Sample records for reduce carbon emissions

  1. Reducing Fossil Carbon Emissions and Building Environmental Awareness at

    E-print Network

    Reducing Fossil Carbon Emissions and Building Environmental Awareness at Dartmouth College Summary selected the mission: "To reduce Dartmouth College's fossil carbon emissions." We believe this mission's responsibility to educate others about how it is reducing its fossil carbon emissions and encourage them to do

  2. Options for reducing carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Arthur H.; Price, Lynn

    1992-03-01

    Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of ``cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for U.S. buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefitted from energy conservation research and development (R&D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed.

  3. Options for reducing carbon dioxide emissions

    SciTech Connect

    Rosenfeld, A.H.; Price, L.

    1991-08-01

    Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for US buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefited from energy conservation research and development (R D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed. 33 refs., 9 figs., 3 tabs.

  4. Reducing Carbon Dioxide Emissions: Using the Mole Concept.

    ERIC Educational Resources Information Center

    Myers, Alan

    2002-01-01

    Provides an application of quantitative chemistry concepts in the context of motor vehicle emissions. Shows how carbon dioxide emissions from cars may be reduced by up to 25% by reducing motorway speeds from 70-75 mph to 60 mph. (Author/MM)

  5. Forest management strategies for reducing carbon emissions, the French case

    NASA Astrophysics Data System (ADS)

    Valade, Aude; Luyssaert, Sebastiaan; Bellassen, Valentin; Vallet, Patrick; Martin, Manuel

    2015-04-01

    International agreements now recognize the role of forest in the mitigation of climate change through the levers of in-situ sequestration, storage in products and energy and product substitution. These three strategies of carbon management are often antagonistic and it is still not clear which strategy would have the most significant impact on atmospheric carbon concentrations. With a focus on France, this study compares several scenarios of forest management in terms of their effect on the overall carbon budget from trees to wood-products. We elaborated four scenarios of forest management that target different wood production objectives. One scenario is 'Business as usual' and reproduces the current forest management and wood production levels. Two scenarios target an increase in bioenergy wood production, with either long-term or short-term goals. One scenario aims at increasing the production of timber for construction. For this, an empirical regression model was developed building on the rich French inventory database. The model can project the current forest resource at a time horizon of 20 years for characteristic variables diameter, standing volume, above-ground biomass, stand age. A simplified life-cycle analysis provides a full carbon budget for each scenario from forest management to wood use and allows the identification of the scenario that most reduces carbon emissions.

  6. Carbon Footprint of Telemedicine Solutions - Unexplored Opportunity for Reducing Carbon Emissions in the Health Sector

    PubMed Central

    Holmner, Åsa; Ebi, Kristie L.; Lazuardi, Lutfan; Nilsson, Maria

    2014-01-01

    Background The healthcare sector is a significant contributor to global carbon emissions, in part due to extensive travelling by patients and health workers. Objectives To evaluate the potential of telemedicine services based on videoconferencing technology to reduce travelling and thus carbon emissions in the healthcare sector. Methods A life cycle inventory was performed to evaluate the carbon reduction potential of telemedicine activities beyond a reduction in travel related emissions. The study included two rehabilitation units at Umeå University Hospital in Sweden. Carbon emissions generated during telemedicine appointments were compared with care-as-usual scenarios. Upper and lower bound emissions scenarios were created based on different teleconferencing solutions and thresholds for when telemedicine becomes favorable were estimated. Sensitivity analyses were performed to pinpoint the most important contributors to emissions for different set-ups and use cases. Results Replacing physical visits with telemedicine appointments resulted in a significant 40–70 times decrease in carbon emissions. Factors such as meeting duration, bandwidth and use rates influence emissions to various extents. According to the lower bound scenario, telemedicine becomes a greener choice at a distance of a few kilometers when the alternative is transport by car. Conclusions Telemedicine is a potent carbon reduction strategy in the health sector. But to contribute significantly to climate change mitigation, a paradigm shift might be required where telemedicine is regarded as an essential component of ordinary health care activities and not only considered to be a service to the few who lack access to care due to geography, isolation or other constraints. PMID:25188322

  7. Designing A Carbon Tax to Reduce U.S. Greenhouse Gas Emissions

    Microsoft Academic Search

    Gilbert E. Metcalf

    2008-01-01

    This article describes a revenue and distributionally neutral approach to reducing U.S. greenhouse gas emissions that uses a carbon tax. The revenue from the carbon tax is used to finance an environmental earned income tax credit designed to be distributionally neutral. The credit is linked to earned income and helps offset the regressivity of the carbon tax. The carbon tax

  8. Arctic Black Carbon Initiative: Reducing Emissions of Black Carbon from Power & Industry in Russia

    NASA Astrophysics Data System (ADS)

    Cresko, J.; Hodson, E. L.; Cheng, M.; Fu, J. S.; Huang, K.; Storey, J.

    2012-12-01

    Deposition of black carbon (BC) on snow and ice is widely considered to have a climate warming effect by reducing the surface albedo and promoting snowmelt. Such positive climate feedbacks in the Arctic are especially problematic because rising surface temperatures may trigger the release of large Arctic stores of terrestrial carbon, further amplifying current warming trends. Recognizing the Arctic as a vulnerable region, the U.S. government committed funds in Copenhagen in 2009 for international cooperation targeting Arctic BC emissions reductions. As a result, the U.S. Department of State has funded three research and demonstration projects with the goal to better understand and mitigate BC deposition in the Russian Arctic from a range of sources. The U.S. Department of Energy's (DOE) Arctic BC initiative presented here is focused on mitigating BC emissions resulting from heat and power generation as well as industrial applications. A detailed understanding of BC sources and its transport and fate is required to prioritize efforts to reduce BC emissions from sources that deposit in the Russian Arctic. Sources of BC include the combustion of fossil fuels (e.g. coal, fuel oil, diesel) and the combustion of biomass (e.g. wildfires, agricultural burning, residential heating and cooking). Information on fuel use and associated emissions from the industrial and heat & power sectors in Russia is scarce and difficult to obtain from the open literature. Hence, our project includes a research component designed to locate Arctic BC emissions sources in Russia and determine associated BC transport patterns. We use results from the research phase to inform a subsequent assessment/demonstration phase. We use a back-trajectory modeling method (potential source contribution function - PSCF), which combines multi-year, high-frequency measurements with knowledge about atmospheric transport patterns. The PSCF modeling allows us to map the probability (by season and year) at course resolution (2.5° x 2.5° spatial resolution) that a particular region emits BC which deposits in the Russian Arctic. We utilize data from three Arctic measurement stations during the most recent decade: Alert, Northwest Territories, Canada; Barrow, Alaska; and Tiksi Bay, Russia. To understand more about individual Arctic BC sources, we conduct further research to improve inventory estimates of Russian industrial and energy sector BC emissions. By comparing inventory data on power plant locations and emissions from two publically-available databases (EDGAR-HTAP and CARMA databases) to each other and to additional observations from satellites and the AERONET observation network in Russia, we assess the accuracy of the Russian BC emission inventory in EDGAR-HTAP, a commonly used database for atmospheric transport modeling. We then use a global (GEOS-CHEM) atmospheric transport model to quantify the finer spatial distribution of BC within the Arctic. Lastly, we use data on Russian fuel use combined with published emissions factors to build a national-scale model of energy use and associated emissions from critical industrial and heat & power sources of BC. We use this model to estimate the technical potential of reducing BC emissions through proven mitigation efforts such as improvements in energy efficiency and in emission control technologies.

  9. Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere

    E-print Network

    Montes-Hernandez, German

    Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere carbonation mechanisms of an alkaline paper mill waste containing about 55 wt% portlandite (Ca(OH)2 for diverse industrial applications. This result demonstrates the possibility of using the alkaline liquid

  10. Global economic potential for reducing carbon dioxide emissions from mangrove loss

    PubMed Central

    Siikamäki, Juha; Sanchirico, James N.; Jardine, Sunny L.

    2012-01-01

    Mangroves are among the most threatened and rapidly disappearing natural environments worldwide. In addition to supporting a wide range of other ecological and economic functions, mangroves store considerable carbon. Here, we consider the global economic potential for protecting mangroves based exclusively on their carbon. We develop unique high-resolution global estimates (5? grid, about 9 × 9 km) of the projected carbon emissions from mangrove loss and the cost of avoiding the emissions. Using these spatial estimates, we derive global and regional supply curves (marginal cost curves) for avoided emissions. Under a broad range of assumptions, we find that the majority of potential emissions from mangroves could be avoided at less than $10 per ton of CO2. Given the recent range of market price for carbon offsets and the cost of reducing emissions from other sources, this finding suggests that protecting mangroves for their carbon is an economically viable proposition. Political-economy considerations related to the ability of doing business in developing countries, however, can severely limit the supply of offsets and increases their price per ton. We also find that although a carbon-focused conservation strategy does not automatically target areas most valuable for biodiversity, implementing a biodiversity-focused strategy would only slightly increase the costs. PMID:22847435

  11. Building capacity for national carbon measurements for reducing emissions from deforestation and forest degradation

    NASA Astrophysics Data System (ADS)

    Goetz, S. J.; Laporte, N.; Horning, N.; Pelletier, J.; Jantz, P.; Ndunda, P.

    2014-12-01

    Many tropical countries are now working on developing their strategies for reducing emissions from deforestation and forest degradation, including activities that result in conservation or enhancement of forest carbon stocks and sustainable management of forests to effectively decrease atmospheric carbon emissions (i.e. REDD+). A new international REDD+ agreement is at the heart of recent negotiations of the parties to the UN Framework Convention on Climate Change (UNFCCC). REDD+ mechanisms could provide an opportunity to not only diminish an important source of emissions, but also to promote large-scale conservation of tropical forests and establish incentives and opportunities to alleviate poverty. Most tropical countries still lack basic information for developing and implementing their forest carbon stock assessments, including the extent of forest area and the rate at which forests are being cleared and/or degraded, and the carbon amounts associated with these losses. These same countries also need support to conduct integrated assessments of the most promising approaches for reducing emissions, and in identifying those policy options that hold the greatest potential while minimizing potential negative impacts of REDD+ policies. The WHRC SERVIR project in East Africa is helping to provide these data sets to countries via best practice tools and methods to support cost effective forest carbon monitoring solutions and more informed decision making processes under REDD+. We will present the results of our capacity building activites in the region and planned future efforts being coordinated with the NASA-SERVIR Hub in Kenya to support to REDD+ decision support.

  12. Economic implications of reducing carbon emissions from energy use and industrial processes in Brazil.

    PubMed

    Chen, Y-H Henry; Timilsina, Govinda R; Landis, Florian

    2013-11-30

    This study assesses the economy-wide impacts of cutting CO2 emissions on the Brazilian economy. It finds that in 2040, the business-as-usual CO2 emissions from energy use and industrial processes would be almost three times as high as those in 2010 and would account for more than half of total national CO2 emissions. The current policy aims to reduce deforestation by 70 percent by 2017 and lower emissions intensity of the overall economy by 36-39 percent by 2020. If the policy were implemented as planned and continued to 2040, there would be no need to cut CO2 emissions from energy use and industrial processes until 2035, as emissions reduction through controlling deforestation would be enough to meet the voluntary carbon mitigation target of Brazil. The study also finds that using the carbon tax revenue to subsidize wind power can effectively increase the country's wind power output if that is the policy priority. Further, it finds evidence supporting the double dividend hypothesis, i.e., using revenue from a hypothetical carbon tax to finance a cut in labor income tax can significantly lower the GDP impacts of the carbon tax. PMID:24184985

  13. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOEpatents

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  14. Reducing Greenhouse Gas Emissions with Carbon Dioxide Capture and Sequestration in Deep Geological Formations

    SciTech Connect

    Benson, Dr. Sally [Stanford University; Cole, David R [ORNL

    2008-01-01

    Carbon dioxide capture and sequestration (CCS) in deep geological formations has quickly emerged as an important option for reducing greenhouse emissions. If CCS is implemented on the scale needed for large reductions in CO2 emissions, a billion of tonnes or more of CO2 will be sequestered annually a 250 fold increase over the amount sequestered annually today. Sequestering these large volumes will require a strong scientific foundation of the coupled hydrological-geochemical-geomechanical processes that govern the long term fate of CO2 in the subsurface. Methods to characterize and select sequestration sites, subsurface engineering to optimize performance and cost, safe operations, monitoring technology, remediation methods, regulatory oversight, and an institutional approach for managing long term liability are also needed.

  15. New Hampshire Carbon Challenge: Reducing Residential Energy Use and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Schloss, A. L.; Bartlett, D.; Blaha, D.; Skoglund, C.; Dundorf, J.; Froburg, E.; Pasinella, B.

    2007-12-01

    The New Hampshire Carbon Challenge is an initiative of the Institute for the Study of Earth, Oceans and Space at the University of New Hampshire. Our goal is to educate New Hampshire residents about climate change and also encourage them to reduce their household greenhouse gas emissions by 10,000 pounds. The Northeast region is undergoing climate changes consistent with those expected due to increasing levels of CO2 in the atmosphere, while also contributing to climate change as the world's seventh largest source of CO2 emissions. In the USA, approximately 40 percent of CO2 emissions from fossil fuel combustion come from residential energy consumption for space heating, electricity usage, and transportation. Homeowners typically are not aware that modest energy reductions can result in significant carbon savings. Most campaigns that raise awareness of climate change and residential energy usage disseminate information to consumers through newspaper articles, brochures, websites, or other traditional means of communication. These information-only campaigns have not been very effective in changing residential energy consumption. Bombarded with information in their daily lives, the public has become quite adept at tuning most of it out. When much of the information they receive about climate change is confusing and contradictory, residents have even less incentive to change their behavior. The Challenge is unique in that it couples accurate information about climate change with concrete actions homeowners can take to reduce their carbon emissions. Our strategy is to utilize the tools of Community Based Social Marketing, which has been shown to be effective in changing behavior, and also to leverage existing networks including the NH Department of Environmental Services, UNH Cooperative Extension, faith-based communities, municipal energy committees and Climate Project volunteers, to effectively reach residents throughout the state. The response to our program has been very positive. We gave 74 presentations to 4000 NH residents since the program was launched in October 2006. We are currently developing web-based tools tailored to New Hampshire residents that will enable them to track reductions in their energy usage and connect those reductions to reduced emissions, and will provide us feedback as to which actions households are willing to take. This type of information exchange is essential in creating and sustaining an effective and scientifically accurate public outreach campaign.

  16. The potential for energy-efficient technologies to reduce carbon emissions in the United States: buildings sector

    Microsoft Academic Search

    J. G. Koomey; M. D. Levine; N. C. Martin; L. K. Price; M. Brown; G. Courville; M. MacDonald; J. Tomlinson; J. van Coevering; R. Wendt

    1997-01-01

    In the US, building energy consumption accounts for nearly one third of total primary energy consumption and related greenhouse gas emissions. The cost for this was over $200 billion in 1997. This paper summarizes a detailed assessment of the achievable cost effective potential for reducing carbon dioxide emissions in 2010 in the US residential and commercial buildings sector based on

  17. A conceptual framework for the evaluation of cost-effectiveness of projects to reduce GHG emissions and sequester carbon

    SciTech Connect

    Sathaye, J.; Norgaard, R.; Makundi, W.

    1993-07-01

    This paper proposes a conceptual framework for evaluating the cost of projects to reduce atmospheric greenhouse gases (GHGs). The evaluation of cost-effectiveness should account for both the timing of carbon emissions and the damage caused by the atmospheric stock of carbon. We develop a conceptual basis to estimate the cost-effectiveness of projects in terms of the cost of reducing atmospheric carbon (CRAC) and other GHGs. CRAC accounts for the economic discount rate, alternative functional forms of the shadow price, the residence period of carbon in the atmosphere, and the multiple monetary benefits of projects. The last item is of particular importance to the developing countries.

  18. The potential for reducing carbon emissions from increased efficiency : a general equilibrium methodology

    E-print Network

    Blitzer, Charles R.

    1990-01-01

    This paper presents a methodology for analyzing the potential for reduction in carbon emissions through increased fuel efficiency and provides an illustration of the method. The methodology employed is a multisectoral, ...

  19. Carbon-Coated Porous Aluminum Oxides Used as Spacer Overlayers to Reduce Secondary Electron Emission for Field Emission Display Applications

    NASA Astrophysics Data System (ADS)

    Yu, Tung-Yuan; Pan, Fu-Ming; Chen, Cheng-Li; Chen, Te-Ming; Chen, Tsung-Han; Kuo, Chih-Che; Lin, Ting-Li

    2013-07-01

    Porous surface structures can mitigate the charging effect of vacuum spacers of field-emission flat panel display due to the abundance of secondary electrons (SEs) emitted from the spacers during field emission display (FED) operation. In this study, we fabricated porous anodic aluminum oxide (AAO) overlayers on glass substrates to examine the effect of carbon deposition on the reduction of SE emissions. This paper reports that uniform AAO overlayers can be simultaneously prepared on both sides of a glass plate 2 ×10 cm2 in size. The SE emission of the AAO overlayer was examined by using an Auger electron microscope. When a small amount of carbon is evaporation-deposited on the as-prepared AAO overlayer, the SE emission efficiency is significantly decreased and the reduction in the SE emission is ascribed to the low SE yield of the carbon deposit and the suppression of SE escape from the narrowed pore channels. However, a heavy deposition of carbon results in a smaller surface roughness of the AAO overlayer, thereby increasing SE emission. The carbon-coated AAO overlayer demonstrates favorable electrical and mechanical properties, making it suitable for use in FED vacuum spacers.

  20. REDUCING MERCURY EMISSION FROM MUNICIPAL WASTE COMBUSTION WITH CARBON INJECTION INTO FLUE GAS

    EPA Science Inventory

    The paper gives results of tests (to aid in developing emission rules) in July and August 1991 on a 360-tonne/day mass burn municipal waste combustor (MWC) at the Ogden Martin Systems of Stanislaus, Inc. facility near Crows Landing, CA. est results indicated that carbon (C) addit...

  1. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions

    NASA Astrophysics Data System (ADS)

    Liska, Adam J.; Yang, Haishun; Milner, Maribeth; Goddard, Steve; Blanco-Canqui, Humberto; Pelton, Matthew P.; Fang, Xiao X.; Zhu, Haitao; Suyker, Andrew E.

    2014-05-01

    Removal of corn residue for biofuels can decrease soil organic carbon (SOC; refs , ) and increase CO2 emissions because residue C in biofuels is oxidized to CO2 at a faster rate than when added to soil. Net CO2 emissions from residue removal are not adequately characterized in biofuel life cycle assessment (LCA; refs , , ). Here we used a model to estimate CO2 emissions from corn residue removal across the US Corn Belt at 580 million geospatial cells. To test the SOC model, we compared estimated daily CO2 emissions from corn residue and soil with CO2 emissions measured using eddy covariance, with 12% average error over nine years. The model estimated residue removal of 6 Mg per ha-1 yr-1 over five to ten years could decrease regional net SOC by an average of 0.47-0.66 Mg C ha-1 yr-1. These emissions add an average of 50-70 g CO2 per megajoule of biofuel (range 30-90) and are insensitive to the fraction of residue removed. Unless lost C is replaced, life cycle emissions will probably exceed the US legislative mandate of 60% reduction in greenhouse gas (GHG) emissions compared with gasoline.

  2. Adapting sustainable low-carbon techologies to reduce carbon dioxide emissions from coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Kuo, Peter Shyr-Jye

    1997-09-01

    The scientific community is deeply concerned about the effect of greenhouse-gases (GHGs) on global climate change. A major climate shift can result in tragic destruction to our world. Carbon dioxide (COsb2) emissions from coal-fired power plants are major anthropogenic sources that contribute to potential global warming. The People's Republic of China, with its rapidly growing economy and heavy dependence on coal-fired power plants for electricity, faces increasingly serious environmental challenges. This research project seeks to develop viable methodologies for reducing the potential global warming effects and serious air pollution arising from excessive coal burning. China serves as a case study for this research project. Major resolution strategies are developed through intensive literature reviews to identify sustainable technologies that can minimize adverse environmental impacts while meeting China's economic needs. The research thereby contributes technological knowledge to the field of Applied Sciences. The research also integrates modern power generation technologies with China's current and future energy requirements. With these objectives in mind, this project examines how China's environmental issues are related to China's power generation methods. This study then makes strategic recommendations that emphasize low-carbon technologies as sustainable energy generating options to be implemented in China. These low-carbon technologies consist of three options: (1) using cleaner fuels converted from China's plentiful domestic coal resources; (2) applying high-efficiency gas turbine systems for power generation; and (3) integrating coal gasification processes with energy saving combined cycle gas turbine systems. Each method can perform independently, but a combined strategy can achieve the greatest COsb2 reductions. To minimize economic impacts caused by technological changes, this study also addresses additional alternatives that can be implemented in parallel with the proposed technologies. Principal options include promoting wind, solar and biogas as alternative energies; encouraging reforestation; using economic incentives to change energy policies; and gradually replacing obsolete facilities with new power plants. This study finds that the limited capacity and associated costs of alternative energies are the main factors that prevent competition with coal-based energy in China today.

  3. Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions

    PubMed Central

    Dietz, Thomas; Gardner, Gerald T.; Gilligan, Jonathan; Stern, Paul C.; Vandenbergh, Michael P.

    2009-01-01

    Most climate change policy attention has been addressed to long-term options, such as inducing new, low-carbon energy technologies and creating cap-and-trade regimes for emissions. We use a behavioral approach to examine the reasonably achievable potential for near-term reductions by altered adoption and use of available technologies in US homes and nonbusiness travel. We estimate the plasticity of 17 household action types in 5 behaviorally distinct categories by use of data on the most effective documented interventions that do not involve new regulatory measures. These interventions vary by type of action and typically combine several policy tools and strong social marketing. National implementation could save an estimated 123 million metric tons of carbon per year in year 10, which is 20% of household direct emissions or 7.4% of US national emissions, with little or no reduction in household well-being. The potential of household action deserves increased policy attention. Future analyses of this potential should incorporate behavioral as well as economic and engineering elements. PMID:19858494

  4. Nanofiber Based Carbon Capture Technology to Reduce the CO2 Emissions at GSU Campus PI: Mujibur Rahman Khan, Co-PI: Spencer Harp, Mechanical Engineering Department

    E-print Network

    Hutcheon, James M.

    + Nanofiber Based Carbon Capture Technology to Reduce the CO2 Emissions at GSU Campus PI: Mujibur of utilizing functional nanomaterials for capturing environmentally detrimental greenhouse gas emissions (GHG), particularly carbon dioxide (CO2), generated from various sources within the GSU campus. Reduction of man

  5. When does highway construction to mitigate congestion reduce carbon emissions? A Case Study: The Caldecott Tunnel

    NASA Astrophysics Data System (ADS)

    Thurlow, M. E.; Maness, H.; Wiersema, D. J.; Mcdonald, B. C.; Harley, R.; Fung, I. Y.

    2014-12-01

    The construction of the fourth bore of the Caldecott Tunnel, which connects Oakland and Moraga, CA on State Route 24, was the second largest roadway construction project in California last year with a total cost of $417 million. The objective of the fourth bore was to reduce traffic congestion before the tunnel entrance in the off-peak direction of travel, but the project was a source of conflict between policy makers and environmental and community groups concerned about the air quality and traffic impacts. We analyze the impact of the opening of the fourth bore on CO2 emissions associated with traffic. We made surface observations of CO2from a mobile platform along State Route 24 for several weeks in November 2013 incorporating the period prior to and after the opening of the fourth bore on November 16, 2013. We directly compare bottom-up and top-down approaches to estimate the change in traffic emissions associated with the fourth bore opening. A bottom-up emissions inventory was derived from the high-resolution Performance Measurement System (PeMs) dataset and the Multi-scale Motor Vehicle and Equipment Emissions System (MOVES). The emissions inventory was used to drive a box model as well as a high-resolution regional transport model (the Weather and Regional Forecasting Model). The box model was also used to derive emissions from observations in a basic inversion. We also present an analysis of long-term traffic patterns and consider the potential for compensating changes in behavior that offset the observed emissions reductions on longer timescales. Finally, we examine how the results from the Caldecott study demonstrate the general benefit of using mobile measurements for quantifying environmental impacts of congestion mitigation projects.

  6. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect

    Greene, D.L.

    1997-07-01

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  7. Biodiversity losses and carbon emissions in Amazon region - the situation of contemporary period and strategies for reduce these environmental changes

    SciTech Connect

    Freitas, M.A.V. de; Aquino, L.C.; Rosa, L.P.

    1997-12-31

    The forest removal is a major contributor to local, regional and global environmental changes. Many of the tropical`s species are gravely threatened Numerous studies suggest that from 1970 to 1990 between 5 and 20 percent of the tropical`s species were committed to extinction. In 1995, the deforested lands in Brazilian Amazon account an amount Superior to 470,000 Km{sup 2}, old deforestation included, for a total surface of tropical`s rain forest of 3.4 and 3.8 million square kilometres. In 1990`s, the amount of carbon released to the atmosphere (as CO{sub 2}) from Brazilian Amazon deforestation was 3.5 % to 4.9 % and 250 % to 360 % of the World and Brazilian annual emission from fossil fuels, respectively. On the other hand, if deforestation is stopped and replaced with a rational forest management, a reuse of degraded lands for agro-forestry and biomass production for energy and industrial purposes, we can reduce the pressure on forests lands and the net carbon flux will be reversed. In this paper, we discuss the relations with biodiversity losses and carbon emissions in Brazilian Amazon region in the last thirty years and find suggest the principal`s strategies to reduce this environmental`s destruction.

  8. Infrared carbon bed monitors boost solvent recovery 30%, reduce airborne emissions

    SciTech Connect

    Kuelzow, A.L.; Toy, D.A.

    1984-09-01

    At the Pharmaceutical Group of Sterling Drugs, Incorporated, a fixed bed absorber system consisting of four carbon absorbers arranged with two in parallel on each side had been in use for absorption of solvents for recovery. Since the composition and concentration of the solvent varies in the feed stream entering the absorption system, a timed cycle used for regeneration of absorber bed often resulted in unnecessary regeneration of the recovery system. Infrared analyzers were installed on the absorption system in 1982 and have been in constant operation ever since. These analyzers control the regeneration of absorber band on detection timing cycle. This has increased solvent recovery by 30% and reduced steam consumption by 20%. Overall performance has been reliable, and maintenance has been minimal.

  9. Reducing the emissions from the automobiles by using carbon nano tubes (Nano Technology)

    Microsoft Academic Search

    A. Durairajan; S. Ananthakumar; M. Mohamed Yusuf

    2011-01-01

    Nanotechnology is a science of controlling individual atoms and molecules. This technology has got great future and is considered to be the manufacturing technology of 21st technology. Carbon nanotubes are tiny strips of graphite sheet rolled into tubes a few nano meters in diameter and up to hundreds of micrometers (microns) long. Carbon nano tubes is not implemented in mechanical

  10. Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden

    E-print Network

    Klier, Thomas

    France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

  11. Strategies for Carbon Sequestration and Reducing Greenhouse Gas Emissions from Nursery Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past three decades, no issue has received more attention from the scientific community than global warming and the possible impacts it may have on the global environment. Increased atmospheric carbon dioxide (CO2) concentration, along with those of other trace gases [i.e., methane (CH4), an...

  12. Carbon brainprint – An estimate of the intellectual contribution of research institutions to reducing greenhouse gas emissions

    E-print Network

    Chatterton, Julia; Parsons, David; Nicholls, John; Longhurst, Phil; Bernon, Mike; Palmer, Andrew; Brennan, Feargal; Kolios, Athanasios; Wilson, Ian; Ishiyama, Edward; Clements-Croome, Derek; Elmualim, Abbas; Darby, Howard; Yearley, Thomas; Davies, Gareth

    2015-05-07

    turbine blades to protect them from the high 159 temperature gases leaving the combustion chamber and to increase the efficiency of the 160 engine. As a result, the TBCs used in the current generation of aircraft turbofan jet engines 161 permit... : Proceedings of 2nd International Conference on Intelligent 574 Environments, Athens, 5-6 July 2007. Institute of Engineering and Technology, pp. 575 143–149. 576 Ozawa-Meida, L., Brockway, P., Letten, K., Davies, J., Fleming, P., 2013. Measuring carbon 577...

  13. Reducing atmospheric emission under unfavorable weather conditions

    SciTech Connect

    Kustov, B.A.; Rekhtin, N.E.; Savel'ev, V.E.

    1987-09-01

    The West Siberian Metallurgical Combine developed a measuring system to reduce emissions during unfavorable weather conditions. Three regimes were developed which include a sequence of actions for personnel to detect and correct malfunctions of the dust catcher and coke-oven-gas collecting mains. Other measures more strictly monitor vehicular exhaust toxicity and prohibit unloading railcars containing blast-furnace top dust. In the second regime, measures of the first regime are augmented by increasing the oxygen content of the flue gases to 4% in the steam plant boilers which reduce carbon monoxide emissions by 17% and nitrogen oxide emissions by 47%. In the third regime, emissions are further reduced by reducing production.

  14. The Confusing Allure of Combined Heat and Power: The Financial Attraction and Management Challenge of Reducing Energy Spend and Resulting Carbon Emissions Through Onsite Power Generation 

    E-print Network

    Davis, R.

    2009-01-01

    —from the perspective of reducing energy spending and energy-related carbon emissions—is combined heat and power ("CHP"), sometimes referred to as cogeneration. However, the results of CHP deployment to date have been mixed—largely because companies do not fully...

  15. Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants

    SciTech Connect

    Balat, M.; Balat, H.; Oz, C. [University of Mahallesi, Trabzon (Turkey)

    2009-07-01

    The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

  16. Potential for Woody Bioenergy Crops Grown on Marginal Lands in the US Midwest to Reduce Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Sahajpal, R.; Hurtt, G. C.; Fisk, J. P.; Izaurralde, R. C.; Zhang, X.

    2012-12-01

    While cellulosic biofuels are widely considered to be a low carbon energy source for the future, a comprehensive assessment of the environmental sustainability of existing and future biofuel systems is needed to assess their utility in meeting US energy and food needs without exacerbating environmental harm. To assess the carbon emission reduction potential of cellulosic biofuels, we need to identify lands that are initially not storing large quantities of carbon in soil and vegetation but are capable of producing abundant biomass with limited management inputs, and accurately model forest production rates and associated input requirements. Here we present modeled results for carbon emission reduction potential and cellulosic ethanol production of woody bioenergy crops replacing existing native prairie vegetation grown on marginal lands in the US Midwest. Marginal lands are selected based on soil properties describing use limitation, and are extracted from the SSURGO (Soil Survey Geographic) database. Yield estimates for existing native prairie vegetation on marginal lands modeled using the process-based field-scale model EPIC (Environmental Policy Integrated Climate) amount to ~ 6.7±2.0 Mg ha-1. To model woody bioenergy crops, the individual-based terrestrial ecosystem model ED (Ecosystem Demography) is initialized with the soil organic carbon stocks estimated at the end of the EPIC simulation. Four woody bioenergy crops: willow, southern pine, eucalyptus and poplar are parameterized in ED. Sensitivity analysis of model parameters and drivers is conducted to explore the range of carbon emission reduction possible with variation in woody bioenergy crop types, spatial and temporal resolution. We hypothesize that growing cellulosic crops on these marginal lands can provide significant water quality, biodiversity and GHG emissions mitigation benefits, without accruing additional carbon costs from the displacement of food and feed production.

  17. Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2: Implications for inversion analyses

    Microsoft Academic Search

    Parvadha Suntharalingam; James T. Randerson; Nir Krakauer; Jennifer A. Logan; Daniel J. Jacob

    2005-01-01

    Recent inverse analyses constraining carbon fluxes using atmospheric CO2 observations have assumed that the CO2 source from atmospheric oxidation of reduced carbon is released at the surface rather than distributed globally in the atmosphere. This produces a bias in the estimates of surface fluxes. We used a three-dimensional (3D) atmospheric chemistry model (GEOS-CHEM) to evaluate the magnitude of this effect

  18. Carbon Dioxide Emission Estimates

    NSDL National Science Digital Library

    The Carbon Dioxide Information Analysis Center of the Oak Ridge National Laboratory provides this new data on carbon dioxide emissions from fossil fuel burning, hydraulic cement production, and gas flaring in 1995. Data for one degree grid cells can be downloaded from the site in addition to code for analysis of the data.

  19. The potential for energy efficient technologies to reduce carbon emissions in the United States: the industrial sector

    Microsoft Academic Search

    G. A. Boyd; J. M. Roop; M. G. Woodruff

    1997-01-01

    This paper presents an assessment of the possible contribution that an invigorated effort to move energy efficient technology which is commercially available, or near commercialization, into the market could make to reducing greenhouse gas emissions from the US Industrial sector by 2010. It presents preliminary results from the industrial sector chapter of a larger study being undertaken by the Dept.

  20. World fossil fuel subsidies and global carbon emissions

    Microsoft Academic Search

    Bjorn Larsen; Anwar Shah

    1992-01-01

    Larsen and Shah present evidence on the level of fossil fuel subsidies and their implications for carbon dioxide emissions. They conclude that substantial fossil fuel subsidies prevail in a handful of large, carbon-emitting countries. Removing such subsidies could substantially reduce national carbon emissions in some countries. Global carbon emissions could be reduced by 9 percent, assuming no change in world

  1. Role of lignin in reducing life-cycle carbon emissions, water use, and cost for United States cellulosic biofuels.

    PubMed

    Scown, Corinne D; Gokhale, Amit A; Willems, Paul A; Horvath, Arpad; McKone, Thomas E

    2014-08-01

    Cellulosic ethanol can achieve estimated greenhouse gas (GHG) emission reductions greater than 80% relative to gasoline, largely as a result of the combustion of lignin for process heat and electricity in biorefineries. Most studies assume lignin is combusted onsite, but exporting lignin to be cofired at coal power plants has the potential to substantially reduce biorefinery capital costs. We assess the life-cycle GHG emissions, water use, and capital costs associated with four representative biorefinery test cases. Each case is evaluated in the context of a U.S. national scenario in which corn stover, wheat straw, and Miscanthus are converted to 1.4 EJ (60 billion liters) of ethanol annually. Life-cycle GHG emissions range from 4.7 to 61 g CO2e/MJ of ethanol (compared with ? 95 g CO2e/MJ of gasoline), depending on biorefinery configurations and marginal electricity sources. Exporting lignin can achieve GHG emission reductions comparable to onsite combustion in some cases, reduce life-cycle water consumption by up to 40%, and reduce combined heat and power-related capital costs by up to 63%. However, nearly 50% of current U.S. coal-fired power generating capacity is expected to be retired by 2050, which will limit the capacity for lignin cofiring and may double transportation distances between biorefineries and coal power plants. PMID:24988448

  2. Forest carbon response to management scenarios intended to mitigate GHG emissions and reduce fire impacts in the US West Coast region

    NASA Astrophysics Data System (ADS)

    Hudiburg, T. W.; Law, B. E.; Thornton, P. E.; Luyssaert, S.

    2012-12-01

    US West coast forests are among the most carbon dense biomes in the world and the potential for biomass accumulation in mesic coastal forests is the highest recorded (Waring and Franklin 1979, Hudiburg et al. 2009). Greenhouse gas (GHG) mitigation strategies have recently expanded to include forest woody biomass as bioenergy, with the expectation that this will also reduce forest mortality. We examined forest carbon response and life cycle assessment (LCA) of net carbon emissions following varying combinations of bioenergy management scenarios in Pacific Northwest forests for the period from 2010-2100. We use the NCAR CLM4 model combined with a regional atmospheric forcing dataset and account for future environmental change using the IPCC RCP4.5 and RCP 8.5 scenarios. Bioenergy management strategies include a repeated thinning harvest, a repeated clearcut harvest, and a single salvage harvest in areas with projected insect-related mortality. None of the bioenergy management scenarios reduce net emissions to the atmosphere compared to continued business-as-usual harvest (BAU) by the end of the 21st century. Forest regrowth and reduced fire emissions are not large enough to balance the wood removals from harvest. Moreover, the substitution of wood for fossil fuel energy and products is not large enough to offset the wood losses through decomposition and combustion. However, in some ecoregions (Blue Mountains and East Cascades), emissions from the thinning harvests begin to improve over BAU at the end of the century and could lead to net reductions in those ecoregions over a longer time period (> 100 years). For salvage logging, there is no change compared to BAU emissions by the end of the 21st century because the treatment area is minimal compared to the other treatments and only performed once. These results suggest that managing forests for carbon sequestration will need to include a variety of approaches accounting for forest baseline conditions and in some ecoregions, harvest reductions below current levels will sequester more carbon than additional harvest removals for bioenergy. References: Hudiburg, T., B. E. Law, D. P. Turner, J. Campbell, D. Donato, and M. Duane. 2009. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecological Applications 19:163-180. Waring, R. H., and J. F. Franklin. 1979. Evergreen Coniferous Forests of the Pacific Northwest. Science 204:1380-1386.

  3. Sensors reduce car emissions

    SciTech Connect

    Paula, G.

    1996-11-01

    Advanced control and diagnostic sensors play a key role in antipollution devices such as catalytic converters, electronic fuel injection, and exhaust-gas recirculation systems. Technologies such as catalytic converters, electronic fuel injection, and exhaust-gas recirculation (EGR) systems have decreased automobile emissions approximately 90 percent from their 1960 levels. The cornerstone of many of these emissions-control technologies are sensors that provide feedback and control. Any sensor--particularly those installed under an automobile hood--must withstand harsh conditions, such as intense heat, shock, continual vibration, corrosive gases, and electromagnetic fields. As a result microelectromechanical-system sensors, though widely used in automobiles, have not been applied to emissions monitoring and pollution control because they are not rugged enough to survive inside an engine. Most automobile sensors use mature technologies, but newer technologies such as fiber-optic sensors will be installed in vehicles within the next few years.

  4. The role of market and technical downsizing in reducing carbon emissions from the Swedish new car fleet

    Microsoft Academic Search

    Frances Sprei; Sten Karlsson

    2008-01-01

    Doubts have been raised on whether the car industry will manage to reach the goal set by the Voluntary Agreement with the\\u000a European Commission, unless tougher measures are taken to reduce CO2 emissions. Taking a stance from the concept of downsizing, we study the historical development of two strategies: first,\\u000a shifting the market toward smaller cars, market downsizing; second, a

  5. Applications of Carbon Dioxide Capture and Storage Technologies in Reducing Emissions from Fossil-fired Power Plants

    Microsoft Academic Search

    M. Balat; H. Balat; C. Öz

    2009-01-01

    The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon

  6. An Evaluation of CO2 Emission Reduction through Carbonation Technology

    Microsoft Academic Search

    S. Moazzem; M. G. Rasul; M. M. K. Khan

    2011-01-01

    Researchers around the world are studying on different carbon capture and storage (CCS) options to reduce global warming by reducing CO2 emission from various sources. Among all these options carbonation technology has some promising benefits over other technologies such as exothermic heat, availability of feed stocks, safe carbonated product and value added product and by-product, etc. In carbonation technology CO2

  7. World Carbon Dioxide Emissions: 1950-2050

    Microsoft Academic Search

    Richard Schmalensee; Thomas M. Stoker; Ruth A. Judson

    1998-01-01

    Emissions of carbon dioxide from the combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced-form models estimated with national-level panel data for the period of 1950-1990. Using the same set of income and population growth assumptions as the Intergovernmental Panel on Climate Change (IPCC), we find that the IPCC's widely used emissions

  8. Cermet Filters To Reduce Diesel Engine Emissions

    SciTech Connect

    Kong, Peter

    2001-08-05

    Pollution from diesel engines is a significant part of our nation's air-quality problem. Even under the more stringent standards for heavy-duty engines set to take effect in 2004, these engines will continue to emit large amounts of nitrogen oxides and particulate matter, both of which affect public health. To address this problem, the Idaho National Engineering and Environmental Laboratory (INEEL) invented a self-cleaning, high temperature, cermet filter that reduces heavy-duty diesel engine emissions. The main advantage of the INEEL cermet filter, compared to current technology, is its ability to destroy carbon particles and NOx in diesel engine exhaust. As a result, this technology is expected to improve our nation's environmental quality by meeting the need for heavy-duty diesel engine emissions control. This paper describes the cermet filter technology and the initial research and development effort.Diesel engines currently emit soot and NOx that pollute our air. It is expected that the U.S. Environmental Protection Agency (EPA) will begin tightening the regulatory requirements to control these emissions. The INEEL's self-cleaning, high temperature cermet filter provides a technology to clean heavy-duty diesel engine emissions. Under high engine exhaust temperatures, the cermet filter simultaneously removes carbon particles and NOx from the exhaust gas. The cermet filter is made from inexpensive starting materials, via net shape bulk forming and a single-step combustion synthesis process, and can be brazed to existing structures. It is self-cleaning, lightweight, mechanically strong, thermal shock resistant, and has a high melting temperature, high heat capacity, and controllable thermal expansion coefficient. The filter's porosity is controlled to provide high removal efficiency for carbon particulate. It can be made catalytic to oxidize CO, H2, and hydrocarbons, and reduce NOx. When activated by engine exhaust, the filter produces NH3 and light hydrocarbon gases that can effectively destroy the NOx in the exhaust. The following sections describe cermet filter technology and properties of the INEEL filter.

  9. Carbon emission from global hydroelectric reservoirs revisited.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs. PMID:24943886

  10. Carbon taxes, consumer demand and carbon dioxide emissions: a simulation analysis for the UK

    Microsoft Academic Search

    Elizabeth Symons; John Proops; Philip Gay

    1994-01-01

    In this paper we examine the effects of a carbon tax, one of the possible instruments for reducing carbon dioxide (CO2) emissions. Such taxes are currently being proposed as a means of reducing CO2 emissions, motivated by concerns about the global greenhouse effect and its potential impact on global climate and sea levels (Cline, 1991) and on global economies (Nordhaus,

  11. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

  12. Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski

    E-print Network

    emissions are an essen- tial input for atmospheric chemical transport models that are used to understandWildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski Missoula Fire burning Greenhouse gases Emission factors a b s t r a c t While the vast majority of carbon emitted

  13. The Role of Carbon Capture, Sequestration and Emissions Trading in Achieving Short-Term Carbon Emissions Reductions

    SciTech Connect

    Dooley, James J. (BATTELLE (PACIFIC NW LAB)); Kim, Son H. (BATTELLE (PACIFIC NW LAB)); Runci, Paul J. (BATTELLE (PACIFIC NW LAB)); D. Williams

    2001-08-10

    The near- to mid-term deployment of carbon capture and sequestration technologies can accelerate the process of significantly reducing emissions of carbon dioxide under a wide range of policy scenarios and reduce significantly the costs of complying with a climate change mitigation protocol -- by as much as$1 trillion over the period 2005-2050. These carbon capture and sequestration technologies also allow the continued use of fossil fuels, while reducing their carbon emissions and keeping the cost of electricity generated from fossil fuels competitive with other generation technologies.

  14. Reducing GHG emissions in the United States' transportation sector

    Microsoft Academic Search

    David Andress; T. Dean Nguyen; Sujit Das

    2011-01-01

    Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets

  15. Fossil-fuel carbon emission control in irrigated maize production

    Microsoft Academic Search

    B. D. Wind; W. W. Wallender

    1997-01-01

    To evaluate optimal management strategies which reduce fossil-fuel carbon emissions, an idealized gross returns objective function was developed for the production of irrigated maize with the inclusion of a disincetive carbon-taxing term. The gross returns objective function is multivariant and optimized through a gradient search procedure. Carbon emissions emanating from maize production stem from the utilization of fossil-fuel energy on

  16. Transport-limited emission from carbon nanotubes

    Microsoft Academic Search

    J. L. Shaw; D. S. Y. Hsu

    2001-01-01

    We have recently demonstrated emission from arrays of gated multiwall carbon nanotubes on silicon substrates. In addition to fabrication development, these structures are useful for study of the carbon nanotube emission properties. To that end, we have measured the effect of emission current, temperature, and gas environments on the energy distributions. We find that the emission near the Fermi level

  17. System-of-Systems Iso-performance Search to Inform Multi-actor Policymaking to Reduce Aviation Life Cycle Carbon Emissions

    Microsoft Academic Search

    Datu Buyung Agusdinata; Daniel A. DeLaurentis

    2009-01-01

    This paper presents a system-of-systems formalism for modeling and analyzing multi-actor policy-making to achieve a global system objective. In contrast to a single optimal solution that aggregates objectives of actors, the concept of iso-performance is employed to illuminate multiple global solutions and hence the `space' for actors to compromise. A case in a policymaking to reduce aviation emissions is presented

  18. Reducing emissions from uranium dissolving

    SciTech Connect

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  19. Reducing emissions from uranium dissolving

    SciTech Connect

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  20. Reducing Emissions in Plant Flaring Operations 

    E-print Network

    Duck, B.

    2011-01-01

    latest technologies and reducing green house gas emissions.1 The company also created a Green Team with the objective of achieving zero injury, zero pollution, and zero accidents for all production facilities. These Green Teams advocated the company's new...

  1. Carbon Emission Capstone (title provided or enhanced by cataloger)

    NSDL National Science Digital Library

    John Pratte

    There are two ways to reduce net emissions of carbon dioxide: limit how much carbon dioxide is emitted into the atmosphere as we burn fossil fuels, or increase the rate at which it is absorbed. In this lesson, discussion topics include the Kyoto Protocol and the use of carbon credits to reduce emissions of carbon dioxide into the atmosphere. Students can listen to a National Public Radio show that reports on new research that both illuminates and further complicates the picture of how the Earth is warming. The lesson includes an activity in which students examine their personal annual carbon emissions (calculated in the previous exercise) and determine how many trees it would take to sequester these emissions. They will then extrapolate this number to the populations of their school campus and their county.

  2. Method for reducing CO2, CO, NOX, and SOx emissions

    DOEpatents

    Lee, James Weifu (Oak Ridge, TN); Li, Rongfu (Zhejiang, CH)

    2002-01-01

    Industrial combustion facilities are integrated with greenhouse gas-solidifying fertilizer production reactions so that CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions can be converted prior to emission into carbonate-containing fertilizers, mainly NH.sub.4 HCO.sub.3 and/or (NH.sub.2).sub.2 CO, plus a small fraction of NH.sub.4 NO.sub.3 and (NH.sub.4).sub.2 SO.sub.4. The invention enhances sequestration of CO.sub.2 into soil and the earth subsurface, reduces N0.sub.3.sup.- contamination of surface and groundwater, and stimulates photosynthetic fixation of CO.sub.2 from the atmosphere. The method for converting CO.sub.2, CO, NO.sub.x, and SO.sub.x emissions into fertilizers includes the step of collecting these materials from the emissions of industrial combustion facilities such as fossil fuel-powered energy sources and transporting the emissions to a reactor. In the reactor, the CO.sub.2, CO, N.sub.2, SO.sub.x, and/or NO.sub.x are converted into carbonate-containing fertilizers using H.sub.2, CH.sub.4, or NH.sub.3. The carbonate-containing fertilizers are then applied to soil and green plants to (1) sequester inorganic carbon into soil and subsoil earth layers by enhanced carbonation of groundwater and the earth minerals, (2) reduce the environmental problem of NO.sub.3.sup.- runoff by substituting for ammonium nitrate fertilizer, and (3) stimulate photosynthetic fixation of CO.sub.2 from the atmosphere by the fertilization effect of the carbonate-containing fertilizers.

  3. Carbon Currency: The Credits and Debits of Carbon Emissions Trading

    NSDL National Science Digital Library

    2000-01-01

    NOVA Australia, an initiative of the Australian Academy of Science, posts new feature articles regularly. 2000 publications include "Carbon currency: the credits and debits of carbon emissions trading" (discussing carbon emissions trading and whether trading can limit the enhanced greenhouse effect).

  4. Reducing energy penalties in carbon capture with Organic Rankine Cycles

    Microsoft Academic Search

    Luis M. Romeo; Yolanda Lara; Ana González

    2011-01-01

    Carbon capture and storage are considered one of the most promising technologies to reduce emissions in a midterm. Its main drawback is the energy penalty caused by the CO2 separation and compression processes. It increases the CO2 avoided cost and it is an important driving force to propose new and improved capture methods with lower energy requirements. In the case

  5. Carbon emissions from tropical forest degradation caused by logging

    NASA Astrophysics Data System (ADS)

    Pearson, Timothy R. H.; Brown, Sandra; Casarim, Felipe M.

    2014-03-01

    The focus of land-use related efforts in developing countries to reduce carbon emissions has been on slowing deforestation, yet international agreements are to reduce emissions from both deforestation and forest degradation (REDD). The second ‘D’ is poorly understood and accounted for a number of technical and policy reasons. Here we introduce a complete accounting method for estimating emission factors from selective timber harvesting, a substantial form of forest degradation in many tropical developing countries. The method accounts separately for emissions from the extracted log, from incidental damage to the surrounding forest, and from logging infrastructure, and emissions are expressed as units of carbon per cubic meter of timber extracted to allow for simple application to timber harvesting statistics. We applied the method in six tropical countries (Belize, Bolivia, Brazil, Guyana, Indonesia, and Republic of Congo), resulting in total emission factors of 0.99-2.33 Mg C m-3. In all cases, emissions were dominated by damage to surrounding vegetation and the infrastructure rather than the logs themselves, and total emissions represented about 3-15% of the biomass carbon stocks of the associated unlogged forests. We then combined the emission factors with country level logging statistics for nine key timber producing countries represented by our study areas to gain an understanding of the order of magnitude of emissions from degradation compared to those recently reported for deforestation in the same countries. For the nine countries included, emissions from logging were on average equivalent to about 12% of those from deforestation. For those nine countries with relatively low emissions from deforestation, emissions from logging were equivalent to half or more of those from deforestation, whereas for those countries with the highest emissions from deforestation, emissions from logging were equivalent to <10% of those from deforestation. Understanding how to account emissions and the magnitude of each emissions source resulting from tropical timber harvesting practices helps identify where there are opportunities to reduce emissions from the second ‘D’ in REDD.

  6. REDUCING GREENHOUSE GAS EMISSIONS FROM DEFORESTATION IN DEVELOPING

    E-print Network

    Watson, Andrew

    REDUCING GREENHOUSE GAS EMISSIONS FROM DEFORESTATION IN DEVELOPING COUNTRIES: REVISITING Change Research Working Paper 115 #12;REDUCING GREENHOUSE GAS EMISSIONS FROM DEFORESTATION IN DEVELOPING on Reducing Emissions from Deforestation and Degradation (REDD) under the United Nations Framework Convention

  7. Energy efficiency procedures for agricultural machinery used in onion cultivation (Allium fistulosum) as an alternative to reduce carbon emissions under the clean development mechanism at Aquitania (Colombia)

    NASA Astrophysics Data System (ADS)

    Ochoa, K.; Carrillo, S.; Gutierrez, L.

    2014-06-01

    Climate change has both causes and consequences over agriculture. This paper focuses on the first element and presents scenarios for ASOLAGO -an onion cropper's association in Colombia with 250 members- to reduce their carbon footprint. It evaluates a case study at "La Primavera" farm using a methodology approved by the United Nations Framework Convention on Climate Change. Land preparation and crop irrigation were analyzed as stages in order to propose energy efficiency alternatives for both the farm and the association. They include field efficiency, fuel economy and energy efficiency from biofuels for the first stage as well as solar and wind energy supply for the second. A cost-benefit analysis to generate additional income selling additional power produced by the system to the National Grid was done.

  8. Reducing GHG emissions in the United States' transportation sector

    SciTech Connect

    Das, Sujit [ORNL; Andress, David A [ORNL; Nguyen, Tien [U.S. DOE

    2011-01-01

    Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

  9. Reducing GHG emissions in rice systems: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Linquist, B.

    2014-12-01

    Agriculture is faced with the challenge of providing healthy food for a growing population at minimal environmental cost. Rice (Oryza sativa), the staple crop for the largest number of people on earth, is grown under flooded soil conditions has higher greenhouse gas (GHG) emissions than most crops. This is primarily due to high methane emissions. In this talk I will focus on recent work and reviews on efforts to reduce GHG emissions from rice systems while at the same time maintaining or increasing the productivity of these systems. Specifically, the role of water, straw and nutrient management will be discussed. A great deal of research has gone into evaluating alternate-wetting and drying (AWD) irrigation management. AWD has tremendous potential to reduce GHG emissions; however I will examine how it needs to be practiced to achieve these goals, as well as limitations to its use such as where it can be practiced and possible effects on soil C. Straw management is critical as it provides a key carbon source for methanogens. Straw, however, is difficult to manage and has limited alternative uses. Various forms of nutrient management have also been proposed to reduced GHG emissions in rice systems. I will provide an overview of these and discuss their potential.

  10. Degassing of reduced carbon from planetary basalts.

    PubMed

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential. PMID:23569260

  11. Degassing of reduced carbon from planetary basalts

    PubMed Central

    Wetzel, Diane T.; Rutherford, Malcolm J.; Jacobsen, Steven D.; Hauri, Erik H.; Saal, Alberto E.

    2013-01-01

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential. PMID:23569260

  12. Carbon Emissions Analysis of Rail Resurfacing Work: A Case Study, Practical Guideline, and Systems Thinking Approach

    E-print Network

    Krezo, S.

    Carbon pollution has become a sensitive topic across the globe in recent times. In Australia, incentive has been provided to industry in order to reduce carbon emissions in heavy polluting industries. The railway transportation ...

  13. Unintended Consequences of Transportation Carbon Policies: Land-Use, Emissions, and Innovation

    E-print Network

    Rothman, Daniel

    Unintended Consequences of Transportation Carbon Policies: Land-Use, Emissions, and Innovation to incentivize ethanol production and reduce emissions from transportation. Compared to carbon trading emissions rates to fuels and can over or under-incentivize innovation. These results highlight the potential

  14. Feeding reduced crude protein diets with crystalline amino acids supplementation reduce air gas emissions from housing.

    PubMed

    Li, Q-F; Trottier, N; Powers, W

    2015-02-01

    The objective of this study was to test the hypothesis that reducing dietary CP by 1.5% and supplementing crystalline AA (CAA) to meet the standardized ileal digestible (SID) AA requirements for growing and finishing pigs decreases air emissions of ammonia (NH), nitrous oxide (NO), and carbon dioxide (CO) compared with an industry standard diet, without reducing growth performance. Seventy-two pigs were allocated to 12 rooms (6 pigs per room) and 2 diets (6 rooms per diet) formulated according to a 5-phase feeding program across the grow-finish period (107 d total). The diets consisted of a standard diet containing 18.5 to 12.2% CP or a reduced CP diet containing 17.5 to 11.0% CP + CAA over the course of the 5-phase feeding program. Gases (NH, NO, hydrogen sulfide, methane, nonmethane total hydrocarbon, and CO) and ventilation rates were measured continuously from the rooms. Compared with standard diet, ADG and feed conversion of pigs fed reduced CP + CAA diets did not differ (2.7 kg gain/d and 0.37 kg gain/kg feed, respectively). Compared with standard diet, feeding reduced CP + CAA diets decreased ( < 0.01) NH emissions by 46% over the 107-d period (5.4 and 2.9 g · pig · d, respectively). Change in NH emissions for each percentage unit reduction in dietary CP concentration corresponded with 47.9, 53.2, 26.8, 26.5, and 51.6% during Phases 1 through 5, respectively. Emissions of other gases did not differ between diets. Feeding reduced CP diets formulated based on SID AA requirements for grow-finisher swine is effective in reducing NH emissions from housing compared with recent industry formulations and does not impact growth performances. PMID:26020753

  15. Australian climate-carbon cycle feedback reduced by soil black carbon

    Microsoft Academic Search

    Johannes Lehmann; Jan Skjemstad; Saran Sohi; John Carter; Michele Barson; Pete Falloon; Kevin Coleman; Peter Woodbury; Evelyn Krull

    2008-01-01

    Annual emissions of carbon dioxide from soil organic carbon are an order of magnitude greater than all anthropogenic carbon dioxide emissions taken together. Global warming is likely to increase the decomposition of soil organic carbon, and thus the release of carbon dioxide from soils, creating a positive feedback. Current models of global climate change that recognize this soil carbon feedback

  16. Reducing greenhouse gas emissions in Czechoslovakia

    SciTech Connect

    Kostalova, M. (Office of International Economic Corp., Ministry of Foreign Affairs, Prague (Czechoslovakia)); Suk, J. (Inst. for Forecasting, Czechoslovak Academy of Sciences, Prague (Czechoslovakia)); Kolar, S. (Pacific Northwest Lab., Richland, WA (United States))

    1991-12-01

    In this paper are presented important findings on the potential for energy conservation and carbon emissions reduction over the coming decades in Czechoslovakia. The authors describe the state of the energy use in Czechoslovakia today and the measures required to transform its energy system to a market-based economy oriented towards the environmental goal of decreased energy intensity. This work furthers our understanding of the need for energy efficiency in the newly forming market economies of East and Central Europe. This paper is part of a series of country studies sponsored by the Global Climate Division of the Office of Policy, Planning, and Evaluation, United States Environmental Protection Agency (EPA). We have completed similar studies in Canada, the former Soviet Union, France, Hungary, Italy, Japan, Poland the United Kingdom, and the United States. Research is currently underway or planned in Bulgaria, Romania, and Ukraine.

  17. Will Monetized Carbon Emission Reductions Buy Enhanced Building Operations? 

    E-print Network

    Millhone, J.

    2007-01-01

    Will Monetized Carbon Emission Reductions Buy Enhanced Building Operations? John Millhone ICEBO 2007 San Francisco, CA November 2, 2007 Outline #0;z Buildings Role in Climate Change #0;z How CC Programs Treat Buildings - Cap-and-Trade Agreements... Role in Climate Change #0;z Estimates Vary Depending on Definitions #0;z IPCC WG-3 Latest Estimate (2007) ? Buildings Lead in Emission Reduction Potential ? Buildings Lead in the Certainty of Benefits #0;z Collateral Benefits ? Reduced Industrial...

  18. Will Monetized Carbon Emission Reductions Buy Enhanced Building Operations?

    E-print Network

    Millhone, J.

    2007-01-01

    Will Monetized Carbon Emission Reductions Buy Enhanced Building Operations? John Millhone ICEBO 2007 San Francisco, CA November 2, 2007 Outline #0;z Buildings Role in Climate Change #0;z How CC Programs Treat Buildings - Cap-and-Trade Agreements... Role in Climate Change #0;z Estimates Vary Depending on Definitions #0;z IPCC WG-3 Latest Estimate (2007) ? Buildings Lead in Emission Reduction Potential ? Buildings Lead in the Certainty of Benefits #0;z Collateral Benefits ? Reduced Industrial...

  19. The use of onboard diagnostics to reduce emissions in automobiles

    E-print Network

    Perez, Alberto, Jr

    2009-01-01

    The emissions from automobiles are very harmful and include gases such as Carbon Dioxide, Nitrous Oxide, and Sulfur Dioxide. One of the main reasons OBD was created was to control emissions however it currently only monitors ...

  20. Field emission properties of the graphenated carbon nanotube electrode

    NASA Astrophysics Data System (ADS)

    Zanin, H.; Ceragioli, H. J.; Peterlevitz, A. C.; Baranauskas, Vitor; Marciano, F. R.; Lobo, A. O.

    2015-01-01

    Reduced graphene oxide-coated carbon nanotubes (RGO-CNT) electrodes have been prepared by hot filament chemical vapour deposition system in one-step growth process. We studied RGO-CNT electrodes behaviour as cold cathode in field emission test. Our results show that RGO-CNT retain the low threshold voltage typical of CNTs, but with greatly improved emission current stability. The field emission enhancement value is significantly higher than that expected being caused by geometric effect (height divided by the radius of nanotube). This suggested that the field emission of this hybrid structure is not only from a single tip, but eventually it is from several tips with contribution of graphene nanosheets at CNT's walls. This phenomenon explains why the graphenated carbon nanotubes do not burn out as quickly as CNT does until emission ceases completely. These preliminaries results make nanocarbon materials good candidates for applications as electron sources for several devices.

  1. Electron emission properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hirakawa, Masaaki; Sonoda, Saki; Tanaka, Chiaki; Murakami, Hirohiko; Yamakawa, Hiroyuki

    2001-01-01

    We report on the field emission properties of carbon nanotubes, focusing on current density versus electric field ( J- F) characteristics and the spacing between the emitter and collector. We grew carbon nanotubes on SUS304, nickel, Inconel-600, and Invar-42 substrates using plasma-enhanced chemical vapor deposition, using methane gas as the carbon source and hydrogen gas as the catalyst and dilution gas. We found that nanotubes grew fastest on Invar-42. Nanotubes were distributed from 50 to 100 nm in diameter and from 1 to 30 ?m long. Onset field of the field emission was 0.7 V/?m and the current density was 1 mA/cm 2 at an electric field of 3.0 V/?m. A Fowler-Nordheim plot was made. Field enhancement factor ? and emission area ? were calculated and compared between substrates. Using nickel on quartz glass, carbon nanotubes were selectively fabricated on metal lines on quartz glass.

  2. Allowable carbon emissions lowered by multiple climate targets.

    PubMed

    Steinacher, Marco; Joos, Fortunat; Stocker, Thomas F

    2013-07-11

    Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise, ocean acidification and net primary production on land. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced when multiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies, climate sensitivity and carbon cycle feedbacks along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions. PMID:23823728

  3. Possibilities to reduce carbon emissions in Brazilian Amazon region with non timber biomass valorization: The case of biofuels produced by vegetable tropical oils

    SciTech Connect

    Freitas, M.A.V. de; Rosa, L.P. [Universidade Federal, Rio de Janeiro (Brazil); Lascio, M.A. Di [UFRS, Santa Catarina (Brazil); [Ecole Polytechnique, Grenoble (France)

    1996-12-31

    Brazil`s annual rate of deforestation reached 2.1 million ha or about 13.6% of the total annual rate of deforestation for the whole tropical area in the world during 1981--1990. Today, the extent of gross deforestation is 10.9% of the tropical closed forest area. Relative to Brazilian participation in the greenhouse effect, the changes in forest area and associated biomass burning in Amazon region are responsible for about 25.5% of CO{sub 2} emissions in the tropics. Harvest of the non-timber biomass products may be important as a potentially sustainable use of forest in some areas. An excellent option to promote these biomass products is to provide energy and industrial goods for the Amazon communities and other external markets. In this work, the biofuels produced by vegetable tropical oils and their by-products are analyzed in relation to job creation, economics and environmental impacts, with special regards concerning the limitation of the atmospheric emissions of greenhouse gases.

  4. Reducing VOC Press Emission from OSB Manufacturing

    SciTech Connect

    Dr. Gary D. McGinnis; Laura S. WIlliams; Amy E. Monte; Jagdish Rughani: Brett A. Niemi; Thomas M. Flicker

    2001-12-31

    Current regulations require industry to meet air emission standards with regard to particulates, volatile organic compounds (VOCs), hazardous air pollutants (HAPs) and other gases. One of many industries that will be affected by the new regulations is the wood composites industry. This industry generates VOCs, HAPs, and particulates mainly during the drying and pressing of wood. Current air treatment technologies for the industry are expensive to install and operate. As regulations become more stringent, treatment technologies will need to become more efficient and cost effective. The overall objective of this study is to evaluate the use of process conditions and chemical additives to reduce VOC/HAPs in air emitted from presses and dryers during the production of oriented strand board.

  5. Carbon dioxide emission from european estuaries

    PubMed

    Frankignoulle; Abril; Borges; Bourge; Canon; Delille; Libert; Theate

    1998-10-16

    The partial pressure of carbon dioxide (pCO2) in surface waters and related atmospheric exchanges were measured in nine European estuaries. Averaged fluxes over the entire estuaries are usually in the range of 0.1 to 0.5 mole of CO2 per square meter per day. For wide estuaries, net daily fluxes to the atmosphere amount to several hundred tons of carbon (up to 790 tons of carbon per day in the Scheldt estuary). European estuaries emit between 30 and 60 million tons of carbon per year to the atmosphere, representing 5 to 10% of present anthropogenic CO2 emissions for Western Europe. PMID:9774261

  6. Economic instruments for mitigating carbon emissions: scaling up carbon finance in China’s buildings sector

    Microsoft Academic Search

    Jun Li; Michel Colombier

    2011-01-01

    The relevance and cost-effectiveness are key criteria for policymakers to select appropriate policy and economic instruments\\u000a for reducing carbon emissions. Here we assess the applicability of carbon finance instruments for the improvement in building\\u000a energy efficiency by adopting the high efficiency standards as well as advanced energy supply systems, building on a case\\u000a study in a northern city in China.

  7. Carbon dioxide emission scenarios: limitations of the fossil fuel resource

    Microsoft Academic Search

    Christopher Vernon; Erica Thompson; Sarah Cornell

    2011-01-01

    Contemporary increases in atmospheric carbon dioxide concentration are in large part the result of anthropogenic carbon dioxide emissions from fossil fuel combustion. Scenario analysis is commonly used to generate projections of future carbon dioxide emissions, the resulting atmospheric concentrations and climate impact. In most scenario modelling published to date, carbon dioxide emission scenarios are based on demand-side (socioeconomic and technology)

  8. A performance standards approach to reducing CO{sub 2} emissions from electric power plants

    SciTech Connect

    Rubin, E.S. [Carnegie Mellon University, Pittsburgh, PA (United States)

    2009-06-15

    The CO{sub 2} emission performance standard policies outlined in this paper could complement a cap-and-trade program that puts a price on carbon and serve to significantly reduce the CO{sub 2} emissions from coal use for electricity generation. Emission performance standards have a long history in the United States and have been successfully used to control emissions of various air pollutants from electric generators. This paper explores the rationale for using emission performance standards and describes the various types of performance standard policies. Emission performance standards that address CO{sub 2} emissions could promote the deployment of carbon capture and storage technology coupled with new and existing coal-fueled electric power plants. 28 refs., 4 figs., 4 tabs.

  9. The Emission Spectrum of Carbon Dioxide

    Microsoft Academic Search

    H. D. Smyth

    1931-01-01

    The emission spectrum of carbon dioxide has been studied by the electron beam excitation method used by Smyth and Arnott. The whole range of the spectrum from 6500 to 1400 has been examined and only the bands reported by Fox, Duffendack and Barker in the region from 2700 to 5000 have been observed. A particular effort was made to get

  10. Carbon dioxide emissions of Antarctic tourism

    Microsoft Academic Search

    R. Farreny; J. Oliver-Solà; M. A. J. Lamers; B. Amelung; X. Gabarrell; J. Rieradevall; M. Boada; J. Benayas

    2011-01-01

    The increase of tourism to the Antarctic continent may entail not only local but also global environmental impacts. These latter impacts, which are mainly caused by transport, have been generally ignored. As a result, there is a lack of data on the global impacts of Antarctic tourism in terms of energy consumption and carbon dioxide emissions. This paper presents and

  11. Reducing emissions: The effects on shipowners

    SciTech Connect

    Wilson, K.

    1996-09-01

    In 1998 or later, IMO will bring into operation new rules aimed at reducing the amount of NO{sub x} and SO{sub x} in the exhaust gas of oceangoing ships. The NO{sub x} level required from new engines at the time of the introduction of the new rules - probably as an annex to the MARPOL rules - has been set at 17 g/kWh for low-speed engines of up to 150 r/min. Engines operating above that speed will have to emit less NO{sub x} according a simple calculation where NO{sub x} = 45.0 x n{sup -0.2}, where n is the r/min. (Thus, the NO{sub x} limit for an engine operating at 750 r/min is 12 g/kWh). At the same time, IMO will restrict the amount of SO{sub x} in exhaust gas by recommending a maximum level of sulfur in the fuel used. This first step in regulating exhaust emissions is a relatively small one and may not satisfy all the members of IMO. Therefore, the new rules may well allow the setting up of so-called `special areas` where lower limits will prevail, especially where SO{sub x} is concerned. The new requirement will equate to a sulfur content in the fuel of not more than 1.5%, as opposed to the general level that will be in the region of 3.5 to 5.0%. This paper discusses the effects all this will have on shipowners.

  12. Characterizing the carbon emissions of megacities

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Gurney, K. R.; Hutyra, L.; Miller, C. E.; Kort, E. A.; Rao, P.; Eldering, A.

    2014-12-01

    Anthropogenic carbon emissions from cities and their power plants represent the single largest human contribution to climate change. Many cities with large fossil-fuel CO2 and CH4 fluxes are undergoing rapid change due to development, urbanization, energy sector transformations and/or climate mitigation actions. Meanwhile, flux estimation uncertainties at these finer spatial scales remain significantly larger than those at the continental and national scales addressed by traditional carbon estimation techniques. Improved quantification and understanding of underlying processes at the urban scale will not only provide policy-relevant information and improve the understanding of urban dynamics and future scenarios, but will translate into better global-scale anthropogenic flux estimates, and advance our understanding of carbon cycle and climate feedbacks across multiple scales. An observing system including a tiered set of surface, airborne, and satellite sensors combined with process-based flux quantification from the bottom-up, can be focused spatially and sectorally to address these challenges. A thoughtfully crafted research program that is grounded in sustained, dense observations relevant to estimating urban carbon fluxes and their controlling processes and is focused on a statistically significant sample of cities will advance our understanding of the carbon cycle. We describe the Megacities Carbon Project as an example for developing and validating the integrated application of atmospheric observations from localized surface networks, aircraft campaigns, and satellites with an analytical construct for linking atmospheric information with the human activities that drive emissions.

  13. High-resolution forest carbon stocks and emissions in the Amazon

    PubMed Central

    Asner, Gregory P.; Powell, George V. N.; Mascaro, Joseph; Knapp, David E.; Clark, John K.; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R. Flint

    2010-01-01

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change. PMID:20823233

  14. Tracing Fuel Component Carbon in the Emissions from Diesel Engines

    SciTech Connect

    Buchholz, B A; Mueller, C J; Martin, G C; Cheng, A S E; Dibble, R W; Frantz, B R

    2002-10-14

    The addition of oxygenates to diesel fuel can reduce particulate emissions, but the underlying chemical pathways for the reductions are not well understood. While measurements of particulate matter (PM), unburned hydrocarbons (HC), and carbon monoxide (CO) are routine, determining the contribution of carbon atoms in the original fuel molecules to the formation of these undesired exhaust emissions has proven difficult. Renewable bio-derived fuels (ethanol or bio-diesel) containing a universal distribution of contemporary carbon are easily traced by accelerator mass spectrometry (AMS). These measurements provide general information about the emissions of bio-derived fuels. Another approach exploits synthetic organic chemistry to place {sup 14}C atoms in a specific bond position in a specific fuel molecule. The highly labeled fuel molecule is then diluted in {sup 14}C-free petroleum-derived stock to make a contemporary petroleum fuel suitable for tracing. The specific {sup 14}C atoms are then traced through the combustion event to determine whether they reside in PM, HC, CO, CO{sub 2}, or other emission products. This knowledge of how specific molecular structures produce certain emissions can be used to refine chemical-kinetic combustion models and to optimize fuel composition to reduce undesired emissions. Due to the high sensitivity of the technique and the lack of appreciable {sup 14}C in fossil fuels, fuels for AMS experiments can be labeled with modern levels of {sup 14}C and still produce a strong signal. Since the fuel is not radioactive, emission tests can be conducted in any conventional engine lab, dynamometer facility, or on the open road.

  15. Tracing fuel component carbon in the emissions from diesel engines

    NASA Astrophysics Data System (ADS)

    Buchholz, Bruce A.; Mueller, Charles J.; Martin, Glen C.; Cheng, A. S.; Dibble, Robert W.; Frantz, Brian R.

    2004-08-01

    The addition of oxygenates to diesel fuel can reduce particulate emissions, but the underlying chemical pathways for the reductions are not well understood. While measurements of particulate matter (PM), unburned hydrocarbons (HC), and carbon monoxide (CO) are routine, determining the contribution of carbon atoms in the original fuel molecules to the formation of these undesired exhaust emissions has proven difficult. Renewable bio-derived fuels (ethanol or bio-diesel) containing a universal distribution of contemporary carbon are easily traced by accelerator mass spectrometry (AMS). These measurements provide general information about the emissions of bio-derived fuels. Another approach exploits synthetic organic chemistry to place 14C atoms in a specific bond position in a specific fuel molecule. The highly labeled fuel molecule is then diluted in 14C-free petroleum-derived stock to make a contemporary petroleum fuel suitable for tracing. The specific 14C atoms are then traced through the combustion event to determine whether they reside in PM, HC, CO, CO2, or other emission products. This knowledge of how specific molecular structures produce certain emissions can be used to refine chemical-kinetic combustion models and to optimize fuel composition to reduce undesired emissions. Due to the high sensitivity of the technique and the lack of appreciable 14C in fossil fuels, fuels for AMS experiments can be labeled with modern levels of 14C and still produce a strong signal. Since the fuel is not radioactive, emission tests can be conducted in any conventional engine lab, dynamometer facility, or on the open road.

  16. Implementation of Emission Trading in Carbon Dioxide Sequestration Optimization Management

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Duncan, I.

    2013-12-01

    As an effective mid- and long- term solution for large-scale mitigation of industrial CO2 emissions, CO2 capture and sequestration (CCS) has been paid more and more attention in the past decades. A general CCS management system has complex characteristics of multiple emission sources, multiple mitigation technologies, multiple sequestration sites, and multiple project periods. Trade-off exists among numerous environmental, economic, political, and technical factors, leading to varied system features. Sound decision alternatives are thus desired for provide decision supports for decision makers or managers for managing such a CCS system from capture to the final geologic storage phases. Carbon emission trading has been developed as a cost-effective tool for reducing the global greenhouse gas emissions. In this study, a carbon capture and sequestration optimization management model is proposed to address the above issues. The carbon emission trading is integrated into the model, and its impacts on the resulting management decisions are analyzed. A multi-source multi-period case study is provided to justify the applicability of the modeling approach, where uncertainties in modeling parameters are also dealt with.

  17. World Energy Consumption and Carbon Dioxide Emissions: 1950 2050

    E-print Network

    . Stoker, andRuth A. Judson* Emissions of carbon dioxide from combustion of fossil fuels, which mayWorld Energy Consumption and Carbon Dioxide Emissions: 1950 Ñ 2050 Richard Schmalensee, Thomas M-U" relation with a within- sample peak between carbon dioxide emissions (and energy use) per capita and per

  18. Impact of Light-Duty Vehicle Emissions on 21st Century Carbon Dioxide Concentrations

    SciTech Connect

    Smith, Steven J.; Kyle, G. Page

    2007-08-04

    The impact of light-duty passenger vehicle emissions on global carbon dioxide concentrations was estimated using the MAGICC reduced-form climate model combined with the PNNL contribution to the CCSP scenarios product. Our central estimate is that tailpipe light duty vehicle emissions of carbon-dioxide over the 21st century will increase global carbon dioxide concentrations by slightly over 12 ppmv by 2100.

  19. Opportunities to reduce greenhouse gas emissions from households in Nigeria

    Microsoft Academic Search

    O. Adeoti; S. O. Osho

    2012-01-01

    Efforts to mitigate climate threats should not exclude the household as the household is a major driver of greenhouse gas\\u000a (GHG) emissions through its consumption patterns. This paper derives an emission index that could be used to estimate inventories\\u000a of carbon dioxide (CO2) emissions from kerosene combustion for lighting in Nigeria and also looks at the implications of solar pv

  20. Reduced emissions from inexpensive high-sulphur coal briquettes

    Microsoft Academic Search

    R. B. Gammage; E. A. Wachter; J. Wade; D. L. Wilson; J. W. Haas; N. Ahmad; F. Siltain; M. Z. Raza

    1992-01-01

    Airborne emissions were measured during the combustion of Pakistani high-sulphur coal, cold briquetted with lime and clay; comparison was made to emissions from raw coal and traditional fuels burnt in a native, mud-lined Angethi stove. Compared to raw coal, the amended coal gave fourfold reduced emission of respirable-size particles (RSP) and threefold reduced total releases of SOâ. In domestic cooking,

  1. Reduced emissions from inexpensive high-sulphur coal briquettes

    Microsoft Academic Search

    R. B. Gammage; E. A. Wachter; J. Wade; D. L. Wilson; J. W. Haas; N. Ahmad; F. Siltain; M. Z. Raza

    1992-01-01

    Airborne emissions were measured during the combustion of Pakistani high-sulphur coal, cold briquetted with lime and clay; comparison was made to emissions from raw coal and traditional fuels burnt in a native, mud-lined Angethi stove. Compared to raw coal, the amended coal gave fourfold reduced emission of respirable-size particles (RSP) and threefold reduced total releases of SO[sub 2]. In domestic

  2. Analytical relationships between atmospheric carbon dioxide, carbon emissions, and ocean processes

    E-print Network

    Follows, Mick

    Analytical relationships between atmospheric carbon dioxide, carbon emissions, and ocean processes), Analytical relationships between atmospheric carbon dioxide, carbon emissions, and ocean processes, Global Biogeochem. Cycles, 22, GB3030, doi:10.1029/2008GB003184. 1. Introduction [2] Atmospheric carbon dioxide

  3. Using advanced technologies to reduce motor vehicle greenhouse gas emissions

    Microsoft Academic Search

    Carmen Difiglio

    1997-01-01

    This paper quantifies the potential reduction in US greenhouse gas emissions that could be achieved by using advanced-technology motor vehicles and low-emission bio-fuels. These two approaches are compared to a variety of other approaches to reduce transportation sector emissions. It is concluded that only strong fiscal measures can produce emission reductions as large as are available from advanced-technology vehicles and

  4. REFORMULATING BIODIESEL TO REDUCE NOX EMISSIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of biodiesel, a diesel engine fuel produced from agriculturally derived fats and oils, offers many advantages over petrodiesel, but has been shown in certain instances to increase emissions of oxides of nitrogen (NOx), a federally regulated pollutant. The work described here involved modifi...

  5. Subsurface manure application to reduce ammonia emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation into soil is generally recommended to reduce ammonia volatilization and nutrient runoff following land application of manures. A range of subsurface applicators are available for manure incorporation with minimal soil disturbance in reduced tillage systems, but none have been widely a...

  6. U.S. Energy-Related Carbon Dioxide Emissions

    EIA Publications

    2014-01-01

    U.S. Energy Information Administration releases its online analysis of 2012 energy-related carbon dioxide emissions today. It indicates U.S. carbon dioxide emissions from the consumption of fossil fuels were 5,290 million metric tons carbon dioxide in 2012, a decrease of almost 4% from the 2011 level. Energy-related carbon dioxide emissions have declined in five of the last seven years and are the lowest they have been since 1994.

  7. Pilot study to reduce emissions, improve health, and offset BC emissions through the distribution of improved cook stoves in Nepal

    NASA Astrophysics Data System (ADS)

    Banmali Pradhan, B.; Panday, A. K.; Surapipith, V.

    2013-12-01

    In most developing countries, wood and other biomass fuels are still the primary source of energy for the majority of the people, particularly the poor. It is estimated that cook stoves account for approximately 20% of global black carbon emissions. In Nepal 87% of energy is supplied from traditional biomass and 75% of households still depend on biomass as a cooking fuel. The substitution of traditional cook stoves with improved cook stoves provides an important way to reduce black carbon emissions. In 2013 the International Centre for Integrated Mountain Development (ICIMOD) has commenced a pilot study that both examines ways to effectively disseminate improved cookstoves across remote rural mountain regions, and also quantifies the resulting changes in emissions, air quality and health. The selected study area is in Bajrabarahi Village in Makawanpur district, to the southwest of Kathmandu. The study area consists of around 1600 households, which are divided into control groups and groups where the cook stove intervention is taking place. The study complements the ';Clean Cooking energy solution for all by 2017' announced by the Government of Nepal recently, and will provide insights to the government on ways to effectively reduce black carbon emissions from cook stoves. To make the study robust and sustainable, local women's group and a local medical institution are involved in the project right from the conceptualization stage. The study region has been chosen in part because the medical school Patan Academy of Health Sciences (PAHS) has already started a long term health assessment in the region, and has built up considerable local contacts. The local women's group is working on the modality of cook stove distribution through micro credit programmes in the village. We will distribute the best available manufactured, fan-assisted cook stoves that are expected to reduce BC emissions the most. Health assessments, emissions estimates, as well as measurements of indoor and outdoor air quality will be done before and after the stoves are disseminated. Having obtained funds for the purchase of improved cook stoves from Nepal's diesel automobile sector, we compare the emissions of black carbon from the sponsoring diesel vehicles with the reduction in black carbon emissions from the sponsored improved cook stoves, thereby pioneering methods to offset black carbon emissions.

  8. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2

    EIA Publications

    2001-01-01

    This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

  9. Reducing emissions: The effects on shipowners

    Microsoft Academic Search

    1996-01-01

    In 1998 or later, IMO will bring into operation new rules aimed at reducing the amount of NOâ and SOâ in the exhaust gas of oceangoing ships. The NOâ level required from new engines at the time of the introduction of the new rules - probably as an annex to the MARPOL rules - has been set at 17 g\\/kWh

  10. Wood-based building materials and atmospheric carbon emissions

    Microsoft Academic Search

    Andrew H Buchanan; S. Bry Levine

    1999-01-01

    This study investigates the global impact of wood as a building material by considering emissions of carbon dioxide to the atmosphere. Wood is compared with other materials in terms of stored carbon and emissions of carbon dioxide from fossil fuel energy used in manufacturing. An analysis of typical forms of building construction shows that wood buildings require much lower process

  11. Using Remote Sensing to Assess Russian Forest Fire Carbon Emissions

    Microsoft Academic Search

    A. S. Isaev; G. N. Korovin; S. A. Bartalev; D. V. Ershov; A. Janetos; E. S. Kasischke; H. H. Shugart; N. H. F. French; B. E. Orlick; T. L. Murphy

    2002-01-01

    Russian boreal forests are subject to frequent wildfires. The resulting combustion of large amounts of biomass not only transforms forest vegetation, but it also creates significant carbon emissions that total, according to some authors, from 35–94 Mt C per year. These carbon emissions from forest fires should be considered an important part of the forest ecosystem carbon balance and a

  12. MMT increases octane while reducing emissions

    SciTech Connect

    Hollrah, D.P.; Burns, A.M. (Ethyl Petroleum Additives Inc., St. Louis, MO (US))

    1991-03-11

    Tighter emissions standards and lower aromatics specifications are focusing attention on new blending agents and MMT to replace lost octane quality. MMT is methylcyclopentadienyl manganese tricarbonyl. Ethers will pay a prominent role as components of U.S. gasoline in the 1990s. Their blending characteristics are a good fit with the probable requirements for reformulated gasoline. Methyl tertiary butyl ether (MTBE) has already become an important gasoline blending agent in the U.S. It is being used in many of the reformulated gasolines that have already been introduced into the U.S. market. Refiners have found that MTBE is relatively inexpensive to produce and is competitively priced with other octane blending agents currently available.

  13. Apparatus for reducing solvent luminescence background emissions

    DOEpatents

    Affleck, Rhett L. (Los Alamos, NM); Ambrose, W. Patrick (Los Alamos, NM); Demas, James N. (Charlottesville, VA); Goodwin, Peter M. (Jemez Springs, NM); Johnson, Mitchell E. (Pittsburgh, PA); Keller, Richard A. (Los Alamos, NM); Petty, Jeffrey T. (Los Alamos, NM); Schecker, Jay A. (Sante Fe, NM); Wu, Ming (Los Alamos, NM)

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  14. REDUCING EMISSIONS FROM THE WOOD FURNITURE INDUSTRY WITH WATERBORNE COATINGS

    EPA Science Inventory

    This program was initiated to develop meaningful, defensible, and reliable data on emission reduction benefits from the use of reduced hydrocarbon finishes. The program also included assessing add-on emission control options and considering installation aspects such as costs. Thi...

  15. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    NASA Astrophysics Data System (ADS)

    Xu, Jinzhuo; Xu, Peng; Ou-Yang, Wei; Chen, Xiaohong; Guo, Pingsheng; Li, Jun; Piao, Xianqing; Wang, Miao; Sun, Zhuo

    2015-02-01

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V ?m-1 and threshold field of 0.657 V ?m-1 corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  16. Urban energy consumption and related carbon emission estimation: a study at the sector scale

    NASA Astrophysics Data System (ADS)

    Lu, Weiwei; Chen, Chen; Su, Meirong; Chen, Bin; Cai, Yanpeng; Xing, Tao

    2013-12-01

    With rapid economic development and energy consumption growth, China has become the largest energy consumer in the world. Impelled by extensive international concern, there is an urgent need to analyze the characteristics of energy consumption and related carbon emission, with the objective of saving energy, reducing carbon emission, and lessening environmental impact. Focusing on urban ecosystems, the biggest energy consumer, a method for estimating energy consumption and related carbon emission was established at the urban sector scale in this paper. Based on data for 1996-2010, the proposed method was applied to Beijing in a case study to analyze the consumption of different energy resources (i.e., coal, oil, gas, and electricity) and related carbon emission in different sectors (i.e., agriculture, industry, construction, transportation, household, and service sectors). The results showed that coal and oil contributed most to energy consumption and carbon emission among different energy resources during the study period, while the industrial sector consumed the most energy and emitted the most carbon among different sectors. Suggestions were put forward for energy conservation and emission reduction in Beijing. The analysis of energy consumption and related carbon emission at the sector scale is helpful for practical energy saving and emission reduction in urban ecosystems.

  17. Carbon, Nitrogen Balances and Greenhouse Gas Emission during Cattle Feedlot Manure Composting

    Microsoft Academic Search

    Xiying Hao; Chi Chang; Francis J. Larney

    2004-01-01

    Carbon and N losses reduce the agronomic value of compost and contribute to greenhouse gas (GHG) emissions. This study investi-gated GHG emissions during composting of straw-bedded manure (SBM) and wood chip-bedded manure (WBM). For SBM, dry matter (DM) loss was 301 kg Mg,, total carbon (TC) loss was 174 kg Mg,, and total nitrogen (TN) loss was 8.3 kg Mg,.

  18. The Effect of Emissions Trading And Carbon Sequestration on The Cost Of CO2 Emissions Mitigation

    SciTech Connect

    Mahasenan, Natesan; Scott, Michael J.; Smith, Steven J.

    2002-08-05

    The deployment of carbon capture and sequestration (CC&S) technologies is greatly affected by the marginal cost of controlling carbon emissions (also the value of carbon, when emissions permits are traded). Emissions limits that are more stringent in the near term imply higher near-term carbon values and therefore encourage the local development and deployment of CC&S technologies. In addition, trade in emissions obligations lowers the cost of meeting any regional or global emissions limit and so affects the rate of penetration of CC&S technologies. We examine the effects of the availability of sequestration opportunities and emissions trading (either within select regions or globally) on the cost of emissions mitigation and compliance with different emissions reduction targets for the IPCC SRES scenarios. For each base scenario and emissions target, we examine the issues outlined above and present quantitative estimates for the impacts of trade and the availability of sequestration opportunities in meeting emissions limitation obligations.

  19. Heat pipes to reduce engine exhaust emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F. (inventor)

    1984-01-01

    A fuel combustor is presented that consists of an elongated casing with an air inlet conduit portion at one end, and having an opposite exit end. An elongated heat pipe is mounted longitudinally in the casing and is offset from and extends alongside the combustion space. The heat pipe is in heat transmitting relationship with the air intake conduit for heating incoming air. A guide conduit structure is provided for conveying the heated air from the intake conduit into the combustion space. A fuel discharge nozzle is provided to inject fuel into the combustion space. A fuel conduit from a fuel supply source has a portion engaged in heat transfer relationship of the heat pipe for preheating the fuel. The downstream end of the heat pipe is in heat transfer relationship with the casing and is located adjacent to the downstream end of the combustion space. The offset position of the heat pipe relative to the combustion space minimizes the quenching effect of the heat pipe on the gaseous products of combustion, as well as reducing coking of the fuel on the heat pipe, thereby improving the efficiency of the combustor.

  20. The Logistics Equipment Carbon Emission Monitoring System for a Green Logistics

    NASA Astrophysics Data System (ADS)

    Choi, Hyungrim; Park, Byoungkwon; Lee, Byungha; Park, Yongsung; Lee, Changsup; Ha, Jeongsoo

    Recently, due to the global enforcement of obligations to reduce green house gases and various environmental regulations, low carbon green growth strategies are required. Currently, in our country, environment friendly logistics activities are staying in the early stage compared to advanced countries because of our country's large energy consumption type industrial structures. As a measure to respond to the trend of the reinforcement of international environmental regulations in the sector of logistics, active green logistics systems should be established and to solve this problem, this study is intended to develop a monitoring system that can manage the carbon emission of logistics equipment(container truck, discharging equipment etc) in real time using a new technology named IP-RFID. The monitoring system developed in this study can actively manage the carbon emission of individual logistics equipment by attaching IP-Tags that can measure the carbon emission of individual logistics equipment in real time and transmit the information obtained from the measurement directly to users through IP communication. Since carbon emission can be managed by logistics equipment and drivers can check the carbon emission of equipment through this system, the carbon emission generated in the logistics sector may be reduced by using this system.

  1. Sevelamer carbonate markedly reduces levothyroxine absorption.

    PubMed

    Iovino, Michele; Iovine, Nicola; Petrosino, Alfanso; Giagulli, Vito A; Licchelli, Brunella; Guastamacchia, Edoardo; Triggiani, Vincenzo

    2014-01-01

    We report the case of a young woman affected by hypothyroidism due to Hashimoto's thyroiditis, previously well compensated with a full replacement therapy (150 mcg/day of levothyroxine), presenting a clinical picture of myxedema, with a TSH=650 mU/L. Two years earlier she had started a dialysis treatment because of a chronic renal failure and had been under treatment for the last 18 months with sevelamer carbonate, a phosphate binder. No improvement of clinical conditions nor reduction in TSH serum levels was observed even on increasing the dose of levothyroxine up to 300 mcg/day, whereas euthyroidism finally restored by administering the first morning dose of sevelamer carbonate at least 4 hours after levothyroxine administration. This case shows that sevelamer carbonate, in analogy with what has been already reported for sevelamer hydrochloride, can interfere with levothyroxine absorption leading to a condition of hypothyroidism in patients previously well compensated with a given replacement dose. PMID:25183496

  2. Development of air conditioning technologies to reduce CO2 emissions in the commercial sector

    PubMed Central

    Yoshida, Yukiko

    2006-01-01

    Background Architectural methods that take into account global environmental conservation generally concentrate on mitigating the heat load of buildings. Here, we evaluate the reduction of carbon dioxide (CO2) emissions that can be achieved by improving heating, ventilating, and air conditioning (HVAC) technologies. Results The Climate Change Research Hall (CCRH) of the National Institute for Environmental Studies (NIES) is used as a case study. CCRH was built in line with the "Green Government Buildings" program of the Government Buildings Department at the Ministry of Land, Infrastructure and Transport in Japan. We have assessed the technology used in this building, and found that there is a possibility to reduce energy consumption in the HVAC system by 30%. Conclusion Saving energy reduces CO2 emissions in the commercial sector, although emission factors depend on the country or region. Consequently, energy savings potential may serve as a criterion in selecting HVAC technologies with respect to emission reduction targets. PMID:17062161

  3. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    PubMed

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization. PMID:16190250

  4. Policy considerations for using cumulative carbon emissions as a guide

    NASA Astrophysics Data System (ADS)

    Rogelj, J.

    2014-12-01

    The transient climate response to cumulative carbon emissions (TCRE) relates peak global-mean temperature increase to the total amount of carbon emissions emitted to the atmosphere. The simplicity of this concept invites to use it for climate policy guidance. However, besides a policy's effectiveness to limit long-term anthropogenic climate change, a multitude of other aspects play a role for policymakers. In this session I will summarize my work on costs of limiting cumulative carbon emissions to a particular emission budget over a certain time frame and technology dependencies of these costs. Furthermore, I will look at possible co-benefits of limiting cumulative carbon emissions and discuss how mitigation of short-lived climate forcers can influence emission budgets of carbon dioxide consistent with a particular temperature limit.

  5. Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations

    NASA Astrophysics Data System (ADS)

    Wang, Changjian; Zhang, Xiaolei; Wang, Fei; Lei, Jun; Zhang, Li

    2015-03-01

    Regional carbon emissions research is necessary and helpful for China in realizing reduction targets. The LMDI I (Logarithmic Mean Divisia Index I) technique based on an extended Kaya identity was conducted to uncover the main five driving forces for energy-related carbon emissions in Xinjiang, an important energy base in China. Decomposition results show that the affluence effect and the population effect are the two most important contributors to increased carbon emissions. The energy intensity effect had a positive influence on carbon emissions during the pre-reform period, and then became the dominant factor in curbing carbon emissions after 1978. The renewable energy penetration effect and the emission coefficient effect showed important negative but relatively minor effects on carbon emissions. Based on the local realities, a comprehensive suite of mitigation policies are raised by considering all of these influencing factors. Mitigation policies will need to significantly reduce energy intensity and pay more attention to the regional economic development path. Fossil fuel substitution should be considered seriously. Renewable energy should be increased in the energy mix. All of these policy recommendations, if implemented by the central and local government, should make great contributions to energy saving and emission reduction in Xinjiang.

  6. Effect of natural compounds on reducing formaldehyde emission from plywood

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shigehisa; Matsushima, Erica; Kitao, Nahoko; Tokunaga, Hiroshi; Ando, Masanori; Otsubo, Yasufumi

    The effects of natural compounds on reducing formaldehyde emission from plywood were investigated. Urea, catechin and vanillin were examined as the natural formaldehyde reducers. The microemission cell, with an internal volume of 35 ml, the maximum exposed test surface area of 177 cm 2 and an air purge flow rate of 50 ml min -1, was used to measure specific emission rate (SER). In the case of no reducer treatment, formaldehyde emission from plywood was fast and SERs were 4.4 mg m -2 h -1 at 30 °C and 15 mg m -2 h -1 at 60 °C. When this plywood was treated with the natural compounds, the SERs of formaldehyde were decreased at all temperatures. In the case of urea treatment, the SERs of formaldehyde decreased to 0.30 mg m -2 h -1 at 30 °C and 0.65 mg m -2 h -1 at 60 °C. When the urea treatment was applied to the inside of kitchen cabinet (made from plywood; 270 cm wide, 60 cm deep, 250 cm high), the concentration of formaldehyde was reduced substantially from 1600 to 130 ?g m -3. The reducing effect of formaldehyde continued during the observation period (6 months), with a mean concentration of 100 ?g m -3. Reducers in the plywood would react with released formaldehyde. Application of natural compounds such as urea, catechin and vanillin could provide a simple and effective approach for suppressing formaldehyde emission from plywood.

  7. Using Carbon Emissions Data to "Heat Up" Descriptive Statistics

    ERIC Educational Resources Information Center

    Brooks, Robert

    2012-01-01

    This article illustrates using carbon emissions data in an introductory statistics assignment. The carbon emissions data has desirable characteristics including: choice of measure; skewness; and outliers. These complexities allow research and public policy debate to be introduced. (Contains 4 figures and 2 tables.)

  8. Global patterns of carbon dioxide emissions from soils

    Microsoft Academic Search

    James W. Raich; Christopher S. Potter

    1995-01-01

    We use semi-mechanistic, empirically based statistical models to predict the spatial and temporal patterns of global carbon dioxide emissions from terrestrial soils. Emissions include the respiration of both soil organisms and plant roots. At the global scale, rates of soil COâ efflux correlate significantly with temperature and precipitation; they do not correlated well with soil carbon pools, soil nitrogen pools,

  9. Reducing dust emissions at OAO Alchevskkoks coke battery 10A

    SciTech Connect

    T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

  10. Estimated Carbon Dioxide Emissions in 2008: United States

    Microsoft Academic Search

    C A Smith; A J Simon; R D Belles

    2011-01-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three

  11. The role of carbon dioxide in ammonia emission from manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia emission from manure is a significant loss of fixed N from agricultural systems, and contributes to air pollution and ecosystem degradation. Despite the development of numerous mathematical models for predicting ammonia emission, the interactions between carbon dioxide emission, manure pH, a...

  12. Wellbeing Impacts of City Policies for Reducing Greenhouse Gas Emissions

    PubMed Central

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias; Martuzzi, Marco; Perez, Laura; Sabel, Clive

    2014-01-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what ‘wellbeing’ is and how it can be operationalized for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies. PMID:25464129

  13. Reduced Turbine Emissions Using Hydrogen-Enriched Fuels

    E-print Network

    . Keller Combustion Research Facility Sandia National Laboratories Livermore CA 94551 2003 Hydrogen stringent and costly requirements of feed stock purity for fuel cell utilization ­ Field testing of emerging optimal use of fuel lean combustion for NOx control ­ Replaces hydrocarbon fuels for reduced CO2 emissions

  14. Reduced Crude Protein Effects on Aerial Emissions from Swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of feeding reduced crude protein (CP) diets on air emissions was evaluated using barrows fed over the course of four feeding phases: grower-1 (beginning at 24.5 kg BW), grower-2 (55.3 kg), finisher-1 (87.2 kg), and finisher-2 (111.4 kg). Pigs were offered a control diet (C), a low CP diet...

  15. Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions

    E-print Network

    Stefanopoulou, Anna

    Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions A.G. Stefanopoulouz Introduction In this paper we consider an automotive control problem for a variable geometry turbocharged (VGT torque output as compared to (non-turbocharged) naturally aspirated engines 13]. The power generated

  16. Attempts to Reduce NOx Exhaust Emissions by Using Reformulated Biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two routes were investigated for reformulating soy-based biodiesel in an effort to reduce its nitrogen oxide emissions. In the first approach, methyl soyate was modified by converting a proportion of the cis-bonds in the fatty acid chains of its methyl esters to their trans isomers. In the second ...

  17. REDUCING FUMIGANT EMISSIONS USING SURFACE TARPS: FIELD AND LABORATORY ASSESSMENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasingly stringent regulations require that emissions of fumigants to the atmosphere be reduced to protect human and environmental health. Plastic tarps used to cover the soil surface during soil fumigation vary in their effectiveness as diffusion barriers. Virtually impermeable films (VIFs) hav...

  18. Effects of reducing SO2 and NOx emission from ships on air quality in Alaska

    NASA Astrophysics Data System (ADS)

    Tran, T. T.; Mölders, N.

    2011-12-01

    We performed simulations with the Alaska-adapted WRF/Chem using the same meteorological conditions of January 2000, but alternatively applying the emissions of 2000 (REF), emissions of 2000 with the ship-emission reductions for the planned North American Emission Contral Area (ECA) for SO2 only (ECA1) and SO2 and NOx (ECA2) that have been proposed by the International Maritime Organization for 2015. The analysis focused on the air quality along the international shipping lanes (ISL), in the ECA and over Alaska (AK). Our goal is to examine how the decreases in ship emissions in the ISL and ECA affect to air quality in Alaska. Our model results show that reducing SO2 and NOx ship-emissions reduces the concentration of sulfur and nitrogen compounds over Alaska despite of no changes in Alaska emissions. The reductions of pollutants over the ISL, ECA and AK stemming from concurrent SO2-NOx ship emission reductions are an order of magnitude of those stemming from SO2 reduction in ship emissions only. Reductions in sulfur compounds reach up to 14km while reductions of nitrogen compounds reach to only about 7km. Reductions of sulfate and nitrate in clouds are highest at the top of the boundary layer. Among the three regions of interest, strongest reductions occur over the ECA and ISL for sulfur and nitrogen compounds, respectively, since the ECA (ISL) has highest reductions of SO2 (NOx). The PM2.5 speciation partitioning over all three regions marginally changes when the ship emissions change. Sulfate is the major component of PM2.5 in all regions. Closer to the land, organic carbon (OC) partitioning is higher indicating the enhancing impacts of inland anthropogenic emissions to total PM2.5 concentrations over land.

  19. A reduced organic carbon component in martian basalts.

    PubMed

    Steele, A; McCubbin, F M; Fries, M; Kater, L; Boctor, N Z; Fogel, M L; Conrad, P G; Glamoclija, M; Spencer, M; Morrow, A L; Hammond, M R; Zare, R N; Vicenzi, E P; Siljeström, S; Bowden, R; Herd, C D K; Mysen, B O; Shirey, S B; Amundsen, H E F; Treiman, A H; Bullock, E S; Jull, A J T

    2012-07-13

    The source and nature of carbon on Mars have been a subject of intense speculation. We report the results of confocal Raman imaging spectroscopy on 11 martian meteorites, spanning about 4.2 billion years of martian history. Ten of the meteorites contain abiotic macromolecular carbon (MMC) phases detected in association with small oxide grains included within high-temperature minerals. Polycyclic aromatic hydrocarbons were detected along with MMC phases in Dar al Gani 476. The association of organic carbon within magmatic minerals indicates that martian magmas favored precipitation of reduced carbon species during crystallization. The ubiquitous distribution of abiotic organic carbon in martian igneous rocks is important for understanding the martian carbon cycle and has implications for future missions to detect possible past martian life. PMID:22628557

  20. The study on the changing characteristics and their countermeasures for China's carbon emissions in 2000-2010

    NASA Astrophysics Data System (ADS)

    Wang, Qiuxian; Gao, Zhiqiang; Ning, Jicai; Lu, Qing-shui; Shi, Runhe; Gao, Wei

    2013-09-01

    Based on the quantitative calculation of 2000-2010 China's 30 provinces of carbon emissions by the method of 2006 IPCC with the data from China energy statistical yearbook and China cement Yearbook, a detailed analysis of the temporal and spatial variation characteristics of carbon emissions in both Chinese level and provinces' level was made. The result showed that most of the provinces of China's carbon emissions presented an increasing trend in the past 11 years, especially in Shandong Province, Hebei Province, Shanxi Province, Liaoning Province, Jiangsu province which is located in the national top five. Then according to the current carbon emissions trend, the author put forward some countermeasures for China, such as speeding up the pace of industrial restructuring, searching for clean energy and other measures to reduce the carbon emissions of china to low the emission rate and contribute to the world.

  1. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China.

    PubMed

    Zhang, Wei-Feng; Dou, Zheng-Xia; He, Pan; Ju, Xiao-Tang; Powlson, David; Chadwick, Dave; Norse, David; Lu, Yue-Lai; Zhang, Ying; Wu, Liang; Chen, Xin-Ping; Cassman, Kenneth G; Zhang, Fu-Suo

    2013-05-21

    Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world's population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China's participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China's use of N fertilizer, we quantify the carbon footprint of China's N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20-63%, amounting to 102-357 Tg CO2-eq annually. Such reduction would decrease China's total GHG emissions by 2-6%, which is significant on a global scale. PMID:23671096

  2. Indian oil company joins efforts to reduce methane emissions

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    The Oil and Natural Gas Corp, Ltd. (ONGC), headquartered in Dehradun, India, has joined seven U.S. and Canadian oil and natural gas companies as a partner in a U.S. Environmental Protection Agency program to reduce greenhouse gas emissions. EPA's Natural Gas STAR International Program aims to reduce methane emissions from the oil and natural gas sector while delivering more gas to markets around the world. With this partnership, ONGC agrees to implement emissions reduction practices and to submit annual reports on progress achieved; EPA agrees to assist ONGC with training technicians in new cost-effective technologies that will help achieve target emissions. The Natural Gas STAR International Program is administered under the Methane to Markets Partnership, a group of 20 countries and 600 companies across the globe that since 2004 has volunteered to cut methane emissions. More information on EPA's agreement with ONGC can be found at http://www.epa.gov/gasstar/index.htm; information about the Methane to Markets Partnership can be found at http://www.methanetomarkets.org.

  3. Research Needs for Finely Resolved Fossil Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Gurney, Kevin; Ansley, William; Mendoza, Daniel; Petron, Gabrielle; Frost, Greg; Gregg, Jay; Fischer, Marc; Pataki, Diane; Ackerman, Kate; Houweling, Sander; Corbin, Kathy; Andres, Robert; Blasing, T. J.

    2007-12-01

    Scientific research on the global carbon cycle has emerged as a high priority in biogeochemistry, climate studies, and global change policy. The emission of carbon dioxide (CO2) from fossil fuel combustion is a dominant driver of the current net carbon fluxes between the land, the oceans, and the atmosphere, and it is a key contributor to the rise in modern radiative forcing. Contrary to a commonly held perception, our quantitative knowledge about these emissions is insufficient to satisfy current scientific and policy needs. A more highly spatially and temporally resolved quantification of the social and economic drivers of fossil fuel combustion, and the resulting CO2 emissions, is essential to supporting scientific and policy progress. In this article, a new community of emissions researchers called the CO2 Fossil Fuel Emission Effort (CO2FFEE) outlines a research agenda to meet the need for improved fossil fuel CO2 emissions information and solicits comment from the scientific community and research agencies.

  4. Carbon Tetrachloride Emissions from the Amazon Forest

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Chambers, J. Q.; Higuchi, N.; Jardine, A. B.; Martin, S. T.; Manzi, A. O.

    2014-12-01

    As a chemically inert greenhouse gas in the troposphere with lifetimes up to 50 years but active in ozone destruction in the stratosphere, carbon tetrachloride (CCl4) plays a major role in the atmospheric chlorine budget and is widely considered strictly of anthropogenic origin deriving from numerous industrial processes and products. However, satellite remote sensing studies have shown higher concentrations at the Equator, and earlier work has suggested possible biogenic sources. Here we present highly vertically-resolved atmospheric gradients of CCl4 within and above a primary rainforest ecosystem from three towers in the Central Amazon. The observed buildup of CCl4 mixing ratios near the top of the main canopies provides new evidence for a potentially large biogenic source from the Basin. By demonstrating the need to represent tropical forests as biogenic sources of CCl4, our study may help narrow the gap between remote sensing observations of CCl4 and emission, chemistry, and transport models and therefore lead to improved predictions of its role in atmospheric chemistry and climate.

  5. Optimization of gasoline hydrocarbon compositions for reducing exhaust emissions.

    PubMed

    Shen, Yitao; Shuai, Shijin; Wang, Jianxin; Xiao, Jianhua

    2009-01-01

    Effects of hydrocarbon compositions on raw exhaust emissions and combustion processes were studied on an engine test bench. The optimization of gasoline hydrocarbon composition was discussed. As olefins content increased from 10.0% to 25.0% in volume, the combustion duration was shortened by about 2 degree crank angle (degrees CA), and the engine-out THC emission was reduced by about 15%. On the other hand, as aromatics content changed from 35.0% to 45.0%, the engine-out NOx emissions increased by 4%. An increment in olefins content resulted in a slight increase in engine-out CO emission, while the aromatics content had little effect on engine-out total hydrocarbon (THC) and CO emissions. Over the new European driving cycle (NEDC), the THC, NOx and CO emissions of fuel with 25.0% olefins and 35.0% aromatics were about 45%, 21% and 19% lower than those of fuel with 10.0% olefins and 40.0% aromatics, respectively. The optimized gasoline compositions for new engines and new vehicles have low aromatics and high olefins contents. PMID:19999967

  6. The effects of carbon tax on the Oregon economy and state greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Rice, A. L.; Butenhoff, C. L.; Renfro, J.; Liu, J.

    2014-12-01

    Of the numerous mechanisms to mitigate greenhouse gas emissions on statewide, regional or national scales in the United States, a tax on carbon is perhaps one of the simplest. By taxing emissions directly, the costs of carbon emissions are incorporated into decision-making processes of market actors including consumers, energy suppliers and policy makers. A carbon tax also internalizes the social costs of climate impacts. In structuring carbon tax revenues to reduce corporate and personal income taxes, the negative incentives created by distortionary income taxes can be reduced or offset entirely. In 2008, the first carbon tax in North America across economic sectors was implemented in British Columbia through such a revenue-neutral program. In this work, we investigate the economic and environmental effects of a carbon tax in the state of Oregon with the goal of informing the state legislature, stakeholders and the public. The study investigates 70 different economic sectors in the Oregon economy and six geographical regions of the state. The economic model is built upon the Carbon Tax Analysis Model (C-TAM) to provide price changes in fuel with data from: the Energy Information Agency National Energy Modeling System (EIA-NEMS) Pacific Region Module which provides Oregon-specific energy forecasts; and fuel price increases imposed at different carbon fees based on fuel-specific carbon content and current and projected regional-specific electricity fuel mixes. CTAM output is incorporated into the Regional Economic Model (REMI) which is used to dynamically forecast economic impacts by region and industry sector including: economic output, employment, wages, fiscal effects and equity. Based on changes in economic output and fuel demand, we further project changes in greenhouse gas emissions resulting from economic activity and calculate revenue generated through a carbon fee. Here, we present results of this modeling effort under different scenarios of carbon fee and avenues for revenue repatriation.

  7. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

  8. Clean Power Plan: Reducing Carbon Pollution From Existing Power Plants

    E-print Network

    Bremer,K.

    2014-01-01

    is a rate – a statewide number for the future carbon intensity of covered existing fossil-fuel-fired power plants in a state. • Encompasses the dynamic variables that ultimately determine how much carbon pollution is emitted by fossil fuel power... plants. • Accommodates the fact that CO2 emissions from fossil fuel-fired power plants are influenced by how efficiently they operate and by how much they operate. • The state goal rate is calculated to account for the mix of power sources in each...

  9. and reduce emissions in gas turbines by helping to reduce creep in combustion liners

    Microsoft Academic Search

    Hany Rizkalla

    A low-emissions combustion liner is a critical system component for gas turbines. The combustion air in a gas turbine enters through holes in the combustion chamber liner and flows along the liner to keep it cool. Liners are designed to improve durability and cooling while minimizing the flow variation from liner to liner within the same engine. Reducing variation can

  10. A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO?.

    PubMed

    Morfopoulos, Catherine; Sperlich, Dominik; Peñuelas, Josep; Filella, Iolanda; Llusià, Joan; Medlyn, Belinda E; Niinemets, Ülo; Possell, Malcolm; Sun, Zhihong; Prentice, Iain Colin

    2014-07-01

    We present a unifying model for isoprene emission by photosynthesizing leaves based on the hypothesis that isoprene biosynthesis depends on a balance between the supply of photosynthetic reducing power and the demands of carbon fixation. We compared the predictions from our model, as well as from two other widely used models, with measurements of isoprene emission from leaves of Populus nigra and hybrid aspen (Populus tremula × P. tremuloides) in response to changes in leaf internal CO2 concentration (C(i)) and photosynthetic photon flux density (PPFD) under diverse ambient CO2 concentrations (C(a)). Our model reproduces the observed changes in isoprene emissions with C(i) and PPFD, and also reproduces the tendency for the fraction of fixed carbon allocated to isoprene to increase with increasing PPFD. It also provides a simple mechanism for the previously unexplained decrease in the quantum efficiency of isoprene emission with increasing C(a). Experimental and modelled results support our hypothesis. Our model can reproduce the key features of the observations and has the potential to improve process-based modelling of isoprene emissions by land vegetation at the ecosystem and global scales. PMID:24661143

  11. Prospects for international trade in environmental services: An analysis of international carbon emission off-sets

    SciTech Connect

    Swisher, J.N.

    1991-01-01

    This dissertation presents a case study analysis in which the costs to a US electric utility of reducing its carbon dioxide (CO{sub 2}) emissions are compared with the costs of carbon-saving forestry projects in Costa Rica and Guatemala. The results show that a large electric utility in the south-central US would find it relatively inexpensive, even profitable given a conducive regulatory treatment, to reduce its CO{sub 2} emissions by a few percent over the next ten years, through direct investment in energy end-use efficiency improvements. In comparison, the costs of the forestry projects studied in Central America range from $1/TC to a worst-case value of about $55/TC, with most project costs between $5 and $13/TC, depending on the type of project, the climate, and the opportunity cost of land. The total amount of CO{sub 2} storage potential is significant, about 100 million tons per country, but not enough to suggest that forestry can offset more than a few percent of global CO{sub 2} emissions from fossil fuel use. These case studies suggest that international trade in the environmental service of reducing global CO{sub 2} accumulation could have significant economic and ecological benefits. A transaction in which a utility pays for forestry projects in exchange for credit against an emission reduction policy is an example of an international carbon emission offset (ICEO). ICEO's could provide a currency for funding carbon-saving services as a way to comply with national policies to reduce CO{sub 2} emissions, as long as compliance is allowed through investments in other countries. This type of North-South transfer is necessary to reconcile economic efficiency and international equity, because of the disparity between the national allocations of responsibility for greenhouse gas emissions and opportunities for emission reductions.

  12. Implications of delayed actions in addressing carbon dioxide emission reduction in the context of geo-engineering

    Microsoft Academic Search

    O. Boucher; J. A. Lowe; C. D. Jones

    2009-01-01

    Carbon dioxide emissions need to be reduced well below current emissions if atmospheric concentrations are to be stabilised\\u000a at a level likely to avoid dangerous climate change. We investigate how delays in reducing CO2 emissions affect stabilisation scenarios leading to overshooting of a target concentration pathway. We show that if geo-engineering\\u000a alone is used to compensate for the delay in

  13. Australian carbon dust emission: a carbon accounting omission?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion preferentially removes the finest carbon- and nutrient-rich soil fractions, and consequently its role may be significant within terrestrial carbon (C) cycles. However, the impacts of wind erosion on soil organic carbon redistribution are not considered in most SOC models, or within the Austr...

  14. Towards a 60% Reduction in UK Transport Carbon Dioxide Emissions: A Scenario Building and Backcasting Approach

    Microsoft Academic Search

    David Banister

    This paper examines the possibilities of reducing transport carbon dioxide emissions in the UK by 60% by 2030 using a scenario building and backcasting approach. It draws on the VIBAT project, which examines Visioning and Backcasting for UK Transport Policy, and examines a range of policy measures (technological and behavioural), assessing how they can be effectively combined to achieve the

  15. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement

    Microsoft Academic Search

    Benjamin C. McLellan; Ross P. Williams; Janine Lay; Arie van Riessen; Glen D. Corder

    2011-01-01

    Geopolymer concrete is seen as a potential alternative to standard concrete, and an opportunity to convert a variety of waste streams into useful by-products. One key driver in geopolymer development is the desire to reduce greenhouse gas emissions from the production of concrete products. This paper presents an examination of the lifecycle cost and carbon impacts of Ordinary Portland Cement

  16. Measured energy consumption and carbon emissions of air-conditioning in UK office buildings

    Microsoft Academic Search

    Ian Knight; Gavin Dunn

    2005-01-01

    With the EU Energy Performance in Buildings Directive imminent in 2006, attention is focusing on how to reduce carbon emissions from buildings in practice. This research was undertaken to try to establish some ‘real’ buildingbased figures for the energy performance of air-conditioning systems in UK office buildings. One of the major questions to be answered is whether chilled beam and

  17. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-01-31

    Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

  18. Energy consumption and carbon emissions in a coastal city in China

    Microsoft Academic Search

    Ma Chun; Ju Mei-ting; Zhang Xiao-chun; Li Hong-yuan

    2011-01-01

    Analyses of energy consumption and carbon emissions in Tianjin are ways to understand the dynamics of developing cities in China. Using carbon emission calculation methodology recommended by IPCC, the amount of energy consumption and carbon emissions in Tianjin were calculated from 1995 to 2007. The results showed that the energy consumption structure in Tianjin relied on coal. Annual carbon emission

  19. Decadal growth of black carbon emissions in India

    Microsoft Academic Search

    S. K. Sahu; G. Beig; C. Sharma

    2008-01-01

    A Geographical Information System (GIS) based methodology has been used to construct the black carbon (BC) emission inventory for the Indian geographical region. The distribution of emissions from a broader level to a spatial resolution of 1° × 1° grid has been carried out by considering micro level details and activity data of fossil fuels and bio-fuels. Our calculated total

  20. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    Microsoft Academic Search

    Robert Joseph Andres; J. S. Gregg; London M Losey; Gregg Marland; Thomas A Boden

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950-2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to

  1. Field emission degradation of carbon nano-tubes

    Microsoft Academic Search

    Ramesh Bokka; Hulya Kirkici

    2010-01-01

    Carbon nanotubes (CNTs) are known for their excellent field emission characteristics and are considered as prima candidates as cold-cathode electron emitters. On the other hand, for these materials to be used in practical devices, such as pseudo spark switches, they need to be capable of operating for many hours without loosing the ability of field emission characteristics. In this work,

  2. Characterizing reduced sulfur compounds emissions from a swine concentrated animal feeding operation

    E-print Network

    Aneja, Viney P.

    Characterizing reduced sulfur compounds emissions from a swine concentrated animal feeding emissions from swine CAFOs. This article provides a comprehensive analysis of RSCs emissions from a swine sulfide CAFO emissions Swine a b s t r a c t Reduced sulfur compounds (RSCs) emissions from concentrated

  3. Reducing cancer risks by improving organic carbon removal

    Microsoft Academic Search

    Bryan D. Black; Gregory W. Harrington; Philip C. Singer

    1996-01-01

    A computer simulation methodology is described that examines on a case-specific basis the effect of water quality on the formation of trihalomethanes (THMs) and their associated theoretical cancer risks. The strategy of controlling organic carbon concentrations at the point of chlorination was evaluated for its ability to reduce predicted cancer incidence. In waters containing bromide, the absolute concentrations of the

  4. Hynol: An economic process for methanol production from biomass and natural gas with reduced CO2 emission

    Microsoft Academic Search

    M. Steinberg; Yuanji Dong

    1993-01-01

    The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (1) hydrogasification of biomass, (2) steam reforming of the produced gas with additional natural gas feedstock, and (3) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps.

  5. Hynol—An economical process for methanol production from biomass and natural gas with reduced CO 2 emission

    Microsoft Academic Search

    Yuanji Dong; Meyer Steinberg

    1997-01-01

    The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (a) hydrogasification of biomass, (b) steam reforming of the produced gas with additional natural gas feedstock, and (c) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps.

  6. Final Technical Report HFC Concrete: A Low-�������­���¢�������Energy, Carbon-�������­Dioxide-�������­Negative Solution for reducing Industrial Greenhouse Gas Emissions

    SciTech Connect

    Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

    2012-05-14

    Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC-based concrete with HFC in infrastructure we can reduce energy use in concrete production by 70%, and reduce CO{sub 2} emissions by 98%; thus the potential to reduce the impact of building materials on global warming and climate change is highly significant. Low Temperature Solidification (LTS) is a breakthrough technology that enables the densification of inorganic materials via a hydrothermal process. The resulting product exhibits excellent control of chemistry and microstructure, to provide durability and mechanical performance that exceeds that of concrete or natural stone. The technology can be used in a wide range of applications including facade panels, interior tiles, roof tiles, countertops, and pre-cast concrete. Replacing traditional building materials and concrete in these applications will result in significant reduction in both energy consumption and CO{sub 2} emissions.

  7. Impact of European Emissions Trading System (EU-ETS) on carbon emissions and investment decisions in the power sector

    E-print Network

    Feilhauer, Stephan M. (Stephan Marvin)

    2009-01-01

    This masters thesis assesses the impact of a emissions trading on short-term carbon abatement and investment decisions in the power sector. Environmental benefits from carbon abatement due to emissions trading are quantified ...

  8. Reduced emissions from inexpensive high-sulphur coal briquettes

    SciTech Connect

    Gammage, R.B.; Wachter, E.A.; Wade, J.; Wilson, D.L.; Haas, J.W. [Oak Ridge National Lab., TN (United States); Ahmad, N.; Siltain, F.; Raza, M.Z. [Pakistan Council of Scientific and Industrial Research, Karachi (Pakistan)

    1992-12-01

    Airborne emissions were measured during the combustion of Pakistani high-sulphur coal, cold briquetted with lime and clay; comparison was made to emissions from raw coal and traditional fuels burnt in a native, mud-lined Angethi stove. Compared to raw coal, the amended coal gave fourfold reduced emission of respirable-size particles (RSP) and threefold reduced total releases of SO{sub 2}. In domestic cooking, substitution of the amended coal briquettes for traditional fuels will not worsen indoor air quality with respect to CO, SO{sub 2}, NO{sub x}, and RSP. The high peak amounts of CO (100--250 ppm), SO{sub 2} (2--5 ppm), and NO{sub x} (1--5 ppm) were limited to the early phase of burning. The high thermal value of the coal briquettes together with a simple briquetting technology, make this fuel an attractive energy alternative in countries that are underdeveloped, developing, or experiencing major restructuring.

  9. Reduced emissions from inexpensive high-sulphur coal briquettes

    SciTech Connect

    Gammage, R.B.; Wachter, E.A.; Wade, J.; Wilson, D.L.; Haas, J.W. (Oak Ridge National Lab., TN (United States)); Ahmad, N.; Siltain, F.; Raza, M.Z. (Pakistan Council of Scientific and Industrial Research, Karachi (Pakistan))

    1992-01-01

    Airborne emissions were measured during the combustion of Pakistani high-sulphur coal, cold briquetted with lime and clay; comparison was made to emissions from raw coal and traditional fuels burnt in a native, mud-lined Angethi stove. Compared to raw coal, the amended coal gave fourfold reduced emission of respirable-size particles (RSP) and threefold reduced total releases of SO[sub 2]. In domestic cooking, substitution of the amended coal briquettes for traditional fuels will not worsen indoor air quality with respect to CO, SO[sub 2], NO[sub x], and RSP. The high peak amounts of CO (100--250 ppm), SO[sub 2] (2--5 ppm), and NO[sub x] (1--5 ppm) were limited to the early phase of burning. The high thermal value of the coal briquettes together with a simple briquetting technology, make this fuel an attractive energy alternative in countries that are underdeveloped, developing, or experiencing major restructuring.

  10. Impacts of reducing shipboard NOx? and SOx? emissions on vessel performance

    E-print Network

    Caputo, Ronald J., Jr. (Ronald Joseph)

    2010-01-01

    The international maritime community has been experiencing tremendous pressures from environmental organizations to reduce the emissions footprint of their vessels. In the last decade, air emissions, including nitrogen ...

  11. Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. Energyefficient transportation strategies and renewable

    E-print Network

    's total carbon emissions. Energyefficient transportation strategies and renewable fuels have to deep reductions in petroleum use and GHG emissions. Transportation energy use and emissions, it is necessary to reduce all three to decrease total transportation energy use and emissions. The Transportation

  12. Waste management activities and carbon emissions in Africa

    SciTech Connect

    Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)

    2011-01-15

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  13. Impacts of incentives to reduce emissions from deforestation on global species extinctions

    NASA Astrophysics Data System (ADS)

    Strassburg, Bernardo B. N.; Rodrigues, Ana S. L.; Gusti, Mykola; Balmford, Andrew; Fritz, Steffen; Obersteiner, Michael; Kerry Turner, R.; Brooks, Thomas M.

    2012-05-01

    Deforestation is a major source of anthropogenic greenhouse gas emissions, and the greatest single driver of species extinctions. The reduction of emissions from deforestation and forest degradation (REDD) has been formally recognized as a climate change mitigation option. REDD might have important co-benefits for biodiversity conservation, yet the extent of these benefits will depend on as-yet untested associations between fine-scale spatial patterns of deforestation, species distributions and carbon stocks. Here we combine a global land-use model and spatial data on species distributions to explore scenarios of future deforestation within REDD-eligible countries, to quantify and map the potential impacts on species extinctions as increased by forest loss and decreased by carbon conservation. We found that the continuation of historical deforestation rates is likely to result in large numbers of species extinctions, but that an adequately funded REDD programme could substantially reduce these losses. Under our deforestation scenarios, the projected benefits of REDD were remarkably consistent across the four methods used to estimate extinctions, but spatially variable, and highly dependent on the level of carbon payments. Our results indicate that, if well designed, adequately funded and broadly implemented, carbon-based forest conservation could play a major role in biodiversity conservation as well as climate change mitigation.

  14. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.

    PubMed

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S; Hansen, Matthew C; Townshend, John R

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr-1 and 0.18 ± 0.07 Pg C•yr-1 respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha-1, ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha-1). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha-1•yr-1 from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts. PMID:25951328

  15. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010

    PubMed Central

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S.; Hansen, Matthew C.; Townshend, John R.

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates?critical inputs for setting reference emission levels for REDD+?are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr?1 and 0.18 ± 0.07 Pg C•yr?1 respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha?1, ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha?1). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha?1•yr?1 from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts. PMID:25951328

  16. Allowable Carbon Emission for RCP4.5 Concentration Scenario

    NASA Astrophysics Data System (ADS)

    Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Kawamiya, M.

    2011-12-01

    Following the recommendation by CMIP5, some world climate centers are running experiments with Representative Concentration Pathways (RCP) concentration scenario, and will present allowable carbon emission in the future. As allowable carbon emission is determined by combination of climate response and feedback of ecosystem, there should be significant inter-model uncertainty, and the result is not necessarily perfectly agreed with RCP emission scenario. In this study, parametric uncertainty in allowable carbon emission for RCP4.5 concentration scenario was investigated by perturbing important physical and biogeochemical parameters and aerosol forcing in a loosely coupled earth system model after confirming that the parameter perturbation results in comparable dispersion in climate response and ecosystem's feedback properties to those of C4MIP models. The result showed that allowable carbon emission for our ensemble mean is smaller than the RCP4.5 emission scenario, but the magnitude of the difference is dependent on the data for constraint. The most influential parameter to the allowable emission was climate sensitivity, followed by the Gent-McWilliams thickness parameter. The physical parameters have more contribution than biogeochemical ones, although some of the latter also have statistically significant contribution.

  17. Historical warming reduced due to enhanced land carbon uptake

    PubMed Central

    Shevliakova, Elena; Stouffer, Ronald J.; Malyshev, Sergey; Krasting, John P.; Hurtt, George C.; Pacala, Stephen W.

    2013-01-01

    Previous studies have demonstrated the importance of enhanced vegetation growth under future elevated atmospheric CO2 for 21st century climate warming. Surprisingly no study has completed an analogous assessment for the historical period, during which emissions of greenhouse gases increased rapidly and land-use changes (LUC) dramatically altered terrestrial carbon sources and sinks. Using the Geophysical Fluid Dynamics Laboratory comprehensive Earth System Model ESM2G and a reconstruction of the LUC, we estimate that enhanced vegetation growth has lowered the historical atmospheric CO2 concentration by 85 ppm, avoiding an additional 0.31 ± 0.06 °C warming. We demonstrate that without enhanced vegetation growth the total residual terrestrial carbon flux (i.e., the net land flux minus LUC flux) would be a source of 65–82 Gt of carbon (GtC) to atmosphere instead of the historical residual carbon sink of 186–192 GtC, a carbon saving of 251–274 GtC. PMID:24062452

  18. Historical warming reduced due to enhanced land carbon uptake.

    PubMed

    Shevliakova, Elena; Stouffer, Ronald J; Malyshev, Sergey; Krasting, John P; Hurtt, George C; Pacala, Stephen W

    2013-10-15

    Previous studies have demonstrated the importance of enhanced vegetation growth under future elevated atmospheric CO2 for 21st century climate warming. Surprisingly no study has completed an analogous assessment for the historical period, during which emissions of greenhouse gases increased rapidly and land-use changes (LUC) dramatically altered terrestrial carbon sources and sinks. Using the Geophysical Fluid Dynamics Laboratory comprehensive Earth System Model ESM2G and a reconstruction of the LUC, we estimate that enhanced vegetation growth has lowered the historical atmospheric CO2 concentration by 85 ppm, avoiding an additional 0.31 ± 0.06 °C warming. We demonstrate that without enhanced vegetation growth the total residual terrestrial carbon flux (i.e., the net land flux minus LUC flux) would be a source of 65-82 Gt of carbon (GtC) to atmosphere instead of the historical residual carbon sink of 186-192 GtC, a carbon saving of 251-274 GtC. PMID:24062452

  19. Why carbon emission rates matter for TCRE and oceanic heat and carbon uptake

    NASA Astrophysics Data System (ADS)

    Krasting, J. P.; Dunne, J. P.; Hallberg, R.; Stouffer, R. J.

    2014-12-01

    While the Transient Climate Response to cumulative carbon Emissions (TCRE) demonstrates that near-surface air temperature warming is approximately proportional to cumulative emissions, oceanic heat and carbon uptake and sea level rise are far less easily constrained by this metric. Past work using the GFDL-ESM2G Earth System Model explored the robustness of TCRE across a range of policy-relevant emission rates, including a very low emission rate (2 GtC/yr), a very high emission rate (25 GtC/yr), and the case of ceasing emissions. TCRE varies between 0.76 and 1.04 ºC/TtC over this range of emissions, but this range is small (~12%) compared to the range across CMIP5 models. Here we demonstrate that the timescales of oceanic heat and carbon uptake play an important role in the rate dependence of TCRE. Analysis of the zonal patterns in the air-sea surface fluxes of heat and carbon illustrate important differences between the two that are a function of emissions rate. We find the ultimate fate of anthropogenic heat and carbon in the ocean also depends on the rate of emissions, and particularly, the timescales of oceanic transport. Low emission rates afford the ocean more time to transport heat and carbon throughout the world oceans whereas high emission rates have distinct basin scale differences in their patterns of uptake and storage. These oceanic processes lead to basin scale differences in sea level rise under varying emission rates for the same cumulative emission levels and have important climate adaptation consequences.

  20. Propagation of uncertainty in carbon emission scenarios through the global carbon cycle

    SciTech Connect

    Keller, A.A.; Goldstein, R.A. (Electric Power Research Inst., Palo Alto, CA (United States))

    1994-09-01

    The authors used the GLOCO model, which is a carbon cycling model that considers seven terrestrial biomes, two oceans and one atmosphere, to evaluate the rise in atmospheric CO[sub 2] concentration, (pCO[sub 2]) and the partitioning of carbon to the global compartments (ocean, atmosphere and terrestrial) as a function of time for a number of possible anthropogenic carbon emission scenarios, based on different energy policies as developed by the Energy Modeling Forum (EMF-12). The authors then evaluated the possible uncertainty in carbon emission scenarios and the propagation of this uncertainty in carbon emission scenarios and the propagation of this uncertainty throughout the model to obtain an envelope for the rise in pCO[sub 2]. Large fluctuations in the input signal are smoothed by the carbon cycle, resulting in more than a four-fold reduction in uncertainty in the output signal (pCO[sub 2]). In addition, they looked at the effect that other model variables have on the pCO[sub 2] envelope, specifically the ratio of carbon to nitrogen in the emissions. The carbon to nitrogen ratio (C:N) will vary throughout the next century depending on the mix on energy sources chosen. More nitrogen in the emissions can produce a cofertilization effect in the terrestrial biomes, which would lead to sequestration of additional carbon. The uncertainty in C:N will enlarge the pCO[sub 2] uncertainty envelope by up to 20 ppm.

  1. A carbon budget of Arizona: Comparing Natural Ecosystems with Emissions from Human Activities

    NASA Astrophysics Data System (ADS)

    Ford, A. C.; Finley, B. K.; Koch, G. W.; Hungate, B. A.

    2011-12-01

    A carbon budget of Arizona was constructed to examine the potential for carbon uptake by the state's ecosystems to mitigate human-caused emissions of greenhouse gases. The NASA-CASA (Carnegie Ames Stanford Approach) carbon flux model was used to estimate annual ecosystem CO2 exchange and the State's 2006 greenhouse gas inventory provided data on emissions from transportation, industry, waste, agriculture, electricity, industrial, and residential fuel use. The net carbon flux from primary production in the eight major land resource areas in the state averaged -1.56 million metric tons of carbon (MMTC) per year between 2001 and 2004. This net uptake from the atmosphere amounts to only 1.5% of statewide anthropogenic emissions of 99 MMTCE per year. Given this large imbalance and that projected climate trends for the region are likely to reduce C stocks in the state's forest and woodland ecosystems, land management to promote ecosystem carbon uptake is not a realistic solution to mitigate Arizona's anthropogenic greenhouse gas emissions.

  2. Phosphorus-Assisted Biomass Thermal Conversion: Reducing Carbon Loss and Improving Biochar Stability

    PubMed Central

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Kan, Yue

    2014-01-01

    There is often over 50% carbon loss during the thermal conversion of biomass into biochar, leading to it controversy for the biochar formation as a carbon sequestration strategy. Sometimes the biochar also seems not to be stable enough due to physical, chemical, and biological reactions in soils. In this study, three phosphorus-bearing materials, H3PO4, phosphate rock tailing (PRT), and triple superphosphate (TSP), were used as additives to wheat straw with a ratio of 1: 0.4–0.8 for biochar production at 500°C, aiming to alleviate carbon loss during pyrolysis and to increase biochar-C stabilization. All these additives remarkably increased the biochar yield from 31.7% (unmodified biochar) to 46.9%–56.9% (modified biochars). Carbon loss during pyrolysis was reduced from 51.7% to 35.5%–47.7%. Thermogravimetric analysis curves showed that the additives had no effect on thermal stability of biochar but did enhance its oxidative stability. Microbial mineralization was obviously reduced in the modified biochar, especially in the TSP-BC, in which the total CO2 emission during 60-d incubation was reduced by 67.8%, compared to the unmodified biochar. Enhancement of carbon retention and biochar stability was probably due to the formation of meta-phosphate or C-O-PO3, which could either form a physical layer to hinder the contact of C with O2 and bacteria, or occupy the active sites of the C band. Our results indicate that pre-treating biomass with phosphors-bearing materials is effective for reducing carbon loss during pyrolysis and for increasing biochar stabilization, which provides a novel method by which biochar can be designed to improve the carbon sequestration capacity. PMID:25531111

  3. Evaluation of carbon dioxide emission control strategies in New York State. Final report, 1990--1991

    SciTech Connect

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  4. Evaluation of carbon dioxide emission control strategies in New York State

    SciTech Connect

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state's energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  5. Options for achieving a 50% cut in industrial carbon emissions by 2050.

    PubMed

    Allwood, Julian M; Cullen, Jonathan M; Milford, Rachel L

    2010-03-15

    Carbon emissions from industry are dominated by production of goods in steel, cement plastic, paper, and aluminum. Demand for these materials is anticipated to double at least by 2050, by which time global carbon emissions must be reduced by at least 50%. To evaluate the challenge of meeting this target the global flows of these materials and their associated emissions are projected to 2050 under five technical scenarios. A reference scenario includes all existing and emerging efficiency measures but cannot provide sufficient reduction. The application of carbon sequestration to primary production proves to be sufficient only for cement The emissions target can always be met by reducing demand, for instance through product life extension, material substitution, or "light-weighting". Reusing components shows significant potential particularly within construction. Radical process innovation may also be possible. The results show that the first two strategies, based on increasing primary production, cannot achieve the required emissions reductions, so should be balanced by the vigorous pursuit of material efficiency to allow provision of increased material services with reduced primary production. PMID:20121181

  6. Uncertainty in temperature projections reduced using carbon cycle and climate observations

    NASA Astrophysics Data System (ADS)

    Bodman, Roger W.; Rayner, Peter J.; Karoly, David J.

    2013-08-01

    The future behaviour of the carbon cycle is a major contributor to uncertainty in temperature projections for the twenty-first century. Using a simplified climate model, we show that, for a given emission scenario, it is the second most important contributor to this uncertainty after climate sensitivity, followed by aerosol impacts. Historical measurements of carbon dioxide concentrations have been used along with global temperature observations to help reduce this uncertainty. This results in an increased probability of exceeding a 2°C global-mean temperature increase by 2100 while reducing the probability of surpassing a 6°C threshold for non-mitigation scenarios such as the Special Report on Emissions Scenarios A1B and A1FI scenarios, as compared with projections from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Climate sensitivity, the response of the carbon cycle and aerosol effects remain highly uncertain but historical observations of temperature and carbon dioxide imply a trade-off between them so that temperature projections are more certain than they would be considering each factor in isolation. As well as pointing out the promise from the formal use of observational constraints in climate projection, this also highlights the need for an holistic view of uncertainty.

  7. Decadal growth of black carbon emissions in India

    NASA Astrophysics Data System (ADS)

    Sahu, S. K.; Beig, G.; Sharma, C.

    2008-01-01

    A Geographical Information System (GIS) based methodology has been used to construct the black carbon (BC) emission inventory for the Indian geographical region. The distribution of emissions from a broader level to a spatial resolution of 1° × 1° grid has been carried out by considering micro level details and activity data of fossil fuels and bio-fuels. Our calculated total BC emissions were 1343.78 Gg and 835.50 Gg for the base years 2001 and 1991 respectively with a decadal growth of around 61%, which is highly significant. The district level analysis shows a diverse spatial distribution with the top 10% emitting districts contributing nearly 50% of total BC emission. Coal contributes more than 50% of total BC emission. All the metropolitan cities show high BC emissions due to high population density giving rise to high vehicular emissions and more demand of energy.

  8. Infrared emission from hydrogenated amorphous carbon and amorphous carbon grains in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Duley, W. W.; Jones, A. P.; Taylor, S. D.; Williams, D. A.

    1993-01-01

    The correlations deduced by Boulanger et al. (1990) from IRAS maps of the Chamaeleon, Taurus and Ursa Major molecular cloud complexes are interpreted in terms of the evolutionary hydrogenated amorphous carbon model of interstellar dust. In particular, regions of relatively strong 12-micron emission may be regions where recently accreted carbon is being converted by ambient UV to small PAHs in situ. Regions of weak 12-micron emission are probably quiescent regions where carbon has been annealed to amorphous carbon. Observational consequences of these inferences are briefly described.

  9. Enhancement of the field emission of carbon nanotubes straightened by application of argon ion irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyung; Jang, Hoon-Sik; Kim, Chang-Duk; Cho, Dong-Soo; Kang, Hee-Dong; Lee, Hyeong-Rag

    2003-09-01

    The field emission properties of carbon nanotubes (CNTs) were enhanced by argon ion irradiation. Argon irradiation treatment led to an enhancement in the emission properties of CNTs which showed a decrease in turn-on field and an increase in total emission current after the treatment. The irradiation treatment permanently straightened as-grown curly CNTs, and, as a result, the local electric field was increased, due to the increased aspect ratio and reduced mutual shield effect. In addition, increased defects, produced by the argon irradiation are likely to make their effective surfaces more active, thus emitting more electrons.

  10. Green emission in carbon doped ZnO films

    SciTech Connect

    Tseng, L. T.; Yi, J. B., E-mail: jiabao.yi@unsw.edu.au; Zhang, X. Y.; Xing, G. Z.; Luo, X.; Li, S. [School of Materials Science and Engineering, University of New South Wales, Kensington, NSW, 2052 (Australia); Fan, H. M. [School of Chemical Engineering, Northwest University, Xi'an 710069 (China); Herng, T. S.; Ding, J. [Department of Materials Science and Engineering, National University of Singapore, 119260 (Singapore); Ionescu, M. [Australian Nuclear Science and Technology Organization, (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234 (Australia)

    2014-06-15

    The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60–100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR) and low temperature photoluminescence (PL) measurement.

  11. Carbon Dioxide Emission Factors for Coal

    EIA Publications

    1994-01-01

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  12. Teamwork Plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility 

    E-print Network

    Booker, G.; Robinson, J.

    2003-01-01

    Teamwork plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility Garth Booker P Eng Extraction Energy Engineer Suncor Energy Company Fort McMurray, Alberta, Canada ABSTRACT...

  13. New England Electric System`s integrated approach to reducing greenhouse gas emissions

    SciTech Connect

    Spooner, B.H. [New England Electric System, Westborough, MA (United States)

    1994-12-31

    In 1991, New England Electric System (NEES) companies, set a goal to reduce emissions of carbon dioxide and other greenhouse gases by 20% by 2000, compared with 1990 levels. In 1993, the goal was strengthened to include stabilizing greenhouse gas emissions in the post-2000 period at levels 20% or more below 1990 levels. The NEES greenhouse gas emissions reduction goal was set with the belief that low-cost or no cost opportunities existed or could be developed to achieve such goals. The goals are also consistent with the recommendation of the National Academy of Sciences that utilities and others implement low-cost measures to mitigate the further buildup of greenhouse gases in the atmosphere. An array of activities is underway at NEES towards achieving the goal. The activities include supply-side (e.g., generation) programs, demand-side (e.g., energy conservation) programs, and emissions offsets projects (activities taken away from the facilities that control or counteract emissions).

  14. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems.

    PubMed

    Pendleton, Linwood; Donato, Daniel C; Murray, Brian C; Crooks, Stephen; Jenkins, W Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W; Kauffman, J Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

    2012-01-01

    Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats. PMID:22962585

  15. Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use.

    PubMed

    Fine, Pinchas; Hadas, Efrat

    2012-02-01

    Treatment of primarily-domestic sewage wastewater involves on-site greenhouse gas (GHG) emissions due to energy inputs, organic matter degradation and biological nutrient removal (BNR). BNR causes both direct emissions and loss of fertilizer value, thus eliminating possible reduction of emissions caused by fertilizer manufacture. In this study, we estimated on-site GHG emissions under different treatment scenarios, and present options for emission reduction by changing treatment methods, avoiding BNR and by recovering energy from biogas. Given a typical Israeli wastewater strength (1050mg CODl(-1)), the direct on-site GHG emissions due to energy use were estimated at 1618 and 2102g CO(2)-eq m(-3), respectively, at intermediate and tertiary treatment levels. A potential reduction of approximately 23-55% in GHG emissions could be achieved by fertilizer preservation and VS conversion to biogas. Wastewater fertilizers constituted a GHG abatement potential of 342g CO(2)-eq m(-3). The residual component that remained in the wastewater effluent following intermediate (oxidation ponds) and enhanced (mechanical-biological) treatments was 304-254g CO(2)-eq m(-3) and 65-34g CO(2)-eq m(-3), respectively. Raw sludge constituted approximately 47% of the overall wastewater fertilizers load with an abatement potential of 150g CO(2)-eq m(-3) (385kg CO(2)-eq dry tonne(-1)). Inasmuch as anaerobic digestion reduced it to 63g CO(2)-eq m(-3) (261kg CO(2)-eq dry tonne(-1)), the GHG abatement gained through renewable biogas energy (approx. 428g CO(2)-eq m(-3)) favored digestion. However, sludge composting reduced the fertilizer value to 17g CO(2)-eq m(-3) (121kg CO(2)-eq dry tonne(-1)) or less (if emissions, off-site inputs and actual phytoavailability were considered). Taking Israel as an example, fully exploiting the wastewater derived GHG abatement potential could reduce the State overall GHG emissions by almost 1%. This demonstrates the possibility of optional carbon credits which might be exploited in the construction of new wastewater treatment facilities, especially in developing countries. PMID:22209373

  16. Long-Term Economic Consequences of Alternative Carbon Reducing Conservation and Wetlands Reserve Programs: A BLS Analysis

    Microsoft Academic Search

    Randall Reese; Aziz Bouzaher; Jason F. Shogren

    1993-01-01

    Three alternative Conservation Reserve Program (CRP) scenarios and a targeted Wetlands Reserve Program (WRP) scenario were analyzed using the Basic Linked System (BLS) of applied general equilibrium models to project their likely economic impacts on the agriculture sector of the United States. The programs are proposed as means of reducing carbon emissions from agriculture. The CRP scenarios each reflect different

  17. Insensitivity of global warming potentials to carbon dioxide emission scenarios

    Microsoft Academic Search

    Ken Caldeira; James F. Kasting

    1993-01-01

    GLOBAL warming potentials for radiatively active trace gases (such as methane and chlorofluorocarbons) have generally been expressed1-2 relative to the time-integrated climate forcing per unit emission of carbon dioxide. Previous attempts to estimate the integrated climate forcing per unit CO2 emitted have focused on perturbations to steady-state conditions in carbon-cycle models. But for non-steady-state conditions, the integrated climate forcing from

  18. Carbon dioxide emissions from fossil-fuel use, 1751 1950

    Microsoft Academic Search

    R. J. Andres; D. J. Fielding; G. Marland; T. A. Boden; N. Kumar; A. T. Kearney

    1999-01-01

    Newly compiled energy statistics allow for an estimation of the complete time series of carbon dioxide (CO2) emissions from fossil-fuel use for the years 1751 to the present. The time series begins with 3×106 metric tonnes carbon (C). This initial flux represents the early stages of the fossil-fuel era. The CO2 flux increased exponentially until World War I. The time

  19. Carbon Dioxide Emissions From Fossil-Fuel Consumption in Indonesia

    Microsoft Academic Search

    J. S. Gregg; A. J. Robert

    2005-01-01

    Applying monthly sales and consumption data of coal, petroleum and natural gas, a monthly time series of carbon dioxide emissions from fossil-fuel consumption is created for Indonesia. These are then modeled with an autoregressive function to produce a quantitative description of the seasonal distribution and long-term pattern of CO2 emissions. Currently, Indonesia holds the 21st ranked position in total anthropogenic

  20. Synthesis and Field Emission Properties of Carbon Nanotube Films

    NASA Astrophysics Data System (ADS)

    Bower, Chris; Zhou, Otto; Zhu, Wei; Kochanski, Greg; Jin, Sungho

    1999-11-01

    We report on the fabrication and field emission properties of films of carbon nanotubes. Films of randomly oriented carbon nanotubes were deposited onto substrates using a variety of techniques. The nanotube films exhibited stable field emission current at low turn-on fields (electric field needed to generate 1 nA of current) and threshold fields (electric field needed to generate 10mA/cm^2). A single-walled carbon nanotube film with approximately twenty percent surface coverage showed a turn-on field of 1-1.2 V/?m and a threshold field of 1.3-1.7 V/?m. The emission characteristics deviated from typical Fowler-Nordheim behavior at high current densities. The nanotube films were capable of generating large current densities (>=4A/cm^2). The emission properties were found to be stable over several days of emitting at 10 mA/cm^2. The emission site density of the films was measured to be 10^4-10^5 sites/cm^2 and the emission patterns were studied.

  1. Field Emission Characteristics of Carbon Nanotubes and Their Applications in Sensors and Devices

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2003-03-01

    FIELD EMISSION CHARACTERISTICS OF CARBON NANOTUBES AND THEIR APPLICATIONS IN SENSORS AND DEVICES A. Vaseashta, C. Shaffer, M. Collins, A. Mwuara Dept of Physics, Marshall University, Huntington, WV V. Pokropivny Institute for Materials Sciences of NASU, Kiev, Ukraine. D. Dimova-Malinovska Bulgarian Academy of Sciences, Sofia, Bulgaria. The dimensionality of a system has profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems, such as carbon nanotubes (CNTs). Carbon nanotubes are especially promising candidate for cold cathode field emitter because of their electrical properties, high aspect ratio, and small radius of curvature at the tips. Electron emission from the carbon nanotubes was investigated. Based upon the field emission investigation of carbon nanotubes, several prototype devices have been suggested that operate with low swing voltages with sufficient high current densities. Characteristics that allow improved current stability and long lifetime operation for electrical and opto-electronics devices are presented. The aim of this brief overview is to illustrate the useful characteristics of carbon nanotubes and its possible application.

  2. Carbon Input and Soil Carbon Dioxide Emission Affected by Land Use and Management Practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use and management practices may influence C inputs and soil CO2 emission, a greenhouse gas responsible for global warming. Carbon inputs and soil CO2 emission were monitored from crop- and grassland with various irrigation and cropping systems from 2006 to 2008 in western North Dakota, USA. Tr...

  3. PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn

    2010-07-15

    Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions. PMID:20307928

  4. Atmospheric monitoring for fugitive emissions from geological carbon storage

    NASA Astrophysics Data System (ADS)

    Loh, Z. M.; Etheridge, D.; Luhar, A.; Leuning, R.; Jenkins, C.

    2013-12-01

    We present a multi-year record of continuous atmospheric CO2 and CH4 concentration measurements, flask sampling (for CO2, CH4, N2O, ?13CO2 and SF6) and CO2 flux measurements at the CO2CRC Otway Project (http://www.co2crc.com.au/otway/), a demonstration site for geological storage of CO2 in south-western Victoria, Australia. The measurements are used to develop atmospheric methods for operational monitoring of large scale CO2 geological storage. Characterization of emission rates ideally requires concentration measurements upwind and downwind of the source, along with knowledge of the atmospheric turbulence field. Because only a single measurement location was available for much of the measurement period, we develop techniques to filter the record and to construct a ';pseudo-upwind' measurement from our dataset. Carbon dioxide and methane concentrations were filtered based on wind direction, downward shortwave radiation, atmospheric stability and hour-to-hour changes in CO2 flux. These criteria remove periods of naturally high concentration due to the combined effects of biogenic respiration, stable atmospheric conditions and pre-existing sources (both natural and anthropogenic), leaving a reduced data set, from which a fugitive leak from the storage reservoir, the ';(potential) source sector)', could more easily be detected. Histograms of the filtered data give a measure of the background variability in both CO2 and CH4. Comparison of the ';pseudo-upwind' dataset histogram with the ';(potential) source sector' histogram shows no statistical difference, placing limits on leakage to the atmosphere over the preceding two years. For five months in 2011, we ran a true pair of up and downwind CO2 and CH4 concentration measurements. During this period, known rates of gas were periodically released at the surface (near the original injection point). These emissions are clearly detected as elevated concentrations of CO2 and CH4 in the filtered data and in the measured concentration differences across the site. A Bayesian inverse modeling study of the controlled release data accurately retrieved both the location and emission rate of the source. The atmospheric monitoring techniques developed at the Otway Project site are readily transferable to other energy sector developments, such as coal seam gas production, in which fugitive emissions are a concern. Indeed, as the signal to noise is usually better for CH4 than CO2, our monitoring techniques are even more suitable for seeking fugitives from natural gas production.

  5. Use of an air-assisted fuel nozzle to reduce idle emissions of a jt8d engine combustor

    NASA Technical Reports Server (NTRS)

    Papathakos, L. C.; Jones, R. E.

    1973-01-01

    Tests were performed at typical engine idle conditions on a single-can JT8D combustor installed in a 24 centimeter (9.45 in.) housing to evaluate the effect of an air-assist nozzle on reducing exhaust emissions. By injecting high-pressure air through the secondary-flow passage of a standard duplex fuel nozzle, it was possible to reduce hydrocarbon emissions from 840 parts per million to 95 parts per million and carbon monoxide emissions from 873 parts per million to 258 parts per million. NOX emissions increased slightly from 18 parts per million to 22 parts per million. An air-assist differential pressure of only 20.1 newtons per square centimeter (29.1 psi) and an airflow rate of only 0.22 percent of the total combustor airflow was required.

  6. Global carbon dioxide emissions from inland waters.

    PubMed

    Raymond, Peter A; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory; Hoover, Mark; Butman, David; Striegl, Robert; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Dürr, Hans; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-11-21

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8(+0.25)(-0.25)? petagrams of carbon (Pg?C) per year from streams and rivers and 0.32(+0.52)(-0.26)? Pg?C?yr(-1) from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1?Pg?C?yr(-1) is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally. PMID:24256802

  7. Carbon sequestration and greenhouse gas emissions in urban turf

    NASA Astrophysics Data System (ADS)

    Townsend-Small, Amy; Czimczik, Claudia I.

    2010-01-01

    Undisturbed grasslands can sequester significant quantities of organic carbon (OC) in soils. Irrigation and fertilization enhance CO2 sequestration in managed turfgrass ecosystems but can also increase emissions of CO2 and other greenhouse gases (GHGs). To better understand the GHG balance of urban turf, we measured OC sequestration rates and emission of N2O (a GHG ˜ 300 times more effective than CO2) in Southern California, USA. We also estimated CO2 emissions generated by fuel combustion, fertilizer production, and irrigation. We show that turf emits significant quantities of N2O (0.1-0.3 g N m-2 yr-1) associated with frequent fertilization. In ornamental lawns this is offset by OC sequestration (140 g C m-2 yr-1), while in athletic fields, there is no OC sequestration because of frequent surface restoration. Large indirect emissions of CO2 associated with turfgrass management make it clear that OC sequestration by turfgrass cannot mitigate GHG emissions in cities.

  8. Efficient narrow-band light emission from a single carbon nanotube p-n diode.

    PubMed

    Mueller, Thomas; Kinoshita, Megumi; Steiner, Mathias; Perebeinos, Vasili; Bol, Ageeth A; Farmer, Damon B; Avouris, Phaedon

    2010-01-01

    Electrically driven light emission from carbon nanotubes could be used in nanoscale lasers and single-photon sources, and has therefore been the focus of much research. However, high electric fields and currents have either been necessary for electroluminescence, or have been an undesired side effect, leading to high power requirements and low efficiencies. Furthermore, electroluminescent linewidths have been broad enough to obscure the contributions of individual optical transitions. Here, we report electrically induced light emission from individual carbon nanotube p-n diodes. A new level of control over electrical carrier injection is achieved, reducing power dissipation by a factor of up to 1,000, and resulting in zero threshold current, negligible self-heating and high carrier-to-photon conversion efficiencies. Moreover, the electroluminescent spectra are significantly narrower ( approximately 35 meV) than in previous studies, allowing the identification of emission from free and localized excitons. PMID:19915571

  9. China's Energy and Carbon Emissions Outlook to 2050

    E-print Network

    LBNL-4472E China's Energy and Carbon Emissions Outlook to 2050 Nan Zhou, David Fridley, Michael McNeil, Nina Zheng, Jing Ke, and Mark Levine China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory April 2011 This work was supported by the China

  10. Modeling Seasonality in Carbon Dioxide Emissions From Fossil Fuel Consumption

    Microsoft Academic Search

    P. Kishore; K. Igarashi; H. Oikawa; M. Uotome; J. S. Gregg; R. J. Andres

    2004-01-01

    Using United States data, a method is developed to estimate the monthly consumption of solid, liquid and gaseous fossil fuels using monthly sales data to estimate the relative monthly proportions of the total annual national fossil fuel use. These proportions are then used to estimate the total monthly carbon dioxide emissions for each state. From these data, the goal is

  11. Stable carbon isotope fractionation by sulfate-reducing bacteria

    NASA Technical Reports Server (NTRS)

    Londry, Kathleen L.; Des Marais, David J.

    2003-01-01

    Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.

  12. Carbon emissions from forest conversion by Kalimantan oil palm plantations

    NASA Astrophysics Data System (ADS)

    Carlson, Kimberly M.; Curran, Lisa M.; Asner, Gregory P.; Pittman, Alice Mcdonald; Trigg, Simon N.; Marion Adeney, J.

    2013-03-01

    Oil palm supplies >30% of world vegetable oil production. Plantation expansion is occurring throughout the tropics, predominantly in Indonesia, where forests with heterogeneous carbon stocks undergo high conversion rates. Quantifying oil palm's contribution to global carbon budgets therefore requires refined spatio-temporal assessments of land cover converted to plantations. Here, we report oil palm development across Kalimantan (538,346km2) from 1990 to 2010, and project expansion to 2020 within government-allocated leases. Using Landsat satellite analyses to discern multiple land covers, coupled with above- and below-ground carbon accounting, we develop the first high-resolution carbon flux estimates from Kalimantan plantations. From 1990 to 2010, 90% of lands converted to oil palm were forested (47% intact, 22% logged, 21% agroforests). By 2010, 87% of total oil palm area (31,640km2) occurred on mineral soils, and these plantations contributed 61-73% of 1990-2010 net oil palm emissions (0.020-0.024GtCyr-1). Although oil palm expanded 278% from 2000 to 2010, 79% of allocated leases remained undeveloped. By 2020, full lease development would convert 93,844km2 (~ 90% forested lands, including 41% intact forests). Oil palm would then occupy 34% of lowlands outside protected areas. Plantation expansion in Kalimantan alone is projected to contribute 18-22% (0.12-0.15GtCyr-1) of Indonesia's 2020 CO2-equivalent emissions. Allocated oil palm leases represent a critical yet undocumented source of deforestation and carbon emissions.

  13. Effect of hydrothermally carbonized char application on trace gas emissions from two sandy soil horizons.

    PubMed

    Dicke, Christiane; Lanza, Giacomo; Mumme, Jan; Ellerbrock, Ruth; Kern, Jürgen

    2014-09-01

    The application of biochar to soil is a potential tool for the long-term sequestration of C and a possible mitigation of greenhouse gas (GHG) emissions. Among the various processes available to produce biochar, hydrothermal carbonization is one technique that is suitable for moist feedstock like digestates from biogas production. The aim of this study was to investigate the stability of C and emissions of NO after the addition of (i) digested wheat ( L.) straw (digestate) and (ii) hydrothermally carbonized (HTC) char of wheat straw as well as (iii) HTC char of digested wheat straw to two soil horizons that differed in C content. The HTC chars were obtained from wheat straw and digested wheat straw that were hydrothermally carbonized at 230°C for 6 h. The digestate and HTC chars were mixed with soil and incubated in 125-mL vessels. The GHG emissions of CO and NO were measured at regular intervals. Additionally, after 108 d, N was applied in the form of NHNO equivalent to 100 kg N ha. After 500 d of incubation, the digestate had lost 34% of C, while the soil mixture with the corresponding HTC char lost 12% of C in the form of CO from the topsoil. The estimated bi-exponential half-life of the recalcitrant C was more than 50% longer for the carbonized material than for the untreated digestate. The NO emissions from both HTC chars were significantly reduced compared with untreated digestate. The reductions were up to 64% for the topsoil and 60% for the subsoil samples. These laboratory results show that HTC holds the potential to increase the C stability of fermented and carbonized biomasses and to reduce NO emissions. PMID:25603263

  14. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    SciTech Connect

    Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

  15. Electron field emission from nanostructured diamond and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Bower, C.; Kochanski, G. P.; Jin, S.

    2001-06-01

    Both diamond and carbon nanotubes are efficient field emitters because of the negative electron affinity associated with the diamond surface and the geometrically nanometer-scale nature of the nanotubes. They offer the important advantage of ease in fabrication and low-cost manufacturing. Both materials have been shown to emit electrons at very low electric fields (3-7 V/?m for a current density of 10 mA/cm 2). Moreover, nanotube emitters are found to be able to deliver very high emission currents densities, with current density routinely exceeding 1 A/cm 2. The low field operation of these carbon based emitters is attractive for display applications, while the high current capability of nanotube emitters will enable a number of high power, high frequency devices. Further improvements over the emission uniformity hold the key for the realization of the potential of these carbon materials in enabling practically useful cold cathode devices.

  16. RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions

    Microsoft Academic Search

    Anthony L Wright; Michaela A Martin; Bob Gemmer; Paul Scheihing; James Quinn

    2007-01-01

    In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of

  17. Emission characteristics of carbon nanotubes at large electrode distances

    NASA Astrophysics Data System (ADS)

    Bellucci, Stefano; Tiberia, Alessandra; di Paolo, Gaia; Micciulla, Federico; Balasubramanian, Chidambara Thanupillai

    2010-01-01

    Carbon nanotubes (CNT) were synthesized using a DC thermal plasma method. Nanotubes from the cathode were analyzed by electron microscopy and were then studied for their field emission properties. The CNTs were deposited on a tungsten wire, which acted as the cathode. The main aim was to push the distance between the electrodes outside those previously attempted. The field emission current was measured using a phosphorous coated ITO (indium tin oxide) glass plate. Images of the field emitted electrons impinging on the phosphorous screen were also recorded and analyzed. The I-V curves for the field emission were recorded at various distances between the electrodes. Similar studies were performed for commercially obtained (from two different sources) single-walled carbon nanotubes and the results compared with the as-produced nanotubes.

  18. Reducing U.S. residential energy use and CO2 emissions: how much, how soon, and at what cost?

    PubMed

    Lima Azevedo, Inês; Morgan, M Granger; Palmer, Karen; Lave, Lester B

    2013-03-19

    There is growing interest in reducing energy use and emissions of carbon dioxide from the residential sector by deploying cost-effectiveness energy efficiency measures. However, there is still large uncertainty about the magnitude of the reductions that could be achieved by pursuing different energy efficiency measures across the nation. Using detailed estimates of the current inventory and performance of major appliances in U.S. homes, we model the cost, energy, and CO2 emissions reduction if they were replaced with alternatives that consume less energy or emit less CO2. We explore trade-offs between reducing CO2, reducing primary or final energy, or electricity consumption. We explore switching between electricity and direct fuel use, and among fuels. The trade-offs between different energy efficiency policy goals, as well as the environmental metrics used, are important but have been largely unexplored by previous energy modelers and policy-makers. We find that overnight replacement of the full stock of major residential appliances sets an upper bound of just over 710 × 10(6) tonnes/year of CO2 or a 56% reduction from baseline residential emissions. However, a policy designed instead to minimize primary energy consumption instead of CO2 emissions will achieve a 48% reduction in annual carbon dioxide emissions from the nine largest energy consuming residential end-uses. Thus, we explore the uncertainty regarding the main assumptions and different policy goals in a detailed sensitivity analysis. PMID:23398047

  19. A guide to potential soil carbon sequestration; land-use management for mitigation of greenhouse gas emissions

    USGS Publications Warehouse

    Markewich, H.W.; Buell, G.R.

    2001-01-01

    Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.

  20. A review on black carbon emissions, worldwide and in China.

    PubMed

    Ni, Mingjiang; Huang, Jianxin; Lu, Shengyong; Li, Xiaodong; Yan, Jianhua; Cen, Kefa

    2014-07-01

    Black carbon (BC) produced from open burning (OB) and controlled combustion (CC) is a range of carbonaceous products of incomplete combustion of biomass and fossil fuel, and is deemed as one of the major contributors to impact global environment and human health. BC has a strong relationship with POPs, in waste combustion, BC promotes the formation of POPs, and then the transport of POPs in the environment is highly influenced by BC. However less is known about BC formation, measurement and emissions estimation especially in developing countries such as China. Different forms of BC are produced both in CC and OB. BC emission characteristics and combustion parameters which determine BC emissions from CC and OB are discussed. Recent studies showed a lack of common methodology and the resulting data for describing the mechanisms related to BC formation during combustion processes. Because BC is a continuum carbonaceous combustion product, different sampling and measuring methods are used for measuring their emissions with great quantitative uncertainty. We discuss the commonly used BC sampling and measuring methods along with the causes for uncertainty and measures to minimizing the uncertainty. Then, we discuss the estimations of BC emission factors and emission inventory for CC and OB sources. The total emissions of BC from CC and OB in China are also estimated and compared with previous BC emission inventories in this review and we find the inventories tend to be overestimated. As China becomes the largest contributor to global BC emissions, studies for characterizing BC emissions from OB and CC sources are absent in China. Finally, we comment on the current state of BC emission research and identify major deficiencies that need to overcome. Moreover, the advancement in research tools, measuring technique in particular, as discussed in this review is critical for researchers in developing countries to improve their capability to study BC emissions for addressing the growing climate change and public health concerns. PMID:24875874

  1. Carbon dioxide and methane emission dynamics in central London (UK)

    NASA Astrophysics Data System (ADS)

    Helfter, Carole; Nemitz, Eiko; Barlow, Janet F.; Wood, Curtis R.

    2013-04-01

    London, with a population of 8.2 million, is the largest city in Europe. It is heavily built-up (typically 8% vegetation cover within the central boroughs) and boasts some of the busiest arteries in Europe despite efforts to reduce traffic in the city centre with the introduction of a congestion charging scheme in 2007. We report on two substantial pollution monitoring efforts in the heart of London between October 2006 and present. Fluxes of carbon dioxide (CO2) and water (H2O) were measured continuously by eddy-covariance in central London from October 2006 until May 2008 from a 190 m telecommunication tower (BT tower; 51° 31' 17.4'' N 0° 8' 20.04'' W). The eddy-covariance system consisted of a Gill R3-50 ultrasonic anemometer operated at 20 Hz and a LI-COR 6262 infrared gas analyser. Air was sampled 0.3 m below the sensor head of the ultrasonic anemometer - which was itself mounted on a 3 m mast to the top of a 15 m lattice tower situated on the roof of the tower (instrument head at 190 m above street level) - and pulled down 45 m of 12.7 mm OD Teflon tubing. In addition, meteorological variables (temperature, relative humidity, pressure, precipitation, wind speed and direction) were also measured with a multi-sensor (Weather Transmitter WXT510, Vaisala). Eddy-covariance measurements at the BT tower location were reinstated in July 2011 and include methane (CH4), CO2 and H2O concentrations measured by a Picarro fast methane analyser (G2301-f). CO2 emissions were found to be mainly controlled by fossil fuel combustion (e.g. traffic, commercial and domestic heating). Diurnal averages of CO2 fluxes were found to be highly correlated to traffic. However changes in heating-related natural gas consumption and, to a lesser extent, photosynthetic activity in two large city centre green spaces (Hyde Park and Regent's Park) explained the seasonal variability. Annual estimates of net exchange of CO2 obtained by eddy-covariance agreed well with up-scaled data from the UK National Atmospheric Emissions Inventory (NAEI) for the flux footprint estimated using a simple Kormann-Meixner model. Methane emissions from central London exhibit diurnal trends both for concentrations and fluxes. The former is consistent with cycles of growth and shrinkage of the urban boundary layer. Methane fluxes are strongly correlated with those of carbon dioxide. Work is ongoing to establish to what extent the diurnal cycles reflect dynamic changes in ground sources (emissions from road traffic, commercial/ domestic heating, variations in flux footprint) and to what extent they are affected by transport efficiency between street level and the top of the tower and storage in between, given the high measurement height.

  2. Correlating benzene, total hydrocarbon and carbon monoxide emissions from wood-fired boilers

    SciTech Connect

    Hubbard, A.J.; Grande, D.E.; Berens, J.R. [Wisconsin Dept. of Natural Resources, Madison, WI (United States); Piotrowski, J. [Tenneco Packaging, Inc., Tomahawk, WI (United States)

    1997-12-31

    Hazardous air pollutants, including benzene, are generated by the incomplete combustion of fuels. Organic compound emissions, which are generally products of incomplete combustion, are reduced by promoting high quality combustion, for example by controlling furnace exit temperatures and establishing minimum residence times. Monitoring carbon monoxide (CO) emissions is important since the amount of carbon monoxide emitted represents the quality of combustion which in turn represents the amount of hazardous air pollutants being generated. Total hydrocarbon (THC) emissions are also related to the quality of combustion. Recently the Wisconsin Department of Natural Resources (DNR) measured the benzene and total hydrocarbon emissions from two large industrial wood fired boilers. These boilers are located at Tenneco Packaging, a container board manufacturing facility in northern Wisconsin. Temperature, oxygen and carbon monoxide concentrations were sampled continuously by Tenneco Packaging`s emission monitoring system. The Department`s team used an organic vapor analyzer to continuously measure concentrations of total hydrocarbons (THC). The Department`s team also used a modified USEPA Method 18 sampling train to capture organic vapors for subsequent analysis by gas chromatography. The data show correlations between benzene and carbon monoxide, and between benzene and THC concentrations. The emissions sampling occurred both upstream of the particulate emissions control system as well as at the stack. The CO variations during actual boiler operation appeared to be well correlated with changes in boiler steam load. That is, increases in CO generally accompanied a change, either up or down, in boiler load. Lower concentrations of CO were associated with stable combustion, as indicated by periods of constant or nearly constant boiler load.

  3. Cost-effective means of reducing ammonia emissions from UK agriculture using the NARSES model

    Microsoft Academic Search

    J. Webb; M. Ryan; S. G. Anthony; A. Brewer; J. Laws; M. F. Aller; T. H. Misselbrook

    2006-01-01

    To comply with International agreements to improve air quality, signatory states need to reduce emissions of ammonia (NH3). Since the majority of NH3 emissions come from agriculture, measures may need to be implemented by the farming industry. Member states of the EU will, by 2010, require large pig and poultry production units to reduce NH3 emissions to comply with the

  4. Just Say No to Carbon Emissions (LBNL Science at the Theater)

    ScienceCinema

    Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt

    2011-04-28

    Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency in China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.

  5. Just Say No to Carbon Emissions (LBNL Science at the Theater)

    SciTech Connect

    Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt

    2010-04-26

    Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency in China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.

  6. A technology-based global inventory of black and organic carbon emissions from combustion

    Microsoft Academic Search

    Tami C. Bond; David G. Streets; Kristen F. Yarber; Sibyl M. Nelson; Jung-Hun Woo; Zbigniew Klimont

    2004-01-01

    We present a global tabulation of black carbon (BC) and primary organic carbon (OC) particles emitted from combustion. We include emissions from fossil fuels, biofuels, open biomass burning, and burning of urban waste. Previous “bottom-up” inventories of black and organic carbon have assigned emission factors on the basis of fuel type and economic sector alone. Because emission rates are highly

  7. Co 2e emissions abatement costs of reducing natural gas flaring in Brazil by investing in offshore GTL plants producing premium diesel

    Microsoft Academic Search

    David A. Castelo Branco; Alexandre S. Szklo; Roberto Schaeffer

    2010-01-01

    This study evaluates the possibility of installing an offshore gas-to-liquids (GTL) plant in Brazil to reduce Natural Gas (NG) flaring, curb carbon dioxide equivalent (CO2e) emissions and produce premium diesel. CO2e emissions abatement costs were estimated by comparing two alternatives. The first alternative (baseline) considers that the volume of NG flared will not be reduced. Low-sulfur fuels (diesel and naphtha)

  8. How Could Carbon Credits for Reducing Deforestation Compete with Returns from Palm Oil: A Proposal for a More Flexible REDD Valuation Tool

    Microsoft Academic Search

    Alexandra C. Morel; Benoit F. Morel

    2012-01-01

    In order for carbon credits awarded for reducing emissions from deforestation and degradation of forests (REDD) to be effective, they need to be competitive with alternative land uses. In the case of Southeast Asia, oil palm cultivation is one of the most lucrative possible land uses. Existing mechanisms for awarding certified emission reductions (CERs) might not be adequately flexible to

  9. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li

    2015-05-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 ?A to 275 ?A at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn–Plummer method. The ZnO NPs reconstruct the ZnO–CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).

  10. Cars, carbon, and Kyoto: Evaluating an emission charge and other policy instruments as incentives for a transition to hybrid cars in New Zealand

    Microsoft Academic Search

    B. B. Gleisner; S. A. Weaver

    2006-01-01

    Transition to hybrid petrol\\/electric vehicles (HEVs) is one means among many of reducing carbon emissions pursuant to the New Zealand emissions reduction targets under the Kyoto Protocol. The potential financial incentive value of an emissions charge was evaluated by comparing purchase and running costs of an HEV with an equivalent petrol?fuelled car. Had a carbon tax of $15\\/tonne CO2 operated

  11. Energy, Carbon-emission and Financial Savings from Thermostat Control

    SciTech Connect

    Blasing, T J [ORNL; Schroeder, Dana [University of Georgia, Athens, GA

    2013-08-01

    Among the easiest approaches to energy, and cost, savings for most people is the adjustment of thermostats to save energy. Here we estimate savings of energy, carbon, and money in the United States of America (USA) that would result from adjusting thermostats in residential and commercial buildings by about half a degree Celsius downward during the heating season and upward during the cooling season. To obtain as small a unit as possible, and therefore the least likely to be noticeable by most people, we selected an adjustment of one degree Fahrenheit (0.56 degree Celsius) which is the gradation used almost exclusively on thermostats in the USA and is the smallest unit of temperature that has been used historically. Heating and/or cooling of interior building space for personal comfort is sometimes referred to as space conditioning, a term we will use for convenience throughout this work without consideration of humidity. Thermostat adjustment, as we use the term here, applies to thermostats that control the indoor temperature, and not to other thermostats such as those on water heaters. We track emissions of carbon only, rather than of carbon dioxide, because carbon atoms change atomic partners as they move through the carbon cycle, from atmosphere to biosphere or ocean and, on longer time scales, through the rock cycle. To convert a mass of carbon to an equivalent mass of carbon dioxide (thereby including the mass of the 2 oxygen atoms in each molecule) simply multiply by 3.67.

  12. Attributing land-use change carbon emissions to exported biomass

    SciTech Connect

    Saikku, Laura, E-mail: laura.saikku@helsinki.fi [University of Helsinki, P.O Box 65, 00014 University of Helsinki (Finland); Soimakallio, Sampo, E-mail: sampo.soimakallio@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT (Finland); Pingoud, Kim, E-mail: kim.pingoud@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT (Finland)

    2012-11-15

    In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The most important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. - Highlights: Black-Right-Pointing-Pointer CO{sub 2} emissions from land use changes are highly important. Black-Right-Pointing-Pointer Attribution of land use changes for products is difficult. Black-Right-Pointing-Pointer Simple and robust method is developed to attribute land use change emissions.

  13. Trend in global black carbon emissions from 1960 to 2007.

    PubMed

    Wang, Rong; Tao, Shu; Shen, Huizhong; Huang, Ye; Chen, Han; Balkanski, Yves; Boucher, Olivier; Ciais, Philippe; Shen, Guofeng; Li, Wei; Zhang, Yanyan; Chen, Yuanchen; Lin, Nan; Su, Shu; Li, Bengang; Liu, Junfeng; Liu, Wenxin

    2014-06-17

    Black carbon (BC) plays an important role in both climate change and health impact. Still, BC emissions as well as the historical trends are associated with high uncertainties in existing inventories. In the present study, global BC emissions from 1960 to 2007 were estimated for 64 sources, by using recompiled fuel consumption and emission factor data sets. Annual BC emissions had increased from 5.3 (3.4-8.5 as an interquartile range) to 9.1 (5.6-14.4) teragrams during this period. Our estimations are 11-16% higher than those in previous inventories. Over the period, we found that the BC emission intensity, defined as the amount of BC emitted per unit of energy production, had decreased for all the regions, especially China and India. Improvements in combustion technology and changes in fuel composition had led to an increase in energy use efficiency, and subsequently a decline of BC emission intensities in power plants, the residential sector, and transportation. On the other hand, the BC emission intensities had increased in the industrial and agricultural sectors, mainly due to an expansion of low-efficiency industry (coke and brick production) in developing countries and to an increasing usage of diesel in agriculture in developed countries. PMID:24825392

  14. Carbon emissions performance of commercial logging in East Kalimantan, Indonesia.

    PubMed

    Griscom, Bronson; Ellis, Peter; Putz, Francis E

    2014-03-01

    Adoption of reduced-impact logging (RIL) methods could reduce CO2 emissions by 30-50% across at least 20% of remaining tropical forests. We developed two cost effective and robust indices for comparing the climate benefits (reduced CO2 emissions) due to RIL. The indices correct for variability in the volume of commercial timber among concessions. We determined that a correction for variability in terrain slope was not needed. We found that concessions certified by the Forest Stewardship Council (FSC, N = 3), when compared with noncertified concessions (N = 6), did not have lower overall CO2 emissions from logging activity (felling, skidding, and hauling). On the other hand, FSC certified concessions did have lower emissions from one type of logging impact (skidding), and we found evidence of a range of improved practices using other field metrics. One explanation of these results may be that FSC criteria and indicators, and associated RIL practices, were not designed to achieve overall emissions reductions. Also, commonly used field metrics are not reliable proxies for overall logging emissions performance. Furthermore, the simple distinction between certified and noncertified concessions does not fully represent the complex history of investments in improved logging practices. To clarify the relationship between RIL and emissions reductions, we propose the more explicit term 'RIL-C' to refer to the subset of RIL practices that can be defined by quantified thresholds and that result in measurable emissions reductions. If tropical forest certification is to be linked with CO2 emissions reductions, certification standards need to explicitly require RIL-C practices. PMID:24022913

  15. Stable carbon isotope fractionation by acetotrophic sulfur-reducing bacteria.

    PubMed

    Goevert, Dennis; Conrad, Ralf

    2010-02-01

    Acetate is the most important intermediate in anaerobic degradation of organic matter. The carbon isotope effects associated with the oxidation of acetate (epsilon(ac)) were examined for four acetotrophic sulfur reducers, Desulfuromonas acetoxidans, Desulfuromonas thiophila, Desulfurella acetivorans, and Hippea maritima. During the consumption of acetate and sulfur, acetate was enriched in (13)C by 11.5 and 11.2 per thousand in Desulfuromonas acetoxidans and Desulfuromonas thiophila, respectively. By contrast, isotope fractionation in D. acetivorans and H. maritima resulted in isotope enrichment factors of epsilon(ac)=-6.3 per thousand and -8.4 per thousand, respectively. These sulfur-reducing bacteria all metabolize acetate via the tricarboxylic acid cycle, but have different mechanisms for the initial activation of acetate. In Desulfuromonas acetoxidans, acetyl-CoA is formed by succinyl-CoA : acetate-CoA-transferase, and in D. acetivorans by acetate kinase and phosphate acetyltransferase. Hence, values of epsilon(ac) seem to be characteristic for the type of activation of acetate to acetyl-CoA in acetotrophic sulfur reducers. Summarizing epsilon(ac)-values in anaerobic acetotrophic microorganisms, it appears that isotope fractionation depends on the mechanism of acetate activation to acetyl-CoA, on the key enzyme of the acetate dissimilation pathway, and on the bioavailability of acetate, which all have to be considered when using delta(13)C of acetate in environmental samples for diagnosis of the involved microbial populations. PMID:20002180

  16. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions.

    PubMed

    Segarra, K E A; Schubotz, F; Samarkin, V; Yoshinaga, M Y; Hinrichs, K-U; Joye, S B

    2015-01-01

    The role of anaerobic oxidation of methane (AOM) in wetlands, the largest natural source of atmospheric methane, is poorly constrained. Here we report rates of microbially mediated AOM (average rate=20?nmol?cm(-3) per day) in three freshwater wetlands that span multiple biogeographical provinces. The observed AOM rates rival those in marine environments. Most AOM activity may have been coupled to sulphate reduction, but other electron acceptors remain feasible. Lipid biomarkers typically associated with anaerobic methane-oxidizing archaea were more enriched in (13)C than those characteristic of marine systems, potentially due to distinct microbial metabolic pathways or dilution with heterotrophic isotope signals. On the basis of this extensive data set, AOM in freshwater wetlands may consume 200?Tg methane per year, reducing their potential methane emissions by over 50%. These findings challenge precepts surrounding wetland carbon cycling and demonstrate the environmental relevance of an anaerobic methane sink in ecosystems traditionally considered strong methane sources. PMID:26123199

  17. Volcanic Carbon: Global Variations in Gas Emissions

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; de Moor, M. J.

    2014-12-01

    Magmas degas volatiles during ascent from the mantle and mafic melts with 7 wt% H2O attain volatile saturation at ~15km depth. Magmatic gases are dominated by H2O, CO2 and S species, independent of their tectonic setting. At rift volcanoes, C is sourced from the mantle whereas arc volcanoes sample both mantle and subducted C. Volcanic gases provide detailed information on volatile sources and degassing processes. Comparison of fumarole gases with melt inclusions and volcanic plumes shows that most fumaroles sample degassed magma. Water, CO2 and S vary significantly between tectonic settings. The Kuriles, Japan, and Kamchatka have H2O/CO2 of 40 to 800 while other arcs such as the Cascades, Central America, S. America, Java, and Aeolian have ratios of 1 to 70. Gases from rift volcanoes have H2O/CO2 between 3 and 9. Some of these variations are due to addition of meteoric and subducted water, as evidenced by O and H isotopes. Speciation of H and C in volcanic gases are typically controlled by redox buffer reactions imposed by the Fe3+-Fe2+ (i.e. QFM) rock buffer or the SO2-H2S gas buffer. In more exotic systems such as Poás, hydrothermal S phases such as liquid native S can play a role in high T gas C and H speciation. Arcs dominate the global subaerial volcanic CO2 emission budget and arc total fluxes vary significantly i.e. only about 2 t/yr/km from the Aleutians and about 65 t/yr/km from Central America. Reasons for this are poorly constrained and may include variability in subducted material or slab/mantle conditions at depth. A large uncertainty results from use of generalized arc-wide C/S ratios, used in calculating C fluxes, and the paucity of data for remote arcs. Resolving C fluxes from subducted versus mantle or crustal (assimilated) C relies on C isotope ratios, which can vary spatially and temporally as a function of source or degassing processes. Therefore, when considering the deep C cycle and Cexchange between the interior and surface of the Earth, integrated studies with complete gas compositions, plume C/S and flux measurements, C isotopes and melt inclusions are needed.

  18. The IR emission features - Emission from PAH molecules and amorphous carbon particles

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    Techniques for the assessment of the importance of the various forms of PAHs, and recent infrared observations concerning the PAH problem, are considered. Spectroscopic data suggest that the observed interstellar spectrum is due to both free molecule-sized PAHs producing the narrow features, and amorphous carbon particles contributing to the broad underlying components. Explanations for the multicomponent emission spectrum are discussed. A model of the emission mechanism for the example of chrysene is presented, and an exact treatment of the IR fluorescence from highly vibrationally excited large molecules shows that species containing 20-30 carbon atoms are responsible for the narrow features, although the spectra more closely resemble those of amorphous carbon particles. It is suggested that future emphasis should be placed on the spatial characteristics of the component spectra.

  19. Improving farming practices reduces the carbon footprint of spring wheat production

    PubMed Central

    Gan, Yantai; Liang, Chang; Chai, Qiang; Lemke, Reynald L.; Campbell, Con A.; Zentner, Robert P.

    2014-01-01

    Wheat is one of the world’s most favoured food sources, reaching millions of people on a daily basis. However, its production has climatic consequences. Fuel, inorganic fertilizers and pesticides used in wheat production emit greenhouse gases that can contribute negatively to climate change. It is unknown whether adopting alternative farming practices will increase crop yield while reducing carbon emissions. Here we quantify the carbon footprint of alternative wheat production systems suited to semiarid environments. We find that integrating improved farming practices (that is, fertilizing crops based on soil tests, reducing summerfallow frequencies and rotating cereals with grain legumes) lowers wheat carbon footprint effectively, averaging ?256?kg CO2 eq?ha?1 per year. For each kg of wheat grain produced, a net 0.027–0.377?kg CO2 eq is sequestered into the soil. With the suite of improved farming practices, wheat takes up more CO2 from the atmosphere than is actually emitted during its production. PMID:25405548

  20. Enhanced electron field emission from plasma-nitrogenated carbon nanotips

    SciTech Connect

    Wang, B. B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P. O. Box 218, Lindfield, NSW 2070 (Australia); Cheng, Q. J.; Ostrikov, K. [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P. O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, Complex Systems, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Zhong, X. X. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Y. Q. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Chen, Y. A. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2012-02-15

    Nitrogenated carbon nanotips (NCNTPs) are synthesized by plasma-enhanced hot filament chemical vapor deposition from the hydrogen, methane, and nitrogen gas mixtures with different flow rate ratios of hydrogen to nitrogen. The morphological, structural, compositional, and electron field emission (EFE) properties of the NCNTPs were investigated by field emission scanning electron microscopy, Raman spectroscopy, x ray photoelectron spectroscopy, and EFE high-vacuum system. It is shown that the NCNTPs deposited at an intermediate flow rate ratio of hydrogen to nitrogen feature the best size/shape and pattern uniformity, the highest nanotip density, the highest nitrogen concentration, as well as the best electron field emission performance. Several factors that come into play along with the nitrogen incorporation, such as the combined effect of the plasma sputtering and etching, the transition of sp{sup 3} carbon clusters to sp{sup 2} carbon clusters, the increase of the size of the sp{sup 2} clusters, as well as the reduction of the work function, have been examined to interpret these experimental findings. Our results are highly relevant to the development of the next generation electron field emitters, flat panel displays, atomic force microscope probes, and several other advanced applications.

  1. Control of variable geometry turbocharged diesel engines for reduced emissions

    Microsoft Academic Search

    A. G. Stefanopoulou; I. Kolmanovsky; J. S. Freudenberg

    1998-01-01

    A multivariable control scheme is designed to minimize emission of nitrogen oxides (NOx) and generation of smoke in a diesel engine equipped with a variable geometry turbocharger (VGT) and an external exhaust gas recirculation system (EGR). Steady-state optimization results in operating points where NOx emissions and smoke generation are highly coupled and require joint management by VGT and EGR actuators

  2. MANAGEMENT OPTIONS FOR REDUCING AMMONIA EMISSIONS FROM POULTRY LITTER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia emissions from poultry litter not only result in air pollution; high levels of ammonia in poultry houses cause poor bird performance, increase the susceptibility of birds to viral diseases, and negatively impact human health. Although ammonia emissions are a concern, few cost-effective best ...

  3. DEVELOPING METHODS TO REDUCE EMISSIONS FROM SOIL FUMIGATION.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regulations on uses of soil fumigants are primarily based on their toxicity and air emissions. In addition to maintaining practical use of alternative fumigants for production of high value crops, minimizing emissions is also critical to protecting workers, bystanders, and the environment. The obje...

  4. Warming Reduces Carbon Losses from Grassland Exposed to Elevated Atmospheric Carbon Dioxide

    PubMed Central

    Pendall, Elise; Heisler-White, Jana L.; Williams, David G.; Dijkstra, Feike A.; Carrillo, Yolima; Morgan, Jack A.; LeCain, Daniel R.

    2013-01-01

    The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate – carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate – carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil. PMID:23977180

  5. Measurements of Enhanced Black Carbon and Brown Carbon Absorption in Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Beamesderfer, E.; Pokhrel, R. P.; Murphy, S. M.; Lack, D.; Langridge, J. M.; Wagner, N. L.

    2013-12-01

    Emissions from biomass burnings are thought to be responsible for over half of the black carbon aerosol present in the atmosphere. Black carbon, or soot, absorbs significant amounts of solar radiation. Organic coatings can significantly increase the absorption of black carbon cores by focusing more light onto the core. Shorter wavelengths of light can also be absorbed by the organic material itself, in which case it is referred to as brown carbon. There remains significant uncertainty concerning the amount of absorption enhancement caused by organic coatings and the importance of brown carbon in biomass burning emissions. We present results from multi-wavelength absorption measurements made during the 2012 FLAME-IV experiment at the Missoula Fire Laboratory that address these uncertainties for a variety of globally important biomass fuels. Absorption was measured with a 3-wavelength (405, 532, 660 nm) Photo-Acoustic Absorption Spectrometer (PAS). Two additional channels at 405 and 660 nm measured particles that had been heated to 250°C and run through a carbon denuder. In this talk we present observations of absorption enhancement, which we define to be the ratio of the magnitude absorption caused by non-altered particles to the magnitude of absorption caused by denuded particles. Results indicate that absorption enhancement from clear coatings is often less significant than expected with absorption enhancements in the 660 nm channel often being near unity. Brown carbon is a significant source of absorption at 405 nm where absorption enhancement values as high as 3.0 are commonly observed.

  6. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario

    PubMed Central

    Keller, David P.; Feng, Ellias Y.; Oschlies, Andreas

    2014-01-01

    The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

  7. Methane and carbon dioxide emission from two pig finishing barns.

    PubMed

    Ni, Ji-Qin; Heber, Albert J; Lim, Teng Teeh; Tao, Pei Chun; Schmidt, Amy M

    2008-01-01

    Agricultural activities are an important source of greenhouse gases. However, comprehensive, long-term, and high-quality measurement data of these gases are lacking. This article presents a field study of CH(4) and CO(2) emission from two 1100-head mechanically ventilated pig (Sus scrofa) finishing barns (B1 and B2) with shallow manure flushing systems and propane space heaters from August 2002 to July 2003 in northern Missouri. Barn 2 was treated with soybean oil sprinkling, misting essential oils, and misting essential oils with water to reduce air pollutant emissions. Only days with CDFB (complete-data-full-barn), defined as >80% of valid data during a day with >80% pigs in the barns, were used. The CH(4) average daily mean (ADM) emission rates were 36.2 +/- 2.0 g/d AU (ADM +/- 95% confidence interval; animal unit = 500 kg live mass) from B1 (CDFB days = 134) and 28.8 +/- 1.8 g/d AU from B2 (CDFB days = 131). The CO(2) ADM emission rates were 17.5 +/- 0.8 kg/d AU from B1 (CDFB days = 146) and 14.2 +/- 0.6 kg/d AU from B2 (CDFB days = 137). The treated barn reduced CH(4) emission by 20% (P < 0.01) and CO(2) emission by 19% (P < 0.01). The CH(4) and CO(2) released from the flushing lagoon effluent were equivalent to 9.8 and 4.1% of the CDFB CH(4) and CO(2) emissions, respectively. The emission data were compared with the literature, and the characteristics of CH(4) and CO(2) concentrations and emissions were discussed. PMID:18948452

  8. Radiative Forcing associated with Particulate Carbon Emissions resulting from the Use of Mercury Control Technology

    NASA Astrophysics Data System (ADS)

    Clack, H.; Penner, J. E.; Lin, G.

    2013-12-01

    Mercury is a persistent, toxic metal that bio-accumulates within the food web and causes neurological damage and fetal defects in humans. The U.S. was the first country to regulate the leading anthropogenic source of mercury into the atmosphere: coal combustion for electric power generation. The U.S. EPA's 2005 Clean Air Mercury Rule (CAMR) was replaced and further tightened in 2012 by the Mercury and Air Toxics Standard (MATS), which required existing coal-fired utilities to reduce their mercury emissions by approximately 90% by 2015. Outside the U.S., the Governing Council of the United Nations Environment Programme (UNEP) has passed the legally binding Minamata global mercury treaty that compels its signatory countries to prevent and reduce the emission and release of mercury. The most mature technology for controlling mercury emissions from coal combustion is the injection into the flue gas of powdered activated carbon (PAC) adsorbents having chemically treated surfaces designed to rapidly oxidize and adsorb mercury. However, such PAC is known to have electrical properties that make it difficult to remove from flue gas via electrostatic precipitation, by far the most common particulate control technology used in countries such as the U.S., India, and China which rely heavily on coal for power generation. As a result, PAC used to control mercury emissions can be emitted into the atmosphere, the sub-micron fraction of which may result in unintended radiative forcing similar to black carbon (BC). Here, we estimate the potential increases in secondary BC emissions, those not produced from combustion but arising instead from the use of injected PAC for mercury emission reduction. We also calculate the radiative forcing associated with these secondary BC emissions by using a global atmospheric chemical transport model coupled with a radiative transfer model.

  9. Degassing of reduced carbon from planetary basalts Diane T. Wetzela,1

    E-print Network

    Jacobsen, Steven D.

    Degassing of reduced carbon from planetary basalts Diane T. Wetzela,1 , Malcolm J. Rutherforda on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0-derived melts even more than previous data indicate, and the degassing of re- duced carbon from Fe-rich basalts

  10. Carbon soundings: greenhouse gas emissions of the UK music industry

    NASA Astrophysics Data System (ADS)

    Bottrill, C.; Liverman, D.; Boykoff, M.

    2010-01-01

    Over the past decade, questions regarding how to reduce human contributions to climate change have become more commonplace and non-nation state actors—such as businesses, non-government organizations, celebrities—have increasingly become involved in climate change mitigation and adaptation initiatives. For these dynamic and rapidly expanding spaces, this letter provides an accounting of the methods and findings from a 2007 assessment of greenhouse gas (GHG) emissions in the UK music industry. The study estimates that overall GHG emissions associated with the UK music market are approximately 540 000 t CO2e per annum. Music recording and publishing accounted for 26% of these emissions (138 000 t CO2e per annum), while three-quarters (74%) derived from activities associated with live music performances (400 000 t CO2e per annum). These results have prompted a group of music industry business leaders to design campaigns to reduce the GHG emissions of their supply chains. The study has also provided a basis for ongoing in-depth research on CD packaging, audience travel, and artist touring as well as the development of a voluntary accreditation scheme for reducing GHG emissions from activities of the UK music industry.

  11. Reducing emissions from deforestation--The ``combined incentives'' mechanism and empirical simulations

    E-print Network

    Vermont, University of

    Reducing emissions from deforestation--The ``combined incentives'' mechanism and empirical throughout a century of climate-change (Gullison et al., 2007). The financial rationale for deforestation be sufficient to greatly reduce deforestation (Stern, 2007). For political and methodological reasons

  12. A reconstruction of policy-driven innovations to reduce Dutch car emissions 1960-2010

    Microsoft Academic Search

    L. Walta; J. A. Annema

    2011-01-01

    One of the main drawbacks of mobility are the traffic-related emissions of air pollutants – e.g. nitrogen oxides (NOx) – and greenhouse gases – e.g. carbon dioxide (CO2). In the past governments all over the world aimed at technological innovations to limit the emissions from traffic. Using insights from innovation theory regarding the role of the government in (transport) innovations,

  13. Impact of inland shipping emissions on elemental carbon concentrations near waterways in The Netherlands

    NASA Astrophysics Data System (ADS)

    Keuken, M. P.; Moerman, M.; Jonkers, J.; Hulskotte, J.; Denier van der Gon, H. A. C.; Hoek, G.; Sokhi, R. S.

    2014-10-01

    This study aims to quantify the impact of black carbon from inland shipping on air quality, expressed as elemental carbon (EC) near inland waterways in The Netherlands. Downwind measurements of particle numbers and EC were used to establish emission factors for EC from inland shipping using inverse modelling. These emission factors were combined with data on energy consumption to derive annual average emissions rates for all Dutch waterways. A line source model was applied to compute the contribution of inland shipping to annual average EC concentrations for around 140,000 people living within 200 m of busy waterways in The Netherlands. The results showed that they are exposed to additional EC concentrations of up to 0.5 ?g EC per m3 depending on the shipping volume and distance from the waterway. In view of the envisaged growth in water transport, this underlines the need to reduce combustion emissions from inland shipping. Targeting “gross” polluters may be the most effective approach since 30% of ships cause more than 80% of the total emissions.

  14. Implications of carbon dust emission for terrestrail carbon cycling and carbon accounting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion preferentially removes the finest carbon- and nutrient-rich soil fractions, and consequently its role may be significant within terrestrial carbon (C) cycles. However, the impacts of wind erosion on soil organic carbon (SOC) redistribution are not considered in most carbon cycle models,...

  15. Field emission study of diamond like carbon films with scanned probe field emission force microscopy

    SciTech Connect

    Inoue, Takahito; Ogletree, D.Frank; Salmeron, Miquel

    1999-12-07

    Using a tip as an anode, a scanning force microscope (SFM) with an electrically conducting tip allows simultaneous measurement of both field emitted currents and surface electronic properties with high lateral resolution. The principle of the method and its application to field emission from CVD diamond-like carbon films are presented. By simultaneously imaging the topography and field emission current distribution with a 100 nm tip-surface separation, we correlated emission, topography and dielectric properties. Subsequent contact SFM images of the same regions correlated topography and conductivity on the nanometer scale. The electrostatic force between tip and surface showed fluctuations on a millisecond time scale during field emission. This is probably due to charging and discharging of deep traps in the diamond film.

  16. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic.

    PubMed

    Kauffman, J Boone; Heider, Chris; Norfolk, Jennifer; Payton, Frederick

    2014-04-01

    Mangroves are recognized to possess a variety of ecosystem services including high rates of carbon sequestration and storage. Deforestation and conversion of these ecosystems continue to be high and have been predicted to result in significant carbon emissions to the atmosphere. Yet few studies have quantified the carbon stocks or losses associated with conversion of these ecosystems. In this study we quantified the ecosystem carbon stocks of three common mangrove types of the Caribbean as well as those of abandoned shrimp ponds in areas formerly occupied by mangrove-a common land-use conversion of mangroves throughout the world. In the mangroves of the Montecristi Province in Northwest Dominican Republic we found C stocks ranged from 706 to 1131 Mg/ha. The medium-statured mangroves (3-10 m in height) had the highest C stocks while the tall (> 10 m) mangroves had the lowest ecosystem carbon storage. Carbon stocks of the low mangrove (shrub) type (< 3 m) were relatively high due to the presence of carbon-rich soils as deep as 2 m. Carbon stocks of abandoned shrimp ponds were 95 Mg/ha or approximately 11% that of the mangroves. Using a stock-change approach, the potential emissions from the conversion of mangroves to shrimp ponds ranged from 2244 to 3799 Mg CO2e/ha (CO2 equivalents). This is among the largest measured C emissions from land use in the tropics. The 6260 ha of mangroves and converted mangroves in the Montecristi Province are estimated to contain 3,841,490 Mg of C. Mangroves represented 76% of this area but currently store 97% of the carbon in this coastal wetland (3,696,722 Mg C). Converted lands store only 4% of the total ecosystem C (144,778 Mg C) while they comprised 24% of the area. By these metrics the replacement of mangroves with shrimp and salt ponds has resulted in estimated emissions from this region totaling 3.8 million Mg CO2e or approximately 21% of the total C prior to conversion. Given the high C stocks of mangroves, the high emissions from their conversion, and the other important functions and services they provide, their inclusion in climate-change mitigation strategies is warranted. PMID:24834737

  17. Quantifying the emissions and air quality co-benefits of lower-carbon electricity production

    NASA Astrophysics Data System (ADS)

    Plachinski, Steven D.; Holloway, Tracey; Meier, Paul J.; Nemet, Gregory F.; Rrushaj, Arber; Oberman, Jacob T.; Duran, Phillip L.; Voigt, Caitlin L.

    2014-09-01

    The impact of air emissions from electricity generation depends on the spatial distribution of power plants and electricity dispatch decisions. Thus, any realistic evaluation of the air quality impacts of lower-carbon electricity must account for the spatially heterogeneous changes in associated emissions. Here, we present an analysis of the changes in fine particulate matter (PM2.5) associated with current, expected, and proposed energy efficiency and renewable energy policies in Wisconsin. We simulate the state's electricity system and its potential response to policies using the MyPower electricity-sector model, which calculates plant-by-plant reductions in NOx and SO2 emissions. We find that increased efficiency and renewable generation in a 2024 policy scenario substantially reduce statewide emissions of NOx and SO2 (55% and 59% compared to 2008, 32% and 33% compared to 2024 business-as-usual, BAU). PM2.5 is quantified across the Great Lakes region using the EPA Community Multiscale Air Quality (CMAQ) model for some emissions scenarios. We find that summer mean surface concentrations of sulfate and PM2.5 are less sensitive to policy changes than emissions. In the 2024 policy scenario, sulfate aerosol decreases less than 3% over most of the region relative to BAU and 3-13% relative to 2008 over most of Wisconsin. The lower response of these secondary aerosols arises from chemical and meteorological processing of electricity emissions, and mixing with other emission sources. An analysis of model performance and response to emission reduction at five sites in Wisconsin shows good model agreement with observations and a high level of spatial and temporal variability in sulfate and PM2.5 reductions. In this case study, the marginal improvements in emissions and air quality associated with carbon policies were less than the technology, renewable, and conservation assumptions under a business-as-usual scenario. However, this analysis for Wisconsin shows how integrated modeling can quantify the emission and air quality co-benefits associated with carbon reduction measures, and this approach can be applied to other regions and larger geographical scales.

  18. Emissions of black carbon and co-pollutants emitted from diesel vehicles in the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Zavala, Miguel; Molina, Luisa T.; Fortner, Edward; Knighton, Berk; Herndon, Scott; Yacovitch, Tara; Floerchinger, Cody; Roscioli, Joseph; Kolb, Charles; Mejia, Jose Antonio; Sarmiento, Jorge; Paramo, Victor Hugo; Zirath, Sergio; Jazcilevich, Aron

    2014-05-01

    Black carbon emitted from freight, public transport, and heavy duty trucks sources is linked with adverse effects on human health. In addition, the control of emissions of black carbon, an important short-lived climate forcing agent (SLCF), has recently been considered as one of the key strategies for mitigating regional near-term climate change. Despite the availability of new emissions control technologies for reducing emissions from diesel-powered mobile sources, their introduction is still not widespread in many urban areas and there is a need to characterize real-world emission rates of black carbon from this key source. The emissions of black carbon, organic carbon, and other gaseous and particle pollutants from diesel-powered mobile sources in Mexico were characterized by deploying a mobile laboratory equipped with real-time instrumentation in Mexico City as part of the SLCFs-Mexico 2013 project. From February 25-28 of 2013 the emissions from selected diesel-powered vehicles were measured in both controlled experiments and real-world on-road driving conditions. Sampled vehicles had several emissions levels technologies, including: EPA98, EPA03, EPA04, EURO3-5, and Hybrid. All vehicles were sampled using diesel fuel and several vehicles were measured using both diesel and biodiesel fuels. Additional measurements included the use of a remote sensing unit for the co-sampling of all tested vehicles, and the installation and operation of a Portable Emissions Measurements System (PEMS) for the measurement of emissions from a test vehicle. We will present inter-comparisons of the emission factors obtained among the various vehicle technologies that were sampled during the experiment as well as the inter-comparison of results from the various sampling platforms. The results can be used to

  19. Reduced Carbon Solubility in Fe Nanoclusters and Implications for the Growth of Single-Walled Carbon Nanotubes

    E-print Network

    Curtarolo, Stefano

    Reduced Carbon Solubility in Fe Nanoclusters and Implications for the Growth of Single of the minimum temperature necessary for the growth. We address this phenomenon in terms of solubility of C in Fe of single-walled carbon nanotubes, corresponding to unaffected, reduced, and no solubility of C

  20. Effectiveness of multi-stage scrubbers in reducing emissions of air pollutants from pig houses

    Microsoft Academic Search

    Y. Zhao; A. J. A. Aarnink; Jong de M. C. M; N. W. M. Ogink; P. W. G. Groot Koerkamp

    2011-01-01

    Emissions of air pollutants from livestock houses may raise environmental problems and pose hazards to public health. They can be reduced by scrubbers installed at the air outlets of livestock houses. In this study, three multi-stage scrubbers were evaluated in terms of their effectiveness in reducing emissions of airborne dust, total bacteria, ammonia, and CO2 from pig houses in winter.

  1. Surface Seals Reduce 1,3-Dichloropropene and Chloropicrin Emissions in Field Tests.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing emissions is essential for minimizing the impacts of soil fumigation on the environment. Surface water application (or water seal) had been demonstrated to reduce 1,3-dichloropropene (1,3-D) emissions in soil column tests. This study was conducted to determine if surface water application...

  2. Soil pH management without lime, a strategy to reduce greenhouse gas emissions from cultivated soils

    NASA Astrophysics Data System (ADS)

    Nadeem, Shahid; Bakken, Lars; Reent Köster, Jan; Tore Mørkved, Pål; Simon, Nina; Dörsch, Peter

    2015-04-01

    For decades, agricultural scientists have searched for methods to reduce the climate forcing of food production by increasing carbon sequestration in the soil and reducing the emissions of nitrous oxide (N2O). The outcome of this research is depressingly meagre and the two targets appear incompatible: efforts to increase carbon sequestration appear to enhance the emissions of N2O. Currently there is a need to find alternative management strategies which may effectively reduce both the CO2 and N2O footprints of food production. Soil pH is a master variable in soil productivity and plays an important role in controlling the chemical and biological activity in soil. Recent investigations of the physiology of denitrification have provided compelling evidence that the emission of N2O declines with increasing pH within the range 5-7. Thus, by managing the soil pH at a near neutral level appears to be a feasible way to reduce N2O emissions. Such pH management has been a target in conventional agriculture for a long time, since a near-neutral pH is optimal for a majority of cultivated plants. The traditional way to counteract acidification of agricultural soils is to apply lime, which inevitably leads to emission of CO2. An alternative way to increase the soil pH is the use of mafic rock powders, which have been shown to counteract soil acidification, albeit with a slower reaction than lime. Here we report a newly established field trail in Norway, in which we compare the effects of lime and different mafic mineral and rock powders (olivine, different types of plagioclase) on CO2 and N2O emissions under natural agricultural conditions. Soil pH is measured on a monthly basis from all treatment plots. Greenhouse gas (GHG) emission measurements are carried out on a weekly basis using static chambers and an autonomous robot using fast box technique. Field results from the first winter (fallow) show immediate effect of lime on soil pH, and slower effects of the mafic rocks. The plots with mafic rock powders have lower CO2 and N2O emissions as compared with calcite and dolomite. The experiment will be continued for several years under conventionally managed continuous grass, and is unique in its kind allowing to compare different strategies for pH management on GHG emissions.

  3. Removal of floral microbiota reduces floral terpene emissions.

    PubMed

    Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

    2014-01-01

    The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting ?-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination. PMID:25335793

  4. Decomposing the Impact of Alternative Technology Sets on Future Carbon Emissions Growth1

    E-print Network

    Wing, Ian Sue

    of carbon capture and storage, nuclear, and hydroelectric generation all lead to upward shifts in the longDecomposing the Impact of Alternative Technology Sets on Future Carbon Emissions Growth1 Karen;1 Decomposing the Impact of Alternative Technology Sets on Future Carbon Emissions Growth ABSTRACT What

  5. Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China

    E-print Network

    Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China, Global Biogeochem. Cycles, 23, GB1007, doi:10.1029/2008GB003180. 1. Introduction [2] Carbon (C) sequestration has

  6. MASTER THESIS IN AQUATIC PHOTOCHEMISTRY Sunlight-induced carbon dioxide emissions from lakes

    E-print Network

    Uppsala Universitet

    MASTER THESIS IN AQUATIC PHOTOCHEMISTRY Sunlight-induced carbon dioxide emissions from lakes The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet, the fundamental. In this project, the sunlight-induced/photochemical production of carbon dioxide will be determined in a study

  7. An assessment of monitoring requirements and costs of 'Reduced Emissions from Deforestation and Degradation'

    PubMed Central

    Böttcher, Hannes; Eisbrenner, Katja; Fritz, Steffen; Kindermann, Georg; Kraxner, Florian; McCallum, Ian; Obersteiner, Michael

    2009-01-01

    Background Negotiations on a future climate policy framework addressing Reduced Emissions from Deforestation and Degradation (REDD) are ongoing. Regardless of how such a framework will be designed, many technical solutions of estimating forest cover and forest carbon stock change exist to support policy in monitoring and accounting. These technologies typically combine remotely sensed data with ground-based inventories. In this article we assess the costs of monitoring REDD based on available technologies and requirements associated with key elements of REDD policy. Results We find that the design of a REDD policy framework (and specifically its rules) can have a significant impact on monitoring costs. Costs may vary from 0.5 to 550 US$ per square kilometre depending on the required precision of carbon stock and area change detection. Moreover, they follow economies of scale, i.e. single country or project solutions will face relatively higher monitoring costs. Conclusion Although monitoring costs are relatively small compared to other cost items within a REDD system, they should be shared not only among countries but also among sectors, because an integrated monitoring system would have multiple benefits for non-REDD management. Overcoming initialization costs and unequal access to monitoring technologies is crucial for implementation of an integrated monitoring system, and demands for international cooperation. PMID:19709413

  8. Simulation of mercury emission control by activated carbon under confined-bed operations

    Microsoft Academic Search

    T. C. Ho; S. Shetty; H. W. Chu; C. J. Lin; J. R. Hopper

    2008-01-01

    Mercury emissions from coal-fired power plants have been a great environmental and regulatory concern due to the toxic nature of mercury and the significant amount of emissions from these plants. An effective method for controlling mercury emission is to employ activated carbon to adsorb mercury from the combustion flue gas. In this study, an activated carbon mercury sorption model was

  9. Field emission from strained carbon nanotubes on cathode substrate D. Roy Mahapatra a,

    E-print Network

    Melnik, Roderick

    that the electronic transport, and hence the field emission current, is coupled with the thermal transport. If treatedField emission from strained carbon nanotubes on cathode substrate D. Roy Mahapatra a, *, N. Sinha, Waterloo, Ont. N2L3C5, Canada 1. Introduction Field emission from carbon nanotube (CNT) was first reported

  10. SIMULATIONS OF TRANSPORT AND FIELD-EMISSION PROPERTIES OF MULTI-WALL CARBON NANOTUBES

    E-print Network

    Mayer, Alexandre

    SIMULATIONS OF TRANSPORT AND FIELD-EMISSION PROPERTIES OF MULTI-WALL CARBON NANOTUBES Alexandre- emission properties of multi-wall carbon nanotubes. The structure considered for the transport properties of electronic transport in a multi-wall structure with an overview of their essential field-emission properties

  11. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000

    Microsoft Academic Search

    Tami C. Bond; Ekta Bhardwaj; Rong Dong; Rahil Jogani; Soonkyu Jung; Christoph Roden; David G. Streets; Nina M. Trautmann

    2007-01-01

    We present an emission inventory of primary black carbon (BC) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We reconstruct fossil fuel consumption and represent changes in technology on a national and sectoral basis. Our estimates rely on new estimates of biofuel consumption, and updated emission factors for old technologies. Emissions of

  12. Emission factors of PAHs, methoxyphenols, levoglucosan, elemental carbon and organic carbon from simulated wheat and Kentucky bluegrass stubble burns

    Microsoft Academic Search

    Ranil Dhammapala; Candis Claiborn; Jorge Jimenez; Jeffrey Corkill; Brian Gullett; Christopher Simpson; Michael Paulsen

    2007-01-01

    Emission factors (EFs) of pollutants from post-harvest agricultural burning are required for predicting downwind impacts of smoke and inventorying emissions. EFs of polycyclic aromatic hydrocarbons (PAH), methoxyphenols (MP), levoglucosan (LG), elemental carbon (EC) and organic carbon (OC) from wheat and Kentucky bluegrass (KBG) stubble burning were quantified in a US EPA test burn facility. The PAH and MP EFs for

  13. Potassium application reduces methane emission from a flooded field planted to rice

    Microsoft Academic Search

    Y. Jagadeesh Babu; D. R. Nayak; T. K. Adhya

    2006-01-01

    In a field study, potassium (K) applied as muriate of potash (MOP) significantly reduced methane (CH4) emission from a flooded alluvial soil planted to rice. Cumulative emission was highest in control plots (125.34 kg CH4 ha?1), while the lowest emission was recorded in field plots receiving 30 kg K ha?1 (63.81 kg CH4 ha?1), with a 49% reduction in CH4 emission. Potassium application

  14. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia.

    PubMed

    Carlson, Kimberly M; Curran, Lisa M; Ratnasari, Dessy; Pittman, Alice M; Soares-Filho, Britaldo S; Asner, Gregory P; Trigg, Simon N; Gaveau, David A; Lawrence, Deborah; Rodrigues, Hermann O

    2012-05-01

    Industrial agricultural plantations are a rapidly increasing yet largely unmeasured source of tropical land cover change. Here, we evaluate impacts of oil palm plantation development on land cover, carbon flux, and agrarian community lands in West Kalimantan, Indonesian Borneo. With a spatially explicit land change/carbon bookkeeping model, parameterized using high-resolution satellite time series and informed by socioeconomic surveys, we assess previous and project future plantation expansion under five scenarios. Although fire was the primary proximate cause of 1989-2008 deforestation (93%) and net carbon emissions (69%), by 2007-2008, oil palm directly caused 27% of total and 40% of peatland deforestation. Plantation land sources exhibited distinctive temporal dynamics, comprising 81% forests on mineral soils (1994-2001), shifting to 69% peatlands (2008-2011). Plantation leases reveal vast development potential. In 2008, leases spanned ?65% of the region, including 62% on peatlands and 59% of community-managed lands, yet <10% of lease area was planted. Projecting business as usual (BAU), by 2020 ?40% of regional and 35% of community lands are cleared for oil palm, generating 26% of net carbon emissions. Intact forest cover declines to 4%, and the proportion of emissions sourced from peatlands increases 38%. Prohibiting intact and logged forest and peatland conversion to oil palm reduces emissions only 4% below BAU, because of continued uncontrolled fire. Protecting logged forests achieves greater carbon emissions reductions (21%) than protecting intact forests alone (9%) and is critical for mitigating carbon emissions. Extensive allocated leases constrain land management options, requiring trade-offs among oil palm production, carbon emissions mitigation, and maintaining community landholdings. PMID:22523241

  15. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.

    PubMed

    Fairbairn, Eduardo M R; Americano, Branca B; Cordeiro, Guilherme C; Paula, Thiago P; Toledo Filho, Romildo D; Silvoso, Marcos M

    2010-09-01

    This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO(2) emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world's largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO(2) emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO(2) emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO(2) emissions, which qualifies this product for CDM projects. PMID:20493626

  16. Assessing Land Management Change Effects on Forest Carbon and Emissions Under Changing Climate

    NASA Astrophysics Data System (ADS)

    Law, B. E.

    2014-12-01

    There has been limited focus on fine-scale land management change effects on forest carbon under future environmental conditions (climate, nitrogen deposition, increased atmospheric CO2). Forest management decisions are often made at the landscape to regional levels before analyses have been conducted to determine the potential outcomes and effectiveness of such actions. Scientists need to evaluate plausible land management actions in a timely manner to help shape policy and strategic land management. Issues of interest include species-level adaptation to climate, resilience and vulnerability to mortality within forested landscapes and regions. Efforts are underway to improve land system model simulation of future mortality related to climate, and to develop and evaluate plausible land management options that could help mitigate or avoid future die-offs. Vulnerability to drought-related mortality varies among species and with tree size or age. Predictors of species ability to survive in specific environments are still not resolved. A challenge is limited observations for fine-scale (e.g. 4 km2) modeling, particularly physiological parameters. Uncertainties are primarily associated with future land management and policy decisions. They include the interface with economic factors and with other ecosystem services (biodiversity, water availability, wildlife habitat). The outcomes of future management scenarios should be compared with business-as-usual management under the same environmental conditions to determine the effects of management changes on forest carbon and net emissions to the atmosphere. For example, in the western U.S., land system modeling and life cycle assessment of several management options to reduce impacts of fire reduced long-term forest carbon gain and increased carbon emissions compared with business-as-usual management under future environmental conditions. The enhanced net carbon uptake with climate and reduced fire emissions after thinning did not compensate for the increased wood removals over 90 years, leading to reduced net biome production. Analysis of land management change scenarios at fine scales is needed, and should consider other ecological values in addition to carbon.

  17. Surface application of biochar to reduce chloropicrin emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is the carbon-enriched and porous material produced by heating organic material under conditions of limited or no oxygen. As biochar has a large surface area and strong sorption capacity, it can enhance the sequestration of organic contaminants such as pesticides in soil. Chloropicrin (CP) i...

  18. Innovative Technology Reduces Power Plant Emissions-Commercialization Success

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde; Chung, Landy

    2004-01-01

    Overview of emission control system development: (1) Development of new oxidizer scrubber system to eliminate NOx waste and produce fertilizer (2) Technology licensed and a 1 to 3 MWatt-scale prototype installed on power plant (3) Development of method to oxidize NO to NO2 (4) Experience gained from licensing NASA technology.

  19. POTENTIAL OF USING SURFACE WATER APPLICATIONS TO REDUCE FUMIGATION EMISSIONS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High emission rates of fumigants from soil increase the risk of detrimental impact on workers, bystanders and the environment, and jeopardize future availability of fumigants. Efficient and cost-effective approaches to minimize fumigant use are needed. This study evaluated the potential of surface w...

  20. Positron Emission Imaging Studies of Carbon Partitioning in Plants

    NASA Astrophysics Data System (ADS)

    Kiser, M. R.; Howell, C. R.; Crowell, A. S.; Reid, C. D.; Phillips, R. P.

    2006-11-01

    Over the past two centuries the atmospheric CO2 concentration has increased dramatically, and climate experts predict that CO2 levels will double by the end of this century. To understand plant responses to these global change conditions, we use short-lived radioisotope labeling techniques to trace the distribution of carbon in plants grown at ambient (350 PPM) and elevated (700 PPM) CO2 concentrations. The plants are grown and labeled in environmental growth chambers at the Duke University Phytotron, and carbon-11 dioxide is produced at TUNL using the ^14N(p,?)^11C reaction. The close proximity of TUNL and the Duke University Phytotron creates a unique opportunity for these global change studies. Recent experiments seek to quantify the fraction of carbon that is released from the roots either as soluble carbon in the root nutrient solution or as respired CO2 dissolved in the nutrient solution. Preliminary results from this experiment will be presented, as well as results from single detectors collimated to restrict the field of each detector to a specific region of the plant and development of a high spatial resolution planar positron emission imager.

  1. The IR emission features - Emission from PAH molecules and amorphous carbon particles

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1987-01-01

    Given the current understanding of polycyclic aromatic hydrocarbons (PAHs), the spectroscopic data suggest that are at least two components which contribute to the interstellar emission spectrum: (1) free molecule-sized PAHs producing the narrow features and (2) amorphous carbon particles (which are primarily composed of an irregular 'lattice' of PAHs) contributing to the broad underlying components. An exact treatment of the IR fluorescence from highly vibrationally excited large molecules demonstrates that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. It is concluded that, since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is required along with an observational program focusing on the spatial characteristics of the spectra.

  2. Reduction of carbon monoxide emissions with regenerative thermal oxidizers

    SciTech Connect

    Firmin, S.M.; Lipke, S.; Baturay, A.

    1996-09-01

    Regenerative thermal oxidizers (RTOs) have been extensively used for the control of volatile organic compound (VOC) emissions from various sources. However, very little information is available on the ability of RTOs to control carbon monoxide (CO) emissions. This paper presents the results of extensive tests conducted on two RTOs to determine their VOC and CO control efficiencies. The inlet gas stream to the RTOs includes VOC and CO concentrations as high as 2,000 ppm and 3,600 ppm, respectfully. The testing demonstrated that both RTOs were capable of controlling greater than 98% of both inlet VOCs and CO. While the destruction efficiencies within the combustion chambers exceeded 99.9%, direct leakage past valves accounted for the lower control efficiencies. The tests indicated that the overall VOC and CO control efficiencies of the RTOs may be limited by valve leakage. The design and permitting of a RTO should include conservative control estimates which account for possible valve leakage.

  3. Performance of a carbon nanotube field emission electron gun

    NASA Astrophysics Data System (ADS)

    Getty, Stephanie A.; King, Todd T.; Bis, Rachael A.; Jones, Hollis H.; Herrero, Federico; Lynch, Bernard A.; Roman, Patrick; Mahaffy, Paul

    2007-04-01

    A cold cathode field emission electron gun (e-gun) based on a patterned carbon nanotube (CNT) film has been fabricated for use in a miniaturized reflectron time-of-flight mass spectrometer (RTOF MS), with future applications in other charged particle spectrometers, and performance of the CNT e-gun has been evaluated. A thermionic electron gun has also been fabricated and evaluated in parallel and its performance is used as a benchmark in the evaluation of our CNT e-gun. Implications for future improvements and integration into the RTOF MS are discussed.

  4. Potential impact of individuals on carbon dioxide emissions in East North Central USA.

    NASA Astrophysics Data System (ADS)

    Mozurkewich, George

    2007-05-01

    Many activities of modern life increase the atmosphere's carbon dioxide load. With approximately 48 percent of energy use in the US being attributable to the residential and transportation sectors, individuals have meaningful control over a large portion of these emissions. To reduce our impact, we have been exhorted to buy hybrid vehicles, use fluorescent bulbs, enhance the insulation of our homes, etc. This presentation ranks the effectiveness of several such actions, both in terms of the magnitude of emissions reductions attainable and in terms of cost effectiveness. Input information was obtained from several publicly available databases and, where possible, is specialized to the East North Central census region (Ohio, Michigan, Indiana, Illinois, and Wisconsin). A key observation is that concerned individuals can significantly reduce their carbon dioxide emissions at minimal net cost to themselves using technology that is currently commercially available. Time permitting, the magnitude of these available reductions will be considered in light of the second law of thermodynamics. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.B1.2

  5. Stable Electron Field Emission afrom Opened-Tip Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Pandey, Archana; Prasad, Abhishek; Moscatello, Jason; Khin Yap, Yoke

    2009-03-01

    Effective electron field emission from carbon nanotubes (CNTs) has been known for years but reliable commercial devices are still not available. Most reported works describe low emission threshold field (Eth) of CNTs and their device architectures. However, fundamental factors that determine stable emission from CNTs are still not clear. We previously reported that graphitic order of CNTs affects their emission stability [1]. Here, we found that both opened tip nanotubes and bundling, when introduced independently, can reduce Eth of CNTs and enhance the emission stability. The combined of both factors, i.e., opened tip nanotube bundles are shown to emit electron continuously > ten hours with notable stability. Theoretical simulation was conducted in supporting our explanation on these enhanced emission properties. SEM, TEM and Raman spectroscopy was conducted to characterize the as grown CNTs. Y. K. Yap acknowledges support from the Defense Advanced Research Projects Agency (DAAD17-03-C-0115, through Army Research Laboratory). [1]. Kayastha et al, Nanotechnology 18, 035206 (2007).

  6. Evaluation of Refrigerating and Air Conditioning Devices in Energy Cascade Systems under the Restriction of Carbon Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi; Akisawa, Atsushi; Kashiwagi, Takao

    It is necessary to introduce energy cascade systems into the industrial sector in Japan to reduce carbon dioxide emissions. The aim of this study is to evaluate the refrigerating and air conditioning devices in cases of introducing both energy cascade systems and thermal recycling systems in industries located around urban areas. The authors have developed an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Limitation of carbon dioxide emissions results in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature one is shifted to refrigeration. It was found that increasing the amount of garbage combustor waste heat can reduce electric power for the turbo refrigerator by promoting waste heat driven ammonia absorption refrigerator.

  7. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes

    NASA Astrophysics Data System (ADS)

    Crawford, John T.; Dornblaser, Mark M.; Stanley, Emily H.; Clow, David W.; Striegl, Robert G.

    2015-05-01

    Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2 concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season. CO2 and CH4 emissions from the aquatic conduit were relatively small compared to many parts of the globe. Irrespective of the physical template for high gas exchange (high k), we found evidence of CO2 source limitation to mountain streams during the growing season, which limits overall CO2 emissions. Our results suggest a reduced importance of aquatic ecosystems for carbon cycling in high-elevation landscapes having limited soil development and high CO2 consumption via mineral weathering.

  8. Woody encroachment reduces nutrient limitation and promotes soil carbon sequestration.

    PubMed

    Blaser, Wilma J; Shanungu, Griffin K; Edwards, Peter J; Olde Venterink, Harry

    2014-04-01

    During the past century, the biomass of woody species has increased in many grassland and savanna ecosystems. As many of these species fix nitrogen symbiotically, they may alter not only soil nitrogen (N) conditions but also those of phosphorus (P). We studied the N-fixing shrub Dichrostachys cinerea in a mesic savanna in Zambia, quantifying its effects upon pools of soil N, P, and carbon (C), and availabilities of N and P. We also evaluated whether these effects induced feedbacks upon the growth of understory vegetation and encroaching shrubs. Dichrostachys cinerea shrubs increased total N and P pools, as well as resin-adsorbed N and soil extractable P in the top 10-cm soil. Shrubs and understory grasses differed in their foliar N and P concentrations along gradients of increasing encroachment, suggesting that they obtained these nutrients in different ways. Thus, grasses probably obtained them mainly from the surface upper soil layers, whereas the shrubs may acquire N through symbiotic fixation and probably obtain some of their P from deeper soil layers. The storage of soil C increased significantly under D. cinerea and was apparently not limited by shortages of either N or P. We conclude that the shrub D. cinerea does not create a negative feedback loop by inducing P-limiting conditions, probably because it can obtain P from deeper soil layers. Furthermore, C sequestration is not limited by a shortage of N, so that mesic savanna encroached by this species could represent a C sink for several decades. We studied the effects of woody encroachment on soil N, P, and C pools, and availabilities of N and P to Dichrostachys cinerea shrubs and to the understory vegetation. Both N and P pools in the soil increased along gradients of shrub age and cover, suggesting that N fixation by D. cinerea did not reduce the P supply. This in turn suggests that continued growth and carbon sequestration in this mesic savanna ecosystems are unlikely to be constrained by nutrient limitation and could represent a C sink for several decades. PMID:24834338

  9. Energy Use and Carbon Dioxide Emissions from Cropland Production in the United States, 1990-2004

    SciTech Connect

    West, Tristram O. [ORNL; Brandt, Craig C [ORNL; Marland, Gregg [ORNL; Nelson, Richard G [ORNL; Hellwinckel, Chad M [ORNL; De La Torre Ugarte, Daniel G [ORNL

    2009-01-01

    Changes in cropland production and management influence energy consumption and emissions of CO2 from fossil-fuel combustion. A method was developed to calculate on-site and off-site energy and CO2 emissions for cropping practices in the US at the county scale. Energy consumption and emissions occur on-site from the operation of farm machinery and occur off-site from the manufacture and transport of cropland production inputs, such as fertilizers, pesticides, and agricultural lime. Estimates of fossil-fuel consumption and associated CO2 emissions for cropping practices enable (a) the monitoring of energy and emissions with changes in land management, and (b) the calculation and balancing of regional and national carbon budgets. Results indicate on-site energy use and total energy use (i.e., the sum of on-site and off-site) on US croplands in 2004 ranged from 1.6-7.9 GJ ha-1 yr-1 and from 5.5-20.5 GJ ha-1 yr-1, respectively. On-site and total CO2 emissions in 2004 ranged from 23-176 kg C ha-1 yr-1 and from 91-365 kg C ha-1 yr-1, respectively. During the period of this analysis (1990-2004), national total energy consumption for crop production ranged from 1204-1297 PJ yr-1 (Petajoule = 1 1015 Joule) with associated total fossil CO2 emissions ranging from 22.0-23.2 Tg C yr-1 (Teragram = 1 1012 gram). The annual proportion of on-site CO2 to total CO2 emissions changed depending on the diversity of crops planted. Adoption of reduced tillage practices in the US from 1990 to 2004 resulted in a net emissions reduction of 2.4 Tg C.

  10. Energy use and carbon dioxide emissions from cropland production in the United States, 1990-2004.

    PubMed

    Nelson, Richard G; Hellwinckel, Chad M; Brandt, Craig C; West, Tristram O; De La Torre Ugarte, Daniel G; Marland, Gregg

    2009-01-01

    Changes in cropland production and management influence energy consumption and emissions of CO(2) from fossil-fuel combustion. A method was developed to calculate on-site and off-site energy and CO(2) emissions for cropping practices in the United States at the county scale. Energy consumption and emissions occur on-site from the operation of farm machinery and occur off-site from the manufacture and transport of cropland production inputs, such as fertilizers, pesticides, and agricultural lime. Estimates of fossil-fuel consumption and associated CO(2) emissions for cropping practices enable (i) the monitoring of energy and emissions with changes in land management and (ii) the calculation and balancing of regional and national carbon budgets. Results indicate on-site energy use and total energy use (i.e., the sum of on-site and off-site) on U.S. croplands in 2004 ranged from 1.6 to 7.9 GJ ha(-1) yr(-1) and from 5.5 to 20.5 GJ ha(-1) yr(-1), respectively. On-site and total CO(2) emissions in 2004 ranged from 23 to 176 kg C ha(-1) yr(-1) and from 91 to 365 kg C ha(-1) yr(-1), respectively. During the period of this analysis (1990-2004), national total energy consumption for crop production ranged from 1204 to 1297 PJ yr(-1) (Petajoule = 1 x 10(15) Joule) with associated total fossil CO(2) emissions ranging from 21.5 to 23.2 Tg C yr(-1) (Teragram = 1 x 10(12) gram). The annual proportion of on-site CO(2) to total CO(2) emissions changed depending on the diversity of crops planted. Adoption of reduced tillage practices in the United States from 1990 to 2004 resulted in a net fossil emissions reduction of 2.4 Tg C. PMID:19202012

  11. ADVANCED DEHYDRATOR DESIGN SAVES GAS AND REDUCES HAP EMISSIONS

    EPA Science Inventory

    Glycol dehydrators remove water from gas pipe lines. An advanced dehydrator by Engineered Concepts, Farmington, NM, saves a significant amount of gas, while reducing hazardous air pollutants, volatile organic compounds and CO2 air pollutants...

  12. Model Project Streamlines Compliance, Reduces Emissions and Energy Use

    E-print Network

    Vining, S. K.

    Marathon's Texas City refinery was subject to five separate EPA regulations in addition to a state program for monitoring and repairing fugitive leaks. The refinery sought an organizational solution that reduced monitoring costs and kept...

  13. Pulse response functions are cost-e cient tools to model the link between carbon emissions,

    E-print Network

    Fortunat, Joos

    decay re- sponse functions to describe carbon turnover in the land biota. We build a simple carbon cycle is then the coupling of a complex economic model to a very poor representation of the carbon cycle to estimatePulse response functions are cost-e cient tools to model the link between carbon emissions

  14. High-resolution forest carbon stocks and emissions in Gregory P. Asnera,1

    E-print Network

    Saleska, Scott

    High-resolution forest carbon stocks and emissions in the Amazon Gregory P. Asnera,1 , George V. N Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon

  15. Field emission of electrons from a Cs-doped single carbon nanotube of known chiral indices

    E-print Network

    Qin, Lu-Chang

    distribution,7 and good stability.8 However, one disadvantage in using carbon nano- tubes is that its work carbon nano- tube. Figure 1 a is a transmission electron microscope TEM image which shows a single carbonField emission of electrons from a Cs-doped single carbon nanotube of known chiral indices Gongpu

  16. THE 217.5 nm BAND, INFRARED ABSORPTION, AND INFRARED EMISSION FEATURES IN HYDROGENATED AMORPHOUS CARBON NANOPARTICLES

    SciTech Connect

    Duley, W. W. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada)] [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada); Hu, Anming, E-mail: wwduley@uwaterloo.ca, E-mail: a2hu@uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, Centre for Advanced Material Joining, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada)] [Department of Mechanical and Mechatronics Engineering, Centre for Advanced Material Joining, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada)

    2012-12-20

    We report on the preparation of hydrogenated amorphous carbon nanoparticles whose spectral characteristics include an absorption band at 217.5 nm with the profile and characteristics of the interstellar 217.5 nm feature. Vibrational spectra of these particles also contain the features commonly observed in absorption and emission from dust in the diffuse interstellar medium. These materials are produced under ''slow'' deposition conditions by minimizing the flux of incident carbon atoms and by reducing surface mobility. The initial chemistry leads to the formation of carbon chains, together with a limited range of small aromatic ring molecules, and eventually results in carbon nanoparticles having an sp {sup 2}/sp {sup 3} ratio Almost-Equal-To 0.4. Spectroscopic analysis of particle composition indicates that naphthalene and naphthalene derivatives are important constituents of this material. We suggest that carbon nanoparticles with similar composition are responsible for the appearance of the interstellar 217.5 nm band and outline how these particles can form in situ under diffuse cloud conditions by deposition of carbon on the surface of silicate grains. Spectral data from carbon nanoparticles formed under these conditions accurately reproduce IR emission spectra from a number of Galactic sources. We provide the first detailed fits to observational spectra of Type A and B emission sources based entirely on measured spectra of a carbonaceous material that can be produced in the laboratory.

  17. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    Microsoft Academic Search

    Min Kyoon Shin; Bommy Lee; Shi Hyeong Kim; Jae Ah Lee; Geoffrey M. Spinks; Sanjeev Gambhir; Gordon G. Wallace; Mikhail E. Kozlov; Ray H. Baughman; Seon Jeong Kim

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun

  18. A DRAMATICALLY REDUCED SIZE IN THE GANTRY DESIGN FOR THE PROTON-CARBON THERAPY*

    E-print Network

    Keil, Eberhard

    are described in a presentation of the newest state of the art gantry for carbon hadron therapy facilityA DRAMATICALLY REDUCED SIZE IN THE GANTRY DESIGN FOR THE PROTON-CARBON THERAPY* D. Trbojevic, R, LBNL, Berkeley CA, USA Abstract Gantries in the proton/carbon cancer therapy machines represent

  19. Teamwork Plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility

    E-print Network

    Booker, G.; Robinson, J.

    Suncor Energy Inc. developed a long term plan to expand production from its oil sands operation north of Fort McMurray, Alberta up to 500,000 to 550,000 barrels/day in 2010-2012, while reducing the per barrel energy usage, emissions, and long term...

  20. Emissions of carbon monoxide and carbon dioxide from uncompressed and pelletized biomass fuel burning in typical household stoves in China

    NASA Astrophysics Data System (ADS)

    Wei, Wen; Zhang, Wei; Hu, Dan; Ou, Langbo; Tong, Yindong; Shen, Guofeng; Shen, Huizhong; Wang, Xuejun

    2012-09-01

    Carbon dioxide (CO2) and carbon monoxide (CO) impact climate change and human health. The uncertainties in emissions inventories of CO2 and CO are primarily due to the large variation in measured emissions factors (EFs), especially to the lack of EFs from developing countries. China's goals of reducing CO2 emissions require a maximum utilization of biomass fuels. Pelletized biomass fuels are well suited for the residential biomass market, providing possibilities of more automated and optimized systems with higher modified combustion efficiency (MCE) and less products from incomplete combustion. However, EFs of CO2 and CO from pellet biomass fuels are seldom reported, and a comparison to conventional uncompressed biomass fuels has never been conducted. Therefore, the objectives of this study were to experimentally determine the CO2 and CO EFs from uncompressed biomass (i.e., firewood and crop residues) and biomass pellets (i.e., pine wood pellet and corn straw pellet) under real residential applications and to compare the influences of fuel properties and combustion conditions on CO2 and CO emissions from the two types of biomass fuels. For the uncompressed biomass examples, the CO2 and CO EFs were 1649.4 ± 35.2 g kg-1 and 47.8 ± 8.9 g kg-1, respectively, for firewood and 1503.2 ± 148.5 g kg-1 and 52.0 ± 14.2 g kg-1, respectively, for crop residues. For the pellet biomass fuel examples, the CO2 and CO EFs were 1708.0 ± 3.8 g kg-1 and 4.4 ± 2.4 g kg-1, respectively, for pellet pine and 1552.1 ± 16.3 g kg-1 and 17.9 ± 10.2 g kg-1, respectively, for pellet corn. In rural China areas during 2007, firewood and crop residue burning produced 721.7 and 23.4 million tons of CO2 and CO, respectively.

  1. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    Microsoft Academic Search

    Robert Joseph Andres; Thomas A Boden; F.-M. Breon; P. Ciais; S. Davis; D Erickson; J. S. Gregg; Andrew Jacobson; Gregg Marland; J. Miller; T Oda; J. G. J. Oliver; Michael Raupach; P Rayner; K. Treanton

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts

  2. Carbon Emissions from Deforestation in the Brazilian Amazon Region

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from year to year during the period 2000-2002. This is the first study to use MODIS data to model all carbon pools (wood, leaf, root) dynamically in simulations of Amazon forest deforestation from clearing and burning of all kinds.

  3. The Elephant in the Room: Dealing with Carbon Emissions from Synthetic Transportation Fuels Production

    SciTech Connect

    Parker, Graham B.; Dahowski, Robert T.

    2007-07-11

    Carbon dioxide (CO2), produced by conversion of hydrocarbons to energy, primarily via fossil fuel combustion, is one of the most ubiquitous and significant greenhouse gases (GHGs). Concerns over climate change precipitated by rising atmospheric GHG concentrations have prompted many industrialized nations to begin adopting limits on emissions to inhibit increases in atmospheric CO2 levels. The United Nations Framework Convention on Climate Change states as a key goal the stabilization of atmospheric CO2 at a level that prevents “dangerous anthropogenic interference” with the planet’s climate systems. This will require sharply reducing emissions growth rates in developing nations, and reducing CO2 emissions in the industrialized world to half current rates in the next 50 years. And ultimately, stabilization will require that annual emissions drop to almost zero.Recently, there has been interest in producing synthetic transportation fuels via coal-to-liquids (CTL) production, particularly in countries where there is an abundant supply of domestic coal, including the United States. This paper provides an overview of the current state of CTL technologies and deployment, a discussion of costs and technical requirements for mitigating the CO2 impacts associated with a CTL facility, and the challenges facing the CTL industry as it moves toward maturity.

  4. A Systems Approach to Reducing Institutional GHG Emissions

    ERIC Educational Resources Information Center

    Williamson, Sean R.

    2012-01-01

    Purpose: The purpose of this paper is to establish necessity and methods for considering greenhouse gas (GHG) mitigation policies at a system-level. The research emphasizes connecting narrowly focused GHG mitigation objectives (e.g. reduce single occupancy vehicle travel) with broader institutional objectives (e.g. growth in student population) to…

  5. Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)

    EIA Publications

    2010-01-01

    Carbon Dioxide (CO2) emissions from the combustion of biomass to produce energy are excluded from the energy-related CO2 emissions reported in Annual Energy Outlook 2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

  6. Effects of iron-reducing bacteria on carbon steel corrosion induced by thermophilic sulfate-reducing consortia.

    PubMed

    Valencia-Cantero, Eduardo; Peña-Cabriales, Juan José

    2014-02-28

    Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in iron-reducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion. PMID:24225375

  7. Evaluation of TIF to reduce fumigant emissions and the potential to use reduced rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strawberry growers in California rely heavily on soil fumigation to assure profitable berries and high yields. However, the adverse impact on air quality from fumigant emissions threatens the availability of fumigants for agricultural use. The objective of this research was to determine the performa...

  8. Method and apparatus for reducing solvent luminescence background emissions

    DOEpatents

    Affleck, Rhett L. (Los Alamos, NM); Ambrose, W. Patrick (Los Alamos, NM); Demas, James N. (Charlottesville, VA); Goodwin, Peter M. (Jemez Springs, NM); Johnson, Mitchell E. (Pittsburgh, PA); Keller, Richard A. (Los Alamos, NM); Petty, Jeffrey T. (Los Alamos, NM); Schecker, Jay A. (Santa Fe, NM); Wu, Ming (Los Alamos, NM)

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  9. Tillage, Cropping Sequence, and Nitrogen Fertilization Effects on Dryland Soil Carbon Dioxide Emission and Carbon Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices are needed to reduce dryland soil CO2 emission and increase C sequestration that can influence global warming. We evaluated the effects of tillage and cropping sequence combination and N fertilization on dryland soil surface CO2 flux, temperature and water content at the 0- to 1...

  10. Reducing nitrous oxide emission from an irrigated rice field of North India with nitrification inhibitors

    Microsoft Academic Search

    Deepanjan Majumdar; Sushil Kumar; H Pathak; M. C Jain; Upendra Kumar

    2000-01-01

    Nitrification inhibitors may be potential management strategy to reduce N2O emissions in irrigated rice (Oryza sativa L.). A field experiment was conducted to evaluate chemically synthesized as well as locally available neem plant products on N2O emissions, from an irrigated rice at New Delhi, India. Emission of nitrous oxide (N2O) was monitored during 70 days by closed chamber method in

  11. Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian

    E-print Network

    Wehrli, Bernhard

    Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian (methanotrophy) associated with submerged brown moss species occurs in polygonal tundra environments. Moss-associated methane oxidation is not only promoted by submerged conditions but also by light

  12. Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers 

    E-print Network

    Miller, B.; Keon, E.

    1980-01-01

    Chemical technology has been used successfully to solve many of the operational and emissions problems that result from burning coal. This paper describes the use of blended chemical flue gas conditioners to significantly reduce particulate...

  13. Dynamics of implementation of mitigating measures to reduce CO? emissions from commercial aviation

    E-print Network

    Kar, Rahul, 1979-

    2010-01-01

    Increasing demand for air transportation and growing environmental concerns motivate the need to implement measures to reduce CO? emissions from aviation. Case studies of historical changes in the aviation industry have ...

  14. Field emission with ultralow turn on voltage from metal decorated carbon nanotubes.

    PubMed

    Sridhar, Srividya; Tiwary, Chandrasekhar; Vinod, Soumya; Taha-Tijerina, Jose Jaime; Sridhar, Srividvatha; Kalaga, Kaushik; Sirota, Benjamin; Hart, Amelia H C; Ozden, Sehmus; Sinha, Ravindra Kumar; Harsh; Vajtai, Robert; Choi, Wongbong; Kordás, Krisztián; Ajayan, Pulickel M

    2014-08-26

    A simple and scalable method of decorating 3D-carbon nanotube (CNT) forest with metal particles has been developed. The results observed in aluminum (Al) decorated CNTs and copper (Cu) decorated CNTs on silicon (Si) and Inconel are compared with undecorated samples. A significant improvement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage (Eto ? 0.1 V/?m) due to decoration of CNTs with metal nanoparticles. Contact resistance between the CNTs and the substrate has also been reduced to a large extent, allowing us to get stable emission for longer duration without any current degradation, thereby providing a possibility of their use in vacuum microelectronic devices. PMID:25054222

  15. Reducing N2O emissions from orchard using subsurfce drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural soil is the major source for N2O emissions. Minimizing N2O emissions along with increasing N use efficiency, reducing leaching loss, and maintaining crop economic yield and quality can lead to increased sustainability of crop production. The main objective of this research is to evaluat...

  16. Testing with EPA protocols shows reduced emissions for REE diesel fuels

    SciTech Connect

    NONE

    1995-12-31

    This article reports on emission test results when two diesel-powered dodge pickup trucks were fueled with various blends of rapeseed esters (100 percent rapeseed ethyl ester (REE); 50 percent each REE and diesel fuel; 20 REE, rest diesel) compared with 100 percent low sulfur diesel fuel. Most emissions were reduced.

  17. Methods for exploring management options to reduce greenhouse gas emissions from tropical grazing systems

    Microsoft Academic Search

    S. Mark Howden; David H. White; Greg M. Mckeon; Joe C. Scanlan; John O. Carter

    1994-01-01

    Increasing atmospheric concentrations of ‘greenhouse gases’ are expected to result in global climatic changes over the next decades. Means of evaluating and reducing greenhouse gas emissions are being sought. In this study an existing simulation model of a tropical savanna woodland grazing system was adapted to account for greenhouse gas emissions. This approach may be able to be used in

  18. Simple emission-reducing measures in an open biological waste treatment plant

    Microsoft Academic Search

    Franz Ferdinand Reinthaler; Gilda Wüst; Doris Haas; Gebhard Feierl; Gerald Ruckenbauer; Egon Marth

    2004-01-01

    In the course of composting biological waste, concentrations of various thermophilic and thermotolerant microorganisms increase. Moving piles of compost results in increased emissions of Actinomycetes and fungi. The present investigation deals with the reduction of airborne microorganism emission and immission in large-scale composting plants with open piles. Simple measures were introduced in order to reduce the release of bioaerosols when

  19. Feed formulations to reduce N excretion and ammonia emission from poultry manure

    Microsoft Academic Search

    K. H. Nahm

    2007-01-01

    This summary focuses on reducing nitrogen (N) and ammonia emissions from poultry manure through the use of improved amino acid digestibilities and enzyme supplementation. Proper feed processing techniques, phase feeding, and the minimization of feed and water waste can contribute to additional minor reductions in these emissions. Reductions in environmental pollution can be achieved through improved diet formulation based on

  20. A new method to thermally manage an electronic control unit while reducing radiated emissions

    Microsoft Academic Search

    Imad Sharaa; Daniel N. Aloi

    2008-01-01

    This paper provides a methodology to thermally manage an electronic control unit while reducing its radiated emissions. Measurements of the radiated emission levels for a particular electronic control unit revealed excessive levels. Electronic control units utilize pulse width modulated signals to control an external load. The rise and fall times of the pulse width modulated signal impact both the radiated

  1. Effect of feeding distiller’s grains on reduced sulfur emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Odorous reduced sulfur compounds are produced during manure decomposition and emitted from confined animal feeding operations. Feeding high-sulfur distiller’s byproducts may increase the emission of these compounds. The objectives of a series of feedlot pen studies was to (i) determine if emission...

  2. Research of boiler combustion regulation for reducing NOx emission and its effect on boiler efficiency

    Microsoft Academic Search

    Xue-Dong Wang; Tao Luan; Lin Cheng; Kun Xiao

    2007-01-01

    The effect of boiler combustion regulation on NOx emission of two 1025t\\/h boilers has been studied. The researches show that NOx emission is influenced by coal species, operation\\u000a conditions, etc, and can be reduced by regulating the combustion conditions. The effect of combustion regulation on boiler\\u000a efficiency has also been checked.

  3. Greenhouse gas emissions during composting of dairy manure: Delaying pile mixing does not reduce overall emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of the timing of pile mixing on greenhouse gas (GHG) emissions during dairy manure composting was determined using large flux chambers designed to completely cover replicate pilot-scale compost piles. GHG emissions from compost piles that were mixed at 2, 3, 4, or 5 weeks after initial c...

  4. Greenhouse Gas Emission Accounting and Management of Low-Carbon Community

    PubMed Central

    Song, Dan; Su, Meirong; Yang, Jin; Chen, Bin

    2012-01-01

    As the major source of greenhouse gas (GHG) emission, cities have been under tremendous pressure of energy conservation and emission reduction for decades. Community is the main unit of urban housing, public facilities, transportation, and other properties of city's land use. The construction of low-carbon community is an important pathway to realize carbon emission mitigation in the context of rapid urbanization. Therefore, an efficient carbon accounting framework should be proposed for CO2 emissions mitigation at a subcity level. Based on life-cycle analysis (LCA), a three-tier accounting framework for the carbon emissions of the community is put forward, including emissions from direct fossil fuel combustion, purchased energy (electricity, heat, and water), and supply chain emissions embodied in the consumption of goods. By compiling a detailed CO2 emission inventory, the magnitude of carbon emissions and the mitigation potential in a typical high-quality community in Beijing are quantified within the accounting framework proposed. Results show that emissions from supply chain emissions embodied in the consumption of goods cannot be ignored. Specific suggestions are also provided for the urban decision makers to achieve the optimal resource allocation and further promotion of low-carbon communities. PMID:23251104

  5. Greenhouse gas emission accounting and management of low-carbon community.

    PubMed

    Song, Dan; Su, Meirong; Yang, Jin; Chen, Bin

    2012-01-01

    As the major source of greenhouse gas (GHG) emission, cities have been under tremendous pressure of energy conservation and emission reduction for decades. Community is the main unit of urban housing, public facilities, transportation, and other properties of city's land use. The construction of low-carbon community is an important pathway to realize carbon emission mitigation in the context of rapid urbanization. Therefore, an efficient carbon accounting framework should be proposed for CO? emissions mitigation at a subcity level. Based on life-cycle analysis (LCA), a three-tier accounting framework for the carbon emissions of the community is put forward, including emissions from direct fossil fuel combustion, purchased energy (electricity, heat, and water), and supply chain emissions embodied in the consumption of goods. By compiling a detailed CO? emission inventory, the magnitude of carbon emissions and the mitigation potential in a typical high-quality community in Beijing are quantified within the accounting framework proposed. Results show that emissions from supply chain emissions embodied in the consumption of goods cannot be ignored. Specific suggestions are also provided for the urban decision makers to achieve the optimal resource allocation and further promotion of low-carbon communities. PMID:23251104

  6. The impact of electric passenger transport technology under an economy-wide climate policy in the United States: Carbon dioxide emissions, coal use, and carbon dioxide capture and storage

    Microsoft Academic Search

    Marshall A. Wise; G. Page Kyle; James J. Dooley; Son H. Kim

    2010-01-01

    Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear.

  7. 75 FR 81950 - Flaring Versus Venting To Reduce Greenhouse Gas Emissions in the Outer Continental Shelf; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ...overall volume of gas flared and vented. However, the global warming potential of GHG emissions could be reduced if BOEMRE...is necessary). Such a requirement would reduce the global warming potential of GHG emissions by converting most...

  8. Water-washable ink system reduces printers' hazardous emissions

    SciTech Connect

    Kratch, K.

    1994-08-01

    Printing industry solvents contain large quantities of volatile organic compounds (VOCs), a major contributor to air pollution in that industry. Because most printing inks contain non-water-soluble petroleum, organic solvents have been necessary to clean presses using those inks. However, under proposed control technique guidelines for lithographic printers issued by the Environmental Protection Agency (EPA), printing-press wash solutions could contain no more than 30% VOCs. Deluxe Corp., a St. Paul, Minn.-based lithographic printer, recognized that stiffer emissions rules could mean harsh penalties for non-compliance and, in 1990, began developing a water-based press wash that would meet the guidelines. Deluxe last year introduced a 100% vegetable oil-based ink that becomes water-washable when exposed to the company's water-based press-wash solution. The solvent-free system eliminates VOCs and hazardous wastes associated with printing, contains no chemicals considered hazardous by EPA, uses no non-renewable resources, and works with existing printing equipment and processes. The system also eliminates water and soil contamination risks associated with laundering or landfilling solvent-saturated shop towels, saves money by eliminating the need to pay for hazardous waste disposal and provides relief to employees who complain about the strong odors of traditional press-wash solvents.

  9. Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry

    SciTech Connect

    Martin, Nathan; Worrell, Ernst; Price, Lynn

    1999-08-01

    This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%,from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

  10. [Stable carbon isotope of black carbon from typical emission sources in China].

    PubMed

    Chen, Ying-Jun; Cai, Wei-Wei; Huang, Guo-Pei; Li, Jun; Zhang, Gan

    2012-03-01

    Smoke particles from the three typical BC emission sources (biomass burning, household coal combustion, and vehicular exhaust) were collected and analyzed for stable carbon isotopes (delta13C) of black carbon (BC), total carbon (TC), as well as the original fuels. The results show that corn stalk (a typical C4 plant, -13.62 per thousand) has the highest delta13C(BC) value, and the average values for C3 plants, bituminous coals, and vehicle exhaust are -26.49 per thousand +/- 1.17 per thousand, -23.46 per thousand +/- 0.37 per thousand, and -25.17 per thousand +/- 0.40 per thousand, respectively. delta13C(BC) values from the three sources are similar to the corresponding fuels, and the ranges of these values are different from each other. Carbon fractionation occurs during the process of BC formation. delta13C(BC) for C4 plant (corn stalk) is lower than that of the fuel by 1.62 per thousand, while the values for C3 plants and coals are higher than that of the fuels by 0.63 per thousand and 0.52 per thousand, respectively. CTO-375 method, which is used to extract BC from TC, affects the stable carbon isotope of smokes from biomass burning to some extent (the difference between delta13C(BC) and delta13C(TC) is nearly 0.50 per thousand), but has little effect on fossil fuel smokes. This delta13C database for typical emission sources provides scientific information on BC source apportionment. PMID:22624354

  11. "Carbon emission offsets for aviation-generated emissions due to international travel to and from New Zealand" revised personal version of paper to appear in Energy Policy (in

    E-print Network

    Otago, University of

    "Carbon emission offsets for aviation-generated emissions due to international travel to and from.1016/j.enpol.2008.10.046 1 CARBON EMISSION OFFSETS FOR AVIATION-GENERATED EMISSIONS DUE TO INTERNATIONAL to liability under the Kyoto Protocol. However, pressure is mounting globally for international aviation

  12. Enhancing soil infiltration reduces gaseous emissions and improves N uptake from applied dairy slurry.

    PubMed

    Bhandral, R; Bittman, S; Kowalenko, G; Buckley, K; Chantigny, M H; Hunt, D E; Bounaix, F; Friesen, A

    2009-01-01

    Rapid infiltration of liquid manure into the soil reduces emissions of ammonia (NH(3)) into the atmosphere. This study was undertaken to assess the effects of two low-cost methods of assisting infiltration of applied dairy slurry on emissions of NH(3), nitrous oxide (N(2)O), and on crop N uptake. The two methods were removing of solids by settling-decantation to make the manure less viscous and mechanically aerating the soil. Ammonia emissions were measured with wind tunnels as percentage of applied total ammoniacal nitrogen (TAN) while emissions of N(2)O were measured with vented chambers. Mechanically aerating the soil before manure application significantly reduced emissions of NH(3) relative to the nonaerated soil in spring (38.6 to 20.3% of applied TAN), summer (41.1 to 26.4% of applied TAN) and fall (27.7 to 13.6% of applied TAN) trials. Decantation of manure had no effect on NH(3) emissions in spring, tended to increase emissions in summer and significantly decreased emissions in fall (30.3 to 11.1% of applied TAN). Combining the two abatement techniques reduced NH(3) emission by 82% in fall, under cool weather conditions typical of manure spreading. The two abatement techniques generally did not significantly affect N(2)O emissions. Uptake of applied N by Italian ryegrass (Lolium multiflorum Lam.) was generally significantly greater with decanted than from whole manure but the effect of aeration was generally small and not significant. The study shows that low cost methods that assist manure infiltration into the soil may be used to greatly reduce ammonia loss without increasing N(2)O emissions, but efficacy of abatement methods is affected by weather conditions. PMID:19465712

  13. The Seasonal and Spatial Distribution of Carbon Dioxide Emissions from Fossil Fuels in Asia

    Microsoft Academic Search

    J. S. Gregg; R. J. Andres

    2006-01-01

    Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the

  14. Quantifying the impact of model errors on topdown estimates of carbon monoxide emissions using satellite observations

    E-print Network

    Heald, Colette L.

    Quantifying the impact of model errors on topdown estimates of carbon monoxide emissions using the Measurement of Pollution in the Troposphere satellite instrument, to quantify the potential contribution use of inverse modeling to better quantify regional surface emissions of carbon monoxide (CO), which

  15. SIMULATION OF CARBON DIOXIDE EMISSIONS FROM DAIRY FARMS TO ASSESS GREENHOUSE GAS REDUCTION STRATEGIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farming practices can have a large impact on the soil carbon cycle and the resulting net emission of greenhouse gases including carbon dioxide (CO**2), methane and nitrous oxide. Primary sources of CO**2 emission on dairy farms are soil, plant, and animal respiration with smaller contributions from ...

  16. Efficient narrow-band light emission from a single carbon nanotube pn diode

    E-print Network

    Perebeinos, Vasili

    Efficient narrow-band light emission from a single carbon nanotube p­n diode Thomas Mueller1. Here, we report electrically induced light emission from individual carbon nanotube p­n diodes. A new building blocks of almost all of today's optoelectronic devices are p­n junction diodes, including

  17. Thermionic field emission transport in carbon nanotube transistors.

    PubMed

    Perello, David J; Lim, Seong Chu; Chae, Seung Jin; Lee, Innam; Kim, Moon J; Lee, Young Hee; Yun, Minhee

    2011-03-22

    With experimental and analytical analysis, we demonstrate a relationship between the metal contact work function and the electrical transport properties saturation current (Isat) and differential conductance (?sd=?Isd/?Vsd) in ambient exposed carbon nanotubes (CNT). A single chemical vapor deposition (CVD) grown 6 mm long semiconducting single-walled CNT is electrically contacted with a statistically significant number of Hf, Cr, Ti, Pd, and Au electrodes, respectively. The observed exponentially increasing relationship of Isat and ?sd with metal contact work function is explained by a theoretical model derived from thermionic field emission. Statistical analysis and spread of the data suggest that the conduction variability in same CNT devices results from differences in local surface potential of the metal contact. Based on the theoretical model and methodology, an improved CNT-based gas sensing device layout is suggested. A method to experimentally determine gas-induced work function changes in metals is also examined. PMID:21309557

  18. Agriculture, Land Use, Energy and Carbon Emission Impacts of Global Biofuel Mandates to Mid-Century

    SciTech Connect

    Wise, Marshall A.; Dooley, James J.; Luckow, Patrick; Calvin, Katherine V.; Kyle, G. Page

    2014-02-01

    Three potential future scenarios of expanded global biofuel production are presented here utilizing the GCAM integrated assessment model. These scenarios span a range that encompasses on the low end a continuation of existing biofuel production policies to two scenarios that would require an expansion of current targets as well as an extension of biofuels targets to other regions of the world. Conventional oil use is reduced by 4-8% in the expanded biofuel scenarios, which results in a decrease of in CO2 emissions on the order of 1-2 GtCO2/year by mid-century from the global transportation sector. The regional distribution of crop production is relatively unaffected, but the biofuels targets do result in a marked increase in the production of conventional crops used for energy. Producer prices of sugar and corn reach levels about 12% and 7% above year 2005 levels, while the increased competition for land causes the price of food crops such as wheat, although not used for bioenergy in this study, to increase by 1 to 2%. The amount of land devoted to growing all food crops and dedicated bioenergy crops is increased by about 10% by 2050 in the High biofuel case, with concurrent decreases in other uses of land such as forest and pasture. In both of the expanded biofuels cases studied, there is an increase in net cumulative carbon emissions for the first couple of decades due to these induced land use changes. However, the difference in net cumulative emissions from the biofuels expansion decline by about 2035 as the reductions in energy system emissions exceed further increases in emissions from land use change. Even in the absence of a policy that would limit emissions from land use change, the differences in net cumulative emissions from the biofuels scenarios reach zero by 2050, and are decreasing further over time in both cases.

  19. Emission factors of PAHs, methoxyphenols, levoglucosan, elemental carbon and organic carbon from simulated wheat and Kentucky bluegrass stubble burns

    NASA Astrophysics Data System (ADS)

    Dhammapala, Ranil; Claiborn, Candis; Jimenez, Jorge; Corkill, Jeffrey; Gullett, Brian; Simpson, Christopher; Paulsen, Michael

    Emission factors (EFs) of pollutants from post-harvest agricultural burning are required for predicting downwind impacts of smoke and inventorying emissions. EFs of polycyclic aromatic hydrocarbons (PAH), methoxyphenols (MP), levoglucosan (LG), elemental carbon (EC) and organic carbon (OC) from wheat and Kentucky bluegrass (KBG) stubble burning were quantified in a US EPA test burn facility. The PAH and MP EFs for combined solid+gas phases are 17±8.2 mg kg -1 and 79±36 mg kg -1, respectively, for wheat and 21±15 mg kg -1 and 35±24 mg kg -1, respectively, for KBG. LG, particulate EC and artifact-corrected OC EFs are 150±130 mg kg -1, 0.35±0.16 g kg -1 and 1.9±1.1 g kg -1, respectively, for wheat and 350±510 mg kg -1, 0.63±0.056 g kg -1 and 6.9±0.85 g kg -1, respectively, for KBG. Positive artifacts associated with OC sampling were evaluated and remedied with a two-filter system. EC and OC accounted for almost two-thirds of PM 2.5 mass, while LG accounted for just under 3% of the PM 2.5 mass. Since EFs of these pollutants generally decreased with increasing combustion efficiency (CE), identifying and implementing methods of increasing the CEs of burns would help reduce their emissions from agricultural field burning. PAH, OC and EC EFs are comparable to other similar studies reported in literature. MP EFs appear dependent on the stubble type and are lower than the EFs for hard and softwoods reported in literature, possibly due to the lower lignin content in wheat and KBG.

  20. Developing spatial inequalities in carbon appropriation: a sociological analysis of changing local emissions across the United States.

    PubMed

    Elliott, James R; Clement, Matthew Thomas

    2015-05-01

    This study examines an overlooked dynamic in sociological research on greenhouse gas emissions: how local areas appropriate the global carbon cycle for use and exchange purposes as they develop. Drawing on theories of place and space, we hypothesize that development differentially drives and spatially decouples use- and exchange-oriented emissions at the local level. To test our hypotheses, we integrate longitudinal, county-level data on residential and industrial emissions from the Vulcan Project with demographic, economic and environmental data from the U.S. Census Bureau and National Land Change Database. Results from spatial regression models with two-way fixed-effects indicate that alongside innovations and efficiencies capable of reducing environmentally harmful effects of development comes a spatial disarticulation between carbon-intensive production and consumption within as well as across societies. Implications for existing theory, methods and policy are discussed. PMID:25769856

  1. Process and apparatus for reducing pollutant emission in flue gases

    SciTech Connect

    Khinkis, M.J.; Patel, J.G.; Rehmat, H.G.

    1992-04-21

    This patent describes a combustion process for reducing at least nitrogen oxides, sulfur oxides and hydrogen chloride in a furnace. It comprises introducing a combustible material into a drying zone within a combustion chamber; supplying air to the drying zone for preheating, drying, and partially combusting the combustible material; advancing the combustible material to a combustion zone within the combustion chamber; supplying air to the combustion zone for further combusting the combustible material; advancing the combustible material to a burnout zone within the combustion chamber; supplying air to the burnout zone for final burnout of uncombusted portions of the combustible material; injecting one of a sorbent and a calcined sorbent, and a fuel into the combustion chamber above the combustible material to create an oxygen deficient secondary combustion zone; ejecting vitiated air from the burnout zone; injecting at least one of overfire air and the vitiated air into the combustion chamber above the oxygen deficient secondary combustion zone forming an oxidizing tertiary combustion zone for thorough mixing and final burnout of combustibles in combustion products of the combustible material; and removing ash from the combustion chamber.

  2. Different sources of reduced carbon contribute to form three classes of terpenoid emitted by Quercus ilex L. leaves.

    PubMed Central

    Loreto, F; Ciccioli, P; Brancaleoni, E; Cecinato, A; Frattoni, M; Sharkey, T D

    1996-01-01

    Quercus ilex L. leaves emit terpenes but do not have specialized structures for terpene storage. We exploited this unique feature to investigate terpene biosynthesis in intact leaves of Q. ilex. Light induction allowed us to distinguish three classes of terpenes: (i) a rapidly induced class including alpha-pinene; (ii) a more slowly induced class, including cis-beta-ocimene; and (iii) the most slowly induced class, including 3-methyl-3-buten-1-ol. Using 13C, we found that alpha-pinene and cis-beta-ocimene were labeled quickly and almost completely while there was a delay before label appeared in linalool and 3-methyl-3-buten-1-ol. The acetyl group of 3-methyl-3-buten-1-yl acetate was labeled quickly but label was limited to 20% of the moiety. It is suggested that the ocimene class of monoterpenes is made from one or more terpenes of the alpha-pinene class and that both classes are made entirely from reduced carbon pools inside the chloroplasts. Linalool and 3-methyl-3-buten-1-ol are made from a different pool of reduced carbon, possibly in nonphotosynthetic plastids. The acetyl group of the 3-methyl-3-buten-1-yl acetate is derived mostly from carbon that does not participate in photosynthetic reactions. Low humidity and prolonged exposure to light favored ocimenes emission and induced linalool emission. This may indicate conversion between terpene classes. PMID:11607702

  3. Approaches for reducing uncertainties in regional forest carbon balance

    Microsoft Academic Search

    Wenjun Chen; Jing Chen; Jane Liu; Josef Cihlar

    2000-01-01

    Accurate estimation of regional terrestrial ecosystem carbon (C) balance is critical in formulating national and global adaptation and mitigation strategies in response to global changes. Since the regional C balance cannot be measured directly, it has been estimated using various models. In such studies, errors often exceeded the magnitude of the estimated C balance due to two types of uncertainties:

  4. Process for reducing Ramsbottom Carbon Test of long residues

    SciTech Connect

    Eilers, J.; Stork, W.H.J.

    1984-07-17

    Process for the preparation of a heavy oil with a low Ramsbottom Carbon Test (RCT) from a long residue by (a) catalytic hydrotreatment for RCT reduction at such severity that the C/sub 4/- gas production per percentage RCT reduction is kept between defined limits, followed by (b) solvent deasphalting of the (vacuum or atmospheric) distillation residue of the hydrotreated product.

  5. Light pollution and solid-state lighting: reducing the carbon dioxide footprint is not enough

    NASA Astrophysics Data System (ADS)

    Bará, Salvador

    2013-11-01

    Public and private lighting account for a relevant share of the overall electric power consumption worldwide. The pressing need of reducing the carbon dioxide emissions as well as of lowering the lumen•hour price tag has fostered the search for alternative lighting technologies to substitute for the incandescent and gas-discharge based lamps. The most successful approach to date, solid-state lighting, is already finding its way into the public lighting market, very often helped by substantial public investments and support. LED-based sources have distinct advantages: under controlled coditions their efficacy equals or surpasses that of conventional solutions, their small source size allows for an efficient collimation of the lightbeam (delivering the photons where they are actually needed and reducing lightspill on the surrounding areas), and they can be switched and/or dimmed on demand at very high rates, thus allowing for a taylored schedule of lighting. However, energy savings and carbon dioxide reduction are not the only crucial issues faced by present day lighting. A growing body of research has shown the significance of the spectral composition of light when it comes to assess the detrimental effects of artificial light-at-night (ALAN). The potential ALAN blueshift associated to the deployment of LED-based lighting systems has raised sensible concerns about its scientific, cultural, ecological and public health consequences, which can be further amplified if an increased light consumption is produced due to the rebound effect. This contribution addresses some of the challenges that these issues pose to the Optics and Photonics community.

  6. Introduction to NASA contracts. [on engine modifications to reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1976-01-01

    The NASA Lewis Research Center issued requests for proposal to Avco Lycoming and Teledyne Continental Motors for a contractual effort to establish and demonstrate engine modifications to reduce exhaust emissions safely with minimum adverse effects on cost, weight, and fuel economy. The secondary objective was reducing fuel consumption.

  7. Relation of biofuel to bioelectricity and agriculture: Food security, fuel security, and reducing greenhouse emissions

    Microsoft Academic Search

    V. M. Thomas; D. G. Choi; D. Luo; A. Okwo; J. H. Wang

    2009-01-01

    Biofuels are being developed in the context of three broad economic and policy drivers: reducing greenhouse gas emissions, increasing energy security, and supporting agriculture. Projections of the land and feedstock potentially available for bioenergy indicate that bioenergy development could be resource limited, and food crops may be partially displaced by biofuel feedstocks. One motivation for biofuel development is to reduce

  8. Costs of reducing greenhouse gas emissions in the USA and Canada

    Microsoft Academic Search

    W David Montgomery

    1996-01-01

    A number of possible policy responses can be adopted in order to address the prospect of increasing greenhouse gases in the earth's atmosphere. These include mitigation measures, that reduce greenhouse gas emissions or enhance the processes that remove greenhouse gases from the atmosphere, adaptation measures that reduce the consequences or damages from climate change, and information measures, including scientific research

  9. Project Information Form Project Title Eco-Driving to Reduce Emissions Trucks (Behavioral Focus)

    E-print Network

    California at Davis, University of

    Project Information Form Project Title Eco-Driving to Reduce Emissions ­ Trucks (Behavioral Focus the transportation sector, a variety of eco-driving techniques are being developed that show great promise. Eco/decelerations, vehicle energy consumption can be significantly reduced. To date, the majority of eco-driving studies have

  10. Historical and future anthropogenic emission pathways derived from coupled climate–carbon cycle simulations

    Microsoft Academic Search

    Erich Roeckner; M. A. Giorgetta; T. Crueger; M. Esch; Julia Pongratz

    2011-01-01

    Using a coupled climate–carbon cycle model, fossil fuel carbon dioxide (CO2) emissions are derived through a reverse approach of prescribing atmospheric CO2 concentrations according to observations and future projections, respectively. In the second half of the twentieth century,\\u000a the implied fossil fuel emissions, and also the carbon uptake by land and ocean, are within the range of observational estimates.\\u000a Larger

  11. Carbon-related matrix effects in inductively coupled plasma atomic emission spectrometry

    Microsoft Academic Search

    G. Grindlay; L. Gras; J. Mora; M. T. C. de Loos-Vollebregt

    2008-01-01

    In Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), it has been observed that the emission intensity of some atomic lines is enhanced or depressed by the presence of carbon in the matrix. The goal of this work was to investigate the origin and magnitude of the carbon-related matrix effects in ICP-AES. To this end, the influence of the carbon concentration

  12. The effect of economical and technological measures to reduce CO{sub 2} emission from the offshore oil and gas industry in Norway

    SciTech Connect

    Henriksen, B.; Klausen, L.M.; Utseth, A.

    1995-12-31

    As of January 1991 a carbon tax of US$40 per ton of CO{sub 2} was levied on a large part of Norwegian emissions. The purpose of introducing the carbon tax was to encourage operators to limit, by year 2000, the total emissions of CO{sub 2} (both onshore and offshore) to a level not exceeding the 1989 figure of some 35 million ton CO{sub 2}. Today`s tax is US$50 per ton CO{sub 2} However, four years of heavy CO{sub 2} taxation has proved to Norway that national CO{sub 2} emission targets have not been achieved through taxation. CO{sub 2} emissions have, in fact, increased by several percent since 1992. The increase may be in the order of 13% from 1989 to 2000 unless more efficient measures are brought into play The offshore oil and natural gas industry is responsible for approximately 23% of Norwegian CO{sub 2} emissions and for much of the increase experienced from 1989 to date. Consequently there is considerable pressure to reduce the emissions, or rather to curtail the increased emissions. Ministry of the Environment has been concerned about the influence of the carbon tax on emission from the petroleum production on the Norwegian Continental Shelf In 1994 the Norwegian Petroleum Directorate started a project to study this matter. The objective of this project was to analyses the possible short- and long-term effects of higher carbon taxes on the CO{sub 2} emission level, as well as on the production level, in the Norwegian petroleum sector.

  13. Estimates of Fossil Fuel Carbon Dioxide Emissions From Mexico at Monthly Time Intervals

    Microsoft Academic Search

    L. M. Losey; R. J. Andres

    2003-01-01

    Human consumption of fossil fuels has greatly contributed to the rise of carbon dioxide in the Earth's atmosphere. To better understand the global carbon cycle, it is important to identify the major sources of these fossil fuels. Mexico is among the top fifteen nations in the world for producing fossil fuel carbon dioxide emissions. Based on this information and that

  14. Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested

    E-print Network

    Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration nonnegligible roles in mitigation in comparison with carbon sequestration. Forests are recognized for having

  15. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    SciTech Connect

    Hojati-Talemi, Pejman [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia); Mawson Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Gibson, Mark A. [Process Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Clayton, Vic 3168 (Australia); East, Daniel; Simon, George P. [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia)

    2011-11-07

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  16. Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode

    Microsoft Academic Search

    G. Pirio; P. Legagneux; D. Pribat; K. B. K. Teo; M. Chhowalla; G. A. J. Amaratunga; W. I. Milne

    2002-01-01

    We report on the fabrication of field emission microcathodes which use carbon nanotubes as the field emission source. The devices incorporated an integrated gate electrode in order to achieve truly low-voltage field emission. A single-mask, self-aligned technique was used to pattern the gate, insulator and catalyst for nanotube growth. Vertically-aligned carbon nanotubes were then grown inside the gated structure by

  17. Towards an improvement of carbon accounting for wildfires: incorporation of charcoal production into carbon emission models

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan H.; Santin, Cristina; de Groot, Bill

    2015-04-01

    Every year fires release to the atmosphere the equivalent to 20-30% of the carbon (C) emissions from fossil fuel consumption, with future emissions from wildfires expected to increase under a warming climate. Critically, however, part of the biomass C affected by fire is not emitted during burning, but converted into charcoal, which is very resistant to environmental degradation and, thus, contributes to long-term C sequestration. The magnitude of charcoal production from wildfires as a long-term C sink remains essentially unknown and, to the date, charcoal production has not been included in wildfire emission and C budget models. Here we present complete inventories of charcoal production in two fuel-rich, but otherwise very different ecosystems: i) a boreal conifer forest (experimental stand-replacing crown fire; Canada, 2012) and a dry eucalyptus forest (high-intensity fuel reduction burn; Australia 2014). Our data show that, when considering all the fuel components and quantifying all the charcoal produced from each (i.e. bark, dead wood debris, fine fuels), the overall amount of charcoal produced is significant: up to a third of the biomass C affected by fire. These findings indicate that charcoal production from wildfires could represent a major and currently unaccounted error in the estimation of the effects of wildfires in the global C balance. We suggest an initial approach to include charcoal production in C emission models, by using our case study of a boreal forest fire and the Canadian Fire Effects Model (CanFIRE). We also provide recommendations of how a 'conversion factor' for charcoal production could be relatively easily estimated when emission factors for different types of fuels and fire conditions are experimentally obtained. Ultimately, this presentation is a call for integrative collaboration between the fire emission modelling community and the charcoal community to work together towards the improvement of C accounting for wildfires.

  18. The impacts of population change on carbon emissions in China during 1978-2008

    SciTech Connect

    Zhu Qin, E-mail: zhuqin@fudan.edu.cn; Peng Xizhe, E-mail: xzpeng@fudan.edu.cn

    2012-09-15

    This study examines the impacts of population size, population structure, and consumption level on carbon emissions in China from 1978 to 2008. To this end, we expanded the stochastic impacts by regression on population, affluence, and technology model and used the ridge regression method, which overcomes the negative influences of multicollinearity among independent variables under acceptable bias. Results reveal that changes in consumption level and population structure were the major impact factors, not changes in population size. Consumption level and carbon emissions were highly correlated. In terms of population structure, urbanization, population age, and household size had distinct effects on carbon emissions. Urbanization increased carbon emissions, while the effect of age acted primarily through the expansion of the labor force and consequent overall economic growth. Shrinking household size increased residential consumption, resulting in higher carbon emissions. Households, rather than individuals, are a more reasonable explanation for the demographic impact on carbon emissions. Potential social policies for low carbon development are also discussed. - Highlights: Black-Right-Pointing-Pointer We examine the impacts of population change on carbon emissions in China. Black-Right-Pointing-Pointer We expand the STIRPAT model by containing population structure factors in the model. Black-Right-Pointing-Pointer The population structure includes age structure, urbanization level, and household size. Black-Right-Pointing-Pointer The ridge regression method is used to estimate the model with multicollinearity. Black-Right-Pointing-Pointer The population structure plays a more important role compared with the population size.

  19. A fast method for updating global fossil fuel carbon dioxide emissions

    Microsoft Academic Search

    We provide a fast and efficient method for calculating global annual mean carbon dioxide emissions from the combustion of fossil fuels by combining data from an established data set with BP annual statistics. Using this method it is possible to retrieve an updated estimate of global CO2 emissions six months after the actual emissions occurred. Using this data set we

  20. A fast method for updating global fossil fuel carbon dioxide emissions

    Microsoft Academic Search

    G. Myhre; K. Alterskjær; D. Lowe

    2009-01-01

    We provide a fast and efficient method for calculating global annual mean carbon dioxide emissions from the combustion of fossil fuels by combining data from an established data set with BP annual statistics. Using this method it is possible to retrieve an updated estimate of global CO2 emissions six months after the actual emissions occurred. Using this data set we

  1. New carbon cone nanotip for use in a highly coherent cold field emission electron microscope

    E-print Network

    Paris-Sud XI, Université de

    Jeanne Marvig, BP 94347, TOULOUSE, Cedex 4, FRANCE Abstract A new cathode for cold-field emission gun of an essential part of the microscope column, i.e. the electron gun itself. The highest brightness electron guns.carbon.2012.01.023 #12;2 field emission guns based on thermally field-assisted emission which

  2. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions

    Microsoft Academic Search

    Gregg Marland; Tristram O. West; Bernhard Schlamadinger; Lorenza Canella

    2003-01-01

    A change in agricultural practice can increase carbon sequestration in agricultural soils. To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield. We also consider how these factors will evolve

  3. Black carbon particulate matter emission factors for buoyancy-driven associated gas flares

    Microsoft Academic Search

    James D. N. McEwen; Matthew R. Johnson

    2012-01-01

    Flaring is a technique used extensively in the oil and gas industry to burn unwanted flammable gases. Oxidation of the gas can preclude emissions of methane (a potent greenhouse gas); however, flaring creates other pollutant emissions such as particulate matter (PM) in the form of soot or black carbon (BC). Currently available PM emission factors for flares were reviewed and

  4. Monsanto: Taking the next environmental step; New technologies are key in reducing emissions

    SciTech Connect

    Lucas, A.

    1994-08-03

    In meeting a 1988 pledge to reduce its worldwide air emissions 90% by the end of 1992, Monsanto completed one of the industry`s most ambitious-and costly-voluntary pollution reduction programs. After $130 million in expenditures and the completion of 250 emission reduction projects, the company had cut its worldwide air emissions 92%, to 5 million lbs, and its U.S. emissions 85%, to 2.7 million lbs. Now Monsanto is looking to take the next step by slashing emission levels of all pollutants. Monsanto has scheduled another round of deadlines that go far beyound regulatory compliance. The company plans on making further reductions, including eliminating the release of waste to underground injection wells, which will likely involve fundamental changes in technology. The company`s goal is to reduce its worldwide toxic chemical releases and transfers to less that 100 million lbs/year by 1995, down 240 million lbs for 1990`s 337 million lbs. Many of Monsanto`s efforts since it made its 1988 pledge have focused on reducing air emissions, because those emissions were the highest. While Monsanto reports about half of its air reductions come from shutdowns of inefficient processes, the 1995 reduction efforts will require increased capital investment for new processes.

  5. Process for reducing Ramsbottom Carbon Test of short residues

    SciTech Connect

    Eilers, J.; Stork, H.J.

    1984-07-24

    In the preparation of a heavy oil with a low Ramsbottom Carbon Test (RCT) from a long residue by a two-stage process comprising catalytic hydrotreatment followed by solvent deasphalting and recycle of the asphalt to the first stage the catalytic hydrotreatment for RCT reduction in the first stage is carried out at such a severity that the C/sub 4/ - gas production per percent RCT reduction is kept between defined limits.

  6. Deforestation fire carbon emissions for the last millennium simulated with the global vegetation model JSBACH

    NASA Astrophysics Data System (ADS)

    Engels, Jessica; Kloster, Silvia; Wilkenskjeld, Stiig

    2013-04-01

    Humankind has fundamentally modified the Earth's terrestrial surface to secure food and other resources by conversion of natural ecosystems to managed areas. Until today, these anthropogenic changes in land cover have resulted in an extent of conversion from natural land cover by human activities to managed areas between one-third and one-half of the total Earth's land cover (Vitousek (1997)). Large parts of this conversion take place in the form of deforestation fires, which release atmospheric trace gases and aerosols into the atmosphere. These deforestation fires are climate dependent and follow a strong seasonal cycle, which is important for atmospheric chemistry. In the present study, the offline version of the JSBACH carbon pool model of the Max Planck Institute for Meteorology (MPI-M) is used to simulate climate dependent deforestation fire carbon emissions over the last millennium (800-2010). For this, the standard carbon allocation scheme is extended by four additional anthropogenic carbon pools. These pools separate the carbon amount released due to anthropogenic land cover change from the carbon amount released due to natural processes to the atmosphere. The climate dependent deforestation fire emissions are simulated in the model by a linear dependency on the soil moisture. This new carbon allocation scheme results in land cover change carbon emissions, which accumulate between 800 and 2010 to 239.8 PgC. Thereby, the climate dependent deforestation fire carbon emissions accumulate over the last millennium to 182.6 PgC yr-1 in the year 2010, which accounts for 76% of the total land cover change carbon emissions. Compared to present day satellite based observational data sets (GFED3) the simulated mean deforestation fire carbon emissions (1422.5 TgC yr-1) averaged over the time period 1997-2009 are about a factor of 4 higher than the observed carbon emissions (386.4 TgC yr-1) on a global scale. However, compared to a field-observational based estimate, the simulations underestimate deforestation fire carbon emissions by around 54% for the time period 1990-2007. Generally, the simulations performed for the present study capture the observed peak fire months of deforestation fire carbon emissions. However, the length of the burning season is slightly overestimated, and the range between the maximum and minimum deforestation fire carbon emissions within a year is underestimated in the model. This study provides a consistent modelling estimate of monthly mean deforestation fire emissions for the last millennium that resolve the seasonal dependent nature of the deforestation process, which can be applied in atmospheric chemistry modelling studies.

  7. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions.

    PubMed

    Molina, Mario; Zaelke, Durwood; Sarma, K Madhava; Andersen, Stephen O; Ramanathan, Veerabhadran; Kaniaru, Donald

    2009-12-01

    Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of "dangerous anthropogenic interference" (DAI). Scientific and policy literature refers to the need for "early," "urgent," "rapid," and "fast-action" mitigation to help avoid DAI and abrupt climate changes. We define "fast-action" to include regulatory measures that can begin within 2-3 years, be substantially implemented in 5-10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO(2) GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO(2) emissions. PMID:19822751

  8. Network Level Carbon Dioxide Emissions From On-road Sources in the Portland OR, (USA) Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Powell, J.; Butenhoff, C. L.; Rice, A. L.

    2014-12-01

    To mitigate climate change, governments at multiple levels are developing policies to decrease anthropogenic carbon dioxide (CO2) emissions. The City of Portland (Oregon) and Multnomah County have adopted a Climate Action Plan with a stated goal of reducing emissions to 80% below 1990 levels by 2050. The transportation sector alone accounts for about 40% of total emissions in the Portland metropolitan area. Here we show a new street-level model of on-road mobile CO2 emissions for the Portland, OR metropolitan region. The model uses hourly traffic counter recordings made by the Portland Bureau of Transportation at 9,352 sites over 21 years (1986-2006), augmented with freeway loop detector data from the Portland Regional Transportation Archive Listing (PORTAL) transportation data archive. We constructed a land use regression model to fill in traffic network gaps with traffic counts as the dependent variable using GIS data such as road class (32 categories) and population density. The Environmental Protection Agency (EPA) MOtor Vehicle Emission Simulator (MOVES) model was used to estimate transportation CO2 emissions. The street-level emissions can be aggregated and gridded and used as input to atmospheric transport models for comparison with atmospheric measurements. This model also provides an independent assessment of top-down inventories that determine emissions from fuel sales, while being an important component of our ongoing effort to assess the effectiveness of emission mitigation strategies at the urban scale.

  9. Monthly Estimates of Fossil Fuel Carbon Dioxide Emissions from Five European Countries: The United Kingdom, France, Spain, Italy and Poland

    Microsoft Academic Search

    L. M. Losey; R. J. Andres

    2004-01-01

    Human consumption of fossil fuels has greatly contributed to the rise of carbon dioxide (CO2) emissions in the Earth's atmosphere. To better understand the global carbon cycle, it is important to identify the major sources of these fossil fuel emissions. Annual analyses for fossil fuel carbon dioxide emissions have dominated the literature to this date. By studying the monthly consumption

  10. Cooling the greenhouse effect: Options and costs for reducing CO{sub 2} emissions from the American Electric Power Company

    SciTech Connect

    Helme, N.; Popovich, M.G.; Gille, J. [Center for Clean Air Policy, Washington, DC (United States)

    1993-05-01

    A recent report from the National Academy of Sciences concludes that the earth is likely to face a doubling of preindustrial greenhouse gases in the next half century. This doubling could be expected to push average global temperatures. up from between 1.8 to 9 degrees Fahrenheit. Much of the potential for human impacts on the global climate is linked to fossil fuel consumption. Carbon dioxide emissions from energy consumption in the US totals about one-quarter of the world`s total emissions from energy consumption. Global warming is different from other environmental problems because CO{sub 2} emissions can be captured naturally by trees, grasses, soil, and other plants. In contrast, acid rain emissions reductions can only be accomplished through switching to lower-polluting fuels, conserving energy, or installing costly retrofit technologies. Terrestrial biota, such as trees, plants, grasses and soils, directly affect the CO{sub 2} concentrations in the atmosphere. A number of reports have concluded that forestry and land-use practices can increase CO{sub 2} sequestration and can help reduce or delay the threat of global warming.

  11. Author's personal copy Carbonation of alkaline paper mill waste to reduce CO2 greenhouse

    E-print Network

    Author's personal copy Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas. This study investigates experimentally the aqueous carbonation mechanisms of an alkaline paper mill waste the possibility of using the alkaline liquid­solid waste for CO2 mitigation and reduction of greenhouse effect

  12. Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications for

    E-print Network

    erosion is an important component of the global carbon cycle. However, little attention has been given and reduce uncertainty about the role of soil erosion in the global carbon cycle. Copyright © 2013 John Wiley

  13. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false Oxides of nitrogen, carbon monoxide, hydrocarbon, and...Certification Provisions § 89.112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and... (b) Exhaust emissions of oxides of nitrogen, carbon monoxide, hydrocarbon,...

  14. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 2010-07-01 false Oxides of nitrogen, carbon monoxide, hydrocarbon, and...Certification Provisions § 89.112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and... (b) Exhaust emissions of oxides of nitrogen, carbon monoxide, hydrocarbon,...

  15. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2012-07-01 false Oxides of nitrogen, carbon monoxide, hydrocarbon, and...Certification Provisions § 89.112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and... (b) Exhaust emissions of oxides of nitrogen, carbon monoxide, hydrocarbon,...

  16. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2011-07-01 false Oxides of nitrogen, carbon monoxide, hydrocarbon, and...Certification Provisions § 89.112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and... (b) Exhaust emissions of oxides of nitrogen, carbon monoxide, hydrocarbon,...

  17. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2013-07-01 true Oxides of nitrogen, carbon monoxide, hydrocarbon, and...Certification Provisions § 89.112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and... (b) Exhaust emissions of oxides of nitrogen, carbon monoxide, hydrocarbon,...

  18. Monitoring Carbon Sequestration Benefits Associated with a Reduced-Impact Logging Project in Malaysia

    Microsoft Academic Search

    Michelle Pinard; Francis Putz

    1997-01-01

    The Reduced-Impact Logging Project, a pilot carbon offset project, was initiated in 1992 when a power company provided funds\\u000a to a timber concessionaire to implement timber-harvesting guidelines in dipterocarp forest. The rationale for the offset is\\u000a that when logging damage is reduced, more carbon is retained in living trees, and, because soil damage is minimized, forest\\u000a productivity remains high. To

  19. Field emission effects of nitrogenated carbon nanotubes on chlorination and oxidation

    SciTech Connect

    Ray, S. C.; Palnitkar, U.; Pao, C. W.; Tsai, H. M.; Pong, W. F.; Lin, I-N. [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China); Papakonstantinou, P. [NRI, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, County Antrim BT37OQB, Northern Ireland (United Kingdom); Ganguly, Abhijit; Chen, L. C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Chen, K. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China)

    2008-09-15

    With reference to our recent reports [Appl. Phys. Lett. 90, 192107 (2007); Appl. Phys. Lett. 91, 202102 (2007)] about the electronic structure of chlorine treated and oxygen-plasma treated nitrogenated carbon nanotubes (N-CNTs), here we studied the electron field emission effects on chlorination (N-CNT:Cl) and oxidation (N-CNT:O) of N-CNT. A high current density (J) of 15.0 mA/cm{sup 2} has been achieved on chlorination, whereas low J of 0.0052 mA/cm{sup 2} is observed on oxidation compared to J=1.3 mA/cm{sup 2} for untreated N-CNT at an applied electric field E{sub A} of {approx}1.9 V/{mu}m. The turn-on electric field (E{sub TO}) was {approx}0.875. The 1.25 V/{mu}m was achieved for N-CNT:Cl and N-CNT:O, respectively, with respect to E{sub TO}=1.0 V/{mu}m for untreated one. These findings are due to the formation of different bonds with carbon and nitrogen in the N-CNT during the process of chlorine (oxygen)-plasma treatment by the charge transfer, or else that changes the density of free charge carriers and hence enhances (reduces) the field emission properties of N-CNTs:Cl (N-CNTs:O)

  20. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests.

    PubMed

    Brzostek, Edward R; Dragoni, Danilo; Schmid, Hans Peter; Rahman, Abdullah F; Sims, Daniel; Wayson, Craig A; Johnson, Daniel J; Phillips, Richard P

    2014-08-01

    Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2 , and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13-year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan-Monroe State Forest (MMSF) in Indiana, and a regional 11-year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water-demanding 'mesophytic' tree species. Given the current replacement of water-stress adapted 'xerophytic' tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr(-1) ) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1-3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth-enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming. PMID:24421179

  1. Carbon emissions from U.S. ethylene production under climate change policies.

    PubMed

    Ruth, Matthias; Amato, Anthony D; Davidsdottir, Brynhildur

    2002-01-15

    This paper presents the results from a dynamic computer model of U.S. ethylene production, designed to explore implications of alternative climate change policies for the industry's energy use and carbon emissions profiles. The model applies to the aggregate ethylene industry but distinguishes its main cracker types, fuels used as feedstocks and for process energy, as well as the industry's capital vintage structure and vintage-specific efficiencies. Results indicate that policies which increase the cost of carbon of process energy-such as carbon taxes or carbon permit systems-are relatively blunt instruments for cutting carbon emissions from ethylene production. In contrast, policies directly affecting the relative efficiencies of new to old capital-such as R&D stimuli or accelerated depreciation schedules-may be more effective in leveraging the industry's potential for carbon emissions reductions. PMID:11827044

  2. Method of depositing multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P. (Albuquerque, NM); Friedmann, Thomas A. (Albuquerque, NM)

    1999-01-01

    A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.

  3. Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO? concentration.

    PubMed

    Potosnak, Mark J; Lestourgeon, Lauren; Nunez, Othon

    2014-05-15

    Including algorithms to account for the suppression of isoprene emission by elevated CO2 concentration affects estimates of global isoprene emission for future climate change scenarios. In this study, leaf-level measurements of isoprene emission were made to determine the short-term interactive effect of leaf temperature and CO2 concentration. For both greenhouse plants and plants grown under field conditions, the suppression of isoprene emission was reduced by increasing leaf temperature. For each of the four different tree species investigated, aspen (Populus tremuloides Michx.), cottonwood (Populus deltoides W. Bartram ex Marshall), red oak (Quercus rubra L.), and tundra dwarf willow (Salix pulchra Cham.), the suppression of isoprene by elevated CO2 was eliminated at increased temperature, and the maximum temperature where suppression was observed ranged from 25 to 35°C. Hypotheses proposed to explain the short-term suppression of isoprene emission by increased CO2 concentration were tested against this observation. Hypotheses related to cofactors in the methylerythritol phosphate (MEP) pathway were consistent with reduced suppression at elevated leaf temperature. Also, reduced solubility of CO2 with increased temperature can explain the reduced suppression for the phosphoenolpyruvate (PEP) carboxylase competition hypothesis. Some global models of isoprene emission include the short-term suppression effect, and should be modified to include the observed interaction. If these results are consistent at longer timescales, there are implications for predicting future global isoprene emission budgets and the reduced suppression at increased temperature could explain some of the variable responses observed in long-term CO2 exposure experiments. PMID:24614154

  4. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation.

    PubMed

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-09-01

    Soil properties and soil-atmosphere fluxes of CO2, CH4 and N2O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil-atmosphere CO2-equivalent flux of 137.27mgCO2m(-2)h(-1), which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH4 and N2O fluxes from Spartina soil were 13.77 and 1.14?molm(-2)h(-1), respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil-atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation. PMID:25918889

  5. Energy Recovery from End-of-Life Tyres: Untapped Possibility to Reduce CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Dzene, Ilze; Rochas, Claudio; Blumberga, Dagnija; Rosa, Marika; Erdmanis, Andris

    2010-01-01

    In this paper the possibility to reduce CO2 emissions by energy recovery from waste tyres is discussed. The objective of the study is to analyze the end-of-life tyre market in Latvia, to assess the amount of used tyres available and to calculate the potential reduction of CO2 emissions by energy recovery from tyres in mineral products industry. Calculation results show that an improved collection and combustion of end-of-life tyres in the cement industry can save up to 17% of the present CO2 emissions in the mineral products industry.

  6. Magmatic carbon dioxide emissions at Mammoth Mountain, California

    USGS Publications Warehouse

    Farrar, Christopher D.; Neil, John M.; Howle, James F.

    1999-01-01

    Carbon dioxide (CO2) of magmatic origin is seeping out of the ground in unusual quantities at several locations around the flanks of Mammoth Mountain, a dormant volcano in Eastern California. The most recent volcanic activity on Mammoth Mountain was steam eruptions about 600 years ago, but seismic swarms and long-period earthquakes over the past decade are evidence of an active magmatic system at depth. The CO2 emission probably began in 1990 but was not recognized until 1994. Seismic swarms and minor ground deformation during 1989, believed to be results of a shallow intrusion of magma beneath Mammoth Mountain, probably triggered the release of CO2, which persists in 1998. The CO2 gas is at ambient temperatures and emanates diffusely from the soil surface rather than flowing from distinct vents. The CO2 has collected in the soil by displacing air in the pore spaces and reaches concentrations of greater than 95 percent by volume in places. The total area affected by high CO2 concentrations and high CO2 flux from the soil surface was estimated at 60 hectares in 1997. Coniferous forest covering about 40 hectares has been killed by high CO2 concentrations in the root zone. In more than 300 soil-gas samples collected from depths of 0.5 to 2 m in 1995, CO2 concentrations ranged from background levels (less than 1 percent) to greater than 95 percent by volume. At 250 locations, CO2 flux was measured using a closed chamber in 1996; values, in grams per square meter per day, ranged from background (less than 25) to more than 30,000. On the basis of these data, the total emission of magmatic CO2 in 1996 is estimated to be about 530 megagrams per day. Concentrations of CO2 exceeding Occupational Safety and Health Administration standards have been measured in pits dug in soil and snow, in poorly ventilated buildings, and in below-ground valve-boxes around Mammoth Mountain. CO2 concentrations greater than 10 percent in poorly ventilated spaces are not uncommon on some parts of Mammoth Mountain. Humans and other animals exposed to CO2 concentrations greater than 10 percent could lose consciousness and die rapidly. With knowledge of the problem and reasonable caution, however, the health hazard to humans can be avoided. As noted earlier, the CO2 emission is related to magmatic activity at depth, but at present (1998) it does not portend an imminent volcanic eruption.

  7. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOEpatents

    Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  8. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 2: Carbon emissions and the role of fires in the global carbon balance

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Cadule, P.; Thonicke, K.; van Leeuwen, T. T.

    2015-05-01

    Carbon dioxide emissions from wild and anthropogenic fires return the carbon absorbed by plants to the atmosphere, and decrease the sequestration of carbon by land ecosystems. Future climate warming will likely increase the frequency of fire-triggering drought, so that the future terrestrial carbon uptake will depend on how fires respond to altered climate variation. In this study, we modelled the role of fires in the global terrestrial carbon balance for 1901-2012, using the ORCHIDEE global vegetation model equipped with the SPITFIRE model. We conducted two simulations with and without the fire module being activated, using a static land cover. The simulated global fire carbon emissions for 1997-2009 are 2.1 Pg C yr-1, which is close to the 2.0 Pg C yr-1 as estimated by GFED3.1. The simulated land carbon uptake after accounting for emissions for 2003-2012 is 3.1 Pg C yr-1, which is within the uncertainty of the residual carbon sink estimation (2.8 ± 0.8 Pg C yr-1). Fires are found to reduce the terrestrial carbon uptake by 0.32 Pg C yr-1 over 1901-2012, or 20% of the total carbon sink in a world without fire. The fire-induced land sink reduction (SRfire) is significantly correlated with climate variability, with larger sink reduction occurring in warm and dry years, in particular during El Niño events. Our results suggest a "fire respiration partial compensation". During the 10 lowest SRfire years (SRfire = 0.17 Pg C yr-1), fires mainly compensate for the heterotrophic respiration that would occur in a world without fire. By contrast, during the 10 highest SRfire fire years (SRfire = 0.49 Pg C yr-1), fire emissions far exceed their respiration partial compensation and create a larger reduction in terrestrial carbon uptake. Our findings have important implications for the future role of fires in the terrestrial carbon balance, because the capacity of terrestrial ecosystems to sequester carbon will be diminished by future climate change characterized by increased frequency of droughts and extreme El Niño events.

  9. Low-voltage field emission from carbon films produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Arkhipov, A. V.; Gabdullin, P. G.; Gnuchev, N. M.; Emel'yanov, A. Yu.; Krel', S. I.

    2014-12-01

    Emission properties of carbon films deposited on silicon substrates by magnetron sputtering have been studied. The structure of the films was varied by changing the substrate temperature. It was found that the best emission properties are obtained for a coating constituted by graphitized islands with transverse dimensions of 30-40 nm and a thickness of 3-4 nm. This result is in good agreement with the data previously obtained for films formed by chemical vapor deposition. This suggests that it is the structure of a carbon coating that determines its emission properties. A model of the emission mechanism for films of the type under study is discussed.

  10. TIR Emissivity Spectra of Thermally Processed Sulfates, Carbonates and Phyllosilicates as Analog Materials for Asteroid Surfaces

    NASA Astrophysics Data System (ADS)

    Maturilli, A.; Helbert, J.; D'Amore, M.; Ferrari, S.

    2013-12-01

    At the Planetary Emissivity Laboratory (PEL) of the German Aerospace Center (DLR) in Berlin we are building a database of spectral measurements of several meteorites and other analogs for asteroid surfaces. Bi-directional reflectance of samples in the 1 to 100 ?m spectral range, are measured by using an evacuated (10-4 bar) Bruker Vertex 80V FTIR spectrometer and a Bruker A513 reflection unit, allowing phase angles between 26° and 170°. Emissivity in the 1 to 100 ?m spectral range is measured with the same instrument coupled with an external emissivity chamber, for sample temperatures ranging from low (50° C) to very high (above 800° C). We present here new measurements on sulfates, carbonates, and phyllosilicates in various grain size ranges. The setup was configured to simulate the thermal history of surface minerals on the asteroid 2008 EV5 during its revolution around the Sun. This asteroid is the scientific target of the ESA Marco Polo-R mission. The samples in vacuum (< 0.8 mbar) are measured at surface temperature around 70° C, then the same samples are heated to 220° C, and maintained at this temperature for one hour. Slowly the sample temperature is reduced back again to 70° C and a second measurement is taken. Emissivity spectra before and after thermal processing of the samples are complemented with reflectance measurements on samples fresh and after thermal processing. This comparison show us that for some minerals no spectral/structural changes appear, while others show signs of dehydration and among them some species show structural changes. We conclude that a proper spectral library of emissivity spectra for asteroid analogue materials must include thermally processed samples, reproducing the thermal evolution for the asteroid that is target of the actual investigation.

  11. Reducing Uncertainty in Life Cycle CH4 Emissions from Natural Gas using Atmospheric Inversions

    NASA Astrophysics Data System (ADS)

    Schwietzke, S.; Griffin, W.; Matthews, H.; Bruhwiler, L.

    2013-12-01

    Rising interest in natural gas (NG) as a potentially cleaner alternative to coal and successful tapping of unconventional resources in North America, particularly shale gas, have led to numerous life cycle assessment (LCA) studies revisiting NG leakage rates, i.e., the fraction of produced NG, mostly methane, emitted to the atmosphere, intentionally or unintentionally. Accurately quantifying leakage rates of the full NG life cycle - extraction, processing, transport, and distribution - is challenging due to the size and complexity of the NG industry. Recent U.S. LCA estimates suggest that current NG leakage could be as high as 8% and 6%, from shale and conventional NG, respectively, compared to less than 2% in the latest EPA GHG emission inventory. Reducing uncertainty in the NG leakage rate is important for assessing potential climate benefits of NG over coal, and for understanding the global CH4 budget. The objective of this research is to analyze which ranges of the global average NG leakage rate are reasonable given existing atmospheric observations. We establish detailed prior global CH4 and C2H6 emission inventory scenarios for NG, oil, and coal using emissions data from the LCA literature including uncertainty estimates. Global CH4 and C2H6 inverse box-modeling is used to test the above hypotheses of various global NG leakage rates over the period 1984-2011. Forward simulations with NOAA's CarbonTracker-CH4 (CT-CH4) model provide additional spatial and seasonal information about CH4 atmospheric distribution. Box model inversion results indicate worst-case scenarios of current (2010) global average NG leakage rates of 7% (128 Tg CH4/yr) and 5% (92 Tg CH4/yr) based on CH4 isotope and C2H6 observations, respectively, as well as available raw gas composition data. Worst-case assumptions include upper bound estimates of the global CH4 and C2H6 budget, lower bound literature estimates of all CH4 and C2H6 sources other than NG simultaneously, and absence of a natural CH4 seepage source from hydrocarbon reservoirs. The maximum possible NG leakage rate in 2000 is 7% (85 Tg CH4/yr) based on C2H6 observations, but NG leakage in 1990 or earlier cannot be constrained below 10% (up to 121 Tg CH4/yr) with confidence. CT-CH4 forward runs suggest best estimate NG leakage rates of 3-5% over the past decade after analyzing the mean meridional CH4 surface gradient and seasonal differences between simulations and observations. Results show that the upper bound LCA estimates of average U.S. NG leakage (6-8%) cannot be reconciled with global atmospheric observations used in both box- and 3D-modeling, particularly if U.S. industry practices are considered superior to those in developing countries. However, potential local NG leakage hot spots, as suggested by recent top-down basin-level studies, are difficult to detect with our approach and the current long-term measurement network. Ongoing work will establish probability distribution functions of NG leakage rates. Other potentially significant CH4 sources, such as natural CH4 seepage, will also be included in the prior inventory. This may reduce NG leakage estimates from this work given the global CH4 and C2H6 budget constraints.

  12. Urban Household Carbon Emission and Contributing Factors in the Yangtze River Delta, China

    PubMed Central

    Xu, Xibao; Tan, Yan; Chen, Shuang; Yang, Guishan; Su, Weizhong

    2015-01-01

    Carbon reduction at the household level is an integral part of carbon mitigation. This study analyses the characteristics, effects, contributing factors and policies for urban household carbon emissions in the Yangtze River Delta of China. Primary data was collected through structured questionnaire surveys in three cities in the region – Nanjing, Ningbo, and Changzhou in 2011. The survey data was first used to estimate the magnitude of household carbon emissions in different urban contexts. It then examined how, and to what extent, each set of demographic, economic, behavioral/cognitive and spatial factors influence carbon emissions at the household level. The average of urban household carbon emissions in the region was estimated to be 5.96 tonnes CO2 in 2010. Energy consumption, daily commuting, garbage disposal and long-distance travel accounted for 51.2%, 21.3%, 16.0% and 11.5% of the total emission, respectively. Regulating rapidly growing car-holdings of urban households, stabilizing population growth, and transiting residents’ low-carbon awareness to household behavior in energy saving and other spheres of consumption in the context of rapid population aging and the growing middle income class are suggested as critical measures for carbon mitigation among urban households in the Yangtze River Delta. PMID:25884853

  13. Urban household carbon emission and contributing factors in the yangtze river delta, china.

    PubMed

    Xu, Xibao; Tan, Yan; Chen, Shuang; Yang, Guishan; Su, Weizhong

    2015-01-01

    Carbon reduction at the household level is an integral part of carbon mitigation. This study analyses the characteristics, effects, contributing factors and policies for urban household carbon emissions in the Yangtze River Delta of China. Primary data was collected through structured questionnaire surveys in three cities in the region - Nanjing, Ningbo, and Changzhou in 2011. The survey data was first used to estimate the magnitude of household carbon emissions in different urban contexts. It then examined how, and to what extent, each set of demographic, economic, behavioral/cognitive and spatial factors influence carbon emissions at the household level. The average of urban household carbon emissions in the region was estimated to be 5.96 tonnes CO2 in 2010. Energy consumption, daily commuting, garbage disposal and long-distance travel accounted for 51.2%, 21.3%, 16.0% and 11.5% of the total emission, respectively. Regulating rapidly growing car-holdings of urban households, stabilizing population growth, and transiting residents' low-carbon awareness to household behavior in energy saving and other spheres of consumption in the context of rapid population aging and the growing middle income class are suggested as critical measures for carbon mitigation among urban households in the Yangtze River Delta. PMID:25884853

  14. The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions

    SciTech Connect

    Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

    2007-11-27

    This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the electricity sector, and the use of unconventional feedstocks in the liquid fuel refining sector. Of the three end-use sectors, advanced transportation technologies have the greatest potential to reduce costs of meeting carbon policy requirements. Services in the buildings and industrial sectors can often be supplied by technologies that consume low-emissions fuels such as biomass or, in policy cases, electricity. Passenger transportation, in contrast, is especially unresponsive to climate policies, as the fuel costs are small compared to the time value of transportation and vehicle capital and operating costs. Delaying the transition from reference to advanced technologies by 15 years increases the costs of meeting 450 ppmv stabilization emissions requirements by 21%, but the costs are still 39% lower than the costs assuming reference technology. The report provides a detailed description of the end-use technology scenarios and provides a thorough analysis of the results. Assumptions are documented in the Appendix.

  15. Field emission study of diamond-like carbon films with scanned-probe field-emission force microscopy

    SciTech Connect

    Inoue, Takahito [Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)] [Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Ogletree, D. Frank [Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)] [Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Salmeron, Miquel [Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)] [Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2000-05-15

    Using a tip as an anode, a scanning force microscope (SFM) with an electrically conducting tip allows simultaneous measurement of both field-emitted currents and surface electronic properties with high lateral resolution. The principle of the method and its application to field emission from chemical vapor deposition diamond-like carbon films are presented. By simultaneously imaging the topography and field-emission current distribution with a 100 nm tip-surface separation, we correlated emission, topography, and dielectric properties. Subsequent contact SFM images of the same regions correlated topography and conductivity on the nanometer scale. The electrostatic force between tip and surface showed fluctuations on a millisecond time scale during field emission. This is probably due to charging and discharging of deep traps in the diamond-like carbon film. (c) 2000 American Institute of Physics.

  16. Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends

    SciTech Connect

    Buchholz, B A; Cheng, A S; Dibble, R W

    2003-03-03

    Experimental tests were conducted on a Cummins 85.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NO{sub x}), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for the higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NO{sub x}, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMs). These measurements revealed that carbon from the biodiesel portion of the blended fuel was marginally less likely to contribute to PM, compared to the carbon from the diesel portion of the fuel. The results are different than those obtained in previous tests with the oxygenate ethanol, which was observed to be far less likely contribute to PM than the diesel component of the blended fuel. The data suggests that chemical structure of the oxygen- carbon bonds in an oxygenate affects the PM formation process.

  17. A multifinger microtriode with carbon nanotubes field emission cathode operating at GHz frequency.

    PubMed

    Ulisse, G; Brunetti, F; Ciceroni, C; Gemma, F; Dispenza, M; Fiorello, A M; Ricci, F; Di Carlo, A

    2015-05-29

    Vacuum microelectronic devices play an important role in the field of micro- and nano-electronics and they have been strongly developed in recent decades. Vacuum microelectronics are mainly based on the field emission effect and the employment of electrons in vacuum in a device with dimensions from tenths to hundredths of a micrometer. In this work, we present the development of a carbon-nanotube-based multifinger microtriode operating from 0.5 to 2 GHz. In this frequency range, a minimum RF signal gain of 5 dB is achieved. Such a device represents an optimized alternative to the standard Spindt-type microtriode. The advantage of such multifinger architecture consists in the possibility to reduce the cathode-grid capacitance by reducing the overlap between the two electrodes using a parallel patterning. This approach allows increasing the cut-off frequency of the devices with respect to the Spindt-type triode. We realized a prototype of the multifinger triode and the field emission properties have been characterized. The frequency behavior has been measured, demonstrating the possibility to amplify RF signal. PMID:25948087

  18. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    PubMed Central

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  19. Atomic emission spectrometry with a reduced-pressure afterglow extracted from an inductively coupled plasma

    SciTech Connect

    Houk, R.S.; Lim, H.B.

    1986-12-01

    The inductively coupled plasma (ICP) has proven to be an excellent excitation source for elemental analysis of solutions by atomic emission spectrometry (AES). One reason for the success of the ICP is that volatilization and atomization interferences are minimal because the analyte is efficiently atomized in the high-temperature, atmospheric pressure environment. It seems that such an environment is essential for proper dissociation of analytes from sample particles such as those generated by solution nebulization. In a conventional ICP the analyte atoms then continue through the axial channel where they are excited and ionized at atmospheric pressure. In some ways, the observation of ICP emission at reduced pressure might offer potential advantages in that line widths should be sharper than from an atmospheric pressure source. The same experimental techniques for sampling the ICP for mass spectrometry (MS) should also be useful for AES at reduced pressures. In fact, in ICP-MS the initial extraction process is often accompanied by emission of visible radiation from inside the first vacuum chamber. In addition to potential analytical applications, the observation of emission spectra from such an afterglow could also provide fundamental information about processes occurring during the extraction step, which would be useful for further improvements in ICP-MS. In this communication the authors report for the first time the results of initial investigations that indicate the feasibility of using an analytical ICP at atmospheric pressure for atomization while observing atomic emission spectra at reduced pressure as the analyte species are extracted into a vacuum chamber.

  20. Review of cost estimates for reducing CO2 emissions. Final report, Task 9

    SciTech Connect

    Not Available

    1990-10-01

    Since the ground breaking work of William Nordhaus in 1977, cost estimates for reducing CO{sub 2} emissions have been developed by numerous groups. The various studies have reported sometimes widely divergent cost estimates for reducing CO{sub 2} emissions. Some recent analyses have indicated that large reductions in CO{sub 2} emissions could be achieved at zero or negative costs (e.g. Rocky Mountain Institute 1989). In contrast, a recent study by Alan Manne of Stanford and Richard Richels of the Electric Power Research Institute (Manne-Richels 1989) concluded that in the US the total discounted costs of reducing CO{sub 2} emissions by 20 percent below the 1990 level could be as much as 3.6 trillion dollars over the period from 1990 to 2100. Costs of this order of magnitude would represent about 5 percent of US GNP. The purpose of this briefing paper is to summarize the different cost estimates for CO{sub 2} emission reduction and to identify the key issues and assumptions that underlie these cost estimates.

  1. Variability in the Mass and Stable Carbon Isotopic Composition of Fossil-Fuel-Derived Carbon Dioxide Emissions for the Countries of the North American Carbon Program

    Microsoft Academic Search

    R. J. Andres; T. A. Boden; J. S. Gregg; L. Losey; G. Marland

    2007-01-01

    As we focus more intently on the carbon cycle in North America, the spatial and temporal scales of our observations become more important. The carbon dioxide released from fossil fuel consumption can show large variability in both spatial and temporal scales. This presentation will focus on this variability. We have compiled a data set that contains the monthly emissions of

  2. Growth and welfare losses from carbon emissions restrictions : a general equilibrium analysis for Egypt

    E-print Network

    Blitzer, Charles R.

    1992-01-01

    This paper is an assessment for a particular country, Egypt, of the economic effects, under various conditions, of carbon emission restrictions. Like other work, it is an exemplification of some of the economic possibilities. ...

  3. 68 FR 1276 - National Emission Standards for Hazardous Air Pollutants: Plywood and Composite Wood Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2003-01-09

    ...measure emissions of total hydrocarbon (THC), methanol, or formaldehyde as surrogates...emissions to the atmosphere. a. Reduce THC emissions (as carbon, and minus methane...percent. d. Limit the concentration of THC (as carbon, and minus methane if you...

  4. The research on the fairness of carbon emissions for China's energy based on GIS

    NASA Astrophysics Data System (ADS)

    Wang, Qiuxian; Gao, Zhiqiang; Ning, Jicai; Lu, Qingshui; Shi, Runhe; Gao, Wei

    2013-09-01

    This article firstly calculated China's energy carbon emissions of 30 provinces in 2010 with the method of carbon emission inventories of 2006 IPCC based on the data of China energy statistical yearbook, and then calculated its carbon emission intensity with GDP data in China's statistical yearbook. Next according to the formed formula the author calculated the EEI (Economic Efficiency Index) and ECI (Ecological Carrying Index) and made some corresponding figures with the help of GIS to analyze the fairness of the China's energy CO2 emissions in 2010.The results showed that the distribution of China's CO2 emissions for energy in 2010 become lower from the Bohai bay to the surroundings and the west circle provinces are with the lowest energy carbon emissions. The intensity distribution of China's CO2 emissions for energy in 2010 becomes higher from southeast China to north China. The distributions of EEI, ECI and for China's energy CO2 emissions are quite different from each other, and also with their comprehensive result. As to the fairness of China's energy CO2 emissions in 2010, we can say that the south provinces are better than those of Bohai bay areas (except Beijing and Tianjing).

  5. 3Butyl1-methylimidazolinium borohydride ([bmim][BH 4])—a novel reducing agent for the selective reduction of carbon–carbon double bonds in activated conjugated alkenes

    Microsoft Academic Search

    Jiayi Wang; Gonghua Song; Yanqing Peng; Yidong Zhu

    2008-01-01

    A novel ionic reducing reagent, 3-butyl-1-methylimidazolium borohydride ([bmim][BH4]), was synthesized and successfully used for the selective reduction of carbon–carbon double bonds in conjugated alkenes as well as the ?,?-carbon–carbon double bonds in highly activated ?,?,?,?-unsaturated alkenes. The reagent can be regenerated and reused several times without losing its activity.

  6. Reconsidering California Transport Policies: Reducing Greenhouse Gas Emissions in an Uncertain Future

    NSDL National Science Digital Library

    Keefe, Ryan

    2012-02-24

    Over the past decade, the state of California has set aggressive greenhouse gas emissions targets across all sectors of the economy. The first major target occurs in 2020, when the state hopes to have reduced statewide greenhouse gas emission from their current levels to 1990 levels. This 320-page paper from RAND researcher Ryan Keefe takes a critical look at the policies adopted by California in its attempt to achieve these long-term goals. Visitors can look over the complete document if they are so inclined, but there is a brief summary available as well. The paper provides a history of climate policy in California, sections on policy options for reducing greenhouse gas emissions from automobiles, and new methods for evaluating California's light-duty transportation policies. Finally, the paper also includes a wealth of graphs, charts, and technical appendices.

  7. Reduced Turbine Emissions Using Hydrogen-Enriched Fuels R.W. Schefer

    E-print Network

    Reduced Turbine Emissions Using Hydrogen-Enriched Fuels R.W. Schefer Combustion Research Facility addition extended the premixed lean flammability limits and improved combustion efficiency. These tests was studied over a range of fuel-lean operating conditions since lean combustion is currently recognized

  8. Project Information Form Project Title Managing Roadway Systems to Reduce GHG Emissions and Improve

    E-print Network

    California at Davis, University of

    Project Information Form Project Title Managing Roadway Systems to Reduce GHG Emissions and Improve or organization) $25,217 Total Project Cost $25,217 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates 4/1/14 ­ 3/30/15 Brief Description of Research Project There have been a variety of traffic

  9. Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy via ITS

    E-print Network

    California at Davis, University of

    Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy each agency or organization) US DOT $90,000 Total Project Cost $90,000 Agency ID or Contract Number Project Currently trucks are viewed as any other vehicle in traffic management Currently trucks are viewed

  10. Strategies for reducing the emission wavelength of GaAs–AlAs quantum cascade lasers

    Microsoft Academic Search

    L. R. Wilson; D. A. Carder; M. J. Steer; J. W. Cockburn; M. Hopkinson; C. K. Chia; G. Hill; R. Airey

    2002-01-01

    We report two novel methods for reducing the emission wavelength of GaAs–AlAs quantum cascade lasers. We demonstrate that for lasing to occur electron injection into the upper laser level must proceed via ? states confined below the lowest X state in the injection barrier. The limit this places on the minimum operating wavelength (??8?m) is overcome by utilising a novel

  11. Project Information Form Project Title Eco-Driving to Reduce Emissions Cars (Behavioral Focus)

    E-print Network

    California at Davis, University of

    Project Information Form Project Title Eco-Driving to Reduce Emissions ­ Cars (Behavioral Focus with both an up-to-date review of eco-driving outcomes and an understanding of how those outcomes depend interventions to assure potential improvements are realized. While eco-driving research has developed

  12. NITROGEN EXCRETION AND AMMONIA EMISSIONS FROM PIGS FED REDUCED CRUDE PROTEIN DIETS OR YUCCA EXTRACT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two trials were conducted with growing-finishing pigs (initial BW 47 ± 2 and 41 ± 3 kg for trials 1 and 2, respectively) to evaluate the effects of reduced crude protein (CP), amino acid-supplemented and yucca extract-supplemented diets on ammonia emissions. In trial 1, nine pigs, allocated to thre...

  13. Enhancing the effects of the Brazilian program to reduce atmospheric pollutant emissions from vehicles

    Microsoft Academic Search

    Lila Szwarcfiter; Francisco Eduardo Mendes; Emilio Lèbre La Rovere

    2005-01-01

    This article analyzes the potential for reducing vehicle atmospheric pollutant emissions as a result of the implementation of Accelerated Vehicle Retirement and Vehicle Inspection and Maintenance Programs. Application of both programs, together and individually, is simulated for the period 2003–2010, targeting the light-duty vehicles of the largest Brazilian urban agglomeration. This article also quantifies the impact of implementing the Brazilian

  14. EXPERIMENTAL EVALUATION OF FUEL OIL ADDITIVES FOR REDUCING EMISSIONS AND INCREASING EFFICIENCY OF BOILERS

    EPA Science Inventory

    The report gives results of an evaluation of the effectiveness of combustion-type fuel oil additives to reduce emissions and increase efficiency in a 50-bhp (500 kw) commercial oil-fired packaged boiler. Most additive evaluation runs were made during continuous firing, constant-l...

  15. Effects of Water Seal on Reducing 1,3-Dichloropropene Emissions from Different Textured Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil physical conditions can affect diffusion, environmental fate, and pest-control efficacy of fumigants in soil disinfestation treatments. Water seal (applying water using sprinklers to soil following fumigation) has shown effectiveness to reduce fumigant emissions from sandy loam soils. Soil colu...

  16. Clean Cities Tools: Tools to Help You Drive Smarter, Use Less Petroleum, and Reduce Emissions (Brochure)

    SciTech Connect

    Not Available

    2011-06-01

    Clean Cities' Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  17. Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure)

    SciTech Connect

    Not Available

    2012-01-01

    Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  18. Investigation of approaches to reduce truncation of attenuation maps with simultaneous transmission and emission SPECT imaging

    Microsoft Academic Search

    Manoj V. Narayanan; Michael A. King; Tin-Su Pan; Seth T. Dahlberg

    1998-01-01

    The limited field of view (FOV) associated with fan beam collimators can lead to truncation of the reconstructed attenuation maps in transmission imaging. The authors investigated through simulations, 5 approaches for reducing the truncation of attenuation maps with simultaneous transmission and emission SPECT imaging. These include: 1) the use of longer focal length collimators (65 vs. 104 cm); 2) using

  19. USING SURFACE WATER APPLICATIONS TO REDUCE 1,3-DICHLOROPROPENE EMISSION FROM SOIL FUMIGATION.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing emissions is critical to minimize the risk of detrimental impact of fumigation on workers, bystanders, and the environment and to continue availability of alternative fumigants to methyl bromide. The objective of this study was to determine the potential of using water applied to the soil s...

  20. Accounting for carbon dioxide emissions: A matter of time

    E-print Network

    Caldeira, K.; Davis, S. J

    2011-01-01

    carbon in interna- tional trade, such as is found in inter- nationally traded fossil fuels,fossil fuels, we all have an interest in the environmental risk reduction that would come with a transition to a carbon-

  1. Changes in fossil-fuel carbon emissions in response to interannual and interdecadal temperature variability

    Microsoft Academic Search

    WeiHong Qian; Bo Lu; HaoYuan Liang

    2011-01-01

    Relationships on interannual and interdecadal timescales among global mean air temperature, CO2 concentrations and fossil-fuel carbon emissions in four major developed countries (the United States, the United Kingdom,\\u000a France, and Germany) were analyzed. On an interannual timescale, the United States fossil-fuel carbon emissions tend to increase\\u000a during cold winters and decrease during warm winters, which is opposite to the situation

  2. Electron field emission and structural properties of carbon chemically vapor-deposited films

    Microsoft Academic Search

    A. N Obraztsov; I. Yu Pavlovsky; A. P Volkov; A. S Petrov; V. I Petrov; E. V Rakova; V. V Roddatis

    1999-01-01

    Low-voltage electron field emission was obtained for carbon films grown by the chemical vapor deposition (CVD) method in hydrogen–methane plasma activated by a d.c. discharge. We found that the electron field emission properties were improved by increasing the density of structural defects and non-diamond carbon inclusions in polycrystalline diamond films and, for the first time, we found that completely non-diamond

  3. Delay-feedback control strategy for reducing CO2 emission of traffic flow system

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Dong; Zhu, Wen-Xing

    2015-06-01

    To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.

  4. Alternatives to reduce corrosion of carbon steel storage drums

    SciTech Connect

    Zirker, L.R.; Beitel, G.A.

    1995-11-01

    The major tasks of this research were (a) pollution prevention opportunity assessments on the overpacking operations for failed or corroded drums, (b) research on existing container corrosion data, (c) investigation of the storage environment of the new Resource Conservation and Recovery Act Type II storage modules, (d) identification of waste streams that demonstrate deleterious corrosion affects on drum storage life, and (e) corrosion test cell program development. Twenty-one waste streams from five US Department of Energy (DOE) sites within the DOE Complex were identified to demonstrate a deleterious effect to steel storage drums. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure: 0.5 to 2 years. The results of this research support the position that pollution prevention evaluations at the front end of a project or process will reduce pollution on the back end.

  5. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil

    PubMed Central

    Bender, S Franz; Plantenga, Faline; Neftel, Albrecht; Jocher, Markus; Oberholzer, Hans-Rudolf; Köhl, Luise; Giles, Madeline; Daniell, Tim J; van der Heijden, Marcel GA

    2014-01-01

    N2O is a potent greenhouse gas involved in the destruction of the protective ozone layer in the stratosphere and contributing to global warming. The ecological processes regulating its emissions from soil are still poorly understood. Here, we show that the presence of arbuscular mycorrhizal fungi (AMF), a dominant group of soil fungi, which form symbiotic associations with the majority of land plants and which influence a range of important ecosystem functions, can induce a reduction in N2O emissions from soil. To test for a functional relationship between AMF and N2O emissions, we manipulated the abundance of AMF in two independent greenhouse experiments using two different approaches (sterilized and re-inoculated soil and non-mycorrhizal tomato mutants) and two different soils. N2O emissions were increased by 42 and 33% in microcosms with reduced AMF abundance compared to microcosms with a well-established AMF community, suggesting that AMF regulate N2O emissions. This could partly be explained by increased N immobilization into microbial or plant biomass, reduced concentrations of mineral soil N as a substrate for N2O emission and altered water relations. Moreover, the abundance of key genes responsible for N2O production (nirK) was negatively and for N2O consumption (nosZ) positively correlated to AMF abundance, indicating that the regulation of N2O emissions is transmitted by AMF-induced changes in the soil microbial community. Our results suggest that the disruption of the AMF symbiosis through intensification of agricultural practices may further contribute to increased N2O emissions. PMID:24351937

  6. The annual cycle of fossil-fuel carbon dioxide emissions in the United States

    NASA Astrophysics Data System (ADS)

    Blasing, T. J.; Broniak, C. T.; Marland, G.

    2005-04-01

    Time-series of estimated monthly carbon dioxide emissions from consumption of coal, petroleum and natural gas in the United States from 1981 to 2002 have been derived from energy consumption data. The data series for coal and natural gas each reveal a consistent seasonal pattern, with a winter peak for gas and two peaks (summer and winter) for coal. The annual cycle of total emissions has an amplitude of about 20 Tg-C, and is dominated by CO2 released from consumption of natural gas. Summation of the monthly estimates to obtain annual values reveals good agreement with other estimates of CO2 emissions. The varying proportions of CO2 emitted from each fuel type over the course of a year lead to an annual cycle in the carbon isotope ratio (?13C), with a range of about 2 ‰. These monthly carbon emissions estimates should be helpful in understanding the carbon cycle by providing (1) monthly/seasonal input for carbon cycle models, (2) estimates of the annual cycle of the 13C isotope ratio in fossil-fuel CO2 emissions and (3) data at fine enough time intervals to investigate effects of seasonal climate variations and changes in seasonally dependent use patterns of certain appliances (e.g. air conditioners) on fossil-fuel carbon emissions.

  7. Evaluation of refrigerating and air-conditioning technologies in heat cascading systems under the carbon dioxide emissions constraint: the proposal of the energy cascade balance table

    Microsoft Academic Search

    Yoichi Shimazaki

    2003-01-01

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both heat cascading systems and thermal recycling systems in industries located around urban areas. It is necessary to introduce heat cascading systems in the industrial sector in Japan to reduce carbon dioxide emissions. The concept of heat cascading is the multi-stage use of

  8. Application of the denitrification-decomposition model to predict carbon dioxide emissions under alternative straw retention methods.

    PubMed

    Chen, Can; Chen, Deli; Pan, Jianjun; Lam, Shu Kee

    2013-01-01

    Straw retention has been shown to reduce carbon dioxide (CO2) emission from agricultural soils. But it remains a big challenge for models to effectively predict CO2 emission fluxes under different straw retention methods. We used maize season data in the Griffith region, Australia, to test whether the denitrification-decomposition (DNDC) model could simulate annual CO2 emission. We also identified driving factors of CO2 emission by correlation analysis and path analysis. We show that the DNDC model was able to simulate CO2 emission under alternative straw retention scenarios. The correlation coefficients between simulated and observed daily values for treatments of straw burn and straw incorporation were 0.74 and 0.82, respectively, in the straw retention period and 0.72 and 0.83, respectively, in the crop growth period. The results also show that simulated values of annual CO2 emission for straw burn and straw incorporation were 3.45 t C ha(-1) y(-1) and 2.13 t C ha(-1) y(-1), respectively. In addition the DNDC model was found to be more suitable in simulating CO2 mission fluxes under straw incorporation. Finally the standard multiple regression describing the relationship between CO2 emissions and factors found that soil mean temperature (SMT), daily mean temperature (T mean), and water-filled pore space (WFPS) were significant. PMID:24453915

  9. Application of the Denitrification-Decomposition Model to Predict Carbon Dioxide Emissions under Alternative Straw Retention Methods

    PubMed Central

    Chen, Deli; Pan, Jianjun; Lam, Shu Kee

    2013-01-01

    Straw retention has been shown to reduce carbon dioxide (CO2) emission from agricultural soils. But it remains a big challenge for models to effectively predict CO2 emission fluxes under different straw retention methods. We used maize season data in the Griffith region, Australia, to test whether the denitrification-decomposition (DNDC) model could simulate annual CO2 emission. We also identified driving factors of CO2 emission by correlation analysis and path analysis. We show that the DNDC model was able to simulate CO2 emission under alternative straw retention scenarios. The correlation coefficients between simulated and observed daily values for treatments of straw burn and straw incorporation were 0.74 and 0.82, respectively, in the straw retention period and 0.72 and 0.83, respectively, in the crop growth period. The results also show that simulated values of annual CO2 emission for straw burn and straw incorporation were 3.45?t?C?ha?1?y?1 and 2.13?t?C?ha?1?y?1, respectively. In addition the DNDC model was found to be more suitable in simulating CO2 mission fluxes under straw incorporation. Finally the standard multiple regression describing the relationship between CO2 emissions and factors found that soil mean temperature (SMT), daily mean temperature (Tmean), and water-filled pore space (WFPS) were significant. PMID:24453915

  10. Active carbons impregnated before activation of olive stones: catalytic activity to remove benzene from gaseous emissions

    Microsoft Academic Search

    M. C. M. Alvim-Ferraz; C. M. T. B. Gaspar

    2004-01-01

    This work analyses the catalytic activity of impregnated active carbons prepared with olive stones to remove benzene from atmospheric emissions through catalytic complete oxidation. When the impregnation step is performed on the raw material or after activation, the influence of carbon texture on the catalyst dispersion and catalytic activity is already well studied. Nevertheless, when the impregnation step is performed

  11. A STUDY TO EVALUATE CARBON MONOXIDE AND HYDROGEN SULFIDE CONTINUOUS EMISSION MONITORS AT AN OIL REFINERY

    EPA Science Inventory

    An eleven month field evaluation was done on five hydrogen sulfide and four carbon monoxide monitors located at an oil refinery. The hydrogen sulfide monitors sampled a fuel gas feed line and the carbon monoxide monitors sampled the emissions from a fluid cat cracker (FCC). Two o...

  12. Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes

    Microsoft Academic Search

    L. H. Chan; K. H. Hong; D. Q. Xiao; W. J. Hsieh; S. H. Lai; H. C. Shih; T. C. Lin; F. S. Shieu; K. J. Chen; H. C. Cheng

    2003-01-01

    Extrinsic atoms were doped into multiwalled carbon nanotubes (MWCNTs) using microwave plasma-enhanced chemical vapor deposition. Doped nitrogen atoms alter the original parallel graphenes into highly curved ones including some fullerene-like structures. Doped nitrogen atoms could replace carbon atoms in MWCNTs and therefore increase the electronic density that enhances the electron field emission properties. On the other hand, the incorporation of

  13. Ferric iron amendment increases Fe(III)-reducing microbial diversity and carbon oxidation in on-site wastewater systems.

    PubMed

    Azam, Hossain M; Finneran, Kevin T

    2013-01-01

    Onsite wastewater systems, or septic tanks, serve approximately 25% of the United States population; they are therefore a critical component of the total carbon balance for natural water bodies. Septic tanks operate under strictly anaerobic conditions, and fermentation is the dominant process driving carbon transformation. Nitrate, Fe(III), and sulfate reduction may be operating to a limited extent in any given septic tank. Electron acceptor amendments will increase carbon oxidation, but nitrate is toxic and sulfate generates corrosive sulfides, which may damage septic system infrastructure. Fe(III) reducing microorganisms transform all major classes of organic carbon that are dominant in septic wastewater: low molecular weight organic acids, carbohydrate monomers and polymers, and lipids. Fe(III) is not toxic, and the reduction product Fe(II) is minimally disruptive if the starting Fe(III) is added at 50-150 mg L(-1). We used (14)C radiolabeled acetate, lactate, propionate, butyrate, glucose, starch, and oleic acid to demonstrate that short and long-term carbon oxidation is increased when different forms of Fe(III) are amended to septic wastewater. The rates of carbon mineralization to (14)CO(2) increased 2-5 times (relative to unamended systems) in the presence of Fe(III). The extent of mineralization reached 90% for some carbon compounds when Fe(III) was present, compared to levels of 50-60% in the absence of Fe(III). (14)CH(4) was not generated when Fe(III) was added, demonstrating that this strategy can limit methane emissions from septic systems. Amplified 16S rDNA restriction analysis indicated that unique Fe(III)-reducing microbial communities increased significantly in Fe(III)-amended incubations, with Fe(III)-reducers becoming the dominant microbial community in several incubations. The form of Fe(III) added had a significant impact on the rate and extent of mineralization; ferrihydrite and lepidocrocite were favored as solid phase Fe(III) and chelated Fe(III) (with nitrilotriacetic acid or EDTA) as soluble Fe(III) forms. PMID:23062939

  14. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    Microsoft Academic Search

    Lynn Price; G. J. M. Phylipsen; Ernst Worrell

    2001-01-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop

  15. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-print Network

    Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California Estimates from the Combustion of Fossil Fuels in California" and augmentation to contract number 05 Dioxide Emission Estimates from the Combustion of Fossil Fuels in California" and augmentation to contract

  16. Modeling Seasonality in German Carbon Dioxide Emissions From Fossil Fuel Consumption

    Microsoft Academic Search

    J. S. Gregg; R. J. Andres

    2004-01-01

    A method is developed to determine seasonal fossil fuel consumption patterns by using monthly sales data to estimate the relative monthly proportions of the total annual carbon dioxide emissions for Germany. From these data, the goal is to develop mathematical models that describe the seasonal flux in consumption for each type of fuel, as well as the total emissions for

  17. Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions

    EIA Publications

    2013-01-01

    This analysis supplements the Annual Energy Outlook 2013 alternative cases which imposed hypothetical carbon dioxide emission fees on fossil fuel consumers. It offers further cases that examine the impacts of fees placed only on the emissions from electric power facilities, impacts of returning potential revenues to consumers, and two cap-and-trade policies.

  18. From the Greenhouse to the Poorhouse: Carbon Emissions Control and the Rules of Legislative Joinder

    Microsoft Academic Search

    David A. Super

    2010-01-01

    Pending legislation to address carbon emissions would include large subsidies for existing emitters. These subsidies make little sense economically or politically. Worse, they divert resources needed to address two crucial issues that the proposed legislation largely ignores: the impact of raising carbon costs on low-income people and the massive structural federal deficit. A carbon tax or cap-and-trade system would increase

  19. Effect of N\\/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons

    Microsoft Academic Search

    Shan-Sheng Yu; Wei-Tao Zheng

    2010-01-01

    Carbon nanotubes, carbon nanocones, and graphene nanoribbons are carbon-based nanomaterials, and their electronic and field emission properties can be altered by either electron donors or electron acceptors. Among both donors and accepters, nitrogen and boron atoms are typical substitutional dopants for carbon materials. The contribution of this paper mainly provides a comprehensive overview of the theoretical topics. The effect of

  20. Beam Emission Test on Carbon Nanotube Cathode of a Gridded Pierce Gun

    Microsoft Academic Search

    Hae Jin Kim; Won Bum Seo; Jin Joo Choi; Jae-Hee Han; Ji-Beom Yoo

    2006-01-01

    This paper presents the beam emission test of a triode-type Pierce gun pasted with a carbon nanotube (CNT). A DC emission current from the gridded-CNT cathode was measured to be 4.2 mA where the applied cathode voltage is -0.86 kV, grid and anode are ground, and cathode-to-grid distance is 200 mum. We also examined the mode field emission characteristics with

  1. Inverting for emissions of carbon monoxide from Asia using aircraft observations over the western Pacific

    Microsoft Academic Search

    Paul I. Palmer; Daniel J. Jacob; Dylan B. A. Jones; Colette L. Heald; Robert M. Yantosca; Jennifer A. Logan; Glen W. Sachse; David G. Streets

    2003-01-01

    Abstract. We use aircraft observations of continental outflo w over the western Pacific from the TRACE-P mission (March-April, 2001), in combination with an optimal estimation inverse model, to improve emission estimates of carbon monoxide (CO) from Asia. A priori emissions and their errors are from a customised bottom-up Asian emission inventory for the TRACE-P period. The global 3-D GEOS-CHEM chemical

  2. Simulation study of a field emission triode structure using carbon-nanotube emitters

    Microsoft Academic Search

    Chenggang Xie

    2004-01-01

    The device level simulation analysis without considering nanometer geometry of the emissive material is carried out on a self-aligned gated field emission triode structure that can be used for low electric-field emissive materials such as carbon nanotubes. The electric properties of the device, such as electric-field distribution, pixel capacitance, and gate controllability, are simulated using a commercially available field solver

  3. Study on Influencing Factors of Carbon Emissions from Energy Consumption of Shandong Province of China from 1995 to 2012

    PubMed Central

    Song, Jiekun; Song, Qing; Zhang, Dong; Lu, Youyou; Luan, Long

    2014-01-01

    Carbon emissions from energy consumption of Shandong province from 1995 to 2012 are calculated. Three zero-residual decomposition models (LMDI, MRCI and Shapley value models) are introduced for decomposing carbon emissions. Based on the results, Kendall coordination coefficient method is employed for testing their compatibility, and an optimal weighted combination decomposition model is constructed for improving the objectivity of decomposition. STIRPAT model is applied to evaluate the impact of each factor on carbon emissions. The results show that, using 1995 as the base year, the cumulative effects of population, per capita GDP, energy consumption intensity, and energy consumption structure of Shandong province in 2012 are positive, while the cumulative effect of industrial structure is negative. Per capita GDP is the largest driver of the increasing carbon emissions and has a great impact on carbon emissions; energy consumption intensity is a weak driver and has certain impact on carbon emissions; population plays a weak driving role, but it has the most significant impact on carbon emissions; energy consumption structure is a weak driver of the increasing carbon emissions and has a weak impact on carbon emissions; industrial structure has played a weak inhibitory role, and its impact on carbon emissions is great. PMID:24977216

  4. Study on influencing factors of carbon emissions from energy consumption of Shandong Province of China from 1995 to 2012.

    PubMed

    Song, Jiekun; Song, Qing; Zhang, Dong; Lu, Youyou; Luan, Long

    2014-01-01

    Carbon emissions from energy consumption of Shandong province from 1995 to 2012 are calculated. Three zero-residual decomposition models (LMDI, MRCI and Shapley value models) are introduced for decomposing carbon emissions. Based on the results, Kendall coordination coefficient method is employed for testing their compatibility, and an optimal weighted combination decomposition model is constructed for improving the objectivity of decomposition. STIRPAT model is applied to evaluate the impact of each factor on carbon emissions. The results show that, using 1995 as the base year, the cumulative effects of population, per capita GDP, energy consumption intensity, and energy consumption structure of Shandong province in 2012 are positive, while the cumulative effect of industrial structure is negative. Per capita GDP is the largest driver of the increasing carbon emissions and has a great impact on carbon emissions; energy consumption intensity is a weak driver and has certain impact on carbon emissions; population plays a weak driving role, but it has the most significant impact on carbon emissions; energy consumption structure is a weak driver of the increasing carbon emissions and has a weak impact on carbon emissions; industrial structure has played a weak inhibitory role, and its impact on carbon emissions is great. PMID:24977216

  5. A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990

    Microsoft Academic Search

    Robert J. Andres; Gregg Marland; Inez Fungand; Elaine Matthews

    1996-01-01

    One degree latitude by one degree longitude (1° × 1°) data sets of carbon dioxide emissions from fossil fuel consumption and cement manufacture were produced for 1950, 1960, 1970, 1980, and 1990. National estimates of carbon emissions were combined with 1° × 1° data sets of political units and human population density to create the new 1° × 1° carbon

  6. New-type planar field emission display with superaligned carbon nanotube yarn emitter.

    PubMed

    Liu, Peng; Wei, Yang; Liu, Kai; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2012-05-01

    With the superaligned carbon nanotube yarn as emitter, we have fabricated a 16 × 16 pixel field emission display prototype by adopting screen printing and laser cutting technologies. A planar diode field emission structure has been adopted. A very sharp carbon nanotube yarn tip emitter can be formed by laser cutting. Low voltage phosphor was coated on the anode electrodes also by screen printing. With a specially designed circuit, we have demonstrated the dynamic character display with the field emission display prototype. The emitter material and fabrication technologies in this paper are both easy to scale up to large areas. PMID:22494219

  7. Carbon-Centered Free Radicals in Particulate Matter Emissions from Wood and Coal Combustion

    PubMed Central

    2009-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to measure the free radicals in the particulate matter (PM) emissions from wood and coal combustion. The intensity of radicals in PM dropped linearly within two months of sample storage and stabilized after that. This factor of storage time was adjusted when comparing radical intensities among different PM samples. An inverse relationship between coal rank and free radical intensities in PM emissions was observed, which was in contrast with the pattern of radical intensities in the source coals. The strong correlation between intensities of free radical and elemental carbon in PM emissions suggests that the radical species may be carbon-centered. The increased g-factors, 2.0029?2.0039, over that of purely carbon-centered radicals may indicate the presence of vicinal oxygen heteroatom. The redox and biology activities of these carbon-centered radicals are worthy of evaluation. PMID:19551161

  8. Carbon-Centered Free Radicals in Particulate Matter Emissions from Wood and Coal Combustion.

    PubMed

    Tian, Linwei; Koshland, Catherine P; Yano, Junko; Yachandra, Vittal K; Yu, Ignatius T S; Lee, S C; Lucas, Donald

    2009-05-21

    Electron paramagnetic resonance (EPR) spectroscopy was used to measure the free radicals in the particulate matter (PM) emissions from wood and coal combustion. The intensity of radicals in PM dropped linearly within two months of sample storage and stabilized after that. This factor of storage time was adjusted when comparing radical intensities among different PM samples. An inverse relationship between coal rank and free radical intensities in PM emissions was observed, which was in contrast with the pattern of radical intensities in the source coals. The strong correlation between intensities of free radical and elemental carbon in PM emissions suggests that the radical species may be carbon-centered. The increased g-factors, 2.0029-2.0039, over that of purely carbon-centered radicals may indicate the presence of vicinal oxygen heteroatom. The redox and biology activities of these carbon-centered radicals are worthy of evaluation. PMID:19551161

  9. The Evaluation System Design of GIS-Based Oil and Gas Resources Carbon Emission Database Management

    NASA Astrophysics Data System (ADS)

    Zhu, Wenju; Bi, Jiantao; Wang, Xingxing; Zhu, Zuojia; Pang, Wenqi

    2014-03-01

    Due to the importance of research on carbon budgets in natural processes, it is critical to be able to effectively manage and process all types of data in order to get measure carbon emissions. For this purpose, data produced in oil and gas exploration and natural processes are the focus of this research. Various tools are used including Oracle11g for data storage, Arc Engine combined with Microsoft Visual C# among others including C++ and the Database Storage Management Platform with GIS software functions. The IPCC algorithms are the most important reference, combine this with actual events, a new calculation model about oil and gas resources carbon emission was constructed. This model will analyze and predict the amount of carbon emissions in the oil and gas production in the future. Putting the new calculation model into the Database Storage Management Platform, an Intelligent Prediction Database Platform contained the new calculation model was established.

  10. Terrestrial carbon disturbance from mountaintop mining increases lifecycle emissions for clean coal.

    PubMed

    Fox, James F; Campbell, J Elliott

    2010-03-15

    The Southern Appalachian forest region of the U.S.--a region responsible for 23% of U.S. coal production--has 24 billion metric tons of high quality coal remaining of which mountaintop coal mining (MCM) will be the primary extraction method. Here we consider greenhouse gas emissions associated with MCM terrestrial disturbance in the life-cycle of coal energy production. We estimate disturbed forest carbon, including terrestrial soil and nonsoil carbon using published U.S. Environmental Protection Agency data of the forest floor removed and U.S. Department of Agriculture--Forest Service inventory data. We estimate the amount of previously buried geogenic organic carbon brought to the soil surface during MCM using published measurements of total organic carbon and carbon isotope data for reclaimed soils, soil organic matter and coal fragments. Contrary to conventional wisdom, the life-cycle emissions of coal production for MCM methods were found to be quite significant when considering the potential terrestrial source. Including terrestrial disturbance in coal life-cycle assessment indicates that indirect emissions are at least 7 and 70% of power plant emissions for conventional and CO(2) capture and sequestration power plants, respectively. To further constrain these estimates, we suggest that the fate of soil carbon and geogenic carbon at MCM sites be explored more widely. PMID:20141186

  11. Enhanced electron field emission from carbon nanotubes irradiated by energetic C ions.

    PubMed

    Sun, Peng-Cheng; Deng, Jian-Hua; Cheng, Guo-An; Zheng, Rui-Ting; Ping, Zhao-Xia

    2012-08-01

    The field emission performance and structure of the vertically aligned multi-walled carbon nanotube arrays irradiated by energetic C ion with average energy of 40 keV have been investigated. During energetic C ion irradiation, the curves of emission current density versus the applied field of samples shift firstly to low applied fields when the irradiation doses are less than 9.6 x 10(16) cm(-2), and further increase of dose makes the curves reversing to a high applied field, which shows that high dose irradiation in carbon nanotube arrays makes their field emission performance worse. After energetic ion irradiation with a dose of 9.6 x 1016 cm(-2), the turn-on electric field and the threshold electric field of samples decreased from 0.80 and 1.13 V/microm to 0.67 and 0.98 V/microm respectively. Structural analysis of scanning electron microscopy, transmission electron microscopy and Raman spectroscopy indicates that the amorphous carbon nanowire/carbon nanotube hetero nano-structures have been fabricated in the C ion irradiated carbon nanotubes. The enhancement of electron field emission is due to the formation of amorphous carbon nanowires at the tip of carbon nanotube arrays, which is an electron emitting material with low work function. PMID:22962775

  12. Integrated Assessment Modeling of Carbon Sequestration and Land Use Emissions Using Detailed Model Results and Observations

    SciTech Connect

    Dr. Atul Jain

    2005-04-17

    This report outlines the progress on the development and application of Integrated Assessment Modeling of Carbon Sequestrations and Land Use Emissions supported by the DOE Office of Biological and Environmental Research (OBER), U.S. Department of Energy, Grant No. DOE-DE-FG02-01ER63069. The overall objective of this collaborative project between the University of Illinois at Urbana-Champaign (UIUC), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL) was to unite the latest advances in carbon cycle research with scientifically based models and policy-related integrated assessment tools that incorporate computationally efficient representations of the latest knowledge concerning science and emission trajectories, and their policy implications. As part of this research we accomplished the following tasks that we originally proposed: (1) In coordination with LLNL and ORNL, we enhanced the Integrated Science Assessment Model's (ISAM) parametric representation of the ocean and terrestrial carbon cycles that better represent spatial and seasonal variations, which are important to study the mechanisms that influence carbon sequestration in the ocean and terrestrial ecosystems; (2) Using the MiniCAM modeling capability, we revised the SRES (IPCC Special Report on Emission Scenarios; IPCC, 2000) land use emission scenarios; and (3) On the application front, the enhanced version of ISAM modeling capability is applied to understand how short- and long-term natural carbon fluxes, carbon sequestration, and human emissions contribute to the net global emissions (concentrations) trajectories required to reach various concentration (emission) targets. Under this grant, 21 research publications were produced. In addition, this grant supported a number of graduate and undergraduate students whose fundamental research was to learn a disciplinary field in climate change (e.g., ecological dynamics and ocean circulations) and then complete research on how this field could be linked to the other factors we need to consider in its dynamics (e.g., land use, ocean and terrestrial carbon sequestration and climate change).

  13. Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined eff...

  14. Economic innovation and efficiency gains as the driving force for accelerating carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2012-12-01

    It is normally assumed that gains in energy efficiency are one of the best routes that society has available to it for stabilizing future carbon dioxide emissions. For a given degree of economic productivity less energy is consumed and a smaller quantity of fossil fuels is required. While certainly this observation is true in the instant, it ignores feedbacks in the economic system such that efficiency gains ultimately lead to greater energy consumption: taken as a global whole, they permit civilization to accelerate its expansion into the energy reserves that sustain it. Here this argument is formalized from a general thermodynamic perspective. The core result is that there exists a fixed, time-independent link between a very general representation of global inflation-adjusted economic wealth (units currency) and civilization's total capacity to consume power (units energy per time). Based on 40 years of available statistics covering more than a tripling of global GDP and a doubling of wealth, this constant has a value of 7.1 +/- 0.01 Watts per one thousand 2005 US dollars. Essentially, wealth is power. Civilization grows by dissipating power in order to sustain all its current activities and to incorporate more raw material into its existing structure. Growth of its structure is related to economic production, so more energy efficient economic production facilitates growth. Growth is into the reserves that sustain civilization, in which case there is a positive feedback in the economic system whereby energy efficiency gains ultimately "backfire" if their intended purpose is to reduce energy consumption and carbon dioxide emissions. The analogy that can be made is to a growing child: a healthy child who efficiently incorporates food into her structure grows quickly and is able to consume more in following years. Economically, an argument is made that, for a range of reasons, there are good reasons to refer to efficiency gains as economic "innovation", both for their physical nature and their links to traditional neo-classical economics.

  15. Heavy Metal Pollution Enhances Soil Respiration and Reduces Carbon Storage in a Chinese Paddy Soil

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Li, Zhipeng; Liu, Yongzhuo; Smith, Pete; Crowley, David; Zheng, Jufeng

    2010-05-01

    China's paddy soils are crucial both for food security through high cereal productivity, and for climate mitigation through high soil carbon storage. These functions are increasingly threatened by widespread heavy metal pollution, resulting from rapid industrial development. Heavy metal-polluted soils generally have a reduced microbial biomass and reduced soil respiration, as well as reduced functional diversity through changes in microbial community structure. Here we show that heavy metal pollution enhances soil respiration and CO2 efflux from a Chinese rice paddy soil, and leads to a soil organic carbon (SOC) loss, which is correlated with a decline in the fungal-to-bacterial ratio of the reduced soil microbial community. The pollution-induced SOC loss could offset 70% of the yearly SOC increase from China's paddy soils. Thus, heavy metal pollution impacts long term productivity and the potential for C sequestration in China's paddy soils.

  16. Renewable energy and its potential for carbon emissions reductions in developing countries: Methodology for technology evaluation. Case study application to Mexico

    SciTech Connect

    Corbus, D.; Martinez, M.; Rodriguez, L.; Mark, J.

    1994-08-01

    Many projects have been proposed to promote and demonstrate renewable energy technologies (RETs) in developing countries on the basis of their potential to reduce carbon emissions. However, no uniform methodology has been developed for evaluating RETs in terms of their future carbon emissions reduction potential. This study outlines a methodology for identifying RETs that have the potential for achieving large carbon emissions reductions in the future, while also meeting key criteria for commercialization and acceptability in developing countries. In addition, this study evaluates the connection between technology identification and the selection of projects that are designed to demonstrate technologies with a propensity for carbon emission reductions (e.g., Global Environmental Facility projects). Although this report applies the methodology to Mexico in a case study format, the methodology is broad based and could be applied to any developing country, as well as to other technologies. The methodology used in this report is composed of four steps: technology screening, technology identification, technology deployment scenarios, and estimates of carbon emissions reductions. The four technologies with the highest ranking in the technology identification process for the on-grid category were geothermal, biomass cogeneration, wind, and micro-/mini-hydro. Compressed natural gas (CNG) was the alternative that received the highest ranking for the transportation category.

  17. Managing the cost of emissions for durable, carbon-containing products

    SciTech Connect

    Shirley, Kevin [Appalachian State University; Marland, Eric [Appalachian State University; Cantrell, Jenna [Appalachian State University; Marland, Gregg [ORNL

    2011-03-01

    We recognize that carbon-containing products do not decay and release CO2 to the atmosphere instantaneously, but release that carbon over extended periods of time. For an initial production of a stock of carbon-containing product, we can treat the release as a probability distribution covering the time over which that release occurs. The probability distribution that models the carbon release predicts the amount of carbon that is released as a function of time. The use of a probability distribution in accounting for the release of carbon to the atmosphere realizes a fundamental shift from the idea that all carbon-containing products contribute to a single pool that decays in proportion to the size of the stock. Viewing the release of carbon as a continuous probabilistic process introduces some theoretical opportunities not available in the former paradigm by taking advantage of other fields where the use of probability distributions has been prevalent for many decades. In particular, theories developed in the life insurance industry can guide the development of pricing and payment structures for dealing with the costs associated with the oxidation and release of carbon. These costs can arise from a number of proposed policies (cap and trade, carbon tax, social cost of carbon, etc), but in the end they all result in there being a cost to releasing carbon to the atmosphere. If there is a cost to the emitter for CO2 emissions, payment for that cost will depend on both when the emissions actually occur and how payment is made. Here we outline some of the pricing and payment structures that are possible which result from analogous theories in the life insurance industry. This development not only provides useful constructs for valuing sequestered carbon, but highlights additional motivations for employing a probability distribution approach to unify accounting methodologies for stocks of carbon containing products.

  18. Energy-Dominated Local Carbon Emissions in Beijing 2007: Inventory and Input-Output Analysis

    PubMed Central

    Guo, Shan; Liu, J. B.; Shao, Ling; Li, J. S.; An, Y. R.

    2012-01-01

    For greenhouse gas (GHG) emissions by Beijing economy 2007, a concrete emission inventory covering carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) is presented and associated with an input-output analysis to reveal the local GHG embodiment in final demand and trade without regard to imported emissions. The total direct GHG emissions amount to 1.06E?+?08 t CO2-eq, of which energy-related CO2 emissions comprise 90.49%, non-energy-related CO2 emissions 6.35%, CH4 emissions 2.33%, and N2O emissions 0.83%, respectively. In terms of energy-related CO2 emissions, the largest source is coal with a percentage of 53.08%, followed by coke with 10.75% and kerosene with 8.44%. Sector 26 (Construction Industry) holds the top local emissions embodied in final demand of 1.86E?+?07 t CO2-eq due to its considerable capital, followed by energy-intensive Sectors 27 (Transport and Storage) and 14 (Smelting and Pressing of Ferrous and Nonferrous Metals). The GHG emissions embodied in Beijing's exports are 4.90E?+?07 t CO2-eq, accounting for 46.01% of the total emissions embodied in final demand. The sound scientific database totally based on local emissions is an important basis to make effective environment and energy policies for local decision makers. PMID:23193385

  19. Energy-dominated local carbon emissions in Beijing 2007: inventory and input-output analysis.

    PubMed

    Guo, Shan; Liu, J B; Shao, Ling; Li, J S; An, Y R

    2012-01-01

    For greenhouse gas (GHG) emissions by Beijing economy 2007, a concrete emission inventory covering carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) is presented and associated with an input-output analysis to reveal the local GHG embodiment in final demand and trade without regard to imported emissions. The total direct GHG emissions amount to 1.06E?+?08 t CO(2)-eq, of which energy-related CO(2) emissions comprise 90.49%, non-energy-related CO(2) emissions 6.35%, CH(4) emissions 2.33%, and N(2)O emissions 0.83%, respectively. In terms of energy-related CO(2) emissions, the largest source is coal with a percentage of 53.08%, followed by coke with 10.75% and kerosene with 8.44%. Sector 26 (Construction Industry) holds the top local emissions embodied in final demand of 1.86E?+?07 t CO(2)-eq due to its considerable capital, followed by energy-intensive Sectors 27 (Transport and Storage) and 14 (Smelting and Pressing of Ferrous and Nonferrous Metals). The GHG emissions embodied in Beijing's exports are 4.90E?+?07 t CO(2)-eq, accounting for 46.01% of the total emissions embodied in final demand. The sound scientific database totally based on local emissions is an important basis to make effective environment and energy policies for local decision makers. PMID:23193385

  20. The jurisdictional framework for municipal action to reduce greenhouse gas emissions: Case studies from Canada, the USA and Germany

    Microsoft Academic Search

    Benjamin J. Deangelo; L. D. Danny Harvey

    1998-01-01

    This paper addresses two questions: (1) Given a commitment at the national level to reduce greenhouse gas (GHG) emissions, what tools are available to national?level governments to induce complimentary actions required at subnational levels? (2) In the absence of a serious commitment at national and regional levels to reduce GHG emissions, what is the scope for, and jurisdictional rights of,

  1. Urea-SCR: a promising technique to reduce NO x emissions from automotive diesel engines

    Microsoft Academic Search

    M. Koebel; M. Elsener; M. Kleemann

    2000-01-01

    Urea-SCR, the selective catalytic reduction using urea as reducing agent, has been investigated for about 10 years in detail and today is a well established technique for DeNOx of stationary diesel engines. It is presently also considered as the most promising way to diminish NOx emissions originating from heavy duty vehicles, especially trucks.The paper discusses the fundamental problems and challenges

  2. Electromagnetic performance of innovative lightweight shields to reduce radiated emissions from PCBs

    Microsoft Academic Search

    Maria Sabrina Sarto; Sergio Di Michele; Peter Leerkamp

    2002-01-01

    An innovative shielding concept to reduce radiated emissions from components and tracks on printed-circuit boards is proposed. The new shield is made of a polycarbonate foil, which is coated by a thin film of nickel (only 50 nm in thickness) and by a 5-?m thick layer of tin, and successively thermoformed. The innovative characteristics of such a high-technology shield are

  3. Reducing respiratory motion artifacts in positron emission tomography through retrospective stacking

    Microsoft Academic Search

    Brian Thorndyke; Eduard Schreibmann; Albert Koong; Lei Xing

    2006-01-01

    Respiratory motion artifacts in positron emission tomography (PET) imaging can alter lesion intensity profiles, and result in substantially reduced activity and contrast-to-noise ratios (CNRs). We propose a corrective algorithm, coined 'retrospective stacking' (RS), to restore image quality without requiring additional scan time. Retrospective stacking uses b-spline deformable image registration to combine amplitude-binned PET data along the entire respiratory cycle into

  4. Improved technologies to reduce emission of methyl bromide from fumigated soil

    Microsoft Academic Search

    A. Gamliel; A. Grinstein; J. Katan

    1997-01-01

    Methyl bromide (MB) is the chemical most widely used for soil fumigation in intensive agriculture, and for commodity and postharvest\\u000a quarantine treatments. MB was listed by the Montreal Protocol in 1992 as a controlled ozone-depleting substance, and a phase-out\\u000a process has been initiated. Several technologies to reduce the fumigation dosage and subsequent emission of MB from the fumigated\\u000a soil were

  5. An incentive mechanism for reducing emissions from conversion of intact and non-intact forests

    Microsoft Academic Search

    Danilo Mollicone; Frédéric Achard; Sandro Federici; Hugh D. Eva; Giacomo Grassi; Alan Belward; Frank Raes; Günther Seufert; Hans-Jürgen Stibig; Giorgio Matteucci; Ernst-Detlef Schulze

    2007-01-01

    This paper presents a new accounting mechanism in the context of the UNFCCC issue on reducing emissions from deforestation\\u000a in developing countries, including technical options for determining baselines of forest conversions. This proposal builds\\u000a on the recent scientific achievements related to the estimation of tropical deforestation rates and to the assessment of ‘intact’\\u000a forest areas. The distinction between ‘intact’ and

  6. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes.

    PubMed

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M; Gambhir, Sanjeev; Wallace, Gordon G; Kozlov, Mikhail E; Baughman, Ray H; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g(-1), far exceeding spider dragline silk (165 J g(-1)) and Kevlar (78 J g(-1)). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs. PMID:22337128

  7. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M.; Gambhir, Sanjeev; Wallace, Gordon G.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g-1, far exceeding spider dragline silk (165 J g-1) and Kevlar (78 J g-1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  8. Reduced carbon intensity in highly developed countries: environmental kuznets curves for carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kornhuber, Kai; Rybski, Diego; Costa, Luis; Reusser, Dominik E.; Kropp, Jürgen P.

    2014-05-01

    The Environmental Kuznets Curves (EKC) postulates that pollution increases with the income per capita up to a maximum, above which it decreases with the further increase in income per capita, i.e. following an inverse U-shape in the pollution vs. income per capita. It is commonly believed that EKC occurs for "local" pollutants such as nitrogen oxide and sulfur dioxide, but does not hold for CO2 emissions. This is attributed to the fact that while "local" pollutants cause a visible environmental damage on the local/regional scale (which authorities/governments seek to avoid), the consequences of CO2 emission have no immediate attributable local/regional consequences. We review EKC for CO2 exploring its relation between CO2 per capita and the Human Development Index (HDI) between 1990 and 2010 obtained from the World Bank database. We find evidence for a reduction in CO2 emissions per capita in highly developed countries. We propose a model according to which the emissions per capita of a country are composed of a component related to the actual state of development and a component related to the change of development. The model leads to four distinct cases of which two have EKC shape and two imply saturation. This outcome is in line with previously suggested qualitative relations. Our analysis indicates that the EKC shaped cases better describes the empirical values. We explore the less extreme version corresponding to the so-called conventional EKC and study the maximum of the fitted curve, providing a threshold-value for the HDI and a typical maximum value for the emissions per capita. We find that approx. 5 countries have crossed the CO2-HDI maximum, corresponding to approx. 1.5% of the world population.

  9. Effects of Gases on Field Emission from Single and Multi-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Wadhawan, A.; Stephens, K.; Stallcup, R., II; Perez, J.; Physics Department Collaboration

    2001-03-01

    We report the effects of O_2, H_2, and Ar exposure on the field emission properties of single and multi-wall carbon nanotubes. The field emission current vs. voltage curves and field emission current vs. time were measured as a function of gas exposure at 10-8 Torr over a period of approximately 8 hours. The data were collected using an automated system running under Labview. We find that H2 and Ar exposure do not significantly affect the field emission properties of either single or multi-walled carbon nanotubes. However, O2 exposure degrades the field emission properties of multi-wall tubes more than those of single-wall tubes. After O2 exposure, the turn-on voltage for multi-wall tubes increased fromm 300 to 500 volts, while the turn-on voltage for single-wall tubes increased from 200 to 250 volts. An explanation of these results will be discussed.

  10. Decadal growth of black carbon emissions in India - article no. L02807

    SciTech Connect

    Sahu, S.K.; Beig, G.; Sharma, C. [Indian Institute of Tropical Meteorology, Pune (India)

    2008-01-15

    A Geographical Information System (GIS) based methodology has been used to construct the black carbon (BC) emission inventory for the Indian geographical region. The distribution of emissions from a broader level to a spatial resolution of 1{sup o} x 1{sup o} grid has been carried out by considering micro level details and activity data of fossil fuels and bio-fuels. Our calculated total BC emissions were 1343.78 Gg and 835.50 Gg for the base years 2001 and 1991 respectively with a decadal growth of around 61%, which is highly significant. The district level analysis shows a diverse spatial distribution with the top 10% emitting districts contributing nearly 50% of total BC emission. Coal contributes more than 50% of total BC emission. All the metropolitan cities show high BC emissions due to high population density giving rise to high vehicular emissions and more demand of energy.

  11. The temporal and spatial distribution of carbon dioxide emissions from fossil-fuel use in North America

    Microsoft Academic Search

    J. S. Gregg; London M Losey; Robert Joseph Andres; T. J. Blasing; Gregg Marland

    2009-01-01

    Refinements in the spatial and temporal resolution of North American fossil-fuel carbon dioxide (CO) emissions provide additional information about anthropogenic aspects of the carbon cycle. In North America, the seasonal and spatial patterns are a distinctive component to characterizing anthropogenic carbon emissions. The pattern of fossil-fuel-based CO emissions on a monthly scale has greater temporal and spatial variability than the

  12. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests

    E-print Network

    Phillips, Richard P.

    Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests E D W biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yrÀ1 ) in the coming decades

  13. Corona discharge and electrostatic precipitation in carbon dioxide under reduced pressure simulating Mars atmosphere

    Microsoft Academic Search

    Hai Long PANG; P. Atten; J.-L. Reboud

    2005-01-01

    The possibility of using electrostatic precipitation to clean the gas above solar panels on the surface of planet Mars is investigated. Results are presented on corona discharge in carbon dioxide gas under reduced pressure ranging from 5 to 10 mbar with different electrode configurations. The corona discharge inception voltage and the threshold of bipolar discharge have been measured for the

  14. Network environ perspective for urban metabolism and carbon emissions: a case study of Vienna, Austria.

    PubMed

    Chen, Shaoqing; Chen, Bin

    2012-04-17

    Cities are considered major contributors to global warming, where carbon emissions are highly embedded in the overall urban metabolism. To examine urban metabolic processes and emission trajectories we developed a carbon flux model based on Network Environ Analysis (NEA). The mutual interactions and control situation within the urban ecosystem of Vienna were examined, and the system-level properties of the city's carbon metabolism were assessed. Regulatory strategies to minimize carbon emissions were identified through the tracking of the possible pathways that affect these emission trajectories. Our findings suggest that indirect flows have a strong bearing on the mutual and control relationships between urban sectors. The metabolism of a city is considered self-mutualistic and sustainable only when the local and distal environments are embraced. Energy production and construction were found to be two factors with a major impact on carbon emissions, and whose regulation is only effective via ad-hoc pathways. In comparison with the original life-cycle tracking, the application of NEA was better at revealing details from a mechanistic aspect, which is crucial for informed sustainable urban management. PMID:22424579

  15. Decadal-to-centennial scale climate-carbon cycle interactions from global climate models simulations forced by anthropogenic emissions

    Microsoft Academic Search

    Igor I. Mokhov; Alexey V. Eliseev; Andrey A. Karpenko

    Simulations of the climate-carbon cycle interaction are discussed in comparison with observationally-based estimates for the global carbon cycle characteristics. Since the beginning of the industrial era, the storage of the carbon dioxide in the atmosphere is smaller than the corresponding anthropogenic emissions. This is due to uptake of the atmospheric carbon dioxide to the terrestrial biota and ocean. Moreover, during

  16. Characterizing reduced sulfur compounds emissions from a swine concentrated animal feeding operation

    NASA Astrophysics Data System (ADS)

    Rumsey, Ian C.; Aneja, Viney P.; Lonneman, William A.

    2014-09-01

    Reduced sulfur compounds (RSCs) emissions from concentrated animal feeding operations (CAFOs) have become a potential environmental and human health concern, as a result of changes in livestock production methods. RSC emissions were determined from a swine CAFO in North Carolina. RSC measurements were made over a period of ?1 week from both the barn and lagoon during each of the four seasonal periods from June 2007 to April 2008. During sampling, meteorological and other environmental parameters were measured continuously. Seasonal hydrogen sulfide (H2S) barn concentrations ranged from 72 to 631 ppb. Seasonal dimethyl sulfide (DMS; CH3SCH3) and dimethyl disulfide (DMDS; CH3S2CH3) concentrations were 2-3 orders of magnitude lower, ranging from 0.18 to 0.89 ppb and 0.47 to 1.02 ppb, respectively. The overall average barn emission rate was 3.3 g day-1 AU-1 (AU (animal unit) = 500 kg of live animal weight) for H2S, which was approximately two orders of magnitude higher than the DMS and DMDS overall average emissions rates, determined as 0.017 g day-1 AU-1 and 0.036 g day-1 AU-1, respectively. The overall average lagoon flux was 1.33 ?g m-2 min-1 for H2S, which was approximately an order of magnitude higher than the overall average DMS (0.12 ?g m-2 min-1) and DMDS (0.09 ?g m-2 min-1) lagoon fluxes. The overall average lagoon emission for H2S (0.038 g day-1 AU-1) was also approximately an order of magnitude higher than the overall average DMS (0.0034 g day-1 AU-1) and DMDS (0.0028 g day-1 AU-1) emissions. H2S, DMS and DMDS have offensive odors and low odor thresholds. Over all four sampling seasons, 77% of 15 min averaged H2S barn concentrations were an order of magnitude above the average odor threshold. During these sampling periods, however, DMS and DMDS concentrations did not exceed their odor thresholds. The overall average barn and lagoon emissions from this study were used to help estimate barn, lagoon and total (barn + lagoon) RSC emissions from swine CAFOs in North Carolina. Total (barn + lagoon) H2S emissions from swine CAFOs in North Carolina were estimated to be 1.22*106 kg yr-1. The barns had significantly higher H2S emissions than the lagoons, contributing ?98% of total North Carolina H2S swine CAFO emissions. Total (barn + lagoon) emissions for DMS and DMDS were 1-2 orders of magnitude lower, with barns contributing ?86% and ?93% of total emissions, respectively. H2S swine CAFO emissions were estimated to contribute ?18% of North Carolina H2S emissions.

  17. GREENHOUSE GAS EMISSION REDUCTIONS AND CARBON CREDITS FROM IMPLEMENTATION OF AEROBIC MANURE TREATMENT SYSTEMS IN SWINE FARMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trading of carbon and NOx emission reductions is an attractive approach to help producers implement cleaner treatment technologies to replace current anaerobic lagoons. Our objectives were to determine greenhouse gas (GHG) emission reductions from implementation of aerobic technology (Supersoil proj...

  18. INFRARED EMISSION SPECTROSCOPY OF HOT CARBON FARNOOD KHALILZADEH REZAIE

    E-print Network

    Peale, Robert E.

    ........................................................................................................................ 5 1.2 Vibrational energy levels was carbon dioxide that dissociates under microwave heating. The spectrum was measured in the range 1800..................................................................................... 5 1.1 Energy levels

  19. MONITORING TECHNIQUES FOR CARBON FIBER EMISSIONS: EVALUATION B

    EPA Science Inventory

    An evaluation of available measurement methods for continously monitoring the number and mass of carbon fibers emitted from source operations was conducted. A total of eleven candidate monitoring methods were identified based on contact (electrical), locally sensing (optical, mic...

  20. Options and Instruments for a Deep Cut in CO2 Emissions: Carbon Dioxide Capture or Renewables, Taxes or Subsidies?

    Microsoft Academic Search

    Reyer Gerlagh; Bob van der Zwaan

    2006-01-01

    This paper compares both the main physical options and the principal policy instruments to realize a deep cut in carbon dioxide emissions necessary to control global climate change. A top-down energy-economy model is used that has three emission reduction options: energy savings, a transition towards less carbon-intensive or non-carbon energy resources, and the use of carbon dioxide capture and storage

  1. Options and Instruments for a Deep Cut in CO 2 Emissions: Carbon Dioxide Capture or Renewables, Taxes or Subsidies?

    Microsoft Academic Search

    Reyer Gerlagh; Bob van der Zwaan

    This paper compares both the main physical options and the principle policy instruments to realize a deep cut in carbon dioxide emissions necessary to control global climate change. A top-down energy-economy model is used that has three emission reduction options: energy savings, a transition towards less- carbon-intensive or non-carbon energy resources, and the use of carbon dioxide capture and storage

  2. Carbon investment funds

    SciTech Connect

    NONE

    2007-01-15

    The report is a study of the development of funds to invest in the purchase of carbon credits. It takes a look at the growing market for carbon credits, the rise of carbon investment funds, and the current state of carbon investing. Topics covered in the report include: Overview of climate change, greenhouse gases, and the Kyoto Protocols. Analysis of the alternatives for reducing carbon emissions including nitrous oxide reduction, coal mine methane capture and carbon capture and storage; Discussion of the different types of carbon credits; Discussion of the basics of carbon trading; Evaluation of the current status of carbon investing; and Profiles of 37 major carbon investment funds worldwide.

  3. Feed formulations to reduce N excretion and ammonia emission from poultry manure.

    PubMed

    Nahm, K H

    2007-09-01

    This summary focuses on reducing nitrogen (N) and ammonia emissions from poultry manure through the use of improved amino acid digestibilities and enzyme supplementation. Proper feed processing techniques, phase feeding, and the minimization of feed and water waste can contribute to additional minor reductions in these emissions. Reductions in environmental pollution can be achieved through improved diet formulation based on available nutrients in the ingredients, reducing crude protein (CP) levels and adding synthetic amino acids. Use of amino acid and CP digestibilities can reduce N excretion up to 40% and a 25% increase in N digestibility can be achieved with enzyme supplementation in broiler diets. Digestibilities can be measured by two methods: the excreta and ileal amino acid digestibilities. Both methods allow amino acid levels to be reduced by 10% or more. Enzyme supplementation decreases intestinal viscosity, improves metabolizable energy levels, and increases amino acid digestibilities. Many feed manufacturers still use total amino acid content to formulate feeds. To meet amino acid requirements, crystalline amino acids are needed. The use of feather, meat and bone meal must not be overestimated or underestimated and the limiting amino acids such as cystine, tryptophan, and threonine must be carefully analyzed. PMID:17303412

  4. A CFD study of jet mixing in reduced flow areas for lower combustor emissions

    NASA Technical Reports Server (NTRS)

    Smith, C. E.; Talpallikar, M. V.; Holdeman, J. D.

    1991-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor has the potential of significantly reducing NO(x) emissions in combustion chambers of High Speed Civil Transport aircraft. Previous work on RQL combustors for industrial applications suggested the benefit of necking down the mixing section. A 3-D numerical investigation was performed to study the effects of neckdown on NO(x) emissions and to develop a correlation for optimum mixing designs in terms of neckdown area ratio. The results of the study showed that jet mixing in reduced flow areas does not enhance mixing, but does decrease residence time at high flame temperatures, thus reducing NO(x) formation. By necking down the mixing flow area by 4, a potential NO(x) reduction of 16:1 is possible for annual combustors. However, there is a penalty that accompanies the mixing neckdown: reduced pressure drop across the combustor swirler. At conventional combustor loading parameters, the pressure drop penalty does not appear to be excessive.

  5. CARBON DIOXIDE HYDRATES CRYSTALLISATION IN EMULSION Aurlie Galfr, Amara Fezoua, Yamina Ouabbas, Ana Cameirao, Jean Michel Herri

    E-print Network

    Paris-Sud XI, Université de

    CARBON DIOXIDE HYDRATES CRYSTALLISATION IN EMULSION Aurélie Galfré, Amara Fezoua, Yamina Ouabbas de SAINT-ETIENNE FRANCE ABSTRACT Greenhouse gases emissions, like carbon dioxide, have been identified as major sources responsible for global warming. To reduce carbon dioxide emissions, capture

  6. A methodology for elemental and organic carbon emission inventory and results for Lombardy region, Italy.

    PubMed

    Caserini, Stefano; Galante, Silvia; Ozgen, Senem; Cucco, Sara; de Gregorio, Katia; Moretti, Marco

    2013-04-15

    This paper presents a methodology and its application for the compilation of elemental carbon (EC) and organic carbon (OC) emission inventories. The methodology consists of the estimation of EC and OC emissions from available total suspended particulate matter (TSP) emission inventory data using EC and OC abundances in TSP derived from an extensive literature review, by taking into account the local technological context. In particular, the method is applied to the 2008 emissions of Lombardy region, Italy, considering 148 different activities and 30 types of fuels, typical of Western Europe. The abundances estimated in this study may provide a useful basis to assess the emissions also in other emission contexts with similar prevailing sources and technologies. The dominant sources of EC and OC in Lombardy are diesel vehicles for EC and the residential wood combustion (RWC) for OC which together account for about 83% of the total emissions of both pollutants. The EC and OC emissions from industrial processes and other fuel (e.g., gasoline, kerosene and LPG) combustion are significantly lower, while non-combustion sources give an almost negligible contribution. Total EC+OC contribution to regional greenhouse gas emissions is positive for every sector assuming whichever GWP100 value within the range proposed in literature. An uncertainty assessment is performed through a Monte Carlo simulation for RWC, showing a large uncertainty range (280% of the mean value for EC and 70% for OC), whereas for road transport a qualitative analysis identified a narrower range of uncertainty. PMID:23454906

  7. Trade-off in emissions of acid gas pollutants and of carbon dioxide in fossil fuel power plants with carbon capture

    Microsoft Academic Search

    Evangelos Tzimas; Arnaud Mercier; Calin-Cristian Cormos; Stathis D. Peteves

    2007-01-01

    This paper investigates the impact of capture of carbon dioxide (CO2) from fossil fuel power plants on the emissions of nitrogen oxides (NOX) and sulphur oxides (SOX), which are acid gas pollutants. This was done by estimating the emissions of these chemical compounds from natural gas combined cycle and pulverized coal plants, equipped with post-combustion carbon capture technology for the

  8. Market power in international carbon emissions trading: a laboratory test

    E-print Network

    Carlén, Björn.

    The prospect that governments of one or a few large countries, or trading blocs, would engage in international greenhouse gas emissions trading has led several policy analysts to express concerns that trade would be ...

  9. Carbon Emissions from Smouldering Peat in Shallow and Strong Fronts 

    E-print Network

    Rein, Guillermo; Cohen, Simon; Simeoni, Albert

    2009-01-01

    A series of experiments of shallow and strong smouldering fronts in boreal peat have been conducted under laboratory conditions to study the CO and CO2 emissions. Peat samples of 100 mm by 100 mm in cross section and 50 ...

  10. Emissions from prescribed fire in temperate forest in south-east Australia: implications for carbon accounting

    NASA Astrophysics Data System (ADS)

    Possell, M.; Jenkins, M.; Bell, T. L.; Adams, M. A.

    2014-09-01

    We estimated of emissions of carbon, as CO2-equivalents, from planned fire in four sites in a south-eastern Australian forest. Emission estimates were calculated using measurements of fuel load and carbon content of different fuel types, before and after burning, and determination of fuel-specific emission factors. Median estimates of emissions for the four sites ranged from 20 to 139 T CO2-e ha-1. Variability in estimates was a consequence of different burning efficiencies of each fuel type from the four sites. Higher emissions resulted from more fine fuel (twigs, decomposing matter, near-surface live and leaf litter) or coarse woody debris (CWD; > 25 mm diameter) being consumed. In order to assess the effect of estimating emissions when only a few fuel variables are known, Monte-Carlo simulations were used to create seven scenarios where input parameters values were replaced by probability density functions. Calculation methods were: (1) all measured data were constrained between measured maximum and minimum values for each variable, (2) as for (1) except the proportion of carbon within a fuel type was constrained between 0 and 1, (3) as for (2) but losses of mass caused by fire were replaced with burning efficiency factors constrained between 0 and 1; and (4) emissions were calculated using default values in the Australian National Greenhouse Accounts (NGA), National Inventory Report 2011, as appropriate for our sites. Effects of including CWD in calculations were assessed for calculation Method 1, 2 and 3 but not for Method 4 as the NGA does not consider this fuel type. Simulations demonstrate that the probability of estimating true median emissions declines strongly as the amount of information available declines. Including CWD in scenarios increased uncertainty in calculations because CWD is the most variable contributor to fuel load. Inclusion of CWD in scenarios generally increased the amount of carbon lost. We discuss implications of these simulations and how emissions from prescribed burns in temperate Australian forests could be improved.

  11. Reducing emissions from the electricity sector: the costs and benefits nationwide and for the Empire State

    SciTech Connect

    Karen Palmer; Dallas Butraw; Jhih-Shyang Shih

    2005-06-15

    Using four models, this study looks at EPA's Clean Air Interstate Rule (CAIR) as originally proposed, which differs in only small ways from the final rule issued in March 2005, coupled with several approaches to reducing emissions of mercury including one that differs in only small ways from the final rule also issued in March 2005. This study analyzes what costs and benefits each would incur to New York State and to the nation at large. Benefits to the nation and to New York State significantly outweigh the costs associated with reductions in SO{sub 2}, NOx and mercury, and all policies show dramatic net benefits. The manner in which mercury emissions are regulated will have important implications for the cost of the regulation and for emission levels for SO{sub 2} and NOx and where those emissions are located. Contrary to EPA's findings, CAIR as originally proposed by itself would not keep summer emissions of NOx from electricity generators in the SIP region below the current SIP seasonal NOx cap. In the final CAIR, EPA added a seasonal NOx cap to address seasonal ozone problems. The CAIR with the seasonal NOx cap produces higher net benefits. The effect of the different policies on the mix of fuels used to supply electricity is fairly modest under scenarios similar to the EPA's final rules. A maximum achievable control technology (MACT) approach, compared to a trading approach as the way to achieve tighter mercury targets (beyond EPA's proposal), would preserve the role of coal in electricity generation. The evaluation of scenarios with tighter mercury emission controls shows that the net benefits of a maximum achievable control technology (MACT) approach exceed the net benefits of a cap and trade approach. 39 refs., 10 figs., 30 figs., 5 apps.

  12. Electrospun MgO-loaded carbon nanofibers: Enhanced field electron emission from the fibers in vacuum

    NASA Astrophysics Data System (ADS)

    Aykut, Yakup

    2013-02-01

    MgO-loaded electrospun carbon nanofibers (MgO/CNFs) were prepared by electrospinning a magnesium acetate containing polyacrylonitrile composite followed by stabilization under an air atmosphere at 280 °C and carbonization under a nitrogen atmosphere at 800 °C. In addition to investigating the morphological and material features of the nanofibers, the field emission (FE) characteristics of the carbonized NFs (CNFs), performed in an ultra-high vacuum chamber utilizing scanning electron microscopy (SEM), were determined. The results of the investigation show that the MgO/CNFs (195.5% enhancement) display enhanced field electron emission as compared to that of pure CNFs as a result of the existence of a MgO phase. Consequently, it appears that the graphitic structures of CNFs can be tuned, a finding that has significance in studies aimed at developing new field electron emission devices.

  13. Reducing NOx emissions from a biodiesel-fueled engine by use of low-temperature combustion.

    PubMed

    Fang, Tiegang; Lin, Yuan-Chung; Foong, Tien Mun; Lee, Chia-Fon

    2008-12-01

    Biodiesel is popularly discussed in many countries due to increased environmental awareness and the limited supply of petroleum. One of the main factors impacting general replacement of diesel by biodiesel is NOx (nitrogen oxides) emissions. Previous studies have shown higher NOx emissions relative to petroleum diesel in traditional direct-injection (DI) diesel engines. In this study, effects of injection timing and different biodiesel blends are studied for low load [2 bar IMEP (indicated mean effective pressure)] conditions. The results show that maximum heat release rate can be reduced by retarding fuel injection. Ignition and peak heat release rate are both delayed for fuels containing more biodiesel. Retarding the injection to post-TDC (top dead center) lowers the peak heat release and flattens the heat release curve. It is observed that low-temperature combustion effectively reduces NOx emissions because less thermal NOx is formed. Although biodiesel combustion produces more NOx for both conventional and late-injection strategies, with the latter leading to a low-temperature combustion mode, the levels of NOx of B20 (20 vol % soy biodiesel and 80 vol % European low-sulfur diesel), B50, and B100 all with post-TDC injection are 68.1%, 66.7%, and 64.4%, respectively, lower than pure European low-sulfur diesel in the conventional injection scenario. PMID:19192810

  14. Prediction and analysis of near-road concentrations using a reduced-form emission/dispersion model

    PubMed Central

    2010-01-01

    Background Near-road exposures of traffic-related air pollutants have been receiving increased attention due to evidence linking emissions from high-traffic roadways to adverse health outcomes. To date, most epidemiological and risk analyses have utilized simple but crude exposure indicators, most typically proximity measures, such as the distance between freeways and residences, to represent air quality impacts from traffic. This paper derives and analyzes a simplified microscale simulation model designed to predict short- (hourly) to long-term (annual average) pollutant concentrations near roads. Sensitivity analyses and case studies are used to highlight issues in predicting near-road exposures. Methods Process-based simulation models using a computationally efficient reduced-form response surface structure and a minimum number of inputs integrate the major determinants of air pollution exposures: traffic volume and vehicle emissions, meteorology, and receptor location. We identify the most influential variables and then derive a set of multiplicative submodels that match predictions from "parent" models MOBILE6.2 and CALINE4. The assembled model is applied to two case studies in the Detroit, Michigan area. The first predicts carbon monoxide (CO) concentrations at a monitoring site near a freeway. The second predicts CO and PM2.5 concentrations in a dense receptor grid over a 1 km2 area around the intersection of two major roads. We analyze the spatial and temporal patterns of pollutant concentration predictions. Results Predicted CO concentrations showed reasonable agreement with annual average and 24-hour measurements, e.g., 59% of the 24-hr predictions were within a factor of two of observations in the warmer months when CO emissions are more consistent. The highest concentrations of both CO and PM2.5 were predicted to occur near intersections and downwind of major roads during periods of unfavorable meteorology (e.g., low wind speeds) and high emissions (e.g., weekday rush hour). The spatial and temporal variation among predicted concentrations was significant, and resulted in unusual distributional and correlation characteristics, including strong negative correlation for receptors on opposite sides of a road and the highest short-term concentrations on the "upwind" side of the road. Conclusions The case study findings can likely be generalized to many other locations, and they have important implications for epidemiological and other studies. The reduced-form model is intended for exposure assessment, risk assessment, epidemiological, geographical information systems, and other applications. PMID:20579353

  15. The Swedish carbon dioxide tax: effects on biofuel use and carbon dioxide emissions

    Microsoft Academic Search

    Folke Bohlin

    1998-01-01

    The Swedish carbon dioxide tax was introduced in 1991, by adjusting the existing energy taxation to consider the carbon load of fuels. The tax was initially set at a general level of US $13311The exchange rate used in this paper is US $1=7.5 SEK (Swedish krona) per ton carbon (tc). It was differentiated in 1993, with the result that industry

  16. Field Emission from Hybrid Diamond-like Carbon and Carbon Nanotube Composite Structures

    E-print Network

    Bristol, University of

    Information ABSTRACT: A thin diamond-like carbon (DLC) film was deposited onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the CNTs to clump, porous DLC, low threshold voltage, aligned nanotubes, DLC 1. INTRODUCTION Carbon-based materials

  17. Soil organic carbon enrichment of dust emissions: Magnitude, mechanisms and its implications for the carbon cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon-dioxide (CO2), to the atmosphere. Understanding the magnitu...

  18. Removal of Sulfur from Natural Gas to Reduce Particulate Matter Emission from a Turbine Engine

    NASA Astrophysics Data System (ADS)

    Spang, Brent Loren

    The present work investigates the effect of natural gas fuel sulfur on particulate emissions from stationary gas turbine engines used for electricity generation. Fuel sulfur from standard line gas was scrubbed using a system of fluidized reactor beds containing a specially designed activated carbon purpose built for sulfur absorption. A sulfur injection system using sonic orifices was designed and constructed to inject methyl mercaptan into the scrubbed gas stream at varying concentrations. Using these systems, particulate emissions created by various fuel sulfur levels between 0 and 8.3 ppmv were investigated. Particulate samples were collected from a Capstone C65 microturbine generator system using a Horiba MDLT-1302TA micro dilution tunnel and analyzed using a Horiba MEXA-1370PM particulate analyzer. In addition, ambient air samples were collected to determine incoming particulate levels in the combustion air. The Capstone C65 engine air filter was also tested for particulate removal efficiency by sampling downstream of the filter. To further differentiate the particulate entering the engine in the combustion air from particulate being emitted from the exhaust stack, two high efficiency HEPA filters were installed to eliminate a large portion of incoming particulate. Variable fuel sulfur testing showed that there was a strong correlation between total particulate emission factor and fuel sulfur concentration. Using eleven variable sulfur tests, it was determined that an increase of 1 ppmv fuel sulfur will produce an increase of approximately 3.2 microg/m3 total particulate. Also, the correlation also predicted that, for this particular engine, the total particulate emission factor for zero fuel sulfur was approximately 19.1 microg/m3. With the EC and OC data removed, the correlation became 3.1 microg/m3 of sulfur particulate produced for each ppmv of fuel sulfur. The correlation also predicted that with no fuel sulfur present, 6.6 microg/m3 of particulate will be produced by sulfur passing through the engine air filter.

  19. Factors affecting regional per-capita carbon emissions in China based on an LMDI factor decomposition model.

    PubMed

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model-panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity. PMID:24353753

  20. Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model

    PubMed Central

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model–panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity. PMID:24353753