-saving strategies at any stage in a building's life, from its initial design phase through renovation.…

  11. Complex analysis of energy efficiency in operated high-rise residential building: Case study

    NASA Astrophysics Data System (ADS)

    Korniyenko, Sergey

    2018-03-01

    Energy conservation and human thermal comfort enhancement in buildings is a topical issue of modern architecture and construction. The innovative solution of this problem makes it possible to enhance building ecological and maintenance safety, to reduce hydrocarbon fuel consumption, and to improve life standard of people. The requirements to increase of energy efficiency in buildings should be provided at all the stages of building's life cycle that is at the stage of design, construction and maintenance of buildings. The research purpose is complex analysis of energy efficiency in operated high-rise residential building. Many actions for building energy efficiency are realized according to the project; mainly it is the effective building envelope and engineering systems. Based on results of measurements the energy indicators of the building during annual period have been calculated. The main reason of increase in heat losses consists in the raised infiltration of external air in the building through a building envelope owing to the increased air permeability of windows and balcony doors (construction defects). Thermorenovation of the building based on ventilating and infiltration heat losses reduction through a building envelope allows reducing annual energy consumption. Energy efficiency assessment based on the total annual energy consumption of building, including energy indices for heating and a ventilation, hot water supply and electricity supply, in comparison with heating is more complete. The account of various components in building energy balance completely corresponds to modern direction of researches on energy conservation and thermal comfort enhancement in buildings.

  12. Improving energy sustainability for public buildings in Italian mountain communities.

    PubMed

    Mutani, Guglielmina; Cornaglia, Mauro; Berto, Massimo

    2018-05-01

    The objective of this work is to analyze and then optimize thermal energy consumptions of public buildings located within the mountain community of Lanzo, Ceronda and Casternone Valleys. Some measures have been proposed to reduce energy consumption and consequently the economic cost for energy production, as well as the harmful GHG emissions in the atmosphere. Initially, a study of the mountain territory has been carried out, because of its vast extension and climatic differences. Defined the communities and the buildings under investigation, energy dependant data were collected for the analysis of energy consumption monitoring: consumption data of three heating seasons, geometric buildings characteristics, type of opaque and transparent envelope, heating systems information with boiler performance and climatic data. Afterward, five buildings with critical energy performances were selected; for each of these buildings, different retrofit interventions have been hypothesized to reduce the energy consumption, with thermal insulation of vertical or horizontal structures, new windows or boiler substitution. The cost-optimal technique was used to choose the interventions that offered higher energy performance at lower costs; then a retrofit scenario has been planned with a specific financial investment. Finally, results showed possible future developments and scenarios related to buildings energy efficiency with regard to the topic of biomass exploitation and its local availability in this area. In this context, the biomass energy resource could to create a virtuous environmental, economic and social process, favouring also local development.

  13. Energy Metrics for State Government Buildings

    NASA Astrophysics Data System (ADS)

    Michael, Trevor

    Measuring true progress towards energy conservation goals requires the accurate reporting and accounting of energy consumption. An accurate energy metrics framework is also a critical element for verifiable Greenhouse Gas Inventories. Energy conservation in government can reduce expenditures on energy costs leaving more funds available for public services. In addition to monetary savings, conserving energy can help to promote energy security, air quality, and a reduction of carbon footprint. With energy consumption/GHG inventories recently produced at the Federal level, state and local governments are beginning to also produce their own energy metrics systems. In recent years, many states have passed laws and executive orders which require their agencies to reduce energy consumption. In June 2008, SC state government established a law to achieve a 20% energy usage reduction in state buildings by 2020. This study examines case studies from other states who have established similar goals to uncover the methods used to establish an energy metrics system. Direct energy consumption in state government primarily comes from buildings and mobile sources. This study will focus exclusively on measuring energy consumption in state buildings. The case studies reveal that many states including SC are having issues gathering the data needed to accurately measure energy consumption across all state buildings. Common problems found include a lack of enforcement and incentives that encourage state agencies to participate in any reporting system. The case studies are aimed at finding the leverage used to gather the needed data. The various approaches at coercing participation will hopefully reveal methods that SC can use to establish the accurate metrics system needed to measure progress towards its 20% by 2020 energy reduction goal. Among the strongest incentives found in the case studies is the potential for monetary savings through energy efficiency. Framing energy conservation

  14. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  15. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Yang, Le; Hill, David

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energymore » audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4

  16. Energy and economic efficiency alternatives for electric lighting in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, C L; Hunter, K C; Carlisle, N

    1985-10-01

    This report investigates current efficient alternatives for replacing or supplementing electric lighting systems in commercial buildings. Criteria for establishing the economic attractiveness of various lighting alternatives are defined and the effect of future changes in building lighting on utility capacity. The report focuses on the energy savings potential, economic efficiency, and energy demand reduction of three categories of lighting alternatives: (1) use of a renewable resource (daylighting) to replace or supplement electric lighting; (2) use of task/ambient lighting in lieu of overhead task lighting; and (3) equipment changes to improve lighting energy efficiency. The results indicate that all three categoriesmore » offer opportunities to reduce lighting energy use in commercial buildings. Further, reducing lighting energy causes a reduction in cooling energy use and cooling capacity while increasing heating energy use. It does not typically increase heating capacity because the use of lighting in the building does not offset the need for peak heating at night.« less

  17. Building Energy-Efficiency Best Practice Policies and Policy Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Mark; de la Rue de Can, Stephane; Zheng, Nina

    2012-10-26

    This report addresses the single largest source of greenhouse gas emissions and the greatest opportunity to reduce these emissions. The IPCC 4 th Assessment Report estimates that globally 35% to 40% of all energy-related CO2 emissions (relative to a growing baseline) result from energy use in buildings. Emissions reductions from a combination of energy efficiency and conservation (using less energy) in buildings have the potential to cut emissions as much as all other energy-using sectors combined. This is especially the case for China, India and other developing countries that are expected to account for 80% or more of growth inmore » building energy use worldwide over the coming decades. In short, buildings constitute the largest opportunity to mitigate climate change and special attention needs to be devoted to developing countries.« less

  18. Commercial Building Energy Asset Score

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This software (Asset Scoring Tool) is designed to help building owners and managers to gain insight into the as-built efficiency of their buildings. It is a web tool where users can enter their building information and obtain an asset score report. The asset score report consists of modeled building energy use (by end use and by fuel type), building systems (envelope, lighting, heating, cooling, service hot water) evaluations, and recommended energy efficiency measures. The intended users are building owners and operators who have limited knowledge of building energy efficiency. The scoring tool collects minimum building data (~20 data entries) frommore » users and build a full-scale energy model using the inference functionalities from Facility Energy Decision System (FEDS). The scoring tool runs real-time building energy simulation using EnergyPlus and performs life-cycle cost analysis using FEDS. An API is also under development to allow the third-party applications to exchange data with the web service of the scoring tool.« less

  19. "Watts per person" paradigm to design net zero energy buildings: Examining technology interventions and integrating occupant feedback to reduce plug loads in a commercial building

    NASA Astrophysics Data System (ADS)

    Yagi Kim, Mika

    As building envelopes have improved due to more restrictive energy codes, internal loads have increased largely due to the proliferation of computers, electronics, appliances, imaging and audio visual equipment that continues to grow in commercial buildings. As the dependency on the internet for information and data transfer increases, the electricity demand will pose a challenge to design and operate Net Zero Energy Buildings (NZEBs). Plug Loads (PLs) as a proportion of the building load has become the largest non-regulated building energy load and represents the third highest electricity end-use in California's commercial office buildings, accounting for 23% of the total building electricity consumption (Ecova 2011,2). In the Annual Energy Outlook 2008 (AEO2008), prepared by the Energy Information Administration (EIA) that presents long-term projections of energy supply and demand through 2030 states that office equipment and personal computers are the "fastest growing electrical end uses" in the commercial sector. This thesis entitled "Watts Per Person" Paradigm to Design Net Zero Energy Buildings, measures the implementation of advanced controls and behavioral interventions to study the reduction of PL energy use in the commercial sector. By integrating real world data extracted from an energy efficient commercial building of its energy use, the results produce a new methodology on estimating PL energy use by calculating based on "Watts Per Person" and analyzes computational simulation methods to design NZEBs.

  20. The impact of roofing material on building energy performance

    NASA Astrophysics Data System (ADS)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  1. Reducing energy costs in nursing homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The handbook presents ideas and techniques for energy conservation in nursing homes. Case studies were developed of nursing homes located in different parts of the US. The typical nursing home assessed was proprietary, of intermediate-care level, medicaid-certified, and had less than 200 beds. Specific energy conservation measures were analyzed to determine the energy and dollar savings that could be realized. These include reducing heat loss through the building shell; reducing hot water costs; recovering the heat generated by dryers; reducing lighting costs; reducing heating and cooling costs, and analyzing fuels and fuel rates. A case for converting electric clothes dryersmore » to gas was analyzed. (MCW)« less

  2. Building Energy Monitoring and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Feng, Wei; Lu, Alison

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyzemore » good building energy data to provide valuable and actionable information for key stakeholders.« less

  3. Improving Energy Efficiency of Buildings in the Urals

    NASA Astrophysics Data System (ADS)

    Kiyanets, A. V.

    2017-11-01

    The article is devoted to the results of studies of energy efficiency improvements of the buildings which are constructed under the climatic conditions of the Ural Federal District of the Russian Federation. The relevance of the stated problem is corroborated. The requirements of the existing regulatory legal acts of the Russian Federation on energy conservation and energy efficiency in construction are given. The article specifies that energy efficiency in construction refers to a set of measures aimed at the reduction of energy resources which are consumed by buildings and are necessary to maintain the required microclimate parameters indoors. The main modern measures for improving the energy efficiency of buildings are presented, and their application under the climatic conditions of the Urals are analyzed and calculated. Each of the proposed methods is evaluated. Basing on the research results, it is concluded that most of the currently known measures for improving the energy efficiency of buildings are significantly limited in the Ural Federal District due to the small economic effect connected with the complexity and high cost of their implementation and operation, the peculiarities of climatic conditions and the conditions of the population density of the territories or significant ineffectiveness of the measures themselves; the most promising measures for improving the energy efficiency of buildings under the climatic and economic conditions of the Urals are the measures for reducing heat loss through the building envelopes (for improving the heat-insulation characteristics of the applied materials and structures).

  4. DEEP: A Database of Energy Efficiency Performance to Accelerate Energy Retrofitting of Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoon Lee, Sang; Hong, Tianzhen; Sawaya, Geof

    The paper presents a method and process to establish a database of energy efficiency performance (DEEP) to enable quick and accurate assessment of energy retrofit of commercial buildings. DEEP was compiled from results of about 35 million EnergyPlus simulations. DEEP provides energy savings for screening and evaluation of retrofit measures targeting the small and medium-sized office and retail buildings in California. The prototype building models are developed for a comprehensive assessment of building energy performance based on DOE commercial reference buildings and the California DEER prototype buildings. The prototype buildings represent seven building types across six vintages of constructions andmore » 16 California climate zones. DEEP uses these prototypes to evaluate energy performance of about 100 energy conservation measures covering envelope, lighting, heating, ventilation, air-conditioning, plug-loads, and domestic hot water. DEEP consists the energy simulation results for individual retrofit measures as well as packages of measures to consider interactive effects between multiple measures. The large scale EnergyPlus simulations are being conducted on the super computers at the National Energy Research Scientific Computing Center of Lawrence Berkeley National Laboratory. The pre-simulation database is a part of an on-going project to develop a web-based retrofit toolkit for small and medium-sized commercial buildings in California, which provides real-time energy retrofit feedback by querying DEEP with recommended measures, estimated energy savings and financial payback period based on users’ decision criteria of maximizing energy savings, energy cost savings, carbon reduction, or payback of investment. The pre-simulated database and associated comprehensive measure analysis enhances the ability to performance assessments of retrofits to reduce energy use for small and medium buildings and business owners who typically do not have resources to

  5. Life Cycle Energy Assessment of a Multi-storey Residential Building

    NASA Astrophysics Data System (ADS)

    Mehta, Sourabh; Chandur, Arjun; Palaniappan, Sivakumar

    2017-06-01

    This study presents the findings of life cycle energy assessment of two multi-storey residential buildings. These buildings consist of a total of 60 homes. The usable floor area is 43.14 m2 (463.36 ft2) per home. A detailed estimation of embodied energy is carried out by considering the use of materials during building construction. Major contributors of embodied energy are found to be steel, cement and aluminum. Monthly building operation energy was assessed using a total of 2520 data samples corresponding to 3 years of building operation. Analysis of a base case scenario, with 50 years of service life and average monthly operation energy, indicates that the embodied energy and the operation energy account for 16 and 84% of the life cycle energy respectively. Sensitivity analysis is carried out to study the influence of service life and operation energy on the relative contribution of embodied energy and operation energy. It is found that the embodied energy represents as high as 31% of the life cycle energy depending upon the variation in the operation energy and the service life. Hence, strategies towards sustainable building construction should also focus on reducing the embodied energy in the design and construction phases in addition to operation energy.

  6. The potential of net zero energy buildings (NZEBs) concept at design stage for healthcare buildings towards sustainable development

    NASA Astrophysics Data System (ADS)

    Hazli Abdellah, Roy; Asrul Nasid Masrom, Md; Chen, Goh Kai; Mohamed, Sulzakimin; Omar, Roshartini

    2017-11-01

    The focus on net-zero energy buildings (NZEBs) has been widely analysed and discussed particularly when European Union Parliament are progressively moving towards regulation that promotes the improvement of energy efficiency (EE). Additionally, it also to reduce energy consumption through the recast of the EU Directive on Energy Performance of Buildings (EPBD) in which all new buildings to be “nearly Zero-Energy” Buildings by 2020. Broadly, there is a growing trend to explore the feasibility of net zero energy in healthcare sector as the level energy consumption for healthcare sector is found significantly high. Besides that, healthcare buildings energy consumption also exceeds of many other nondomestic building types, and this shortcoming is still undetermined yet especially for developing countries. This paper aims to review the potential of NZEBs in healthcare buildings by considering its concept in design features. Data are gathered through a comprehensive energy management literature review from previous studies. The review is vital to encourage construction players to increase their awareness, practices, and implementation of NZEBs in healthcare buildings. It suggests that NZEBs concept has a potential to be adapted in healthcare buildings through emphasizing of passive approach as well as the utilization of energy efficiency systems and renewable energy systems in buildings. This paper will provide a basis knowledge for construction key players mainly architects to promote NZEBs concept at design stage for healthcare buildings development.

  7. Building Energy Monitoring and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Feng, Wei; Lu, Alison

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performancemore » of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.« less

  8. Simulated thermal energy demand and actual energy consumption in refurbished and non-refurbished buildings

    NASA Astrophysics Data System (ADS)

    Ilie, C. A.; Visa, I.; Duta, A.

    2016-08-01

    The EU legal frame imposes the Nearly Zero Energy Buildings (nZEB) status to any new public building starting with January 1st, 2019 and for any other new building starting with 2021. Basically, nZEB represents a Low Energy Building (LEB) that covers more than half of the energy demand by using renewable energy systems installed on or close to it. Thus, two steps have to be followed in developing nZEB: (1) reaching the LEB status through state- of-the art architectural and construction solutions (for the new buildings) or through refurbishing for the already existent buildings, followed by (2) implementing renewables; in Romania, over 65% of the energy demand in a building is directly linked to heating, domestic hot water (DHW), and - in certain areas - for cooling. Thus, effort should be directed to reduce the thermal energy demand to be further covered by using clean and affordable systems: solar- thermal systems, heat pumps, biomass, etc. or their hybrid combinations. Obviously this demand is influenced by the onsite climatic profile and by the building performance. An almost worst case scenario is approached in the paper, considering a community implemented in a mountain area, with cold and long winters and mild summers (Odorheiul Secuiesc city, Harghita county, Romania). Three representative types of buildings are analysed: multi-family households (in blocks of flats), single-family houses and administrative buildings. For the first two types, old and refurbished buildings were comparatively discussed.

  9. Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-02-01

    New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility billmore » calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.« less

  10. Building energy governance in Shanghai

    NASA Astrophysics Data System (ADS)

    Kung, YiHsiu Michelle

    With Asia's surging economies and urbanization, the region is adding to its built environment at an unprecedented rate, especially those population centers in China and India. With numerous existing buildings, plus a new building boom, construction in these major Asian cities has caused momentous sustainability challenges. This dissertation focuses on China's leading city, Shanghai, to explore and assess its existing commercial building energy policies and practices. Research estimates that Shanghai's commercial buildings might become a key challenge with regard to energy use and CO2 emissions as compared to other major Asian cities. Relevant building energy policy instruments at national and local levels for commercial buildings are reviewed. In addition, two benchmarks are established to further assess building energy policies in Shanghai. The first benchmark is based on the synthesis of relevant criteria and policy instruments as recommended by professional organizations, while the second practical benchmark is drawn from an analysis of three global cities: New York, London and Tokyo. Moreover, two large-scale commercial building sites - Shanghai IKEA and Plaza 66 - are selected for investigation and assessment of their efforts on building energy saving measures. Detailed building energy savings, CO2 reductions, and management cost reductions based on data availability and calculations are presented with the co-benefits approach. The research additionally analyzes different interventions and factors that facilitate or constrain the implementation process of building energy saving measures in each case. Furthermore, a multi-scale analytical framework is employed to investigate relevant stakeholders that shape Shanghai's commercial building energy governance. Research findings and policy recommendations are offered at the close of this dissertation. Findings and policy recommendations are intended to facilitate commercial building energy governance in Shanghai and

  11. Building energy analysis of Electrical Engineering Building from DesignBuilder tool: calibration and simulations

    NASA Astrophysics Data System (ADS)

    Cárdenas, J.; Osma, G.; Caicedo, C.; Torres, A.; Sánchez, S.; Ordóñez, G.

    2016-07-01

    This research shows the energy analysis of the Electrical Engineering Building, located on campus of the Industrial University of Santander in Bucaramanga - Colombia. This building is a green pilot for analysing energy saving strategies such as solar pipes, green roof, daylighting, and automation, among others. Energy analysis was performed by means of DesignBuilder software from virtual model of the building. Several variables were analysed such as air temperature, relative humidity, air velocity, daylighting, and energy consumption. According to two criteria, thermal load and energy consumption, critical areas were defined. The calibration and validation process of the virtual model was done obtaining error below 5% in comparison with measured values. The simulations show that the average indoor temperature in the critical areas of the building was 27°C, whilst relative humidity reached values near to 70% per year. The most critical discomfort conditions were found in the area of the greatest concentration of people, which has an average annual temperature of 30°C. Solar pipes can increase 33% daylight levels into the areas located on the upper floors of the building. In the case of the green roofs, the simulated results show that these reduces of nearly 31% of the internal heat gains through the roof, as well as a decrease in energy consumption related to air conditioning of 5% for some areas on the fourth and fifth floor. The estimated energy consumption of the building was 69 283 kWh per year.

  12. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppy, M.; Lobato, C.; Van Geet, O.

    2011-12-01

    . The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.« less

  13. Solar energy in buildings solved by building information modeling

    NASA Astrophysics Data System (ADS)

    Chudikova, B.; Faltejsek, M.

    2018-03-01

    Building lead us to use renewable energy sources for all types of buildings. The use of solar energy is the alternatives that can be applied in a good ratio of space, price, and resultant benefits. Building Information Modelling is a modern and effective way of dealing with buildings with regard to all aspects of the life cycle. The basis is careful planning and simulation in the pre-investment phase, where it is possible to determine the effective result and influence the lifetime of the building and the cost of its operation. By simulating, analysing and insert a building model into its future environment where climate conditions and surrounding buildings play a role, it is possible to predict the usability of the solar energy and establish an ideal model. Solar systems also very affect the internal layout of buildings. Pre-investment phase analysis, with a view to future aspects, will ensure that the resulting building will be both low-energy and environmentally friendly.

  14. Energy savings potential from improved building controls for the US commercial building sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Nick; Katipamula, Srinivas; Wang, Weimin

    29%; seven of the nine building types were in the range of 23 to 29% and two exceeded 40%. The total potential national site savings in for each building type ranged between 95x106 GJ (0.09 Quadrillion British thermal units [Quads]; Large Hotels) to 222x106 GJ (0.21 Quads; Large Office, Hospital Administrative areas, and College/University), resulting in total site savings of 1,393x106 GJ (1.32 Quads) when the three packages are applied to the U.S. commercial buildings stock. Using the source (or primary) energy conversion factors of 1.05 for natural gas and 3.14 for electricity resulted in an approximate potential primary energy savings of 2,912x106 GJ (2.76 Quads), which would be 15% of the sector’s 2015 use of approximately 18,991x106 GJ (18 Quads). Extrapolating the results for other building types not analyzed as part of this study, the primary energy savings could be in the range of 4,220x106 GJ to 5,275x106 GJ (4 to 5 Quads). If this savings potential is realized, it would be equivalent to not combusting 180 to 230 million tons of coal or reducing the energy impacts, at today’s energy intensities, of the per capita consumption of 12 to 15 million people in the U.S. To realize most of this potential savings, many gaps can be addressed through RD&D, as recommended in this paper.« less

  15. Building energy modeling for green architecture and intelligent dashboard applications

    NASA Astrophysics Data System (ADS)

    DeBlois, Justin

    Buildings are responsible for 40% of the carbon emissions in the United States. Energy efficiency in this sector is key to reducing overall greenhouse gas emissions. This work studied the passive technique called the roof solar chimney for reducing the cooling load in homes architecturally. Three models of the chimney were created: a zonal building energy model, computational fluid dynamics model, and numerical analytic model. The study estimated the error introduced to the building energy model (BEM) through key assumptions, and then used a sensitivity analysis to examine the impact on the model outputs. The conclusion was that the error in the building energy model is small enough to use it for building simulation reliably. Further studies simulated the roof solar chimney in a whole building, integrated into one side of the roof. Comparisons were made between high and low efficiency constructions, and three ventilation strategies. The results showed that in four US climates, the roof solar chimney results in significant cooling load energy savings of up to 90%. After developing this new method for the small scale representation of a passive architecture technique in BEM, the study expanded the scope to address a fundamental issue in modeling - the implementation of the uncertainty from and improvement of occupant behavior. This is believed to be one of the weakest links in both accurate modeling and proper, energy efficient building operation. A calibrated model of the Mascaro Center for Sustainable Innovation's LEED Gold, 3,400 m2 building was created. Then algorithms were developed for integration to the building's dashboard application that show the occupant the energy savings for a variety of behaviors in real time. An approach using neural networks to act on real-time building automation system data was found to be the most accurate and efficient way to predict the current energy savings for each scenario. A stochastic study examined the impact of the

  16. Integrated energy system for a high performance building

    NASA Astrophysics Data System (ADS)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of

  17. Unlocking energy efficiency in small commercial buildings through mechanical contractors

    DOE PAGES

    Granderson, Jessica; Hult, Erin; Fernandes, Samuel; ...

    2017-03-01

    Although buildings smaller than 4,645 m 2 account for nearly half of the energy used in U.S. commercial buildings, energy-efficiency programs to date have primarily focused on larger buildings. Stakeholder interviews conducted during a scoping study by Lawrence Berkeley National Laboratory (LBNL) indicated interest in energy efficiency from the small commercial building sector, provided solutions are simple and of low cost. To address this need, an energy management package (EMP) was developed to deliver energy management to small commercial buildings via HVAC contractors, because they already serve these clients and the transaction cost to market would be reduced. This energy-managementmore » approach is unique from, but often complementary to, conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Furthermore, this paper presents an overview of the EMP, the business model to deliver it, and preliminary demonstration findings from a pilot use of the EMP. Results from the pilot validated that contractors could deliver the EMP in 4–8 h per building per year and that energy savings of 3–5% are feasible through this approach.« less

  18. Unlocking energy efficiency in small commercial buildings through mechanical contractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Hult, Erin; Fernandes, Samuel

    Although buildings smaller than 4,645 m 2 account for nearly half of the energy used in U.S. commercial buildings, energy-efficiency programs to date have primarily focused on larger buildings. Stakeholder interviews conducted during a scoping study by Lawrence Berkeley National Laboratory (LBNL) indicated interest in energy efficiency from the small commercial building sector, provided solutions are simple and of low cost. To address this need, an energy management package (EMP) was developed to deliver energy management to small commercial buildings via HVAC contractors, because they already serve these clients and the transaction cost to market would be reduced. This energy-managementmore » approach is unique from, but often complementary to, conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Furthermore, this paper presents an overview of the EMP, the business model to deliver it, and preliminary demonstration findings from a pilot use of the EMP. Results from the pilot validated that contractors could deliver the EMP in 4–8 h per building per year and that energy savings of 3–5% are feasible through this approach.« less

  19. Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel

    DOE PAGES

    Stadler, M.; Groissböck, M.; Cardoso, G.; ...

    2014-08-05

    The pressuring need to reduce the import of fossil fuels as well as the need to dramatically reduce CO 2 emissions in Europe motivated the European Commission (EC) to implement several regulations directed to building owners. Most of these regulations focus on increasing the number of energy efficient buildings, both new and retrofitted, since retrofits play an important role in energy efficiency. Overall, this initiative results from the realization that buildings will have a significant impact in fulfilling the 20/20/20-goals of reducing the greenhouse gas emissions by 20%, increasing energy efficiency by 20%, and increasing the share of renewables tomore » 20%, all by 2020. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is an optimization tool used to support DER investment decisions, typically by minimizing total annual costs or CO 2 emissions while providing energy services to a given building or microgrid site. This document shows enhancements made to DER-CAM to consider building retrofit measures along with DER investment options. Specifically, building shell improvement options have been added to DER-CAM as alternative or complementary options to investments in other DER such as PV, solar thermal, combined heat and power, or energy storage. The extension of the mathematical formulation required by the new features introduced in DER-CAM is presented and the resulting model is demonstrated at an Austrian Campus building by comparing DER-CAM results with and without building shell improvement options. Strategic investment results are presented and compared to the observed investment decision at the test site. Results obtained considering building shell improvement options suggest an optimal weighted average U value of about 0.53 W/(m 2K) for the test site. This result is approximately 25% higher than what is currently observed in the building, suggesting that the retrofits made in 2002 were not optimal. Furthermore, the results obtained

  20. Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, M.; Groissböck, M.; Cardoso, G.

    The pressuring need to reduce the import of fossil fuels as well as the need to dramatically reduce CO 2 emissions in Europe motivated the European Commission (EC) to implement several regulations directed to building owners. Most of these regulations focus on increasing the number of energy efficient buildings, both new and retrofitted, since retrofits play an important role in energy efficiency. Overall, this initiative results from the realization that buildings will have a significant impact in fulfilling the 20/20/20-goals of reducing the greenhouse gas emissions by 20%, increasing energy efficiency by 20%, and increasing the share of renewables tomore » 20%, all by 2020. The Distributed Energy Resources Customer Adoption Model (DER-CAM) is an optimization tool used to support DER investment decisions, typically by minimizing total annual costs or CO 2 emissions while providing energy services to a given building or microgrid site. This document shows enhancements made to DER-CAM to consider building retrofit measures along with DER investment options. Specifically, building shell improvement options have been added to DER-CAM as alternative or complementary options to investments in other DER such as PV, solar thermal, combined heat and power, or energy storage. The extension of the mathematical formulation required by the new features introduced in DER-CAM is presented and the resulting model is demonstrated at an Austrian Campus building by comparing DER-CAM results with and without building shell improvement options. Strategic investment results are presented and compared to the observed investment decision at the test site. Results obtained considering building shell improvement options suggest an optimal weighted average U value of about 0.53 W/(m 2K) for the test site. This result is approximately 25% higher than what is currently observed in the building, suggesting that the retrofits made in 2002 were not optimal. Furthermore, the results obtained

  1. The human dimensions of energy use in buildings: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Oca, Simona; Hong, Tianzhen; Langevin, Jared

    The “human dimensions” of energy use in buildings refer to the energy-related behaviors of key stakeholders that affect energy use over the building life cycle. Stakeholders include building designers, operators, managers, engineers, occupants, industry, vendors, and policymakers, who directly or indirectly influence the acts of designing, constructing, living, operating, managing, and regulating the built environments, from individual building up to the urban scale. Among factors driving high-performance buildings, human dimensions play a role that is as significant as that of technological advances. However, this factor is not well understood, and, as a result, human dimensions are often ignored or simplifiedmore » by stakeholders. This work presents a review of the literature on human dimensions of building energy use to assess the state-of-the-art in this topic area. The paper highlights research needs for fully integrating human dimensions into the building design and operation processes with the goal of reducing energy use in buildings while enhancing occupant comfort and productivity. This research focuses on identifying key needs for each stakeholder involved in a building's life cycle and takes an interdisciplinary focus that spans the fields of architecture and engineering design, sociology, data science, energy policy, codes, and standards to provide targeted insights. Greater understanding of the human dimensions of energy use has several potential benefits including reductions in operating cost for building owners; enhanced comfort conditions and productivity for building occupants; more effective building energy management and automation systems for building operators and energy managers; and the integration of more accurate control logic into the next generation of human-in-the-loop technologies. The review concludes by summarizing recommendations for policy makers and industry stakeholders for developing codes, standards, and technologies that

  2. The human dimensions of energy use in buildings: A review

    DOE PAGES

    D'Oca, Simona; Hong, Tianzhen; Langevin, Jared

    2017-08-19

    The “human dimensions” of energy use in buildings refer to the energy-related behaviors of key stakeholders that affect energy use over the building life cycle. Stakeholders include building designers, operators, managers, engineers, occupants, industry, vendors, and policymakers, who directly or indirectly influence the acts of designing, constructing, living, operating, managing, and regulating the built environments, from individual building up to the urban scale. Among factors driving high-performance buildings, human dimensions play a role that is as significant as that of technological advances. However, this factor is not well understood, and, as a result, human dimensions are often ignored or simplifiedmore » by stakeholders. This work presents a review of the literature on human dimensions of building energy use to assess the state-of-the-art in this topic area. The paper highlights research needs for fully integrating human dimensions into the building design and operation processes with the goal of reducing energy use in buildings while enhancing occupant comfort and productivity. This research focuses on identifying key needs for each stakeholder involved in a building's life cycle and takes an interdisciplinary focus that spans the fields of architecture and engineering design, sociology, data science, energy policy, codes, and standards to provide targeted insights. Greater understanding of the human dimensions of energy use has several potential benefits including reductions in operating cost for building owners; enhanced comfort conditions and productivity for building occupants; more effective building energy management and automation systems for building operators and energy managers; and the integration of more accurate control logic into the next generation of human-in-the-loop technologies. The review concludes by summarizing recommendations for policy makers and industry stakeholders for developing codes, standards, and technologies that

  3. Design New Buildings To Save Energy -- and Money

    ERIC Educational Resources Information Center

    Rittelmann, Richard

    1974-01-01

    Buildings should be designed so that energy systems function with maximum efficiency. Re-evaluation of standards for ventilation and lighting is recommended. Heat recovery techniques and topography can reduce heating loads. (MF)

  4. Energy savings in Polish buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markel, L.C.; Gula, A.; Reeves, G.

    1995-12-31

    A demonstration of low-cost insulation and weatherization techniques was a part of phase 1 of the Krakow Clean Fossil Fuels and Energy Efficient Project. The objectives were to identify a cost-effective set of measures to reduce energy used for space heating, determine how much energy could be saved, and foster widespread implementation of those measures. The demonstration project focused on 4 11-story buildings in a Krakow housing cooperative. Energy savings of over 20% were obtained. Most important, the procedures and materials implemented in the demonstration project have been adapted to Polish conditions and applied to other housing cooperatives, schools, andmore » hospitals. Additional projects are being planned, in Krakow and other cities, under the direction of FEWE-Krakow, the Polish Energie Cities Network, and Biuro Rozwoju Krakowa.« less

  5. Performative building envelope design correlated to solar radiation and cooling energy consumption

    NASA Astrophysics Data System (ADS)

    Jacky, Thiodore; Santoni

    2017-11-01

    Climate change as an ongoing anthropogenic environmental challenge is predominantly caused by an amplification in the amount of greenhouse gases (GHGs), notably carbon dioxide (CO2) in building sector. Global CO2 emissions are emitted from HVAC (Heating, Ventilation, and Air Conditioning) occupation to provide thermal comfort in building. In fact, the amount of energy used for cooling or heating building is implication of building envelope design. Building envelope acts as interface layer of heat transfer between outdoor environment and the interior of a building. It appears as wall, window, roof and external shading device. This paper examines performance of various design strategy on building envelope to limit solar radiation and reduce cooling loads in tropical climate. The design strategies are considering orientation, window to wall ratio, material properties, and external shading device. This research applied simulation method using Autodesk Ecotect to investigate simultaneously between variations of wall and window ratio, shading device composition and the implication to the amount of solar radiation, cooling energy consumption. Comparative analysis on the data will determine logical variation between opening and shading device composition and cooling energy consumption. Optimizing the building envelope design is crucial strategy for reducing CO2 emissions and long-term energy reduction in building sector. Simulation technology as feedback loop will lead to better performative building envelope.

  6. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    PubMed

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  7. Energy audit role in building planning

    NASA Astrophysics Data System (ADS)

    Sipahutar, Riman; Bizzy, Irwin

    2017-11-01

    An energy audit is one way to overcome the excessive use of energy in buildings. The increasing growth of population, economy, and industry will have an impact on energy demand and the formation of greenhouse gas emissions. Indonesian National Standard (SNI) concerning the building has not been implemented optimally due to the socialization process by a government not yet been conducted. An energy audit of buildings has been carried out at offices and public services. Most electrical energy in buildings used for air refresher equipment or air conditioning. Calculation of OTTV has demonstrated the importance of performing since the beginning of the planning of a building to get energy-efficient buildings.

  8. Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume II. Detailed results. [New York, Atlanta, Omaha, and Albuquerque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-06-01

    The mixed-strategy analysis was a tradeoff analysis between energy-conservation methods and an alternative energy source (solar) considering technical and economic benefits. The objective of the analysis was to develop guidelines for: reducing energy requirements; reducing conventional fuel use; and identifying economic alternatives for building owners. The analysis was done with a solar system in place. This makes the study unique in that it is determining the interaction of energy conservation with a solar system. The study, therefore, established guidelines as to how to minimize capital investment while reducing the conventional fuel consumption through either a larger solar system or anmore » energy-conserving technique. To focus the scope of energy-conservation techniques and alternative energy sources considered, five building types (house, apartment buildings, commercial buildings, schools, and office buildings) were selected. Finally, the lists of energy-conservation techniques and alternative energy sources were reduced to lists of manageable size by using technical attributes to select the best candidates for further study. The resultant energy-conservation techniques were described in detail and installed costs determined. The alternative energy source reduced to solar. Building construction characteristics were defined for each building for each of four geographic regions of the country. A mixed strategy consisting of an energy-conservation technique and solar heating/hot water/cooling system was analyzed, using computer simulation to determine the interaction between energy conservation and the solar system. Finally, using FEA fuel-price scenarios and installed costs for the solar system and energy conservation techniques, an economic analysis was performed to determine the cost effectiveness of the combination. (MCW)« less

  9. Modeling urban building energy use: A review of modeling approaches and procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen

    With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. This paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. This is followed by a discussion of challenging issues associated with model preparation and calibration.« less

  10. Modeling urban building energy use: A review of modeling approaches and procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen

    With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less

  11. Modeling urban building energy use: A review of modeling approaches and procedures

    DOE PAGES

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen; ...

    2017-11-13

    With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less

  12. DOE/ NREL Build One of the World's Most Energy Efficient Office Spaces

    ScienceCinema

    Radocy, Rachel; Livingston, Brian; von Luhrte, Rich

    2018-05-18

    Technology — from sophisticated computer modeling to advanced windows that actually open — will help the newest building at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) be one of the world's most energy efficient offices. Scheduled to open this summer, the 222,000 square-foot RSF will house more than 800 staff and an energy efficient information technology data center. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

  13. Enabling Energy Efficiency in South Africa's Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-04-01

    South Africa is leading a number of efforts to support a thriving economy while also reducing energy use. Increasing energy demand coupled with a highly energy intensive economy and energy inefficient industries provide the backdrop for strong government action underway in South Africa. This brochure details how the Clean Energy Solutions Center supported development of the Regulations on Allowance for the Energy Efficiency Savings legislation designed to provide a framework for effective energy efficiency regulation, incentives and energy reduction targets for South Africa's commercial buildings sector.

  14. Energy management study: A proposed case of government building

    NASA Astrophysics Data System (ADS)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    2015-05-01

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.

  15. Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings

    NASA Astrophysics Data System (ADS)

    Kwasnowski, Pawel; Fedorczak-Cisak, Malgorzata; Knap, Katarzyna

    2017-10-01

    Introduction of EPBD in legislation of the EU member states caused that buildings must meet very stringent requirements of thermal protection and energy efficiency. On the basis of EPBD provisions, EU Member States introduce standard of NZEB (Nearly Zero-Energy Buildings). Such activities cause a need for new, innovative materials and technologies, and new approaches to design, construction and retrofitting of buildings. Indispensable is the precise coordination of the design of structure and technical installations of building, which may be provided in an integrated design process in the system BIM. Good coordination and cooperation of all contractors during the construction phase is also necessary. The article presents the problems and the new methodology for the design, construction and use of energy efficient buildings in terms of energy saving technologies, including discussion of the significant impact of the automation of technical installations on the building energy efficiency.

  16. Commercial Building Energy Saver, Web App

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon

    The CBES App is a web-based toolkit for use by small businesses and building owners and operators of small and medium size commercial buildings to perform energy benchmarking and retrofit analysis for buildings. The CBES App analyzes the energy performance of user's building for pre-and posto-retrofit, in conjunction with user's input data, to identify recommended retrofit measures, energy savings and economic analysis for the selected measures. The CBES App provides energy benchmarking, including getting an EnergyStar score using EnergyStar API and benchmarking against California peer buildings using the EnergyIQ API. The retrofit analysis includes a preliminary analysis by looking upmore » retrofit measures from a pre-simulated database DEEP, and a detailed analysis creating and running EnergyPlus models to calculate energy savings of retrofit measures. The CBES App builds upon the LBNL CBES API.« less

  17. Building Energy Consumption Pattern Analysis of Detached Housing for the Policy Decision Simulator

    NASA Astrophysics Data System (ADS)

    Lim, Jiyoun; Lee, Seung-Eon

    2018-03-01

    The Korean government announced its plan to raise the previous reduction goal of greenhouse gas emission from buildings by 26.9% until 2020 on July 2015. Therefore, policies regarding efficiency in the building energy are implemented fast, but the level of building owners and market understanding is low in general, and the government service system which supports decision making for implementing low-energy buildings has not been provided yet. The purpose of this study is to present the design direction for establishing user customized building energy database to perform a role to provide autonomous ecosystem of low-energy buildings. In order to reduce energy consumption in buildings, it is necessary to carry out the energy performance analysis based on the characteristics of target building. By analysing about 20-thousand cases of the amount of housing energy consumption in Korea, this study suggested the real energy consumption pattern by building types. Also, the energy performance of a building could be determined by energy consumption, but previous building energy consumption analysis programs required expert knowledge and experience in program usage, so it was difficult for normal building users to use such programs. Therefore, a measure to provide proper default using the level of data which general users with no expert knowledge regarding building energy could enter easily was suggested in this study.

  18. From Zero Energy Buildings to Zero Energy Districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polly, Ben; Kutscher, Chuck; Macumber, Dan

    Some U.S. cities are planning advanced districts that have goals for zero energy, water, waste, and/or greenhouse gas emissions. From an energy perspective, zero energy districts present unique opportunities to cost-effectively achieve high levels of energy efficiency and renewable energy penetration across a collection of buildings that may be infeasible at the individual building scale. These high levels of performance are accomplished through district energy systems that harness renewable and wasted energy at large scales and flexible building loads that coordinate with variable renewable energy supply. Unfortunately, stakeholders face a lack of documented processes, tools, and best practices to assistmore » them in achieving zero energy districts. The National Renewable Energy Laboratory (NREL) is partnering on two new district projects in Denver: the National Western Center and the Sun Valley Neighborhood. We are working closely with project stakeholders in their zero energy master planning efforts to develop the resources needed to resolve barriers and create replicable processes to support future zero energy district efforts across the United States. Initial results of these efforts include the identification and description of key zero energy district design principles (maximizing building efficiency, solar potential, renewable thermal energy, and load control), economic drivers, and master planning principles. The work has also resulted in NREL making initial enhancements to the U.S. Department of Energy's open source building energy modeling platform (OpenStudio and EnergyPlus) with the long-term goal of supporting the design and optimization of energy districts.« less

  19. Construction of energy-stable projection-based reduced order models

    DOE PAGES

    Kalashnikova, Irina; Barone, Matthew F.; Arunajatesan, Srinivasan; ...

    2014-12-15

    Our paper aims to unify and extend several approaches for building stable projection-based reduced order models (ROMs) using the energy method and the concept of “energy-stability”. Attention is focused on linear time-invariant (LTI) systems. First, an approach for building energy stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using continuous projection is proposed. The key idea is to apply to the system a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The result of this procedure will be a ROM that is energy-stablemore » for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special inner product, termed the “symmetry inner product”. Next, attention is turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, termed the “Lyapunov inner product”, is derived. Moreover, it is shown that the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system ari sing from the discretization of a system of PDEs in space. Projection in this inner product guarantees a ROM that is energy-stable, again for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. We also made comparisons between the symmetry inner product and the Lyapunov inner product. Performance of ROMs constructed using these inner products is evaluated on several benchmark test cases.« less

  20. Commercial Buildings Energy Consumption Survey (CBECS)

    EIA Publications

    2028-01-01

    The Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey that collects information on the stock of U.S. commercial buildings, including their energy-related building characteristics and energy usage data (consumption and expenditures). Commercial buildings include all buildings in which at least half of the floorspace is used for a purpose that is not residential, industrial, or agricultural. By this definition, CBECS includes building types that might not traditionally be considered commercial, such as schools, hospitals, correctional institutions, and buildings used for religious worship, in addition to traditional commercial buildings such as stores, restaurants, warehouses, and office buildings.

  1. Causes and Solutions for High Energy Consumption in Traditional Buildings Located in Hot Climate Regions

    NASA Astrophysics Data System (ADS)

    Barayan, Olfat Mohammad

    A considerable amount of money for high-energy consumption is spent in traditional buildings located in hot climate regions. High-energy consumption is significantly influenced by several causes, including building materials, orientation, mass, and openings' sizes. This paper aims to identify these causes and find practical solutions to reduce the annual cost of bills. For the purpose of this study, simulation research method has been followed. A comparison between two Revit models has also been created to point out the major cause of high-energy consumption. By analysing different orientations, wall insulation, and window glazing and applying some other high performance building techniques, a conclusion was found to confirm that appropriate building materials play a vital role in affecting energy cost. Therefore, the ability to reduce the energy cost by more than 50% in traditional buildings depends on a careful balance of building materials, mass, orientation, and type of window glazing.

  2. Energy Savings by Treating Buildings as Systems

    NASA Astrophysics Data System (ADS)

    Harvey, L. D. Danny

    2008-09-01

    This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.

  3. Development of EnergyPlus Utility to Batch Simulate Building Energy Performance on a National Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valencia, Jayson F.; Dirks, James A.

    2008-08-29

    EnergyPlus is a simulation program that requires a large number of details to fully define and model a building. Hundreds or even thousands of lines in a text file are needed to run the EnergyPlus simulation depending on the size of the building. To manually create these files is a time consuming process that would not be practical when trying to create input files for thousands of buildings needed to simulate national building energy performance. To streamline the process needed to create the input files for EnergyPlus, two methods were created to work in conjunction with the National Renewable Energymore » Laboratory (NREL) Preprocessor; this reduced the hundreds of inputs needed to define a building in EnergyPlus to a small set of high-level parameters. The first method uses Java routines to perform all of the preprocessing on a Windows machine while the second method carries out all of the preprocessing on the Linux cluster by using an in-house built utility called Generalized Parametrics (GPARM). A comma delimited (CSV) input file is created to define the high-level parameters for any number of buildings. Each method then takes this CSV file and uses the data entered for each parameter to populate an extensible markup language (XML) file used by the NREL Preprocessor to automatically prepare EnergyPlus input data files (idf) using automatic building routines and macro templates. Using a Linux utility called “make”, the idf files can then be automatically run through the Linux cluster and the desired data from each building can be aggregated into one table to be analyzed. Creating a large number of EnergyPlus input files results in the ability to batch simulate building energy performance and scale the result to national energy consumption estimates.« less

  4. Optimizing Energy Consumption in Building Designs Using Building Information Model (BIM)

    NASA Astrophysics Data System (ADS)

    Egwunatum, Samuel; Joseph-Akwara, Esther; Akaigwe, Richard

    2016-09-01

    Given the ability of a Building Information Model (BIM) to serve as a multi-disciplinary data repository, this paper seeks to explore and exploit the sustainability value of Building Information Modelling/models in delivering buildings that require less energy for their operation, emit less CO2 and at the same time provide a comfortable living environment for their occupants. This objective was achieved by a critical and extensive review of the literature covering: (1) building energy consumption, (2) building energy performance and analysis, and (3) building information modeling and energy assessment. The literature cited in this paper showed that linking an energy analysis tool with a BIM model helped project design teams to predict and create optimized energy consumption. To validate this finding, an in-depth analysis was carried out on a completed BIM integrated construction project using the Arboleda Project in the Dominican Republic. The findings showed that the BIM-based energy analysis helped the design team achieve the world's first 103% positive energy building. From the research findings, the paper concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results as well as deliver energy-efficient buildings. The study further recommends that the adoption of a level 2 BIM and the integration of BIM in energy optimization analyse should be made compulsory for all projects irrespective of the method of procurement (government-funded or otherwise) or its size.

  5. A Data Driven Pre-cooling Framework for Energy Cost Optimization in Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishwanath, Arun; Chandan, Vikas; Mendoza, Cameron

    Commercial buildings consume significant amount of energy. Facility managers are increasingly grappling with the problem of reducing their buildings’ peak power, overall energy consumption and energy bills. In this paper, we first develop an optimization framework – based on a gray box model for zone thermal dynamics – to determine a pre-cooling strategy that simultaneously shifts the peak power to low energy tariff regimes, and reduces both the peak power and overall energy consumption by exploiting the flexibility in a building’s thermal comfort range. We then evaluate the efficacy of the pre-cooling optimization framework by applying it to building managementmore » system data, spanning several days, obtained from a large commercial building located in a tropical region of the world. The results from simulations show that optimal pre-cooling reduces peak power by over 50%, energy consumption by up to 30% and energy bills by up to 37%. Next, to enable ease of use of our framework, we also propose a shortest path based heuristic algorithmfor solving the optimization problemand show that it has comparable erformance with the optimal solution. Finally, we describe an application of the proposed optimization framework for developing countries to reduce the dependency on expensive fossil fuels, which are often used as a source for energy backup.We conclude by highlighting our real world deployment of the optimal pre-cooling framework via a software service on the cloud platform of a major provider. Our pre-cooling methodology, based on the gray box optimization framework, incurs no capital expense and relies on data readily available from a building management system, thus enabling facility managers to take informed decisions for improving the energy and cost footprints of their buildings« less

  6. Energy management study: A proposed case of government building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal

    Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount ofmore » energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.« less

  7. Building Energy Efficiency in Rural China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Yu, Sha; Song, Bo

    2014-04-01

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese governmentmore » recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.« less

  8. Construction of energy-stable Galerkin reduced order models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalashnikova, Irina; Barone, Matthew Franklin; Arunajatesan, Srinivasan

    2013-05-01

    This report aims to unify several approaches for building stable projection-based reduced order models (ROMs). Attention is focused on linear time-invariant (LTI) systems. The model reduction procedure consists of two steps: the computation of a reduced basis, and the projection of the governing partial differential equations (PDEs) onto this reduced basis. Two kinds of reduced bases are considered: the proper orthogonal decomposition (POD) basis and the balanced truncation basis. The projection step of the model reduction can be done in two ways: via continuous projection or via discrete projection. First, an approach for building energy-stable Galerkin ROMs for linear hyperbolicmore » or incompletely parabolic systems of PDEs using continuous projection is proposed. The idea is to apply to the set of PDEs a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. The resulting ROM will be energy-stable for any choice of reduced basis. It is shown that, for many PDE systems, the desired transformation is induced by a special weighted L2 inner product, termed the %E2%80%9Csymmetry inner product%E2%80%9D. Attention is then turned to building energy-stable ROMs via discrete projection. A discrete counterpart of the continuous symmetry inner product, a weighted L2 inner product termed the %E2%80%9CLyapunov inner product%E2%80%9D, is derived. The weighting matrix that defines the Lyapunov inner product can be computed in a black-box fashion for a stable LTI system arising from the discretization of a system of PDEs in space. It is shown that a ROM constructed via discrete projection using the Lyapunov inner product will be energy-stable for any choice of reduced basis. Connections between the Lyapunov inner product and the inner product induced by the balanced truncation algorithm are made. Comparisons are also made between the symmetry inner product and the Lyapunov inner product. The performance of ROMs

  9. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    NASA Astrophysics Data System (ADS)

    Ham, Youngjib

    The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and

  10. Insulation materials for commercial buildings in North America: An assessment of lifetime energy and environmental impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Shrestha, Som S.; Bhandari, Mahabir S.

    In the United States, commercial buildings accounted for about 19 percent of the total primary energy consumption in 2012. Further, 29 percent of the site energy in commercial buildings was consumed for space heating and cooling. Applying insulation materials to building envelopes is an effective way of reducing energy consumption for heating and cooling, and limiting the negative environmental impacts from the buildings sector. While insulation materials have a net positive impact on the environment due to reduced energy consumption, they also have some negative impacts associated with their 'embodied energy'. The total lifetime environmental impacts of insulation materials aremore » a summation of: (1) direct impacts due to their embodied energy, and (2) indirect or impacts avoided due to the reduced building energy consumption. Here, assessments of the lifetime environmental impacts of selected insulation materials are presented. Direct and indirect environmental impact factors were estimated for the cradle-to-grave insulation life cycle stages. Impact factors were calculated for two categories: primary energy consumption and global warming potential. The direct impact factors were calculated using data from existing literature and a life cycle assessment software. The indirect impact factors were calculated through simulations of a set of standard whole-building models.« less

  11. Insulation materials for commercial buildings in North America: An assessment of lifetime energy and environmental impacts

    DOE PAGES

    Biswas, Kaushik; Shrestha, Som S.; Bhandari, Mahabir S.; ...

    2015-12-12

    In the United States, commercial buildings accounted for about 19 percent of the total primary energy consumption in 2012. Further, 29 percent of the site energy in commercial buildings was consumed for space heating and cooling. Applying insulation materials to building envelopes is an effective way of reducing energy consumption for heating and cooling, and limiting the negative environmental impacts from the buildings sector. While insulation materials have a net positive impact on the environment due to reduced energy consumption, they also have some negative impacts associated with their 'embodied energy'. The total lifetime environmental impacts of insulation materials aremore » a summation of: (1) direct impacts due to their embodied energy, and (2) indirect or impacts avoided due to the reduced building energy consumption. Here, assessments of the lifetime environmental impacts of selected insulation materials are presented. Direct and indirect environmental impact factors were estimated for the cradle-to-grave insulation life cycle stages. Impact factors were calculated for two categories: primary energy consumption and global warming potential. The direct impact factors were calculated using data from existing literature and a life cycle assessment software. The indirect impact factors were calculated through simulations of a set of standard whole-building models.« less

  12. Energy conservation and management system using efficient building automation

    NASA Astrophysics Data System (ADS)

    Ahmed, S. Faiz; Hazry, D.; Tanveer, M. Hassan; Joyo, M. Kamran; Warsi, Faizan A.; Kamarudin, H.; Wan, Khairunizam; Razlan, Zuradzman M.; Shahriman A., B.; Hussain, A. T.

    2015-05-01

    In countries where the demand and supply gap of electricity is huge and the people are forced to endure increasing hours of load shedding, unnecessary consumption of electricity makes matters even worse. So the importance and need for electricity conservation increases exponentially. This paper outlines a step towards the conservation of energy in general and electricity in particular by employing efficient Building Automation technique. It should be noted that by careful designing and implementation of the Building Automation System, up to 30% to 40% of energy consumption can be reduced, which makes a huge difference for energy saving. In this study above mentioned concept is verified by performing experiment on a prototype experimental room and by implementing efficient building automation technique. For the sake of this efficient automation, Programmable Logic Controller (PLC) is employed as a main controller, monitoring various system parameters and controlling appliances as per required. The hardware test run and experimental findings further clarifies and proved the concept. The added advantage of this project is that it can be implemented to both small and medium level domestic homes thus greatly reducing the overall unnecessary load on the Utility provider.

  13. Energy Efficiency and Conservation Block Grant (EECBG) - Better Buildings Neighborhood Program at Greater Cincinnati Energy Alliance: Home Performance with Energy Star® and Better Buildings Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzhauser, Andy; Jones, Chris; Faust, Jeremy

    2013-12-30

    The Greater Cincinnati Energy Alliance (Energy Alliance) is a nonprofit economic development agency dedicated to helping Greater Cincinnati and Northern Kentucky communities reduce energy consumption. The Energy Alliance has launched programs to educate homeowners, commercial property owners, and nonprofit organizations about energy efficiency opportunities they can use to drive energy use reductions and financial savings, while extending significant focus to creating/retaining jobs through these programs. The mission of the Energy Alliance is based on the premise that investment in energy efficiency can lead to transformative economic development in a region. With support from seven municipalities, the Energy Alliance began operationmore » in early 2010 and has been among the fastest growing nonprofit organizations in the Greater Cincinnati/Northern Kentucky area. The Energy Alliance offers two programs endorsed by the Department of Energy: the Home Performance with ENERGY STAR® Program for homeowners and the Better Buildings Performance Program for commercial entities. Both programs couple expert guidance, project management, and education in energy efficiency best practices with incentives and innovative energy efficiency financing to help building owners effectively invest in the energy efficiency, comfort, health, longevity, and environmental impact of their residential or commercial buildings. The Energy Alliance has raised over $23 million of public and private capital to build a robust market for energy efficiency investment. Of the $23 million, $17 million was a direct grant from the Department of Energy Better Buildings Neighborhood Program (BBNP). The organization’s investments in energy efficiency projects in the residential and commercial sector have led to well over $50 million in direct economic activity and created over 375,000 hours of labor created or retained. In addition, over 250 workers have been trained through the Building Performance

  14. Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. Themore » recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.« less

  15. Residential Building Energy Code Field Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Bartlett, M. Halverson, V. Mendon, J. Hathaway, Y. Xie

    This document presents a methodology for assessing baseline energy efficiency in new single-family residential buildings and quantifying related savings potential. The approach was developed by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) Building Energy Codes Program with the objective of assisting states as they assess energy efficiency in residential buildings and implementation of their building energy codes, as well as to target areas for improvement through energy codes and broader energy-efficiency programs. It is also intended to facilitate a consistent and replicable approach to research studies of this type and establish a transparent data setmore » to represent baseline construction practices across U.S. states.« less

  16. Energy conservation and solar retrofit analysis of a large office building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arasteh, D.; Hepner, M.

    1981-01-01

    During the winter and spring of 1981, a technical energy conservation and solar analysis of the JFK Federal Office Building in Boston was conducted. To reduce the building's energy consumption of a total of nineteen Energy Conservation Measures (ECM's) were analyzed. Among the measures studied were: reduction of ventilation and supply air, central automation controls, programmable lighting, absorption chiller replacement, fenestration modification and heat recovery. The results of the analyse show that implementation of all recommended ECM's would reduce energy consumption by 50% from a raw source Annual Energy Index (AEI) of 33.9 x 10/sup 8/ J/m/sup 2/ (299 MBtu/sf)more » to 17.2 10/sup 8/ j/m/sup 2/ (152 MBtu/sf). This relates to a savings of approximately $950,000 annually at April 1981 energy costs for a total construction cost of three million dollars.« less

  17. Design of an energy conservation building

    NASA Astrophysics Data System (ADS)

    Jensen, R. N.

    1981-11-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  18. Design of an energy conservation building

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1981-01-01

    The concepts in designing and predicting energy consumption in a low energy use building are summarized. The building will use less than 30,000 Btu/sq.ft./yr. of boarder energy. The building's primary energy conservation features include heavy concrete walls with external insulation, a highly insulated ceiling, and large amounts of glass for natural lighting. A solar collector air system is integrated into the south wall. Calculations for energy conservation features were performed using NASA's NECAP Energy Program.

  19. Strategies and Challenges for Energy Efficient Retrofitting: Study of the Empire State Building

    NASA Astrophysics Data System (ADS)

    De, B.; Mukherjee, M.

    2013-11-01

    Operational and maintenance cost of existing buildings is escalating making it tough for both the owner and the tenants. Retrofitting them with state of the art technologies help them to keep pace with amended recent code provisions and thus extending the older building stocks one more chance to live responsively. Retrofitted iconic buildings can thus retain their status in commerce driven real estate sector. It helps in reducing green house gas emission as well. World's iconic skyscraper, the Empire State Building (ESB), has undergone an exemplary retrofit process since 2008 to reduce its energy demands. To achieve the goal of operational cost and energy consumption reduction, stiff challenges had taken care in a systematic manner to realize benefit throughout the entire lifespan of the ESB. Least disturbances to the tenant and on-site component handling strategies required precise planning. The present paper explores strategies and process adopted for retrofitting the ESB, and derived insightful guidelines towards operational cost savings and energy efficiency of existing buildings through retrofitting.

  20. Phase Change Materials as a solution to improve energy efficiency in Portuguese residential buildings

    NASA Astrophysics Data System (ADS)

    Araújo, C.; Pinheiro, A.; Castro, M. F.; Bragança, L.

    2017-10-01

    The buildings sector contributes to 30% of annual greenhouse gas emissions and consumes about 40% of energy. However, this consumption can be reduced by between 30% and 80% through commercially available technologies. The consumption of energy in the dwellings is mostly associated with the heating and cooling of the interior environment. One solution to reduce these consumptions is the implementation of technologies and Phase Change Materials (PCMs) for Thermal Energy Storage (TES). So, the aim of this work is to analyse the advantages, in terms of decreasing energy consumption, associated with the application of PCMs in Portuguese residential buildings. For this, eight PCMs with different melting ranges were analysed. These materials were analysed through a dynamic simulation performed with EnergyPlus software. The results achieved, showed that the materials studied allow to reduce up to 13% of the heating needs and up to 92% of the cooling needs of a building located in the North of Portugal, at an altitude higher than 100m.

  1. Country Report on Building Energy Codes in Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

    2009-04-02

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

  2. Review of Methods for Buildings Energy Performance Modelling

    NASA Astrophysics Data System (ADS)

    Krstić, Hrvoje; Teni, Mihaela

    2017-10-01

    Research presented in this paper gives a brief review of methods used for buildings energy performance modelling. This paper gives also a comprehensive review of the advantages and disadvantages of available methods as well as the input parameters used for modelling buildings energy performance. European Directive EPBD obliges the implementation of energy certification procedure which gives an insight on buildings energy performance via exiting energy certificate databases. Some of the methods for buildings energy performance modelling mentioned in this paper are developed by employing data sets of buildings which have already undergone an energy certification procedure. Such database is used in this paper where the majority of buildings in the database have already gone under some form of partial retrofitting - replacement of windows or installation of thermal insulation but still have poor energy performance. The case study presented in this paper utilizes energy certificates database obtained from residential units in Croatia (over 400 buildings) in order to determine the dependence between buildings energy performance and variables from database by using statistical dependencies tests. Building energy performance in database is presented with building energy efficiency rate (from A+ to G) which is based on specific annual energy needs for heating for referential climatic data [kWh/(m2a)]. Independent variables in database are surfaces and volume of the conditioned part of the building, building shape factor, energy used for heating, CO2 emission, building age and year of reconstruction. Research results presented in this paper give an insight in possibilities of methods used for buildings energy performance modelling. Further on it gives an analysis of dependencies between buildings energy performance as a dependent variable and independent variables from the database. Presented results could be used for development of new building energy performance predictive

  3. Development of building energy asset rating using stock modelling in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Goel, Supriya; Makhmalbaf, Atefe

    2016-01-29

    The US Building Energy Asset Score helps building stakeholders quickly gain insight into the efficiency of building systems (envelope, electrical and mechanical systems). A robust, easy-to-understand 10-point scoring system was developed to facilitate an unbiased comparison of similar building types across the country. The Asset Score does not rely on a database or specific building baselines to establish a rating. Rather, distributions of energy use intensity (EUI) for various building use types were constructed using Latin hypercube sampling and converted to a series of stepped linear scales to score buildings. A score is calculated based on the modelled source EUImore » after adjusting for climate. A web-based scoring tool, which incorporates an analytical engine and a simulation engine, was developed to standardize energy modelling and reduce implementation cost. This paper discusses the methodology used to perform several hundred thousand building simulation runs and develop the scoring scales.« less

  4. SUNREL Energy Simulation Software | Buildings | NREL

    Science.gov Websites

    SUNREL Energy Simulation Software SUNREL Energy Simulation Software SUNREL® is a hourly building energy simulation program that aids in the design of small energy-efficient buildings where the loads are

  5. Building Energy Asset Score for Architects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for architects.

  6. Study on the optimum PCM melting temperature for energy savings in residential buildings worldwide

    NASA Astrophysics Data System (ADS)

    Saffari, M.; de Gracia, A.; Fernández, C.; Zsembinszki, G.; Cabeza, L. F.

    2017-10-01

    To maintain comfort conditions in residential buildings along a full year period, the use of active systems is generally required to either supply heating or cooling. The heating and cooling demands strongly depend on the climatic conditions, type of building and occupants’ behaviour. The overall annual energy consumption of the building can be reduced by the use of renewable energy sources and/or passive systems. The use of phase change materials (PCM) as passive systems in buildings enhances the thermal mass of the envelope, and reduces the indoor temperature fluctuations. As a consequence, the overall energy consumption of the building is generally lower as compared to the case when no PCM systems are used. The selection of the PCM melting temperature is a key issue to reduce the energy consumption of the buildings. The main focus of this study is to determine the optimum PCM melting temperature for passive heating and cooling according to different weather conditions. To achieve that, numerical simulations were carried out using EnergyPlus v8.4 coupled with GenOpt® v3.1.1 (a generic optimization software). A multi-family residential apartment was selected from ASHRAE Standard 90.1- 2013 prototype building model, and different climate conditions were considered to determine the optimum melting temperature (in the range from 20ºC to 26ºC) of the PCM contained in gypsum panels. The results confirm that the optimum melting temperature of the PCM strongly depends on the climatic conditions. In general, in cooling dominant climates the optimum PCM temperature is around 26ºC, while in heating dominant climates it is around 20ºC. Furthermore, the results show that an adequate selection of the PCM as passive system in building envelope can provide important energy savings for both heating dominant and cooling dominant regions.

  7. Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Nicholas E.P.; Katipamula, Srinivas; Wang, Weimin

    Commercial buildings in the United States use about 18 Quadrillion British thermal units (Quads) of primary energy annually . Studies have shown that as much as 30% of building energy consumption can be avoided by using more accurate sensing, using existing controls better, and deploying advanced controls; hence, the motivation for the work described in this report. Studies also have shown that 10% to 20% of the commercial building peak load can be temporarily managed/curtailed to provide grid services. Although many studies have indicated significant potential for reducing the energy consumption in commercial buildings, very few have documented the actualmore » savings. The studies that did so only provided savings at the whole building level, which makes it difficult to assess the savings potential of each individual measure deployed.« less

  8. BLAST: Building energy simulation in Hong Kong

    NASA Astrophysics Data System (ADS)

    Fong, Sai-Keung

    1999-11-01

    The characteristics of energy use in buildings under local weather conditions were studied and evaluated using the energy simulation program BLAST-3.0. The parameters used in the energy simulation for the study and evaluation include the architectural features, different internal building heat load settings and weather data. In this study, mathematical equations and the associated coefficients useful to the industry were established. A technology for estimating energy use in buildings under local weather conditions was developed by using the results of this study. A weather data file of Typical Meteorological Years (TMY) has been compiled for building energy studies by analyzing and evaluating the weather of Hong Kong from the year 1979 to 1988. The weather data file TMY and the example weather years 1980 and 1988 were used by BLAST-3.0 to evaluate and study the energy use in different buildings. BLAST-3.0 was compared with other building energy simulation and approximation methods: Bin method and Degree Days method. Energy use in rectangular compartments of different volumes varying from 4,000 m3 to 40,000 m3 with different aspect ratios were analyzed. The use of energy in buildings with concrete roofs was compared with those with glass roofs at indoor temperature 21°C, 23°C and 25°C. Correlation relationships among building energy, space volume, monthly mean temperature and solar radiation were derived and investigated. The effects of space volume, monthly mean temperature and solar radiation on building energy were evaluated. The coefficients of the mathematical relationships between space volume and energy use in a building were computed and found satisfactory. The calculated coefficients can be used for quick estimation of energy use in buildings under similar situations. To study energy use in buildings, the cooling load per floor area against room volume was investigated. The case of an air-conditioned single compartment with 5 m ceiling height was

  9. Predicting the Performance of Radiant Technologies in Attics: Reducing the Discrepancies Between Attic Specific and Whole-Building Energy Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merket, Noel D; DeGraw, Jason W; Lee, Edwin S

    The use of radiant technology in attics aims to reduce the radiation component of heat transfer between the attic floor and roof decks, gables, and eaves. Recently, it has been shown that EnergyPlus underestimates the savings using radiant technologies in attic spaces. The aim of this study is to understand why EnergyPlus underestimates the performance of radiant technologies and provide a solution strategy that works within the current capabilities of EnergyPlus. The analysis uses three attic energy models as a baseline for comparison for EnergyPlus. Potential reasons for the discrepancies between the attic specific energy models and EnergyPlus are isolatedmore » and individually tested. A solution strategy is proposed using the Energy Management System (EMS) capabilities within EnergyPlus. This solution strategy produces similar results to the other attic specific energy models. This paper shows that the current capabilities of EnergyPlus are sufficient to simulate radiant technologies in attics. The methodology showcased in this paper serves as a guide for engineers and researchers who would like to predict the performance radiant technology in attics using the whole building energy software, EnergyPlus.« less

  10. Building Energy Management Open Source Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Saifur

    Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they aremore » not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.« less

  11. Country Report on Building Energy Codes in Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shui, Bin; Evans, Meredydd

    2009-04-06

    This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildingsmore » in Canada.« less

  12. Commercial Building Energy Saver, API

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon

    2015-08-27

    The CBES API provides Application Programming Interface to a suite of functions to improve energy efficiency of buildings, including building energy benchmarking, preliminary retrofit analysis using a pre-simulation database DEEP, and detailed retrofit analysis using energy modeling with the EnergyPlus simulation engine. The CBES API is used to power the LBNL CBES Web App. It can be adopted by third party developers and vendors into their software tools and platforms.

  13. Improving the accuracy of energy baseline models for commercial buildings with occupancy data

    DOE PAGES

    Liang, Xin; Hong, Tianzhen; Shen, Geoffrey Qiping

    2016-07-07

    More than 80% of energy is consumed during operation phase of a building's life cycle, so energy efficiency retrofit for existing buildings is considered a promising way to reduce energy use in buildings. The investment strategies of retrofit depend on the ability to quantify energy savings by “measurement and verification” (M&V), which compares actual energy consumption to how much energy would have been used without retrofit (called the “baseline” of energy use). Although numerous models exist for predicting baseline of energy use, a critical limitation is that occupancy has not been included as a variable. However, occupancy rate is essentialmore » for energy consumption and was emphasized by previous studies. This study develops a new baseline model which is built upon the Lawrence Berkeley National Laboratory (LBNL) model but includes the use of building occupancy data. The study also proposes metrics to quantify the accuracy of prediction and the impacts of variables. However, the results show that including occupancy data does not significantly improve the accuracy of the baseline model, especially for HVAC load. The reasons are discussed further. In addition, sensitivity analysis is conducted to show the influence of parameters in baseline models. To conclude, the results from this study can help us understand the influence of occupancy on energy use, improve energy baseline prediction by including the occupancy factor, reduce risks of M&V and facilitate investment strategies of energy efficiency retrofit.« less

  14. Building thermography as a tool in energy audits and building commissioning procedure

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo

    2007-04-01

    A Building Commissioning-project (ToVa) was launched in Finland in the year 2003. A comprehensive commissioning procedure, including the building process and operation stage was developed in the project. This procedure will confirm the precise documentation of client's goals, definition of planning goals and the performance of the building. It is rather usual, that within 1-2 years after introduction the users complain about the defects or performance malfunctions of the building. Thermography is one important manual tool in verifying the thermal performance of the building envelope. In this paper the results of one pilot building (a school) will be presented. In surveying the condition and energy efficiency of buildings, various auxiliary means are needed. We can compare the consumption data of the target building with other, same type of buildings by benchmarking. Energy audit helps to localize and determine the energy saving potential. The most general and also most effective auxiliary means in monitoring the thermal performance of building envelopes is an infrared camera. In this presentation some examples of the use of thermography in energy audits are presented.

  15. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department ofmore » Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the

  16. Radon safety in terms of energy efficiency classification of buildings

    NASA Astrophysics Data System (ADS)

    Vasilyev, A.; Yarmoshenko, I.; Zhukovsky, M.

    2017-06-01

    According to the results of survey in Ekaterinburg, Russia, indoor radon concentrations above city average level have been found in each of the studied buildings with high energy efficiency class. Measures to increase energy efficiency were confirmed to decrease the air exchange rate and accumulation of high radon concentrations indoors. Despite of recommendations to use mechanical ventilation with heat recovery as the main scenario for reducing elevated radon concentrations in energy-efficient buildings, the use of such systems did not show an obvious advantage. In real situation, mechanical ventilation system is not used properly both in the automatic and manual mode, which does not give an obvious advantage over natural ventilation in the climate of the Middle Urals in Ekaterinburg. Significant number of buildings with a high class of energy efficiency and built using modern space-planning decisions contributes to an increase in the average radon concentration. Such situation contradicts to “as low as reasonable achievable” principle of the radiation protection.

  17. A Systems Approach to High Performance Buildings: A Computational Systems Engineering R&D Program to Increase DoD Energy Efficiency

    DTIC Science & Technology

    2012-02-01

    for Low Energy Building Ventilation and Space Conditioning Systems...Building Energy Models ................... 162 APPENDIX D: Reduced-Order Modeling and Control Design for Low Energy Building Systems .... 172 D.1...Design for Low Energy Building Ventilation and Space Conditioning Systems This section focuses on the modeling and control of airflow in buildings

  18. Scalable Deployment of Advanced Building Energy Management Systems

    DTIC Science & Technology

    2013-06-01

    Building Automation and Control Network BDAS Building Data Acquisition System BEM building energy model BIM building information modeling BMS...A prototype toolkit to seamlessly and automatically transfer a Building Information Model ( BIM ) to a Building Energy Model (BEM) has been...circumvent the need to manually construct and maintain a detailed building energy simulation model . This detailed

  19. Energy Value Housing Award Guide: How to Build and Profit with Energy Efficiency in New Home Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikora, J. L.

    2001-06-01

    As concern over the environment grows, builders have the potential to fulfill a market niche by building homes that use fewer resources and have lower environmental impact than conventional construction. Builders can increase their marketability and customer satisfaction and, at the same time, reduce the environmental impact of their homes. However, it takes dedication to build environmentally sound homes along with a solid marketing approach to ensure that customers recognize the added value of energy and resource efficiency. This guide is intended for builders seeking suggestions on how to improve energy and resource efficiency in their new homes. It ismore » a compilation of ideas and concepts for designing, building, and marketing energy- and resource-efficient homes based on the experience of recipients of the national Energy Value Housing Award (EVHA).« less

  20. Energy efficiency in new museum build: THEpUBLIC

    NASA Astrophysics Data System (ADS)

    Battle, G.; Yuen, C. H. N.; Zanchetta, M.; D'Cruz, P.

    2006-12-01

    The project MUSEUMS, awarded the Thermie Grant from the European Commission, has applied and tested new and innovative technologies for optimizing energy efficiency and sustainability in nine retrofitted and new museum buildings in Europe. The project will significantly contribute to the acceptance of innovative and renewable technologies in public buildings by demonstrating that retrofitted and new museum buildings can fully meet architectural, functional, comfort, control and safety requirements as well as achieve total energy savings of over 35% and reduce CO2 emissions by over 50%. THEpUBLIC will be a stunning and modern flagship building containing six storeys, with a total area of 11,000Âm2 of galleries for exhibitions, digital art and hands-on displays. In addition, there will be workspaces, creative spaces, retail opportunities, restaurant facilities, public areas, conference rooms and other multi-function spaces. Initiated by Jubilee Arts, the THEpUBLIC, designed by Alsop Architects, will introduce and engage its 400,000 expected visitors in the principles of energy and the environment through a display of art, education, technology and entertainment in the centre of West Bromwich, Sandwell. It will serve as a catalyst for urban regeneration within Sandwell.Battle McCarthy's key environmental design solutions for THEpUBLIC include natural daylighting, mixed-mode ventilation system with operable windows, low energy and maintenance cost systems, potential for integrating renewable energy collection systems, borehole water systems for cooling and water supply, an intelligent facade system with external shading and natural ventilation and night cooling systems.

  1. Energy and exergy assessments for an enhanced use of energy in buildings

    NASA Astrophysics Data System (ADS)

    Goncalves, Pedro Manuel Ferreira

    supply options are proposed and assessed as primary energy demand and exergy efficiency, showing it as a possible benchmarking method for future legislative frameworks regarding the energy performance assessment of buildings. Case study IV proposes a set of complementary indicators for comparing cogeneration and separate heat and electricity production systems. It aims to identify the advantages of exergy analysis relative to energy analysis, giving particular examples where these advantages are significant. The results demonstrate that exergy analysis can reveal meaningful information that might not be accessible using a conventional energy analysis approach, which is particularly evident when cogeneration and separated systems provide heat at very different temperatures. Case study V follows the exergy analysis method to evaluate the energy and exergy performance of a desiccant cooling system, aiming to assess and locate irreversibilities sources. The results reveal that natural gas boiler is the most inefficient component of the plant in question, followed by the chiller and heating coil. A set of alternative heating supply options for desiccant wheel regeneration is proposed, showing that, while some renewables may effectively reduce the primary energy demand of the plant, although this may not correspond to the optimum level of exergy efficiency. The thermal and chemical exergy components of moist air are also evaluated, as well as, the influence of outdoor environmental conditions on the energy/exergy performance of the plant. This research provides knowledge that is essential for the future development of complementary energy- and exergy-based indicators, helping to improve the current methodologies on performance assessments of buildings, cogeneration and desiccant cooling systems. The significance of exergy analysis is demonstrated for different types of buildings, which may be located in different climates (reference states) and be supplied by different types

  2. Calibrated energy simulations of potential energy savings in actual retail buildings

    NASA Astrophysics Data System (ADS)

    Alhafi, Zuhaira

    Retail stores are commercial buildings with high energy consumption due to their typically large volumes and long hours of operation. This dissertation assesses heating, ventilating and air conditioning saving strategies based on energy simulations with input parameters from actual retail buildings. The dissertation hypothesis is that "Retail store buildings will save a significant amount of energy by (1) modifying ventilation rates, and/or (2) resetting set point temperatures. These strategies have shown to be beneficial in previous studies. As presented in the literature review, potential energy savings ranged from 0.5% to 30% without compromising indoor thermal comfort and indoor air quality. The retail store buildings can be ventilated at rates significantly lower than rates called for in the ASHRAE Standard 62.1-2010 while maintaining acceptable indoor air quality. Therefore, two dissertation objectives are addressed: (1) Investigate opportunities to reduce ventilation rates that do not compromise indoor air quality in retail stores located in Central Pennsylvania, (2) Investigate opportunities to increase (in summer) and decrease (in winter) set point temperatures that do not compromise thermal comfort. This study conducted experimental measurements of ventilation rates required to maintain acceptable air quality and indoor environmental conditions requirements for two retail stores using ASHRAE Standard 62.1_2012. More specifically, among other parameters, occupancy density, indoor and outdoor pollutant concentrations, and indoor temperatures were measured continuously for one week interval. One of these retail stores were tested four times for a yearlong time period. Pollutants monitored were formaldehyde, carbon dioxide, particle size distributions and concentrations, as well as total volatile organic compounds. As a part of the base protocol, the number of occupants in each store was hourly counted during the test, and the results reveal that the occupant

  3. Stochastic Control of Energy Efficient Buildings: A Semidefinite Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiao; Dong, Jin; Djouadi, Seddik M

    2015-01-01

    The key goal in energy efficient buildings is to reduce energy consumption of Heating, Ventilation, and Air- Conditioning (HVAC) systems while maintaining a comfortable temperature and humidity in the building. This paper proposes a novel stochastic control approach for achieving joint performance and power control of HVAC. We employ a constrained Stochastic Linear Quadratic Control (cSLQC) by minimizing a quadratic cost function with a disturbance assumed to be Gaussian. The problem is formulated to minimize the expected cost subject to a linear constraint and a probabilistic constraint. By using cSLQC, the problem is reduced to a semidefinite optimization problem, wheremore » the optimal control can be computed efficiently by Semidefinite programming (SDP). Simulation results are provided to demonstrate the effectiveness and power efficiency by utilizing the proposed control approach.« less

  4. Energy Signal Tool for Decision Support in Building Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henze, G. P.; Pavlak, G. S.; Florita, A. R.

    2014-12-01

    A prototype energy signal tool is demonstrated for operational whole-building and system-level energy use evaluation. The purpose of the tool is to give a summary of building energy use which allows a building operator to quickly distinguish normal and abnormal energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual metaphor for energy use that is either substantially different from expected (red and yellow lights) or approximately the same as expected (green light). Which light to display for a given energy end use is determined by comparing expected to actual energy use.more » As expected, energy use is necessarily uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool chooses the light by minimizing the expected cost of displaying the wrong light. The expected energy use is represented by a probability distribution. Energy use is modeled by a low-order lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of the influence of model parameters on energy use. Distributions over model parameters are updated over time via Bayes' theorem. The simulation study was devised to assess whole-building energy signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building level that are not detectable without submetering.« less

  5. Comparison of Building Energy Modeling Programs: Building Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Dandan; Hong, Tianzhen; Yan, Da

    This technical report presented the methodologies, processes, and results of comparing three Building Energy Modeling Programs (BEMPs) for load calculations: EnergyPlus, DeST and DOE-2.1E. This joint effort, between Lawrence Berkeley National Laboratory, USA and Tsinghua University, China, was part of research projects under the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation, an industrial partner of CERC-BEE, was the co-sponsor of this study work. It is widely known that large discrepancies in simulation results can exist between different BEMPs. The result is a lack of confidence in building simulation amongst many users and stakeholders. In themore » fields of building energy code development and energy labeling programs where building simulation plays a key role, there are also confusing and misleading claims that some BEMPs are better than others. In order to address these problems, it is essential to identify and understand differences between widely-used BEMPs, and the impact of these differences on load simulation results, by detailed comparisons of these BEMPs from source code to results. The primary goal of this work was to research methods and processes that would allow a thorough scientific comparison of the BEMPs. The secondary goal was to provide a list of strengths and weaknesses for each BEMP, based on in-depth understandings of their modeling capabilities, mathematical algorithms, advantages and limitations. This is to guide the use of BEMPs in the design and retrofit of buildings, especially to support China’s building energy standard development and energy labeling program. The research findings could also serve as a good reference to improve the modeling capabilities and applications of the three BEMPs. The methodologies, processes, and analyses employed in the comparison work could also be used to compare other programs. The load calculation method of each program was analyzed and compared

  6. Building Energy Simulation Test for Existing Homes (BESTEST-EX) (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkoff, R.; Neymark, J.; Polly, B.

    2011-12-01

    This presentation discusses the goals of NREL Analysis Accuracy R&D; BESTEST-EX goals; what BESTEST-EX is; how it works; 'Building Physics' cases; 'Building Physics' reference results; 'utility bill calibration' cases; limitations and potential future work. Goals of NREL Analysis Accuracy R&D are: (1) Provide industry with the tools and technical information needed to improve the accuracy and consistency of analysis methods; (2) Reduce the risks associated with purchasing, financing, and selling energy efficiency upgrades; and (3) Enhance software and input collection methods considering impacts on accuracy, cost, and time of energy assessments. BESTEST-EX Goals are: (1) Test software predictions of retrofitmore » energy savings in existing homes; (2) Ensure building physics calculations and utility bill calibration procedures perform up to a minimum standard; and (3) Quantify impact of uncertainties in input audit data and occupant behavior. BESTEST-EX is a repeatable procedure that tests how well audit software predictions compare to the current state of the art in building energy simulation. There is no direct truth standard. However, reference software have been subjected to validation testing, including comparisons with empirical data.« less

  7. A technical framework to describe occupant behavior for building energy simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, William; Hong, Tianzhen

    2013-12-20

    Green buildings that fail to meet expected design performance criteria indicate that technology alone does not guarantee high performance. Human influences are quite often simplified and ignored in the design, construction, and operation of buildings. Energy-conscious human behavior has been demonstrated to be a significant positive factor for improving the indoor environment while reducing the energy use of buildings. In our study we developed a new technical framework to describe energy-related human behavior in buildings. The energy-related behavior includes accounting for individuals and groups of occupants and their interactions with building energy services systems, appliances and facilities. The technical frameworkmore » consists of four key components: i. the drivers behind energy-related occupant behavior, which are biological, societal, environmental, physical, and economical in nature ii. the needs of the occupants are based on satisfying criteria that are either physical (e.g. thermal, visual and acoustic comfort) or non-physical (e.g. entertainment, privacy, and social reward) iii. the actions that building occupants perform when their needs are not fulfilled iv. the systems with which an occupant can interact to satisfy their needs The technical framework aims to provide a standardized description of a complete set of human energy-related behaviors in the form of an XML schema. For each type of behavior (e.g., occupants opening/closing windows, switching on/off lights etc.) we identify a set of common behaviors based on a literature review, survey data, and our own field study and analysis. Stochastic models are adopted or developed for each type of behavior to enable the evaluation of the impact of human behavior on energy use in buildings, during either the design or operation phase. We will also demonstrate the use of the technical framework in assessing the impact of occupancy behavior on energy saving technologies. The technical framework

  8. Regression Tree-Based Methodology for Customizing Building Energy Benchmarks to Individual Commercial Buildings

    NASA Astrophysics Data System (ADS)

    Kaskhedikar, Apoorva Prakash

    According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement. Energy Benchmarking offers initial building energy performance assessment without rigorous evaluation. Energy benchmarking tools based on the Commercial Buildings Energy Consumption Survey (CBECS) database are investigated in this thesis. This study proposes a new benchmarking methodology based on decision trees, where a relationship between the energy use intensities (EUI) and building parameters (continuous and categorical) is developed for different building types. This methodology was applied to medium office and school building types contained in the CBECS database. The Random Forest technique was used to find the most influential parameters that impact building energy use intensities. Subsequently, correlations which were significant were identified between EUIs and CBECS variables. Other than floor area, some of the important variables were number of workers, location, number of PCs and main cooling equipment. The coefficient of variation was used to evaluate the effectiveness of the new model. The customization technique proposed in this thesis was compared with another benchmarking model that is widely used by building owners and designers namely, the ENERGY STAR's Portfolio Manager. This tool relies on the standard Linear Regression methods which is only able to handle continuous variables. The model proposed uses data mining technique and was found to perform slightly better than the Portfolio Manager. The broader impacts of the new benchmarking methodology proposed is that it allows for identifying important categorical variables, and then incorporating them in a local, as against a global, model framework for EUI

  9. Energy efficiency of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Zhigulina, Anna Yu.; Ponomarenko, Alla M.

    2018-03-01

    The article is devoted to analysis of tendencies and advanced technologies in the field of energy supply and energy efficiency of tall buildings, to the history of the emergence of the concept of "efficiency" and its current interpretation. Also the article show the difference of evaluation criteria of the leading rating systems LEED and BREEAM. Authors reviewed the latest technologies applied in the construction of energy efficient buildings. Methodological approach to the design of tall buildings taking into account energy efficiency needs to include the primary energy saving; to seek the possibility of production and accumulation of alternative electric energy by converting energy from the sun and wind with the help of special technical devices; the application of regenerative technologies.

  10. Design and development of Building energy simulation Software for prefabricated cabin type of industrial building (PCES)

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Ri Yi

    2018-06-01

    Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.

  11. IN2 Profile: Reducing Energy Consumption through Thermolift’s Heating and Cooling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Jason; Schwartz, Paul

    Through the Wells Fargo Innovation Incubator (IN²) program, Thermolift will have the opportunity to take their natural gas based air conditioning and heat pump technology and apply it to commercial and residential applications, and reduce fuel consumption between 30-50% while helping to balance the energy grid demand. The IN² program launched in October 2014 and is part of Wells Fargo’s 2020 Environmental Commitment to provide $100 million to environmentally-focused nonprofits and universities. The goal is to create an ecosystem that fosters and accelerates the commercialization of promising commercial buildings technologies that can provide scalable solutions to reduce the energy impactmore » of buildings. According to the Department of Energy, nearly 40 percent of energy consumption in the U.S. today comes from buildings at an estimated cost of $413 billion.« less

  12. Commercial Building Tenant Energy Usage Aggregation and Privacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.

    A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizesmore » the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.« less

  13. Dynamic Geospatial Modeling of the Building Stock to Project Urban Energy Demand.

    PubMed

    Breunig, Hanna Marie; Huntington, Tyler; Jin, Ling; Robinson, Alastair; Scown, Corinne Donahue

    2018-06-26

    In the United States, buildings account for more than 40 percent of total energy consumption, and the evolution of the urban form will impact the effectiveness of strategies to reduce energy use and mitigate emissions. This paper presents a broadly applicable approach for modeling future commercial, residential, and industrial floorspace, thermal consumption (heating and cooling), and associated GHG emissions at the tax assessor land parcel level. The approach accounts for changing building standards and retrofitting, climate change, and trends in housing and industry. We demonstrate the automated workflow for California, and project building stock, thermal energy consumption, and associated GHG emissions out to 2050. Our results suggest that if buildings in California have long lifespans, and minimal energy efficiency improvements compared to building codes reflective of 2008, then the state will face a 20% or higher increase in thermal energy consumption by 2050. Baseline annual GHG emissions associated with thermal energy consumption in the modeled building stock in 2016 is 34% below 1990 levels (110 Mt CO2eq/y).While the 2020 targets for the reduction of GHG emissions set by the California Senate Bill 350 have already been met, none of our scenarios achieve >80% reduction from 1990 levels by 2050, despite assuming an 86% reduction in electricity carbon intensity in our "Low Carbon" scenario. The results highlight the challenge California faces in meeting its new energy efficiency targets unless the State's building stock undergoes timely and strategic turnover, paired with deep retrofitting of existing buildings and natural gas equipment.

  14. Building Energy Asset Score for Utilities and Energy Efficiency Program Administrators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for utilities and energy efficiency program administrators.

  15. Leveraging Human-environment Systems in Residential Buildings for Aggregate Energy Efficiency and Sustainability

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqi

    Reducing the energy consumed in the built environment is a key objective in many sustainability initiatives. Existing energy saving methods have consisted of physical interventions to buildings and/or behavioral modifications of occupants. However, such methods may not only suffer from their own disadvantages, e.g. high cost and transient effect, but also lose aggregate energy saving potential due to the oftentimes-associated single-building-focused view and an isolated examination of occupant behaviors. This dissertation attempts to overcome the limitations of traditional energy saving research and practical approaches, and enhance residential building energy efficiency and sustainability by proposing innovative energy strategies from a holistic perspective of the aggregate human-environment systems. This holistic perspective features: (1) viewing buildings as mutual influences in the built environment, (2) leveraging both the individual and contextualized social aspects of occupant behaviors, and (3) incorporating interactions between the built environment and human behaviors. First, I integrate three interlinked components: buildings, residents, and the surrounding neighborhood, and quantify the potential energy savings to be gained from renovating buildings at the inter-building level and leveraging neighborhood-contextualized occupant social networks. Following the confirmation of both the inter-building effect among buildings and occupants' interpersonal influence on energy conservation, I extend the research further by examining the synergy that may exist at the intersection between these "engineered" building networks and "social" peer networks, focusing specifically on the additional energy saving potential that could result from interactions between the two components. Finally, I seek to reach an alignment of the human and building environment subsystems by matching the thermostat preferences of each household with the thermal conditions within their

  16. Mitigation of CO2 emissions from the EU-15 building stock: beyond the EU Directive on the Energy Performance of Buildings.

    PubMed

    Petersdorff, Carsten; Boermans, Thomas; Harnisch, Jochen

    2006-09-01

    GOAL SCOPE AND BACKGROUND: The European Directive on Energy Performance of Buildings which came into force 16 December 2002 will be implemented in the legislation of Member States by 4 January 2006. In addition to the aim of improving the overall energy efficiency of new buildings, large existing buildings will become a target for improvement, as soon as they undergo significant renovation. The building sector is responsible for about 40% of Europe's total end energy consumption and hence this Directive is an important step for the European Union in order that it should reach the level of saving required by the Kyoto Agreement. In this the EU is committed to reduce CO2 emissions relative to the base year of 1990 by 8 per cent, by 2010. But what will be the impact of the new Directive, how large could be the impacts of extending the obligation for energy efficiency retrofitting towards smaller buildings? Can improvement of the insulation offset or reduce the growing energy consumption from the increasing installation of cooling installations? EURIMA, the European Insulation Manufacturers Association and EuroACE, the European Alliance of Companies for Energy Efficiency in Buildings, asked Ecofys to address these questions. The effect of the EPB Directive on the emissions associated with the heating energy consumption of the total EU 15 building stock has been examined in a model calculation, using the Built Environment Analysis Model (BEAM), which was developed by Ecofys to investigate energy saving measures in the building stock. The great complexity of the EU-15 building stock had to be simplified by examining five standard buildings with eight insulation standards, which are assigned to building age and renovation status. Furthermore, three climatic regions (cold, moderate, warm) were distinguished for the calculation of the heating energy demand. This gave a basic 210 building types for which the heating energy demand and CO2 emissions from heating were

  17. Energy benchmarking of commercial buildings: a low-cost pathway toward urban sustainability

    NASA Astrophysics Data System (ADS)

    Cox, Matt; Brown, Marilyn A.; Sun, Xiaojing

    2013-09-01

    US cities are beginning to experiment with a regulatory approach to address information failures in the real estate market by mandating the energy benchmarking of commercial buildings. Understanding how a commercial building uses energy has many benefits; for example, it helps building owners and tenants identify poor-performing buildings and subsystems and it enables high-performing buildings to achieve greater occupancy rates, rents, and property values. This paper estimates the possible impacts of a national energy benchmarking mandate through analysis chiefly utilizing the Georgia Tech version of the National Energy Modeling System (GT-NEMS). Correcting input discount rates results in a 4.0% reduction in projected energy consumption for seven major classes of equipment relative to the reference case forecast in 2020, rising to 8.7% in 2035. Thus, the official US energy forecasts appear to overestimate future energy consumption by underestimating investments in energy-efficient equipment. Further discount rate reductions spurred by benchmarking policies yield another 1.3-1.4% in energy savings in 2020, increasing to 2.2-2.4% in 2035. Benchmarking would increase the purchase of energy-efficient equipment, reducing energy bills, CO2 emissions, and conventional air pollution. Achieving comparable CO2 savings would require more than tripling existing US solar capacity. Our analysis suggests that nearly 90% of the energy saved by a national benchmarking policy would benefit metropolitan areas, and the policy’s benefits would outweigh its costs, both to the private sector and society broadly.

  18. A comprehensive framework to assess, model, and enhance the human role in conserving energy in commercial buildings

    NASA Astrophysics Data System (ADS)

    Azar, Elie

    Energy conservation and sustainability are subjects of great interest today, especially in the commercial building sector which is witnessing a very high and growing demand for energy. Traditionally, efforts to reduce energy consumption in this sector consisted of researching and developing energy efficient building technologies and systems. On the other hand, recent studies indicate that human actions are major determinants of building energy performance and can lead to excessive energy use even in advanced low-energy buildings. As a result, it is essential to determine if the approach to future energy reduction initiatives should remain solely technology-focused, or if a human-focused approach is also needed to complement advancements in technology and improve building operation and performance. In practice, while technology-focused solutions have been extensively researched, promoted, and adopted in commercial buildings, research efforts on the role of human actions and energy use behaviors in energy conservation remain very limited. This study fills the missing gap in literature by presenting a comprehensive framework to (1) understand and quantify the influence of human actions on building energy performance, (2) model building occupants' energy use behaviors and account for potential changes in these behaviors over time, and (3) test and optimize different human-focused energy reduction interventions to increase their adoption in commercial buildings. Results are significant and prove that human actions have a major role to play in reducing the energy intensity of the commercial building sector. This sheds the light on the need for a shift in how people currently use and control different buildings systems, as this is crucial to ensure efficient building operation and to maximize the return on investment in energy-efficient technologies. Furthermore, this study proposes methods and tools that can be applied on any individual or groups of commercial buildings

  19. The impact of state energy programs and other contextual factors on U.S. buildings energy consumption

    NASA Astrophysics Data System (ADS)

    Ofori-Boadu, Andrea N. Y. A.

    High energy consumption in the United States has been influenced by populations, climates, income and other contextual factors. In the past decades, U.S. energy policies have pursued energy efficiency as a national strategy for reducing U.S. environmental degradation and dependence on foreign oils. The quest for improved energy efficiency has led to the development of energy efficient technologies and programs. The implementation of energy programs in the complex U.S. socio-technical environment is believed to promote the diffusion of energy efficiency technologies. However, opponents doubt the fact that these programs have the capacity to significantly reduce U.S. energy consumption. In order to contribute to the ongoing discussion, this quantitative study investigated the relationships existing among electricity consumption/ intensity, energy programs and contextual factors in the U.S. buildings sector. Specifically, this study sought to identify the significant predictors of electricity consumption and intensity, as well as estimate the overall impact of selected energy programs on electricity consumption and intensity. Using state-level secondary data for 51 U.S. states from 2006 to 2009, seven random effects panel data regression models confirmed the existence of significant relationships among some energy programs, contextual factors, and electricity consumption/intensity. The most significant predictors of improved electricity efficiency included the price of electricity, public benefits funds program, building energy codes program, financial and informational incentives program and the Leadership in Energy and Environmental Design (LEED) program. Consistently, the Southern region of the U.S. was associated with high electricity consumption and intensity; while the U.S. commercial sector was the greater benefactor from energy programs. On the average, energy programs were responsible for approximately 7% of the variation observed in electricity consumption

  20. Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hult, Erin; Granderson, Jessica; Mathew, Paul

    While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hourmore » onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.« less

  1. Solar energy in buildings: Implications for California energy policy

    NASA Technical Reports Server (NTRS)

    Hirshberg, A. S.; Davis, E. S.

    1977-01-01

    An assessment of the potential of active solar energy systems for buildings in California is summarized. The technology used for solar heating, cooling, and water heating in buildings is discussed. The major California weather zones and the solar energy designs are described, as well as the sizing of solar energy systems and their performance. The cost of solar energy systems is given both at current prices and at prices consistent with optimistic estimates for the cost of collectors. The main institutional barriers to the wide spread use of solar energy are summarized.

  2. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, Spencer M.; Fisk, William J.

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% asmore » the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.« less

  3. Attributes of the Federal Energy Management Program's Federal Site Building Characteristics Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loper, Susan A.; Sandusky, William F.

    2010-12-31

    Typically, the Federal building stock is referred to as a group of about one-half million buildings throughout the United States. Additional information beyond this level is generally limited to distribution of that total by agency and maybe distribution of the total by state. However, additional characterization of the Federal building stock is required as the Federal sector seeks ways to implement efficiency projects to reduce energy and water use intensity as mandated by legislation and Executive Order. Using a Federal facility database that was assembled for use in a geographic information system tool, additional characterization of the Federal building stockmore » is provided including information regarding the geographical distribution of sites, building counts and percentage of total by agency, distribution of sites and building totals by agency, distribution of building count and floor space by Federal building type classification by agency, and rank ordering of sites, buildings, and floor space by state. A case study is provided regarding how the building stock has changed for the Department of Energy from 2000 through 2008.« less

  4. Options to improve energy efficiency for educational building

    NASA Astrophysics Data System (ADS)

    Jahan, Mafruha

    The cost of energy is a major factor that must be considered for educational facility budget planning purpose. The analysis of energy related issues and options can be complex and requires significant time and detailed effort. One way to facilitate the inclusion of energy option planning in facility planning efforts is to utilize a tool that allows for quick appraisal of the facility energy profile. Once such an appraisal is accomplished, it is then possible to rank energy improvement options consistently with other facility needs and requirements. After an energy efficiency option has been determined to have meaningful value in comparison with other facility planning options, it is then possible to utilize the initial appraisal as the basis for an expanded consideration of additional facility and energy use detail using the same analytic system used for the initial appraisal. This thesis has developed a methodology and an associated analytic model to assist in these tasks and thereby improve the energy efficiency of educational facilities. A detailed energy efficiency and analysis tool is described that utilizes specific university building characteristics such as size, architecture, envelop, lighting, occupancy, thermal design which allows reducing the annual energy consumption. Improving the energy efficiency of various aspects of an educational building's energy performance can be complex and can require significant time and experience to make decisions. The approach developed in this thesis initially assesses the energy design for a university building. This initial appraisal is intended to assist administrators in assessing the potential value of energy efficiency options for their particular facility. Subsequently this scoping design can then be extended as another stage of the model by local facility or planning personnel to add more details and engineering aspects to the initial screening model. This approach can assist university planning efforts to

  5. Control Limits for Building Energy End Use Based on Engineering Judgment, Frequency Analysis, and Quantile Regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henze, Gregor P.; Pless, Shanti; Petersen, Anya

    2014-02-01

    Approaches are needed to continuously characterize the energy performance of commercial buildings to allow for (1) timely response to excess energy use by building operators; and (2) building occupants to develop energy awareness and to actively engage in reducing energy use. Energy information systems, often involving graphical dashboards, are gaining popularity in presenting energy performance metrics to occupants and operators in a (near) real-time fashion. Such an energy information system, called Building Agent, has been developed at NREL and incorporates a dashboard for public display. Each building is, by virtue of its purpose, location, and construction, unique. Thus, assessing buildingmore » energy performance is possible only in a relative sense, as comparison of absolute energy use out of context is not meaningful. In some cases, performance can be judged relative to average performance of comparable buildings. However, in cases of high-performance building designs, such as NREL's Research Support Facility (RSF) discussed in this report, relative performance is meaningful only when compared to historical performance of the facility or to a theoretical maximum performance of the facility as estimated through detailed building energy modeling.« less

  6. Energy Efficient Building Management | Climate Neutral Research Campuses |

    Science.gov Websites

    NREL Efficient Building Management Energy Efficient Building Management As campuses complete generate the greatest climate impact. Energy efficient management in the existing stock of buildings is the following links go to sections that describe how an energy buildings management and maintenance program may

  7. Energy Performance and Optimal Control of Air-conditioned Buildings Integrated with Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Zhu, Na

    This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand

  8. Clean Cities: Building Partnerships to Reduce Petroleum Use in Transportation (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country. The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum consumption in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Clean Cities overarching goal ismore » to reduce U.S. petroleum use by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: (1) Replace petroleum with alternative and renewable fuels, including natural gas, propane, electricity, ethanol, biodiesel, and hydrogen; (2) Reduce petroleum consumption through smarter driving practices and fuel economy improvements; and (3) Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices.« less

  9. An inversion strategy for energy saving in smart building through wireless monitoring

    NASA Astrophysics Data System (ADS)

    Anselmi, N.; Moriyama, T.

    2017-10-01

    The building plants represent one of the main sources of power consumption and of greenhouse gases emission in urban scenarios. The efficiency of energy management is also related to the indoor environmental conditions that reflect on the user comfort. The constant monitoring of comfort indicators enables the accurate management of building plants with the final objective of reducing energy waste and satisfying the user needs. This paper presents an inversion methodology based on support vector regression for the reconstruction and forecasting of the thermal comfort of users starting from the indoor environmental features of the building. The environmental monitoring is performed by means of a wireless sensor network, which pervasively measures the spatial variability of indoor conditions. The proposed system has been experimentally validated in a real test-site to assess the advantages and the limitations in supporting the management of the building plants towards energy saving.

  10. 2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary

    EIA Publications

    2016-01-01

    EIA has released summary tables providing energy consumption estimates from the 2012 CBECS. The data show that despite a 14% increase in total buildings and a 22% increase in total floorspace since 2003, energy use in the estimated 5.6 million U.S. commercial buildings was up just 7% during the same period.

  11. Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach

    PubMed Central

    Kneifel, Joshua; Webb, David

    2016-01-01

    Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the

  12. Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach.

    PubMed

    Kneifel, Joshua; Webb, David

    2016-09-01

    Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the

  13. An international survey of building energy codes and their implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Roshchanka, Volha; Graham, Peter

    Buildings are key to low-carbon development everywhere, and many countries have introduced building energy codes to improve energy efficiency in buildings. Yet, building energy codes can only deliver results when the codes are implemented. For this reason, studies of building energy codes need to consider implementation of building energy codes in a consistent and comprehensive way. This research identifies elements and practices in implementing building energy codes, covering codes in 22 countries that account for 70% of global energy demand from buildings. Access to benefits of building energy codes depends on comprehensive coverage of buildings by type, age, size, andmore » geographic location; an implementation framework that involves a certified agency to inspect construction at critical stages; and independently tested, rated, and labeled building energy materials. Training and supporting tools are another element of successful code implementation, and their role is growing in importance, given the increasing flexibility and complexity of building energy codes. Some countries have also introduced compliance evaluation and compliance checking protocols to improve implementation. This article provides examples of practices that countries have adopted to assist with implementation of building energy codes.« less

  14. Life cycle optimization model for integrated cogeneration and energy systems applications in buildings

    NASA Astrophysics Data System (ADS)

    Osman, Ayat E.

    Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a

  15. Potential energy savings in buildings by an urban tree planting programme in California

    Treesearch

    E.G. McPherson; J.R. Simpson

    2003-01-01

    Tree canopy cover data from aerial photographs and building energy simulations were applied to estimate energy savings from existing trees and new plantings in California. There are approximately 177.3 million energy-conserving trees in California communities and 241.6 million empty planting sites. Existing trees are projected to reduce annual air conditioning energy...

  16. A new procedure to analyze the effect of air changes in building energy consumption

    PubMed Central

    2014-01-01

    Background Today, the International Energy Agency is working under good practice guides that integrate appropriate and cost effective technologies. In this paper a new procedure to define building energy consumption in accordance with the ISO 13790 standard was performed and tested based on real data from a Spanish region. Results Results showed that the effect of air changes on building energy consumption can be defined using the Weibull peak function model. Furthermore, the effect of climate change on building energy consumption under several different air changes was nearly nil during the summer season. Conclusions The procedure obtained could be the much sought-after solution to the problem stated by researchers in the past and future research works relating to this new methodology could help us define the optimal improvement in real buildings to reduce energy consumption, and its related carbon dioxide emissions, at minimal economical cost. PMID:24456655

  17. Intelligent Controls for Net-Zero Energy Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision supportmore » tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.« less

  18. Environmental assessment of low-energy social housing, Boatemah Walk building, Brixton

    NASA Astrophysics Data System (ADS)

    Vargas, Lidia Johansen

    Energy use from buildings represents a considerable share from the UK energy consumption as a whole and the resulting C02 emissions are considered the main driver for climate change. There is a global urge for new and existing buildings to be truly effective in reducing their energy consumption. This study evaluates the performance in use of low energy design in social housing: Boatemah Walk is a newly built residential block of 18 flats located in Angell Town, Brixton, which benefits from various low energy enhancing features such as: a low embodied energy building fabric, super insulation, photovoltaic panels integrated in the roof, rainwater recycling system and non-toxic building materials and finishes. The new building layout and surrounding landscape influences positively the community integration and safety. The evaluation has been done through observation, monitoring, interviews with tenants and the use of TAS software, throughout the year after occupation. Boatemah Walk building has proved successful in some aspects and less successful in others. It is crucial that a demonstration project like Boatemah Walk building considers all mechanisms necessary to monitor its efficiency, as this would provide feedback to prove the efficiency and encourage similar investments. However, during the course of the study it was found that a meter for the recycled water and export meters for the photovoltaic production were missing. This proved to be an obstacle for the accurate monitoring of the building performance. The annual heating in Boatemah Walk is below the national averages, which confirms the good performance of its building fabric. In hot summer days the lightweight building is expectedly vulnerable to the outside. This is not a frequent occurrence however the effects of climate change are very likely to increase the length and temperatures in the future. The tenants' energy consuming behavior has a definitive impact, as revealed through monitoring and direct

  19. Computer simulated building energy consumption for verification of energy conservation measures in network facilities

    NASA Technical Reports Server (NTRS)

    Plankey, B.

    1981-01-01

    A computer program called ECPVER (Energy Consumption Program - Verification) was developed to simulate all energy loads for any number of buildings. The program computes simulated daily, monthly, and yearly energy consumption which can be compared with actual meter readings for the same time period. Such comparison can lead to validation of the model under a variety of conditions, which allows it to be used to predict future energy saving due to energy conservation measures. Predicted energy saving can then be compared with actual saving to verify the effectiveness of those energy conservation changes. This verification procedure is planned to be an important advancement in the Deep Space Network Energy Project, which seeks to reduce energy cost and consumption at all DSN Deep Space Stations.

  20. Alternative Natural Energy Sources in Building Design.

    ERIC Educational Resources Information Center

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  1. Energy Efficiency Program Administrators and Building Energy Codes

    EPA Pesticide Factsheets

    Explore how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.

  2. Short-Lived Buildings in China: Impacts on Water, Energy, and Carbon Emissions.

    PubMed

    Cai, Wenjia; Wan, Liyang; Jiang, Yongkai; Wang, Can; Lin, Lishen

    2015-12-15

    This paper has changed the vague understanding that "the short-lived buildings have huge environmental footprints (EF)" into a concrete one. By estimating the annual floor space of buildings demolished and calibrating the average building lifetime in China, this paper compared the EF under various assumptive extended buildings' lifetime scenarios based on time-series environmental-extended input-output model. Results show that if the average buildings' lifetime in China can be extended from the current 23.2 years to their designed life expectancy, 50 years, in 2011, China can reduce 5.8 Gt of water withdrawal, 127.1 Mtce of energy consumption, and 426.0 Mt of carbon emissions, each of which is equivalent to the corresponding annual EF of Belgium, Mexico, and Italy. These findings will urge China to extend the lifetime of existing and new buildings, in order to reduce the EF from further urbanization. This paper also verifies that the lifetime of a product or the replacement rate of a sector is a very important factor that influences the cumulative EF. When making policies to reduce the EF, adjusting people's behaviors to extend the lifetime of products or reduce the replacement rate of sectors may be a very simple and cost-effective option.

  3. Measuring and Understanding the Energy Use Signatures of a Bank Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, YuLong; Liu, Bing; Athalye, Rahul A.

    The Pacific Northwest National Laboratory measured and analyzed the energy end-use patterns in a bank building located in the north-eastern United States. This work was performed in collaboration with PNC Financial Service Group under the US DOE’s Commercial Building Partnerships Program. This paper presents the metering study and the results of the metered data analysis. It provides a benchmark for the energy use of different bank-related equipments. The paper also reveals the importance of metering in fully understanding building loads and indentifying opportunities for energy efficiency improvements that will have impacts across PNC’s portfolio of buildings and were crucial tomore » reducing receptacle loads in the design of a net-zero bank branches. PNNL worked with PNC to meter a 4,000 ft2 bank branch in the state of Pennsylvania. 71 electrical circuits were monitored and 25 stand-alone watt-hour meters were installed at the bank. These meters monitored the consumption of all interior and exterior lighting, receptacle loads, service water heating, and the HVAC rooftop unit at a 5-minute sampling interval from November 2009 to November 2010. A total of over 8 million data records were generated, which were then analyzed to produce the end-use patterns, daily usage profiles, rooftop unit usage cycles, and inputs for calibrating the energy model of the building.« less

  4. Establishing a commercial building energy data framework for India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Maithili; Kumar, Satish; Mathew, Sangeeta

    Buildings account for over 40% of the world’s energy consumption and are therefore a key contributor to a country’s energy as well as carbon budget. Understanding how buildings use energy is critical to understanding how related policies may impact energy use. Data enables decision making, and good quality data arms consumers with the tools to compare their energy performance to their peers, allowing them to differentiate their buildings in the real estate market on the basis of their energy footprint. Good quality data are also essential for policy makers to prioritize their energy saving strategies and track implementation. The Unitedmore » States’ Commercial Building Energy Consumption Survey (CBECS) is an example of a successful data framework that is highly useful for governmental and nongovernmental initiatives related to benchmarking energy forecasting, rating systems and metrics, and more. The Bureau of Energy Efficiency (BEE) in India developed the Energy Conservation Building Code (ECBC) and launched the Star Labeling program for a few energy-intensive building segments as a significant first step. However, a data driven policy framework for systematically targeting energy efficiency in both new construction and existing buildings has largely been missing. There is no quantifiable mechanism currently in place to track the impact of code adoption through regular reporting/survey of energy consumption in the commercial building stock. In this paper we present findings from our study that explored use cases and approaches for establishing a commercial buildings data framework for India.« less

  5. A Fast Evaluation Method for Energy Building Consumption Based on the Design of Experiments

    NASA Astrophysics Data System (ADS)

    Belahya, Hocine; Boubekri, Abdelghani; Kriker, Abdelouahed

    2017-08-01

    Building sector is one of the effective consumer energy by 42% in Algeria. The need for energy has continued to grow, in inordinate way, due to lack of legislation on energy performance in this large consumer sector. Another reason is the simultaneous change of users’ requirements to maintain their comfort, especially summer in dry lands and parts of southern Algeria, where the town of Ouargla presents a typical example which leads to a large amount of electricity consumption through the use of air conditioning. In order to achieve a high performance envelope of the building, an optimization of major parameters building envelope is required, using design of experiments (DOE), can determine the most effective parameters and eliminate the less importance. The study building is often complex and time consuming due to the large number of parameters to consider. This study focuses on reducing the computing time and determines the major parameters of building energy consumption, such as area of building, factor shape, orientation, ration walls to windows …etc to make some proposal models in order to minimize the seasonal energy consumption due to air conditioning needs.

  6. Thermal energy storage with phase change materials (PCMs) for the improvement of the energy performance of buildings

    NASA Astrophysics Data System (ADS)

    Soares, Nelson

    The improvement of the energy efficiency of buildings during their operational phase is an active area of research. The markets are looking for new technologies, namely new thermal energy storage (TES) systems, which can be used to reduce buildings' dependency on fossil fuels, to make use of renewable energy sources and to contribute to match energy supply and demand efficiently. The main goals of this thesis are: (i) to evaluate the heat transfer with solid-liquid phase-change through small TES units filled with phase-change materials (PCMs), providing experimental data to be used in the design of new TES systems for buildings and in the validation of numerical models, and (ii) to provide some guidelines for the incorporation of PCM-drywalls in buildings aiming to reduce the energy demand for heating and cooling by making use of the latent heat from the phase-change processes of PCMs. The first part of this thesis refers to the experimental study of the heat transfer through a vertical stack of metallic rectangular cavities filled with different PCMs (a microencapsulated and a free-form PCM). The research carried out aims: (i) to analyze the melting and solidification processes of the PCM within the enclosures, (ii) to evaluate the influence of the aspect ratio of the cavities on the heat transfer and (iii) to discuss which type of PCM is better for specific cases. As a result, a big amount of experimental data for benchmarking and validation of numerical models is made available to the scientific community. Moreover, the results allow discussing which arrangement of the TES unit is better for specific applications considering the thermal regulation effect during charging, the influence of subcooling during discharging, and the influence of natural convection during both processes. It is shown that the effect of natural convection in the free-form PCM must be considered in any simulation to better describe the charging process. During discharging, subcooling must

  7. Early Design Energy Analysis Using Building Information Modeling Technology

    DTIC Science & Technology

    2011-11-01

    building, (a) floor plan and (b) 3D image. ....................................... 50 Figure 28. Comparison of different energy estimates...when they make the biggest impact on building life-cycle costs. Traditionally, most building energy analyses have been conducted late in design, by...complete energy analysis. This method enables project teams to make energy conscious decisions early in design when they impact building life-cycle

  8. Ten questions concerning future buildings beyond zero energy and carbon neutrality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Phelan, Patrick E.; Gonzalez, Jorge

    2017-07-01

    Architects, planners, and building scientists have been at the forefront of envisioning a future built environment for centuries. However, fragmental views that emphasize one facet of the built environment, such as energy, environment, or groundbreaking technologies, often do not achieve expected outcomes. Buildings are responsible for approximately one-third of worldwide carbon emissions and account for over 40% of primary energy consumption in the U.S. In addition to achieving the ambitious goal of reducing building greenhouse gas emissions by 75% by 2050, buildings must improve their functionality and performance to meet current and future human, societal, and environmental needs in amore » changing world. In this article, we introduce a new framework to guide potential evolution of the building stock in the next century, based on greenhouse gas emissions as the common thread to investigate the potential implications of new design paradigms, innovative operational strategies, and disruptive technologies. This framework emphasizes integration of multidisciplinary knowledge, scalability for mainstream buildings, and proactive approaches considering constraints and unknowns. The framework integrates the interrelated aspects of the built environment through a series of quantitative metrics that aim to improve environmental outcomes while optimizing building performance to achieve healthy, adaptive, and productive buildings.« less

  9. Climate change, renewable energy and population impact on future energy demand for Burkina Faso build environment

    NASA Astrophysics Data System (ADS)

    Ouedraogo, B. I.

    This research addresses the dual challenge faced by Burkina Faso engineers to design sustainable low-energy cost public buildings and domestic dwellings while still providing the required thermal comfort under warmer temperature conditions caused by climate change. It was found base don climate change SRES scenario A2 that predicted mean temperature in Burkina Faso will increase by 2oC between 2010 and 2050. Therefore, in order to maintain a thermally comfortable 25oC inside public buildings, the projected annual energy consumption for cooling load will increase by 15%, 36% and 100% respectively for the period between 2020 to 2039, 2040 to 2059 and 2070 to 2089 when compared to the control case. It has also been found that a 1% increase in population growth will result in a 1.38% and 2.03% increase in carbon emission from primary energy consumption and future electricity consumption respectively. Furthermore, this research has investigated possible solutions for adaptation to the severe climate change and population growth impact on energy demand in Burkina Faso. Shading devices could potentially reduce the cooling load by up to 40%. Computer simulation programming of building energy consumption and a field study has shown that adobe houses have the potential of significantly reducing energy demand for cooling and offer a formidable method for climate change adaptation. Based on the Net Present Cost, hybrid photovoltaic (PV) and Diesel generator energy production configuration is the most cost effective local electricity supply system, for areas without electricity at present, with a payback time of 8 years when compared to diesel generator stand-alone configuration. It is therefore a viable solution to increase electricity access to the majority of the population.

  10. Building Energy Asset Score for Real Estate Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for real estate managers.

  11. A Conversation on Zero Net Energy Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, Charles; Gupta, Smita; Torcellini, Paul

    The submitted Roundtable discussion covers zero net energy (ZNE) buildings and their expansion into the market as a more widely adopted approach for various building types and sizes. However, the market is still small, and this discussion brings together distinguished researchers, designers, policy makers, and program administrations to represent the key factors making ZNE building more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This roundtable was conducted by the ASHRAE Journal with Bing Liu, P.E., Member ASHRAE, Charles Eley, FAIA, P.E., Member ASHRAE; Smita Gupta, Itron; Cathy Higgins, New Buildings Institute;more » Jessica Iplikci, Energy Trust of Oregon; Jon McHugh, P.E., Member ASHRAE; Michael Rosenberg, Member ASHRAE; and Paul Torcellini, Ph.D., P.E., NREL.« less

  12. Creating high performance buildings: Lower energy, better comfort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brager, Gail; Arens, Edward

    2015-03-30

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. Inmore » contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building.« less

  13. 75 FR 20833 - Building Energy Codes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2010-BT-BC-0012] Building Energy Codes AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for Information. SUMMARY: The U.S. Department of Energy (DOE) is soliciting...

  14. An international survey of building energy codes and their implementation

    DOE PAGES

    Evans, Meredydd; Roshchanka, Volha; Graham, Peter

    2017-08-01

    Buildings are key to low-carbon development everywhere, and many countries have introduced building energy codes to improve energy efficiency in buildings. Yet, building energy codes can only deliver results when the codes are implemented. For this reason, studies of building energy codes need to consider implementation of building energy codes in a consistent and comprehensive way. This research identifies elements and practices in implementing building energy codes, covering codes in 22 countries that account for 70% of global energy use in buildings. These elements and practices include: comprehensive coverage of buildings by type, age, size, and geographic location; an implementationmore » framework that involves a certified agency to inspect construction at critical stages; and building materials that are independently tested, rated, and labeled. Training and supporting tools are another element of successful code implementation. Some countries have also introduced compliance evaluation studies, which suggested that tightening energy requirements would only be meaningful when also addressing gaps in implementation (Pitt&Sherry, 2014; U.S. DOE, 2016b). Here, this article provides examples of practices that countries have adopted to assist with implementation of building energy codes.« less

  15. An international survey of building energy codes and their implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Roshchanka, Volha; Graham, Peter

    Buildings are key to low-carbon development everywhere, and many countries have introduced building energy codes to improve energy efficiency in buildings. Yet, building energy codes can only deliver results when the codes are implemented. For this reason, studies of building energy codes need to consider implementation of building energy codes in a consistent and comprehensive way. This research identifies elements and practices in implementing building energy codes, covering codes in 22 countries that account for 70% of global energy use in buildings. These elements and practices include: comprehensive coverage of buildings by type, age, size, and geographic location; an implementationmore » framework that involves a certified agency to inspect construction at critical stages; and building materials that are independently tested, rated, and labeled. Training and supporting tools are another element of successful code implementation. Some countries have also introduced compliance evaluation studies, which suggested that tightening energy requirements would only be meaningful when also addressing gaps in implementation (Pitt&Sherry, 2014; U.S. DOE, 2016b). Here, this article provides examples of practices that countries have adopted to assist with implementation of building energy codes.« less

  16. Energy Conservation in Buildings--A Human Factors/Systems Viewpoint. NBS Building Science Series 88.

    ERIC Educational Resources Information Center

    Rubin, Arthur I.

    The current emphasis on energy conservation in buildings must be balanced by a careful consideration of how proposed approaches affect building occupants. A headlong rush toward building designs that conserve energy at the expense of the quality of buildings as judged by occupants would be a very shortsighted approach. There must be a continual…

  17. Enabling VOLTTRON: Energy Management of Commercial Buildings at the University of Maryland

    NASA Astrophysics Data System (ADS)

    Ebhojiaye, Itohan Omisi

    Buildings waste approximately 30% of energy they consume due to inefficient HVAC and lighting operation. Building Automation Systems (BAS) can aid in reducing such wasted energy, but 90% of U.S. commercial buildings lack a BAS due to their high capital costs. This thesis demonstrates how VOLTTRON, an open source operating system developed by Pacific Northwest National Laboratory, was used to disable the mechanical cooling of a rooftop unit (RTU) during unoccupied hours, on a building without a BAS. With cooling off, the RTU's electricity dropped from 18 kW to 7kW. These results indicate 450 to 550 can be saved on the monthly electric bill of the building during the summer, compared to when the RTU operated in cooling mode continuously. The installation cost of the equipment that enabled the RTU to be controlled via VOLTTRON was $6,400, thus the project has a payback period of 13 months.

  18. Overview of building energy use and report of analyses - 1985: buildings and community systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnader, M.; Lamontagne, J.

    1985-10-01

    The US Department of Energy (DOE) Office of Buildings and Community Systems (BCS) encourages increased efficiency of energy use in the buildings sector through the conduct of a comprehensive research program, the transfer of research results to industry, and the implementation of DOE's statutory responsibilities in the buildings area. This report summarizes the results of data development and analytical activities undertaken on behalf of BCS during 1985. It provides historical data on energy consumption patterns, prices, and building characteristics used in BCS's planning processes, documents BCS's detailed projections of energy use by end use and building type (the Disaggregate Projection),more » and compares this forecast to other forecasts. Summaries of selected recent BCS analyses are also provided.« less

  19. Passive designs and renewable energy systems optimization of a net zero energy building in Embrun/France

    NASA Astrophysics Data System (ADS)

    Harkouss, F.; Biwole, P. H.; Fardoun, F.

    2018-05-01

    Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.

  20. Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Shandross, Richard; Young, Jim

    The Building Technologies Office (BTO) commissioned this characterization and technology assessment of heating, ventilation, and air-conditioning (HVAC) systems for commercial buildings. The main objectives of this study: Identify a wide range of technology options in varying stages of development that could reduce commercial HVAC energy consumption; Characterize these technology options based on their technical energy-savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and the ability to compete with conventional HVAC technologies; Make specific recommendations to DOE and other stakeholders on potential research, development, and demonstration (RD&D) activities that would support further development of the most promisingmore » technology options.« less

  1. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while

  2. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen

    2018-02-20

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while

  3. Think Green: Teach Students Smart Ways to Reduce Home Energy Use

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2008-01-01

    Energy conservation and reducing heat loss in buildings is a very powerful way to lower energy costs. Sometimes great savings can be realized with simple measures. This subject provides a great vehicle for teaching science content that is very relevant to everyone's daily life--and financial well-being. In this article, the author first discusses…

  4. Reasonable use of artificial lighting in building energy saving

    NASA Astrophysics Data System (ADS)

    Hou, Yuhan

    2018-06-01

    The architectural light environment is a crucial part of the built environment. Appropriate lighting can not only meet the needs of people's production and life, but also have a positive impact on people's mental state and feelings. Architectural lighting occupies a vital part of building energy consumption. At present, China's lighting electricity consumption has accounted for 12% of the total electricity generated in the country. Promoting lighting energy conservation can play an important role in alleviating energy shortages. This article mainly discusses how to make reasonable use of artificial lighting and choose suitable light sources to reduce the energy consumed by lighting under the condition of satisfying a good architectural light environment.

  5. Achieving Actionable Results from Available Inputs: Metamodels Take Building Energy Simulations One Step Further

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horsey, Henry; Fleming, Katherine; Ball, Brian

    Modeling commercial building energy usage can be a difficult and time-consuming task. The increasing prevalence of optimization algorithms provides one path for reducing the time and difficulty. Many use cases remain, however, where information regarding whole-building energy usage is valuable, but the time and expertise required to run and post-process a large number of building energy simulations is intractable. A relatively underutilized option to accurately estimate building energy consumption in real time is to pre-compute large datasets of potential building energy models, and use the set of results to quickly and efficiently provide highly accurate data. This process is calledmore » metamodeling. In this paper, two case studies are presented demonstrating the successful applications of metamodeling using the open-source OpenStudio Analysis Framework. The first case study involves the U.S. Department of Energy's Asset Score Tool, specifically the Preview Asset Score Tool, which is designed to give nontechnical users a near-instantaneous estimated range of expected results based on building system-level inputs. The second case study involves estimating the potential demand response capabilities of retail buildings in Colorado. The metamodel developed in this second application not only allows for estimation of a single building's expected performance, but also can be combined with public data to estimate the aggregate DR potential across various geographic (county and state) scales. In both case studies, the unique advantages of pre-computation allow building energy models to take the place of topdown actuarial evaluations. This paper ends by exploring the benefits of using metamodels and then examines the cost-effectiveness of this approach.« less

  6. Building-to-Grid Integration through Commercial Building Portfolios Participating in Energy and Frequency Regulation Markets

    NASA Astrophysics Data System (ADS)

    Pavlak, Gregory S.

    Building energy use is a significant contributing factor to growing worldwide energy demands. In pursuit of a sustainable energy future, commercial building operations must be intelligently integrated with the electric system to increase efficiency and enable renewable generation. Toward this end, a model-based methodology was developed to estimate the capability of commercial buildings to participate in frequency regulation ancillary service markets. This methodology was integrated into a supervisory model predictive controller to optimize building operation in consideration of energy prices, demand charges, and ancillary service revenue. The supervisory control problem was extended to building portfolios to evaluate opportunities for synergistic effect among multiple, centrally-optimized buildings. Simulation studies performed showed that the multi-market optimization was able to determine appropriate opportunities for buildings to provide frequency regulation. Total savings were increased by up to thirteen percentage points, depending on the simulation case. Furthermore, optimizing buildings as a portfolio achieved up to seven additional percentage points of savings, depending on the case. Enhanced energy and cost savings opportunities were observed by taking the novel perspective of optimizing building portfolios in multiple grid markets, motivating future pursuits of advanced control paradigms that enable a more intelligent electric grid.

  7. Optimization for energy efficiency of underground building envelope thermal performance in different climate zones of China

    NASA Astrophysics Data System (ADS)

    Shi, Luyang; Liu, Jing; Zhang, Huibo

    2017-11-01

    The object of this article is to investigate the influence of thermal performance of envelopes in shallow-buried buildings on energy consumption for different climate zones of China. For the purpose of this study, an effective building energy simulation tool (DeST) developed by Tsinghua University was chosen to model the heat transfer in underground buildings. Based on the simulative results, energy consumption for heating and cooling for the whole year was obtained. The results showed that the relationship between energy consumption and U-value of envelopes for underground buildings is different compared with above-ground buildings: improving thermal performance of exterior walls cannot reduce energy consumption, on the contrary, may result in more energy cost. Besides, it is can be derived that optimized U-values of underground building envelopes vary with climate zones of China in this study. For severe cold climate zone, the optimized U-value of underground building envelopes is 0.8W/(m2·K); for cold climate zone, the optimized U-value is 1.5W/(m2·K); for warm climate zone, the U-value is 2.0W/(m2·K).

  8. Energy savings, emission reductions, and health co-benefits of the green building movement.

    PubMed

    P, MacNaughton; X, Cao; J, Buonocore; J, Cedeno-Laurent; J, Spengler; A, Bernstein; J, Allen

    2018-06-01

    Buildings consume nearly 40% of primary energy production globally. Certified green buildings substantially reduce energy consumption on a per square foot basis and they also focus on indoor environmental quality. However, the co-benefits to health through reductions in energy and concomitant reductions in air pollution have not been examined.We calculated year by year LEED (Leadership in Energy and Environmental Design) certification rates in six countries (the United States, China, India, Brazil, Germany, and Turkey) and then used data from the Green Building Information Gateway (GBIG) to estimate energy savings in each country each year. Of the green building rating schemes, LEED accounts for 32% of green-certified floor space and publically reports energy efficiency data. We employed Harvard's Co-BE Calculator to determine pollutant emissions reductions by country accounting for transient energy mixes and baseline energy use intensities. Co-BE applies the social cost of carbon and the social cost of atmospheric release to translate these reductions into health benefits. Based on modeled energy use, LEED-certified buildings saved $7.5B in energy costs and averted 33MT of CO 2 , 51 kt of SO 2 , 38 kt of NO x , and 10 kt of PM 2.5 from entering the atmosphere, which amounts to $5.8B (lower limit = $2.3B, upper limit = $9.1B) in climate and health co-benefits from 2000 to 2016 in the six countries investigated. The U.S. health benefits derive from avoiding an estimated 172-405 premature deaths, 171 hospital admissions, 11,000 asthma exacerbations, 54,000 respiratory symptoms, 21,000 lost days of work, and 16,000 lost days of school. Because the climate and health benefits are nearly equivalent to the energy savings for green buildings in the United States, and up to 10 times higher in developing countries, they provide an important and previously unquantified societal value. Future analyses should consider these co-benefits when weighing policy

  9. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  10. Multicriteria Decision Analysis of Material Selection of High Energy Performance Residential Building

    NASA Astrophysics Data System (ADS)

    Čuláková, Monika; Vilčeková, Silvia; Katunská, Jana; Krídlová Burdová, Eva

    2013-11-01

    In world with limited amount of energy sources and with serious environmental pollution, interest in comparing the environmental embodied impacts of buildings using different structure systems and alternative building materials will be increased. This paper shows the significance of life cycle energy and carbon perspective and the material selection in reducing energy consumption and emissions production in the built environment. The study evaluates embodied environmental impacts of nearly zero energy residential structures. The environmental assessment uses framework of LCA within boundary: cradle to gate. Designed alternative scenarios of material compositions are also assessed in terms of energy effectiveness through selected thermal-physical parameters. This study uses multi-criteria decision analysis for making clearer selection between alternative scenarios. The results of MCDA show that alternative E from materials on nature plant base (wood, straw bales, massive wood panel) present possible way to sustainable perspective of nearly zero energy houses in Slovak republic

  11. Climate Change and Buildings Energy Efficiency - the Key Role of Residents

    NASA Astrophysics Data System (ADS)

    Miezis, Martins; Zvaigznitis, Kristaps; Stancioff, Nicholas; Soeftestad, Lars

    2016-05-01

    Eastern Europe today is confronted with an unavoidable problem - the multifamily apartment building stock is deteriorating but apartment owners do not have sufficient access to resources be they organizational, financial, technical or legal. In addition, destructive myths have grown about the Soviet era buildings despite their continued resilience or the ex- GDR experience in the 90s with the same buildings. Further, without resources, decision making in residential apartments is seen as a major obstacle and used as an explanation why renovation has not taken place in Latvia. This is important not only in the context of a potential housing crisis but also because the renovation of the apartment buildings is an effective solution to significantly reduce the energy consumption and greenhouse gas emissions. It has a proven potential to effectively finance the long term renovation of these buildings. This paper summarizes the first findings of a comprehensive and in-depth study of apartment buildings, their owners and the processes relating to renovation, combining social and environmental engineering research methods. It seeks to understand how owners of multi-family buildings in Eastern Europe understand their buildings and then to answer two questions - how to motivate owners to renovate their homes and increase energy efficiency and what business models should be used to implement economically viable and high quality projects.

  12. Home and Building Energy Management Systems | Grid Modernization | NREL

    Science.gov Websites

    Home and Building Energy Management Systems Home and Building Energy Management Systems NREL building assets and energy management systems can provide value to the grid. Photo of a pair of NREL researchers who received a record of invention for a home energy management system in a smart home laboratory

  13. Building Better: Advanced Energy Design Guides - Continuum Magazine |

    Science.gov Websites

    NREL Building Better: Advanced Energy Design Guides Building Better: Advanced Energy Design Greensburg be constructed to meet Leadership in Energy and Environmental Design (LEED) Platinum ratings from design needs to incorporate a number of recommendations for achieving energy savings over the minimum

  14. Optimization of Energy Efficiency and Conservation in Green Building Design Using Duelist, Killer-Whale and Rain-Water Algorithms

    NASA Astrophysics Data System (ADS)

    Biyanto, T. R.; Matradji; Syamsi, M. N.; Fibrianto, H. Y.; Afdanny, N.; Rahman, A. H.; Gunawan, K. S.; Pratama, J. A. D.; Malwindasari, A.; Abdillah, A. I.; Bethiana, T. N.; Putra, Y. A.

    2017-11-01

    The development of green building has been growing in both design and quality. The development of green building was limited by the issue of expensive investment. Actually, green building can reduce the energy usage inside the building especially in utilization of cooling system. External load plays major role in reducing the usage of cooling system. External load is affected by type of wall sheathing, glass and roof. The proper selection of wall, type of glass and roof material are very important to reduce external load. Hence, the optimization of energy efficiency and conservation in green building design is required. Since this optimization consist of integer and non-linear equations, this problem falls into Mixed-Integer-Non-Linear-Programming (MINLP) that required global optimization technique such as stochastic optimization algorithms. In this paper the optimized variables i.e. type of glass and roof were chosen using Duelist, Killer-Whale and Rain-Water Algorithms to obtain the optimum energy and considering the minimal investment. The optimization results exhibited the single glass Planibel-G with the 3.2 mm thickness and glass wool insulation provided maximum ROI of 36.8486%, EUI reduction of 54 kWh/m2·year, CO2 emission reduction of 486.8971 tons/year and reduce investment of 4,078,905,465 IDR.

  15. Barriers to Building Energy Efficiency (BEE) promotion: A transaction costs perspective

    NASA Astrophysics Data System (ADS)

    Qian Kun, Queena

    Worldwide, buildings account for a surprisingly high 40% of global energy consumption, and the resulting carbon footprint significantly exceeds that of all forms of transportation combined. Large and attractive opportunities exist to reduce buildings' energy use at lower costs and higher returns than in other sectors. This thesis analyzes the concerns of the market stakeholders, mainly real estate developers and end-users, in terms of transaction costs as they make decisions about investing in Building Energy Efficiency (BEE). It provides a detailed analysis of the current situation and future prospects for BEE adoption by the market's stakeholders. It delineates the market and lays out the economic and institutional barriers to the large-scale deployment of energy-efficient building techniques. The aim of this research is to investigate the barriers raised by transaction costs that hinder market stakeholders from investing in BEES. It explains interactions among stakeholders in general and in the specific case of Hong Kong as they consider transaction costs. It focuses on the influence of transaction costs on the decision-making of the stakeholders during the entire process of real estate development. The objectives are: 1) To establish an analytical framework for understanding the barriers to BEE investment with consideration of transaction costs; 2) To build a theoretical game model of decision making among the BEE market stakeholders; 3) To study the empirical data from questionnaire surveys of building designers and from focused interviews with real estate developers in Hong Kong; 4) To triangulate the study's empirical findings with those of the theoretical model and analytical framework. The study shows that a coherent institutional framework needs to be established to ensure that the design and implementation of BEE policies acknowledge the concerns of market stakeholders by taking transaction costs into consideration. Regulatory and incentive options

  16. Calibrating Building Energy Models Using Supercomputer Trained Machine Learning Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanyal, Jibonananda; New, Joshua Ryan; Edwards, Richard

    2014-01-01

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building energy modeling unfeasible for smaller projects. In this paper, we describe the Autotune research which employs machine learning algorithms to generate agents for the different kinds of standardmore » reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-effective calibration of building models.« less

  17. Sensor Suitcase: Portable System for Increasing Building Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    PNNL's Sensor Suitcase does an energy assessment of small buildings, enabling building owners to see which low-cost, energy-saving modifications would give them the best payoff. Implementing the recommended changes typically means 10% energy cost savings per small building. No other product provides such easy-to-use, expert-guided capabilities, and at half the cost of a typical energy assessment.

  18. Alternative Formats to Achieve More Efficient Energy Codes for Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, David R.; Rosenberg, Michael I.; Halverson, Mark A.

    2013-01-26

    This paper identifies and examines several formats or structures that could be used to create the next generation of more efficient energy codes and standards for commercial buildings. Pacific Northwest National Laboratory (PNNL) is funded by the U.S. Department of Energy’s Building Energy Codes Program (BECP) to provide technical support to the development of ANSI/ASHRAE/IES Standard 90.1. While the majority of PNNL’s ASHRAE Standard 90.1 support focuses on developing and evaluating new requirements, a portion of its work involves consideration of the format of energy standards. In its current working plan, the ASHRAE 90.1 committee has approved an energy goalmore » of 50% improvement in Standard 90.1-2013 relative to Standard 90.1-2004, and will likely be considering higher improvement targets for future versions of the standard. To cost-effectively achieve the 50% goal in manner that can gain stakeholder consensus, formats other than prescriptive must be considered. Alternative formats that include reducing the reliance on prescriptive requirements may make it easier to achieve these aggressive efficiency levels in new codes and standards. The focus on energy code and standard formats is meant to explore approaches to presenting the criteria that will foster compliance, enhance verification, and stimulate innovation while saving energy in buildings. New formats may also make it easier for building designers and owners to design and build the levels of efficiency called for in the new codes and standards. This paper examines a number of potential formats and structures, including prescriptive, performance-based (with sub-formats of performance equivalency and performance targets), capacity constraint-based, and outcome-based. The paper also discusses the pros and cons of each format from the viewpoint of code users and of code enforcers.« less

  19. Strategy Guideline: Energy Retrofits for Low-Rise Multifamily Buildings in Cold Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frozyna, K.; Badger, L.

    2013-04-01

    This Strategy Guideline explains the benefits of evaluating and identifying energy efficiency retrofit measures that could be made during renovation and maintenance of multifamily buildings. It focuses on low-rise multifamily structures (three or fewer stories) in a cold climate. These benefits lie primarily in reduced energy use, lower operating and maintenance costs, improved durability of the structure, and increased occupant comfort. This guideline focuses on retrofit measures for roof repair or replacement, exterior wall repair or gut rehab, and eating system maintenance. All buildings are assumed to have a flat ceiling and a trussed roof, wood- or steel-framed exterior walls,more » and one or more single or staged boilers. Estimated energy savings realized from the retrofits will vary, depending on the size and condition of the building, the extent of efficiency improvements, the efficiency of the heating equipment, the cost and type of fuel, and the climate location.« less

  20. Commercial Building Energy Asset Rating Program -- Market Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Molly J.; Wang, Na

    2012-04-19

    Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing nationalmore » and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.« less

  1. Analysis on energy use in reuse cement silo for campus building

    NASA Astrophysics Data System (ADS)

    Fidiya Nugrahani, Elita; Winda Murti, Izzati; Arifianti, Qurrotin M. O.

    2018-03-01

    Semen Gresik, the first cement factory in Indonesia owned by the government was operated since 1957 and stopped the operation around 1997. The owner, PT. Semen Indonesia (Persero) intended to reuse cement factory for the campus building, Universitas Internasional Semen Indonesia (UISI). This research proposed to analyze the future Energy Use Intensity (EUI) and recommendation energy efficiency in renovating silo through simulation. The result of future EUI in existing building was 234 kWh/m2.year. The scenarios created to reduce energy use in six sectors: window shades, window material, infiltration, daylighting, plug load, air-conditioning and operation schedule. The lowest EUI estimated at 98.27 by use 2/3 window shades, triple low emission window glass, lighting efficiency at 3.23 W/m2, maximize daylighting and occupancy control, minimize infiltration to 0.17 ACH, and 12/5 for operation schedule.

  2. Energy performance standards for new buildings: Economic analysis

    NASA Astrophysics Data System (ADS)

    1980-01-01

    The major economic impacts of the implementations of the standards on affected groups were assessed and the effectiveness of the standards as an investment in energy conservation was evaluated. The methodology used to evaluate the standards for the various building types and perspectives is described. The net economic effect of changes in building cost and energy use are discussed for three categories of buildings: single family residential, commercial and multifamily residential, and mobile homes. Forecasts of energy savings and national costs and benefits both with and without implementation of the standards are presented. The effects of changes in energy consumption and construction of new buildings on the national economy, including such factors as national income, investment, employment, and balance of trade are assessed.

  3. Bainbridge Energy Challenge. Energy efficiency and conservation block grant (EECBG) - Better buildings neighborhood program. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Yvonne X.

    2014-02-14

    RePower Bainbridge and Bremerton (RePower) is a residential energy-efficiency and conservation program designed to foster a sustainable, clean, and renewable energy economy. The program was a 3.5 year effort in the cities of Bainbridge Island and Bremerton, Washington, to conserve and reduce energy use, establish a trained home performance trade ally network, and create local jobs. RePower was funded through a $4.8 million grant from the US Department of Energy, Better Buildings Program. The grant’s performance period was August 1, 2010 through March 30, 2014.

  4. An overview of solar energy applications in buildings in Greece

    NASA Astrophysics Data System (ADS)

    Papamanolis, Nikos

    2016-09-01

    This work classifies and describes the main fields of solar energy exploitation in buildings in Greece, a country with high solar energy capacities. The study focuses on systems and technologies that apply to residential and commercial buildings following the prevailing design and construction practices (conventional buildings) and investigates the effects of the architectural and constructional characteristics of these buildings on the respective applications. In addition, it examines relevant applications in other building categories and in buildings with increased ecological sensitivity in their design and construction (green buildings). Through its findings, the study seeks to improve the efficiency and broaden the scope of solar energy applications in buildings in Greece to the benefit of their energy and environmental performance.

  5. Reduction of lighting energy consumption in office buildings through improved daylight design

    NASA Astrophysics Data System (ADS)

    Papadouri, Maria Violeta Prado

    This study aims to investigate the lighting energy consumption in office buildings and the options for its reduction. One way to reduce lighting energy consumption is by improving the daylight design. A better use of daylight in buildings might be an outcome from the effort made in different directions. Like the improvement of a building's fabric and layout, the materials, even the furniture in a space influences the daylight quality considerably. Also very important role in lighting energy consumption has the development of more efficient lighting technology like the electric lighting control systems, such as photo sensors and occupancy sensors. Both systems are responsible so that the electric light is not used without reason. As the focusing area of this study, is to find ways to improve the daylight use in buildings, a consequent question is which are the methods provided in order to achieve this The accuracy of the methodology used is also an important issue in order to achieve reliable results. The methodology applied in this study includes the analysis of a case study by taking field measurements and computer simulations. The first stage included gathering information about the lighting design of the building and monitoring the light levels, both from natural and from the electric lighting. The second stage involved testing with computer simulations, different parameters that were expected to improve the daylight exploitation of the specific area. The results of the field measurements showed that the main problems of the space were the low natural light levels and the poor daylight distribution. The annual electric lighting energy consumption, as it was calculated with the use of computer simulations, represented the annual energy consumption of a typical air-conditioned prestige office building (energy consumption guide 19, for energy use in offices, 2000). After several computer simulations, the results showed that initial design parameters of the building

  6. The updated algorithm of the Energy Consumption Program (ECP): A computer model simulating heating and cooling energy loads in buildings

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.

    1979-01-01

    The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.

  7. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krebs, Martha

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with amore » focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.« less

  8. Building application of solar energy. Study no. 2: Representative buildings for solar energy performance analysis and market penetration

    NASA Technical Reports Server (NTRS)

    Hirshberg, A. S.

    1975-01-01

    The following topics are discussed: (1) Assignment of population to microclimatic zones; (2) specifications of the mix of buildings in the SCE territory; (3) specification of four typical buildings for thermal analysis and market penetration studies; (4) identification of the materials and energy conserving characteristics of these typical buildings; (5) specifications of the HVAC functions used in each typical building, and determination of the HVAC systems used in each building; and (6) identification of the type of fuel used in each building.

  9. Building Energy Asset Score for State and Local Governments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Building Technologies Office

    2015-01-01

    The Building Energy Asset Score is a national standardized tool for evaluating the physical and structural energy efficiency of commercial and multifamily residential buildings. The Asset Score generates a simple energy efficiency rating that enables comparison among buildings, and identifies opportunities for users to invest in energy efficiency upgrades. It is web-based and free to use. This fact sheet discusses the value of the score for state and local governments.

  10. Scalable methodology for large scale building energy improvement: Relevance of calibration in model-based retrofit analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Yeonsook; Augenbroe, Godfried; Graziano, Diane

    2015-05-01

    The increasing interest in retrofitting of existing buildings is motivated by the need to make a major contribution to enhancing building energy efficiency and reducing energy consumption and CO2 emission by the built environment. This paper examines the relevance of calibration in model-based analysis to support decision-making for energy and carbon efficiency retrofits of individual buildings and portfolios of buildings. The authors formulate a set of real retrofit decision-making situations and evaluate the role of calibration by using a case study that compares predictions and decisions from an uncalibrated model with those of a calibrated model. The case study illustratesmore » both the mechanics and outcomes of a practical alternative to the expert- and time-intense application of dynamic energy simulation models for large-scale retrofit decision-making under uncertainty.« less

  11. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    PubMed

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  12. Net-Zero Building Technologies Create Substantial Energy Savings -

    Science.gov Websites

    -by-step information for decision making around net-zero energy building technologies. The past three improved insulation, windows, and heating and cooling systems. Despite these strides, energy use by energy building methodologies and technologies during a tour of the RSF's rooftop PV system. Photo by

  13. Climate impacts on extreme energy consumption of different types of buildings.

    PubMed

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  14. ENERGY STAR and Green Buildings--Using ENERGY STAR Resources for Green Building Rating Systems: LEED[R], Green Globes[R] and CHPS

    ERIC Educational Resources Information Center

    Utebay, Kudret

    2011-01-01

    Every building, from the smallest school to the tallest skyscraper, uses energy. This energy is most often generated by burning fossil fuels, which releases greenhouse gases into the atmosphere and contributes to climate change. Existing commercial buildings offer a significant opportunity for low-cost, immediate emissions and energy cost…

  15. A Model for Sustainable Building Energy Efficiency Retrofit (BEER) Using Energy Performance Contracting (EPC) Mechanism for Hotel Buildings in China

    NASA Astrophysics Data System (ADS)

    Xu, Pengpeng

    Hotel building is one of the high-energy-consuming building types, and retrofitting hotel buildings is an untapped solution to help cut carbon emissions contributing towards sustainable development. Energy Performance Contracting (EPC) has been promulgated as a market mechanism for the delivery of energy efficiency projects. EPC mechanism has been introduced into China relatively recently, and it has not been implemented successfully in building energy efficiency retrofit projects. The aim of this research is to develop a model for achieving the sustainability of Building Energy Efficiency Retrofit (BEER) in hotel buildings under the Energy Performance Contracting (EPC) mechanism. The objectives include: • To identify a set of Key Performance Indicators (KPIs) for measuring the sustainability of BEER in hotel buildings; • To identify Critical Success Factors (CSFs) under EPC mechanism that have a strong correlation with sustainable BEER project; • To develop a model explaining the relationships between the CSFs and the sustainability performance of BEER in hotel building. Literature reviews revealed the essence of sustainable BEER and EPC, which help to develop a conceptual framework for analyzing sustainable BEER under EPC mechanism in hotel buildings. 11 potential KPIs for sustainable BEER and 28 success factors of EPC were selected based on the developed framework. A questionnaire survey was conducted to ascertain the importance of selected performance indicators and success factors. Fuzzy set theory was adopted in identifying the KPIs. Six KPIs were identified from the 11 selected performance indicators. Through a questionnaire survey, out of the 28 success factors, 21 Critical Success Factors (CSFs) were also indentified. Using the factor analysis technique, the 21 identified CSFs in this study were grouped into six clusters to help explain project success of sustainable BEER. Finally, AHP/ANP approach was used in this research to develop a model to

  16. Energy consumption in commercial buildings: A comparison with BEPS budgets

    NASA Astrophysics Data System (ADS)

    1980-09-01

    Metered energy consumption data were collected on existing commercial buildings to help establish the proposed building energy performance standards (BEPS). The search has identified 84 buildings whose metered energy consumption is equal to or less than that proposed for their BEPS budgets and another 7 buildings whose metered consumption is less than 20 percent above their BEPS budgets. The methodology used to identify the buildings and to collect their metered energy consumption data are described. The data are analyzed and summarized and conclusions are drawn.

  17. Change-over natural and mechanical ventilation system energy consumption in single-family buildings

    NASA Astrophysics Data System (ADS)

    Kostka, Maria; Szulgowska-Zgrzywa, Małgorzata

    2017-11-01

    The parameters of the outside air in Poland cause that in winter it is reasonable to use a mechanical ventilation equipped with a heat recovery exchanger. The time of spring, autumn, summer evenings and nights are often characterized by the parameters of the air, which allow for a natural ventilation and reduce the electricity consumption. The article presents the possibilities of energy consumption reduction for three energy standards of buildings located in Poland, ventilated by a change-over hybrid system. The analysis was prepared on the assumption that the air-to-water heat pump is the heat source for the buildings.

  18. Reducing airflow energy use in multiple zone vav systems

    NASA Astrophysics Data System (ADS)

    Tukur, Ahmed Gidado

    Variable Air Volume (VAV) systems are the most popular HVAC systems in commercial buildings. VAV systems are designed to deliver airflows at design conditions which only occur for a few hours in a year. Minimizing energy use in VAV systems requires reducing the amount of airflow delivered through the system at part load conditions. Air Handling Unit (AHU) fans are the major drivers of airflow in VAV systems and installing a Variable Frequency Drive (VFD) is the most common method of regulating airflow in VAV systems. A VFD drive does not necessarily save energy without use of an appropriate control strategy. Static pressure reset (SPR) is considered to be the most energy efficient control strategy for AHU fans with VFDs installed. The implementation of SPR however has many challenges; for example, rogue zones--zones which have faulty sensors or failed controls and actuators, system dynamics like hunting and system diversity. By investigating the parameters associated with the implementation of SPR in VAV systems, a new, improved, more stable SPR algorithm was developed and validated. This approach was further improved using Fault Detection and Diagnostics (FDD) to eliminate rogue zones. Additionally, a CO2-Demand Control Ventilation (DCV) based minimum airflow control was used to further reduce ventilation airflow and save more energy from SPR. Energy savings ranging from 25% to 51% were recorded in actual buildings with the new SPR algorithm. Finally, a methodology that utilizes historical VAV data was developed to estimate the potential savings that could be realized using SPR. The approach employed first determines an effective system loss coefficient as a function of mean damper position using the historical duct static pressure, VAV damper positions and airflows. Additionally, the historical data is used to identify the maximum mean duct damper position realizable as a result of insuring a sufficient number of VAVs are fully open at any time. Savings are

  19. Climate Impacts on Extreme Energy Consumption of Different Types of Buildings

    PubMed Central

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings. PMID:25923205

  20. Scout: An Impact Analysis Tool for Building Energy-Efficiency Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Chioke; Langevin, Jared; Roth, Amir

    Evaluating the national impacts of candidate U.S. building energy-efficiency technologies has historically been difficult for organizations with large energy efficiency portfolios. In particular, normalizing results from technology-specific impact studies is time-consuming when those studies do not use comparable assumptions about the underlying building stock. To equitably evaluate its technology research, development, and deployment portfolio, the U.S. Department of Energy's Building Technologies Office has developed Scout, a software tool that quantitatively assesses the energy and CO2 impacts of building energy-efficiency measures on the national building stock. Scout efficiency measures improve upon the unit performance and/or lifetime operational costs of an equipmentmore » stock baseline that is determined from the U.S. Energy Information Administration Annual Energy Outlook (AEO). Scout measures are characterized by a market entry and exit year, unit performance level, cost, and lifetime. To evaluate measures on a consistent basis, Scout uses EnergyPlus simulation on prototype building models to translate measure performance specifications to whole-building energy savings; these savings impacts are then extended to a national scale using floor area weighting factors. Scout represents evolution in the building stock over time using AEO projections for new construction, retrofit, and equipment replacements, and competes technologies within market segments under multiple adoption scenarios. Scout and its efficiency measures are open-source, as is the EnergyPlus whole building simulation framework that is used to evaluate measure performance. The program is currently under active development and will be formally released once an initial set of measures has been analyzed and reviewed.« less

  1. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    NASA Astrophysics Data System (ADS)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of

  2. Experimental verification of an energy consumption signal tool for operational decision support in an office building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlak, Gregory S.; Henze, Gregor P.; Hirsch, Adam I.

    This paper demonstrates an energy signal tool to assess the system-level and whole-building energy use of an office building in downtown Denver, Colorado. The energy signal tool uses a traffic light visualization to alert a building operator to energy use which is substantially different from expected. The tool selects which light to display for a given energy end-use by comparing measured energy use to expected energy use, accounting for uncertainty. A red light is only displayed when a fault is likely enough, and abnormal operation costly enough, that taking action will yield the lowest cost result. While the theoretical advancesmore » and tool development were reported previously, it has only been tested using a basic building model and has not, until now, been experimentally verified. Expected energy use for the field demonstration is provided by a compact reduced-order representation of the Alliance Center, generated from a detailed DOE-2.2 energy model. Actual building energy consumption data is taken from the summer of 2014 for the office building immediately after a significant renovation project. The purpose of this paper is to demonstrate a first look at the building following its major renovation compared to the design intent. The tool indicated strong under-consumption in lighting and plug loads and strong over-consumption in HVAC energy consumption, which prompted several focused actions for follow-up investigation. In addition, this paper illustrates the application of Bayesian inference to the estimation of posterior parameter probability distributions to measured data. Practical discussion of the application is provided, along with additional findings from further investigating the significant difference between expected and actual energy consumption.« less

  3. How effective is mandatory building energy disclosure program in Australia?

    NASA Astrophysics Data System (ADS)

    Kim, S.; Lim, B. T. H.

    2018-04-01

    Mandatory green building regulations are often considered as the most effective tool to promote better energy efficiency and environmental protection. Nevertheless, its effectiveness compared to the voluntary counterpart has not been fully explored yet. In addressing this gap, this study aims to examine the environmental performance of green building stocks affected by the Australian mandatory building energy disclosure program. To this, this study analysed energy savings and carbon reduction efficiencies using the normalisation approach. The result shows that mandatory energy disclosure program did contribute to the reduction in energy usage and carbon emissions from the affected building stocks. More specifically, affected green building stocks showed a good efficiency especially in carbon reductions. The research results inform policymakers the possible improvement required for the mandatory disclosure program to increase the effectiveness towards dealing with the contemporary environmental issues aroused from the building sector, especially in energy savings perspective.

  4. Design and operational energy studies in a new high-rise office building. Volume 4. Building automation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-03-01

    The objectives of the analysis are to evaluate the application of a number of building automation system capabilities using the Park Plaza Building as a case study. The study looks at the energy and cost effectiveness of some energy management strategies of the building automation system as well as some energy management strategies that are not currently a part of the building automation system. The strategies are also evaluated in terms of their reliability and usefulness in this building.

  5. Energy-Efficient Renovation of Educational Buildings

    ERIC Educational Resources Information Center

    Erhorn-Kluttig, Heike; Morck, Ove

    2005-01-01

    Case studies demonstrating energy-efficient renovation of educational buildings collected by the International Energy Agency (IEA) provide information on retrofit technologies, energy-saving approaches and ventilation strategies. Some general findings are presented here along with one case study, Egebjerg School in Denmark, which shows how natural…

  6. Simulation and visualization of energy-related occupant behavior in office buildings

    DOE PAGES

    Chen, Yixing; Liang, Xin; Hong, Tianzhen; ...

    2017-03-15

    In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less

  7. Simulation and visualization of energy-related occupant behavior in office buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Liang, Xin; Hong, Tianzhen

    In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less

  8. Federal Existing Buildings Handbook for Net Zero Energy, Water, and Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 2015, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) defined zero energy buildings as "an energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This handbook is focused on applying the EERE definition of zero energy buildings to existing buildings in the federal sector. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  9. Federal New Buildings Handbook for Net Zero Energy, Water, and Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 2015, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) defined zero energy buildings as "an energy-efficient building where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy." This document is focused on applying EERE’s definition of zero energy buildings to federal sector new buildings. However, it is not intended to replace, substitute, or modify any statutory or regulatory requirements and mandates.

  10. Data-Driven Benchmarking of Building Energy Efficiency Utilizing Statistical Frontier Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavousian, A; Rajagopal, R

    2014-01-01

    Frontier methods quantify the energy efficiency of buildings by forming an efficient frontier (best-practice technology) and by comparing all buildings against that frontier. Because energy consumption fluctuates over time, the efficiency scores are stochastic random variables. Existing applications of frontier methods in energy efficiency either treat efficiency scores as deterministic values or estimate their uncertainty by resampling from one set of measurements. Availability of smart meter data (repeated measurements of energy consumption of buildings) enables using actual data to estimate the uncertainty in efficiency scores. Additionally, existing applications assume a linear form for an efficient frontier; i.e.,they assume that themore » best-practice technology scales up and down proportionally with building characteristics. However, previous research shows that buildings are nonlinear systems. This paper proposes a statistical method called stochastic energy efficiency frontier (SEEF) to estimate a bias-corrected efficiency score and its confidence intervals from measured data. The paper proposes an algorithm to specify the functional form of the frontier, identify the probability distribution of the efficiency score of each building using measured data, and rank buildings based on their energy efficiency. To illustrate the power of SEEF, this paper presents the results from applying SEEF on a smart meter data set of 307 residential buildings in the United States. SEEF efficiency scores are used to rank individual buildings based on energy efficiency, to compare subpopulations of buildings, and to identify irregular behavior of buildings across different time-of-use periods. SEEF is an improvement to the energy-intensity method (comparing kWh/sq.ft.): whereas SEEF identifies efficient buildings across the entire spectrum of building sizes, the energy-intensity method showed bias toward smaller buildings. The results of this research are expected to

  11. Energy Building Regulations: The Effect of the Federal Performance Standards on Building Code Administration and the Conservation of Energy in New Buildings.

    ERIC Educational Resources Information Center

    Kopper, William D.

    1980-01-01

    Explores the changes in the administration and enforcement of building regulations that will be engendered by the proposed federal energy building standards. Also evaluates the effectiveness of those standards in meeting congressional intent. Available from U.C. Davis Law Review, School of Law, Martin Luther King Jr. Hall, University of…

  12. Identifying Low Cost Energy Improvements for School Buildings: An Energy Audit Manual.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Energy and Economic Development, St. Paul.

    This manual is a guide for performing energy audits in school buildings using low- and no-cost measures found effective in Minnesota. The manual helps school maintenance and administrative personnel conduct walk-through inspections of school buildings, focusing on the energy efficiency of their equipment and operations. The measures recommended…

  13. Energy Efficiency in Public Buildings through Context-Aware Social Computing

    PubMed Central

    García, Óscar; Alonso, Ricardo S.; Prieto, Javier; Corchado, Juan M.

    2017-01-01

    The challenge of promoting behavioral changes in users that leads to energy savings in public buildings has become a complex task requiring the involvement of multiple technologies. Wireless sensor networks have a great potential for the development of tools, such as serious games, that encourage acquiring good energy and healthy habits among users in the workplace. This paper presents the development of a serious game using CAFCLA, a framework that allows for integrating multiple technologies, which provide both context-awareness and social computing. Game development has shown that the data provided by sensor networks encourage users to reduce energy consumption in their workplace and that social interactions and competitiveness allow for accelerating the achievement of good results and behavioral changes that favor energy savings. PMID:28398237

  14. Energy Efficiency in Public Buildings through Context-Aware Social Computing.

    PubMed

    García, Óscar; Alonso, Ricardo S; Prieto, Javier; Corchado, Juan M

    2017-04-11

    The challenge of promoting behavioral changes in users that leads to energy savings in public buildings has become a complex task requiring the involvement of multiple technologies. Wireless sensor networks have a great potential for the development of tools, such as serious games, that encourage acquiring good energy and healthy habits among users in the workplace. This paper presents the development of a serious game using CAFCLA, a framework that allows for integrating multiple technologies, which provide both context-awareness and social computing. Game development has shown that the data provided by sensor networks encourage users to reduce energy consumption in their workplace and that social interactions and competitiveness allow for accelerating the achievement of good results and behavioral changes that favor energy savings.

  15. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by

  16. Improving energy efficiency via smart building energy management systems. A comparison with policy measures

    DOE PAGES

    Rocha, Paula; Siddiqui, Afzal; Stadler, Michael

    2014-12-09

    In this study, to foster the transition to more sustainable energy systems, policymakers have been approving measures to improve energy efficiency as well as promoting smart grids. In this setting, building managers are encouraged to adapt their energy operations to real-time market and weather conditions. Yet, most fail to do so as they rely on conventional building energy management systems (BEMS) that have static temperature set points for heating and cooling equipment. In this paper, we investigate how effective policy measures are at improving building-level energy efficiency compared to a smart BEMS with dynamic temperature set points. To this end,more » we present an integrated optimisation model mimicking the smart BEMS that combines decisions on heating and cooling systems operations with decisions on energy sourcing. Using data from an Austrian and a Spanish building, we find that the smart BEMS results in greater reduction in energy consumption than a conventional BEMS with policy measures.« less

  17. The Power of Flexibility: Autonomous Agents That Conserve Energy in Commercial Buildings

    NASA Astrophysics Data System (ADS)

    Kwak, Jun-young

    groups in commercial buildings by reactively suggesting energy conserving alternatives. TESLA takes a long-range planning perspective and optimizes overall energy consumption of a large number of group events or meetings together. THINC provides an end-to-end integration within a single agent of energy efficient scheduling, rescheduling and credit allocation. While SAVES, TESLA and THINC thus differ in their scope and applicability, they demonstrate the utility of agent-based systems in actually reducing energy consumption in commercial buildings. I evaluate my algorithms and agents using extensive analysis on data from over 110,000 real meetings/events at multiple educational buildings including the main libraries at the University of Southern California. I also provide results on simulations and real-world experiments, clearly demonstrating the power of agent technology to assist human users in saving energy in commercial buildings.

  18. Helping International Governments and Organizations Build a Clean Energy

    Science.gov Websites

    Future | Working with Us | NREL Helping International Governments and Organizations Build a Clean Energy Future Helping International Governments and Organizations Build a Clean Energy Future

  19. Development of Next Generation Energy Audit Protocols for the Rapid and Advanced Analysis of Building Energy Use

    NASA Astrophysics Data System (ADS)

    Hartley, Christopher Ahlvin

    Current building energy auditing techniques are outdated and lack targeted, actionable information. These analyses only use one year's worth of monthly electricity and gas bills to define energy conservation and efficiency measures. These limited data sets cannot provide robust, directed energy reduction recommendations. The need is apparent for an overhaul of existing energy audit protocols to utilize all data that is available from the building's utility provider, installed energy management system (EMS), and sub-metering devices. This thesis analyzed the current state-of-the-art in energy audits, generated a next generation energy audit protocol, and conducted both audits types on four case study buildings to find out what additional information can be obtained from additional data sources and increased data gathering resolutions. Energy data from each case study building were collected using a variety of means including utility meters, whole building energy meters, EMS systems, and sub-metering devices. In addition to conducting an energy analysis for each case study building using the current and next generation energy audit protocols, two building energy models were created using the programs eQuest and EnergyPlus. The current and next generation energy audit protocol results were compared to one another upon completion. The results show that using the current audit protocols, only variations in season are apparent. Results from the developed next generation energy audit protocols show that in addition to seasonal variations, building heating, ventilation and air conditioning (HVAC) schedules, occupancy schedules, baseline and peak energy demand levels, and malfunctioning equipment can be found. This new protocol may also be used to quickly generate accurate building models because of the increased resolution that yields scheduling information. The developed next generation energy auditing protocol is scalable and can work for many building types across the

  20. Planning building energy conservation research in the US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abel, F.; LaMontagne, J.

    1988-01-01

    In the US, the federal government plays a key role in the development of energy conserving technologies and practices for buildings. The Office of Buildings and Community Systems (BCS) of the US Department of Energy provides federal leadership for both private and public sector activities in building energy conservation. The federal role in recent years has been largely limited to the development of technical options; behavioral and institutional factors are considered only to the extent necessary to inform the research planning process. Planning in the US requires dealing with uncertainties regarding the federal approach to energy conservation; this can change,more » often dramatically, with changes in administrations or changing economic and energy conditions. Thus federal research plans must be designed to be useful in a wide variety of circumstances. 7 refs.« less

  1. Energy-efficient building design in cold climates: Schools as a case study

    NASA Astrophysics Data System (ADS)

    Rangel Ruiz, Rocio

    than Canada's Model National Energy Code for Buildings (MNECB) reference case and utility cost savings of 30,000 (on a 50,000 annual cost) were achieved through conventional design optimization. Additional energy savings of three percent and utility cost savings of $7,000 were seen when passive strategies were included in the design. With respect to the societal aspects, an exploratory research study was undertaken to examine innovation. Architects and energy consultants were interviewed. All design professionals included in the study had participated in projects approved for a grant under CBIP. The purpose of the study was to identify drivers and barriers to energy efficiency. The study demonstrated that external and internal innovation pressures have a significant effect on whether or not the technology is adopted. Suggestions for reducing barriers and further promoting energy efficiency are discussed in this thesis. It is expected that the research will not only aid designers in assessing projects with regard to local priorities, but will also provide building guidelines that serve as tools for the development of the Canadian energy compliance for CO2 emissions.

  2. Commercial and Multifamily Building Tenant Energy Usage Aggregation and Privacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, Olga V.; Pulsipher, Trenton C.; Wang, Na

    2014-11-17

    In a number of cities and states, building owners are required to disclose and/or benchmark their building energy use. This requires the building owner to possess monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer data as a way to give building owners the whole-building energy usage data while protecting customer privacy. However, no utilities or regulators appear to have conducted a concerted statistical, cybersecurity, and privacy analysis to justify the level ofmore » aggregation selected. Therefore, the Tennant Data Aggregation Task was established to help utilities address these issues and provide recommendations as well as a theoretical justification of the aggregation threshold. This study is focused on the use case of submitting data for ENERGY STAR Portfolio Manager (ESPM), but it also looks at other potential use cases for monthly energy consumption data.« less

  3. Scale Matters: An Action Plan for Realizing Sector-Wide"Zero-Energy" Performance Goals in Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selkowitz, Stephen; Selkowitz, Stephen; Granderson, Jessica

    2008-06-16

    It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings. Several trends that have the potential to change this are noteworthy: (1) the growing market interest in 'green buildings' and 'sustainable design', (2) the majormore » professional societies (e.g. AIA, ASHRAE) have more aggressively adopted significant improvements in energy efficiency as strategic goals, e.g. targeting 'zero energy', carbon-neutral buildings by 2030. While this vision is widely accepted as desirable, unless there are significant changes to the way buildings are routinely designed, delivered and operated, zero energy buildings will remain a niche phenomenon rather than a sector-wide reality. Toward that end, a public/private coalition including the Alliance to Save Energy, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an 'action plan' for moving the U.S. commercial building sector towards zero energy performance. It addresses regional action in a national framework; integrated deployment, demonstration and R&D threads; and would focus on measurable, visible performance indicators. This paper outlines this action plan, focusing on the challenge, the key themes, and the strategies and actions leading to substantial reductions in GHG emissions by 2030.« less

  4. Energy and Process Assessment Protocol for Industrial Buildings

    DTIC Science & Technology

    2007-05-01

    address production and maintenance needs at U.S. Army Arsenals and Depots. The Protocol is partly the result of an international collaboration under...the International Energy Agency “Energy Conservation in Buildings and Community Systems” Annex 46, Subtask A. A group of government, institutional...Optimization Technology.” This is also a part of the IEA-ECBCS ( International Energy Agency – En- ergy Conservation in Buildings and Community Systems

  5. Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate

    PubMed Central

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W.

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore’s tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore’s. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person — which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave — can be much larger than the incremental cost of ventilation. PMID:25822504

  6. Energy and cost associated with ventilating office buildings in a tropical climate.

    PubMed

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.

  7. Renewable energy and conservation measures for non-residential buildings

    NASA Astrophysics Data System (ADS)

    Grossman, Andrew James

    The energy demand in most countries is growing at an alarming rate and identifying economically feasible building retrofit solutions to decrease the need for fossil fuels so as to mitigate their environmental and societal impacts has become imperative. Two approaches are available for identifying feasible retrofit solutions: 1) the implementation of energy conservation measures; and 2) the production of energy from renewable sources. This thesis focuses on the development of retrofit software planning tools for the implementation of solar photovoltaic systems, and lighting system retrofits for mid-Michigan institutional buildings. The solar planning tool exploits the existing blueprint of a building's rooftop, and via image processing, the layouts of the solar photovoltaic arrays are developed based on the building's geographical location and typical weather patterns. The resulting energy generation of a PV system is estimated and is utilized to determine levelized energy costs. The lighting system retrofit analysis starts by a current utilization assessment of a building to determine the amount of energy used by the lighting system. Several LED lighting options are evaluated on the basis of color correlation temperature, color rendering index, energy consumption, and financial feasibility, to determine a retrofit solution. Solar photovoltaic installations in mid-Michigan are not yet financially feasible, but with the anticipated growth and dynamic complexity of the solar photovoltaic market, this solar planning tool is able to assist building proprietors make executive decisions regarding their energy usage. Additionally, a lighting system retrofit is shown to have significant financial and health benefits.

  8. Building Green: The Adoption Process of LEED- and Energy Star-Rated Office Buildings

    ERIC Educational Resources Information Center

    Malkani, Arvin P.

    2012-01-01

    There are opportunities for green building technology in office buildings to produce energy savings and cost efficiencies that can produce a positive economic and environmental impact. In order for these opportunities to be realized, however, decision makers must appreciate the value of green building technology. The objective of this research is…

  9. Development of an automated energy audit protocol for office buildings

    NASA Astrophysics Data System (ADS)

    Deb, Chirag

    This study aims to enhance the building energy audit process, and bring about reduction in time and cost requirements in the conduction of a full physical audit. For this, a total of 5 Energy Service Companies in Singapore have collaborated and provided energy audit reports for 62 office buildings. Several statistical techniques are adopted to analyse these reports. These techniques comprise cluster analysis and development of prediction models to predict energy savings for buildings. The cluster analysis shows that there are 3 clusters of buildings experiencing different levels of energy savings. To understand the effect of building variables on the change in EUI, a robust iterative process for selecting the appropriate variables is developed. The results show that the 4 variables of GFA, non-air-conditioning energy consumption, average chiller plant efficiency and installed capacity of chillers should be taken for clustering. This analysis is extended to the development of prediction models using linear regression and artificial neural networks (ANN). An exhaustive variable selection algorithm is developed to select the input variables for the two energy saving prediction models. The results show that the ANN prediction model can predict the energy saving potential of a given building with an accuracy of +/-14.8%.

  10. Energy simulation and optimization for a small commercial building through Modelica

    NASA Astrophysics Data System (ADS)

    Rivas, Bryan

    Small commercial buildings make up the majority of buildings in the United States. Energy consumed by these buildings is expected to drastically increase in the next few decades, with a large percentage of the energy consumed attributed to cooling systems. This work presents the simulation and optimization of a thermostat schedule to minimize energy consumption in a small commercial building test bed during the cooling season. The simulation occurs through the use of the multi-engineering domain Dymola environment based on the Modelica open source programming language and is optimized with the Java based optimization program GenOpt. The simulation uses both physically based modeling utilizing heat transfer principles for the building and regression analysis for energy consumption. GenOpt is dynamically coupled to Dymola through various interface files. There are very few studies that have coupled GenOpt to a building simulation program and even fewer studies have used Dymola for building simulation as extensively as the work presented here. The work presented proves Dymola as a viable alternative to other building simulation programs such as EnergyPlus and MatLab. The model developed is used to simulate the energy consumption of a test bed, a commissioned real world small commercial building, while maintaining indoor thermal comfort. Potential applications include smart or intelligent building systems, predictive simulation of small commercial buildings, and building diagnostics.

  11. Simplified Floor-Area-Based Energy-Moisture-Economic Model for Residential Buildings

    ERIC Educational Resources Information Center

    Martinez, Luis A.

    2009-01-01

    In the United States, 21% of all energy is used in residential buildings (40% of which is for heating and cooling homes). Promising improvements in residential building energy efficiency are underway such as the Building America Program and the Passive House Concept. The ability of improving energy efficiency in buildings is enhanced by building…

  12. Revealing myths about people, energy and buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, R.; Moezzi, M.

    2000-05-01

    In this essay we take a closer look at some energy myths, focusing on the ways energy professionals and the public alike, talk, write and teach about how energy affects the way in which we design, operate, retrofit and inhabit buildings. What myths about people, energy and buildings are current today? Who tells these myths and why do we believe them? How do myths affect our behavior? Myths are a way of understanding the world we live in. They may represent incomplete understanding, or be based on premises that are scientifically not valid, but they help us understand and explainmore » how the world works, and we shape our behavior accordingly.« less

  13. Maximize Energy Efficiency in Buildings | Climate Neutral Research Campuses

    Science.gov Websites

    Buildings on a research campus, especially laboratory buildings, often represent the most cost-effective plans, campuses can evaluate the following: Energy Management Building Management New Buildings Design

  14. Increasing energy efficiency level of building production based on applying modern mechanization facilities

    NASA Astrophysics Data System (ADS)

    Prokhorov, Sergey

    2017-10-01

    Building industry in a present day going through the hard times. Machine and mechanism exploitation cost, on a field of construction and installation works, takes a substantial part in total building construction expenses. There is a necessity to elaborate high efficient method, which allows not only to increase production, but also to reduce direct costs during machine fleet exploitation, and to increase its energy efficiency. In order to achieve the goal we plan to use modern methods of work production, hi-tech and energy saving machine tools and technologies, and use of optimal mechanization sets. As the optimization criteria there are exploitation prime cost and set efficiency. During actual task-solving process we made a conclusion, which shows that mechanization works, energy audit with production juxtaposition, prime prices and costs for energy resources allow to make complex machine fleet supply, improve ecological level and increase construction and installation work quality.

  15. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less

  16. End-use energy consumption estimates for US commercial buildings, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belzer, D.B.; Wrench, L.E.; Marsh, T.L.

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs within the Department of Energy, by utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1989 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment.more » Billing data for electricity and natural gas were first decomposed into weather and nonweather dependent loads. Subsequently, Statistical Adjusted Engineering (SAE) models were estimated by building type with annual data. The SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption. End-use consumption by fuel was estimated for each of the 5,876 buildings in the 1989 CBECS. The report displays the summary results for eleven separate building types as well as for the total US commercial building stock.« less

  17. Efficient and Robust Optimization for Building Energy Simulation.

    PubMed

    Pourarian, Shokouh; Kearsley, Anthony; Wen, Jin; Pertzborn, Amanda

    2016-06-15

    Efficiently, robustly and accurately solving large sets of structured, non-linear algebraic and differential equations is one of the most computationally expensive steps in the dynamic simulation of building energy systems. Here, the efficiency, robustness and accuracy of two commonly employed solution methods are compared. The comparison is conducted using the HVACSIM+ software package, a component based building system simulation tool. The HVACSIM+ software presently employs Powell's Hybrid method to solve systems of nonlinear algebraic equations that model the dynamics of energy states and interactions within buildings. It is shown here that the Powell's method does not always converge to a solution. Since a myriad of other numerical methods are available, the question arises as to which method is most appropriate for building energy simulation. This paper finds considerable computational benefits result from replacing the Powell's Hybrid method solver in HVACSIM+ with a solver more appropriate for the challenges particular to numerical simulations of buildings. Evidence is provided that a variant of the Levenberg-Marquardt solver has superior accuracy and robustness compared to the Powell's Hybrid method presently used in HVACSIM+.

  18. A Protocol for Lifetime Energy and Environmental Impact Assessment of Building Insulation Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Som S; Biswas, Kaushik; Desjarlais, Andre Omer

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors, and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules existmore » that provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines.« less

  19. Modeling Environmental Tobacco Smoke (ETS) Infiltration in Low-Income Multifamily Housing before and after Building Energy Retrofits.

    PubMed

    Fabian, Maria Patricia; Lee, Sharon Kitman; Underhill, Lindsay Jean; Vermeer, Kimberly; Adamkiewicz, Gary; Levy, Jonathan Ian

    2016-03-16

    Secondhand exposure to environmental tobacco smoke (ETS) in multifamily housing remains a health concern despite strong recommendations to implement non-smoking policies. Multiple studies have documented exposure to ETS in non-smoking units located in buildings with smoking units. However, characterizing the magnitude of ETS infiltration or measuring the impact of building interventions or resident behavior on ETS is challenging due to the complexities of multifamily buildings, which include variable resident behaviors and complex airflows between numerous shared compartments (e.g., adjacent apartments, common hallways, elevators, heating, ventilating and air conditioning (HVAC) systems, stack effect). In this study, building simulation models were used to characterize changes in ETS infiltration in a low income, multifamily apartment building in Boston which underwent extensive building renovations targeting energy savings. Results suggest that exterior wall air sealing can lead to increases in ETS infiltration across apartments, while compartmentalization can reduce infiltration. The magnitude and direction of ETS infiltration depends on apartment characteristics, including construction (i.e., level and number of exterior walls), resident behavior (e.g., window opening, operation of localized exhaust fans), and seasonality. Although overall ETS concentrations and infiltration were reduced post energy-related building retrofits, these trends were not generalizable to all building units. Whole building smoke-free policies are the best approach to eliminate exposure to ETS in multifamily housing.

  20. Modeling Environmental Tobacco Smoke (ETS) Infiltration in Low-Income Multifamily Housing before and after Building Energy Retrofits

    PubMed Central

    Fabian, Maria Patricia; Lee, Sharon Kitman; Underhill, Lindsay Jean; Vermeer, Kimberly; Adamkiewicz, Gary; Levy, Jonathan Ian

    2016-01-01

    Secondhand exposure to environmental tobacco smoke (ETS) in multifamily housing remains a health concern despite strong recommendations to implement non-smoking policies. Multiple studies have documented exposure to ETS in non-smoking units located in buildings with smoking units. However, characterizing the magnitude of ETS infiltration or measuring the impact of building interventions or resident behavior on ETS is challenging due to the complexities of multifamily buildings, which include variable resident behaviors and complex airflows between numerous shared compartments (e.g., adjacent apartments, common hallways, elevators, heating, ventilating and air conditioning (HVAC) systems, stack effect). In this study, building simulation models were used to characterize changes in ETS infiltration in a low income, multifamily apartment building in Boston which underwent extensive building renovations targeting energy savings. Results suggest that exterior wall air sealing can lead to increases in ETS infiltration across apartments, while compartmentalization can reduce infiltration. The magnitude and direction of ETS infiltration depends on apartment characteristics, including construction (i.e., level and number of exterior walls), resident behavior (e.g., window opening, operation of localized exhaust fans), and seasonality. Although overall ETS concentrations and infiltration were reduced post energy-related building retrofits, these trends were not generalizable to all building units. Whole building smoke-free policies are the best approach to eliminate exposure to ETS in multifamily housing. PMID:26999174

  1. National Energy Audit Tool for Multifamily Buildings Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, Mini; MacDonald, Michael; Accawi, Gina K

    The U.S. Department of Energy's (DOE's) Weatherization Assistance Program (WAP) enables low-income families to reduce their energy costs by providing funds to make their homes more energy efficient. In addition, the program funds Weatherization Training and Technical Assistance (T and TA) activities to support a range of program operations. These activities include measuring and documenting performance, monitoring programs, promoting advanced techniques and collaborations to further improve program effectiveness, and training, including developing tools and information resources. The T and TA plan outlines the tasks, activities, and milestones to support the weatherization network with the program implementation ramp up efforts. Weatherizationmore » of multifamily buildings has been recognized as an effective way to ramp up weatherization efforts. To support this effort, the 2009 National Weatherization T and TA plan includes the task of expanding the functionality of the Weatherization Assistant, a DOE-sponsored family of energy audit computer programs, to perform audits for large and small multifamily buildings This report describes the planning effort for a new multifamily energy audit tool for DOE's WAP. The functionality of the Weatherization Assistant is being expanded to also perform energy audits of small multifamily and large multifamily buildings. The process covers an assessment of needs that includes input from national experts during two national Web conferences. The assessment of needs is then translated into capability and performance descriptions for the proposed new multifamily energy audit, with some description of what might or should be provided in the new tool. The assessment of needs is combined with our best judgment to lay out a strategy for development of the multifamily tool that proceeds in stages, with features of an initial tool (version 1) and a more capable version 2 handled with currently available resources. Additional development

  2. Building Standards and Codes for Energy Conservation

    ERIC Educational Resources Information Center

    Gross, James G.; Pierlert, James H.

    1977-01-01

    Current activity intended to lead to energy conservation measures in building codes and standards is reviewed by members of the Office of Building Standards and Codes Services of the National Bureau of Standards. For journal availability see HE 508 931. (LBH)

  3. INL High Performance Building Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennifer D. Morton

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflectmore » an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental

  4. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheib, J.; Pless, S.; Torcellini, P.

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy usemore » requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.« less

  5. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    NASA Astrophysics Data System (ADS)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  6. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian; Xie, YuLong; Athalye, Rahul A.

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildingsmore » constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.« less

  7. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less

  8. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    2017-08-07

    Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less

  9. Creating Energy-Efficient Buildings.

    ERIC Educational Resources Information Center

    Burr, Donald F.

    This paper was presented during the time the author was president of the Council of Educational Facility Planners, International, (CEFP/I). The presentation begins with a summary of the state of the world's natural gas and petroleum supplies and states that since one-third of all energy consumed in the United States is to heat and cool buildings,…

  10. Estimation of Solar Energy on Vertical 3D Building Walls on City Quarter Scale

    NASA Astrophysics Data System (ADS)

    Jaugsch, F.; Löwner, M.-O.

    2016-10-01

    In urban areas, solar energy is one promising source of renewable energy to achieve the EU parliament's goal of reducing CO2 emissions by 20 % compared to 1990. Although annual radiation on vertical walls is lower than that on roof surfaces, they are larger in area and, therefore may contribute to energy production. On the other hand, the modelling of shadowing effects is cost intensive in an complex urban environment. Here we present a method for the calculation of solar potential on vertical walls for simple 2D maps with additional building height information. We introduced observer point columns that enable a fast decision whether a whole vertical set of observer points is illuminated or not. By the introduction of a maximum shade length, we reduce processing time in ArcGIS. 206,291 points of 130 buildings have been analysed in time steps of 15 minutes resulting in 15 769 pairs of solar angles. Results disprove the potential of vertical walls serving to fill the winter gap of roof mounted solar energy plants. Best wall orientation for the deployment of solar panels are west and east in summer, whereas it is southeast in winter.

  11. Energy Efficiency for Building Construction Technology.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units of materials on energy efficiency that were designed to be incorporated into an existing program in building construction. The following topics are examined: conservation measures (residential energy use and methods for reducing…

  12. Natural ventilation systems to enhance sustainability in buildings: a review towards zero energy buildings in schools

    NASA Astrophysics Data System (ADS)

    Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo

    2017-11-01

    European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.

  13. Implementing energy standards for motors and buildings in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiel, S.; Busch, J.; Sanchez, C.

    1998-07-01

    The Philippines' master plan for energy makes cornerstones of energy standards for appliances, buildings, and motors in their energy efficiency effort. Significant progress has been made in implementing appliance standards for some products, but has lagged for others. This has been partly because the resources allocated have dictated a cautious deliberate approach. Products where there has been a lack of information about the respective markets have received lowest priority. Motors fall in this latter category. In their development of building codes, the Philippine government has also taken a cautious deliberate approach and is just now attending to the compliance ofmore » a commercial building energy performance standard that was enacted into law in 1994. This paper describes the results of recent new buildings and motor market assessments carried out in the Philippines, a survey of building energy code implementation in other countries, and how these products are being used to further implementation of energy standards in the Philippines. Lessons for other countries are drawn from this experience.« less

  14. Window performance and building energy use: Some technical options for increasing energy efficiency

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen

    1985-11-01

    Window system design and operation has a major impact on energy use in buildings as well as on occupants' thermal and visual comfort. Window performance will be a function of optical and thermal properties, window management strategies, climate and orientation, and building type and occupancy. In residences, heat loss control is a primary concern, followed by sun control in more southerly climates. In commercial buildings, the daylight provided by windows may be the major energy benefits but solar gain must be controlled so that increased cooling loads do not exceed daylighting savings. Reductions in peak electrical demand and HVAC system size may also be possible in well-designed daylighted buildings.

  15. Life cycle assessment: Existing building retrofit versus replacement

    NASA Astrophysics Data System (ADS)

    Darabi, Nura

    The embodied energy in building materials constitutes a large part of the total energy required for any building (Thormark 2001, 429). In working to make buildings more energy efficient this needs to be considered. Integrating considerations about life cycle assessment for buildings and materials is one promising way to reduce the amount of energy consumption being used within the building sector and the environmental impacts associated with that energy. A life cycle assessment (LCA) model can be utilized to help evaluate the embodied energy in building materials in comparison to the buildings operational energy. This thesis takes into consideration the potential life cycle reductions in energy and CO2 emissions that can be made through an energy retrofit of an existing building verses demolition and replacement with a new energy efficient building. A 95,000 square foot institutional building built in the 1960`s was used as a case study for a building LCA, along with a calibrated energy model of the existing building created as part of a previous Masters of Building Science thesis. The chosen case study building was compared to 10 possible improvement options of either energy retrofit or replacement of the existing building with a higher energy performing building in order to see the life cycle relationship between embodied energy, operational energy, and C02 emissions. As a result of completing the LCA, it is shown under which scenarios building retrofit saves more energy over the lifespan of the building than replacement with new construction. It was calculated that energy retrofit of the chosen existing institutional building would reduce the amount of energy and C02 emissions associated with that building over its life span.

  16. Environmental and Energy Aspects of Construction Industry and Green Buildings

    NASA Astrophysics Data System (ADS)

    Kauskale, L.; Geipele, I.; Zeltins, N.; Lecis, I.

    2017-04-01

    Green building is an important component of sustainable real estate market development, and one of the reasons is that the construction industry consumes a high amount of resources. Energy consumption of construction industry results in greenhouse gas emissions, so green buildings, energy systems, building technologies and other aspects play an important role in sustainable development of real estate market, construction and environmental development. The aim of the research is to analyse environmental aspects of sustainable real estate market development, focusing on importance of green buildings at the industry level and related energy aspects. Literature review, historical, statistical data analysis and logical access methods have been used in the research. The conducted research resulted in high environmental rationale and importance of environment-friendly buildings, and there are many green building benefits during the building life cycle. Future research direction is environmental information process and its models.

  17. Efficient and Robust Optimization for Building Energy Simulation

    PubMed Central

    Pourarian, Shokouh; Kearsley, Anthony; Wen, Jin; Pertzborn, Amanda

    2016-01-01

    Efficiently, robustly and accurately solving large sets of structured, non-linear algebraic and differential equations is one of the most computationally expensive steps in the dynamic simulation of building energy systems. Here, the efficiency, robustness and accuracy of two commonly employed solution methods are compared. The comparison is conducted using the HVACSIM+ software package, a component based building system simulation tool. The HVACSIM+ software presently employs Powell’s Hybrid method to solve systems of nonlinear algebraic equations that model the dynamics of energy states and interactions within buildings. It is shown here that the Powell’s method does not always converge to a solution. Since a myriad of other numerical methods are available, the question arises as to which method is most appropriate for building energy simulation. This paper finds considerable computational benefits result from replacing the Powell’s Hybrid method solver in HVACSIM+ with a solver more appropriate for the challenges particular to numerical simulations of buildings. Evidence is provided that a variant of the Levenberg-Marquardt solver has superior accuracy and robustness compared to the Powell’s Hybrid method presently used in HVACSIM+. PMID:27325907

  18. Dataset on the energy performance of atrium type hotel buildings.

    PubMed

    Vujosevic, Milica; Krstic-Furundzic, Aleksandra

    2018-04-01

    The data presented in this article are related to the research article entitled "The Influence of Atrium on Energy Performance of Hotel Building" (Vujosevic and Krstic-Furundzic, 2017) [1], which describes the annual energy performance of atrium type hotel building in Belgrade climate conditions, with the objective to present the impact of the atrium on the hotel building's energy demands for space heating and cooling. This dataset is made publicly available to show energy performance of selected hotel design alternatives, in order to enable extended analyzes of these data for other researchers.

  19. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conductionmore » Finite Difference (CondFD) algorithms.« less

  20. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb Aldrich; Lois Arena; Dianne Griffiths

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis bymore » 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at

  1. NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market. Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available formore » model calibration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares software simulation findings to reference results generated with state-of-the-art simulation tools such as EnergyPlus, SUNREL, and DOE-2.1E. The BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX includes building physics and utility bill calibration test cases. The diagram illustrates the utility bill calibration test cases. Participants are given input ranges and synthetic utility bills. Software tools use the utility bills to calibrate key model inputs and predict energy savings for the retrofit cases. Participant energy savings predictions using calibrated models are compared to NREL predictions using state-of-the-art building energy simulation programs.« less

  2. Energy efficiency indicators for high electric-load buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  3. Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems

    NASA Astrophysics Data System (ADS)

    Pine, G. D.; Christian, J. E.; Mixon, W. R.; Jackson, W. L.

    1980-07-01

    The procedures and data sources used to develop an energy consumption and system cost data base for use in predicting the market penetration of phosphoric acid fuel cell total energy systems in the nonindustrial building market are described. A computer program was used to simulate the hourly energy requirements of six types of buildings; office buildings; retail stores; hotels and motels; schools; hospitals; and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system.

  4. Building simulation: Ten challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Langevin, Jared; Sun, Kaiyu

    Buildings consume more than one-third of the world’s primary energy. Reducing energy use and greenhouse-gas emissions in the buildings sector through energy conservation and efficiency improvements constitutes a key strategy for achieving global energy and environmental goals. Building performance simulation has been increasingly used as a tool for designing, operating and retrofitting buildings to save energy and utility costs. However, opportunities remain for researchers, software developers, practitioners and policymakers to maximize the value of building performance simulation in the design and operation of low energy buildings and communities that leverage interdisciplinary approaches to integrate humans, buildings, and the power gridmore » at a large scale. This paper presents ten challenges that highlight some of the most important issues in building performance simulation, covering the full building life cycle and a wide range of modeling scales. In conclusion, the formulation and discussion of each challenge aims to provide insights into the state-of-the-art and future research opportunities for each topic, and to inspire new questions from young researchers in this field.« less

  5. Building simulation: Ten challenges

    DOE PAGES

    Hong, Tianzhen; Langevin, Jared; Sun, Kaiyu

    2018-04-12

    Buildings consume more than one-third of the world’s primary energy. Reducing energy use and greenhouse-gas emissions in the buildings sector through energy conservation and efficiency improvements constitutes a key strategy for achieving global energy and environmental goals. Building performance simulation has been increasingly used as a tool for designing, operating and retrofitting buildings to save energy and utility costs. However, opportunities remain for researchers, software developers, practitioners and policymakers to maximize the value of building performance simulation in the design and operation of low energy buildings and communities that leverage interdisciplinary approaches to integrate humans, buildings, and the power gridmore » at a large scale. This paper presents ten challenges that highlight some of the most important issues in building performance simulation, covering the full building life cycle and a wide range of modeling scales. In conclusion, the formulation and discussion of each challenge aims to provide insights into the state-of-the-art and future research opportunities for each topic, and to inspire new questions from young researchers in this field.« less

  6. 76 FR 43287 - Building Energy Standards Program: Determination Regarding Energy Efficiency Improvements in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... determined that the quantitative analysis of the energy consumption of buildings built to Standard 90.1-2007... Determination 3. Public Comments Regarding the Preliminary Determination II. Summary of the Comparative Analysis... Analysis B. Quantitative Analysis 1. Discussion of Whole Building Energy Analysis 2. Results of Whole...

  7. 78 FR 47677 - DOE Activities and Methodology for Assessing Compliance With Building Energy Codes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... construction. Post- construction evaluations were implemented in one study in an effort to reduce these costs... these pilot studies have led to a number of recommendations and potential changes to the DOE methodology... fundamental assumptions and approaches to measuring compliance with building energy codes. This notice...

  8. A Living Laboratory for Building-Grid Integration

    ScienceCinema

    Shankle, Steve; Goyal, Siddharth

    2018-01-16

    At PNNL we’re developing a test bed for control of how buildings interact with the grid—an important step toward helping buildings achieve their potential for reducing energy use and improving the management of the nation’s power systems. The test bed works by allowing researchers to conduct experiments on PNNL’s specially-equipped Systems Engineering Building. This unique resource will help the Department of Energy achieve its mission of reducing buildings energy use by 50 percent by 2030.

  9. Helping Research Organizations Build a Clean Energy Future | Working with

    Science.gov Websites

    Us | NREL Helping Research Organizations Build a Clean Energy Future Helping Research Organizations Build a Clean Energy Future Partner with NREL to accelerate the research and development of your

  10. The Effectiveness of Taiwan Building Energy Regulation under the influence of Future Climate

    NASA Astrophysics Data System (ADS)

    Weng, Yu-Teng; Huang, Kuo-Tsang

    2017-04-01

    Building energy consumption comprises circa 40% of the national annual energy usage in Taiwan, and the majority proportion is attributed to the cooling apparatus usage. As cooling energy is closely related to the outdoor climate, it is expected that the future global climate change would amplify its demand. Considering the building energy regulation criteria are the minimum requirements that the building has to be complied with, this study tried to investigate whether the current building energy regulation in Taiwan, initiated in 2013, would still be capable of maintaining the energy use in the future as today's level. The research adopted EnergyPlus to simulate the annual cooling energy use of several virtual office building cases with the constructed hourly future weather data under future climate change scenarios of RCP45 and RCP85 defined by IPCC. The virtual building cases are generated by a structured orthogonal array with each case is constituted by 10 building design parameters. The results revealed that the building energy consumption based on the current regulation criteria failed to maintain at the same level in the future as oppose to nowadays. By comparing to the current cooling energy usage, it would rise by 13% and 22% in RCP45 and RCP85, respectively, at the end of this century. This research further parametrically studied the potential cooling energy mitigation strategies and proposed effective building envelope design schemes in order to neutralize the future building energy increase.

  11. How can we tackle energy efficiency in IoT based smart buildings?

    PubMed

    Moreno, M Victoria; Úbeda, Benito; Skarmeta, Antonio F; Zamora, Miguel A

    2014-05-30

    Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario.

  12. How can We Tackle Energy Efficiency in IoT Based Smart Buildings?

    PubMed Central

    Moreno, M. Victoria; Úbeda, Benito; Skarmeta, Antonio F.; Zamora, Miguel A.

    2014-01-01

    Nowadays, buildings are increasingly expected to meet higher and more complex performance requirements. Among these requirements, energy efficiency is recognized as an international goal to promote energy sustainability of the planet. Different approaches have been adopted to address this goal, the most recent relating consumption patterns with human occupancy. In this work, we analyze what are the main parameters that should be considered to be included in any building energy management. The goal of this analysis is to help designers to select the most relevant parameters to control the energy consumption of buildings according to their context, selecting them as input data of the management system. Following this approach, we select three reference smart buildings with different contexts, and where our automation platform for energy monitoring is deployed. We carry out some experiments in these buildings to demonstrate the influence of the parameters identified as relevant in the energy consumption of the buildings. Then, in two of these buildings are applied different control strategies to save electrical energy. We describe the experiments performed and analyze the results. The first stages of this evaluation have already resulted in energy savings of about 23% in a real scenario. PMID:24887040

  13. Data-driven forecasting algorithms for building energy consumption

    NASA Astrophysics Data System (ADS)

    Noh, Hae Young; Rajagopal, Ram

    2013-04-01

    This paper introduces two forecasting methods for building energy consumption data that are recorded from smart meters in high resolution. For utility companies, it is important to reliably forecast the aggregate consumption profile to determine energy supply for the next day and prevent any crisis. The proposed methods involve forecasting individual load on the basis of their measurement history and weather data without using complicated models of building system. The first method is most efficient for a very short-term prediction, such as the prediction period of one hour, and uses a simple adaptive time-series model. For a longer-term prediction, a nonparametric Gaussian process has been applied to forecast the load profiles and their uncertainty bounds to predict a day-ahead. These methods are computationally simple and adaptive and thus suitable for analyzing a large set of data whose pattern changes over the time. These forecasting methods are applied to several sets of building energy consumption data for lighting and heating-ventilation-air-conditioning (HVAC) systems collected from a campus building at Stanford University. The measurements are collected every minute, and corresponding weather data are provided hourly. The results show that the proposed algorithms can predict those energy consumption data with high accuracy.

  14. Implementation of Energy Code Controls Requirements in New Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Michael I.; Hart, Philip R.; Hatten, Mike

    Most state energy codes in the United States are based on one of two national model codes; ANSI/ASHRAE/IES 90.1 (Standard 90.1) or the International Code Council (ICC) International Energy Conservation Code (IECC). Since 2004, covering the last four cycles of Standard 90.1 updates, about 30% of all new requirements have been related to building controls. These requirements can be difficult to implement and verification is beyond the expertise of most building code officials, yet the assumption in studies that measure the savings from energy codes is that they are implemented and working correctly. The objective of the current research ismore » to evaluate the degree to which high impact controls requirements included in commercial energy codes are properly designed, commissioned and implemented in new buildings. This study also evaluates the degree to which these control requirements are realizing their savings potential. This was done using a three-step process. The first step involved interviewing commissioning agents to get a better understanding of their activities as they relate to energy code required controls measures. The second involved field audits of a sample of commercial buildings to determine whether the code required control measures are being designed, commissioned and correctly implemented and functioning in new buildings. The third step includes compilation and analysis of the information gather during the first two steps. Information gathered during these activities could be valuable to code developers, energy planners, designers, building owners, and building officials.« less

  15. Energy Efficiency Improvements to Wundar Hall, a Historic Building on the Concordia Campus, Milwaukee, Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karman, Nathan

    2012-11-29

    The Forest County Potawatomi Community (FCPC or Community) implemented energy efficiency improvements to revitalize Wundar Hall, a 34,000 square foot (SF) building that was formerly used as a dormitory and is listed on the National Registry of Historic Places, into an office building. Wundar Hall is the first of many architecturally and historically significant buildings that the Community hopes to renovate at the former Concordia College campus, property on the near west side of Milwaukee that was taken into trust for the Community by the United States on July 10, 1990 (collectively, the Concordia Trust Property). As part of thismore » project, which was conducted with assistance from the Department of Energy's Tribal Energy Program (TEP), the Community updated and/or replaced the building envelope, mechanical systems, the plumbing system, the electrical infrastructure, and building control systems. The project is expected to reduce the building's natural gas consumption by 58% and the electricity consumption by 55%. In addition, the project was designed to act as a catalyst to further renovation of the Concordia Trust Property and the neighborhood. The City of Milwaukee has identified redevelopment of the Concordia Trust Property as a Catalytic Project for revitalizing the near west side. The Tribe envisions a revitalized, mixed-use campus of community services, education, and economic developmen-providing services to the Indian community and jobs to the neighborhood.« less

  16. Diffusion of Energy Efficient Technology in Commercial Buildings: An Analysis of the Commercial Building Partnerships Program

    NASA Astrophysics Data System (ADS)

    Antonopoulos, Chrissi Argyro

    This study presents findings from survey and interview data investigating replication of green building measures by Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, quantitative and qualitative data were gathered relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners' replication efforts of green building approaches used in the CBP project to the rest of the organization's building portfolio, and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States. Findings from this study provided insight into motivations and objectives CBP partners had for program participation. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The optimized approach to the CBP program allows partners to develop green building parameters that fit the specific uses of their building, resulting in greater motivation for replication. In addition, the diffusion model developed

  17. An Advanced IoT-based System for Intelligent Energy Management in Buildings.

    PubMed

    Marinakis, Vangelis; Doukas, Haris

    2018-02-16

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings' energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building's data (e.g., energy management systems), energy production, energy prices, weather data and end-users' behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  18. The Impact of DOE Building Technology Energy Efficiency Programs on U.S. Employment, Income, and Investment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Michael J.; Roop, Joseph M.; Schultz, Robert W.

    2008-07-31

    To more fully evaluate its programs to increase the energy efficiency of the U.S. residential and commercial building stock, the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) assesses the macroeconomic impacts of those programs, specifically on national employment, wage income, and (most recently) investment. The analysis is conducted using the Impact of Sector Energy Technologies (ImSET) model, a special-purpose 188-sector input-output model of the U.S. economy designed specifically to evaluate the impacts of energy efficiency investments and saving. For the analysis described in the paper, ImSET was amended to provide estimates of sector-by-sector capital requirementsmore » and investment. In the scenario of the Fiscal Year (FY) 2005 Buildings Technology (BT) program, the technologies and building practices being developed and promoted by the BT program have the prospect of saving about 2.9×1015 Btu in buildings by the year 2030, about 27% of the expected growth in buildings energy consumption by the year 2030. The analysis reported in the paper finds that, by the year 2030, these savings have the potential to increase employment by up to 446,000 jobs, increase wage income by $7.8 billion, reduce needs for capital stock in the energy sector and closely related supporting industries by about $207 billion (and the corresponding annual level of investment by $13 billion), and create net capital savings that are available to grow the nation’s future economy.« less

  19. HVAC modifications and computerized energy analysis for the Operations Support Building at the Mars Deep Space Station at Goldstone

    NASA Technical Reports Server (NTRS)

    Halperin, A.; Stelzmuller, P.

    1986-01-01

    The key heating, ventilation, and air-conditioning (HVAC) modifications implemented at the Mars Deep Space Station's Operation Support Building at Jet Propulsion Laboratories (JPL) in order to reduce energy consumption and decrease operating costs are described. An energy analysis comparison between the computer simulated model for the building and the actual meter data was presented. The measurement performance data showed that the cumulative energy savings was about 21% for the period 1979 to 1981. The deviation from simulated data to measurement performance data was only about 3%.

  20. Austro-Hungarian Public Building Refurbishment and Energy Efficiency Measures - A Case Study on a Public Building in Sarajevo

    NASA Astrophysics Data System (ADS)

    Salihbegović, Amira; Čaušević, Amir; Rustempašić, Nerman; Avdić, Dženis; Smajlović, Esad

    2017-10-01

    Among other pieces of architectural historical heritage in Sarajevo, and Bosnia-Herzegovina in general, the Austro-Hungarian architecture has preserved its original architectural, artistic and engineering characteristics. Both residential and public representative urban blocks, streets and squares are of distinguishable ambience in the architectural and urban image of the city and are testifying about our architectural past. A number of buildings is valorised and protected by law in terms of their architectural, artistic and historical value. In addition, these buildings have a distinct functional, ambiental, historical, and even aesthetical value. To make them last longer, refurbishment of these buildings is challenging and presents potential and multiple benefits for the city, and beyond. Refurbishing built environment through functional reorganizing, redesign and energy efficiency measures applications could result in prolonged longevity, architectural identity preservation and interior comfort improvement. Besides, implemented measures for energy efficiency, through the refurbishment process, should optimize the needs for energy consumption in treated buildings. This paper defines options in comfort improvements and redesign, without implying risks to the building longevity, analyses interventions and energy efficiency measures which would enable potential energy saving assessment in the refurbishment process of masonry buildings. This paper also discusses the different techniques that can be adopted for conservation and preservation of historical masonry buildings from the Austro-Hungarian period dealing with energy efficiency. The works were preceded by historical research and on-site investigations. This paper describes a methodology to quantify their vulnerability. A scheme of structural retrofitting is suggested following the research conducted. Revitalization of the building consisted in the reconstruction of the old building structure, creating the inner

  1. Infiltration modeling guidelines for commercial building energy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowri, Krishnan; Winiarski, David W.; Jarnagin, Ronald E.

    This report presents a methodology for modeling air infiltration in EnergyPlus to account for envelope air barrier characteristics. Based on a review of various infiltration modeling options available in EnergyPlus and sensitivity analysis, the linear wind velocity coefficient based on DOE-2 infiltration model is recommended. The methodology described in this report can be used to calculate the EnergyPlus infiltration input for any given building level infiltration rate specified at known pressure difference. The sensitivity analysis shows that EnergyPlus calculates the wind speed based on zone altitude, and the linear wind velocity coefficient represents the variation in infiltration heat loss consistentmore » with building location and weather data.« less

  2. Analysis of EnergyPlus for use in residential building energy optimization

    NASA Astrophysics Data System (ADS)

    Spencer, Justin S.

    This work explored the utility of EnergyPlus as a simulation engine for doing residential building energy optimization, with the objective of finding the modeling areas that require further development in EnergyPlus for residential optimization applications. This work was conducted primarily during 2006-2007, with publication occurring later in 2010. The assessments and recommendations apply to the simulation tool versions available in 2007. During this work, an EnergyPlus v2.0 (2007) input file generator was developed for use in BEopt 0.8.0.4 (2007). BEopt 0.8.0.4 is a residential Building Energy optimization program developed at the National Renewable Energy Laboratory in Golden, Colorado. Residential modeling capabilities of EnergyPlus v2.0 were scrutinized and tested. Modeling deficiencies were identified in a number of areas. These deficiencies were compared to deficiencies in the DOE2.2 V44E4(2007)/TRNSYS simulation engines. The highest priority gaps in EnergyPlus v2.0's residential modeling capability are in infiltration, duct leakage, and foundation modeling. Optimization results from DOE2.2 V44E4 and EnergyPlus v2.0 were analyzed to search for modeling differences that have a significant impact on optimization results. Optimal buildings at different energy savings levels were compared to look for biases. It was discovered that the EnergyPlus v2.0 optimizations consistently chose higher wall insulation levels than the DOE2.2 V44E4 optimizations. The points composing the optimal paths chosen by DOE2.2 V44E4 and EnergyPlus v2.0 were compared to look for points chosen by one optimization that were significantly different from the other optimal path. These outliers were compared to consensus optimal points to determine the simulation differences that cause disparities in the optimization results. The differences were primarily caused by modeling of window radiation exchange and HVAC autosizing.

  3. Commercial Building Energy Asset Score Program Overview and Technical Protocol (Version 1.1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Goel, Supriya; Makhmalbaf, Atefe

    The U.S. Department of Energy (DOE) is developing a voluntary national scoring system for commercial buildings to help building owners and managers assess a building’s energy-related systems independent of operations. The goal of the score is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system, known as the Commercial Building Energy Asset Score, will allow building owners and managers to compare their building infrastructure against peers and track building upgrades over time. The system will also help other building stakeholders (e.g., building investors, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in amore » way that is independent from operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset scoring tool. The alternative methods that were considered prior to developing the current approach are described in the Program Overview and Technical Protocol Version 1.0.« less

  4. Solar-Energy System for a Commercial Building--Topeka, Kansas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Report describes a solar-energy system for space heating, cooling and domestic hot water at a 5,600 square-foot (520-square-meter) Topeka, Kansas, commercial building. System is expected to provide 74% of annual cooling load, 47% of heating load, and 95% of domestic hot-water load. System was included in building design to maximize energy conservation.

  5. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    NASA Astrophysics Data System (ADS)

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-08-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.

  6. Photonic microstructures for energy-generating clear glass and net-zero energy buildings.

    PubMed

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-08-23

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application.

  7. Photonic microstructures for energy-generating clear glass and net-zero energy buildings

    PubMed Central

    Vasiliev, Mikhail; Alghamedi, Ramzy; Nur-E-Alam, Mohammad; Alameh, Kamal

    2016-01-01

    Transparent energy-harvesting windows are emerging as practical building-integrated photovoltaics (BIPV), capable of generating electricity while simultaneously reducing heating and cooling demands. By incorporating spectrally-selective diffraction gratings as light deflecting structures of high visible transparency into lamination interlayers and using improved spectrally-selective thin-film coatings, most of the visible solar radiation can be transmitted through the glass windows with minimum attenuation. At the same time, the ultraviolet (UV) and a part of incident solar infrared (IR) radiation energy are converted and/or deflected geometrically towards the panel edge for collection by CuInSe2 solar cells. Experimental results show power conversion efficiencies in excess of 3.04% in 10 cm × 10 cm vertically-placed clear glass panels facing direct sunlight, and up to 2.08% in 50 cm × 50 cm installation-ready framed window systems. These results confirm the emergence of a new class of solar window system ready for industrial application. PMID:27550827

  8. Evaluation of CNT Energy Savers Retrofit Packages Implemented in Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farley, Jenne; Ruch, Russell

    This evaluation explored the feasibility of designing prescriptive retrofit measure packages for typical Chicago region multifamily buildings in order to achieve 25%-30% source energy savings through the study of three case studies. There is an urgent need to scale up energy efficiency retrofitting of Chicago's multifamily buildings in order to address rising energy costs and a rapidly depleting rental stock. Aimed at retrofit program administrators and building science professionals, this research project investigates the possibility of using prescriptive retrofit packages as a time- and resource-effective approach to the process of retrofitting multifamily buildings.

  9. Evaluation of CNT Energy Savers Retrofit Packages Implemented in Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farley, Jenne; Ruch, Russell

    This evaluation explored the feasibility of designing prescriptive retrofit measure packages for typical Chicago region multifamily buildings in order to achieve 25%-30% source energy savings through the study of three case studies. There is an urgent need to scale up energy efficiency retrofitting of Chicago's multifamily buildings in order to address rising energy costs and a rapidly depletingrental stock. Aimed at retrofit program administrators and building science professionals, this research project investigates the possibility of using prescriptive retrofit packages as a time- and resource-effective approach to the process of retrofitting multifamily buildings.

  10. Analysis Methods for Post Occupancy Evaluation of Energy-Use in High Performance Buildings Using Short-Term Monitoring

    NASA Astrophysics Data System (ADS)

    Singh, Vipul

    2011-12-01

    The green building movement has been an effective catalyst in reducing energy demands of buildings and a large number of 'green' certified buildings have been in operation for several years. Whether these buildings are actually performing as intended, and if not, identifying specific causes for this discrepancy falls into the general realm of post-occupancy evaluation (POE). POE involves evaluating building performance in terms of energy-use, indoor environmental quality, acoustics and water-use; the first aspect i.e. energy-use is addressed in this thesis. Normally, a full year or more of energy-use and weather data is required to determine the actual post-occupancy energy-use of buildings. In many cases, either measured building performance data is not available or the time and cost implications may not make it feasible to invest in monitoring the building for a whole year. Knowledge about the minimum amount of measured data needed to accurately capture the behavior of the building over the entire year can be immensely beneficial. This research identifies simple modeling techniques to determine best time of the year to begin in-situ monitoring of building energy-use, and the least amount of data required for generating acceptable long-term predictions. Four analysis procedures are studied. The short-term monitoring for long-term prediction (SMLP) approach and dry-bulb temperature analysis (DBTA) approach allow determining the best time and duration of the year for in-situ monitoring to be performed based only on the ambient temperature data of the location. Multivariate change-point (MCP) modeling uses simulated/monitored data to determine best monitoring period of the year. This is also used to validate the SMLP and DBTA approaches. The hybrid inverse modeling method-1 predicts energy-use by combining a short dataset of monitored internal loads with a year of utility-bills, and hybrid inverse method-2 predicts long term building performance using utility

  11. Translating building information modeling to building energy modeling using model view definition.

    PubMed

    Jeong, WoonSeong; Kim, Jong Bum; Clayton, Mark J; Haberl, Jeff S; Yan, Wei

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  12. Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

    PubMed Central

    Kim, Jong Bum; Clayton, Mark J.; Haberl, Jeff S.

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process. PMID:25309954

  13. 76 FR 57982 - Building Energy Codes Cost Analysis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy [Docket No. EERE-2011-BT-BC-0046] Building Energy Codes Cost Analysis Correction In notice document 2011-23236 beginning on page... heading ``Table 1. Cash flow components'' should read ``Table 7. Cash flow components''. [FR Doc. C1-2011...

  14. Weather Correlations to Calculate Infiltration Rates for U. S. Commercial Building Energy Models.

    PubMed

    Ng, Lisa C; Quiles, Nelson Ojeda; Dols, W Stuart; Emmerich, Steven J

    2018-01-01

    As building envelope performance improves, a greater percentage of building energy loss will occur through envelope leakage. Although the energy impacts of infiltration on building energy use can be significant, current energy simulation software have limited ability to accurately account for envelope infiltration and the impacts of improved airtightness. This paper extends previous work by the National Institute of Standards and Technology that developed a set of EnergyPlus inputs for modeling infiltration in several commercial reference buildings using Chicago weather. The current work includes cities in seven additional climate zones and uses the updated versions of the prototype commercial building types developed by the Pacific Northwest National Laboratory for the U. S. Department of Energy. Comparisons were made between the predicted infiltration rates using three representations of the commercial building types: PNNL EnergyPlus models, CONTAM models, and EnergyPlus models using the infiltration inputs developed in this paper. The newly developed infiltration inputs in EnergyPlus yielded average annual increases of 3 % and 8 % in the HVAC electrical and gas use, respectively, over the original infiltration inputs in the PNNL EnergyPlus models. When analyzing the benefits of building envelope airtightening, greater HVAC energy savings were predicted using the newly developed infiltration inputs in EnergyPlus compared with using the original infiltration inputs. These results indicate that the effects of infiltration on HVAC energy use can be significant and that infiltration can and should be better accounted for in whole-building energy models.

  15. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Som S., E-mail: shresthass@ornl.gov; Biswas, Kaushik; Desjarlais, Andre O.

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist,more » which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: • We proposed a protocol to evaluate the environmental impacts of insulation materials. • The protocol considers all life cycle stages of an insulation material. • Both the direct environmental impacts and the indirect impacts are defined. • Standardized calculation methods for the ‘avoided operational energy’ is defined. • Standardized calculation methods for the ‘avoided environmental impact’ is defined.« less

  16. Potential energy savings with exterior shades in large office buildings and the impact of discomfort glare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Sabine; Lee, Eleanor

    Exterior shades are highly efficient for reducing solar load in commercial buildings. Their impact on net energy use depends on the annual energy balance of heating, cooling, fan and lighting energy. This paper discusses the overall energy use intensity of various external shading systems for a prototypical large office building split into the different types of energy use and for different orientations and window sizes. Lighting energy was calculated for a constant lighting power as well as for dimmed lighting fixtures (daylighting control). In Section 3, slat angles and solar cut-off angles were varied for fixed exterior slat shading systems.more » While the most light-blocking shades performed best for the case without daylighting controls, the optimum cut-off angle with daylighting controls was found to be 30 deg for the office building prototype used in Chicago and Houston. For large window-to-wall (WWR) ratios, window related annual energy use could be reduced by at least 70 % without daylighting control and by a minimum of 86 % with daylighting control in average over all orientations. The occurrence of discomfort glare was is considered in Section 4 of the paper, which looks at the performance of commercially available exterior shading systems when an interior shade is used in addition to the exterior shade during hours when occupants would experience discomfort glare. Glare control impacts overall energy use intensity significantly for exterior shades with high transmittance, especially when daylighting controls are used. In these cases, exterior shades are only beneficial for window-to-wall areas ≥ 45% in the hot Houston climate. For smaller windows and in a heating/cooling climate like Chicago, exterior shades can increase energy consumption« less

  17. UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg

    2013-07-01

    It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the building’s effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identifymore » the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.« less

  18. An insight into actual energy use and its drivers in high-performance buildings

    DOE PAGES

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these

  19. Energy Efficiency: Transportation and Buildings

    NASA Astrophysics Data System (ADS)

    Lubell, Michael S.; Richter, Burton

    2011-11-01

    We present a condensed version of the American Physical Society's 2008 analysis of energy efficiency in the transportation and buildings sectors in the United States with updated numbers. In addition to presenting technical findings, we include the report's recommendations for policy makers that we believe are in the best interests of the nation.

  20. Building Commissioning

    Science.gov Websites

    Berkeley Lab logo Home > Building Commissioning A Golden Opportunity for Reducing Energy Costs and Greenhouse-Gas Emissions The need for commissioning The map is not the territory. Building . Deficiencies such as design flaws, construction defects, and malfunctioning equipment have a host of

  1. Analysis of energy conservation alternatives for standard Army building. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hittle, D.C.; O'Brien, R.E.; Percivall, G.S.

    1983-03-01

    This report describes energy conservation alternatives for five standard Army building designs. By surveying maps of major Army installations and using the Integrated Facilities System, the most popular designs were determined to be a two-company, rolling-pin-shaped barracks for enlisted personnel; a Type 64 barracks; a motor repair shop; a battalion headquarters and classroom building; and an enlisted personnel mess hall. The Building Loads Analysis and System Thermodynamics (BLAST) energy-analysis computer program was used to develop baseline energy consumption for each design based on the building descriptions and calibrated by comparison with the measured energy usage of similar buildings. Once themore » baseline was established, the BLAST program was used to study energy conservation alternatives (ECAs) which could be retrofit to the existing buildings. The ECAs included closing off air-handling units, adding storm windows, adding 2 in. (0.051 m) of exterior insulation to the walls, partially blocking the windows, adding roof insulation, putting up south overhangs, installing programmable thermostats, recovering heat from exhaust fans, installing temperature economizers, replacing lights, and installing partitions between areas of differing temperature.« less

  2. Energy consumption quota management of Wanda commercial buildings in China

    NASA Astrophysics Data System (ADS)

    Sun, D. B.; Xiao, H.; Wang, X.; Liu, J. J.; Wang, X.; Jin, X. Q.; Wang, J.; Xie, X. K.

    2016-08-01

    There is limited research of commercial buildings’ energy use data conducted based on practical analysis in China nowadays. Some energy consumption quota tools like Energy Star in U.S or VDI 3807 in Germany have limitation in China's building sector. This study introduces an innovative methodology of applying energy use quota model and empirical management to commercial buildings, which was in accordance of more than one hundred opened shopping centers of a real estate group in China. On the basis of statistical benchmarking, a new concept of “Modified coefficient”, which considers weather, occupancy, business layout, operation schedule and HVAC efficiency, is originally introduced in this paper. Our study shows that the average energy use quota increases from north to south. The average energy use quota of sample buildings is 159 kWh/(m2.a) of severe cold climate zone, 179 kWh/(m2.a) of cold zone, 188 kWh/(m2.a) of hot summer and cold winter zone, and 200 kWh/(m2.a) of hot summer and warm winter zone. The energy use quota model has been validated in the property management for year 2016, providing a new method of commercial building energy management to the industry. As a key result, there is 180 million energy saving potential based on energy quota management in 2016, equals to 6.2% saving rate of actual energy use in 2015.

  3. Energy Saving Homes and Buildings - Continuum Magazine | NREL

    Science.gov Websites

    Spring 2014 / Issue 6 Continuum. Clean Energy Innovation at NREL Energy Saving Homes and Buildings Continuum showcases NREL's unique research capabilities and most impactful clean energy innovations. Dan Says From our director Dan says NREL Provides a Foundation for Home Energy Performance 01 NREL Provides

  4. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications inmore » green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy

  5. Deep influence of passive low energy consumption multi-storey residential building in cold region

    NASA Astrophysics Data System (ADS)

    Shuai, Zhang; Lihua, Zhao; Rong, Jin; Dong, Junyan

    2018-02-01

    The example of passive architecture demonstration building in Jilin Province, China, based on the practical experience of this project, the control index of passive and low energy consumption residential buildings in cold and passive buildings is referenced by reference to the German construction standard and the Chinese residence construction document, “passive ultra-low energy consumption green Building Technology Guide (Trial)”. The requirement of passive low energy residential buildings on the ground heat transfer coefficient limits is determined, and the performance requirements of passive residential buildings are discussed. This paper analyzes the requirement of the passive low energy residential building on the ground heat transfer coefficient limit, and probes into the influence factors of the ground thermal insulation of the passive low energy consumption residential building. The construction method of passive low energy consumption residential building is proposed.

  6. Establishing a Common Definition for Zero Energy Buildings: Time to Move the Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Kent; Torcellini, Paul; Taylor, Cody

    To change the current paradigm from buildings being consumers of energy to producers of energy requires a common language to facilitate market transformation. Common definitions help create market movement by sharing concepts across market actors. While the term 'zero energy buildings' has been in the marketplace for over 20 years, no common definition had been established. US DOE, last year, embarked on a process to evaluate current definitions and solicit industry input to formulate a common definition and nomenclature for zero energy buildings. This definition uses commonly available site measurements and national conversion factors to define zero energy buildings onmore » a source energy basis for a variety of boundary conditions including building, portfolio, campus, and community. Issues addressed include multiple fuel types, cogeneration, and renewable energy certificates. This paper describes the process used to arrive at the definition, looks at methods of calculating site to source energy conversions, and how boundary decisions affect a robust and stable definition that can be used to direct programs and policies for many years to come. This stability is critical to move building investments towards buildings that produce as much energy as they consume.« less

  7. Diagrams Showing Actions for Reducing Exposures to Polychlorinated Biphenyls (PCBs) in Indoor Building Environments

    EPA Pesticide Factsheets

    This diagram compliments the document, PCBs in Building Materials: Q's & A's, on how exposure to PCBs can be assessed and reduced in school buildings. It describes actions for reducing exposures to PCBs in indoor school building environments.

  8. Estimation of the Relationship Between Remotely Sensed Anthropogenic Heat Discharge and Building Energy Use

    NASA Technical Reports Server (NTRS)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.

  9. Simplified energy design economics: Principles of economics applied to energy conservation and solar energy investments in buildings

    NASA Astrophysics Data System (ADS)

    Marshall, H. E.; Ruegg, R. T.; Wilson, F.

    1980-01-01

    Economic analysis techniques for evaluating alternative energy conservation investments in buildings are presented. Life cycle cost, benefit cost, savings to investment, payback, and rate of return analyses are explained and illustrated. The procedure for discounting is described for a heat pump investment. Formulas, tables of discount factors, and detailed instructions are provided to give all information required to make economic evaluations of energy conserving building designs.

  10. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs) across Europe.

    PubMed

    D'Agostino, Delia; Parker, Danny

    2018-04-01

    This data article refers to the research paper A model for the cost-optimal design of Nearly Zero Energy Buildings (NZEBs) in representative climates across Europe [1]. The reported data deal with the design optimization of a residential building prototype located in representative European locations. The study focus on the research of cost-optimal choices and efficiency measures in new buildings depending on the climate. The data linked within this article relate to the modelled building energy consumption, renewable production, potential energy savings, and costs. Data allow to visualize energy consumption before and after the optimization, selected efficiency measures, costs and renewable production. The reduction of electricity and natural gas consumption towards the NZEB target can be visualized together with incremental and cumulative costs in each location. Further data is available about building geometry, costs, CO 2 emissions, envelope, materials, lighting, appliances and systems.

  11. Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings.

    PubMed

    Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino

    2016-05-28

    Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building.

  12. Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings

    PubMed Central

    Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino

    2016-01-01

    Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building. PMID:27240379

  13. Strategies for Controlling Plug Loads. A Tool for Reducing Plug Loads in Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul; Bonnema, Eric; Sheppy, Michael

    2015-09-01

    Plug loads are often not considered as part of the energy savings measures in Commercial Buildings; however, they can account for up to 50% of the energy used in the building. These loads are numerous and often scattered throughout a building. Some of these loads are purchased by the owner and some designed into the building or the tenant finishes for a space. This document provides a strategy and a tool for minimizing these loads.

  14. NREL Incubator Alliance Helps Entrepreneurs Build Clean Energy Solutions

    Science.gov Websites

    Incubator Alliance Helps Entrepreneurs Build Clean Energy Solutions For more information contact alliance. "We can do that by helping companies succeed." The incubators' objective is to build

  15. Global scenarios of urban density and its impacts on building energy use through 2050

    DOE PAGES

    Guneralp, Burak; Zhou, Yuyu; Urge-Vorsatz, Diana; ...

    2017-01-09

    Here, urban areas play a significant role in planetary sustainability. While the scale of impending urbanization is well acknowledged, we have a limited understanding on how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use, specifically, for heating and cooling. We also assess associated cobenefits and trade-offs with human well-being. Globally, the energy use for heating and cooling by midcentury will reach anywhere from about 45 EJ/yr to 59 EJ/yr (respectively, increases of 5% to 40% over the 2010 estimate). Most ofmore » this variability is due to the uncertainty in future urban forms of rapidly growing cities in Asia and, particularly, in China. Compact urban development overall leads to less energy use in urban environments. Delaying the retrofit of the existing built environment leads to more savings in building energy use. Potential for savings in the energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared to the business-as-usual scenario in energy use for heating and cooling in South Asia and Sub-Saharan Africa but significantly contribute to energy savings in North America and Europe. A systemic effort that focuses on both urban form and energy-efficient technologies, but also accounts for potential co-benefits and trade-offs, can contribute to both local and global sustainability. Particularly in mega-urban regions, such efforts can improve local environments for billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas and associated greenhouse gas emissions.« less

  16. Global scenarios of urban density and its impacts on building energy use through 2050

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Güneralp, Burak; Zhou, Yuyu; Ürge-Vorsatz, Diana

    2017-01-09

    Urban areas play a significant role in planetary sustainability. While the scale of impending urbanization is well acknowledged, we have a limited understanding on how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use, specifically, for heating and cooling. We also assess associated cobenefits and trade-offs with human well-being. Globally, the energy use for heating and cooling by midcentury will reach anywhere from about 45 EJ/yr to 59 EJ/yr (respectively, increases of 5% to 40% over the 2010 estimate). Most of thismore » variability is due to the uncertainty in future urban forms of rapidly growing cities in Asia and, particularly, in China. Compact urban development overall leads to less energy use in urban environments. Delaying the retrofit of the existing built environment leads to more savings in building energy use. Potential for savings in the energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared to the business-as-usual scenario in energy use for heating and cooling in South Asia and Sub-Saharan Africa but significantly contribute to energy savings in North America and Europe. A systemic effort that focuses on both urban form and energy-efficient technologies, but also accounts for potential co-benefits and trade-offs, can contribute to both local and global sustainability. Particularly in mega-urban regions, such efforts can improve local environments for billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas and associated greenhouse gas emissions.« less

  17. Energy Saving Buildings Win National and Local Honors

    Science.gov Websites

    for its 1997 Energy Efficiency Award in the New Construction category. The award recognizes the annual energy consumption by 30-70 percent. The building's design and construction were a collaborative

  18. Technical Highlight: NREL Improves Building Energy Simulation Programs Through Diagnostic Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polly, B.

    2012-01-09

    This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market.

  19. U.S.– India Joint Center for Building Energy Research and Development (CBERD) Caring for the Energy Health of Healthcare Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Reshma; Mathew, Paul; Granderson, Jessica

    The U.S.-India Joint Center for Building Energy Research & Development (CBERD), created through the Partnership to Accelerate Clean Energy (PACE) agreement between the United States and India, is a research and development (R&D) center with over 30 institutional and industry partners from both nations. This five-year presidential initiative is jointly funded by the U.S. Department of Energy and the Government of India. CBERD aims to build upon a foundation of collaborative knowledge, tools, and technologies, and human capabilities that will increase development of high-performance buildings. To reach this goal, the R&D focuses on energy use reduction throughout the entire lifemore » cycle of buildings—i.e., design, construction, and operations. During the operations phase of buildings, even with best-practice energy-efficient design, actual energy use can be much higher than the design intent. Every day, much of the energy consumed by buildings serves no purpose (Roth et al. 2005). Building energy information systems (EIS) are commercially available systems that building owners and facility managers use to assess their building operations, measure, visualize, analyze, and report energy cost and consumption. Energy information systems can enable significant energy savings by tracking energy use, identifying consumption patterns, and benchmarking performance against similar buildings, thereby identifying improvement opportunities. The CBERD team has identified potential energy savings of approximately 2 quads of primary energy in the United States, while industry building energy audits in India have indicated potential energy savings of up to 30 percent in commercial buildings such as offices. Additionally, the CBERD team has identified healthcare facilities (e.g., hospitals, clinics), hotels, and offices as the three of the highest-growth sectors in India that have significant energy consumption, and that would benefit the most from implementation of EIS.« less

  20. Building Energy Audit Report, for Hickam AFB, HI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvala, William D.; De La Rosa, Marcus I.; Brown, Daryl R.

    2010-09-30

    A building energy assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Department of Energy/Federal Energy Management program (FEMP). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at Hickam AFB, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings. This documents reports the results of that assessment.

  1. Building Energy Modeling and Control Methods for Optimization and Renewables Integration

    NASA Astrophysics Data System (ADS)

    Burger, Eric M.

    This dissertation presents techniques for the numerical modeling and control of building systems, with an emphasis on thermostatically controlled loads. The primary objective of this work is to address technical challenges related to the management of energy use in commercial and residential buildings. This work is motivated by the need to enhance the performance of building systems and by the potential for aggregated loads to perform load following and regulation ancillary services, thereby enabling the further adoption of intermittent renewable energy generation technologies. To increase the generalizability of the techniques, an emphasis is placed on recursive and adaptive methods which minimize the need for customization to specific buildings and applications. The techniques presented in this dissertation can be divided into two general categories: modeling and control. Modeling techniques encompass the processing of data streams from sensors and the training of numerical models. These models enable us to predict the energy use of a building and of sub-systems, such as a heating, ventilation, and air conditioning (HVAC) unit. Specifically, we first present an ensemble learning method for the short-term forecasting of total electricity demand in buildings. As the deployment of intermittent renewable energy resources continues to rise, the generation of accurate building-level electricity demand forecasts will be valuable to both grid operators and building energy management systems. Second, we present a recursive parameter estimation technique for identifying a thermostatically controlled load (TCL) model that is non-linear in the parameters. For TCLs to perform demand response services in real-time markets, online methods for parameter estimation are needed. Third, we develop a piecewise linear thermal model of a residential building and train the model using data collected from a custom-built thermostat. This model is capable of approximating unmodeled

  2. Building energy simulation in real time through an open standard interface

    DOE PAGES

    Pang, Xiufeng; Nouidui, Thierry S.; Wetter, Michael; ...

    2015-10-20

    Building energy models (BEMs) are typically used for design and code compliance for new buildings and in the renovation of existing buildings to predict energy use. We present the increasing adoption of BEM as standard practice in the building industry presents an opportunity to extend the use of BEMs into construction, commissioning and operation. In 2009, the authors developed a real-time simulation framework to execute an EnergyPlus model in real time to improve building operation. This paper reports an enhancement of that real-time energy simulation framework. The previous version only works with software tools that implement the custom co-simulation interfacemore » of the Building Controls Virtual Test Bed (BCVTB), such as EnergyPlus, Dymola and TRNSYS. The new version uses an open standard interface, the Functional Mockup Interface (FMI), to provide a generic interface to any application that supports the FMI protocol. In addition, the new version utilizes the Simple Measurement and Actuation Profile (sMAP) tool as the data acquisition system to acquire, store and present data. Lastly, this paper introduces the updated architecture of the real-time simulation framework using FMI and presents proof-of-concept demonstration results which validate the new framework.« less

  3. Commercial Building Energy Asset Score System: Program Overview and Technical Protocol (Version 1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Gorrissen, Willy J.

    2013-01-11

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system that includes an energy asset score tool to help building owners evaluate their buildings with respect to the score system. The goal of the energy asset score system is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system will allow building owners and managers to compare their building infrastructure against peers and track building upgrade progress over time. The system can also help other building stakeholders (e.g., building operators, tenants, financiers, and appraisers) understand the relative efficiency of different buildings inmore » a way that is independent from their operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset score tool. This report also describes alternative methods that were considered prior to developing the current approach. Finally, this report describes a few features of the program where alternative approaches are still under evaluation.« less

  4. Health and productivity gains from better indoor environments and their relationship with building energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, William J.

    2000-04-01

    Theoretical considerations and empirical data suggest that existing technologies and procedures can improve indoor environments in a manner that significantly increases productivity and health. Existing literature contains moderate to strong evidence that characteristics of buildings and indoor environments significantly influence rates of communicable respiratory illness, allergy and asthma symptoms, sick building symptoms, and worker performance. While there is considerable uncertainty in the estimates of the magnitudes of productivity gains that may be obtained by providing better indoor environments, the projected gains are very large. For the U.S., the estimated potential annual savings and productivity gains are $6 to $14 billionmore » from reduced respiratory disease, $2 to $4 billion from reduced allergies and asthma, $10 to $30 billion from reduced sick building syndrome symptoms, and $20 to $160 billion from direct improvements in worker performance that are unrelated to health. Productivity gains that are quantified and demonstrated could serve as a strong stimulus for energy efficiency measures that simultaneously improve the indoor environment.« less

  5. Assessment of energy and economic performance of office building models: a case study

    NASA Astrophysics Data System (ADS)

    Song, X. Y.; Ye, C. T.; Li, H. S.; Wang, X. L.; Ma, W. B.

    2016-08-01

    Energy consumption of building accounts for more than 37.3% of total energy consumption while the proportion of energy-saving buildings is just 5% in China. In this paper, in order to save potential energy, an office building in Southern China was selected as a test example for energy consumption characteristics. The base building model was developed by TRNSYS software and validated against the recorded data from the field work in six days out of August-September in 2013. Sensitivity analysis was conducted for energy performance of building envelope retrofitting; five envelope parameters were analyzed for assessing the thermal responses. Results indicated that the key sensitivity factors were obtained for the heat-transfer coefficient of exterior walls (U-wall), infiltration rate and shading coefficient (SC), of which the sum sensitivity factor was about 89.32%. In addition, the results were evaluated in terms of energy and economic analysis. The analysis of sensitivity validated against some important results of previous studies. On the other hand, the cost-effective method improved the efficiency of investment management in building energy.

  6. Global scenarios of urban density and its impacts on building energy use through 2050.

    PubMed

    Güneralp, Burak; Zhou, Yuyu; Ürge-Vorsatz, Diana; Gupta, Mukesh; Yu, Sha; Patel, Pralit L; Fragkias, Michail; Li, Xiaoma; Seto, Karen C

    2017-08-22

    Although the scale of impending urbanization is well-acknowledged, we have a limited understanding of how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use for heating and cooling. Globally, the energy use for heating and cooling by the middle of the century will be between 45 and 59 exajoules per year (corresponding to an increase of 7-40% since 2010). Most of this variability is due to the uncertainty in future urban densities of rapidly growing cities in Asia and particularly China. Dense urban development leads to less urban energy use overall. Waiting to retrofit the existing built environment until markets are ready in about 5 years to widely deploy the most advanced renovation technologies leads to more savings in building energy use. Potential for savings in energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared with the business-as-usual scenario in South Asia and Sub-Saharan Africa but significantly contributes to energy savings in North America and Europe. Systemic efforts that focus on both urban form, of which urban density is an indicator, and energy-efficient technologies, but that also account for potential co-benefits and trade-offs with human well-being can contribute to both local and global sustainability. Particularly in growing cities in the developing world, such efforts can improve the well-being of billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas.

  7. Global scenarios of urban density and its impacts on building energy use through 2050

    PubMed Central

    Güneralp, Burak; Zhou, Yuyu; Ürge-Vorsatz, Diana; Gupta, Mukesh; Yu, Sha; Patel, Pralit L.; Fragkias, Michail; Li, Xiaoma; Seto, Karen C.

    2017-01-01

    Although the scale of impending urbanization is well-acknowledged, we have a limited understanding of how urban forms will change and what their impact will be on building energy use. Using both top-down and bottom-up approaches and scenarios, we examine building energy use for heating and cooling. Globally, the energy use for heating and cooling by the middle of the century will be between 45 and 59 exajoules per year (corresponding to an increase of 7–40% since 2010). Most of this variability is due to the uncertainty in future urban densities of rapidly growing cities in Asia and particularly China. Dense urban development leads to less urban energy use overall. Waiting to retrofit the existing built environment until markets are ready in about 5 years to widely deploy the most advanced renovation technologies leads to more savings in building energy use. Potential for savings in energy use is greatest in China when coupled with efficiency gains. Advanced efficiency makes the least difference compared with the business-as-usual scenario in South Asia and Sub-Saharan Africa but significantly contributes to energy savings in North America and Europe. Systemic efforts that focus on both urban form, of which urban density is an indicator, and energy-efficient technologies, but that also account for potential co-benefits and trade-offs with human well-being can contribute to both local and global sustainability. Particularly in growing cities in the developing world, such efforts can improve the well-being of billions of urban residents and contribute to mitigating climate change by reducing energy use in urban areas. PMID:28069957

  8. Up against the limit: Office building electrical overload and the user benefits of energy-efficient office equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kressner, A.

    1995-12-01

    The area of office technology is the fastest growing use of electricity in the fastest growing sector-the commercial sector. More than 10% of energy used by the commercial sector is being used in office technology. The U.S. Environmental Protection Agency`s Energy Star Program is a manufacturer`s voluntary program and is, in effect, non-regulatory compliance. Energy efficiency in office technology is the basis for many benefits that result because the equipment inherently is more efficient in terms of its energy use. The old 486 computer processors, as they increased in MHz, required bigger fans. In fact, some of the high-end 486-machinesmore » came with two fans. Energy efficiency reduces the amount of cooling required, which can potentially reduce the fan requirements, if that feature is properly incorporated into the design by the manufacturer. Because the equipment is more energy efficient, the components can be placed in the equipment more closely-there could be a higher density of components so that the box becomes smaller. On the desktop, that infrastructure is the most expensive real estate, so a small footprint could be a very valuable feature. Also, because it`s more efficient, it rejects less heat, a benefit customers would identify. An added benefit is that the equipment saves energy. Class B office buildings, which are office buildings built `long ago,` don`t have the fundamental energy facilitating infrastructure for information technology, and retrofitting that technology becomes increasingly more expensive. There have been enormous strides in improving energy use in lighting, a major component of energy use in commercial buildings. In fact, energy use has been reduced from 2.5 to 3 W/sq ft to 1.5 W/sq ft, and potentially to below 1 W/sq ft. The plug load typically had been in the 0.3 to 0.5 W/sq ft range and has increased to 1 W/sq ft. Great value has been achieved because of the plug load, so this technology creates value far in excess of its

  9. Peak reduction for commercial buildings using energy storage

    NASA Astrophysics Data System (ADS)

    Chua, K. H.; Lim, Y. S.; Morris, S.

    2017-11-01

    Battery-based energy storage has emerged as a cost-effective solution for peak reduction due to the decrement of battery’s price. In this study, a battery-based energy storage system is developed and implemented to achieve an optimal peak reduction for commercial customers with the limited energy capacity of the energy storage. The energy storage system is formed by three bi-directional power converter rated at 5 kVA and a battery bank with capacity of 64 kWh. Three control algorithms, namely fixed-threshold, adaptive-threshold, and fuzzy-based control algorithms have been developed and implemented into the energy storage system in a campus building. The control algorithms are evaluated and compared under different load conditions. The overall experimental results show that the fuzzy-based controller is the most effective algorithm among the three controllers in peak reduction. The fuzzy-based control algorithm is capable of incorporating a priori qualitative knowledge and expertise about the load characteristic of the buildings as well as the useable energy without over-discharging the batteries.

  10. Curriculum for Commissioning Energy Efficient Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, Lia

    2012-12-27

    In July 2010, the U.S. Department of Energy (DOE) awarded funding to PECI to develop training curriculum in commercial energy auditing and building commissioning. This program was created in response to the high demand for auditing and commissioning services in the U.S. commercial buildings market and to bridge gaps and barriers in existing training programs. Obstacles addressed included: lack of focus on entry level candidates; prohibitive cost and time required for training; lack of hands-on training; trainings that focus on certifications & process overviews; and lack of comprehensive training. PECI organized several other industry players to create a co-funded projectmore » sponsored by DOE, PECI, New York State Energy and Research Development Authority (NYSERDA), California Energy Commission (CEC), Northwest Energy Efficiency Alliance (NEEA) and California Commissioning Collaborative (CCC). After awarded, PECI teamed with another DOE awardee, New Jersey Institute of Technology (NJIT), to work collaboratively to create one comprehensive program featuring two training tracks. NJIT’s Center for Building Knowledge is a research and training institute affiliated with the College of Architecture and Design, and provided e-learning and video enhancements. This project designed and developed two training programs with a comprehensive, energy-focused curriculum to prepare new entrants to become energy auditors or commissioning authorities (CxAs). The following are the key elements of the developed trainings, which is depicted graphically in Figure 1: • Online classes are self-paced, and can be completed anywhere, any time • Commissioning Authority track includes 3 online modules made up of 24 courses delivered in 104 individual lessons, followed by a 40 hour hands-on lab. Total time required is between 75 and 100 hours, depending on the pace of the independent learner. • Energy Auditor track includes 3 online modules made up of 18 courses delivered in 72

  11. Technology Prioritization: Transforming the U.S. Building Stock to Embrace Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Farese, Philip; Abramson, Alexis

    2013-01-01

    The U.S. Buildings sector is responsible for about 40% of the national energy expenditures. This is due in part to wasteful use of resources and limited considerations made for energy efficiency during the design and retrofit phases. Recent studies have indicated the potential for up to 30-50% energy savings in the U.S. buildings sector using currently available technologies. This paper discusses efforts to accelerate the transformation in the U.S. building energy efficiency sector using a new technology prioritization framework. The underlying analysis examines building energy use micro segments using the Energy Information Administration Annual Energy Outlook and other publically availablemore » information. The tool includes a stock-and-flow model to track stock vintage and efficiency levels with time. The tool can be used to investigate energy efficiency measures under a variety of scenarios and has a built-in energy accounting framework to prevent double counting of energy savings within any given portfolio. This tool is developed to inform decision making and estimate long term potential energy savings for different market adoption scenarios.« less

  12. 75 FR 17700 - Energy Efficient Building Systems Regional Innovation Cluster Initiative-Joint Federal Funding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... economically dynamic regional innovation cluster focused on energy efficient buildings technologies and systems... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative... February 8, 2010, titled the Energy Efficient Building Systems Regional Innovation Cluster Initiative. A...

  13. Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopacki, S.; Akbari, H.; Gartland, L.

    The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand andmore » annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.« less

  14. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    NASA Astrophysics Data System (ADS)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently design system of building energy, but also analyze building energy consumption and carry through scientific energy management. The study will provide the referable scientific foundation for carrying through farther research on thermal particularity and general particularity evaluation for new energy saving walls building.

  15. Energy saving technologies of the decentralized ventilation of buildings

    NASA Astrophysics Data System (ADS)

    Mansurov, R. Sh; Rafalskaya, T. A.

    2017-11-01

    The growing aspiration to energy saving and efficiency of energy leads to necessity to build tight enough buildings. As a result of this the quantity of infiltration air appears insufficient for realization of necessary air exchange in. One of decisions of the given problem is development and application for ventilation of premises of the decentralized forced-air and exhaust systems (DFAES) with recuperative or regenerative heat-exchangers. For an estimation of efficiency of DFAES following basic parameters have been certain: factor of energy saving; factor of efficiency of energy; factor of a heat transfer; factor of an effective utilization of a surface of heat exchange. Were estimated temperature of forced air; actual speed of an air jet on an entrance in a served zone; actual noise level; the charge of external air. Tests of DFAES were spent in natural conditions at which DFAES influenced all set of factors both an external climate, and an internal microclimate of a premise, and also the arrangement on a wind side or behind wind side of a building, influence of surrounding building, fluctuation of temperature of external air is considered. Proceeding from results and the analysis of the lead researches recommendations have been developed for development and manufacture of new sample of DFAES.

  16. Technical Options for Energy Conservation in Buildings. National Conference of States on Building Codes and Standards and National Bureau of Standards Joint Emergency Workshop on Energy Conservation in Buildings. (Washington, D.C., June 19, 1973) NBS Technical Note 789.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC. Inst. for Applied Technology.

    The purpose of this report is to provide reference material on the technical options for energy conservation in buildings. Actions pertinent to existing buildings and new buildings are considered separately. Regarding existing buildings, principal topics include summer cooling, winter heating, and other energy-related features such as insulation,…

  17. Combined heat and power systems for commercial buildings: investigating cost, emissions, and primary energy reduction based on system components

    NASA Astrophysics Data System (ADS)

    Smith, Amanda D.

    Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission losses are averted, and heat which is a byproduct of power production may be useful to the building. That thermal energy can be used for hot water or space heating, among other applications. This dissertation focuses on CHP systems using natural gas, a common fuel, and systems serving commercial buildings in the United States. First, the necessary price difference between purchased electricity and purchased fuel is analyzed in terms of the efficiencies of system components by comparing CHP with a conventional separate heat and power (SHP) configuration, where power is purchased from the electrical grid and heat is provided by a gas boiler. Similarly, the relationship between CDE due to electricity purchases and due to fuel purchases is analyzed as well as the relationship between primary energy conversion factors for electricity and fuel. The primary energy conversion factor indicates the quantity of source energy necessary to produce the energy purchased at the site. Next, greenhouse gas emissions are investigated for a variety of commercial buildings using CHP or SHP. The relationship between the magnitude of the reduction in emissions and the parameters of the CHP system is explored. The cost savings and reduction in primary energy consumption are evaluated for the same buildings. Finally, a CHP system is analyzed with the addition of a thermal energy storage (TES) component, which can store excess thermal energy and deliver it later if necessary. The potential for CHP with TES to reduce cost, emissions, and primary energy consumption is investigated for a variety of buildings. A case study is developed for one building for which TES does provide additional benefits over a CHP system alone, and the requirements for a water tank TES device are examined.

  18. Effects of long-term climate change on global building energy expenditures

    DOE PAGES

    Clarke, Leon; Eom, Jiyong; Marten, Elke Hodson; ...

    2018-01-06

    Our paper explores potential future implications of climate change on building energy expenditures around the globe. Increasing expenditures result from increased electricity use for cooling, and are offset to varying degrees, depending on the region, by decreased energy consumption for heating. WE conducted an analysis using a model of the global buildings sector within the GCAM integrated assessment model. The integrated assessment framework is valuable because it represents socioeconomic and energy system changes that will be important for understanding building energy expenditures in the future. Results indicate that changes in net expenditures are not uniform across the globe. Net expendituresmore » decrease in some regions, such as Canada and Russia, where heating demands currently dominate, and increase the most in areas with less demand for space heating and greater demand for space cooling. We explain these results in terms of the basic drivers that link building energy expenditures to regional climate.« less

  19. Effects of long-term climate change on global building energy expenditures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, Leon; Eom, Jiyong; Marten, Elke Hodson

    Our paper explores potential future implications of climate change on building energy expenditures around the globe. Increasing expenditures result from increased electricity use for cooling, and are offset to varying degrees, depending on the region, by decreased energy consumption for heating. WE conducted an analysis using a model of the global buildings sector within the GCAM integrated assessment model. The integrated assessment framework is valuable because it represents socioeconomic and energy system changes that will be important for understanding building energy expenditures in the future. Results indicate that changes in net expenditures are not uniform across the globe. Net expendituresmore » decrease in some regions, such as Canada and Russia, where heating demands currently dominate, and increase the most in areas with less demand for space heating and greater demand for space cooling. We explain these results in terms of the basic drivers that link building energy expenditures to regional climate.« less

  20. 75 FR 7464 - Energy Efficient Building Systems Regional Innovation Cluster Initiative-Joint Federal Funding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative... Energy Efficient Building Systems Regional Innovation Cluster Initiative. A single proposal submitted by... systems design. The DOE funded Energy Efficient Building Systems Design Hub (the ``Hub'') will serve as a...

  1. Fuzzy Linguistic Knowledge Based Behavior Extraction for Building Energy Management Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumidu Wijayasekara; Milos Manic

    2013-08-01

    Significant portion of world energy production is consumed by building Heating, Ventilation and Air Conditioning (HVAC) units. Thus along with occupant comfort, energy efficiency is also an important factor in HVAC control. Modern buildings use advanced Multiple Input Multiple Output (MIMO) control schemes to realize these goals. However, since the performance of HVAC units is dependent on many criteria including uncertainties in weather, number of occupants, and thermal state, the performance of current state of the art systems are sub-optimal. Furthermore, because of the large number of sensors in buildings, and the high frequency of data collection, large amount ofmore » information is available. Therefore, important behavior of buildings that compromise energy efficiency or occupant comfort is difficult to identify. This paper presents an easy to use and understandable framework for identifying such behavior. The presented framework uses human understandable knowledge-base to extract important behavior of buildings and present it to users via a graphical user interface. The presented framework was tested on a building in the Pacific Northwest and was shown to be able to identify important behavior that relates to energy efficiency and occupant comfort.« less

  2. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less

  3. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), themore » Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.« less

  4. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnema, Eric; Leach, Matt; Pless, Shanti

    2013-06-05

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), themore » Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.« less

  5. Capturing Energy-Saving Opportunities: Improving Building Efficiency in Rajasthan through Energy Code Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Qing; Yu, Sha; Evans, Meredydd

    2016-05-01

    India adopted the Energy Conservation Building Code (ECBC) in 2007. Rajasthan is the first state to make ECBC mandatory at the state level. In collaboration with Malaviya National Institute of Technology (MNIT) Jaipur, Pacific Northwest National Laboratory (PNNL) has been working with Rajasthan to facilitate the implementation of ECBC. This report summarizes milestones made in Rajasthan and PNNL's contribution in institutional set-ups, capacity building, compliance enforcement and pilot building construction.

  6. Federal Research and Development Agenda for Net-Zero Energy, High-Performance Green Buildings

    DTIC Science & Technology

    2008-10-21

    transportation combined by 2050 (DOE 2007a). Figure 1. Energy Consumption in the United States Source: 2007 DOE Buildings Energy Data Book , Tables...poor indoor air quality (IAQ) include Legionnaires’ disease, heart disease and lung cancer from secondhand smoke, and carbon monoxide poisoning. More...www.eere.energy.gov/buildings/publications/pdfs/highperformance/commercialbuildin gsroadmap.pdf DOE. 2007a. Buildings energy data book . http

  7. Building Energy Management Open Source Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is the repository for Building Energy Management Open Source Software (BEMOSS), which is an open source operating system that is engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. BEMOSS offers the following key features: (1) Open source, open architecture – BEMOSS is an open source operating system that is built upon VOLTTRON – a distributed agent platform developed by Pacific Northwest National Laboratory (PNNL). BEMOSS was designed to make it easy for hardware manufacturers to seamlessly interface their devices with BEMOSS. Software developers can also contribute to adding additional BEMOSS functionalities and applications.more » (2) Plug & play – BEMOSS was designed to automatically discover supported load controllers (including smart thermostats, VAV/RTUs, lighting load controllers and plug load controllers) in commercial buildings. (3) Interoperability – BEMOSS was designed to work with load control devices form different manufacturers that operate on different communication technologies and data exchange protocols. (4) Cost effectiveness – Implementation of BEMOSS deemed to be cost-effective as it was built upon a robust open source platform that can operate on a low-cost single-board computer, such as Odroid. This feature could contribute to its rapid deployment in small- or medium-sized commercial buildings. (5) Scalability and ease of deployment – With its multi-node architecture, BEMOSS provides a distributed architecture where load controllers in a multi-floor and high occupancy building could be monitored and controlled by multiple single-board computers hosting BEMOSS. This makes it possible for a building engineer to deploy BEMOSS in one zone of a building, be comfortable with its operation, and later on expand the deployment to the entire building to make it more energy efficient. (6) Ability to provide local and remote monitoring – BEMOSS provides both local and remote

  8. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    PubMed Central

    Doukas, Haris

    2018-01-01

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems), energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information. PMID:29462957

  9. Experience implementing energy standards for commercial buildings and its lessons for the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, John; Deringer, Joseph

    1998-10-01

    Energy efficiency standards for buildings have been adopted in over forty countries. This policy mechanism is pursued by governments as a means of increasing energy efficiency in the buildings sector, which typically accounts for about a third of most nations' energy consumption and half of their electricity consumption. This study reports on experience with implementation of energy standards for commercial buildings in a number of countries and U.S. states. It is conducted from the perspective of providing useful input to the Government of the Philippines' (GOP) current effort at implementing their building energy standard. While the impetus for this workmore » is technical assistance to the Philippines, the intent is to shed light on the broader issues attending implementation of building energy standards that would be applicable there and elsewhere. The background on the GOP building energy standard is presented, followed by the objectives for the study, the approach used to collect and analyze information about other jurisdictions' implementation experience, results, and conclusions and recommendations.« less

  10. Optimization of design parameters of low-energy buildings

    NASA Astrophysics Data System (ADS)

    Vala, Jiří; Jarošová, Petra

    2017-07-01

    Evaluation of temperature development and related consumption of energy required for heating, air-conditioning, etc. in low-energy buildings requires the proper physical analysis, covering heat conduction, convection and radiation, including beam and diffusive components of solar radiation, on all building parts and interfaces. The system approach and the Fourier multiplicative decomposition together with the finite element technique offers the possibility of inexpensive and robust numerical and computational analysis of corresponding direct problems, as well as of the optimization ones with several design variables, using the Nelder-Mead simplex method. The practical example demonstrates the correlation between such numerical simulations and the time series of measurements of energy consumption on a small family house in Ostrov u Macochy (35 km northern from Brno).

  11. Zero Energy Building Pays for Itself: Odyssey Elementary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A

    Odyssey Elementary is a large public school in an area of Utah with a growing population. Created as a prototype for the Davis School District, Odyssey is a zero energy building whose design has already been copied for two other new schools, both of which are targeting zero energy. It has a unique design with four 'houses' (or classroom wings) featuring generously daylit classrooms. This design contributes to the school's energy efficiency. In an effort to integrate positive messages about fitness into the learning environment, each house has a different take on the theme of 'bodies in motion' in themore » natural world. In a postoccupancy survey of parents, students, and teachers, more than 87% were satisfied with the building overall.« less

  12. Effective Energy Simulation and Optimal Design of Side-lit Buildings with Venetian Blinds

    NASA Astrophysics Data System (ADS)

    Cheng, Tian

    Venetian blinds are popularly used in buildings to control the amount of incoming daylight for improving visual comfort and reducing heat gains in air-conditioning systems. Studies have shown that the proper design and operation of window systems could result in significant energy savings in both lighting and cooling. However, there is no convenient computer tool that allows effective and efficient optimization of the envelope of side-lit buildings with blinds now. Three computer tools, Adeline, DOE2 and EnergyPlus widely used for the above-mentioned purpose have been experimentally examined in this study. Results indicate that the two former tools give unacceptable accuracy due to unrealistic assumptions adopted while the last one may generate large errors in certain conditions. Moreover, current computer tools have to conduct hourly energy simulations, which are not necessary for life-cycle energy analysis and optimal design, to provide annual cooling loads. This is not computationally efficient, particularly not suitable for optimal designing a building at initial stage because the impacts of many design variations and optional features have to be evaluated. A methodology is therefore developed for efficient and effective thermal and daylighting simulations and optimal design of buildings with blinds. Based on geometric optics and radiosity method, a mathematical model is developed to reasonably simulate the daylighting behaviors of venetian blinds. Indoor illuminance at any reference point can be directly and efficiently computed. They have been validated with both experiments and simulations with Radiance. Validation results show that indoor illuminances computed by the new models agree well with the measured data, and the accuracy provided by them is equivalent to that of Radiance. The computational efficiency of the new models is much higher than that of Radiance as well as EnergyPlus. Two new methods are developed for the thermal simulation of buildings. A

  13. Costs and Operating Dynamics of Integrating Distributed Energy Resources in Commercial and Industrial Buildings with Electric Vehicle Charging

    NASA Astrophysics Data System (ADS)

    Flores, Robert Joseph

    Growing concerns over greenhouse gas and pollutant emissions have increased the pressure to shift energy conversion paradigms from current forms to more sustainable methods, such as through the use of distributed energy resources (DER) at industrial and commercial buildings. This dissertation is concerned with the optimal design and dispatch of a DER system installed at an industrial or commercial building. An optimization model that accurately captures typical utility costs and the physical constraints of a combined cooling, heating, and power (CCHP) system is designed to size and operate a DER system at a building. The optimization model is then used with cooperative game theory to evaluate the financial performance of a CCHP investment. The CCHP model is then modified to include energy storage, solar powered generators, alternative fuel sources, carbon emission limits, and building interactions with public and fleet PEVs. Then, a separate plugin electric vehicle (PEV) refueling model is developed to determine the cost to operate a public Level 3 fast charging station. The CCHP design and dispatch results show the size of the building load and consistency of the thermal loads are critical to positive financial performance. While using the CCHP system to produce cooling can provide savings, heat production drives positive financial performance. When designing the DER system to reduce carbon emissions, the use of renewable fuels can allow for a gas turbine system with heat recovery to reduce carbon emissions for a large university by 67%. Further reductions require large photovoltaic installations coupled with energy storage or the ability to export electricity back to the grid if costs are to remain relatively low. When considering Level 3 fast charging equipment, demand charges at low PEV travel levels are sufficiently high to discourage adoption. Integration of the equipment can reduce demand charge costs only if the building maximum demand does not coincide

  14. Comparative study of air-conditioning energy use of four office buildings in China and USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xin; Yan, Da; An, Jingjing

    Energy use in buildings has great variability. In order to design and operate low energy buildings as well as to establish building energy codes and standards and effective energy policy, it is crucial to understand and quantify key factors influencing building energy performance. Here, this study investigates air-conditioning (AC) energy use of four office buildings in four locations: Beijing, Taiwan, Hong Kong, and Berkeley. Building simulation was employed to quantify the influences of key factors, including climate, building envelope and occupant behavior. Through simulation of various combinations of the three influencing elements, it is found that climate can lead tomore » AC cooling consumption differences by almost two times, while occupant behavior resulted in the greatest differences (of up to three times) in AC cooling consumption. The influence of occupant behavior on AC energy consumption is not homogeneous. Under similar climates, when the occupant behavior in the building differed, the optimized building envelope design also differed. In conclusion, the optimal building envelope should be determined according to the climate as well as the occupants who use the building.« less

  15. Comparative study of air-conditioning energy use of four office buildings in China and USA

    DOE PAGES

    Zhou, Xin; Yan, Da; An, Jingjing; ...

    2018-04-05

    Energy use in buildings has great variability. In order to design and operate low energy buildings as well as to establish building energy codes and standards and effective energy policy, it is crucial to understand and quantify key factors influencing building energy performance. Here, this study investigates air-conditioning (AC) energy use of four office buildings in four locations: Beijing, Taiwan, Hong Kong, and Berkeley. Building simulation was employed to quantify the influences of key factors, including climate, building envelope and occupant behavior. Through simulation of various combinations of the three influencing elements, it is found that climate can lead tomore » AC cooling consumption differences by almost two times, while occupant behavior resulted in the greatest differences (of up to three times) in AC cooling consumption. The influence of occupant behavior on AC energy consumption is not homogeneous. Under similar climates, when the occupant behavior in the building differed, the optimized building envelope design also differed. In conclusion, the optimal building envelope should be determined according to the climate as well as the occupants who use the building.« less

  16. Development of robust building energy demand-side control strategy under uncertainty

    NASA Astrophysics Data System (ADS)

    Kim, Sean Hay

    The potential of carbon emission regulations applied to an individual building will encourage building owners to purchase utility-provided green power or to employ onsite renewable energy generation. As both cases are based on intermittent renewable energy sources, demand side control is a fundamental precondition for maximizing the effectiveness of using renewable energy sources. Such control leads to a reduction in peak demand and/or in energy demand variability, therefore, such reduction in the demand profile eventually enhances the efficiency of an erratic supply of renewable energy. The combined operation of active thermal energy storage and passive building thermal mass has shown substantial improvement in demand-side control performance when compared to current state-of-the-art demand-side control measures. Specifically, "model-based" optimal control for this operation has the potential to significantly increase performance and bring economic advantages. However, due to the uncertainty in certain operating conditions in the field its control effectiveness could be diminished and/or seriously damaged, which results in poor performance. This dissertation pursues improvements of current demand-side controls under uncertainty by proposing a robust supervisory demand-side control strategy that is designed to be immune from uncertainty and perform consistently under uncertain conditions. Uniqueness and superiority of the proposed robust demand-side controls are found as below: a. It is developed based on fundamental studies about uncertainty and a systematic approach to uncertainty analysis. b. It reduces variability of performance under varied conditions, and thus avoids the worst case scenario. c. It is reactive in cases of critical "discrepancies" observed caused by the unpredictable uncertainty that typically scenario uncertainty imposes, and thus it increases control efficiency. This is obtainable by means of i) multi-source composition of weather forecasts

  17. Federal R&D Agenda for Net Zero Energy, High-Performance Green Buildings

    DTIC Science & Technology

    2008-09-30

    Source: 2007 DOE Buildings Energy Data Book . Tables 1.1.3, 1.2.3, 1.3.3 Energy consumption associated with buildings has a substantial impact on...from poor indoor air quality (IAQ) include Legionnaire’s disease, heart disease and lung cancer from secondhand smoke, and carbon monoxide poisoning...publications/pdfs/highperformance/commercialbuildi ngsroadmap.pdf DOE. 2007a. Buildings energy data book . http://buildingsdatabook.eren.doe.gov/ DOE

  18. Direct-coupled microcomputer-based building emulator for building energy management and control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, H.N.

    1999-07-01

    In this paper, the development and implementation of a direct-coupled building emulator for a building energy management and control system (EMCS) is presented. The building emulator consists of a microcomputer and a computer model of an air-conditioning system implemented in a modular dynamic simulation software package for direct-coupling to an EMCS, without using analog-to-digital and digital-to-analog converters. The building emulator can be used to simulate in real time the behavior of the air-conditioning system under a given operating environment and subject to a given usage pattern. Software modules for data communication, graphical display, dynamic data exchange, and synchronization of simulationmore » outputs with real time have been developed to achieve direct digital data transfer between the building emulator and a commercial EMCS. Based on the tests conducted, the validity of the building emulator has been established and the proportional-plus-integral control function of the EMCS assessed.« less

  19. Effects of internal gain assumptions in building energy calculations

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Perkins, R.

    1981-01-01

    The utilization of direct solar gains in buildings can be affected by operating profiles, such as schedules for internal gains, thermostat controls, and ventilation rates. Building energy analysis methods use various assumptions about these profiles. The effects of typical internal gain assumptions in energy calculations are described. Heating and cooling loads from simulations using the DOE 2.1 computer code are compared for various internal gain inputs: typical hourly profiles, constant average profiles, and zero gain profiles. Prototype single-family-detached and multifamily-attached residential units are studied with various levels of insulation and infiltration. Small detached commercial buildings and attached zones in large commercial buildings are studied with various levels of internal gains. The results indicate that calculations of annual heating and cooling loads are sensitive to internal gains, but in most cases are relatively insensitive to hourly variations in internal gains.

  20. Mandating better buildings: a global review of building codes and prospects for improvement in the United States

    DOE PAGES

    Sun, Xiaojing; Brown, Marilyn A.; Cox, Matt; ...

    2015-03-11

    This paper provides a global overview of the design, implementation, and evolution of building energy codes. Reflecting alternative policy goals, building energy codes differ significantly across the United States, the European Union, and China. This review uncovers numerous innovative practices including greenhouse gas emissions caps per square meter of building space, energy performance certificates with retrofit recommendations, and inclusion of renewable energy to achieve “nearly zero-energy buildings”. These innovations motivated an assessment of an aggressive commercial building code applied to all US states, requiring both new construction and buildings with major modifications to comply with the latest version of themore » ASHRAE 90.1 Standards. Using the National Energy Modeling System (NEMS), we estimate that by 2035, such building codes in the United States could reduce energy for space heating, cooling, water heating and lighting in commercial buildings by 16%, 15%, 20% and 5%, respectively. Impacts on different fuels and building types, energy rates and bills as well as pollution emission reductions are also examined.« less

  1. An Investigation into Energy Requirements and Conservation Techniques for Sustainable Buildings

    NASA Astrophysics Data System (ADS)

    Robitaille, Jad

    Traditionally, societies use to design their built environment in a way that was in line with the climate and the geographical location that they evolved in, thereby supporting sustainable lifestyles (i.e. thick walls with small windows in cold climates). With the industrial revolution and the heavy use and reliance on cheap fossil fuels, it can be argued that the built environment has become more focused on aesthetics and cost savings rather than on true sustainability. This, in turn, has led to energy intensive practices associated with the construction of homes, buildings, cities and megalopolises. Environmental concerns with regards to the future have pushed people, entities and industries to search for ways to decrease human's energy dependency and/or to supply the demand in ways that are deemed sustainable. Efforts to address this concern with respect to the built environment were translated into 'green buildings', sustainable building technologies and high performance buildings that can be rated and/or licensed by selected certifying bodies with varying metrics of building construction and performance. The growing number of such systems has brought real concerns: Do certified sustainable buildings really achieve the level of sustainability (i.e. performance) they were intended to? For the purpose of this study, buildings' energy consumption will be analysed, as it is one of the main drivers when taking into consideration greenhouse gas emissions. Heating and cooling in the residential and commercial/institutional sector, combined account for approximately a fifth of the secondary energy use in Canada. For this reason, this research aims at evaluating the main rating systems in Canada based on the efficacy of their rating systems' certification methodology and the weighting and comparison of energy requirements under each scheme. It has been proven through numerous studies that major energy savings can be achieved by focusing primarily on building designs

  2. Energy savings and cost-benefit analysis of the new commercial building standard in China

    DOE PAGES

    Zhao, Shanguo; Feng, Wei; Zhang, Shicong; ...

    2015-10-07

    In this study, a comprehensive comparison of the commercial building energy efficiency standard between the previous 2005 version and the new proposed version is conducted, including the energy efficiency analysis and cost-benefit analysis. To better understand the tech-economic performance of the new Chinese standard, energy models were set up based on a typical commercial office building in Chinese climate zones. The building energy standard in 2005 is used as the baseline for this analysis. Key building technologies measures are analyzed individually, including roof, wall, window, lighting and chiller and so on and finally whole building cost-benefit analysis was conducted. Resultsmore » show that the new commercial building energy standard demonstrates good cost-effective performance, with whole building payback period around 4 years.« less

  3. Energy savings and cost-benefit analysis of the new commercial building standard in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shanguo; Feng, Wei; Zhang, Shicong

    In this study, a comprehensive comparison of the commercial building energy efficiency standard between the previous 2005 version and the new proposed version is conducted, including the energy efficiency analysis and cost-benefit analysis. To better understand the tech-economic performance of the new Chinese standard, energy models were set up based on a typical commercial office building in Chinese climate zones. The building energy standard in 2005 is used as the baseline for this analysis. Key building technologies measures are analyzed individually, including roof, wall, window, lighting and chiller and so on and finally whole building cost-benefit analysis was conducted. Resultsmore » show that the new commercial building energy standard demonstrates good cost-effective performance, with whole building payback period around 4 years.« less

  4. USING TIME VARIANT VOLTAGE TO CALCULATE ENERGY CONSUMPTION AND POWER USE OF BUILDING SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhmalbaf, Atefe; Augenbroe , Godfried

    2015-12-09

    Buildings are the main consumers of electricity across the world. However, in the research and studies related to building performance assessment, the focus has been on evaluating the energy efficiency of buildings whereas the instantaneous power efficiency has been overlooked as an important aspect of total energy consumption. As a result, we never developed adequate models that capture both thermal and electrical characteristics (e.g., voltage) of building systems to assess the impact of variations in the power system and emerging technologies of the smart grid on buildings energy and power performance and vice versa. This paper argues that the powermore » performance of buildings as a function of electrical parameters should be evaluated in addition to systems’ mechanical and thermal behavior. The main advantage of capturing electrical behavior of building load is to better understand instantaneous power consumption and more importantly to control it. Voltage is one of the electrical parameters that can be used to describe load. Hence, voltage dependent power models are constructed in this work and they are coupled with existing thermal energy models. Lack of models that describe electrical behavior of systems also adds to the uncertainty of energy consumption calculations carried out in building energy simulation tools such as EnergyPlus, a common building energy modeling and simulation tool. To integrate voltage-dependent power models with thermal models, the thermal cycle (operation mode) of each system was fed into the voltage-based electrical model. Energy consumption of systems used in this study were simulated using EnergyPlus. Simulated results were then compared with estimated and measured power data. The mean square error (MSE) between simulated, estimated, and measured values were calculated. Results indicate that estimated power has lower MSE when compared with measured data than simulated results. Results discussed in this paper will illustrate

  5. Technical Support Document: 50% Energy Savings Design Technology Packages for Highway Lodging Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wei; Gowri, Krishnan; Lane, Michael D.

    2009-09-28

    This Technical Support Document (TSD) describes the process, methodology and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document intended to provide recommendations for achieving 50% energy savings in highway lodging properties over the energy-efficiency levels contained in ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  6. Energy disclosure, market behavior, and the building data ecosystem.

    PubMed

    Kontokosta, Constantine E

    2013-08-01

    Energy disclosure laws represent one of the most promising public policy tools to accelerate market transformation around building energy efficiency. For this type of information to have an impact on market behavior, it must be collected, analyzed, and disseminated to support the decision-making processes of each end user and influence both the producers and consumers of building performance data. This paper explores the significance of energy disclosure requirements and outlines a framework for utilizing these new sources of transparent, publicly available information. It presents the mechanisms by which information can alter market behavior in the commercial real estate sector and develops a wiring diagram for the flows of information through the building data ecosystem. It concludes with a discussion of the motivations, metrics, and constraints faced by the various stakeholders in the ecosystem and how these factors influence investment decision models. © 2013 New York Academy of Sciences.

  7. Preparation and Thermal Properties of Molecular-Bridged Expanded Graphite/Polyethylene Glycol Composite Phase Change Materials for Building Energy Conservation.

    PubMed

    Zhang, Dong; Chen, Meizhu; Liu, Quantao; Wan, Jiuming; Hu, Jinxuan

    2018-05-16

    Using phase change materials (PCMs) in building envelopes became a reliable method to improve indoor comfort and reduce buildings' energy consumption. This research developed molecular-bridged expanded graphite (EG)/polyethylene glycol (PEG) composite PCMs (m-EPs) to conserve energy in buildings. The m-EPs were prepared through a vacuum absorption technique, and a titanate coupling agent was used to build a molecular bridge between EG and PEG. SEM, mercury intrusion porosimetry (MIP), the leakage test, microcalorimetry, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) were conducted to characterize the morphology, pore structure, absorbability, and modifying effects of the m-EPs. The phase change temperature, latent heat, thermal stability, and thermal conductivity of the m-EPs were determined by a differential scanning calorimeter (DSC), TGA, and a thermal constants analyzer. Results showed that the maximum mass ratio of PEG to EG without leakage was 1:7, and a stable connection was established in the m-EPs after modification. Compared with the unmodified EPs, the supercooling degree of the m-EPs reduced by about 3 °C, but the latent heats and initial decomposition temperatures increased by approximately 10% and 20 °C, respectively, which indicated an improvement in the thermal energy storage efficiency. The thermal conductivities of the m-EPs were 10 times higher than those of the pristine PEGs, which ensured a rapid responding to building temperature fluctuations.

  8. Energy waste in a university building

    NASA Astrophysics Data System (ADS)

    Numark, Neil J.; Bartlett, Albert A.

    1982-04-01

    Interesting physics problems that can be used as examples in introductory physics courses relating to the waste of thermal energy can be found in the mechanical systems of campus buildings. The design of these wasteful systems may represent the ``state of the art'' as it existed just a few years ago, so such examples are probably abundant. Our Student Recreation Center was opened in 1973. It has an ice skating rink with the associated large refrigeration system. Simple calculations using elementary thermodynamics applied to this system show that the heat rejected by the system is roughly a quarter of a megawatt, which is approximately the average thermal power needed to heat water for the showers in the building. An outcome of this student project is the recommendation that the rejected heat be used to heat (or preheat) the shower water at an estimated annual saving of 40 000 in current energy costs.

  9. Energy waste in a university building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Numark, N.J.; Bartlett, A.A.

    1982-04-01

    Interesting physics problems that can be used as examples in introductory physics courses relating to the waste of thermal energy can be found in the mechanical systems of campus buildings. The design of these wasteful systems may represent the ''state of the art'' as it existed just a few years ago, so such examples are probably abundant. Our Student Recreation Center was opened in 1973. It has an ice skating rink with the associated large refrigeration system. Simple calculations using elementary thermodynamics applied to this system show that the heat rejected by the system is roughly a quarter of amore » megawatt, which is approximately the average thermal power needed to heat water for the showers in the building. An outcome of this student project is the recommendation that the rejected heat be used to heat (or preheat) the shower water at an estimated annual saving of $40 000 in current energy costs.« less

  10. Theoretical basis of the DOE-2 building energy use analysis program

    NASA Astrophysics Data System (ADS)

    Curtis, R. B.

    1981-04-01

    A user-oriented, public domain, computer program was developed that will enable architects and engineers to perform design and retrofit studies of the energy-use of buildings under realistic weather conditions. The DOE-2.1A has been named by the US DOE as the standard evaluation technique for the Congressionally mandated building energy performance standards (BEPS). A number of program design decisions were made that determine the breadth of applicability of DOE-2.1. Such design decisions are intrinsic to all building energy use analysis computer programs and determine the types of buildings or the kind of HVAC systems that can be modeled. In particular, the weighting factor method used in DOE-2 has both advantages and disadvantages relative to other computer programs.

  11. Limited energy study, Buildings 750 and 798, Fort Richardson, Alaska. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The purpose of this study is to identify and evaluate Energy Conservation Opportunities (ECOs) for two motor pool facilities, Buildings 750 and 798, to determine their energy savings potential, economic feasibility, and to document results for possible future funding. Buildings 750 and 798 are heated by steam supplied from a central plant. The central plant uses natural gas as a primary fuel source to produce steam for both heating and electrical energy generation. Since power is produced on the base there is not a demand charge for electrical energy. Two ECOs examined the use of natural gas in conjunction withmore » steam as a method of heating the buildings. Annual baseline energy consumption and cost data for each building is presented. The heating system in Building 750 was found to be severely under capacity. This is the result of the disabling of the under-floor heating system and the roof top MAUs. Building 798 also has had the under-floor heating system disabled. However, baseline simulations show that the remaining system is capable of maintaining thermostat setpoints during all but the coldest days of a typical year.« less

  12. 10 CFR 434.506 - Use of the reference building to determine the energy cost budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Use of the reference building to determine the energy cost budget. 434.506 Section 434.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance...

  13. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance...

  14. Evaluation of environmental health benefits of China's building energy conservation policies: an integrated assessment on national and provincial levels.

    PubMed

    Yang, Xi; Xi, Xiaoqian; Lin, Wanqi; Guo, Shan; Feng, Xiangzhao; Gilmore, Elisabeth

    2018-05-04

    This article evaluates the effect of energy conservation policies and carbon mitigation efforts on reducing health damage in China's building sector, which has been long ignored. The study bases on both national and provincial levels. To evaluate the health damage effect, we use domestic data by region to ensure the reliability of the evaluation. Results show that in the co-control scenario, the GDP loss saved from health benefit in 2020, 2030, and 2050 is 0.13 %, 0.16 %, and 0.23 %, respectively, compared to reference scenario. At a provincial level, extra health benefit of 16, 16, 33, 25, and 23 RMB/person can be observed for Beijing, Heilongjiang, Guangdong, Henan, and Qinghai owing to energy conservation, even with the strictest end-of-pipe control measures. The results confirm the significant effect of energy conservation efforts on reducing the health damage in China's building sector at both national and provincial levels.

  15. The integration of daylighting with artificial lighting to enhance building energy performance

    NASA Astrophysics Data System (ADS)

    Al-Ashwal, Najib Taher; Hassan, Ahmad Sanusi

    2017-10-01

    In sustainable building designs, daylight is considered as an alternative source of light to artificial lighting. Daylight is an energy-free and efficient-cost lighting source. Natural light is the best source for light due to its good quality, which matches the visual response of the human eyes. Daylight positively affects people by providing a sense of liveliness and brightness in the living space. The positive impact of daylight on the building occupants' visual comfort, health and performance is well recognized. However, daylight is not widely utilized to supplement artificial lighting, because there is a lack of information and tools to evaluate daylighting and potentials for energy savings. The efficient utilization of natural lighting will not only affect the interior environment and the occupants' health and performance but also has a direct impact on the building energy performance. Therefore, this paper reviews and discusses the effects of daylighting on the building energy performance mainly in schools and office buildings. This includes lighting energy performance, total energy consumption, cooling load. The methods, which are used to estimate the possible reduction in total energy consumption, are also reviewed in this research paper. Previous studies revealed that a clear reduction can be obtained in the energy consumed by electric lighting, as well as in the total energy end-use when a suitable lighting control system is applied to utilize the available natural light.

  16. Energy performance of building fabric - Comparing two types of vernacular residential houses

    NASA Astrophysics Data System (ADS)

    Draganova, Vanya Y.; Matsumoto, Hiroshi; Tsuzuki, Kazuyo

    2017-10-01

    Notwithstanding apparent differences, Japanese and Bulgarian traditional residential houses share a lot of common features - building materials, building techniques, even layout design. Despite the similarities, these two types of houses have not been compared so far. The study initiates such comparison. The focus is on houses in areas with similar climate in both countries. Current legislation requirements are compared, as well as the criteria for thermal comfort of people. Achieving high energy performance results from a dynamic system of 4 main key factors - thermal comfort range, heating/cooling source, building envelope and climatic conditions. A change in any single one of them can affect the final energy performance. However, it can be expected that a combination of changes in more than one factor usually occurs. The aim of this study is to evaluate the correlation between the thermal performance of building envelope designed under current regulations and a traditional one, having in mind the different thermal comfort range in the two countries. A sample building model is calculated in Scenario 1 - Japanese traditional building fabric, Scenario 2 - Bulgarian traditional building fabric and Scenario 3 - meeting the requirements of the more demanding current regulations. The energy modelling is conducted using EnergyPlus through OpenStudio cross-platform of software tools. The 3D geometry for the simulation is created using OpenStudio SketchUp Plug-in. Equal number of inhabitants, electricity consumption and natural ventilation is assumed. The results show that overall low energy consumption can be achieved using traditional building fabric as well, when paired with a wider thermal comfort range. Under these conditions traditional building design is still viable today. This knowledge can reestablish the use of traditional building fabric in contemporary design, stimulate preservation of local culture, building traditions and community identity.

  17. Reducing School Mobility: A Randomized Trial of a Relationship-Building Intervention

    PubMed Central

    Fiel, Jeremy E.; Haskins, Anna R.; López Turley, Ruth N.

    2013-01-01

    Student turnover has many negative consequences for students and schools, and the high mobility rates of disadvantaged students may exacerbate inequality. Scholars have advised schools to reduce mobility by building and improving relationships with and among families, but such efforts are rarely tested rigorously. A cluster-randomized field experiment in 52 predominantly Hispanic elementary schools in San Antonio, TX, and Phoenix, AZ, tested whether student mobility in early elementary school was reduced through Families and Schools Together (FAST), an intervention that builds social capital among families, children, and schools. FAST failed to reduce mobility overall but substantially reduced the mobility of Black students, who were especially likely to change schools. Improved relationships among families help explain this finding. PMID:25346541

  18. Russia’s R&D for Low Energy Buildings: Insights for Cooperation with Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaaf, Rebecca E.; Evans, Meredydd

    Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

  19. Applying energy-conservation retrofits to standard army buildings: project design and initial energy data. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westervelt, E.T.; Northrup, G.R.; Allen, E.O.

    1988-07-01

    This report describes the initial and continuing efforts in a project demonstrating the energy performance of theoretically-based retrofit packages on as-found, standard-design Army buildings. Four standard building designs are being investigated: a motor-vehicle repair shop, the Type 64 (L-shaped) barracks, an enlisted-personnel mess hall, and a two-company, rolling-pin-shaped barracks for enlisted personnel. The Army has over 840 of these particular buildings. The objective of the project is to test the energy and cost performance of the retrofit packages, which include such measures as installing wall or ceiling insulation, replacing and/or blocking windows, partitioning areas of differing temperature, modifying air-handling equipment,more » modifying boiler controls, replacing lights, etc. To this end, energy data has been gathered from retrofitted and identical but nonretrofitted buildings for a test/reference comparison.« less

  20. Sustainable Skyscrapers: Designing the Net Zero Energy Building of the Future

    NASA Astrophysics Data System (ADS)

    Kothari, S.; Bartsch, A.

    2016-12-01

    Cities of the future will need to increase population density in order to keep up with the rising populations in the limited available land area. In order to provide sufficient power as the population grows, cities must become more energy efficient. Fossil fuels and grid energy will continue to become more expensive as nonrenewable resources deplete. The obvious solution to increase population density while decreasing the reliance on fossil fuels is to build taller skyscrapers that are energy neutral, i.e. self-sustaining. However, current skyscrapers are not energy efficient, and therefore cannot provide a sustainable solution to the problem of increasing population density in the face of depleting energy resources. The design of a net zero energy building that includes both residential and commercial space is presented. Alternative energy systems such as wind turbines, photovoltaic cells, and a waste-to-fuel conversion plant have been incorporated into the design of a 50 story skyscraper that is not reliant on fossil fuels and has a payback time of about six years. Although the current building was designed to be located in San Francisco, simple modifications to the design would allow this building to fit the needs of any city around the world.

  1. Developing a landscape of urban building energy use with improved spatiotemporal representations in a cool-humid climate

    DOE PAGES

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen S.; ...

    2018-03-24

    Urban buildings account for up to 75% of total energy use in the United States (U.S.). Understanding urban building energy use is important for developing feasible options to mitigate energy use and greenhouse gas emissions. In this study, an improved bottom-up building energy use model, named City Building Energy Use Model (CityBEUM), was developed to estimate building energy use for all buildings in Polk County, Iowa. First, 28 commercial and 6 residential building prototypes were designed by combing Assessor's parcel data and building footprint data. Then, the EnergyPlus in the CityBEUM was calibrated for all building prototypes using the U.S.more » Energy Information Administration's survey data, monthly utility meter data, and actual weather data. Finally, spatial and temporal variations of building energy use in the study area were estimated using the CityBEUM. Results indicate that the spatial variation of building energy use in the study area can be captured using the CityBEUM. With the monthly-calibrated model, the temporal pattern of urban building energy use can be well represented. The comparison of building energy use using the Typical Meteorological Year and actual weather data demonstrates the importance of using actual weather data in building energy modeling for an improved temporal representation.« less

  2. Developing a landscape of urban building energy use with improved spatiotemporal representations in a cool-humid climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen S.

    Urban buildings account for up to 75% of total energy use in the United States (U.S.). Understanding urban building energy use is important for developing feasible options to mitigate energy use and greenhouse gas emissions. In this study, an improved bottom-up building energy use model, named City Building Energy Use Model (CityBEUM), was developed to estimate building energy use for all buildings in Polk County, Iowa. First, 28 commercial and 6 residential building prototypes were designed by combing Assessor's parcel data and building footprint data. Then, the EnergyPlus in the CityBEUM was calibrated for all building prototypes using the U.S.more » Energy Information Administration's survey data, monthly utility meter data, and actual weather data. Finally, spatial and temporal variations of building energy use in the study area were estimated using the CityBEUM. Results indicate that the spatial variation of building energy use in the study area can be captured using the CityBEUM. With the monthly-calibrated model, the temporal pattern of urban building energy use can be well represented. The comparison of building energy use using the Typical Meteorological Year and actual weather data demonstrates the importance of using actual weather data in building energy modeling for an improved temporal representation.« less

  3. Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions for Buildings in 2016 and Later

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deru, Michael; Field-Macumber, Kristin

    This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code (IRC) enacted in Section 1331 of the 2005 Energy Policy Act (EPAct) of 2005, noted in Internal Revenue Service (IRS) Notices 2006-52 (IRS 2006), 2008-40 (IRS 2008) and 2012-26 (IRS 2012), and updated by the Protecting Americans from Tax Hikes (PATH) Act of 2015. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning (HVAC); andmore » service hot water (SHW) systems. This document applies to buildings placed in service on or after January 1, 2016.« less

  4. Analysis of the impact of simulation model simplifications on the quality of low-energy buildings simulation results

    NASA Astrophysics Data System (ADS)

    Klimczak, Marcin; Bojarski, Jacek; Ziembicki, Piotr; Kęskiewicz, Piotr

    2017-11-01

    The requirements concerning energy performance of buildings and their internal installations, particularly HVAC systems, have been growing continuously in Poland and all over the world. The existing, traditional calculation methods following from the static heat exchange model are frequently not sufficient for a reasonable heating design of a building. Both in Poland and elsewhere in the world, methods and software are employed which allow a detailed simulation of the heating and moisture conditions in a building, and also an analysis of the performance of HVAC systems within a building. However, these systems are usually difficult in use and complex. In addition, the development of a simulation model that is sufficiently adequate to the real building requires considerable time involvement of a designer, is time-consuming and laborious. A simplification of the simulation model of a building renders it possible to reduce the costs of computer simulations. The paper analyses in detail the effect of introducing a number of different variants of the simulation model developed in Design Builder on the quality of final results obtained. The objective of this analysis is to find simplifications which allow obtaining simulation results which have an acceptable level of deviations from the detailed model, thus facilitating a quick energy performance analysis of a given building.

  5. Energy efficient model based algorithm for control of building HVAC systems.

    PubMed

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Development of Residential Prototype Building Models and Analysis System for Large-Scale Energy Efficiency Studies Using EnergyPlus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendon, Vrushali V.; Taylor, Zachary T.

    ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype buildingmore » models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.« less

  7. How School Administrators and Board Members Are Improving Learning and Saving Money. Energy-Smart Building Choices.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This guide shows ways that school administrators and board members can contribute to energy choice decisions for educational facilities, and it discusses how reducing operating costs also can create better learning environments. The guide reveals how design guidelines help create high-performance school buildings. It explains the use of energy…

  8. Smart Buildings and Demand Response

    NASA Astrophysics Data System (ADS)

    Kiliccote, Sila; Piette, Mary Ann; Ghatikar, Girish

    2011-11-01

    Advances in communications and control technology, the strengthening of the Internet, and the growing appreciation of the urgency to reduce demand side energy use are motivating the development of improvements in both energy efficiency and demand response (DR) systems in buildings. This paper provides a framework linking continuous energy management and continuous communications for automated demand response (Auto-DR) in various times scales. We provide a set of concepts for monitoring and controls linked to standards and procedures such as Open Automation Demand Response Communication Standards (OpenADR). Basic building energy science and control issues in this approach begin with key building components, systems, end-uses and whole building energy performance metrics. The paper presents a framework about when energy is used, levels of services by energy using systems, granularity of control, and speed of telemetry. DR, when defined as a discrete event, requires a different set of building service levels than daily operations. We provide examples of lessons from DR case studies and links to energy efficiency.

  9. Simulation-based coefficients for adjusting climate impact on energy consumption of commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Makhmalbaf, Atefe; Srivastava, Viraj

    This paper presents a new technique for and the results of normalizing building energy consumption to enable a fair comparison among various types of buildings located near different weather stations across the U.S. The method was developed for the U.S. Building Energy Asset Score, a whole-building energy efficiency rating system focusing on building envelope, mechanical systems, and lighting systems. The Asset Score is calculated based on simulated energy use under standard operating conditions. Existing weather normalization methods such as those based on heating and cooling degrees days are not robust enough to adjust all climatic factors such as humidity andmore » solar radiation. In this work, over 1000 sets of climate coefficients were developed to separately adjust building heating, cooling, and fan energy use at each weather station in the United States. This paper also presents a robust, standardized weather station mapping based on climate similarity rather than choosing the closest weather station. This proposed simulated-based climate adjustment was validated through testing on several hundreds of thousands of modeled buildings. Results indicated the developed climate coefficients can isolate and adjust for the impacts of local climate for asset rating.« less

  10. Analyzing the effect of the longwave emissivity and solar reflectance of building envelopes on energy-saving in buildings in various climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhiyang; Zhang, Xiong

    A dynamic computer simulation is carried out in the climates of 35 cities distributed around the world. The variation of the annual air-conditioning energy loads due to changes in the longwave emissivity and the solar reflectance of the building envelopes is studied to find the most appropriate exterior building finishes in various climates (including a tropical climate, a subtropical climate, a mountain plateau climate, a frigid-temperate climate and a temperate climate). Both the longwave emissivity and the solar reflectance are set from 0.1 to 0.9 with an interval of 0.1 in the simulation. The annual air-conditioning energy loads trends ofmore » each city are listed in a chart. The results show that both the longwave emissivity and the solar reflectance of building envelopes play significant roles in energy-saving for buildings. In tropical climates, the optical parameters of the building exterior surface affect the building energy-saving most significantly. In the mountain plateau climates and the subarctic climates, the impacts on energy-saving in buildings due to changes in the longwave emissivity and the solar reflectance are still considerable, but in the temperate continental climates and the temperate maritime climates, only limited effects are seen. (author)« less

  11. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birru, Dagnachew; Wen, Yao-Jung; Rubinstein, Francis M.

    2013-10-28

    were instantiated. Analysis on the aspect of economic benefit has yielded an about 6-year payback time for a medium-sized building, including the installation of all hardware and software, such as motorized blinds and LED luminaires. The payback time can be significantly reduced if part of the hardware is already in place for retrofitting projects. It needs to be noted that since the payback analysis was partly based on the testbed performance results, it is constrained by the caveats associated with the testbed implementations. The main uncertainty lies in the contribution from the space conditioning energy savings as it was non-trivial to realistically configure a room-size HVAC system for directly extrapolating whole-building HVAC energy savings. It is recommended to further evaluate the developed technology at a larger scale, where the lighting and HVAC energy consumption can be realistically measured at the building level, to more rigorously quantify the performance potentials.« less

  12. Energy and Environment Guide to Action - Chapter 4.3: Building Codes for Energy Efficiency

    EPA Pesticide Factsheets

    Provides guidance and recommendations for establishing, implementing, and evaluating state building codes for energy efficiency, which improve energy efficiency in new construction and major renovations. State success stories are included for reference.

  13. A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Matthew; Simpkins, Travis; Cutler, Dylan

    There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less

  14. Analyses of Public Utility Building - Students Designs, Aimed at their Energy Efficiency Improvement

    NASA Astrophysics Data System (ADS)

    Wołoszyn, Marek Adam

    2017-10-01

    Public utility buildings are formally, structurally and functionally complex entities. Frequently, the process of their design involves the retroactive reconsideration of energy engineering issues, once a building concept has already been completed. At that stage, minor formal corrections are made along with the design of the external layer of the building in order to satisfy applicable standards. Architecture students do the same when designing assigned public utility buildings. In order to demonstrate energy-related defects of building designs developed by students, the conduct of analyses was proposed. The completed designs of public utility buildings were examined with regard to energy efficiency of the solutions they feature through the application of the following programs: Ecotect, Vasari, and in case of simpler analyses ArchiCad program extensions were sufficient.

  15. Managing carbon emissions in China through building energy efficiency.

    PubMed

    Li, Jun; Colombier, Michel

    2009-06-01

    This paper attempts to analyse the role of building energy efficiency (BEE) in China in addressing climate change mitigation. It provides an analysis of the current situation and future prospects for the adoption of BEE technologies in Chinese cities. It outlines the economic and institutional barriers to large-scale deployment of the sustainable, low-carbon, and even carbon-free construction techniques. Based on a comprehensive overview of energy demand characteristics and development trends driven by economic and demographic growth, different policy tools for cost-effective CO(2) emission reduction in the Chinese construction sector are described. We propose a comprehensive approach combining building design and construction, and the urban planning and building material industries, in order to drastically improve BEE during this period of rapid urban development. A coherent institutional framework needs to be established to ensure the implementation of efficiency policies. Regulatory and incentive options should be integrated into the policy portfolios of BEE to minimise the efficiency gap and to realise sizeable carbon emissions cuts in the next decades. We analyse in detail several policies and instruments, and formulate relevant policy proposals fostering low-carbon construction technology in China. Specifically, Our analysis shows that improving building energy efficiency can generate considerable carbon emissions reduction credits with competitive price under the CDM framework.

  16. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, andmore » passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the

  17. Energy conservation in Department of Highways and Transportation buildings.

    DOT National Transportation Integrated Search

    1978-01-01

    This report reviews the policy of the Virginia Department of Highways and Transportation toward energy conservation in the operation of its buildings and recommends further measures for conserving energy. The major conclusions are 1. The established ...

  18. Low-cost phase change material as an energy storage medium in building envelopes: Experimental and numerical analyses

    DOE PAGES

    Biswas, Kaushik; Abhari, Ramin

    2014-10-03

    A promising approach to increasing the energy efficiency of buildings is the implementation of a phase change material (PCM) in the building envelope. Numerous studies over the last two decades have reported the energy saving potential of PCMs in building envelopes, but their wide application has been inhibited, in part, by their high cost. This article describes a novel PCM made of naturally occurring fatty acids/glycerides trapped into high density polyethylene (HDPE) pellets and its performance in a building envelope application. The PCM-HDPE pellets were mixed with cellulose insulation and then added to an exterior wall of a test buildingmore » in a hot and humid climate, and tested over a period of several months, To demonstrate the efficacy of the PCM-enhanced cellulose insulation in reducing the building envelope heat gains and losses, side-by-side comparison was performed with another wall section filled with cellulose-only insulation. Further, numerical modeling of the test wall was performed to determine the actual impact of the PCM-HDPE pellets on wall-generated heating and cooling loads and the associated electricity consumption. The model was first validated using experimental data and then used for annual simulations using typical meteorological year (TMY3) weather data. Furthermore, this article presents the experimental data and numerical analyses showing the energy-saving potential of the new PCM.« less

  19. Energy Efficiency Opportunities in Highway Lodging Buildings: Development of 50% Energy Savings Design Technology Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Wei; Gowri, Krishnan; Thornton, Brian A.

    2010-06-30

    This paper presents the process, methodology, and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document that provides specific recommendations for achieving 50% energy savings in roadside motels (highway lodging) above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This 50% solution represents a further step toward realization of the U.S. Department of Energy’s net-zero energy building goal, and go beyond the 30% savings in the Advanced Energy Design Guide series (upon which this work was built). This work can serve as the technical feasibility study for the development of a 50%more » saving Advanced Energy Design Guide for highway lodging, and thus should greatly expedite the development process. The purpose of this design package is to provide user-friendly design assistance to designers, developers, and owners of highway lodging properties. It is intended to encourage energy-efficient design by providing prescriptive energy-efficiency recommendations for each climate zone that attains the 50% the energy savings target. This paper describes the steps that were taken to demonstrate the technical feasibility of achieving a 50% reduction in whole-building energy use with practical and commercially available technologies. The energy analysis results are presented, indicating the recommended energy-efficient measures achieved a national-weighted average energy savings of 55%, relative to Standard 90.1-2004. The cost-effectiveness of the recommended technology package is evaluated and the result shows an average simple payback of 11.3 years.« less

  20. Progress Towards Highly Efficient Windows for Zero—Energy Buildings

    NASA Astrophysics Data System (ADS)

    Selkowitz, Stephen

    2008-09-01

    Energy efficient windows could save 4 quads/year, with an additional 1 quad/year gain from daylighting in commercial buildings. This corresponds to 13% of energy used by US buildings and 5% of all energy used by the US. The technical potential is thus very large and the economic potential is slowly becoming a reality. This paper describes the progress in energy efficient windows that employ low-emissivity glazing, electrochromic switchable coatings and other novel materials. Dynamic systems are being developed that use sensors and controls to modulate daylighting and shading contributions in response to occupancy, comfort and energy needs. Improving the energy performance of windows involves physics in a variety of application: optics, heat transfer, materials science and applied engineering. Technical solutions must also be compatible with national policy, codes and standards, economics, business practice and investment, real and perceived risks, comfort, health, safety, productivity, amenities, and occupant preference and values. The challenge is to optimize energy performance by understanding and reinforcing the synergetic coupling between these many issues.

  1. Building integrated semi-transparent photovoltaics: energy and daylighting performance

    NASA Astrophysics Data System (ADS)

    Kapsis, Konstantinos; Athienitis, Andreas K.

    2011-08-01

    This paper focuses on modeling and evaluation of semi-transparent photovoltaic technologies integrated into a coolingdominated office building façade by employing the concept of three-section façade. An energy simulation model is developed, using building simulation software, to investigate the effect of semi-transparent photovoltaic transmittance on the energy performance of an office in a typical office building in Montreal. The analysis is performed for five major façade orientations and two façade configurations. Using semi-transparent photovoltaic integrated into the office façade, electricity savings of up to 53.1% can be achieved compared to a typical office equipped with double glazing with Argon filling and a low emissivity coating, and lighting controlled based on occupancy and daylight levels.e.c

  2. Energy Efficiency of Higher Education Buildings: A Case Study

    ERIC Educational Resources Information Center

    Soares, Nelson; Pereira, Luísa Dias; Ferreira, João; Conceição, Pedro; da Silva, Patrícia Pereira

    2015-01-01

    Purpose: This paper aims to propose an energy efficiency plan (with technical and behavioural improvement measures) for a Portuguese higher education building--the Teaching Building of the Faculty of Economics of the University of Coimbra (FEUC). Design/methodology/approach: The study was developed in the context of both the "Green…

  3. Deep Energy Retrofit Guidance for the Building America Solutions Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Walker, Iain

    2015-01-01

    The U.S. DOE Building America program has established a research agenda targeting market-relevant strategies to achieve 40% reductions in existing home energy use by 2030. Deep Energy Retrofits (DERs) are part of the strategy to meet and exceed this goal. DERs are projects that create new, valuable assets from existing residences, by bringing homes into alignment with the expectations of the 21st century. Ideally, high energy using, dated homes that are failing to provide adequate modern services to their owners and occupants (e.g., comfortable temperatures, acceptable humidity, clean, healthy), are transformed through comprehensive upgrades to the building envelope, services andmore » miscellaneous loads into next generation high performance homes. These guidance documents provide information to aid in the broader market adoption of DERs. They are intended for inclusion in the online resource the Building America Solutions Center (BASC). This document is an assemblage of multiple entries in the BASC, each of which addresses a specific aspect of Deep Energy Retrofit best practices for projects targeting at least 50% energy reductions. The contents are based upon a review of actual DERs in the U.S., as well as a mixture of engineering judgment, published guidance from DOE research in technologies and DERs, simulations of cost-optimal DERs, Energy Star and Consortium for Energy Efficiency (CEE) product criteria, and energy codes.« less

  4. Building America FY 2016 Annual Report: Building America Is Driving Real Solutions in the Race to Zero Energy Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Sara; Rothgeb, Stacey; Polly, Ben

    The U.S. Department of Energy (DOE) Building America Program enables the transformation of the U.S. housing industry to achieve energy savings through energy-efficient, high-performance homes with improved durability, comfort, and health for occupants. Building America bridges the gap between the development of emerging technologies and the adoption of codes and standards by engaging industry partners in applied research, development, and demonstration of high-performance solutions.

  5. Relative significance of heat transfer processes to quantify tradeoffs between complexity and accuracy of energy simulations with a building energy use patterns classification

    NASA Astrophysics Data System (ADS)

    Heidarinejad, Mohammad

    This dissertation develops rapid and accurate building energy simulations based on a building classification that identifies and focuses modeling efforts on most significant heat transfer processes. The building classification identifies energy use patterns and their contributing parameters for a portfolio of buildings. The dissertation hypothesis is "Building classification can provide minimal required inputs for rapid and accurate energy simulations for a large number of buildings". The critical literature review indicated there is lack of studies to (1) Consider synoptic point of view rather than the case study approach, (2) Analyze influence of different granularities of energy use, (3) Identify key variables based on the heat transfer processes, and (4) Automate the procedure to quantify model complexity with accuracy. Therefore, three dissertation objectives are designed to test out the dissertation hypothesis: (1) Develop different classes of buildings based on their energy use patterns, (2) Develop different building energy simulation approaches for the identified classes of buildings to quantify tradeoffs between model accuracy and complexity, (3) Demonstrate building simulation approaches for case studies. Penn State's and Harvard's campus buildings as well as high performance LEED NC office buildings are test beds for this study to develop different classes of buildings. The campus buildings include detailed chilled water, electricity, and steam data, enabling to classify buildings into externally-load, internally-load, or mixed-load dominated. The energy use of the internally-load buildings is primarily a function of the internal loads and their schedules. Externally-load dominated buildings tend to have an energy use pattern that is a function of building construction materials and outdoor weather conditions. However, most of the commercial medium-sized office buildings have a mixed-load pattern, meaning the HVAC system and operation schedule dictate

  6. Design of energy efficient building with radiant slab cooling

    NASA Astrophysics Data System (ADS)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  7. The international implications of national and local coordination on building energy codes: Case studies in six cities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Yu, Sha; Staniszewski, Aaron

    Building energy efficiency is an important strategy for reducing greenhouse gas emissions globally. In fact, 55 countries have included building energy efficiency in their Nationally Determined Contributions (NDCs) under the Paris Agreement. This research uses building energy code implementation in six cities across different continents as case studies to assess what it may take for countries to implement the ambitions of their energy efficiency goals. Specifically, we look at the cases of Bogota, Colombia; Da Nang, Vietnam; Eskisehir, Turkey; Mexico City, Mexico; Rajkot, India; and Tshwane, South Africa, all of which are “deep dive” cities under the Sustainable Energy formore » All's Building Efficiency Accelerator. The research focuses on understanding the baseline with existing gaps in implementation and coordination. The methodology used a combination of surveys on code status and interviews with stakeholders at the local and national level, as well as review of published documents. We looked at code development, implementation, and evaluation. The cities are all working to improve implementation, however, the challenges they currently face include gaps in resources, capacity, tools, and institutions to check for compliance. Better coordination between national and local governments could help improve implementation, but that coordination is not yet well established. For example, all six of the cities reported that there was little to no involvement of local stakeholders in development of the national code; only one city reported that it had access to national funding to support code implementation. More robust coordination could better link cities with capacity building and funding for compliance, and ensure that the code reflects local priorities. By understanding gaps in implementation, it can also help in designing more targeted interventions to scale up energy savings.« less

  8. The international implications of national and local coordination on building energy codes: Case studies in six cities

    DOE PAGES

    Evans, Meredydd; Yu, Sha; Staniszewski, Aaron; ...

    2018-04-17

    Building energy efficiency is an important strategy for reducing greenhouse gas emissions globally. In fact, 55 countries have included building energy efficiency in their Nationally Determined Contributions (NDCs) under the Paris Agreement. This research uses building energy code implementation in six cities across different continents as case studies to assess what it may take for countries to implement the ambitions of their energy efficiency goals. Specifically, we look at the cases of Bogota, Colombia; Da Nang, Vietnam; Eskisehir, Turkey; Mexico City, Mexico; Rajkot, India; and Tshwane, South Africa, all of which are “deep dive” cities under the Sustainable Energy formore » All's Building Efficiency Accelerator. The research focuses on understanding the baseline with existing gaps in implementation and coordination. The methodology used a combination of surveys on code status and interviews with stakeholders at the local and national level, as well as review of published documents. We looked at code development, implementation, and evaluation. The cities are all working to improve implementation, however, the challenges they currently face include gaps in resources, capacity, tools, and institutions to check for compliance. Better coordination between national and local governments could help improve implementation, but that coordination is not yet well established. For example, all six of the cities reported that there was little to no involvement of local stakeholders in development of the national code; only one city reported that it had access to national funding to support code implementation. More robust coordination could better link cities with capacity building and funding for compliance, and ensure that the code reflects local priorities. By understanding gaps in implementation, it can also help in designing more targeted interventions to scale up energy savings.« less

  9. Building Technologies Office FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    Buildings and homes use more than 73% of the electrical energy consumed in the United States. They also consume 40% of the nation’s total energy, with an annual energy bill of $430 billion. These energy bills can be cost effectively reduced by 20%–50% or more through various energy-efficient technologies and techniques. The Building Technologies Office (BTO) will continue to develop and demonstrate advanced building efficiency technologies and practices to make buildings in the United States more efficient, affordable, and comfortable.

  10. Improving performance of HVAC systems to reduce exposure to aerosolized infectious agents in buildings; recommendations to reduce risks posed by biological attacks.

    PubMed

    Hitchcock, Penny J; Mair, Michael; Inglesby, Thomas V; Gross, Jonathan; Henderson, D A; O'Toole, Tara; Ahern-Seronde, Joa; Bahnfleth, William P; Brennan, Terry; Burroughs, H E Barney; Davidson, Cliff; Delp, William; Ensor, David S; Gomory, Ralph; Olsiewski, Paula; Samet, Jonathan M; Smith, William M; Streifel, Andrew J; White, Ronald H; Woods, James E

    2006-01-01

    The prospect of biological attacks is a growing strategic threat. Covert aerosol attacks inside a building are of particular concern. In the summer of 2005, the Center for Biosecurity of the University of Pittsburgh Medical Center convened a Working Group to determine what steps could be taken to reduce the risk of exposure of building occupants after an aerosol release of a biological weapon. The Working Group was composed of subject matter experts in air filtration, building ventilation and pressurization, air conditioning and air distribution, biosecurity, building design and operation, building decontamination and restoration, economics, medicine, public health, and public policy. The group focused on functions of the heating, ventilation, and air conditioning systems in commercial or public buildings that could reduce the risk of exposure to deleterious aerosols following biological attacks. The Working Group's recommendations for building owners are based on the use of currently available, off-the-shelf technologies. These recommendations are modest in expense and could be implemented immediately. It is also the Working Group's judgment that the commitment and stewardship of a lead government agency is essential to secure the necessary financial and human resources and to plan and build a comprehensive, effective program to reduce exposure to aerosolized infectious agents in buildings.

  11. [Reduce Energy Costs While Maintaining Healthy IAQ.] "Indoor Air Quality Tools for Schools" Update #17

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    This issue of "Indoor Air Quality Tools for Schools" Update ("IAQ TfS" Update) contains the following items: (1) News and Events; (2) Feature Article: Reduce Energy Costs while Maintaining Healthy IAQ; (3) Insight into Excellence: North East Independent School District ; (4) School Building Week 2009; and (5) Have Your Questions Answered!

  12. Development of new methodologies for evaluating the energy performance of new commercial buildings

    NASA Astrophysics Data System (ADS)

    Song, Suwon

    The concept of Measurement and Verification (M&V) of a new building continues to become more important because efficient design alone is often not sufficient to deliver an efficient building. Simulation models that are calibrated to measured data can be used to evaluate the energy performance of new buildings if they are compared to energy baselines such as similar buildings, energy codes, and design standards. Unfortunately, there is a lack of detailed M&V methods and analysis methods to measure energy savings from new buildings that would have hypothetical energy baselines. Therefore, this study developed and demonstrated several new methodologies for evaluating the energy performance of new commercial buildings using a case-study building in Austin, Texas. First, three new M&V methods were developed to enhance the previous generic M&V framework for new buildings, including: (1) The development of a method to synthesize weather-normalized cooling energy use from a correlation of Motor Control Center (MCC) electricity use when chilled water use is unavailable, (2) The development of an improved method to analyze measured solar transmittance against incidence angle for sample glazing using different solar sensor types, including Eppley PSP and Li-Cor sensors, and (3) The development of an improved method to analyze chiller efficiency and operation at part-load conditions. Second, three new calibration methods were developed and analyzed, including: (1) A new percentile analysis added to the previous signature method for use with a DOE-2 calibration, (2) A new analysis to account for undocumented exhaust air in DOE-2 calibration, and (3) An analysis of the impact of synthesized direct normal solar radiation using the Erbs correlation on DOE-2 simulation. Third, an analysis of the actual energy savings compared to three different energy baselines was performed, including: (1) Energy Use Index (EUI) comparisons with sub-metered data, (2) New comparisons against

  13. Maximizing Energy Savings for Small Business Text Version | Buildings |

    Science.gov Websites

    owners have a big opportunity to save money and energy, while cutting greenhouse gas emissions. Drawing have the money, nor time, to pursue something like that. Drawing of computer screen, showing NREL's energy and non-energy related benefits. Drawing of money, buildings, machinery, and furniture. Narrator

  14. Building Stronger State Energy Partnerships with the U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Kate

    2011-09-30

    This final technical report details the results of total work efforts and progress made from October 2007 – September 2011 under the National Association of State Energy Officials (NASEO) cooperative agreement DE-FC26-07NT43264, Building Stronger State Energy Partnerships with the U.S. Department of Energy. Major topical project areas in this final report include work efforts in the following areas: Energy Assurance and Critical Infrastructure, State and Regional Technical Assistance, Regional Initiative, Regional Coordination and Technical Assistance, and International Activities in China. All required deliverables have been provided to the National Energy Technology Laboratory and DOE program officials.

  15. Urban Heat Island Effect on the Energy Consumption of Institutional Buildings in Rome

    NASA Astrophysics Data System (ADS)

    Calice, Claudia; Clemente, Carola; Salvati, Agnese; Palme, Massimo; Inostroza, Luis

    2017-10-01

    The urban heat island (UHI) effect is constantly increasing the energy consumption of buildings, especially in summer periods. The energy gap between the estimated energy performance - often simulated without considering UHI - and the real operational consumption is especially relevant for institutional buildings, where the cooling needs are in general higher than in other kind of buildings, due to more internal gains (people, appliances) and different architectural design (more transparent façades and light walls). This paper presents a calculation of the energy penalty due to UHI in two institutional buildings in Rome. Urban Weather Generator (UWG) is used to generate a modified weather file, taking into account the UHI phenomenon. Then, two building performance simulations are done for each case: the first simulation uses a standard weather file and the second uses the modified one. Results shows how is it necessary to re-develop mitigation strategies and a new energy retrofit approach, in order to include urbanization ad UHI effect, especially in this kind of buildings, characterized by very poor conditions of comfort during summer, taking into account users and occupant-driven demand.

  16. Preparation and Thermal Properties of Molecular-Bridged Expanded Graphite/Polyethylene Glycol Composite Phase Change Materials for Building Energy Conservation

    PubMed Central

    Zhang, Dong; Chen, Meizhu; Liu, Quantao; Hu, Jinxuan

    2018-01-01

    Using phase change materials (PCMs) in building envelopes became a reliable method to improve indoor comfort and reduce buildings’ energy consumption. This research developed molecular-bridged expanded graphite (EG)/polyethylene glycol (PEG) composite PCMs (m-EPs) to conserve energy in buildings. The m-EPs were prepared through a vacuum absorption technique, and a titanate coupling agent was used to build a molecular bridge between EG and PEG. SEM, mercury intrusion porosimetry (MIP), the leakage test, microcalorimetry, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) were conducted to characterize the morphology, pore structure, absorbability, and modifying effects of the m-EPs. The phase change temperature, latent heat, thermal stability, and thermal conductivity of the m-EPs were determined by a differential scanning calorimeter (DSC), TGA, and a thermal constants analyzer. Results showed that the maximum mass ratio of PEG to EG without leakage was 1:7, and a stable connection was established in the m-EPs after modification. Compared with the unmodified EPs, the supercooling degree of the m-EPs reduced by about 3 °C, but the latent heats and initial decomposition temperatures increased by approximately 10% and 20 °C, respectively, which indicated an improvement in the thermal energy storage efficiency. The thermal conductivities of the m-EPs were 10 times higher than those of the pristine PEGs, which ensured a rapid responding to building temperature fluctuations. PMID:29772728

  17. Heating, ventilation and air conditioning system optimization: a study of the effect of climate, building design, system selection and control strategy on the energy consumption of a typical office building in London and Athens

    NASA Astrophysics Data System (ADS)

    Spasis, Georgios

    The increasing demand for air conditioning in commercial buildings imposes a serious threat to Europe's CO2 reduction targets. Architects and engineers are therefore in a key position to help reduce the impact of buildings on the environment by taking appropriate decisions concerning the design of the building and the associated heating, ventilation and air conditioning (HVAC) system. The thesis studies the effect of a number of building and HVAC system related design factors on the energy performance of a notional air-conditioned office building employing either a variable air volume (VAV) system with terminal re-heaters, or a four-pipe fan coil unit (FCU) system with fresh air supply from a central plant, using mainly a dynamic simulation tool and the response surface methodology. The evaluation of the energy performance of the HVAC systems is for two types of climate, using typical weather data for London (UK) and Athens (Greece). It has been found that the design variables associated with the solar radiation through the transparent building elements and the internal heat gains should be the main concern of the building designer. On the other hand, the HVAC system engineer should give emphasis to the parameters associated with the plant performance and operation, as well as the temperature control set-points. It has been shown that it is possible to reduce the carbon emissions of the base case scenario by up to 88% depending on the HVAC system and the climate for which it is simulated. The carbon savings, however, are reduced by up to 22% where humidification is provided. This reduction differs depending on the HVAC system and the climatic conditions. The VAV system is more energy efficient than the FCU system, mainly due to the exploitation of the free cooling capacity of the outdoor air. The difference in carbon emissions between the two systems drops when both of them are simulated for the Athens as opposed to the London typical weather conditions. It has

  18. Saving Energy in Historic Buildings: Balancing Efficiency and Value

    ERIC Educational Resources Information Center

    Cluver, John H.; Randall, Brad

    2012-01-01

    By now the slogan of the National Trust for Historic Preservation that "the greenest building is the one already built" is widely known. In an era of increased environmental awareness and rising fuel prices, however, the question is how can historic building stock be made more energy efficient in a manner respectful of its historic…

  19. A multi-criteria model for the comparison of building envelope energy retrofits

    NASA Astrophysics Data System (ADS)

    Donnarumma, Giuseppe; Fiore, Pierfrancesco

    2017-02-01

    In light of the current EU guidelines in the energy field, improving building envelope performance cannot be separated from the context of satisfying the environmental sustainability requirements, reducing the costs associated with the life cycle of the building as well as economic and financial feasibility. Therefore, identifying the "optimal" energy retrofit solutions requires the simultaneous assessment of several factors and thus becomes a problem of choice between several possible alternatives. To facilitate the work of the decision-makers, public or private, adequate decision support tools are of great importance. Starting from this need, a model based on the multi-criteria analysis "AHP" technique is proposed, along with the definition of three synthetic indices associated with the three requirements of "Energy Performance", "Sustainability Performance" and "Cost". From the weighted aggregation of the three indices, a global index of preference is obtained that allows to "quantify" the satisfaction level of the i-th alternative from the point of view of a particular group of decision-makers. The model is then applied, by way of example, to the case-study of the energetic redevelopment of a former factory, assuming its functional conversion. Twenty possible alternative interventions on the opaque vertical closures, resulting from the combination of three thermal insulators families (synthetic, natural and mineral) with four energy retrofitting techniques are compared and the results obtained critically discussed by considering the point of view of the three different groups of decision-makers.

  20. Feasibility Study to Identify Potential Reductions in Energy Use in Tribal Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Willie

    Under this project, the Confederated Salish and Kootenai Tribes (CSKT) assessed the technical and economic feasibility of energy efficiency improvements to existing Tribally-owned buildings. The feasibility study followed a systematic approach in identifying, selecting, and ranking recommended measures, recognizing that the appropriateness of a measure would depend not only on technical issues but also on institutional and organizational issues, such as financing options and occupant requirements. The completed study provided the Tribes with the information needed to commit necessary resources to reduce the energy use and cost in approximately 40 Tribal buildings, including the changes that may be needed inmore » each facility’s operation and maintenance and personnel requirements. It also presented an economic analysis of energy-efficiency capital improvements and an annotated list of financing options and possible funding sources for implementation and an overall strategy for implementation. This project was located in various Tribal communities located throughout the Flathead Indian Reservation in Western Montana. Notice: The following is a compilation of Annual Program Review Presentations, Award Modifications, and Quarterly Progress Reports submitted to the Department of Energy’s (DOE) Office of Indian Energy Policy and Programs by the Confederated Salish and Kootenai Tribes under agreement DE-EE0005171. This report covers project activities from September 30, 2011 through December 31, 2014 and has been uploaded to OSTI by DOE as a substitute for the required Final Technical Report which was not received by DOE from the project recipient.« less

  1. On-Site Renewable Energy and Green Buildings: A System-Level Analysis.

    PubMed

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2016-05-03

    Adopting a green building rating system (GBRSs) that strongly considers use of renewable energy can have important environmental consequences, particularly in developing countries. In this paper, we studied on-site renewable energy and GBRSs at the system level to explore potential benefits and challenges. While we have focused on GBRSs, the findings can offer additional insight for renewable incentives across sectors. An energy model was built for 25 sites to compute the potential solar and wind power production on-site and available within the building footprint and regional climate. A life-cycle approach and cost analysis were then completed to analyze the environmental and economic impacts. Environmental impacts of renewable energy varied dramatically between sites, in some cases, the environmental benefits were limited despite the significant economic burden of those renewable systems on-site and vice versa. Our recommendation for GBRSs, and broader policies and regulations, is to require buildings with higher environmental impacts to achieve higher levels of energy performance and on-site renewable energy utilization, instead of fixed percentages.

  2. Assessing Potential Energy Cost Savings from Increased Energy Code Compliance in Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.

    The US Department of Energy’s most recent commercial energy code compliance evaluation efforts focused on determining a percent compliance rating for states to help them meet requirements under the American Recovery and Reinvestment Act (ARRA) of 2009. That approach included a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. With its binary approach to compliance determination, the previous methodology failed to answer some important questions. In particular, how much energy cost could be saved by better compliance with the commercial energymore » code and what are the relative priorities of code requirements from an energy cost savings perspective? This paper explores an analytical approach and pilot study using a single building type and climate zone to answer those questions.« less

  3. Algae façade as green building method: application of algae as a method to meet the green building regulation

    NASA Astrophysics Data System (ADS)

    Poerbo, Heru W.; Martokusumo, Widjaja; Donny Koerniawan, M.; Aulia Ardiani, Nissa; Krisanti, Susan

    2017-12-01

    The Local Government of Bandung city has stipulated a Green Building regulation through the Peraturan Walikota Number 1023/2016. Signed by the mayor in October 2016, Bandung became the first city in Indonesia that put green building as mandatory requirement in the building permit (IMB) process. Green Building regulation is intended to have more efficient consumption of energy and water, improved indoor air quality, management of liquid and solid waste etc. This objective is attained through various design method in building envelope, ventilation and air conditioning system, lighting, indoor transportation system, and electrical system. To minimize energy consumption of buildings that have large openings, sun shading device is often utilized together with low-E glass panes. For buildings in hot humid tropical climate, this method reduces indoor air temperature and thus requires less energy for air conditioning. Indoor air quality is often done by monitoring the carbon dioxide levels. Application of algae as part of building system façade has recently been introduced as replacement of large glass surface in the building façade. Algae are not yet included in the green building regulation because it is relatively new. The research will investigate, with the help of the modelling process and extensive literature, how effective is the implementation of algae in building façade to reduce energy consumption and improve its indoor air quality. This paper is written based on the design of ITB Innovation Park as an ongoing architectural design-based research how the algae-integrated building façade affects the energy consumption.

  4. Intelligent demand side management of residential building energy systems

    NASA Astrophysics Data System (ADS)

    Sinha, Maruti N.

    Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.

  5. Three-Dimensional Reconstruction and Solar Energy Potential Estimation of Buildings

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, M.; Cheng, L.; Xu, H.; Li, S.; Liu, X.

    2017-12-01

    In the context of the construction of low-carbon cities, green cities and eco-cities, the ability of the airborne and mobile LiDAR should be explored in urban renewable energy research. As the main landscape in urban environment, buildings have large regular envelopes could receive a huge amount of solar radiation. In this study, a relatively complete calculation scheme about building roof and façade solar utilization potential is proposed, using building three-dimensional geometric feature information. For measuring the city-level building solar irradiance, the precise three-dimensional building roof and façade models should be first reconstructed from the airborne and mobile LiDAR, respectively. In order to obtaining the precise geometric structure of building facades from the mobile LiDAR data, a new method for structure detection and the three-dimensional reconstruction of building façades from mobile LiDAR data is proposed. The method consists of three steps: the preprocessing of façade points, the detection of façade structure, the restoration and reconstruction of building façade. As a result, the reconstruction method can effectively deal with missing areas caused by occlusion, viewpoint limitation, and uneven point density, as well as realizing the highly complete 3D reconstruction of a building façade. Furthermore, the window areas can be excluded for more accurate estimation of solar utilization potential. After then, the solar energy utilization potential of global building roofs and facades is estimate by using the solar irradiance model, which combine the analysis of the building shade and sky diffuse, based on the analysis of the geometrical structure of buildings.

  6. Novel Methods to Explore Building Energy Sensitivity to Climate and Heat Waves Using PNNL's BEND Model

    NASA Astrophysics Data System (ADS)

    Burleyson, C. D.; Voisin, N.; Taylor, T.; Xie, Y.; Kraucunas, I.

    2017-12-01

    The DOE's Pacific Northwest National Laboratory (PNNL) has been developing the Building ENergy Demand (BEND) model to simulate energy usage in residential and commercial buildings responding to changes in weather, climate, population, and building technologies. At its core, BEND is a mechanism to aggregate EnergyPlus simulations of a large number of individual buildings with a diversity of characteristics over large spatial scales. We have completed a series of experiments to explore methods to calibrate the BEND model, measure its ability to capture interannual variability in energy demand due to weather using simulations of two distinct weather years, and understand the sensitivity to the number and location of weather stations used to force the model. The use of weather from "representative cities" reduces computational costs, but often fails to capture spatial heterogeneity that may be important for simulations aimed at understanding how building stocks respond to a changing climate (Fig. 1). We quantify the potential reduction in temperature and load biases from using an increasing number of weather stations across the western U.S., ranging from 8 to roughly 150. Using 8 stations results in an average absolute summertime temperature bias of 4.0°C. The mean absolute bias drops to 1.5°C using all available stations. Temperature biases of this magnitude translate to absolute summertime mean simulated load biases as high as 13.8%. Additionally, using only 8 representative weather stations can lead to a 20-40% bias of peak building loads under heat wave or cold snap conditions, a significant error for capacity expansion planners who may rely on these types of simulations. This analysis suggests that using 4 stations per climate zone may be sufficient for most purposes. Our novel approach, which requires no new EnergyPlus simulations, could be useful to other researchers designing or calibrating aggregate building model simulations - particularly those looking at

  7. Recommendations on Implementing the Energy Conservation Building Code in Rajasthan, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sha; Makela, Eric J.; Evans, Meredydd

    India launched the Energy Conservation Building Code (ECBC) in 2007 and Indian Bureau of Energy Efficiency (BEE) recently indicated that it would move to mandatory implementation in the 12th Five-Year Plan. The State of Rajasthan adopted ECBC with minor modifications; the new regulation is known as the Energy Conservation Building Directives – Rajasthan 2011 (ECBD-R). It became mandatory in Rajasthan on September 28, 2011. This report provides recommendations on an ECBD-R enforcement roadmap for the State of Rajasthan.

  8. Derivation of Building Energy Use Intensity Targets for ASHRAE Standard 100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharp, Terry R

    2014-06-01

    The steps to develop the building energy use intensity targets for American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 100, Energy Efficiency in Existing Buildings are outlined in this report. The analyses were conducted by Oak Ridge National Laboratory (ORNL) in collaboration with the ASHRAE Standard 100 committee and Dr. Alexander Zhivov, the subcommittee chair responsible for targets development.

  9. Advanced air distribution: improving health and comfort while reducing energy use.

    PubMed

    Melikov, A K

    2016-02-01

    Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high-quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments. The focus is on advanced air distribution in spaces, its guiding principles and its advantages and disadvantages. Examples of advanced air distribution solutions in spaces for different use, such as offices, hospital rooms, vehicle compartments, are presented. The potential of advanced air distribution, and individually controlled macro-environment in general, for achieving shared values, that is, improved health, comfort, and performance, energy saving, reduction of healthcare costs and improved well-being is demonstrated. Performance criteria are defined and further research in the field is outlined. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Regionalized LCA-based optimization of building energy supply: method and case study for a Swiss municipality.

    PubMed

    Saner, Dominik; Vadenbo, Carl; Steubing, Bernhard; Hellweg, Stefanie

    2014-07-01

    This paper presents a regionalized LCA-based multiobjective optimization model of building energy demand and supply for the case of a Swiss municipality for the minimization of greenhouse gas emissions and particulate matter formation. The results show that the environmental improvement potential is very large: in the optimal case, greenhouse gas emissions from energy supply could be reduced by more than 75% and particulate emissions by over 50% in the municipality. This scenario supposes a drastic shift of heat supply systems from a fossil fuel dominated portfolio to a portfolio consisting of mainly heat pump and woodchip incineration systems. In addition to a change in heat supply technologies, roofs, windows and walls would need to be refurbished in more than 65% of the municipality's buildings. The full potential of the environmental impact reductions will hardly be achieved in reality, particularly in the short term, for example, because of financial constraints and social acceptance, which were not taken into account in this study. Nevertheless, the results of the optimization model can help policy makers to identify the most effective measures for improvement at the decision making level, for example, at the building level for refurbishment and selection of heating systems or at the municipal level for designing district heating networks. Therefore, this work represents a starting point for designing effective incentives to reduce the environmental impact of buildings. While the results of the optimization model are specific to the municipality studied, the model could readily be adapted to other regions.

  11. Energy War Is Generating Jobs

    ERIC Educational Resources Information Center

    Fiester, Kenneth

    1977-01-01

    Describes various energy-related projects and legislation, with new job estimates, to improve or design buildings and methods to reduce the annual growth in energy consumption by reducing gasoline consumption, cutting oil imports, increasing coal production, insulating buildings, and installing solar energy devices. (MF)

  12. PCM/wood composite to store thermal energy in passive building envelopes

    NASA Astrophysics Data System (ADS)

    Barreneche, C.; Vecstaudza, J.; Bajare, D.; Fernandez, A. I.

    2017-10-01

    The development of new materials to store thermal energy in a passive building system is a must to improve the thermal efficiency by thermal-regulating the indoor temperatures. This fact will deal with the reduction of the gap between energy supply and energy demand to achieve thermal comfort in building indoors. The aim of this work was to test properties of novel PCM/wood composite materials developed at Riga Technical University. Impregnation of PCM (phase change material) in wood increases its thermal mass and regulates temperature fluctuations during day and night. The PCM used are paraffin waxes (RT-21 and RT-27 from Rubitherm) and the wood used was black alder, the most common wood in Latvia. The PCM distribution inside wood sample has been studied as well as its thermophysical, mechanical and fire reaction properties. Developed composite materials are promising in the field of energy saving in buildings.

  13. Energy demand of the German and Dutch residential building stock under climate change

    NASA Astrophysics Data System (ADS)

    Olonscheck, Mady; Holsten, Anne; Walther, Carsten; Kropp, Jürgen P.

    2014-05-01

    In order to mitigate climate change, extraordinary measures are necessary in the future. The building sector, in particular, offers considerable potential for transformation to lower energy demand. On a national level, however, successful and far-reaching measures will likely be taken only if reliable estimates regarding future energy demand from different scenarios are available. The energy demand for space heating and cooling is determined by a combination of behavioral, climatic, constructional, and demographic factors. For two countries, namely Germany and the Netherlands, we analyze the combined effect of future climate and building stock changes as well as renovation measures on the future energy demand for room conditioning of residential buildings until 2060. We show how much the heating energy demand will decrease in the future and answer the question of whether the energy decrease will be exceeded by an increase in cooling energy demand. Based on a sensitivity analysis, we determine those influencing factors with the largest impact on the future energy demand from the building stock. Both countries have national targets regarding the reduction of the energy demand for the future. We provide relevant information concerning the annual renovation rates that are necessary to reach these targets. Retrofitting buildings is a win-win option as it not only helps to mitigate climate change and to lower the dependency on fossil fuels but also transforms the buildings stock into one that is better equipped for extreme temperatures that may occur more frequently with climate change. For the Netherlands, the study concentrates not only on the national, but also the provincial level, which should facilitate directed policy measures. Moreover, the analysis is done on a monthly basis in order to ascertain a deeper understanding of the future seasonal energy demand changes. Our approach constitutes an important first step towards deeper insights into the internal dynamics

  14. Building heating and cooling applications thermal energy storage program overview

    NASA Technical Reports Server (NTRS)

    Eissenberg, D. M.

    1980-01-01

    Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.

  15. Building America Systems Integration Research Annual Report. FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gestwick, Michael

    2013-05-01

    This Building America FY2012 Annual Report includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  16. Energy analysis of cool, medium, and dark roofs on residential buildings in the U.S

    NASA Astrophysics Data System (ADS)

    Dunbar, Michael A.

    This study reports an energy analysis of cool, medium, and dark roofs on residential buildings in the U.S. Three analyses were undertaken in this study: energy consumption, economic analysis, and an environmental analysis. The energy consumption reports the electricity and natural gas consumption of the simulations. The economic analysis uses tools such as simple payback period (SPP) and net present value (NPV) to determine the profitability of the cool roof and the medium roof. The variable change for each simulation model was the roof color. The default color was a dark roof and the results were focused on the changes produced by the cool roof and the medium roof. The environmental analysis uses CO2 emissions to assess the environmental impact of the cool roof and the medium roof. The analysis uses the U.S. Department of Energy (DOE) EnergyPlus software to produce simulations of a typical, two-story residential home in the U.S. The building details of the typical, two-story U.S. residential home and the International Energy Conservation Code (IECC) building code standards used are discussed in this study. This study indicates that, when material and labor costs are. assessed, the cool roof and the medium roof do not yield a SPP less than 10 years. Furthermore, the NPV results assess that neither the cool roof nor the medium roof are a profitable investment in any climate zone in the U.S. The environmental analysis demonstrates that both the cool roof and the medium roof have a positive impact in warmer climates by reducing the CO2 emissions as much as 264 kg and 129 kg, respectively.

  17. The improvement of thermal characteristics of autoclave aerated concrete for energy efficient high-rise buildings application

    NASA Astrophysics Data System (ADS)

    Khavanov, Pavel; Fomina, Ekaterina; Kozhukhova, Natalia

    2018-03-01

    Nowadays, the problem of energy saving is very relevant. One of the ways to reduction energy consumption in construction materials production and construction of civil and industrial high-rise buildings is the application of claddings with heat-insulating performance. The concept of energy efficiency of high-rise buildings is closely related to environmental aspect and sustainability of applied construction materials; reducing service costs; energy saving and microclimate comfortability. A complexity of architectural and structural design as well as aesthetic characteristics of construction materials are also should be considered. The high interest focused on materials with combined properties. This work is oriented on the study of energy efficiency of buildings by improving heat-insulation and strength performance of autoclave aerated concrete. The applied method of sulfate activation of lime allows monitoring phase and structure formation in aerated concrete. The optimal mix design of aerated concrete with the compressive strength up to 8.5 MPa and decreased density up to 760 kg/m3 was proposed. Analysis of structure at macro-and microscale was performed as well as the criteria of an optimal porosity formation was considered a number, size, shape of pore and density of interior partition. SEM analysis and BET method were performed in this research work. The research results demonstrated the correlation between structure and vapor permeability resistance, also it was found that the increase of strength can lead to reduction of thermal conductivity.

  18. IEA EBC Annex 66: Definition and simulation of occupant behavior in buildings

    DOE PAGES

    Yan, Da; Hong, Tianzhen; Dong, Bing; ...

    2017-09-28

    Here, more than 30% of the total primary energy in the world is consumed in buildings. It is crucial to reduce building energy consumption in order to preserve energy resources and mitigate global climate change. Building performance simulations have been widely used for the estimation and optimization of building performance, providing reference values for the assessment of building energy consumption and the effects of energy-saving technologies. Among the various factors influencing building energy consumption, occupant behavior has drawn increasing attention. Occupant behavior includes occupant presence, movement, and interaction with building energy devices and systems. However, there are gaps in occupantmore » behavior modeling as different energy modelers have employed varied data and tools to simulate occupant behavior, therefore producing different and incomparable results. Aiming to address these gaps, the International Energy Agency (IEA) Energy in Buildings and Community (EBC) Programme Annex 66 has established a scientific methodological framework for occupant behavior research, including data collection, behavior model representation, modeling and evaluation approaches, and the integration of behavior modeling tools with building performance simulation programs. Annex 66 also includes case studies and application guidelines to assist in building design, operation, and policymaking, using interdisciplinary approaches to reduce energy use in buildings and improve occupant comfort and productivity. This paper highlights the key research issues, methods, and outcomes pertaining to Annex 66, and offers perspectives on future research needs to integrate occupant behavior with the building life cycle.« less

  19. IEA EBC Annex 66: Definition and simulation of occupant behavior in buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Da; Hong, Tianzhen; Dong, Bing

    Here, more than 30% of the total primary energy in the world is consumed in buildings. It is crucial to reduce building energy consumption in order to preserve energy resources and mitigate global climate change. Building performance simulations have been widely used for the estimation and optimization of building performance, providing reference values for the assessment of building energy consumption and the effects of energy-saving technologies. Among the various factors influencing building energy consumption, occupant behavior has drawn increasing attention. Occupant behavior includes occupant presence, movement, and interaction with building energy devices and systems. However, there are gaps in occupantmore » behavior modeling as different energy modelers have employed varied data and tools to simulate occupant behavior, therefore producing different and incomparable results. Aiming to address these gaps, the International Energy Agency (IEA) Energy in Buildings and Community (EBC) Programme Annex 66 has established a scientific methodological framework for occupant behavior research, including data collection, behavior model representation, modeling and evaluation approaches, and the integration of behavior modeling tools with building performance simulation programs. Annex 66 also includes case studies and application guidelines to assist in building design, operation, and policymaking, using interdisciplinary approaches to reduce energy use in buildings and improve occupant comfort and productivity. This paper highlights the key research issues, methods, and outcomes pertaining to Annex 66, and offers perspectives on future research needs to integrate occupant behavior with the building life cycle.« less

  20. Experimental evaluation of passive cooling using phase change materials (PCM) for reducing overheating in public building

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdullahi; Mateo-Garcia, Monica; McGough, Danny; Caratella, Kassim; Ure, Zafer

    2018-02-01

    Indoor Environmental Quality (IEQ) is essential for the health and productivity of building users. The risk of overheating in buildings is increasing due to increased density of occupancy of people and heat emitting equipment, increase in ambient temperature due to manifestation of climate change or changes in urban micro-climate. One of the solutions to building overheating is to inject some exposed thermal mass into the interior of the building. There are many different types of thermal storage materials which typically includes sensible heat storage materials such as concrete, bricks, rocks etc. It is very difficult to increase the thermal mass of existing buildings using these sensible heat storage materials. Alternative to these, there are latent heat storage materials called Phase Change Materials (PCM), which have high thermal storage capacity per unit volume of materials making them easy to implement within retrofit project. The use of Passive Cooling Thermal Energy Storage (TES) systems in the form of PCM PlusICE Solutions has been investigated in occupied spaces to improve indoor environmental quality. The work has been carried out using experimental set-up in existing spaces and monitored through the summer the months. The rooms have been monitored using wireless temperature and humidity sensors. There appears to be significant improvement in indoor temperature of up to 5°K in the room with the PCM compared to the monitored control spaces. The success of PCM for passive cooling is strongly dependent on the ventilation strategy employed in the spaces. The use of night time cooling to purge the stored thermal energy is essential for improved efficacy of the systems to reduce overheating in the spaces. The investigation is carried within the EU funded RESEEPEE project.

  1. USE Efficiency: an innovative educational programme for energy efficiency in buildings

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Theofilos A.; Christoforidis, Georgios C.; Papagiannis, Grigoris K.

    2017-10-01

    Power engineers are expected to play a pivotal role in transforming buildings into smart and energy-efficient structures, which is necessary since buildings are responsible for a considerable amount of the total energy consumption. To fulfil this role, a holistic approach in education is required, tackling subjects traditionally related to other engineering disciplines. In this context, USE Efficiency is an inter-institutional and interdisciplinary educational programme implemented in nine European Universities targeting energy efficiency in buildings. The educational programme effectively links professors, students, engineers and industry experts, creating a unique learning environment. The scope of the paper is to present the methodology and the general framework followed in the USE Efficiency programme. The proposed methodology can be adopted for the design and implementation of educational programmes on energy efficiency and sustainable development in higher education. End-of-course survey results showed positive feedback from the participating students, indicating the success of the programme.

  2. Building America Systems Integration Research Annual Report: FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gestwick, M.

    2013-05-01

    This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

  3. Green, Clean, & Mean: Pushing the Energy Envelope in Tech Industry Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Evan; Granderson, Jessica; Chan, Rengie

    When it comes to innovation in energy and building performance, one can expect leading-edge activity from the technology sector. As front-line innovators in design, materials science, and information management, developing and operating high-performance buildings is a natural extension of their core business. The energy choices made by technology companies have broad importance given their influence on society at large as well as the extent of their own energy footprint. Microsoft, for example, has approximately 250 facilities around the world (30 million square feet of floor area), with significant aggregate energy use of approximately 4 million kilowatt-hours per day (Figure 1).

  4. The choice of primary energy source including PV installation for providing electric energy to a public utility building - a case study

    NASA Astrophysics Data System (ADS)

    Radomski, Bartosz; Ćwiek, Barbara; Mróz, Tomasz M.

    2017-11-01

    The paper presents multicriteria decision aid analysis of the choice of PV installation providing electric energy to a public utility building. From the energy management point of view electricity obtained by solar radiation has become crucial renewable energy source. Application of PV installations may occur a profitable solution from energy, economic and ecologic point of view for both existing and newly erected buildings. Featured variants of PV installations have been assessed by multicriteria analysis based on ANP (Analytic Network Process) method. Technical, economical, energy and environmental criteria have been identified as main decision criteria. Defined set of decision criteria has an open character and can be modified in the dialog process between the decision-maker and the expert - in the present case, an expert in planning of development of energy supply systems. The proposed approach has been used to evaluate three variants of PV installation acceptable for existing educational building located in Poznań, Poland - the building of Faculty of Chemical Technology, Poznań University of Technology. Multi-criteria analysis based on ANP method and the calculation software Super Decisions has proven to be an effective tool for energy planning, leading to the indication of the recommended variant of PV installation in existing and newly erected public buildings. Achieved results show prospects and possibilities of rational renewable energy usage as complex solution to public utility buildings.

  5. Potential Job Creation in Minnesota as a Result of Adopting New Residential Building Energy Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Michael J.; Niemeyer, Jackie M.

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levelsmore » of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.« less

  6. Potential Job Creation in Tennessee as a Result of Adopting New Residential Building Energy Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Michael J.; Niemeyer, Jackie M.

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levelsmore » of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.« less

  7. Potential Job Creation in Nevada as a Result of Adopting New Residential Building Energy Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Michael J.; Niemeyer, Jackie M.

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levelsmore » of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.« less

  8. Moab, Utah: Using Energy Data to Target Carbon Reductions from Building Energy Efficiency (City Energy: From Data to Decisions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strategic Priorities and Impact Analysis Team, Office of Strategic Programs

    This fact sheet "Moab, Utah: Using Energy Data to Target Carbon Reductions from Building Energy Efficiency" explains how the City of Moab used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  9. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the fossil fuel- generated energy consumption [[Page 66009

  10. Exploring relationships between building and transportation energy use of residents in U.S. metropolitan regions

    NASA Astrophysics Data System (ADS)

    Pede, Timothy J.

    There is much potential to decrease energy consumption in the U.S. by encouraging compact, centralized development. Although many studies have examined the extent to which built environment and demographic factors are related to household energy use, few have considered both building and transportation energy together. We hypothesized that residents living further from city centers, or urban cores, consume more energy for both purposes than their inner city counterparts, resulting in a direct relationship between building and transportation energy usage. This hypothesis was tested with two case studies. The first focused on New York City. Annual building energy per unit of parcels, or tax lots, containing large multi-family structures was compared to the daily transportation energy use per household of traffic analysis zones (TAZs) (estimated with a regional travel demand model). Transportation energy showed a strong spatial pattern, with distance to urban core explaining 63% of variation in consumption. Building energy use was randomly distributed, resulting in a weak negative correlation with transportation energy. However, both correlation with distance to urban core and transportation energy became significant and positive when portion of detached single-family units for TAZs was used as a proxy for building energy. Structural equation models (SEMs) revealed a direct relationship between log lot depth and both uses of energy, and inverse relationship between portion of attached housing units and transportation energy. This supports the notion that sprawling development increases both the building and transportation energy consumption of households. For the second analysis, annual building and automobile energy use per household were estimated for block groups across the 50 most populous U.S. metropolitan regions with Esri Consumer Expenditure Data. Both forms of energy consumption per household were lowest in inner cities and increased at greater distances from

  11. 11. Building Layout, 185189 D, U.S. Atomic Energy Commission, Richland ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Building Layout, 185-189 D, U.S. Atomic Energy Commission, Richland Operations Office, Dwg. No. H-1-14844, 1957. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA

  12. Nano-based PCMs for building energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik

    Thermal storage using phase change materials (PCMs) is seen as a viable method for improving the energy efficiency of buildings. PCMs have been used in building applications in various forms PCM slurries in heat exchangers, macro- or microencapsulated PCMs in building envelopes, bulk PCM for modulating photovoltaic temperatures, etc. In the last decade a new class of PCMs, called nano-enhanced PCM (or nanoPCM), has been extensively investigated with the goal of improving the heat transfer and thermal storage properties of PCMs. NanoPCMs can primarily be categorized as nano-encapsulated PCMs and nanoparticle-PCM composites. The former are nano-sized capsules in which themore » PCM forms the core and is surrounded by a high-conductivity membrane or shell. The latter consist of PCM supported within nanostructures or nanoparticles dispersed in PCMs. This article reviews the current state of nanoPCM synthesis and characterization of their heat transfer and thermal storage properties. Further, a critical review of nanoPCM applications and their potential energy benefits is performed. Nano-enhanced PCMs exhibit higher thermal conductivities than regular PCM. However, whether the higher conductivity is desirable in all applications and if the property enhancements are worth the cost and effort needed to create nanoPCMs are questions that still need to be answered.« less

  13. Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof

    NASA Astrophysics Data System (ADS)

    Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati

    2010-07-01

    For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.

  14. Development of Automated Procedures to Generate Reference Building Models for ASHRAE Standard 90.1 and India’s Building Energy Code and Implementation in OpenStudio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Andrew; Haves, Philip; Jegi, Subhash

    This paper describes a software system for automatically generating a reference (baseline) building energy model from the proposed (as-designed) building energy model. This system is built using the OpenStudio Software Development Kit (SDK) and is designed to operate on building energy models in the OpenStudio file format.

  15. Evaluation of energy efficient design competition of a public office building in North Greece

    NASA Astrophysics Data System (ADS)

    Chatzimanoli, Asimina

    Over the past few years in Greece there have been changes in the National Environmental and Energy Policy related to sustainability and energy conservation-saving, concerning the built environment as well. In this context, in 1999, the Hellenic Public Real Estate Corporation announced a Public Open Competition for the "Design and Construction" of a Police Station in the city of Kilkis, in North Greece. The energy efficiency and bioclimatic design was part of the General Design Principles of the brief. The following Report aims at evaluating the energy performance of the building and the comfort levels in the internal environment and determining the benefits of incorporating environmental design in a Public Office Building, in terms of savings in the energy consumption for heating. The Methodology included a description of the features of the design, analysis of the differences between the initial design and the constructed building, investigation of the operation of the constructed building (monitoring, questionnaire survey, energy consumption) and evaluation of the effect of the differences mentioned, using computer simulation (TAS software). Internal Temperatures fluctuated less than the external but for most of the monitoring period (end of mid-season-beginning of summer) Maximum Temperatures were higher than the external. The occupants gave positive comments and evaluated the general working conditions in the building as good, but the majority were not aware of the Passive Solar Systems installed in the building. The actual energy consumption for heating (150.85kWh/m2) is approximately 85% of the average consumption of Public Office Buildings in North Greece but 50% higher than that of recently built Public Office Buildings. However, the figure from the simulation analysis (corresponding to Office and Common spaces) is approximately 1/3 of the actual (55.14 kWh/m2), suggesting that proper operation of the building could result in significant reduction in energy

  16. Jackson Park Hospital Green Building Medical Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Dorsey; Nelson Vasquez

    2010-03-31

    Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital inmore » attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further

  17. Design and Implementation of Green Construction Scheme for a High-rise Residential Building Project

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Huang, You Zhen

    2018-06-01

    This paper mainly studies the green construction scheme of a high-rise residential building project. From "four sections one environmental protection", saving material, water saving, energy saving, economical use of land and environmental protection conduct analysis and research. Adopting scientific, advanced, reasonable and economical construction technology measures, implementing green construction method. Promoting energy-saving technologies in buildings, ensuring the sustainable use of resources, Maximum savings of resources and energy, increase energy efficiency, to reduce pollution, reducing the adverse environmental impact of construction activities, ensure construction safety, build sustainable buildings.

  18. Applying science and mathematics to big data for smarter buildings.

    PubMed

    Lee, Young M; An, Lianjun; Liu, Fei; Horesh, Raya; Chae, Young Tae; Zhang, Rui

    2013-08-01

    Many buildings are now collecting a large amount of data on operations, energy consumption, and activities through systems such as a building management system (BMS), sensors, and meters (e.g., submeters and smart meters). However, the majority of data are not utilized and are thrown away. Science and mathematics can play an important role in utilizing these big data and accurately assessing how energy is consumed in buildings and what can be done to save energy, make buildings energy efficient, and reduce greenhouse gas (GHG) emissions. This paper discusses an analytical tool that has been developed to assist building owners, facility managers, operators, and tenants of buildings in assessing, benchmarking, diagnosing, tracking, forecasting, and simulating energy consumption in building portfolios. © 2013 New York Academy of Sciences.

  19. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2012-01-01 2012-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW...

  20. 10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2011-01-01 2011-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW...