These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Ten Recommendations for Reducing Carbon Emissions  

NASA Astrophysics Data System (ADS)

Former U.S. Vice President Al Gore testified about possible solutions to mitigate anthropogenic climate change at two 21 March hearings held before committees of the U.S. House of Representatives and the U.S. Senate. His 10 recommendations to reduce U.S. carbon emissions:

2007-04-01

2

Environment, Renewable Energy and Reduced Carbon Emissions  

NASA Technical Reports Server (NTRS)

Increased energy security and reduced carbon emissions pose significant challenges for science and technology. However, they also create substantial opportunities for innovative research and development. In this review paper, we highlight some of the key opportunities and mention public policies that are needed to enable the efforts and to maximize the probability of their success. Climate is among the uttermost nonlinear behaviors found around us. As recent studies showed the possible effect of cosmic rays on the Earth's climate, we investigate how complex interactions between the planet and its environment can be responsible for climate anomalies.

Sen, S.; Khazanov, G.; Kishimoto, Y.

2011-01-01

3

Reducing Fossil Carbon Emissions and Building Environmental Awareness at  

E-print Network

Reducing Fossil Carbon Emissions and Building Environmental Awareness at Dartmouth College Summary: Environmental Analysis and Policy Formation during the spring 2004 term. We were dealt the charge: "Identify selected the mission: "To reduce Dartmouth College's fossil carbon emissions." We believe this mission

4

Options for reducing carbon dioxide emissions  

SciTech Connect

Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for US buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefited from energy conservation research and development (R D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed. 33 refs., 9 figs., 3 tabs.

Rosenfeld, A.H.; Price, L.

1991-08-01

5

Reducing Fossil Carbon Emissions and Building Environmental Awareness at  

E-print Network

, Interview Dartmouth Dining Services Bo Petersson, Facilities Operation and Management, Dartmouth CollegeReducing Fossil Carbon Emissions and Building Environmental Awareness at Dartmouth College A report Environmental Awareness at Dartmouth College By the Members of Environmental Studies 50 Dartmouth College Spring

6

In Brief: Reducing black carbon emissions could immediately reduce global temperature increases  

NASA Astrophysics Data System (ADS)

A new assessment by the United Nations Environment Programme (UNEP) shows that measures to reduce emissions of black carbon, or soot, which is produced through burning of wood and other biofuels as well as by some industrial processes, could improve public health and help to significantly reduce projected global temperature increases. The Integrated Assessment of Black Carbon and Tropospheric Ozone highlights how specific measures targeting black carbon and other emissions from fossil fuel extraction, residential wood-burning cooking, diesel vehicles, waste management, agriculture, and small industries could affect climate. Full implementation of a variety of measures to reduce black carbon and methane emissions could reduce future global warming by about 0.5°C, the assessment found. Reducing black carbon could have substantial benefits in the Arctic, the Himalayas, and other snow-covered regions because black carbon that settles on top of snow absorbs heat, speeding melting of snow and ice. Black carbon emission reductions would affect global temperatures more quickly than carbon dioxide emission reductions. Furthermore, reducing black carbon emissions would improve public health in the regions that emit large amounts of the harmful air pollutant.

Tretkoff, Ernie

2011-03-01

7

Exercise based transportation reduces oil consumption and carbon emissions  

NASA Astrophysics Data System (ADS)

Current abuse and misrepresentation of science hinders society's ability to address climate change. Scientific abuse results, in part, from a widespread perception that curbing emissions will require substantial economic, political, or personal sacrifice. Here I provide one example to illustrate that this perception is false. Simply walking or biking the amount recommended for a healthy lifestyle could reduce carbon emissions up to 11 percent if the distances traveled were substituted for car travel. This level of exercise is also sufficient to eliminate obese and overweight conditions in a few years without draconian diet plans. A reduction in carbon dioxide emissions of roughly 35 percent is possible if the revenue saved through decreased health care spending on obesity is redirected toward carbon abatement. This emissions reduction far exceeds that required by the Kyoto Protocol at no net cost. Finally, widespread substitution of driving with distances traveled during recommended daily exercise would considerably ease societal dependence on oil, which leads not only to climate change but also to air pollution, political and economic instability and habitat degradation. Thus, exercise based transportation constitutes a potentially favorable alternative to the energy and diet plans that are currently under consideration and a substantial step toward dealing with the threat of climate change.

Higgins, P. A.

2004-12-01

8

Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit  

SciTech Connect

The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nation’s finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nation’s balance sheet, and stimulate job-creation and economic renewal.

Muro, Mark; Rothwell, Jonathan

2012-11-15

9

Technologies to reduce or capture and store carbon dioxide emissions  

SciTech Connect

The report focuses on a broad suite of technologies to reduce, capture and store CO{sub 2} emissions, primarily as they relate to direct coal combustion and also coal gasification and liquefaction. The report surveys and summarizes existing research, discusses relevant federal programs, makes recommendations regarding additional research opportunities and public policy objectives, and recommends a technology-based framework for mitigating CO{sub 2} emissions from coal-based electricity generation plants. The US Department of Energy is already at work to foster the development of these technologies. The report recognizes the scope of that work and in essence, concludes that much work still remains. A summary of the report is published in hard copy and on the CD-ROM. The full 160 page report is on the CD-ROM.

Nelson, G.; Mueller, M.; McCall, M.; Knipp, R. [PTI Resources Inc. (United States)

2007-06-15

10

Arctic Black Carbon Initiative: Reducing Emissions of Black Carbon from Power & Industry in Russia  

NASA Astrophysics Data System (ADS)

Deposition of black carbon (BC) on snow and ice is widely considered to have a climate warming effect by reducing the surface albedo and promoting snowmelt. Such positive climate feedbacks in the Arctic are especially problematic because rising surface temperatures may trigger the release of large Arctic stores of terrestrial carbon, further amplifying current warming trends. Recognizing the Arctic as a vulnerable region, the U.S. government committed funds in Copenhagen in 2009 for international cooperation targeting Arctic BC emissions reductions. As a result, the U.S. Department of State has funded three research and demonstration projects with the goal to better understand and mitigate BC deposition in the Russian Arctic from a range of sources. The U.S. Department of Energy's (DOE) Arctic BC initiative presented here is focused on mitigating BC emissions resulting from heat and power generation as well as industrial applications. A detailed understanding of BC sources and its transport and fate is required to prioritize efforts to reduce BC emissions from sources that deposit in the Russian Arctic. Sources of BC include the combustion of fossil fuels (e.g. coal, fuel oil, diesel) and the combustion of biomass (e.g. wildfires, agricultural burning, residential heating and cooking). Information on fuel use and associated emissions from the industrial and heat & power sectors in Russia is scarce and difficult to obtain from the open literature. Hence, our project includes a research component designed to locate Arctic BC emissions sources in Russia and determine associated BC transport patterns. We use results from the research phase to inform a subsequent assessment/demonstration phase. We use a back-trajectory modeling method (potential source contribution function - PSCF), which combines multi-year, high-frequency measurements with knowledge about atmospheric transport patterns. The PSCF modeling allows us to map the probability (by season and year) at course resolution (2.5° x 2.5° spatial resolution) that a particular region emits BC which deposits in the Russian Arctic. We utilize data from three Arctic measurement stations during the most recent decade: Alert, Northwest Territories, Canada; Barrow, Alaska; and Tiksi Bay, Russia. To understand more about individual Arctic BC sources, we conduct further research to improve inventory estimates of Russian industrial and energy sector BC emissions. By comparing inventory data on power plant locations and emissions from two publically-available databases (EDGAR-HTAP and CARMA databases) to each other and to additional observations from satellites and the AERONET observation network in Russia, we assess the accuracy of the Russian BC emission inventory in EDGAR-HTAP, a commonly used database for atmospheric transport modeling. We then use a global (GEOS-CHEM) atmospheric transport model to quantify the finer spatial distribution of BC within the Arctic. Lastly, we use data on Russian fuel use combined with published emissions factors to build a national-scale model of energy use and associated emissions from critical industrial and heat & power sources of BC. We use this model to estimate the technical potential of reducing BC emissions through proven mitigation efforts such as improvements in energy efficiency and in emission control technologies.

Cresko, J.; Hodson, E. L.; Cheng, M.; Fu, J. S.; Huang, K.; Storey, J.

2012-12-01

11

Global economic potential for reducing carbon dioxide emissions from mangrove loss  

PubMed Central

Mangroves are among the most threatened and rapidly disappearing natural environments worldwide. In addition to supporting a wide range of other ecological and economic functions, mangroves store considerable carbon. Here, we consider the global economic potential for protecting mangroves based exclusively on their carbon. We develop unique high-resolution global estimates (5? grid, about 9 × 9 km) of the projected carbon emissions from mangrove loss and the cost of avoiding the emissions. Using these spatial estimates, we derive global and regional supply curves (marginal cost curves) for avoided emissions. Under a broad range of assumptions, we find that the majority of potential emissions from mangroves could be avoided at less than $10 per ton of CO2. Given the recent range of market price for carbon offsets and the cost of reducing emissions from other sources, this finding suggests that protecting mangroves for their carbon is an economically viable proposition. Political-economy considerations related to the ability of doing business in developing countries, however, can severely limit the supply of offsets and increases their price per ton. We also find that although a carbon-focused conservation strategy does not automatically target areas most valuable for biodiversity, implementing a biodiversity-focused strategy would only slightly increase the costs. PMID:22847435

Siikamäki, Juha; Sanchirico, James N.; Jardine, Sunny L.

2012-01-01

12

Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions  

SciTech Connect

A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

Huffman, Gerald P.

2012-11-13

13

New Hampshire Carbon Challenge: Reducing Residential Energy Use and Greenhouse Gas Emissions  

NASA Astrophysics Data System (ADS)

The New Hampshire Carbon Challenge is an initiative of the Institute for the Study of Earth, Oceans and Space at the University of New Hampshire. Our goal is to educate New Hampshire residents about climate change and also encourage them to reduce their household greenhouse gas emissions by 10,000 pounds. The Northeast region is undergoing climate changes consistent with those expected due to increasing levels of CO2 in the atmosphere, while also contributing to climate change as the world's seventh largest source of CO2 emissions. In the USA, approximately 40 percent of CO2 emissions from fossil fuel combustion come from residential energy consumption for space heating, electricity usage, and transportation. Homeowners typically are not aware that modest energy reductions can result in significant carbon savings. Most campaigns that raise awareness of climate change and residential energy usage disseminate information to consumers through newspaper articles, brochures, websites, or other traditional means of communication. These information-only campaigns have not been very effective in changing residential energy consumption. Bombarded with information in their daily lives, the public has become quite adept at tuning most of it out. When much of the information they receive about climate change is confusing and contradictory, residents have even less incentive to change their behavior. The Challenge is unique in that it couples accurate information about climate change with concrete actions homeowners can take to reduce their carbon emissions. Our strategy is to utilize the tools of Community Based Social Marketing, which has been shown to be effective in changing behavior, and also to leverage existing networks including the NH Department of Environmental Services, UNH Cooperative Extension, faith-based communities, municipal energy committees and Climate Project volunteers, to effectively reach residents throughout the state. The response to our program has been very positive. We gave 74 presentations to 4000 NH residents since the program was launched in October 2006. We are currently developing web-based tools tailored to New Hampshire residents that will enable them to track reductions in their energy usage and connect those reductions to reduced emissions, and will provide us feedback as to which actions households are willing to take. This type of information exchange is essential in creating and sustaining an effective and scientifically accurate public outreach campaign.

Schloss, A. L.; Bartlett, D.; Blaha, D.; Skoglund, C.; Dundorf, J.; Froburg, E.; Pasinella, B.

2007-12-01

14

The potential for reducing carbon emissions from increased efficiency : a general equilibrium methodology  

E-print Network

This paper presents a methodology for analyzing the potential for reduction in carbon emissions through increased fuel efficiency and provides an illustration of the method. The methodology employed is a multisectoral, ...

Blitzer, Charles R.

1990-01-01

15

A conceptual framework for the evaluation of cost-effectiveness of projects to reduce GHG emissions and sequester carbon  

SciTech Connect

This paper proposes a conceptual framework for evaluating the cost of projects to reduce atmospheric greenhouse gases (GHGs). The evaluation of cost-effectiveness should account for both the timing of carbon emissions and the damage caused by the atmospheric stock of carbon. We develop a conceptual basis to estimate the cost-effectiveness of projects in terms of the cost of reducing atmospheric carbon (CRAC) and other GHGs. CRAC accounts for the economic discount rate, alternative functional forms of the shadow price, the residence period of carbon in the atmosphere, and the multiple monetary benefits of projects. The last item is of particular importance to the developing countries.

Sathaye, J.; Norgaard, R.; Makundi, W.

1993-07-01

16

Biofuels from crop residue can reduce soil carbon and increase CO2 emissions  

NASA Astrophysics Data System (ADS)

Removal of corn residue for biofuels can decrease soil organic carbon (SOC; refs , ) and increase CO2 emissions because residue C in biofuels is oxidized to CO2 at a faster rate than when added to soil. Net CO2 emissions from residue removal are not adequately characterized in biofuel life cycle assessment (LCA; refs , , ). Here we used a model to estimate CO2 emissions from corn residue removal across the US Corn Belt at 580 million geospatial cells. To test the SOC model, we compared estimated daily CO2 emissions from corn residue and soil with CO2 emissions measured using eddy covariance, with 12% average error over nine years. The model estimated residue removal of 6 Mg per ha-1 yr-1 over five to ten years could decrease regional net SOC by an average of 0.47-0.66 Mg C ha-1 yr-1. These emissions add an average of 50-70 g CO2 per megajoule of biofuel (range 30-90) and are insensitive to the fraction of residue removed. Unless lost C is replaced, life cycle emissions will probably exceed the US legislative mandate of 60% reduction in greenhouse gas (GHG) emissions compared with gasoline.

Liska, Adam J.; Yang, Haishun; Milner, Maribeth; Goddard, Steve; Blanco-Canqui, Humberto; Pelton, Matthew P.; Fang, Xiao X.; Zhu, Haitao; Suyker, Andrew E.

2014-05-01

17

Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions  

PubMed Central

Most climate change policy attention has been addressed to long-term options, such as inducing new, low-carbon energy technologies and creating cap-and-trade regimes for emissions. We use a behavioral approach to examine the reasonably achievable potential for near-term reductions by altered adoption and use of available technologies in US homes and nonbusiness travel. We estimate the plasticity of 17 household action types in 5 behaviorally distinct categories by use of data on the most effective documented interventions that do not involve new regulatory measures. These interventions vary by type of action and typically combine several policy tools and strong social marketing. National implementation could save an estimated 123 million metric tons of carbon per year in year 10, which is 20% of household direct emissions or 7.4% of US national emissions, with little or no reduction in household well-being. The potential of household action deserves increased policy attention. Future analyses of this potential should incorporate behavioral as well as economic and engineering elements. PMID:19858494

Dietz, Thomas; Gardner, Gerald T.; Gilligan, Jonathan; Stern, Paul C.; Vandenbergh, Michael P.

2009-01-01

18

Carbon offsets as a cost containment instrument : a case study of reducing emissions from deforestation and forest degradation  

E-print Network

Carbon offset is one type of flexibility mechanism in greenhouse gas emission trading schemes that helps nations meet their emission commitments at lower costs. Carbon offsets take advantage of lower abatement cost ...

Kim, Jieun, S.M. Massachusetts Institute of Technology

2010-01-01

19

Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics  

PubMed Central

We estimate the potential reductions in methane and carbon dioxide emissions from several livestock and pasture management options in the mixed and rangeland-based production systems in the tropics. The impacts of adoption of improved pastures, intensifying ruminant diets, changes in land-use practices, and changing breeds of large ruminants on the production of methane and carbon dioxide are calculated for two levels of adoption: complete adoption, to estimate the upper limit to reductions in these greenhouse gases (GHGs), and optimistic but plausible adoption rates taken from the literature, where these exist. Results are expressed both in GHG per ton of livestock product and in Gt CO2-eq. We estimate that the maximum mitigation potential of these options in the land-based livestock systems in the tropics amounts to approximately 7% of the global agricultural mitigation potential to 2030. Using historical adoption rates from the literature, the plausible mitigation potential of these options could contribute approximately 4% of global agricultural GHG mitigation. This could be worth on the order of $1.3 billion per year at a price of $20 per t CO2-eq. The household-level and sociocultural impacts of some of these options warrant further study, however, because livestock have multiple roles in tropical systems that often go far beyond their productive utility. PMID:20823225

Thornton, Philip K.; Herrero, Mario

2010-01-01

20

Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics.  

PubMed

We estimate the potential reductions in methane and carbon dioxide emissions from several livestock and pasture management options in the mixed and rangeland-based production systems in the tropics. The impacts of adoption of improved pastures, intensifying ruminant diets, changes in land-use practices, and changing breeds of large ruminants on the production of methane and carbon dioxide are calculated for two levels of adoption: complete adoption, to estimate the upper limit to reductions in these greenhouse gases (GHGs), and optimistic but plausible adoption rates taken from the literature, where these exist. Results are expressed both in GHG per ton of livestock product and in Gt CO(2)-eq. We estimate that the maximum mitigation potential of these options in the land-based livestock systems in the tropics amounts to approximately 7% of the global agricultural mitigation potential to 2030. Using historical adoption rates from the literature, the plausible mitigation potential of these options could contribute approximately 4% of global agricultural GHG mitigation. This could be worth on the order of $1.3 billion per year at a price of $20 per t CO(2)-eq. The household-level and sociocultural impacts of some of these options warrant further study, however, because livestock have multiple roles in tropical systems that often go far beyond their productive utility. PMID:20823225

Thornton, Philip K; Herrero, Mario

2010-11-16

21

Biodiversity losses and carbon emissions in Amazon region - the situation of contemporary period and strategies for reduce these environmental changes  

SciTech Connect

The forest removal is a major contributor to local, regional and global environmental changes. Many of the tropical`s species are gravely threatened Numerous studies suggest that from 1970 to 1990 between 5 and 20 percent of the tropical`s species were committed to extinction. In 1995, the deforested lands in Brazilian Amazon account an amount Superior to 470,000 Km{sup 2}, old deforestation included, for a total surface of tropical`s rain forest of 3.4 and 3.8 million square kilometres. In 1990`s, the amount of carbon released to the atmosphere (as CO{sub 2}) from Brazilian Amazon deforestation was 3.5 % to 4.9 % and 250 % to 360 % of the World and Brazilian annual emission from fossil fuels, respectively. On the other hand, if deforestation is stopped and replaced with a rational forest management, a reuse of degraded lands for agro-forestry and biomass production for energy and industrial purposes, we can reduce the pressure on forests lands and the net carbon flux will be reversed. In this paper, we discuss the relations with biodiversity losses and carbon emissions in Brazilian Amazon region in the last thirty years and find suggest the principal`s strategies to reduce this environmental`s destruction.

Freitas, M.A.V. de; Aquino, L.C.; Rosa, L.P.

1997-12-31

22

Strategies for reducing carbon emissions on the tropical rain forest: The case of the Brazilian Amazon  

SciTech Connect

Forests systems are renewable resources that can be used by present generations and that should be available to future generations if they are exploited on a sustainable basis. The tropical forest is still an immense and unknown field. The issues are: What means a sustainable basis in the tropical rain forests? What are the means of harmonising an economic development with an environmental equilibrium in tropical regions? One way to meet this requirement is to analyse the potentially {open_quotes}no regrets{close_quotes} options on which it is possible to agree upon despite controversies about what will be the true long run costs and benefits of various courses of actions. In the case of the Brazilian Amazon, in the last thirty years, the use of biomass and land has increased rapidly. Therefore, environmental and social problems have emerged with some intensity and have had repercussions on local and global scales. In relation to the recent global environmental changes, the Brazilian Amazon is considered as a key region for biodiversity conservation and preserving a carbon sink. In this paper, the main methodological option is to conceive a set of {open_quotes}no-regret{close_quotes} options, related with the land uses and biomass valorisation, which are analysed through the same framework. The options considered here are: decrease of the great cattle ranching and of the predatory timber extraction; the increase of forest management (harvest of timber and nontimber extractive products) and forest plantations in the degraded lands. The aims to focus on three elements: job creation, technico-economic adequation and environmental impacts, with special regards concerning the limitation of the atmospheric emissions of greenhouse gases (carbon flow).

Freitas, M.A.V. de; Rosa, L.P.

1995-11-01

23

Cost of reducing carbon emissions in developing countries: Evidence from Columbia. Staff working paper No. 9  

SciTech Connect

The author discusses the issue of the cost of reducing CO2 emissions related to the energy sector and the implications for the structure of the energy sector in Colombia. While there have been a number of attempts to estimate the costs of CO2 reduction in various developed countries such as the United States, there appears to be a lack of similar studies for developing countries. The analysis is based on optimizations using a comprehensive mathematical programming model of Colombia's energy sector in conjunction with an econometric model of the sector. Section one outlines the empirical methods used to analyze the energy/environmental linkages in Colombia. Section two summarizes the simulated results.

Linden, G.

1993-06-01

24

Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon  

E-print Network

generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

Boyer, Elizabeth W.

25

Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden  

E-print Network

France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

Klier, Thomas

26

Potential for reducing carbon emissions from non-Annex B countries through changes in technology  

Microsoft Academic Search

Continued questions surrounding the efficacy and enforceability of the Kyoto Protocol make it worthwhile to examine alternative, cost-effective approaches to climate policy. This paper examines the feasibility of an approach that does avoid the problem of targets and timetables, and concentrates on solving the most obvious gap in the Kyoto Protocol: how to change the future trajectory of emissions from

Paul M. Bernstein; W. David Montgomery; Sugandha D. Tuladhar

2006-01-01

27

Carbon Offsets as a Cost Containment Instrument: A Case Study of Reducing Emissions from Deforestation and Forest Degradation  

E-print Network

Deforestation and Forest Degradation By Jieun Kim Masters of Engineering Mechanical Engineering Cornell Emissions from Deforestation and Forest Degradation by Jieun Kim Submitted to the Engineering Systems trading schemes that helps nations meet their emission commitments at lower costs. Carbon offsets take

28

The U.S. Federal Government's Efforts to Estimate an Economic Value for Reduced Carbon Emissions (Invited)  

NASA Astrophysics Data System (ADS)

This presentation will summarize the technical process and results from recent U.S. Federal government efforts to estimate the “social cost of carbon” (SCC); the monetized damages associated with an incremental increase in carbon dioxide emissions in a given year. The purpose of the SCC estimates is to make it possible for Federal agencies to incorporate the social benefits from reducing CO2 emissions into cost-benefit analyses of regulatory actions that have relatively small impacts on cumulative global emissions. An interagency working group initiated a comprehensive analysis using three integrated assessment models. The interagency group chose to rely on three of the most widely recognized peer-reviewed models to fairly represent differences in the way in which economic impacts from climate change are modeled (DICE, PAGE, and FUND). The main objective of this process was to develop a range of SCC values using a defensible set of input assumptions grounded in the existing scientific and economic literatures. In this way, key uncertainties and model differences transparently and consistently inform the range of SCC estimates used in the rulemaking process. This proved challenging since the literature did not always agree on the best path forward. In some cases the group agreed to a range of assumptions to allow for uncertainty analysis (e.g., they include 5 different socioeconomic scenarios in the Monte Carlo analysis to reflect uncertainty about how future economic and population growth and energy systems will develop over the next 100 years). The four values selected for regulatory analysis included three estimates based on the average SCC from three integrated assessment models over a range of discount rates, since there is wide disagreement on which to apply in an inter-generational context. The fourth value represents the 95th percentile SCC estimate across all three models at a 3 percent discount rate and is included to represent higher-than-expected impacts from temperature change further out in the tails of the SCC distribution. The interagency working group recognized that there are a number of serious challenges in attempting to assess the incremental economic impacts of CO2 emissions. A recent report from the National Academies of Science (NRC 2009) points out that any assessment will suffer from uncertainty, speculation, and lack of information about future emissions of greenhouse gases, the effects of emissions on the climate system, the impact of changes in climate on the physical and biological environment, and the translation of these environmental impacts into economic damages. In addition to highlighting key areas in need of future research in the interagency technical document, the Department of Energy and the Environmental Protection Agency are planning two workshops that will bring the very best climate modelers from the scientific and economic community together to discuss key gaps in the literature and how to improve current modeling capabilities. I will briefly summarize the main outcomes from the first of two workshops, scheduled to occur in November 2010.

Wolverton, A.

2010-12-01

29

Potential for Woody Bioenergy Crops Grown on Marginal Lands in the US Midwest to Reduce Carbon Emissions  

NASA Astrophysics Data System (ADS)

While cellulosic biofuels are widely considered to be a low carbon energy source for the future, a comprehensive assessment of the environmental sustainability of existing and future biofuel systems is needed to assess their utility in meeting US energy and food needs without exacerbating environmental harm. To assess the carbon emission reduction potential of cellulosic biofuels, we need to identify lands that are initially not storing large quantities of carbon in soil and vegetation but are capable of producing abundant biomass with limited management inputs, and accurately model forest production rates and associated input requirements. Here we present modeled results for carbon emission reduction potential and cellulosic ethanol production of woody bioenergy crops replacing existing native prairie vegetation grown on marginal lands in the US Midwest. Marginal lands are selected based on soil properties describing use limitation, and are extracted from the SSURGO (Soil Survey Geographic) database. Yield estimates for existing native prairie vegetation on marginal lands modeled using the process-based field-scale model EPIC (Environmental Policy Integrated Climate) amount to ~ 6.7±2.0 Mg ha-1. To model woody bioenergy crops, the individual-based terrestrial ecosystem model ED (Ecosystem Demography) is initialized with the soil organic carbon stocks estimated at the end of the EPIC simulation. Four woody bioenergy crops: willow, southern pine, eucalyptus and poplar are parameterized in ED. Sensitivity analysis of model parameters and drivers is conducted to explore the range of carbon emission reduction possible with variation in woody bioenergy crop types, spatial and temporal resolution. We hypothesize that growing cellulosic crops on these marginal lands can provide significant water quality, biodiversity and GHG emissions mitigation benefits, without accruing additional carbon costs from the displacement of food and feed production.

Sahajpal, R.; Hurtt, G. C.; Fisk, J. P.; Izaurralde, R. C.; Zhang, X.

2012-12-01

30

MOBILISING RURAL HOUSEHOLDS TO STORE CARBON, REDUCE HARMFUL EMISSIONS AND IMPROVE SOIL FERTILITY;INTRODUCTION OF THIRD GENERATION STOVES  

Microsoft Academic Search

Commercialization of a high-efficiency household stove, which burns crop and forest waste as part of a clean, carbon capturing & storing household energy programme, to be implemented with local reforestation initiative. This paper introduces the concept of mobilising rural households in developing countries to help alleviate the impacts of climate change through a reduction of emissions from inefficient biomass burning

Robert Flanagan; Stephen Joseph

31

Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants  

SciTech Connect

The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

Balat, M.; Balat, H.; Oz, C. [University of Mahallesi, Trabzon (Turkey)

2009-07-01

32

Australian climatecarbon cycle feedback reduced by soil black carbon  

E-print Network

LETTERS Australian climate­carbon cycle feedback reduced by soil black carbon JOHANNES LEHMANN1 Annual emissions of carbon dioxide from soil organic carbon are an order of magnitude greater than all anthropogenic carbon dioxide emissions taken together1 . Global warming is likely to increase the decomposition

Lehmann, Johannes

33

Forest carbon response to management scenarios intended to mitigate GHG emissions and reduce fire impacts in the US West Coast region  

NASA Astrophysics Data System (ADS)

US West coast forests are among the most carbon dense biomes in the world and the potential for biomass accumulation in mesic coastal forests is the highest recorded (Waring and Franklin 1979, Hudiburg et al. 2009). Greenhouse gas (GHG) mitigation strategies have recently expanded to include forest woody biomass as bioenergy, with the expectation that this will also reduce forest mortality. We examined forest carbon response and life cycle assessment (LCA) of net carbon emissions following varying combinations of bioenergy management scenarios in Pacific Northwest forests for the period from 2010-2100. We use the NCAR CLM4 model combined with a regional atmospheric forcing dataset and account for future environmental change using the IPCC RCP4.5 and RCP 8.5 scenarios. Bioenergy management strategies include a repeated thinning harvest, a repeated clearcut harvest, and a single salvage harvest in areas with projected insect-related mortality. None of the bioenergy management scenarios reduce net emissions to the atmosphere compared to continued business-as-usual harvest (BAU) by the end of the 21st century. Forest regrowth and reduced fire emissions are not large enough to balance the wood removals from harvest. Moreover, the substitution of wood for fossil fuel energy and products is not large enough to offset the wood losses through decomposition and combustion. However, in some ecoregions (Blue Mountains and East Cascades), emissions from the thinning harvests begin to improve over BAU at the end of the century and could lead to net reductions in those ecoregions over a longer time period (> 100 years). For salvage logging, there is no change compared to BAU emissions by the end of the 21st century because the treatment area is minimal compared to the other treatments and only performed once. These results suggest that managing forests for carbon sequestration will need to include a variety of approaches accounting for forest baseline conditions and in some ecoregions, harvest reductions below current levels will sequester more carbon than additional harvest removals for bioenergy. References: Hudiburg, T., B. E. Law, D. P. Turner, J. Campbell, D. Donato, and M. Duane. 2009. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecological Applications 19:163-180. Waring, R. H., and J. F. Franklin. 1979. Evergreen Coniferous Forests of the Pacific Northwest. Science 204:1380-1386.

Hudiburg, T. W.; Law, B. E.; Thornton, P. E.; Luyssaert, S.

2012-12-01

34

World fossil fuel subsidies and global carbon emissions  

Microsoft Academic Search

Larsen and Shah present evidence on the level of fossil fuel subsidies and their implications for carbon dioxide emissions. They conclude that substantial fossil fuel subsidies prevail in a handful of large, carbon-emitting countries. Removing such subsidies could substantially reduce national carbon emissions in some countries. Global carbon emissions could be reduced by 9 percent, assuming no change in world

Bjorn Larsen; Anwar Shah

1992-01-01

35

Residential carbon dioxide emissions in Canada  

Microsoft Academic Search

The effect of improving house envelope, heating system and appliance efficiencies, and fuel substitution on the atmospheric emissions of carbon dioxide in the Canadian residential sector is studied based on simulation studies. The findings clearly indicate that improving appliance efficiency reduces the overall end-use energy consumption in the residential sector as well as the associated carbon dioxide emissions. However, the

V. Ismet Ugursal; Alan S. Fung

1998-01-01

36

FETC Programs for Reducing Greenhouse Gas Emissions  

SciTech Connect

Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

Ruether, J.A.

1998-02-01

37

Carbon Dioxide Emissions and Carbonation Sensors  

Microsoft Academic Search

The gases with higher heat capacities than those of O2 and N2 cause greenhouse effects. Carbon dioxide (CO2) is the main greenhouse gas associated with global climate change. At the present time, coal is responsible for 30–40% of world CO2 emissions from fossil fuels. There was a higher correlation between the amount of carbon dioxide emission and percentage of carbon

A. Demirbas

2007-01-01

38

Making the forest carbon commons: Tracing measures to reduce emissions from deforestation and forest degradation (REDD) in Angai Village Land Forest Reserve.  

E-print Network

??Reduced emissions from deforestation and forest degradation in developing countries (REDD) is an international climate policy instrument that comes with considerable challenges and opportunities for… (more)

Sundström, Roland

2010-01-01

39

Rules to Cut Carbon Emissions Also Reduce Other Air Pollutants A first-of-its-kind study released today by scientists at Syracuse and  

E-print Network

in power plant emissions of four other harmful air pollutants: fine particulate matter, nitrogen oxides emissions from power plants would provide an added bonus--reductions in other air pollutants that can make-benefits of Carbon Standards: Air Pollution Changes under Different 111d Options for Existing Power Plants, use three

Mather, Patrick T.

40

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

SciTech Connect

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18

41

Analysis of Carbon Emission Characteristics of China  

NASA Astrophysics Data System (ADS)

Since the opening-up, our economy develops fastly with the energy consume and the carbon emission increasing year by year. At present, China is the biggest country of the carbon emission in the world. We face the huge pressure to control the green house gases emissions. So, the text analyses the feature of carbon emission applying the indexs of the carbon emission aggregate, per captial carbon emission and the carbon emission elasticity efficient, and puts forward the countermeasures of lessoning the carbon emission.

Zhang, Lifeng

42

Healthy habits: reducing our carbon January 30, 2014  

E-print Network

carbon footprint and less pollution The Lab is working to reduce emissions by nearly 30 percent from in pedestrian-friendly areas that are accessible to public transit, and we support regional mass transit- 1 - Healthy habits: reducing our carbon footprint January 30, 2014 Big changes for a smaller

43

Seeing REDD: Reducing Emissions and Conserving Biodiversity by Avoiding Deforestation  

Microsoft Academic Search

Protection of existing forests through Reduced Emissions from Deforestation and Degradation (REDD)—a system of providing incentives for reduced deforestation—has the potential to deliver both climate change mitigation and biodiversity conservation benefits. This article explores how these complementary environmental goals can be supported by international payments for ecosystem services (IPES) via the emerging global carbon market. REDD, through an IPES framework,

Annah L. Peterson; Louise A. Gallagher; David Huberman; Ivo Mulder

2012-01-01

44

Improving material management to reduce greenhouse gas emissions  

Microsoft Academic Search

Climate change due to greenhouse gas emissions caused by human actions is probably one of the major global environmental problems that we face today.\\u000aIn order to reduce the risk of climate change and the potential effects thereof,\\u000athe emission of greenhouse gases like carbon dioxide (CO2) and methane\\u000a(CH4 ) should be reduced.\\u000aMuch greenhouse gases are emitted due

Marko Peter Hekkert

2000-01-01

45

Carbon emission from global hydroelectric reservoirs revisited.  

PubMed

Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs. PMID:24943886

Li, Siyue; Zhang, Quanfa

2014-12-01

46

Reducing Carbon Emissions from Deforestation: the Role of ARPA’s Protected Areas in the Brazilian Amazon UNIVERSIDADE FEDERAL DE MINAS GERAISReducing Carbon Emissions from Deforestation: the Role of ARPA’s Protected Areas in the Brazilian Amazon  

E-print Network

Protected areas in the Brazilian Amazon biome play a decisive role in conserving biodiversity. Over a 10-year period (2003-2012), the Amazon Protected Areas Program (ARPA) aims to establish 375,000km 2 in new protected areas and consolidate a total of 600,000km 2 in both new and existing protected areas, making it by far the most ambitious protected areas program in the world. This paper evaluates the effects of protected areas in general, and of ARPA’s in particular, on carbon emission from deforestation in the Brazilian Amazon. Based on analyses of historical deforestation rates from 2002-07 within the region´s 520 protected areas, and in surrounding zones at 0-10 km, 10-20 km and>20 km distance, we found that the probability of deforestation was 8-9 times less within protected areas than outside these, increasing it progressively in zones increasingly distant. We used the SimAmazônia-2 model under a business-as-usual scenario to examine the effects of protected areas on future deforestation and emissions,

unknown authors

47

Methods for reducing pollutant emissions from jet aircraft  

NASA Technical Reports Server (NTRS)

Pollutant emissions from jet aircraft and combustion research aimed at reducing these emissions are defined. The problem of smoke formation and results achieved in smoke reduction from commercial combustors are discussed. Expermental results of parametric tests performed on both conventional and experimental combustors over a range of combustor-inlet conditions are presented. Combustor design techniques for reducing pollutant emissions are discussed. Improved fuel atomization resulting from the use of air-assist fuel nozzles has brought about significant reductions in hydrocarbon and carbon monoxide emissions at idle. Diffuser tests have shown that the combustor-inlet airflow profile can be controlled through the use of diffuser-wall bleed and that it may thus be possible to reduce emissions by controlling combustor airflow distribution. Emissions of nitric oxide from a shortlength annular swirl-can combustor were significantly lower than those from a conventional combustor operating at similar conditions.

Butze, H. F.

1971-01-01

48

Distributed Energy Resources for Carbon Emissions Mitigation  

SciTech Connect

The era of publicly mandated GHG emissions restrictions inthe United States has begun with recent legislation in California andseven northeastern states. Commercial and industrial buildings canimprove the carbon-efficiency of end-use energy consumption by installingtechnologies such as on-site cogeneration of electricity and useful heatin combined heat and power systems, thermally-activated cooling, solarelectric and thermal equipment, and energy storage -- collectively termeddistributed energy resources (DER). This research examines a collectionof buildings in California, the Northeast, and the southern United Statesto demonstrate the effects of regional characteristics such as the carbonintensity of central electricity grid, the climate-driven demand forspace heating and cooling, and the availability of solar insolation. Theresults illustrate that the magnitude of a realistic carbon tax ($100/tC)is too small to incent significant carbon-reducing effects oneconomically optimal DER adoption. In large part, this is because costreduction and carbon reduction objectives are roughly aligned, even inthe absence of a carbon tax.

Firestone, Ryan; Marnay, Chris

2007-05-01

49

Reducing emissions from uranium dissolving  

SciTech Connect

This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

1992-10-01

50

Reducing emissions from uranium dissolving  

SciTech Connect

This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

1992-10-01

51

Baseline map of carbon emissions from deforestation in tropical regions.  

PubMed

Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation. PMID:22723420

Harris, Nancy L; Brown, Sandra; Hagen, Stephen C; Saatchi, Sassan S; Petrova, Silvia; Salas, William; Hansen, Matthew C; Potapov, Peter V; Lotsch, Alexander

2012-06-22

52

Reduction of atmospheric carbon emissions through displacement of fossil fuels  

Microsoft Academic Search

Renewable resources, particularly wood, can make significant contributions in reducing carbon emissions to the atmosphere during the next several decades. Fuels made from renewable resources can displace long-term fossil fuel carbon emissions directly, provided the renewables continue to be regrown on a sustainable basis. Materials made from renewable resources are generally less energy intensive than materials produced from minerals. Therefore,

Zerbe

1993-01-01

53

Carbon emissions of infrastructure development.  

PubMed

Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis. PMID:24053762

Müller, Daniel B; Liu, Gang; Løvik, Amund N; Modaresi, Roja; Pauliuk, Stefan; Steinhoff, Franciska S; Brattebø, Helge

2013-10-15

54

On strategies for reducing greenhouse gas emissions  

PubMed Central

Equity is of fundamental concern in the quest for international cooperation to stabilize greenhouse gas concentrations by the reduction of emissions. By modeling the carbon cycle, we estimate the global CO2 emissions that would be required to stabilize the atmospheric concentration of CO2 at levels ranging from 450 to 1,000 ppm. These are compared, on both an absolute and a per-capita basis, to scenarios for emissions from the developed and developing worlds generated by socio-economic models under the assumption that actions to mitigate greenhouse gas emissions are not taken. Need and equity have provided strong arguments for developing countries to request that the developed world takes the lead in controlling its emissions, while permitting the developing countries in the meantime to use primarily fossil fuels for their development. Even with major and early control of CO2 emissions by the developed world, limiting concentration to 450 ppm implies that the developing world also would need to control its emissions within decades, given that we expect developing world emissions would otherwise double over this time. Scenarios leading to CO2 concentrations of 550 ppm exhibit a reduction of the developed world's per-capita emission by about 50% over the next 50 years. Even for the higher stabilization levels considered, the developing world would not be able to use fossil fuels for their development in the manner that the developed world has used them. PMID:11296250

Bolin, Bert; Kheshgi, Haroon S.

2001-01-01

55

Economic growth and carbon emission control  

NASA Astrophysics Data System (ADS)

The question about whether environmental improvement is compatible with continued economic growth remains unclear and requires further study in a specific context. This study intends to provide insight on the potential for carbon emissions control in the absence of international agreement, and connect the empirical analysis with theoretical framework. The Chinese electricity generation sector is used as a case study to demonstrate the problem. Both social planner and private problems are examined to derive the conditions that define the optimal level of production and pollution. The private problem will be demonstrated under the emission regulation using an emission tax, an input tax and an abatement subsidy respectively. The social optimal emission flow is imposed into the private problem. To provide tractable analytical results, a Cobb-Douglas type production function is used to describe the joint production process of the desired output and undesired output (i.e., electricity and emissions). A modified Hamiltonian approach is employed to solve the system and the steady state solutions are examined for policy implications. The theoretical analysis suggests that the ratio of emissions to desired output (refer to 'emission factor'), is a function of productive capital and other parameters. The finding of non-constant emission factor shows that reducing emissions without further cutting back the production of desired outputs is feasible under some circumstances. Rather than an ad hoc specification, the optimal conditions derived from our theoretical framework are used to examine the relationship between desired output and emission level. Data comes from the China Statistical Yearbook and China Electric Power Yearbook and provincial information of electricity generation for the year of 1993-2003 are used to estimate the Cobb-Douglas type joint production by the full information maximum likelihood (FIML) method. The empirical analysis shed light on the optimal policies of emissions control required for achieving the social goal in a private context. The results suggest that the efficiency of abatement technology is crucial for the timing of executing the emission tax. And emission tax is preferred to an input tax, as long as the detection of emissions is not costly and abatement technology is efficient. Keywords: Economic growth, Carbon emission, Power generation, Joint production, China

Zhang, Zhenyu

56

World energy consumption and carbon dioxide emissions : 1950-2050  

E-print Network

Emissions of carbon dioxide form combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

Schmalensee, Richard

1995-01-01

57

World energy consumption and carbon dioxide emissions : 1950-2050  

E-print Network

Emissions of carbon dioxide from combustion of fossil fuels, which may contribute to long-term climate change, are projected through 2050 using reduced form models estimated with national-level panel data for the period ...

Schmalensee, Richard.; Stoker, Thomas M.; Judson, Ruth A.

58

Carbon Emission Capstone (title provided or enhanced by cataloger)  

NSDL National Science Digital Library

There are two ways to reduce net emissions of carbon dioxide: limit how much carbon dioxide is emitted into the atmosphere as we burn fossil fuels, or increase the rate at which it is absorbed. In this lesson, discussion topics include the Kyoto Protocol and the use of carbon credits to reduce emissions of carbon dioxide into the atmosphere. Students can listen to a National Public Radio show that reports on new research that both illuminates and further complicates the picture of how the Earth is warming. The lesson includes an activity in which students examine their personal annual carbon emissions (calculated in the previous exercise) and determine how many trees it would take to sequester these emissions. They will then extrapolate this number to the populations of their school campus and their county.

Pratte, John

59

REVIEW PAPER Strategies for reducing the carbon footprint of field crops  

E-print Network

REVIEW PAPER Strategies for reducing the carbon footprint of field crops for semiarid areas emission. To provide the potential solution, we estimated the carbon footprint [i.e., the total amount the effect of crop sequences on the carbon footprint of durum wheat. Key strategies for reducing the carbon

Paris-Sud XI, Université de

60

CARBON EMISSIONS ECONOMIC INTENSITY INDEX (CEEII)  

EPA Science Inventory

The core concept of the CEEII is to understand, at the state level, the carbon emissions from energy consumption in relation to the value of the activity that generates the emissions. The CEEII treats carbon emissions as an input to producing the activity?s value and assesses th...

61

Fossil fuel derivatives with reduced carbon. Phase I final report  

SciTech Connect

This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

1999-06-30

62

Energy efficiency procedures for agricultural machinery used in onion cultivation (Allium fistulosum) as an alternative to reduce carbon emissions under the clean development mechanism at Aquitania (Colombia)  

NASA Astrophysics Data System (ADS)

Climate change has both causes and consequences over agriculture. This paper focuses on the first element and presents scenarios for ASOLAGO -an onion cropper's association in Colombia with 250 members- to reduce their carbon footprint. It evaluates a case study at "La Primavera" farm using a methodology approved by the United Nations Framework Convention on Climate Change. Land preparation and crop irrigation were analyzed as stages in order to propose energy efficiency alternatives for both the farm and the association. They include field efficiency, fuel economy and energy efficiency from biofuels for the first stage as well as solar and wind energy supply for the second. A cost-benefit analysis to generate additional income selling additional power produced by the system to the National Grid was done.

Ochoa, K.; Carrillo, S.; Gutierrez, L.

2014-06-01

63

REDUCING GREENHOUSE GAS EMISSIONS FROM DEFORESTATION IN DEVELOPING  

E-print Network

REDUCING GREENHOUSE GAS EMISSIONS FROM DEFORESTATION IN DEVELOPING COUNTRIES: REVISITING Change Research Working Paper 115 #12;REDUCING GREENHOUSE GAS EMISSIONS FROM DEFORESTATION IN DEVELOPING on Reducing Emissions from Deforestation and Degradation (REDD) under the United Nations Framework Convention

Watson, Andrew

64

Carbon emissions from tropical forest degradation caused by logging  

NASA Astrophysics Data System (ADS)

The focus of land-use related efforts in developing countries to reduce carbon emissions has been on slowing deforestation, yet international agreements are to reduce emissions from both deforestation and forest degradation (REDD). The second ‘D’ is poorly understood and accounted for a number of technical and policy reasons. Here we introduce a complete accounting method for estimating emission factors from selective timber harvesting, a substantial form of forest degradation in many tropical developing countries. The method accounts separately for emissions from the extracted log, from incidental damage to the surrounding forest, and from logging infrastructure, and emissions are expressed as units of carbon per cubic meter of timber extracted to allow for simple application to timber harvesting statistics. We applied the method in six tropical countries (Belize, Bolivia, Brazil, Guyana, Indonesia, and Republic of Congo), resulting in total emission factors of 0.99-2.33 Mg C m-3. In all cases, emissions were dominated by damage to surrounding vegetation and the infrastructure rather than the logs themselves, and total emissions represented about 3-15% of the biomass carbon stocks of the associated unlogged forests. We then combined the emission factors with country level logging statistics for nine key timber producing countries represented by our study areas to gain an understanding of the order of magnitude of emissions from degradation compared to those recently reported for deforestation in the same countries. For the nine countries included, emissions from logging were on average equivalent to about 12% of those from deforestation. For those nine countries with relatively low emissions from deforestation, emissions from logging were equivalent to half or more of those from deforestation, whereas for those countries with the highest emissions from deforestation, emissions from logging were equivalent to <10% of those from deforestation. Understanding how to account emissions and the magnitude of each emissions source resulting from tropical timber harvesting practices helps identify where there are opportunities to reduce emissions from the second ‘D’ in REDD.

Pearson, Timothy R. H.; Brown, Sandra; Casarim, Felipe M.

2014-03-01

65

Policy: Carbon emissions in China's trade  

NASA Astrophysics Data System (ADS)

A large share of China's carbon emissions is linked to consumption that takes place in its most developed provinces and overseas. A study highlights the implications of considering those emissions in the country's climate policy.

Karplus, Valerie J.

2013-08-01

66

Reducing GHG emissions in the United States' transportation sector  

SciTech Connect

Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

Das, Sujit [ORNL; Andress, David A [ORNL; Nguyen, Tien [U.S. DOE

2011-01-01

67

Hydrocarbon and carbon monoxide emissions from biomass burning in Brazil  

Microsoft Academic Search

Field measurements of hydrocarbon emissions from biomass burning in the cerrado (grasslands) and selva (tropical forest) regions of Brazil in 1979 and 1980 are characterized and quantified here. Regional consequences of burning activities include increased background mixing ratios of carbon monoxide and ozone, as well as reduced visibility, over extensive areas. Global extrapolation of the emission rate of hydrocarbons from

J. P. Greenberg; P. R. Zimmerman; L. Heidt; W. Pollock

1984-01-01

68

Wildlife conservation and reduced emissions from deforestation in a case study of Nantu National Park,  

E-print Network

Wildlife conservation and reduced emissions from deforestation in a case study of Nantu National Measures of success a b s t r a c t Discussions on how to reduce carbon emissions from deforestation of the role of protected area (PA) status in reducing tropical deforestation. This study employs a range

Malhi, Yadvinder

69

Field Emission and Nanostructure of Carbon Films  

SciTech Connect

The results of field emission measurements of various forms of carbon films are reported. It is shown that the films nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2-bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HE-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2-bonded. However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.

Merkulov, V.I.; Lowndes, D.H.; Baylor, L.R.

1999-11-29

70

Costs to reduce sulfur dioxide emissions  

SciTech Connect

Central to the resolution of the acid rain issue are debates about the costs and benefits of controlling man-made emissions of chemicals that may cause acid rain. In this briefing, the position of those who are calling for immediate action and implicating coal-fired powerplants as the cause of the problem is examined. The costs of controlling sulfur dioxide emissions using alternative control methods available today are presented. No attempt is made to calculate the benefits of reducing these emissions since insufficient information is available to provide even a rough estimate. Information is presented in two steps. First, costs are presented as obtained through straightforward calculations based upon simplifying but realistic assumptions. Next, the costs of sulfur dioxide control obtained through several large-scale analyses are presented, and these results are compared with those obtained through the first method.

None

1982-03-01

71

Reduced Martian Carbon: Evidence from Martian Meteorites  

NASA Technical Reports Server (NTRS)

Identification of indigenous reduced carbon species on Mars has been a challenge since the first hypotheses about life on Mars were proposed. Ranging from the early astronomical measurements to analyses of samples from the Martian surface in the form of Martian meteorites. The first direct attempt to analyze the carbon species on the surface was in 1976 with the Viking GC-MS in-situ experiment which gave inconclusive results at two sites on Mars [1]. With the recognition in 1983 that samples of the Martian surface were already present on Earth in the form of Martian meteorites by Bogard and Johnson [2] new opportunities became available for direct study of Mars's samples in te rlraesbtrioalratories. Carbon isotopic compositional information suggested a reduced carbon component was present in the Martian meteorites [3-5]. Polycyclic aromatic hydrocarbons associated with carbonate globules in ALH84001 were later identified [6,7]. Jull et al [8] noted that an insoluble component was present within Nakhla and more than 75% of its C lacked any 14C, which is modern-day carbon contaminant. This carbon fraction was believed to be either indigenous (i..e. Martian) or ancient meteoritic carbon phase. Within the fractures of Nakhla and ALH84001, Fisk et al [9,10] identified reduced carbon-enriched areas. Gibson et al. [11] using a combination of NanoSIMS, Focused Electron microscopy, Laser Raman Spectroscopy and Stepped-Combustion Static Mass Spectrometry analyses the presence of possible indigenous reduced carbon components within the 1.3 Ga old Nakhla.

Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, SImon J.; Pillinger, COlin T.; Wright, Ian P.; Verchovsky, A. P.

2010-01-01

72

Carbon emissions and CES™ in manufacturing  

Microsoft Academic Search

The manufacturing of a product is connected directly to the amount of carbon emitted in producing electrical energy for that manufacturing process. A new, simple Carbon Emission Signature, CES™, is proposed. Knowing the CES for a power grid and the energy needed to make a part, the carbon emitted can be found. Examples of single point turning and open die

J. Jeswiet; S. Kara

2008-01-01

73

Reducing Methyl Halide Emissions from Soils  

NASA Astrophysics Data System (ADS)

Volatilization and soil transformation are major pathways by which pesticides dissipate from treated agricultural soil. Methyl bromide (MeBr) emissions from agricultural fumigation can lead to depletion of the stratospheric ozone layer. This has led to a gradual phase-out of MeBr and replacement by other halogenated chemicals. However, MeBr continues to be widely used under Critical Use Exemptions and development of emission-reduction strategies remains important. Several methods to reduce emissions of MeBr, and other halogenated soil fumigants, have been developed and are currently being tested under field conditions. In this paper, several approaches for reducing fumigant emissions to the atmosphere are described and include the use of virtually impermeable films, the creation of reactive soil barriers and a recently developed reactive film which was designed to limit loss of MeBr from soil without adding any material to the soil surface. Ammonium thiosulfate (ATS) was used to create a reactive layer. For a reactive soil layer, ATS was sprayed on the soil surface or incorporated to a depth of 1-2 cm. For the reactive film, ATS was placed between two layers of plastic film. The lower plastic layer was a high-density polyethylene film (HDPE), which is readily permeable to MeBr. The upper layer was a virtually impermeable film (VIF) and limits MeBr diffusion. MeBr diffusion and transformation through VIFs and reactive layers were tested in laboratory and field experiments. Although ineffective when dry, when sufficient water was present, reactive barriers substantially depleted halogenated fumigants, including MeBr. When ATS was activated in laboratory experiments, MeBr half-life was about 9.0 h (20C) in a reactive film barrier, and half life decreased with increasing temperature. When the soil was covered with VIF, less than 10% of the added MeBr diffused through the film and the remainder was transformed within the soil. This compares with 60 to 90% emission losses, respectively, for a soil covered with HDPE or for a bare soil surface. These findings demonstrate that several methods are available to reduce atmospheric emissions of MeBr and other halogenated fumigants.

Yates, S. R.; Xuan, R.; Ashworth, D.; Luo, L.

2011-12-01

74

Degassing of reduced carbon from planetary basalts  

PubMed Central

Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential. PMID:23569260

Wetzel, Diane T.; Rutherford, Malcolm J.; Jacobsen, Steven D.; Hauri, Erik H.; Saal, Alberto E.

2013-01-01

75

The Uncertain Carbon Emissions in China (Invited)  

NASA Astrophysics Data System (ADS)

Anthropogenic fossil fuel emissions are considered as being well understood with a low uncertainty (9.1 × 0.5Gt C yr-1). By using full transparency emission inventory which the energy consumption, fuel heating values, carbon content and oxidation rate reported separately in sectoal level, here we found new 2.1 Gt C yr-1 (23% of global total) uncertainties of carbon emission inventory, which mainly contributed by the mass energy use and consumption coal quality in China and by misunderstanding of fuel quality in international fossil fuel trade. Increment of coal's carbon emission in China and India are equivalent to 130 % of global total coal's emission growth during 2008-2010, by using macro energy statistics and bottom up coal mine datasets, the difference carbon emission estimates from China and India can up to 1.32 C yr-1. Emissions from international trade of coal could produce another 0.08 Gt C yr-1 uncertainty. These new emerging 1.4 Gt C yr-1 uncertainties implies a significant mis-estimation of human induced carbon emissions and a new dominating factor in contributing the global carbon budget residual.

Liu, Z.; Guan, D.

2013-12-01

76

MOTOR VEHICLE EMISSIONS UNDER REDUCED AMBIENT TEMPERATURE IDLE OPERATING CONDITIONS (JOURNAL VERSION)  

EPA Science Inventory

Gasoline motor vehicle organic emissions are elevated by reduced ambient temperature operating conditions, and the practice of warming vehicles with extended idle periods, as is common during winter months. Total hydrocarbon, carbon monoxide, nitrogen oxides, and formaldehyde emi...

77

Opportunities for reducing greenhouse gas emissions in tropical peatlands  

PubMed Central

The upcoming global mechanism for reducing emissions from deforestation and forest degradation in developing countries should include and prioritize tropical peatlands. Forested tropical peatlands in Southeast Asia are rapidly being converted into production systems by introducing perennial crops for lucrative agribusiness, such as oil-palm and pulpwood plantations, causing large greenhouse gas (GHG) emissions. The Intergovernmental Panel on Climate Change Guidelines for GHG Inventory on Agriculture, Forestry, and Other Land Uses provide an adequate framework for emissions inventories in these ecosystems; however, specific emission factors are needed for more accurate and cost-effective monitoring. The emissions are governed by complex biophysical processes, such as peat decomposition and compaction, nutrient availability, soil water content, and water table level, all of which are affected by management practices. We estimate that total carbon loss from converting peat swamp forests into oil palm is 59.4 ± 10.2 Mg of CO2 per hectare per year during the first 25 y after land-use cover change, of which 61.6% arise from the peat. Of the total amount (1,486 ± 183 Mg of CO2 per hectare over 25 y), 25% are released immediately from land-clearing fire. In order to maintain high palm-oil production, nitrogen inputs through fertilizer are needed and the magnitude of the resulting increased N2O emissions compared to CO2 losses remains unclear. PMID:21081702

Murdiyarso, D.; Hergoualc'h, K.; Verchot, L. V.

2010-01-01

78

Direct carbon dioxide emissions from civil aircraft  

NASA Astrophysics Data System (ADS)

Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common valuations. It is clear that, whilst aviation must remain one piece of the transport-jigsaw, environmentally a global regulator with ‘teeth' is urgently required.

Grote, Matt; Williams, Ian; Preston, John

2014-10-01

79

Nitrogen and phosphorous limitations significantly reduce future allowable CO2 emissions  

NASA Astrophysics Data System (ADS)

CO2 emissions are the emissions of CO2 allowed in order to follow a prescribed atmospheric CO2 concentration pathway. Allowable emissions depend on the uptake rates by the land and ocean and carbon-climate interaction. Few Earth System Models used for estimating allowable emissions include nitrogen limitation on land, and none include phosphorus. We provide the first estimate of how nitrogen and phosphorus limitations alter the allowable emissions between 2006 and 2100 for two representative concentration pathways (RCPs). We show that nutrient limitations on land have little influence on ocean carbon uptake but reduce the land carbon uptake and allowable emissions by 69 Pg C (21%) for RCP2.6 and by 250 Pg C (13%) for RCP8.5 by 2100, as compared with the emissions estimated using integrated assessment models. We therefore demonstrate the importance of nutrient limitations in estimating future CO2 emissions to achieve the climate change limits implied by RCPs.

Zhang, Q.; Wang, Y. P.; Matear, R. J.; Pitman, A. J.; Dai, Y. J.

2014-01-01

80

The use of onboard diagnostics to reduce emissions in automobiles  

E-print Network

The emissions from automobiles are very harmful and include gases such as Carbon Dioxide, Nitrous Oxide, and Sulfur Dioxide. One of the main reasons OBD was created was to control emissions however it currently only monitors ...

Perez, Alberto, Jr

2009-01-01

81

Sharing a quota on cumulative carbon emissions  

NASA Astrophysics Data System (ADS)

Any limit on future global warming is associated with a quota on cumulative global CO2 emissions. We translate this global carbon quota to regional and national scales, on a spectrum of sharing principles that extends from continuation of the present distribution of emissions to an equal per-capita distribution of cumulative emissions. A blend of these endpoints emerges as the most viable option. For a carbon quota consistent with a 2 °C warming limit (relative to pre-industrial levels), the necessary long-term mitigation rates are very challenging (typically over 5% per year), both because of strong limits on future emissions from the global carbon quota and also the likely short-term persistence in emissions growth in many regions.

Raupach, Michael R.; Davis, Steven J.; Peters, Glen P.; Andrew, Robbie M.; Canadell, Josep G.; Ciais, Philippe; Friedlingstein, Pierre; Jotzo, Frank; van Vuuren, Detlef P.; Le Quéré, Corinne

2014-10-01

82

Carbon Emissions Analysis of Rail Resurfacing Work: A Case Study, Practical Guideline, and Systems Thinking Approach  

E-print Network

Carbon pollution has become a sensitive topic across the globe in recent times. In Australia, incentive has been provided to industry in order to reduce carbon emissions in heavy polluting industries. The railway transportation ...

Krezo, S.

83

Reducing greenhouse gas emissions for climate stabilization: framing regional options.  

PubMed

The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term. PMID:19368159

Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J

2009-03-15

84

Possibilities to reduce carbon emissions in Brazilian Amazon region with non timber biomass valorization: The case of biofuels produced by vegetable tropical oils  

SciTech Connect

Brazil`s annual rate of deforestation reached 2.1 million ha or about 13.6% of the total annual rate of deforestation for the whole tropical area in the world during 1981--1990. Today, the extent of gross deforestation is 10.9% of the tropical closed forest area. Relative to Brazilian participation in the greenhouse effect, the changes in forest area and associated biomass burning in Amazon region are responsible for about 25.5% of CO{sub 2} emissions in the tropics. Harvest of the non-timber biomass products may be important as a potentially sustainable use of forest in some areas. An excellent option to promote these biomass products is to provide energy and industrial goods for the Amazon communities and other external markets. In this work, the biofuels produced by vegetable tropical oils and their by-products are analyzed in relation to job creation, economics and environmental impacts, with special regards concerning the limitation of the atmospheric emissions of greenhouse gases.

Freitas, M.A.V. de; Rosa, L.P. [Universidade Federal, Rio de Janeiro (Brazil); Lascio, M.A. Di [UFRS, Santa Catarina (Brazil); [Ecole Polytechnique, Grenoble (France)

1996-12-31

85

Liquid carbon surface during explosive emission  

NASA Astrophysics Data System (ADS)

It has been established that the surface layer of carbon emitter is getting liquefied during an explosive electron emission (EEE) pulse to form very fine (on the scale of nanometers) tips with top curvature radii r<10 nm. Such tips are evenly distributed over the carbon emitter surface with a density on the order of 10 8 cm -2. One can surmise that it is these tips that secure a high stability and reproducibility of EEE from carbon emitter surfaces. A phenomenon of "electropolishing" of the carbon surface has been discovered which occurs when ions are extracted from the explosive emission plasma. It is experimentally demonstrated that taking off of the ion current gives rise to conditions ultimately resulting in a discontinuation of the formation of microprojections at the emitter surface, with the carbon emitter surface becoming more smooth ("polished"), and with the emergence of a new EEE cycle hampered.

Fursey, G. N.; Polyakov, M. A.; Shirochin, L. A.; Saveliev, A. N.

2003-06-01

86

Managing Restored Wetlands in the Sacramento-San Joaquin Delta to Reduce Methane Emissions and Increase Carbon Uptake Laurie Koteen, Sara Knox, Cove Sturtevant, Joseph Verfaillie, Jaclyn Hatala, Dennis Baldocchi  

NASA Astrophysics Data System (ADS)

The Sacramento-San Joaquin Delta of California is a region transformed by more than a century of agricultural practices. Beginning in the 19th century, substantial regions were first drained of water and then converted to cropland in order to take advantage of the area's rich peatland soils. In the intervening time period, soil oxidation and subsidence have led to huge peat losses of up to 10 m in some places, and river water now threatens to topple the levees that were erected to keep fields from flooding. Within this region, we have been monitoring greenhouse gas exchange of several agricultural sites, a degraded pasture, and two restored wetlands. Of these land use types, restoration of wetlands is of particular interest to Delta managers as these sites attain many of the region's most pressing ecological goals, including improved water quality, increased wildlife habitat, and soil accretion. In our current investigation, we hope to assess if wetland management activities can be implemented to achieve greenhouse gas management goals as well. While we find that the restored wetlands are able to take up and store a substantial amount of carbon via rapid growth rates, they also emit methane; a greenhouse gas 25 times more potent than CO¬2. We are currently in the process of implementing two management activities with the goals of reducing methane emissions and increasing carbon uptake. Evidence from the wetland literature indicates that periodic lowering of the water table below the soil surface can reduce wetland methane emissions by: 1. Reintroducing oxygen into the soil column. This both supports growth of the methanotrophic bacteria that consume methane produced in the anaerobic zones of the soil column, and suppresses the methanogens that produce it. 2. Re-oxidization of formerly reduced compounds in the soil, (i.e. NO3-, SO42-) which can serve as alternative terminal electron acceptors of the decomposition byproducts (i.e. H2 and acetate) that lead to methane formation. Under these conditions, it becomes more energetically favorable for alternative chemical transformations to occur in which CO2 and not CH4¬ is released. A second management activity would be implemented to see if wetland carbon uptake could be increased. As wetlands mature, perennial wetland vegetation often develops a significant thatch layer which can reduce photosynthesis of growing shoots by blocking radiation from leaf surfaces. Here we propose to remove the stalks of established vegetation. This would serve two goals: 1. Decomposing vegetation would be incorporated into the soil, leading to soil accretion, and 2. Thatch removal would liberate fledgling shoots, potentially increasing carbon uptake through subsequent seasons. A third investigation would compare CO2 and CH4 fluxes at an existing tower atop low salinity sediments with a new tower where site salinity is relatively high. This effort would inform new site selection efforts for wetland restoration projects. Sites located closer to the San Francisco Bay Area are tidally-influenced, and therefore have higher salinity than the impounded freshwater systems of our current study within the Delta region.

Koteen, L. E.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Matthes, J. H.; Baldocchi, D. D.

2013-12-01

87

Allowable carbon emissions lowered by multiple climate targets.  

PubMed

Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise, ocean acidification and net primary production on land. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced when multiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies, climate sensitivity and carbon cycle feedbacks along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions. PMID:23823728

Steinacher, Marco; Joos, Fortunat; Stocker, Thomas F

2013-07-11

88

Cumulative carbon emissions, emissions floors and short-term rates of warming: implications for policy.  

PubMed

A number of recent studies have found a strong link between peak human-induced global warming and cumulative carbon emissions from the start of the industrial revolution, while the link to emissions over shorter periods or in the years 2020 or 2050 is generally weaker. However, cumulative targets appear to conflict with the concept of a 'floor' in emissions caused by sectors such as food production. Here, we show that the introduction of emissions floors does not reduce the importance of cumulative emissions, but may make some warming targets unachievable. For pathways that give a most likely warming up to about 4°C, cumulative emissions from pre-industrial times to year 2200 correlate strongly with most likely resultant peak warming regardless of the shape of emissions floors used, providing a more natural long-term policy horizon than 2050 or 2100. The maximum rate of CO(2)-induced warming, which will affect the feasibility and cost of adapting to climate change, is not determined by cumulative emissions but is tightly aligned with peak rates of emissions. Hence, cumulative carbon emissions to 2200 and peak emission rates could provide a clear and simple framework for CO(2) mitigation policy. PMID:21115512

Bowerman, Niel H A; Frame, David J; Huntingford, Chris; Lowe, Jason A; Allen, Myles R

2011-01-13

89

A study on the impact of nuclear power plant construction relative to decommissioning Fossil Fuel Power Plant in order to reduce carbon dioxide emissions using a modified Nordhaus Vensim DICE model  

NASA Astrophysics Data System (ADS)

The current levels of CO2 emissions and high levels accumulating in the atmosphere have climate scientists concerned. The Dynamic Integrated Climate Economy Model or "DICE" for short is a highly developed model that has been used to simulate climate change and evaluate factors addressing global warming. The model was developed by Yale's Nordhaus along with collaborators and the compilation of numerous scientific publications. The purpose of this study is to recreate DICE using Vensim and modify it to evaluate the use of nuclear power plants (NPPs) as a means to counter global temperature increases in the atmosphere and oceans and the associated cost of damages. The amount of greenhouse gas emissions from a NPP are about 6% per Megawatt as that from a Fossil Fuel Power Plant (FFPP). Based on this, a model was developed to simulate construction of NPPs with subsequent decommissioning of FFPPs with an equivalent power output. The results produced through multiple simulation runs utilizing variable NPP construction rates show that some minor benefit is achievable if all of the more than 10,000 FFPPs currently in operation in the U.S. are replaced with NPPs. The results show that a reduction in CO 2 emissions of 2.48% will occur if all of the FFPPs are decommissioned. At a minimum rate of 50 NPPs constructed per year, the largest reduction in CO2 in the atmosphere, 1.94% or 44.5 billion tons of carbon, is possible. This results in a reduction in global warming of 0.068°C or 1.31%. The results also show that this reduction in global warming will be equivalent to a reduction of 8.2% or $148 B in anticipated annual spending as a result of climate change damages. Further results indicate that using NPPs to address climate change will provide a small benefit; ultimately, it will not be enough to reduce CO2 emissions or atmospheric CO 2 to control global warming. The amount of CO2 in the atmosphere is predicted to be 1055 parts per million (ppm) even in the best case scenario, which is well above the current limit of 350 ppm proposed by Hansen et. al.

Colpetzer, Jason Lee

90

Grid Expansion Planning for Carbon Emissions Reduction  

SciTech Connect

There is a need to upgrade and expand electric power transmission and generation to meet specified renewable energy targets and simultaneously minimize construction cost and carbon emissions. Some challenges are: (1) Renewable energy sources have variable production capacity; (2) Deficiency of transmission capacity at desirable renewable generation locations; (3) Need to incorporate models of operations into planning studies; and (4) Prevent undesirable operational outcomes such as negative dispatch prices or curtailment of carbon neutral generation.

Bent, Russell W. [Los Alamos National Laboratory; Toole, Gasper L. [Los Alamos National Laboratory

2012-07-18

91

Improved field emission of electrons from ion irradiated carbon  

Microsoft Academic Search

Electron field emission from allotropes of carbon (graphite, diamondlike carbon, and diamond) have been reported many times in the literature. This work explores the use of ion irradiation for improving electron field emission from carbon fibers. Carbon fibers have been irradiated with H, C, Ar, and Xe ions. Field emission characteristics have been measured as a function of ion dose.

K. C. Walter; H. H. Kung; C. J. Maggiore

1997-01-01

92

Carbon dioxide emission scenarios: limitations of the fossil fuel resource  

Microsoft Academic Search

Contemporary increases in atmospheric carbon dioxide concentration are in large part the result of anthropogenic carbon dioxide emissions from fossil fuel combustion. Scenario analysis is commonly used to generate projections of future carbon dioxide emissions, the resulting atmospheric concentrations and climate impact. In most scenario modelling published to date, carbon dioxide emission scenarios are based on demand-side (socioeconomic and technology)

Christopher Vernon; Erica Thompson; Sarah Cornell

2011-01-01

93

Demographic change and carbon dioxide emissions.  

PubMed

Relations between demographic change and emissions of the major greenhouse gas carbon dioxide (CO(2)) have been studied from different perspectives, but most projections of future emissions only partly take demographic influences into account. We review two types of evidence for how CO(2) emissions from the use of fossil fuels are affected by demographic factors such as population growth or decline, ageing, urbanisation, and changes in household size. First, empirical analyses of historical trends tend to show that CO(2) emissions from energy use respond almost proportionately to changes in population size and that ageing and urbanisation have less than proportional but statistically significant effects. Second, scenario analyses show that alternative population growth paths could have substantial effects on global emissions of CO(2) several decades from now, and that ageing and urbanisation can have important effects in particular world regions. These results imply that policies that slow population growth would probably also have climate-related benefits. PMID:22784534

O'Neill, Brian C; Liddle, Brant; Jiang, Leiwen; Smith, Kirk R; Pachauri, Shonali; Dalton, Michael; Fuchs, Regina

2012-07-14

94

Policy Planning to Reduce Greenhouse Gas Emissions  

NSDL National Science Digital Library

Preceded by the State Workbook: Methodologies for Estimating Greenhouse Gas Emissions, this document by the Environmental Protection Agency (EPA) serves to guide states in "identifying and evaluating options to mitigate emissions" affecting global climate change. Each of the report's three parts details climate change and policy options. Part one discusses the Initiation of Climate Change Programs. Part two describes sources of emissions and potential policy options. Part three completes the report by offering "guidance in preparing the State Action Plan." Appendices supply a glossary, references, state plans, and a specific example reduction plan.

Agency., United S.

1998-01-01

95

Carbon Emission Leakages: A General Equilibrium View  

Microsoft Academic Search

In December 1997, a number of countries - referred to as the Annex 1 countries - signed the Kyoto Protocol under which they agreed to ceilings on their emissions of greenhouse gases (GHGs). Such unilateral action by a group of countries has often been criticised on the grounds that it could be undermined by the existence of so-called “carbon leakages”.

Jean-Marc Burniaux; Joaquim Oliveira Martins

2000-01-01

96

Treading Lightly Steps Toward Reducing Our Carbon Footprint  

E-print Network

Treading Lightly Steps Toward Reducing Our Carbon Footprint This is one section of The University reducing the UA's carbon footprint. The Facilities Management recycling and waste department supports long

Wong, Pak Kin

97

Pyrogenic carbon emission from a large wildfire in Oregon, United States  

E-print Network

Pyrogenic carbon emission from a large wildfire in Oregon, United States John Campbell,1 Dan Donato carbon emissions from the Biscuit Fire, an exceptionally large wildfire, which in 2002 burned over 200 ecosystem production of this landscape prior to the wildfire and may have reduced mean net biome production

Turner, Monica G.

98

An approach to a black carbon emission inventory for Mexico by two methods.  

PubMed

A black carbon (BC) emission inventory for Mexico is presented. Estimate was performed by using two approaches, based on fuel consumption and emission factors in a top-down scheme, and the second from PM25 emission data and its correlation with black carbon by source category, assuming that black carbon=elemental carbon. Results show that black carbon emissions are in interval 53-473Gg using the fuel consumption approach and between 62 and 89 using the sector method. Black carbon key sources come from biomass burning in the rural sector, with 47 percent share to the National total. Mobile sources emissions account to 16% to the total. An opportunity to reduce, in the short-term, carbon dioxide equivalent (CO2-eq) emissions by reducing black carbon emissions would be obtained in reducing emissions mainly from biomass burning in rural housing sector and diesel emissions in the transport sector with important co-benefits in direct radiative forcing, public health and air quality. PMID:24561296

Cruz-Núñez, Xochitl

2014-05-01

99

Opportunities to reduce greenhouse gas emissions from households in Nigeria  

Microsoft Academic Search

Efforts to mitigate climate threats should not exclude the household as the household is a major driver of greenhouse gas\\u000a (GHG) emissions through its consumption patterns. This paper derives an emission index that could be used to estimate inventories\\u000a of carbon dioxide (CO2) emissions from kerosene combustion for lighting in Nigeria and also looks at the implications of solar pv

O. Adeoti; S. O. Osho

2012-01-01

100

Biodegradable plastic reduces ammonia emission during composting  

Microsoft Academic Search

Ammonia is the greatest nuisance odor compound among the exhaust gases that evolve during the composting process, in which raw materials with high concentrations of nitrogen, such as wastewater sludge, are decomposed. In the present study, a reduction of NH3 emission during composting of wastewater sludge was tried by mixing biodegradable plastic into composting raw material. Biodegradable plastic acts as

K Nakasaki; A Ohtaki; H Takano

2000-01-01

101

REDUCING STYRENE EMISSIONS FROM SPRAYED FILLED RESINS  

EPA Science Inventory

Styrene emissions are coming under increasing study as the U.S. Environmental Protection Agency (EPA) develops maximum achievable control technology standards. During the manufacture of fiber-reinforced plastics/composites products, styrene, a volatile organic compound and a haz...

102

Reducing Greenhouse Emissions and Fuel Consumption  

Microsoft Academic Search

Climate change is rapidly becoming known as a tangible issue that must be addressed to avoid major environmental consequences in the future. Recent change in public opinion has been caused by the physical signs of climate change-melting glaciers, rising sea levels, more severe storm and drought events, and hotter average global temperatures annually. Transportation is a major contributor of carbon

Susan Shaheen; Timothy Lipman

2007-01-01

103

A Healthy Reduction in Oil Dependence and Carbon Emissions  

NASA Astrophysics Data System (ADS)

Societal dependence on oil as an energy source for personal transportation leads to increasingly negative social consequences including climate change, air pollution, political and economic instability and habitat degradation. Our heavy reliance on the automobile for transportation, determined in part by urban sprawl, also contributes to the population's increasingly sedentary lifestyle and to a concomitant degradation in health. We have shown that widespread substitution of exercise, commensurate with previously recommended levels, through biking or walking instead of driving can substantially reduce oil consumption and carbon emissions. For example, if all individuals between the ages of 10 and 64 substituted one hour of cycling for driving the reduction in gasoline demand would be equivalent to the gas produced from 34.9 percent of current oil consumption. Relative to 1990 net US emissions, this constitutes a 10.9 percent reduction in carbon emissions. Therefore, substitution of exercise for driving could improve health, reduce carbon emissions and save more oil than even upper estimates of that contained in the Arctic National Wildlife Refuge.

Higgins, P. A.; Higgins, M.

2003-12-01

104

Tracing fuel component carbon in the emissions from diesel engines  

NASA Astrophysics Data System (ADS)

The addition of oxygenates to diesel fuel can reduce particulate emissions, but the underlying chemical pathways for the reductions are not well understood. While measurements of particulate matter (PM), unburned hydrocarbons (HC), and carbon monoxide (CO) are routine, determining the contribution of carbon atoms in the original fuel molecules to the formation of these undesired exhaust emissions has proven difficult. Renewable bio-derived fuels (ethanol or bio-diesel) containing a universal distribution of contemporary carbon are easily traced by accelerator mass spectrometry (AMS). These measurements provide general information about the emissions of bio-derived fuels. Another approach exploits synthetic organic chemistry to place 14C atoms in a specific bond position in a specific fuel molecule. The highly labeled fuel molecule is then diluted in 14C-free petroleum-derived stock to make a contemporary petroleum fuel suitable for tracing. The specific 14C atoms are then traced through the combustion event to determine whether they reside in PM, HC, CO, CO2, or other emission products. This knowledge of how specific molecular structures produce certain emissions can be used to refine chemical-kinetic combustion models and to optimize fuel composition to reduce undesired emissions. Due to the high sensitivity of the technique and the lack of appreciable 14C in fossil fuels, fuels for AMS experiments can be labeled with modern levels of 14C and still produce a strong signal. Since the fuel is not radioactive, emission tests can be conducted in any conventional engine lab, dynamometer facility, or on the open road.

Buchholz, Bruce A.; Mueller, Charles J.; Martin, Glen C.; Cheng, A. S.; Dibble, Robert W.; Frantz, Brian R.

2004-08-01

105

Irreversible climate change due to carbon dioxide emissions  

E-print Network

Irreversible climate change due to carbon dioxide emissions Susan Solomona,1 , Gian in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely

Fischlin, Andreas

106

Reducing Crude Protein in Beef Cattle Diet Reduces Ammonia Emissions from Artificial Feedyard Surfaces  

Microsoft Academic Search

Concentrated animal feeding operations are major sources of ammonia to the atmosphere. Control methods to reduce emissions include acidifying amendments, urease inhibitors, and absorbents. For beef cattle, decreasing crude protein (CP) in diets may be the most practical and cost-effective method to reduce ammonia emissions. Our objective was to quantify the effect of reducing CP in beef cattle diet on

Richard W. Todd; N. Andy Cole; R. Nolan Clark

2006-01-01

107

Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines  

E-print Network

Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines Ethanol continued, but it can also result in reduced emissions of nitrogen oxides (NOx) and soot when used in diesel engines. ct & LOGISTICS SYMPOSIUM page 3 CIVIL ENGINEERING DIRECTIONS page 4 WORK-ZONE SAFETY page 5 PUBLIC AFFAIRS PH

Minnesota, University of

108

Utilizing intake-air oxygen-enrichment technology to reduce cold- phase emissions  

SciTech Connect

Oxygen-enriched combustion is a proven, serious considered technique to reduce exhaust hydrocarbons (HC) and carbon monoxide (CO) emissions from automotive gasoline engines. This paper presents the cold-phase emissions reduction results of using oxygen-enriched intake air containing about 23% and 25% oxygen (by volume) in a vehicle powered by a spark-ignition (SI) engine. Both engineout and converter-out emissions data were collected by following the standard federal test procedure (FTP). Converter-out emissions data were also obtained employing the US Environmental Protection Agency`s (EPA`s) ``Off-Cycle`` test. Test results indicate that the engine-out CO emissions during the cold phase (bag 1) were reduced by about 46 and 50%, and HC by about 33 and 43%, using nominal 23 and 25% oxygen-enriched air compared to ambient air (21% oxygen by volume), respectively. However, the corresponding oxides of nitrogen (NO{sub x}) emissions were increased by about 56 and 79%, respectively. Time-resolved emissions data indicate that both HC and CO emissions were reduced considerably during the initial 127 s of the cold-phase FTP, without any increase in NO, emissions in the first 25 s. Hydrocarbon speciation results indicate that all major toxic pollutants, including ozone-forming specific reactivity factors, such as maximum incremental reactivity (NUR) and maximum ozone incremental reactivity (MOIR), were reduced considerably with oxygen-enrichment. Based on these results, it seems that using oxygen-enriched intake air during the cold-phase FTP could potentially reduce HC and CO emissions sufficiently to meet future emissions standards. Off-cycle, converter-out, weighted-average emissions results show that both HC and CO emissions were reduced by about 60 to 75% with 23 or 25% oxygen-enrichment, but the accompanying NO{sub x}, emissions were much higher than those with the ambient air.

Poola, R.B.; Ng, H.K.; Sekar, R.R. [Argonne National Lab., IL (United States); Baudino, J.H. [Autoresearch Labs., Inc., Chicago, IL (United States); Colucci, C.P. [National Renewable Energy Lab., Golden, CO (United States)

1995-12-31

109

High-resolution forest carbon stocks and emissions in the Amazon  

PubMed Central

Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change. PMID:20823233

Asner, Gregory P.; Powell, George V. N.; Mascaro, Joseph; Knapp, David E.; Clark, John K.; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R. Flint

2010-01-01

110

Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure  

Microsoft Academic Search

In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by

Torvanger

1990-01-01

111

Impact of Light-Duty Vehicle Emissions on 21st Century Carbon Dioxide Concentrations  

SciTech Connect

The impact of light-duty passenger vehicle emissions on global carbon dioxide concentrations was estimated using the MAGICC reduced-form climate model combined with the PNNL contribution to the CCSP scenarios product. Our central estimate is that tailpipe light duty vehicle emissions of carbon-dioxide over the 21st century will increase global carbon dioxide concentrations by slightly over 12 ppmv by 2100.

Smith, Steven J.; Kyle, G. Page

2007-08-04

112

Nitrogen and phosphorous limitations significantly reduce future allowable CO2 emissions  

NASA Astrophysics Data System (ADS)

Earth System Models (ESMs) can be used to diagnose the emissions of CO2 allowed in order to follow the representative concentration pathways (RCPs) that are consistent with different climate scenarios. By mass balance, the allowable emission is calculated as the sum of the changes in atmospheric CO2, land and ocean carbon pools. Only two ESMs used in the fifth assessment (AR5) of International Panel on Climate Change (IPCC) include nitrogen (N) limitation, and none include phosphorous (P) limitation. In this study we quantified the effects of N and P limitations on the allowable emissions using an ESM simulating land and ocean CO2 exchanges to the atmosphere in RCPs used for IPCC AR5. The model can run with carbon cycle alone (C only), carbon and nitrogen (CN) or carbon, nitrogen and phosphorus (CNP) cycles as its land configurations. We used the simulated land and ocean carbon accumulation rates from 1850 to 2100 to diagnose the allowable emissions for each of three simulations (C only, CN or CNP). These were then compared with the emissions estimated by the Integrated Assessment Models (IAMs) used to generate RCP2.6 and RCP8.5. N and P limitations on land in our ESM led to systematically lower land carbon uptake, and thus reduced allowable emissions by 69 Pg C (21%) for RCP2.6, and by 250 Pg C (13%) for RCP8.5 from 2006 to 2100. Our results demonstrated that including N and P limitations requires a greater reduction in human CO2 emissions than assumed in the IAMs used to generate the RCPs. Reference: Zhang, Q., Y. P. Wang, R. J. Matear, A. J. Pitman, and Y. J. Dai (2014), Nitrogen and phosphorous limitations significantly reduce future allowable CO2 emissions, Geophys. Res. Lett., 41, doi:10.1002/2013GL058352.

Zhang, Qian; Wang, Ying-Ping; Matear, Richard; Pitman, Andy; Dai, Yongjiu

2014-05-01

113

PARKING MANAGEMENT STRATEGIES FOR REDUCING AUTOMOBILE EMISSIONS  

EPA Science Inventory

This report defines the concept of parking management and explores how parking management can be used to improve air quality, support mass transit, reduce energy consumption and improve the amenities of life in urban areas. Specific aspects of this analysis were developments of a...

114

The 11 Micron Emissions of Carbon Stars  

NASA Technical Reports Server (NTRS)

A new classification scheme of the IRAS LRS carbon stars is presented. It comprises the separation of 718 probable carbon stars into 12 distinct self-similar spectral groupings. Continuum temperatures are assigned and range from 470 to 5000 K. Three distinct dust species are identifiable: SiC, alpha:C-H, and MgS. In addition to the narrow 11 + micron emission feature that is commonly attributed to SiC, a broad 11 + micron emission feature, that is correlated with the 8.5 and 7.7 micron features, is found and attributed to alpha:C-H. SiC and alpha:C-H band strengths are found to correlate with the temperature progression among the Classes. We find a spectral sequence of Classes that reflects the carbon star evolutionary sequence of spectral types, or alternatively developmental sequences of grain condensation in carbon-rich circumstellar shells. If decreasing temperature corresponds to increasing evolution, then decreasing temperature corresponds to increasing C/O resulting in increasing amounts of carbon rich dust, namely alpha:C-H. If decreasing the temperature corresponds to a grain condensation sequence, then heterogeneous, or induced nucleation scenarios are supported. SiC grains precede alpha:C-H and form the nuclei for the condensation of the latter material. At still lower temperatures, MgS appears to be quite prevalent. No 11.3 micron PAH features are identified in any of the 718 carbon stars. However, one of the coldest objects, IRAS 15048-5702, and a few others, displays an 11.9 micron emission feature characteristic of laboratory samples of coronene. That feature corresponds to the C-H out of plane deformation mode of aromatic hydrocarbon. This band indicates the presence of unsaturated, sp(sup 3), hydrocarbon bonds that may subsequently evolve into saturated bonds, sp(sup 2), if, and when, the star enters the planetary nebulae phase of stellar evolution. The effusion of hydrogen from the hydrocarbon grain results in the evolution in wavelength of this 11.9 micron emission feature to the 11.3 micron feature.

Goebel, J. H.; Cheeseman, P.; Gerbault, F.

1995-01-01

115

U.S. Energy-Related Carbon Dioxide Emissions  

EIA Publications

U.S. Energy Information Administration releases its online analysis of 2012 energy-related carbon dioxide emissions today. It indicates U.S. carbon dioxide emissions from the consumption of fossil fuels were 5,290 million metric tons carbon dioxide in 2012, a decrease of almost 4% from the 2011 level. Energy-related carbon dioxide emissions have declined in five of the last seven years and are the lowest they have been since 1994.

2013-01-01

116

Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru  

Microsoft Academic Search

Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at

Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas

2006-01-01

117

UA Researchers participate in a European project aimed to reduce pollutants emission with hemp ecological filters  

E-print Network

UA Researchers participate in a European project aimed to reduce pollutants emission with hemp activated carbon filters from waste hemp. The initiative, funded by the European Commission, has a total", Cazorla says. For the manufacture of the filters, hemp waste from agriculture and industrial processing

Escolano, Francisco

118

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2  

EIA Publications

This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

2001-01-01

119

REDUCING EMISSIONS FROM THE WOOD FURNITURE INDUSTRY WITH WATERBORNE COATINGS  

EPA Science Inventory

This program was initiated to develop meaningful, defensible, and reliable data on emission reduction benefits from the use of reduced hydrocarbon finishes. The program also included assessing add-on emission control options and considering installation aspects such as costs. Thi...

120

OPTIONS FOR REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS  

EPA Science Inventory

The report was prepared to assist personnel responsible for the design, construction, and maintenance of retail food refrigeration equipment in making knowledgeable decisions regarding the implementation of refrigerant-emissions-reducing practices and technologies. It characteriz...

121

Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions  

NASA Technical Reports Server (NTRS)

Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

Rudey, R. A.

1975-01-01

122

The Greenness of Cities: Carbon Dioxide Emissions and Urban Development  

Microsoft Academic Search

Carbon dioxide emissions may create significant social harm because of global warming, yet American urban development tends to be in low density areas with very hot summers. In this paper, we attempt to quantify the carbon dioxide emissions associated with new construction in different locations across the country. We look at emissions from driving, public transit, home heating, and household

Edward L. Glaeser; Matthew E. Kahn

2008-01-01

123

The greenness of cities: Carbon dioxide emissions and urban development  

Microsoft Academic Search

Carbon dioxide emissions may create significant social harm because of global warming, yet American urban development tends to be in low density areas with very hot summers. In this paper, we attempt to quantify the carbon dioxide emissions associated with new construction in different locations across the country. We look at emissions from driving, public transit, home heating, and household

Edward L. Glaeser; Matthew E. Kahn

2010-01-01

124

Wood-based building materials and atmospheric carbon emissions  

Microsoft Academic Search

This study investigates the global impact of wood as a building material by considering emissions of carbon dioxide to the atmosphere. Wood is compared with other materials in terms of stored carbon and emissions of carbon dioxide from fossil fuel energy used in manufacturing. An analysis of typical forms of building construction shows that wood buildings require much lower process

Andrew H Buchanan; S. Bry Levine

1999-01-01

125

Fossil fuel derivatives with reduced carbon. Phase I final report  

Microsoft Academic Search

This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning

E. B. Kennel; J. W. Zondlo; T. J. Cessna

1999-01-01

126

Reducing CO 2 emissions by substituting biomass for fossil fuels  

Microsoft Academic Search

Replacing fossil fuels with sustainably-produced biomass will reduce the net flow of CO2 to the atmosphere. We express the efficiency of this substitution in reduced emissions per unit of used land or biomass and in costs of the substitution per tonne of C. The substitution costs are calculated as the cost difference between continued use of fossil fuels at current

Leif Gustavsson; Pål Börjesson; Bengt Johansson; Per Svenningsson

1995-01-01

127

Transformation of carbon tetrachloride under sulfate reducing conditions  

Microsoft Academic Search

The removal of carbon tetrachloride under sulfate reducing conditions was studied in an an aerobic packed-bed reactor. Carbon\\u000a tetrachloride, up to a concentration of 30 ?M, was completely converted. Chloroform and dichloromethane were the main transformation\\u000a products, but part of the carbon tetrachloride was also completely dechlorinated to unknown products. Gram-positive sulfate-reducing\\u000a bacteria were involved in the reductive dechlorination of

Jappe H. de Best; E. Salminen; Hans J. Doddema; Dick B. Janssen; Wim Harder

1997-01-01

128

Laser-induced light emission from carbon nanoparticles  

SciTech Connect

Strong absorption of light in a broad wavelength range and poor thermal conductance between particles of carbon nanomaterials, such as nanotubes, onions, nanodiamond, and carbon black, lead to strong thermal emission (blackbody radiation) upon laser excitation, even at a very low (milliwatts) power. The lasers commonly used during Raman spectroscopy characterization of carbon can cause sample heating to very high temperatures. While conventional thermometry is difficult in the case of nanomaterials, Raman spectral features, such as the G band of graphitic carbon and thermal emission spectra were used to estimate the temperature during light emission that led to extensive graphitization and evaporation of carbon nanomaterials, indicating local temperatures exceeding 3500 deg. C.

Osswald, S.; Behler, K.; Gogotsi, Y. [Materials Science and Engineering Department and A. J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, Pennsylvania 19104 (United States)

2008-10-01

129

Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.  

PubMed

Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization. PMID:16190250

Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

2005-09-01

130

A synthesis of carbon dioxide emissions from fossil-fuel combustion  

SciTech Connect

This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

Andres, Robert Joseph [ORNL; Boden, Thomas A [ORNL; Breon, F.-M. [CEA/DSM/LSCE, Gif sur Yvette, France; Ciais, P. [LSCE/CEA, Gif-sur-Yvette, France; Davis, S. [Carnegie Institution of Washington; Erickson, D [Oak Ridge National Laboratory (ORNL); Gregg, J. S. [Riso National Laboratory, Roskilde, Denmark; Jacobson, Andrew [NOAA ESRL and CIRES; Marland, Gregg [Appalachian State University; Miller, J. [NOAA ESRL and CIRES; Oda, T [NOAA ESRL/Boulder, CO/Cooperative Institute for Research in the Atmosphere, Colorado State Univ.; Oliver, J. G. J. [PBL Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands; Raupach, Michael [CSIRO Marine and Atmospheric Research; Rayner, P [University of Melbourne, Australia; Treanton, K. [Energy Statistics Division, International Energy Agency, Paris, France

2012-01-01

131

Path dependence of climate and carbon cycle response over a broad range of cumulative carbon emissions  

NASA Astrophysics Data System (ADS)

Recent studies have demonstrated the proportional relationship between global warming and cumulative carbon emissions, yet the robustness of this relationship has not been tested over a broad range of cumulative emissions and emission rates. This study explores the path dependence of the climate and carbon cycle response using an Earth System model of intermediate complexity forced with 24 idealized emissions scenarios across five cumulative emission groups (1275-5275 GtC) with varying rates of emission. We find the century-scale climate and carbon cycle response after cessation of emissions to be approximately independent of emission pathway for all cumulative emission levels considered. The ratio of global mean temperature change to cumulative emissions - referred to as the transient climate response to cumulative emissions (TCRE) - is found to be constant for cumulative emissions lower than ~1500 GtC, but to decline with higher cumulative emissions. The TCRE is also found to decrease with increasing emission rate. The response of Arctic sea ice is found to be approximately proportional to cumulative emissions, while the response of the Atlantic meridional overturning circulation (AMOC) does not scale linearly with cumulative emissions, as its peak response is strongly dependent on emission rate. Ocean carbon uptake weakens with increasing cumulative emissions, while land carbon uptake displays non-monotonic behavior, increasing up to a cumulative emission threshold of ~2000 GtC and then declining.

Herrington, T.; Zickfeld, K.

2014-06-01

132

Development of air conditioning technologies to reduce CO2 emissions in the commercial sector  

PubMed Central

Background Architectural methods that take into account global environmental conservation generally concentrate on mitigating the heat load of buildings. Here, we evaluate the reduction of carbon dioxide (CO2) emissions that can be achieved by improving heating, ventilating, and air conditioning (HVAC) technologies. Results The Climate Change Research Hall (CCRH) of the National Institute for Environmental Studies (NIES) is used as a case study. CCRH was built in line with the "Green Government Buildings" program of the Government Buildings Department at the Ministry of Land, Infrastructure and Transport in Japan. We have assessed the technology used in this building, and found that there is a possibility to reduce energy consumption in the HVAC system by 30%. Conclusion Saving energy reduces CO2 emissions in the commercial sector, although emission factors depend on the country or region. Consequently, energy savings potential may serve as a criterion in selecting HVAC technologies with respect to emission reduction targets. PMID:17062161

Yoshida, Yukiko

2006-01-01

133

Composting as a Strategy to Reduce Greenhouse Gas Emissions  

Microsoft Academic Search

Composting animal manure has the potential to reduce emissions of nitrous oxide (N2O) and methane (CH4) from agriculture. Agriculture has been recognized as a major contributor of greenhouse gases, releasing an estimated 81% and 70% of the anthropogenic emissions of nitrous oxide (N2O) and methane (CH4), respectively. A significant amount of methane is emitted during the storage of liquid manure,

John W. Paul; Claudia Wagner-Riddle; Andrew Thompson; Ron Fleming; Malcolm MacAlpine

134

[Monitoring gas concentration from carbon emissions by remote sensing].  

PubMed

Global climate warming has become the focus question of international global climate change research, and is an important factor influencing world economy, political situation, and ecological environment. Produced carbon emission gases such as CO2, CH4, N2O, etc. caused by human activity are the main reason for global warming. In order to forecast future climate change and construct accurate carbon cycle model, monitoring accuracy of gas concentration from carbon emission must be improved. In the present paper, the newest progress in the international research results about monitoring gas concentration from carbon emissions by remote sensing was considered, monitoring method for carbon emissions was introduced, and remotely sensed monitoring technology about gas concentration from carbon emissions (including thermal infrared, sun spectrum, active remote sensing monitoring technology) was stated. In detail, several present and future satellite sensors were introduced (including TOVS, AIRS, IASI, SCIAMACHY, GOSAT, OCO, A-SCOPE and ASCENDS), and monitoring results achieved by these sensors were analyzed. PMID:22870656

Wang, Li-Wen; Wei, Ya-Xing

2012-06-01

135

Reducing dust emissions at OAO Alchevskkoks coke battery 10A  

SciTech Connect

Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15

136

The Logistics Equipment Carbon Emission Monitoring System for a Green Logistics  

NASA Astrophysics Data System (ADS)

Recently, due to the global enforcement of obligations to reduce green house gases and various environmental regulations, low carbon green growth strategies are required. Currently, in our country, environment friendly logistics activities are staying in the early stage compared to advanced countries because of our country's large energy consumption type industrial structures. As a measure to respond to the trend of the reinforcement of international environmental regulations in the sector of logistics, active green logistics systems should be established and to solve this problem, this study is intended to develop a monitoring system that can manage the carbon emission of logistics equipment(container truck, discharging equipment etc) in real time using a new technology named IP-RFID. The monitoring system developed in this study can actively manage the carbon emission of individual logistics equipment by attaching IP-Tags that can measure the carbon emission of individual logistics equipment in real time and transmit the information obtained from the measurement directly to users through IP communication. Since carbon emission can be managed by logistics equipment and drivers can check the carbon emission of equipment through this system, the carbon emission generated in the logistics sector may be reduced by using this system.

Choi, Hyungrim; Park, Byoungkwon; Lee, Byungha; Park, Yongsung; Lee, Changsup; Ha, Jeongsoo

137

Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds.  

PubMed

Novel PMMA-STO-CNT matrices were created by opened-tip vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) with conformal coatings of strontium titanate (STO) and poly(methyl methacrylate) (PMMA). Emission threshold of 0.8 V/?m was demonstrated, about 5-fold lower than that of the as-grown VA-MWCNTs. This was obtained after considering the related band structures under the perspective of work functions and tunneling width as a function of the STO thickness. We showed that there is an optimum thickness of STO coatings to effectively reduce the work function of CNTs and yet minimize the tunneling width for electron emissions. Furthermore, simulation and modeling suggest that PMMA-STO-CNT matrices have suppressed screening effects and Coulombs' repulsion forces between electrons in adjacent CNTs, leading to low emission threshold, high emission density, and prolonged emission stability. These findings are important for practical application of VA-MWCNTs in field emission devices, X-ray generation, and wave amplification. PMID:23199078

Pandey, Archana; Prasad, Abhishek; Moscatello, Jason P; Engelhard, Mark; Wang, Chongmin; Yap, Yoke Khin

2013-01-22

138

Reducing Greenhouse Gas Emissions from Agricultural Wetlands in Borneo  

NASA Astrophysics Data System (ADS)

At the forum G20 meeting in 2009, Indonesian President delivered Indonesia's commitment to reduce national greenhouse gas (GHG) emissions by 26% in 2020 by unilateral action and by 41% with support of other countries. To achieve the target, Indonesian government has put forestry, agriculture (including peatlands), energy, industry and transportation as main responsible sectors. Development of crop with low GHG emissions, increasing C sequestration and the use of organic fertilizers are among the activities to be carried out in 2010-2020 period to minimize GHG emissions from agricultural sectors. Three experiments have been carried out to elucidate the reflectivity of crop selection, soil ameliorants and organic fertilizers on GHG emissions from agricultural wetlands in Borneo. Firstly, gas samples were collected in weekly basis from oil palm, paddy, and vegetables fields and analyzed for methane (CH4) and nitrous oxide (N2O) concentrations by a gas chromatography. Secondly, coal fly ash, dolomite and ZnSO4 were incorporated into a pot containing peat and/or alluvial soils taken from wetlands in South Kalimantan. The air samples were taken and analyzed for CH4 by a gas chromatography. Finally, microbial consortium are isolated from soil, sediment and cow dung. The microbes were then propagated and used in a rice straw composting processes. The CO2, CH4 and N2O emissions from composting vessel were measured at one, two and four weeks of composting processes. The results showed that shifting the use of peatlands for oil palm to vegetable field reduced the GHG emissions by about 74% and that to paddy field reduce the GHG emissions by about 82%. The CH4 emissions from paddy field can be further reduced by applying dolomite. However, the use of coal fly ash and ZnSO4 increased CH4 emissions from peat soil cultivated to rice. The use of microbe isolated from saline soil could reduce GHG emissions during the composting of rice straw. The social aspect of GHG reduction in Borneo will also be discussed.

Abdul, H.; Fatah, L.; Nursyamsi, D.; Kazuyuki, I.

2011-12-01

139

An audit of the global carbon budget: identifying and reducing sources of uncertainty  

NASA Astrophysics Data System (ADS)

Uncertainties in our carbon accounting practices may limit our ability to objectively verify emission reductions on regional scales. Furthermore uncertainties in the global C budget must be reduced to benchmark Earth System Models that incorporate carbon-climate interactions. Here we present an audit of the global C budget where we try to identify sources of uncertainty for major terms in the global C budget. The atmospheric growth rate of CO2 has increased significantly over the last 50 years, while the uncertainty in calculating the global atmospheric growth rate has been reduced from 0.4 ppm/yr to 0.2 ppm/yr (95% confidence). Although we have greatly reduced global CO2 growth rate uncertainties, there remain regions, such as the Southern Hemisphere, Tropics and Arctic, where changes in regional sources/sinks will remain difficult to detect without additional observations. Increases in fossil fuel (FF) emissions are the primary factor driving the increase in global CO2 growth rate; however, our confidence in FF emission estimates has actually gone down. Based on a comparison of multiple estimates, FF emissions have increased from 2.45 ± 0.12 PgC/yr in 1959 to 9.40 ± 0.66 PgC/yr in 2010. Major sources of increasing FF emission uncertainty are increased emissions from emerging economies, such as China and India, as well as subtle differences in accounting practices. Lastly, we evaluate emission estimates from Land Use Change (LUC). Although relative errors in emission estimates from LUC are quite high (2 sigma ~ 50%), LUC emissions have remained fairly constant in recent decades. We evaluate the three commonly used approaches to estimating LUC emissions- Bookkeeping, Satellite Imagery, and Model Simulations- to identify their main sources of error and their ability to detect net emissions from LUC.; Uncertainties in Fossil Fuel Emissions over the last 50 years.

Ballantyne, A. P.; Tans, P. P.; Marland, G.; Stocker, B. D.

2012-12-01

140

Effectiveness of US state policies in reducing CO2 emissions from power plants  

NASA Astrophysics Data System (ADS)

President Obama's landmark initiative to reduce the CO2 emissions of existing power plants, the nation's largest source of greenhouse gas (GHG) pollutants, depends heavily on states and their ability to devise policies that meet the goals set by the Environmental Protection Agency (EPA). Under the EPA's proposed Clean Power Plan, states will be responsible for cutting power plants' carbon pollution 30% from 2005 levels by 2030. States have already adopted several policies to reduce the electricity sector's climate impact. Some of these policies focus on reducing power plants' CO2 emissions, and others address this outcome in a more roundabout fashion by encouraging energy efficiency and renewable energy. However, it remains unclear which, if any, of these direct and indirect strategies actually mitigate plants' emissions because scholars have yet to test their effects using plant-level emission data. Here we use a newly released data source to determine whether states' policies significantly shape individual power plants' CO2 emissions. Findings reveal that certain types of direct strategy (emission caps and GHG targets) and indirect ones (public benefit funds and electric decoupling) lower plants' emissions and thus are viable building blocks of a federal climate regime.

Grant, Don; Bergstrand, Kelly; Running, Katrina

2014-11-01

141

Thermionic emission and work function of multiwalled carbon nanotube yarns  

Microsoft Academic Search

Thermionic emission from multiwalled carbon nanotubes (MWNTs) was investigated by using MWNT yarns. The work function of MWNT and thermionic emission constant of the yarn sample were both calculated from the thermionic emission data. The measured work function of MWNT is about 4.54-4.64eV . The emission constant is larger than conventional thermionic cathode. Thermionic emission electron energy spectra at various

Peng Liu; Yang Wei; Kaili Jiang; Qin Sun; Xiaobo Zhang; Shoushan Fan; Shufeng Zhang; Chuangang Ning; Jingkang Deng

2006-01-01

142

Reducing transit bus emissions: Alternative fuels or traffic operations?  

NASA Astrophysics Data System (ADS)

In this study, we simulated the operations and greenhouse gas (GHG) emissions of transit buses along a busy corridor and quantified the effects of two different fuels (conventional diesel and compressed natural gas) as well as a set of driving conditions on emissions. Results indicate that compressed natural gas (CNG) reduces GHG emissions by 8-12% compared to conventional diesel, this reduction could increase to 16% with high levels of traffic congestion. However, the benefits of switching from conventional diesel to CNG are less apparent when the road network is uncongested. We also investigated the effects of bus operations on emissions by applying several strategies such as transit signal priority (TSP), queue jumper lanes, and relocation of bus stops. Results show that in congested conditions, TSP alone can reduce GHG emissions by 14% and when combined with improved technology; a reduction of 23% is achieved. The reduction benefits are even more apparent when other transit operational improvements are combined with TSP. Finally a sensitivity analysis was performed to investigate the effect of operational improvements on emissions under varying levels of network congestion. We observe that under “extreme congestion”, the benefits of TSP decrease.

Alam, Ahsan; Hatzopoulou, Marianne

2014-06-01

143

EVALUATION OF VOC (VOLATILE CARBON) EMISSIONS FROM WASTEWATER SYSTEMS (SECONDARY EMISSIONS)  

EPA Science Inventory

The technical objective of this project was to obtain data for evaluating volatile carbon (VOC) emissions from wastewater treatment facilities for the synthetic organic chemicals manufacturing industry (SOCMI). VOC emissions data were obtained using the Concentration-Profile tech...

144

Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations  

NASA Astrophysics Data System (ADS)

Regional carbon emissions research is necessary and helpful for China in realizing reduction targets. The LMDI I (Logarithmic Mean Divisia Index I) technique based on an extended Kaya identity was conducted to uncover the main five driving forces for energy-related carbon emissions in Xinjiang, an important energy base in China. Decomposition results show that the affluence effect and the population effect are the two most important contributors to increased carbon emissions. The energy intensity effect had a positive influence on carbon emissions during the pre-reform period, and then became the dominant factor in curbing carbon emissions after 1978. The renewable energy penetration effect and the emission coefficient effect showed important negative but relatively minor effects on carbon emissions. Based on the local realities, a comprehensive suite of mitigation policies are raised by considering all of these influencing factors. Mitigation policies will need to significantly reduce energy intensity and pay more attention to the regional economic development path. Fossil fuel substitution should be considered seriously. Renewable energy should be increased in the energy mix. All of these policy recommendations, if implemented by the central and local government, should make great contributions to energy saving and emission reduction in Xinjiang.

Wang, Changjian; Zhang, Xiaolei; Wang, Fei; Lei, Jun; Zhang, Li

2014-06-01

145

Transient Suppression Packaging for Reduced Emissions from Rotary Kiln Incinerators  

Microsoft Academic Search

Experiments were performed on a 73 kW rotary kiln incinerator simulator to determine whether innovative waste packaging designs might reduce transient emissions of products of incomplete combustion due to batch charging of containerized liquid surrogate waste compounds bound on ground corncob sorbent. When containers of waste are batch charged into rotary kilns, the rupture of the container is often followed

PAUL M. LEMIEUX; WILLIAM P. LINAK; JOSEPH A. McSORLEY; JOST O. L. WENDT

1992-01-01

146

TRANSIENT SUPPRESSION PACKAGING FOR REDUCED EMISSIONS FROM ROTARY KILN INCINERATORS  

EPA Science Inventory

Experiments were performed on a 73 kW rotary kiln incinerator simulator to determine whether innovative waste packaging designs might reduce transient emissions of products of incomplete combustion due to batch charging of containerized liquid surrogate waste compounds bound on g...

147

On the Potential Economic Costs of Cutting Carbon Dioxide Emissions in Portugal  

Microsoft Academic Search

The objective of this paper is to estimate the impact of reducing carbon dioxide emissions from fossil fuel combustion activities on economic activity in Portugal. We find that energy consumption has a significant impact on macroeconomic activity. In fact, a one ton of oil equivalent permanent reduction in aggregate energy consumption reduces output in the long term by €6,340. More

Alfredo M. Pereira; Rui Manuel Marvão Pereira

2008-01-01

148

Indian oil company joins efforts to reduce methane emissions  

NASA Astrophysics Data System (ADS)

The Oil and Natural Gas Corp, Ltd. (ONGC), headquartered in Dehradun, India, has joined seven U.S. and Canadian oil and natural gas companies as a partner in a U.S. Environmental Protection Agency program to reduce greenhouse gas emissions. EPA's Natural Gas STAR International Program aims to reduce methane emissions from the oil and natural gas sector while delivering more gas to markets around the world. With this partnership, ONGC agrees to implement emissions reduction practices and to submit annual reports on progress achieved; EPA agrees to assist ONGC with training technicians in new cost-effective technologies that will help achieve target emissions. The Natural Gas STAR International Program is administered under the Methane to Markets Partnership, a group of 20 countries and 600 companies across the globe that since 2004 has volunteered to cut methane emissions. More information on EPA's agreement with ONGC can be found at http://www.epa.gov/gasstar/index.htm; information about the Methane to Markets Partnership can be found at http://www.methanetomarkets.org.

Kumar, Mohi

149

Unsuccessful suicide by carbon monoxide: a secondary benefit of emissions control  

SciTech Connect

Emission systems and devices are required on automobile engines to reduce air pollution problems. Catalytic converters have been used on most 1975 and newer automobiles to reduce hydrocarbon and carbon monoxide (CO) emissions to a value that meets the Environmental Protection Agency requirements established for 1975 and 1976. The 1980-1981 Boise, Idaho, study shows that with a functioning catalytic converter either unmeasurable or sublethal quantities of CO appear in automobile exhaust. Thus, emissions control has produced a secondary benefit in reducing the number of suicides by CO poisoning from automobile exhaust fumes.

Landers, D.

1981-11-01

150

New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China.  

PubMed

Synthetic nitrogen (N) fertilizer has played a key role in enhancing food production and keeping half of the world's population adequately fed. However, decades of N fertilizer overuse in many parts of the world have contributed to soil, water, and air pollution; reducing excessive N losses and emissions is a central environmental challenge in the 21st century. China's participation is essential to global efforts in reducing N-related greenhouse gas (GHG) emissions because China is the largest producer and consumer of fertilizer N. To evaluate the impact of China's use of N fertilizer, we quantify the carbon footprint of China's N fertilizer production and consumption chain using life cycle analysis. For every ton of N fertilizer manufactured and used, 13.5 tons of CO2-equivalent (eq) (t CO2-eq) is emitted, compared with 9.7 t CO2-eq in Europe. Emissions in China tripled from 1980 [131 terrogram (Tg) of CO2-eq (Tg CO2-eq)] to 2010 (452 Tg CO2-eq). N fertilizer-related emissions constitute about 7% of GHG emissions from the entire Chinese economy and exceed soil carbon gain resulting from N fertilizer use by several-fold. We identified potential emission reductions by comparing prevailing technologies and management practices in China with more advanced options worldwide. Mitigation opportunities include improving methane recovery during coal mining, enhancing energy efficiency in fertilizer manufacture, and minimizing N overuse in field-level crop production. We find that use of advanced technologies could cut N fertilizer-related emissions by 20-63%, amounting to 102-357 Tg CO2-eq annually. Such reduction would decrease China's total GHG emissions by 2-6%, which is significant on a global scale. PMID:23671096

Zhang, Wei-Feng; Dou, Zheng-Xia; He, Pan; Ju, Xiao-Tang; Powlson, David; Chadwick, Dave; Norse, David; Lu, Yue-Lai; Zhang, Ying; Wu, Liang; Chen, Xin-Ping; Cassman, Kenneth G; Zhang, Fu-Suo

2013-05-21

151

Quantification of annual carbon emissions from deforestation in South America  

NASA Astrophysics Data System (ADS)

Tropical deforestation is the second largest source of carbon emissions to the atmosphere and also one of the most uncertain components of the global carbon cycle. Current estimates of carbon emissions from deforestation have errors as much as ×50%. This substantial uncertainty range stems in part from the uncertain estimate of changes in forest area as well as the lack of spatially explicit information on biomass density. Here we use multiple sources satellite data to quantify carbon emissions from deforestation in South America on a year-to-year basis from 2000 to 2010. We first use time-series multi-spectral images to map the spatial extent of forest loss. We then spatially match the area of deforestation with initial biomass density to quantify the committed carbon emissions from forest loss. Our results reveal that the five countries with the highest deforestation related emissions in South America are Brazil, Bolivia, Colombia, Argentina, and Chile. Their average annual emission rates are 218 TgC/yr, 23 TgC/yr, 16 TgC/yr, 14 TgC/yr and 11 TgC/yr, respectively. However, there are substantial inter-annual variations. Emissions in both Brazil and Argentina increased initially until 2005, and then declined. But Bolivia had a steady increasing trend in its emission over the 10 years. The coefficient of variation of annual emissions in these five countries ranges from 36% to 45%, indicating considerable inter-annual variations in carbon emissions from deforestation in these countries. These spatially explicit, multi-year emission estimates may be used as a baseline for REDD+ or other related emission mitigation efforts. The trends and large inter-annual variations in deforestation related emissions as revealed in this study should be considered in evaluating the performance of such efforts.

Song, X.; Huang, C.; Townshend, J. R.

2013-12-01

152

Transitions in pathways of human development and carbon emissions  

NASA Astrophysics Data System (ADS)

Countries are known to follow diverse pathways of life expectancy and carbon emissions, but little is known about factors driving these dynamics. In this letter we estimate the cross-sectional economic, demographic and geographic drivers of consumption-based carbon emissions. Using clustering techniques, countries are grouped according to their drivers, and analysed with respect to a criteria of one tonne of carbon emissions per capita and a life expectancy over 70 years (Goldemberg’s Corner). Five clusters of countries are identified with distinct drivers and highly differentiated outcomes of life expectancy and carbon emissions. Representatives from four clusters intersect within Goldemberg’s Corner, suggesting diverse combinations of drivers may still lead to sustainable outcomes, presenting many countries with an opportunity to follow a pathway towards low-carbon human development. By contrast, within Goldemberg’s Corner, there are no countries from the core, wealthy consuming nations. These results reaffirm the need to address economic inequalities within international agreements for climate mitigation, but acknowledge plausible and accessible examples of low-carbon human development for countries that share similar underlying drivers of carbon emissions. In addition, we note differences in drivers between models of territorial and consumption-based carbon emissions, and discuss interesting exceptions to the drivers-based cluster analysis.

Lamb, W. F.; Steinberger, J. K.; Bows-Larkin, A.; Peters, G. P.; Roberts, J. T.; Wood, F. R.

2014-01-01

153

A Reduced Organic Carbon Component in Martian Basalts  

NASA Astrophysics Data System (ADS)

The source and nature of carbon on Mars have been a subject of intense speculation. We report the results of confocal Raman imaging spectroscopy on 11 martian meteorites, spanning about 4.2 billion years of martian history. Ten of the meteorites contain abiotic macromolecular carbon (MMC) phases detected in association with small oxide grains included within high-temperature minerals. Polycyclic aromatic hydrocarbons were detected along with MMC phases in Dar al Gani 476. The association of organic carbon within magmatic minerals indicates that martian magmas favored precipitation of reduced carbon species during crystallization. The ubiquitous distribution of abiotic organic carbon in martian igneous rocks is important for understanding the martian carbon cycle and has implications for future missions to detect possible past martian life.

Steele, A.; McCubbin, F. M.; Fries, M.; Kater, L.; Boctor, N. Z.; Fogel, M. L.; Conrad, P. G.; Glamoclija, M.; Spencer, M.; Morrow, A. L.; Hammond, M. R.; Zare, R. N.; Vicenzi, E. P.; Siljeström, S.; Bowden, R.; Herd, C. D. K.; Mysen, B. O.; Shirey, S. B.; Amundsen, H. E. F.; Treiman, A. H.; Bullock, E. S.; Jull, A. J. T.

2012-07-01

154

A reduced organic carbon component in martian basalts.  

PubMed

The source and nature of carbon on Mars have been a subject of intense speculation. We report the results of confocal Raman imaging spectroscopy on 11 martian meteorites, spanning about 4.2 billion years of martian history. Ten of the meteorites contain abiotic macromolecular carbon (MMC) phases detected in association with small oxide grains included within high-temperature minerals. Polycyclic aromatic hydrocarbons were detected along with MMC phases in Dar al Gani 476. The association of organic carbon within magmatic minerals indicates that martian magmas favored precipitation of reduced carbon species during crystallization. The ubiquitous distribution of abiotic organic carbon in martian igneous rocks is important for understanding the martian carbon cycle and has implications for future missions to detect possible past martian life. PMID:22628557

Steele, A; McCubbin, F M; Fries, M; Kater, L; Boctor, N Z; Fogel, M L; Conrad, P G; Glamoclija, M; Spencer, M; Morrow, A L; Hammond, M R; Zare, R N; Vicenzi, E P; Siljeström, S; Bowden, R; Herd, C D K; Mysen, B O; Shirey, S B; Amundsen, H E F; Treiman, A H; Bullock, E S; Jull, A J T

2012-07-13

155

CARBON DIOXIDE STANDARD EMISSIVITY BY MIXED GRAY-GASES MODEL  

Microsoft Academic Search

Conventional fossil fuels are of carbon-hydrogen composition. A number of alternative fuels, e.g., coal, lignite, are carbon-based fuels. The high temperature combustion of such fuels would generate carbon dioxide, and if hydrogen is present, water vapor. The knowledge of the emissivities of carbon dioxide and water vapor is very important in burner design and thermal efficiency calculations. The present work

IHAB H. FARAG; T. A. ALLAM

1982-01-01

156

Black Carbon Emissions by Rocket Engines Types of rocket engines Emissions  

E-print Network

Black Carbon Emissions by Rocket Engines Types of rocket engines Emissions Liquid Hydrogen and Oxygen Mainly 2 , and some . Aluminum/Ammonium Perchlorate and 23 Rockets that use hydrazine (24) and tetroxide (24) Large amounts of nitrogen oxides. Kerosene Rockets 2 and black carbon (soot). Focus: New

Toohey, Darin W.

157

China's Energy and Carbon Emissions Outlook to 2050  

SciTech Connect

As a result of soaring energy demand from a staggering pace of economic expansion and the related growth of energy-intensive industry, China overtook the United States to become the world's largest contributor to CO{sub 2} emissions in 2007. At the same time, China has taken serious actions to reduce its energy and carbon intensity by setting both a short-term energy intensity reduction goal for 2006 to 2010 as well as a long-term carbon intensity reduction goal for 2020. This study presents a China Energy Outlook through 2050 that assesses the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its intensity reduction goals. Over the past few years, LBNL has established and significantly enhanced its China End-Use Energy Model which is based on the diffusion of end-use technologies and other physical drivers of energy demand. This model presents an important new approach for helping understand China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies through scenario analysis. A baseline ('Continued Improvement Scenario') and an alternative energy efficiency scenario ('Accelerated Improvement Scenario') have been developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to control energy demand growth and mitigate emissions. In addition, this analysis also evaluated China's long-term domestic energy supply in order to gauge the potential challenge China may face in meeting long-term demand for energy. It is a common belief that China's CO{sub 2} emissions will continue to grow throughout this century and will dominate global emissions. The findings from this research suggest that this will not necessarily be the case because saturation in ownership of appliances, construction of residential and commercial floor area, roadways, railways, fertilizer use, and urbanization will peak around 2030 with slowing population growth. The baseline and alternative scenarios also demonstrate that China's 2020 goals can be met and underscore the significant role that policy-driven energy efficiency improvements will play in carbon mitigation along with a decarbonized power supply through greater renewable and non-fossil fuel generation.

Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Ke, Jing; Levine, Mark

2011-02-15

158

Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of greenhouse gas emissions of vehicle systems and fuels.  

PubMed

The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems. PMID:25259852

Cai, Hao; Wang, Michael Q

2014-10-21

159

The study on the changing characteristics and their countermeasures for China's carbon emissions in 2000-2010  

NASA Astrophysics Data System (ADS)

Based on the quantitative calculation of 2000-2010 China's 30 provinces of carbon emissions by the method of 2006 IPCC with the data from China energy statistical yearbook and China cement Yearbook, a detailed analysis of the temporal and spatial variation characteristics of carbon emissions in both Chinese level and provinces' level was made. The result showed that most of the provinces of China's carbon emissions presented an increasing trend in the past 11 years, especially in Shandong Province, Hebei Province, Shanxi Province, Liaoning Province, Jiangsu province which is located in the national top five. Then according to the current carbon emissions trend, the author put forward some countermeasures for China, such as speeding up the pace of industrial restructuring, searching for clean energy and other measures to reduce the carbon emissions of china to low the emission rate and contribute to the world.

Wang, Qiuxian; Gao, Zhiqiang; Ning, Jicai; Lu, Qing-shui; Shi, Runhe; Gao, Wei

2013-09-01

160

Deterministic Cold Cathode Electron Emission from Carbon Nanofibre Arrays  

PubMed Central

The ability to accurately design carbon nanofibre (CN) field emitters with predictable electron emission characteristics will enable their use as electron sources in various applications such as microwave amplifiers, electron microscopy, parallel beam electron lithography and advanced Xray sources. Here, highly uniform CN arrays of controlled diameter, pitch and length were fabricated using plasma enhanced chemical vapour deposition and their individual emission characteristics and field enhancement factors were probed using scanning anode field emission mapping. For a pitch of 10?µm and a CN length of 5?µm, the directly measured enhancement factors of individual CNs was 242, which was in excellent agreement with conventional geometry estimates (240). We show here direct empirical evidence that in regular arrays of vertically aligned CNs the overall enhancement factor is reduced when the pitch between emitters is less than half the emitter height, in accordance to our electrostatic simulations. Individual emitters showed narrow Gaussian-like field enhancement distributions, in excellent agreement with electric field simulations. PMID:24787895

Cole, Matthew T.; Teo, Kenneth B. K.; Groening, Oliver; Gangloff, Laurent; Legagneux, Pierre; Milne, William I.

2014-01-01

161

Deterministic cold cathode electron emission from carbon nanofibre arrays.  

PubMed

The ability to accurately design carbon nanofibre (CN) field emitters with predictable electron emission characteristics will enable their use as electron sources in various applications such as microwave amplifiers, electron microscopy, parallel beam electron lithography and advanced Xray sources. Here, highly uniform CN arrays of controlled diameter, pitch and length were fabricated using plasma enhanced chemical vapour deposition and their individual emission characteristics and field enhancement factors were probed using scanning anode field emission mapping. For a pitch of 10?µm and a CN length of 5?µm, the directly measured enhancement factors of individual CNs was 242, which was in excellent agreement with conventional geometry estimates (240). We show here direct empirical evidence that in regular arrays of vertically aligned CNs the overall enhancement factor is reduced when the pitch between emitters is less than half the emitter height, in accordance to our electrostatic simulations. Individual emitters showed narrow Gaussian-like field enhancement distributions, in excellent agreement with electric field simulations. PMID:24787895

Cole, Matthew T; Teo, Kenneth B K; Groening, Oliver; Gangloff, Laurent; Legagneux, Pierre; Milne, William I

2014-01-01

162

Estimated Carbon Dioxide Emissions in 2008: United States  

SciTech Connect

Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

Smith, C A; Simon, A J; Belles, R D

2011-04-01

163

Cumulative emission budgets and their implications: the case for SAFE carbon  

NASA Astrophysics Data System (ADS)

The risk of dangerous long-term climate change due to anthropogenic carbon dioxide emissions is predominantly determined by cumulative emissions over all time, not the rate of emission in any given year or commitment period. This has profound implications for climate mitigation policy: emission targets for specific years such as 2020 or 2050 provide no guarantee of meeting any overall cumulative emission budget. By focusing attention on short-term measures to reduce the flow of emissions, they may even exacerbate the overall long-term stock. Here we consider how climate policies might be designed explicitly to limit cumulative emissions to, for example, one trillion tonnes of carbon, a figure that has been estimated to give a most likely warming of two degrees above pre-industrial, with a likely range of 1.6-2.6 degrees. Three approaches are considered: tradable emission permits with the possibility of indefinite emission banking, carbon taxes explicitly linked to cumulative emissions and mandatory carbon sequestration. Framing mitigation policy around cumulative targets alleviates the apparent tension between climate protection and short-term consumption that bedevils any attempt to forge global agreement. We argue that the simplest and hence potentially the most effective approach might be a mandatory requirement on the fossil fuel industry to ensure that a steadily increasing fraction of fossil carbon extracted from the ground is artificially removed from the active carbon cycle through some form of sequestration. We define Sequestered Adequate Fraction of Extracted (SAFE) carbon as a source in which this sequestered fraction is anchored to cumulative emissions, increasing smoothly to reach 100% before we release the trillionth tonne. While adopting the use of SAFE carbon would increase the cost of fossil energy much as a system of emission permits or carbon taxes would, it could do so with much less explicit government intervention. We contrast this proposal with, for example, the WBGU budget approach which also recognises the importance of cumulative emissions, noting their different implications for global equity and development considerations. The implications of cumulative emissions for the issue of historical responsibility for adaptation costs will also be discussed.

Allen, Myles; Bowerman, Niel; Frame, David; Mason, Charles

2010-05-01

164

METHOD FOR MEASURING CARBON FIBER EMISSIONS FROM STATIONARY SOURCES  

EPA Science Inventory

Carbon fibers are highly conductive, lightweight and of small dimensions. When released as emissions from production, manufacturing, processing and disposal sources they may become airborne and disperse over wide areas. If they settle onto electronic or electrical components they...

165

Uncertainty in future carbon emissions : a preliminary exploration  

E-print Network

In order to analyze competing policy approaches for addressing global climate change, a wide variety of economic-energy models are used to project future carbon emissions under various policy scenarios. Due to uncertainties ...

Webster, Mort David.

166

Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 1, Summary: Draft  

SciTech Connect

Forests are a major source of carbon dioxide emissions in developing countries, in most cases far exceeding the emissions from the energy sector. To date, however, efforts at quantifying forestry emissions have produced a wide range of results. In order to assist policymakers in developing measures to reduce emissions` levels and to increase carbon sequestration, the Tropical Forest Research Network (F-7) has undertaken this effort to improve the precision of emissions estimates and to identify possible response options in the forestry sector. This paper summarizes the results of one component of this work. The Tropical Forest Research Network (F-7) was established in 1990 as part of the Intergovernmental Panel on Climate Change`s (IPCC) activities in examining growing emissions of greenhouse gases and their potential impact on the global climate. Unlike past methods, this study relied on a network of participants from developing countries to prepare estimates of carbon emissions. The participating countries -- Brazil, China, India, Indonesia, Malaysia, Mexico and Thailand -- currently represent an estimated two-thirds of the annual deforestation of closed moist forests. This study gives an estimate of 837 million tonnes of carbon emissions from deforestation and logging in the F-7 countries in 1990. A proportional projection of these estimates to the tropical biome shows that the total carbon emissions are between 1.1 and 1.7 billion tonnes of carbon, with a working average of 1.4 billion tonnes per year. This work also provides estimates of emissions and uptake from China, which past studies rarely have included. This summary will be followed by individual reports by each of the participating countries, which will include detailed evaluations of possible response options. Estimates for Nigeria are also under preparation.

Makundi, W.; Sathaye, J. [eds.; Cerutti, O.M.

1992-08-01

167

Carbon emissions and sequestration in forests: Case studies from seven developing countries  

SciTech Connect

Forests are a major source of carbon dioxide emissions in developing countries, in most cases far exceeding the emissions from the energy sector. To date, however, efforts at quantifying forestry emissions have produced a wide range of results. In order to assist policymakers in developing measures to reduce emissions' levels and to increase carbon sequestration, the Tropical Forest Research Network (F-7) has undertaken this effort to improve the precision of emissions estimates and to identify possible response options in the forestry sector. This paper summarizes the results of one component of this work. The Tropical Forest Research Network (F-7) was established in 1990 as part of the Intergovernmental Panel on Climate Change's (IPCC) activities in examining growing emissions of greenhouse gases and their potential impact on the global climate. Unlike past methods, this study relied on a network of participants from developing countries to prepare estimates of carbon emissions. The participating countries -- Brazil, China, India, Indonesia, Malaysia, Mexico and Thailand -- currently represent an estimated two-thirds of the annual deforestation of closed moist forests. This study gives an estimate of 837 million tonnes of carbon emissions from deforestation and logging in the F-7 countries in 1990. A proportional projection of these estimates to the tropical biome shows that the total carbon emissions are between 1.1 and 1.7 billion tonnes of carbon, with a working average of 1.4 billion tonnes per year. This work also provides estimates of emissions and uptake from China, which past studies rarely have included. This summary will be followed by individual reports by each of the participating countries, which will include detailed evaluations of possible response options. Estimates for Nigeria are also under preparation.

Makundi, W.; Sathaye, J. (eds.); Cerutti, O.M.

1992-08-01

168

Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands.  

PubMed

During the 1997/98 El Niño-induced drought peatland fires in Indonesia may have released 13-40% of the mean annual global carbon emissions from fossil fuels. One major unknown in current peatland emission estimations is how much peat is combusted by fire. Using a light detection and ranging data set acquired in Central Kalimantan, Borneo, in 2007, one year after the severe peatland fires of 2006, we determined an average burn scar depth of 0.33 +/- 0.18 m. Based on this result and the burned area determined from satellite imagery, we estimate that within the 2.79 million hectare study area 49.15 +/- 26.81 megatons of carbon were released during the 2006 El Niño episode. This represents 10-33% of all carbon emissions from transport for the European Community in the year 2006. These emissions, originating from a comparatively small area (approximately 13% of the Indonesian peatland area), underline the importance of peat fires in the context of green house gas emissions and global warming. In the past decade severe peat fires occurred during El Niño-induced droughts in 1997, 2002, 2004, 2006, and 2009. Currently, this important source of carbon emissions is not included in IPCC carbon accounting or in regional and global carbon emission models. Precise spatial measurements of peat combusted and potential avoided emissions in tropical peat swamp forests will also be required for future emission trading schemes in the framework of Reduced Emissions from Deforestation and Degradation in developing countries. PMID:19940252

Ballhorn, Uwe; Siegert, Florian; Mason, Mike; Limin, Suwido

2009-12-15

169

Field emission degradation of carbon nano-tubes  

Microsoft Academic Search

Carbon nanotubes (CNTs) are known for their excellent field emission characteristics and are considered as prima candidates as cold-cathode electron emitters. On the other hand, for these materials to be used in practical devices, such as pseudo spark switches, they need to be capable of operating for many hours without loosing the ability of field emission characteristics. In this work,

Ramesh Bokka; Hulya Kirkici

2010-01-01

170

Carbon sequestration and greenhouse gas emissions in urban turf  

Microsoft Academic Search

Undisturbed grasslands can sequester significant quantities of organic carbon (OC) in soils. Irrigation and fertilization enhance CO2 sequestration in managed turfgrass ecosystems but can also increase emissions of CO2 and other greenhouse gases (GHGs). To better understand the GHG balance of urban turf, we measured OC sequestration rates and emission of N2O (a GHG ? 300 times more effective than

Amy Townsend-Small; Claudia I. Czimczik

2010-01-01

171

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

Microsoft Academic Search

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950-2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to

Robert Joseph Andres; J. S. Gregg; London M Losey; Gregg Marland; Thomas A Boden

2011-01-01

172

Multi-layer carbon-based coatings for field emission  

DOEpatents

A multi-layer resistive carbon film field emitter device for cold cathode field emission applications is disclosed. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. 8 figs.

Sullivan, J.P.; Friedmann, T.A.

1998-10-13

173

Carbon dioxide emission during forest fires ignited by lightning  

E-print Network

In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

Pelc, Magdalena

2009-01-01

174

Assessing carbon dioxide emissions from energy use at a university  

Microsoft Academic Search

Purpose – The purpose of this paper is to assess the carbon dioxide emissions associated with electric, HVAC, and hot water use from a US university. Design\\/methodology\\/approach – First, the total on-campus electrical, natural gas and oil consumption for an entire year was assessed. For each category of energy use, the carbon associated with consumption of a single unit was

William Riddell; Krishan Kumar Bhatia; Matthew Parisi; Jessica Foote; John Imperatore III

2009-01-01

175

Carbon dioxide emission during forest fires ignited by lightning  

E-print Network

In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

Magdalena Pelc; Radoslaw Osuch

2009-03-31

176

Energy consumption and carbon emissions in a coastal city in China  

Microsoft Academic Search

Analyses of energy consumption and carbon emissions in Tianjin are ways to understand the dynamics of developing cities in China. Using carbon emission calculation methodology recommended by IPCC, the amount of energy consumption and carbon emissions in Tianjin were calculated from 1995 to 2007. The results showed that the energy consumption structure in Tianjin relied on coal. Annual carbon emission

Ma Chun; Ju Mei-ting; Zhang Xiao-chun; Li Hong-yuan

2011-01-01

177

Impacts of reducing shipboard NOx? and SOx? emissions on vessel performance  

E-print Network

The international maritime community has been experiencing tremendous pressures from environmental organizations to reduce the emissions footprint of their vessels. In the last decade, air emissions, including nitrogen ...

Caputo, Ronald J., Jr. (Ronald Joseph)

2010-01-01

178

Final Technical Report HFC Concrete: A Low-Ã?Â?Ã?Â?Ã?Â?Ã?­Ã?Â?Ã?¢Ã?Â?Ã?Â?Ã?Â?Ã?Energy, Carbon-Ã?Â?Ã?Â?Ã?Â?Ã?­Dioxide-Ã?Â?Ã?Â?Ã?Â?Ã?­Negative Solution for reducing Industrial Greenhouse Gas Emissions  

SciTech Connect

Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC-based concrete with HFC in infrastructure we can reduce energy use in concrete production by 70%, and reduce CO{sub 2} emissions by 98%; thus the potential to reduce the impact of building materials on global warming and climate change is highly significant. Low Temperature Solidification (LTS) is a breakthrough technology that enables the densification of inorganic materials via a hydrothermal process. The resulting product exhibits excellent control of chemistry and microstructure, to provide durability and mechanical performance that exceeds that of concrete or natural stone. The technology can be used in a wide range of applications including facade panels, interior tiles, roof tiles, countertops, and pre-cast concrete. Replacing traditional building materials and concrete in these applications will result in significant reduction in both energy consumption and CO{sub 2} emissions.

Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

2012-05-14

179

Carbon dioxide emissions from international air freight  

NASA Astrophysics Data System (ADS)

Greenhouse gas emissions from international air transport were excluded from reduction targets under the Kyoto Protocol, partly because of difficulties with quantifying and apportioning such emissions. Although there has been a great deal of recent research into calculating emissions from aeroplane operations globally, publicly available emissions factors for air freight emissions are scarce. This paper presents a methodology to calculate the amount of fuel burnt and the resulting CO 2 emissions from New Zealand's internationally air freighted imports and exports in 2007. This methodology could be applied to other nations and/or regions. Using data on fuel uplift, air freight and air craft movements, and assumptions on mean passenger loadings and the mass of passengers and air freight, CO 2 emissions factors of 0.82 kg CO 2 per t-km and 0.69 kg CO 2 per t-km for short-haul and long-haul journeys, respectively, were calculated. The total amount of fuel consumed for the international air transport of New Zealand's imports and exports was calculated to be 0.21 Mt and 0.17 Mt respectively, with corresponding CO 2 emissions of 0.67 Mt and 0.53 Mt.

Howitt, Oliver J. A.; Carruthers, Michael A.; Smith, Inga J.; Rodger, Craig J.

2011-12-01

180

Improving farming practices reduces the carbon footprint of spring wheat production.  

PubMed

Wheat is one of the world's most favoured food sources, reaching millions of people on a daily basis. However, its production has climatic consequences. Fuel, inorganic fertilizers and pesticides used in wheat production emit greenhouse gases that can contribute negatively to climate change. It is unknown whether adopting alternative farming practices will increase crop yield while reducing carbon emissions. Here we quantify the carbon footprint of alternative wheat production systems suited to semiarid environments. We find that integrating improved farming practices (that is, fertilizing crops based on soil tests, reducing summerfallow frequencies and rotating cereals with grain legumes) lowers wheat carbon footprint effectively, averaging -256?kg CO2 eq?ha(-1) per year. For each kg of wheat grain produced, a net 0.027-0.377?kg CO2 eq is sequestered into the soil. With the suite of improved farming practices, wheat takes up more CO2 from the atmosphere than is actually emitted during its production. PMID:25405548

Gan, Yantai; Liang, Chang; Chai, Qiang; Lemke, Reynald L; Campbell, Con A; Zentner, Robert P

2014-01-01

181

Impact of European Emissions Trading System (EU-ETS) on carbon emissions and investment decisions in the power sector  

E-print Network

This masters thesis assesses the impact of a emissions trading on short-term carbon abatement and investment decisions in the power sector. Environmental benefits from carbon abatement due to emissions trading are quantified ...

Feilhauer, Stephan M. (Stephan Marvin)

2009-01-01

182

Waste management activities and carbon emissions in Africa.  

PubMed

This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries. PMID:20832276

Couth, R; Trois, C

2011-01-01

183

Historical warming reduced due to enhanced land carbon uptake  

PubMed Central

Previous studies have demonstrated the importance of enhanced vegetation growth under future elevated atmospheric CO2 for 21st century climate warming. Surprisingly no study has completed an analogous assessment for the historical period, during which emissions of greenhouse gases increased rapidly and land-use changes (LUC) dramatically altered terrestrial carbon sources and sinks. Using the Geophysical Fluid Dynamics Laboratory comprehensive Earth System Model ESM2G and a reconstruction of the LUC, we estimate that enhanced vegetation growth has lowered the historical atmospheric CO2 concentration by 85 ppm, avoiding an additional 0.31 ± 0.06 °C warming. We demonstrate that without enhanced vegetation growth the total residual terrestrial carbon flux (i.e., the net land flux minus LUC flux) would be a source of 65–82 Gt of carbon (GtC) to atmosphere instead of the historical residual carbon sink of 186–192 GtC, a carbon saving of 251–274 GtC. PMID:24062452

Shevliakova, Elena; Stouffer, Ronald J.; Malyshev, Sergey; Krasting, John P.; Hurtt, George C.; Pacala, Stephen W.

2013-01-01

184

Hynol: An economic process for methanol production from biomass and natural gas with reduced CO2 emission  

Microsoft Academic Search

The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (1) hydrogasification of biomass, (2) steam reforming of the produced gas with additional natural gas feedstock, and (3) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps.

M. Steinberg; Yuanji Dong

1993-01-01

185

RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions  

SciTech Connect

In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants--those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of the 2006 initiative, ITP has expanded the effort in 2007 with the goal of conducting 250 more asse

Wright, Anthony L [ORNL; Martin, Michaela A [ORNL; Gemmer, Bob [U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Scheihing, Paul [U.S. Department of Energy, Industrial Technologies Program; Quinn, James [U.S. Department of Energy

2007-09-01

186

Propagation of uncertainty in carbon emission scenarios through the global carbon cycle  

SciTech Connect

The authors used the GLOCO model, which is a carbon cycling model that considers seven terrestrial biomes, two oceans and one atmosphere, to evaluate the rise in atmospheric CO[sub 2] concentration, (pCO[sub 2]) and the partitioning of carbon to the global compartments (ocean, atmosphere and terrestrial) as a function of time for a number of possible anthropogenic carbon emission scenarios, based on different energy policies as developed by the Energy Modeling Forum (EMF-12). The authors then evaluated the possible uncertainty in carbon emission scenarios and the propagation of this uncertainty in carbon emission scenarios and the propagation of this uncertainty throughout the model to obtain an envelope for the rise in pCO[sub 2]. Large fluctuations in the input signal are smoothed by the carbon cycle, resulting in more than a four-fold reduction in uncertainty in the output signal (pCO[sub 2]). In addition, they looked at the effect that other model variables have on the pCO[sub 2] envelope, specifically the ratio of carbon to nitrogen in the emissions. The carbon to nitrogen ratio (C:N) will vary throughout the next century depending on the mix on energy sources chosen. More nitrogen in the emissions can produce a cofertilization effect in the terrestrial biomes, which would lead to sequestration of additional carbon. The uncertainty in C:N will enlarge the pCO[sub 2] uncertainty envelope by up to 20 ppm.

Keller, A.A.; Goldstein, R.A. (Electric Power Research Inst., Palo Alto, CA (United States))

1994-09-01

187

[Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].  

PubMed

Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects. PMID:17674718

Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong

2007-06-01

188

Hestia Software Measures Urban Carbon Dioxide Emissions  

NSDL National Science Digital Library

This short video describes the Hestia project - a software tool and data model that provide visualizations of localized CO2 emissions from residential, commercial, and vehicle levels, as well as day versus night comparisons, in the city of Indianapolis.

Gurney, Kevin; Sustainability, Asu G.

189

Carbon Dioxide Emission Factors for Coal  

EIA Publications

The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

1994-01-01

190

ASSESSMENT OF BUILDING LIFECYLE CARBON EMISSIONS  

E-print Network

debris which is deposited into landfills. While some of the debris can be reused, recycled, and used as biomass fuel for energy. Building operations consume significant amounts of energy, but there are only a few comprehensive studies that estimate carbon...

Kwok, George

2014-05-31

191

Green emission in carbon doped ZnO films  

NASA Astrophysics Data System (ADS)

The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60-100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR) and low temperature photoluminescence (PL) measurement.

Tseng, L. T.; Yi, J. B.; Zhang, X. Y.; Xing, G. Z.; Fan, H. M.; Herng, T. S.; Luo, X.; Ionescu, M.; Ding, J.; Li, S.

2014-06-01

192

Arctic is especially sensitive to nearby black carbon emissions  

NASA Astrophysics Data System (ADS)

Black carbon, also known as soot, emitted from combustion of fuels and biomass burning absorbs solar radiation in the atmosphere and is one of the major causes of global warming, after carbon dioxide emissions. When black carbon is deposited on snow and ice, the soot-covered snow or ice absorbs more sunlight, leading to surface warming. Due to the large amount of snow and ice in the Arctic—which has warmed twice as fast as the global average over the past century—the region is likely to be especially sensitive to black carbon.

Balcerak, Ernie

2013-09-01

193

The cost-effectiveness of remote sensing and repair in reducing motor vehicle nitrogen oxide emissions  

SciTech Connect

Ozone and carbon monoxide remain serious air quality problems in many urban areas throughout the US, and motor vehicles are significant contributors. In response to these problems, the 1990 Clean Air Act Amendments required many areas of the country to implement motor vehicle inspection and maintenance (I/M) programs and adopt the use of reformulated gasoline. These programs have not been well received by the general public, and their effectiveness is currently a source of debate in the scientific community. On-road, remote sensing studies of vehicle emissions have shown that vehicle emissions tend to follow a gamma distribution with up to 50% of vehicle emissions coming from only 10% of the vehicle fleet. Instead of subjecting all vehicles to a control program such as I/M or reformulated gas, it has been suggested that remote sensors could be used to identify high-emitting vehicles and target them for repair. Such remote sensing and repair (RS and R) programs have been shown to be cost-effective methods for reducing carbon monoxide and hydrocarbon emissions. It is not clear, however, if such a program would be a cost-effective method for controlling emissions of nitrogen oxides. In this paper, the authors evaluate the potential for using a NO{sub x}-RS and R program as an urban ozone control strategy in a NO{sub x}-limited airshed, specifically Charlotte, NC. They estimate the cost-effectiveness of a potential NO{sub x}-RS and R program and compare it to other NO{sub X} control strategies for mobile and point sources which have been proposed for Charlotte. RS and R is shown to be relatively expensive, but within the range of the cost effectiveness estimates for the control measures proposed for Charlotte. In the future as inexpensive control measures are exhausted and remote sensing technology improves, RS and R promises to be an excellent alternative for controlling NO{sub x} emissions.

Keating, T.J. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering; Taylor, J.D. [Hicks and Associates, Inc., Austin, TX (United States)

1997-12-31

194

A Survey of Studies of the Costs of Reducing Greenhouse Gas Emissions  

Microsoft Academic Search

This paper surveys various estimates of the macroeconomic implications of reducing greenhouse gas emissions. Most available studies focus on policies to reduce CO2 emissions and are limited to the costs of such policies. The survey first examines the key factors shaping baseline emission scenarios. It then looks at the aggregate cost of emission reductions, as shown by both global and

Peter Hoeller; Andrew Dean; Jon Nicolaisen

1990-01-01

195

On the potential economic costs of cutting carbon dioxide emissions in Portugal  

Microsoft Academic Search

The objective of this paper is to estimate the impact of reducing carbon dioxide emissions from fossil fuel combustion activities\\u000a on economic activity in Portugal. We find that energy consumption has a significant impact on macroeconomic activity. In fact,\\u000a a 1 ton of oil equivalent permanent reduction in aggregate energy consumption reduces output in the long term by €6,340. More\\u000a importantly,

Alfredo Marvão Pereira; Rui Manuel Marvão Pereira

2010-01-01

196

New York MARKAL: An evaluation of carbon dioxide emission control strategies in New York State  

SciTech Connect

A MARKAL model was developed for the State of New York. It represents the State`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO2 emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO2 emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

Hamilton, L.D.

1992-12-31

197

Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.  

PubMed

It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures. PMID:24328147

Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

2014-01-01

198

Carbon emission trading system of China: a linked market vs. separated markets  

NASA Astrophysics Data System (ADS)

The Chinese government intends to upgrade its current provincial carbon emission trading pilots to a nationwide scheme by 2015. This study investigates two of scenarios: separated provincial markets and a linked inter-provincial market. The carbon abatement effects of separated and linked markets are compared using two pilot provinces of Hubei and Guangdong based on a computable general equilibrium model termed Sino-TERMCo2. Simulation results show that the linked market can improve social welfare and reduce carbon emission intensity for the nation as well as for the Hubei-Guangdong bloc compared to the separated market. However, the combined system also distributes welfare more unevenly and thus increases social inequity. On the policy ground, the current results suggest that a well-constructed, nationwide carbon market complemented with adequate welfare transfer policies can be employed to replace the current top-down abatement target disaggregation practice.

Liu, Yu; Feng, Shenghao; Cai, Songfeng; Zhang, Yaxiong; Zhou, Xiang; Chen, Yanbin; Chen, Zhanming

2013-12-01

199

Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use.  

PubMed

Treatment of primarily-domestic sewage wastewater involves on-site greenhouse gas (GHG) emissions due to energy inputs, organic matter degradation and biological nutrient removal (BNR). BNR causes both direct emissions and loss of fertilizer value, thus eliminating possible reduction of emissions caused by fertilizer manufacture. In this study, we estimated on-site GHG emissions under different treatment scenarios, and present options for emission reduction by changing treatment methods, avoiding BNR and by recovering energy from biogas. Given a typical Israeli wastewater strength (1050mg CODl(-1)), the direct on-site GHG emissions due to energy use were estimated at 1618 and 2102g CO(2)-eq m(-3), respectively, at intermediate and tertiary treatment levels. A potential reduction of approximately 23-55% in GHG emissions could be achieved by fertilizer preservation and VS conversion to biogas. Wastewater fertilizers constituted a GHG abatement potential of 342g CO(2)-eq m(-3). The residual component that remained in the wastewater effluent following intermediate (oxidation ponds) and enhanced (mechanical-biological) treatments was 304-254g CO(2)-eq m(-3) and 65-34g CO(2)-eq m(-3), respectively. Raw sludge constituted approximately 47% of the overall wastewater fertilizers load with an abatement potential of 150g CO(2)-eq m(-3) (385kg CO(2)-eq dry tonne(-1)). Inasmuch as anaerobic digestion reduced it to 63g CO(2)-eq m(-3) (261kg CO(2)-eq dry tonne(-1)), the GHG abatement gained through renewable biogas energy (approx. 428g CO(2)-eq m(-3)) favored digestion. However, sludge composting reduced the fertilizer value to 17g CO(2)-eq m(-3) (121kg CO(2)-eq dry tonne(-1)) or less (if emissions, off-site inputs and actual phytoavailability were considered). Taking Israel as an example, fully exploiting the wastewater derived GHG abatement potential could reduce the State overall GHG emissions by almost 1%. This demonstrates the possibility of optional carbon credits which might be exploited in the construction of new wastewater treatment facilities, especially in developing countries. PMID:22209373

Fine, Pinchas; Hadas, Efrat

2012-02-01

200

Synthesis and thermionic emission properties of graphitic carbon nanofibres supported on Si wafers or carbon felt  

NASA Astrophysics Data System (ADS)

Preparation procedures and thermionic emission properties of graphitic carbon nanofibres (GCNFs) supported on Si wafer or commercial carbon felt supports are reported. GCNF/native-oxide Si wafer, GCNF/oxidized Si wafer, GCNF/Ni-coated Si wafer and GCNF/carbon felt nanocomposites are obtained by growing GCNFs from growth catalyst nanoparticles supported on these supports. Narrow herringbone GCNF/SiO2/carbon felt mats are prepared from growth catalyst nanoparticles supported on fumed silica flakes. Due to weak GCNF-to-support binding in GCNF/Si wafer mats, GCNF/carbon felt mats and GCNF/SiO2/carbon felt mats, mechanical loss of the GCNF component is facile. However, carbothermal reduction of GCNF/SiO2/carbon felt nanocomposites affords mechanically robust GCNF/SiC/carbon felt mats. Thermionic electron energy distribution profiles recorded for these new nanofibre compositions indicate classic free-electron emission with estimated work functions (4.25-4.91 eV) slightly lower than those observed for un-doped graphite or carbon nanotubes. Electron energy distributions along the low energy leading region of the profiles display a cascade of emission peaks equally spaced by ca 0.014 eV, tentatively attributed to electron emission from localized GCNF edge sites.

Li, Jiang; Robinson, Vance S.; Liu, Yang; Lu, Weijie; Fisher, Timothy S.; Lukehart, Charles M.

2007-08-01

201

Self-organized global control of carbon emissions  

NASA Astrophysics Data System (ADS)

There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative carbon emissions market.

Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.

2010-09-01

202

Carbon emissions from spring 1998 fires in tropical Mexico  

SciTech Connect

The authors used NOAA-AVHRR satellite imagery, biomass density maps, fuel consumption estimates, and a carbon emission factor to estimate the total carbon (C) emissions from the Spring 1998 fires in tropical Mexico. All eight states in southeast Mexico were affected by the wildfires, although the activity was concentrated near the common border of Oaxaca, Chiapas, and Veracruz. The fires burned approximately 482,000 ha and the land use/land cover classes most extensively impacted were the tall/medium selvas (tropical evergreen forests), open/fragmented forests, and perturbed areas. The total prompt emissions were 4.6 TgC during the two-month period of the authors` study, contributing an additional 24% to the region`s average annual net C emissions from forestry and land-use change. Mexico in 1998 experienced its driest Spring since 1941, setting the stage for the widespread burning.

Cairns, M.A.; Hao, W.M.; Alvarado, E.; Haggerty, P.K.

1999-04-01

203

Carbon-containing cathodes for enhanced electron emission  

DOEpatents

A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.

Cao, Renyu (Cupertino, CA); Pan, Lawrence (Pleasanton, CA); Vergara, German (Madrid, ES); Fox, Ciaran (Los Altos, CA)

2000-01-01

204

Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing.  

PubMed

The Alberta oil sands are a significant source of oil production and greenhouse gas emissions, and their importance will grow as the region is poised for decades of growth. We present an integrated framework that simultaneously considers economic and engineering decisions for the capture, transport, and storage of oil sands CO(2) emissions. The model optimizes CO(2) management infrastructure at a variety of carbon prices for the oil sands industry. Our study reveals several key findings. We find that the oil sands industry lends itself well to development of CO(2) trunk lines due to geographic coincidence of sources and sinks. This reduces the relative importance of transport costs compared to nonintegrated transport systems. Also, the amount of managed oil sands CO(2) emissions, and therefore the CCS infrastructure, is very sensitive to the carbon price; significant capture and storage occurs only above 110$/tonne CO(2) in our simulations. Deployment of infrastructure is also sensitive to CO(2) capture decisions and technology, particularly the fraction of capturable CO(2) from oil sands upgrading and steam generation facilities. The framework will help stakeholders and policy makers understand how CCS infrastructure, including an extensive pipeline system, can be safely and cost-effectively deployed. PMID:23276202

Middleton, Richard S; Brandt, Adam R

2013-02-01

205

Improved field emission of electrons from ion irradiated carbon  

SciTech Connect

Electron field emission from allotropes of carbon (graphite, diamondlike carbon, and diamond) have been reported many times in the literature. This work explores the use of ion irradiation for improving electron field emission from carbon fibers. Carbon fibers have been irradiated with H, C, Ar, and Xe ions. Field emission characteristics have been measured as a function of ion dose. A reversible reduction in the required field for a fixed current level has been observed. The critical dose, D{sub c}, defines the dose corresponding to the lowest field necessary to emit a fixed current (5 {mu}A). The critical dose appears to correlate with the nuclear energy loss (collisions with atoms) of the ion in the carbon fiber. Transmission electron microscopy and parallel electron energy loss spectroscopy analysis indicate an amorphous surface, and an increase in the sp{sup 3} content of the fiber surface to 20{percent}{endash}30{percent}. A corresponding decrease in the work function is expected and may account for the improvement in electron emission. {copyright} {ital 1997 American Institute of Physics.}

Walter, K.C.; Kung, H.H.; Maggiore, C.J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

1997-09-01

206

Electricity generation: options for reduction in carbon emissions.  

PubMed

Historically, the bulk production of electricity has been achieved by burning fossil fuels, with unavoidable gaseous emissions, including large quantities of carbon dioxide: an average-sized modern coal-burning power station is responsible for more than 10 Mt of CO(2) each year. This paper details typical emissions from present-day power stations and discusses the options for their reduction. Acknowledging that the cuts achieved in the past decade in the UK CO(2) emissions have been achieved largely by fuel switching, the remaining possibilities offered by this method are discussed. Switching to less-polluting fossil fuels will achieve some measure of reduction, but the basic problem of CO(2) emissions continues. Of the alternatives to fossil fuels, only nuclear power represents a zero-carbon large-scale energy source. Unfortunately, public concerns over safety and radioactive waste have still to be assuaged. Other approaches include the application of improved combustion technology, the removal of harmful gases from power-station flues and the use of waste heat to improve overall power-station efficiency. These all have a part to play, but many consider our best hope for emissions reduction to be the use of renewable energy. The main renewable energy contenders are assessed in this paper and realistic estimates of the contribution that each could provide are indicated. It appears that, in the time-scale envisaged by planners for reduction in CO(2) emission, in many countries renewable energy will be unlikely to deliver. At the same time, it is worth commenting that, again in many countries, the level of penetration of renewable energy will fall short of the present somewhat optimistic targets. Of renewable options, wind energy could be used in the short to medium term to cover for thermal plant closures, but for wind energy to be successful, the network will have to be modified to cope with wind's intermittent nature. Globally, hydroelectricity is currently the largest developed source of renewable electricity, but future large-scale projects will probably be limited to the less-developed world: the best schemes in the developed countries have already been exploited. Wave and tidal can be looked on as medium- to long-term generators of electricity, as their respective industries are not as mature as competing renewable resources. Municipal solid-waste combustion and landfill gas technologies can also be seen as short term, as can their rural equivalents, agriculture and forestry waste. Any widespread exploitation of renewable energy will depend on being able to transmit the energy from source to point of use, so the implications for the electrical network from the penetration of substantial levels of renewable energy are presented. Effective management of renewable energy installations will require technical assessment of the range of exploitation strategies, to compare local production of, say, hydrogen and the more traditional transmission of electricity. Such resources will have to compete with others in any national, or grid, system and detailed economic analysis will be necessary to determine the deployment that best fits the trading regime under which the energy will be sold. Consideration will also be necessary to determine how best to control the introduction of this radically new resource such that it does not attract punitive cost overheads until it is mature enough to cope. Finally, it is inescapable that nuclear power is a proven technology that could take its place in any future generation portfolio. Unfortunately, suspicion and mistrust surround waste management and radioactivity release. Unless this is overcome, the lack of confidence engendered by this public mistrust may result in few, if any, new nuclear power stations being built. In the event of that decision, it is difficult to see how CO(2) levels can be significantly reduced: the irony is that nuclear energy may emerge as environmentally essential. PMID:12460490

Whittington, H W

2002-08-15

207

Carbon Dioxide Emissions From Fossil-Fuel Consumption in Indonesia  

Microsoft Academic Search

Applying monthly sales and consumption data of coal, petroleum and natural gas, a monthly time series of carbon dioxide emissions from fossil-fuel consumption is created for Indonesia. These are then modeled with an autoregressive function to produce a quantitative description of the seasonal distribution and long-term pattern of CO2 emissions. Currently, Indonesia holds the 21st ranked position in total anthropogenic

J. S. Gregg; A. J. Robert

2005-01-01

208

Carbon dioxide emissions from fossil-fuel use, 1751 1950  

Microsoft Academic Search

Newly compiled energy statistics allow for an estimation of the complete time series of carbon dioxide (CO2) emissions from fossil-fuel use for the years 1751 to the present. The time series begins with 3×106 metric tonnes carbon (C). This initial flux represents the early stages of the fossil-fuel era. The CO2 flux increased exponentially until World War I. The time

R. J. Andres; D. J. Fielding; G. Marland; T. A. Boden; N. Kumar; A. T. Kearney

1999-01-01

209

Monthly carbon emissions from natural-gas flaring and cement manufacture in the United States  

Microsoft Academic Search

Annual data on carbon emissions from fossil-fuel combustion and cement manufacture have been used in studies of the carbon cycle for the last few decades. However, annual data do not specify carbon emissions on the seasonal timescales relevant to biospheric uptake and other processes affecting the carbon cycle. Estimates of monthly emissions from fossil-fuel consumption in the United States (US)

T. J. Blasing; Kimberly Hand

2007-01-01

210

The travel-related carbon dioxide emissions of atmospheric researchers  

NASA Astrophysics Data System (ADS)

Most atmospheric scientists agree that greenhouse gas emissions have already caused significant changes to the global climate system and that these changes will accelerate in the near future. At the same time, atmospheric scientists who - like other scientists - rely on international collaboration and information exchange travel a lot and, thereby, cause substantial emissions of carbon dioxide (CO2). In this paper, the CO2 emissions of the employees working at an atmospheric research institute (the Norwegian Institute for Air Research, NILU) caused by all types of business travel (conference visits, workshops, field campaigns, instrument maintainance, etc.) were calculated for the years 2005-2007. It is estimated that more than 90% of the emissions were caused by air travel, 3% by ground travel and 5% by hotel usage. The travel-related annual emissions were between 1.9 and 2.4 t CO2 per employee or between 3.9 and 5.5 t CO2 per scientist. For comparison, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5.9 t for Sweden and 19.1 t for Norway. The travel-related CO2 emissions of a NILU scientist, occurring in 24 days of a year on average, exceed the global average annual per capita emission. Norway's per-capita CO2 emissions are among the highest in the world, mostly because of the emissions from the oil industry. If the emissions per NILU scientist derived in this paper are taken as representative for the average Norwegian researcher, travel by Norwegian scientists would nevertheless account for a substantial 0.2% of Norway's total CO2 emissions. Since most of the travel-related emissions are due to air travel, water vapor emissions, ozone production and contrail formation further increase the relative importance of NILU's travel in terms of radiative forcing.

Stohl, A.

2008-04-01

211

Estimating Global "Blue Carbon" Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems  

PubMed Central

Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats. PMID:22962585

Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone; Marba, Nuria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

2012-01-01

212

High-resolution mapping of motor vehicle carbon dioxide emissions  

NASA Astrophysics Data System (ADS)

fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of ~5 years, highlighting the importance of timely updates to motor vehicle emission inventories.

McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.

2014-05-01

213

Estakhri and Saylak 1 Potential for Reduced Greenhouse Gas Emissions in Texas Through the Use of  

E-print Network

of the greenhouse gas carbon dioxide (CO2). Besides other raw materials, each ton of portland cement requires per cent of CO2 emissions come from the combustion of fossil fuels, and approximately 30% of those emissions are from the transportation sector. The next largest source of CO2 emissions is from

214

China's Energy and Carbon Emissions Outlook to 2050  

E-print Network

LBNL-4472E China's Energy and Carbon Emissions Outlook to 2050 Nan Zhou, David Fridley, Michael McNeil, Nina Zheng, Jing Ke, and Mark Levine China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory April 2011 This work was supported by the China

215

Barnsley Biomass Working towards carbon emissions reduction in Yorkshire  

E-print Network

Barnsley Biomass Working towards carbon emissions reduction in Yorkshire objectives Fifteen years Yorkshire town are being replaced by a cleaner, green alternative: biomass. Barnsley's Communal Biomass on to residents. · To increase energy efficiency. · To develop biomass usage in new and refurbished public

216

Direct carbon emissions from Canadian forest fires, 1959-1999  

Microsoft Academic Search

Direct emissions of carbon from Canadian forest fires were estimated for all Canada and for each ecozone for the period 1959-1999. The estimates were based on a data base of large fires for the country and calculations of fuel consumption for each fire using the Canadian Forest Fire Behaviour Prediction System. This technique used the fire locations and start dates

B. D. Amiro; J. B. Todd; B. M. Wotton; K. A. Logan; M. D. Flannigan; B. J. Stocks; J. A. Mason; D. L. Martell; K. G. Hirsch

2001-01-01

217

PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends.  

PubMed

Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions. PMID:20307928

Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn

2010-07-15

218

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

SciTech Connect

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

2011-01-01

219

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

NASA Astrophysics Data System (ADS)

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950-2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, R. J.; Gregg, J. S.; Losey, L.; Marland, G.; Boden, T. A.

2011-07-01

220

Managing carbon emissions in China through building energy efficiency.  

PubMed

This paper attempts to analyse the role of building energy efficiency (BEE) in China in addressing climate change mitigation. It provides an analysis of the current situation and future prospects for the adoption of BEE technologies in Chinese cities. It outlines the economic and institutional barriers to large-scale deployment of the sustainable, low-carbon, and even carbon-free construction techniques. Based on a comprehensive overview of energy demand characteristics and development trends driven by economic and demographic growth, different policy tools for cost-effective CO(2) emission reduction in the Chinese construction sector are described. We propose a comprehensive approach combining building design and construction, and the urban planning and building material industries, in order to drastically improve BEE during this period of rapid urban development. A coherent institutional framework needs to be established to ensure the implementation of efficiency policies. Regulatory and incentive options should be integrated into the policy portfolios of BEE to minimise the efficiency gap and to realise sizeable carbon emissions cuts in the next decades. We analyse in detail several policies and instruments, and formulate relevant policy proposals fostering low-carbon construction technology in China. Specifically, Our analysis shows that improving building energy efficiency can generate considerable carbon emissions reduction credits with competitive price under the CDM framework. PMID:19344996

Li, Jun; Colombier, Michel

2009-06-01

221

Seasonal Odor, Ammonia, Hydrogen Sulfide, and Carbon Dioxide Concentrations and Emissions from Swine Grower-Finisher Rooms  

Microsoft Academic Search

Seasonal odor and gas (ammonia [NH3], hydrogen sulfide [H2S], and carbon dioxide [CO2]) concentrations and emission rates (OGCERs) from swine facilities are vital for providing accurate source emissions and reducing the uncertainty of setback distances on the basis of emission data. In this study, a repeated measurement experimental method and a split-block statistical model were used to obtain seasonal OGCER

Gang Sun; Huiqing Guo; Jonathan Peterson; Glauber Mariano; Ani Torres; Wellington Jesus; Walter Nakaema; Maria Jorge; Rauda Mariani; Klara Slezakova; Dionísia Castro; Maria Pereira; Simone Morais; Cristina Delerue-Matos; Maria Alvim-Ferraz; Catherine Barton; Charles Zarzecki; Mark Russell; Marjaleena Aatamila; Pia Verkasalo; Maarit Korhonen; Marja Viluksela; Kari Pasanen; Pekka Tiittanen; Aino Nevalainen; Li Rong; Peter Nielsen; Guoqiang Zhang; Yi-Ming Kuo; Juu-En Chang; Kun-Yu Chang; Chih-C. Chao; Yeu-Juin Tuan; Guo-Ping Chang-Chien; Yongping Li; Guohe Huang; Arhontoula Chatzilazarou; Evangelos Katsoyannos; Olga Gortzi; Stavros Lalas; Yiannis Paraskevopoulos; Euthalia Dourtoglou; John Tsaknis; Tarek Abichou; Jeremy Clark; Sze Tan; Jeffery Chanton; Gary Hater; Roger Green; Doug Goldsmith; Morton Barlaz; Nathan Swan; Zhengmin Qian; Hung-Mo Lin; Walter Stewart; Nirav Shah; Linli Kong; Fen Xu; Denjin Zhou; Zhicao Zhu; Qingci He; Shengwen Liang; Weiqing Chen; Chungsying Lu; Hsunling Bai; Fengsheng Su; Wenfa Chen; Jyh Hwang; Hsiu-Hsia Lee; Judith Chow; John Watson; Douglas Lowenthal; Lung-Wen Chen; Nehzat Motallebi

2010-01-01

222

Analysis of carbon dioxide emission of gas fuelled cogeneration plant  

NASA Astrophysics Data System (ADS)

Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

Nordin, Adzuieen; Amin, M.; Majid, A.

2013-12-01

223

Stable carbon isotope fractionation by sulfate-reducing bacteria  

NASA Technical Reports Server (NTRS)

Biogeochemical transformations occurring in the anoxic zones of stratified sedimentary microbial communities can profoundly influence the isotopic and organic signatures preserved in the fossil record. Accordingly, we have determined carbon isotope discrimination that is associated with both heterotrophic and lithotrophic growth of pure cultures of sulfate-reducing bacteria (SRB). For heterotrophic-growth experiments, substrate consumption was monitored to completion. Sealed vessels containing SRB cultures were harvested at different time intervals, and delta(13)C values were determined for gaseous CO(2), organic substrates, and products such as biomass. For three of the four SRB, carbon isotope effects between the substrates, acetate or lactate and CO(2), and the cell biomass were small, ranging from 0 to 2 per thousand. However, for Desulfotomaculum acetoxidans, the carbon incorporated into biomass was isotopically heavier than the available substrates by 8 to 9 per thousand. SRB grown lithoautotrophically consumed less than 3% of the available CO(2) and exhibited substantial discrimination (calculated as isotope fractionation factors [alpha]), as follows: for Desulfobacterium autotrophicum, alpha values ranged from 1.0100 to 1.0123; for Desulfobacter hydrogenophilus, the alpha value was 0.0138, and for Desulfotomaculum acetoxidans, the alpha value was 1.0310. Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO(2) resulted in biomass with a delta(13)C composition intermediate to that of the substrates. The extent of fractionation depended on which enzymatic pathways were used, the direction in which the pathways operated, and the growth rate, but fractionation was not dependent on the growth phase. To the extent that environmental conditions affect the availability of organic substrates (e.g., acetate) and reducing power (e.g., H(2)), ecological forces can also influence carbon isotope discrimination by SRB.

Londry, Kathleen L.; Des Marais, David J.

2003-01-01

224

Temperature response to an emission of carbon dioxide today  

NASA Astrophysics Data System (ADS)

It is well known that carbon dioxide (CO2) emissions cause the Earth to warm, but there is substantial uncertainty in just how much warming will be caused by any particular CO2 emission. Here, by combining the results of a carbon-cycle model intercomparison project (Joos et al, 2013) and CMIP5 physical-climate model intercomparison project (Taylor et al, 2012), we estimate the amount and timing of warming caused by an individual CO2 emission occurring today. We quantify the uncertainty in these estimates, portioning it into three different contributing factors: the carbon cycle response, climate sensitivity and ocean thermal inertia. We find that uncertainty in equilibrium climate sensitivity is the largest contributor to aggregate uncertainty in the temperature change resulting from a CO2 emission, but carbon-cycle uncertainties and uncertainty in the thermal inertia of the climate system also play important roles. The time interval between an emission and maximum warming is estimated to have a median value of 10 years, with a likely (66% probability) range of 8 to 18 years. The amount of maximum warming is estimated to have a maximum value of 2.2 mK GtC-1, with a likely range of 1.8 to 2.6 mK GtC-1. Thus, the greatest warming from a typical emission today is likely to occur during the lifetime of the person doing the emitting. Our analysis provides an approximation of the time series for incremental warming caused by CO2 emitted today that spans the uncertainty range of model results, yet is simple enough to be employed in a broad range of climate change assessment applications.

Ricke, Katharine; Caldeira, Ken

2014-05-01

225

Is fuel-switching a no-regrets environmental policy? VAR evidence on carbon dioxide emissions, energy consumption and economic performance in Portugal  

Microsoft Academic Search

The objective of this paper is to estimate the impact of carbon dioxide emissions from fossil fuel combustion activities on economic activity in Portugal in order to evaluate the economic costs of policies designed to reduce carbon dioxide emissions. We find that energy consumption has a significant impact on macroeconomic activity. In fact, a one ton of oil equivalent permanent

Alfredo Marvão Pereira; Rui Manuel Marvão Pereira

2010-01-01

226

Is Fuel-Switching a No-Regrets Environmental Policy? VAR Evidence on Carbon Dioxide Emissions, Energy Consumption and Economic Performance in Portugal  

Microsoft Academic Search

The objective of this paper is to estimate the impact of carbon dioxide emissions from fossil fuel combustion activities on economic activity in Portugal in order to evaluate the economic costs of policies designed to reduce carbon dioxide emissions. We find that energy consumption has a significant impact on macroeconomic activity. In fact, a one ton of oil equivalent permanent

Alfredo Marvão Pereira; Rui Manuel Marvão Pereira

2008-01-01

227

Is Fuel-Switching a No-Regrets Environmental Policy? VAR Evidence on Carbon Dioxide Emissions, Energy Consumption and Economic Performance in Portugal  

Microsoft Academic Search

The objective of this paper is to estimate the impact of carbon dioxide emissions from fossil fuel combustion activities on economic activity in Portugal in order to evaluate the economic costs of policies designed to reduce carbon dioxide emissions. We find that energy consumption has a significant impact on macroeconomic activity. In fact, a one ton of oil equivalent permanent

Alfredo M. Pereira; Rui Manuel Marvão Pereira

2009-01-01

228

Shade trees reduce building energy use and CO2 emissions from power plants.  

PubMed

Urban shade trees offer significant benefits in reducing building air-conditioning demand and improving urban air quality by reducing smog. The savings associated with these benefits vary by climate region and can be up to $200 per tree. The cost of planting trees and maintaining them can vary from $10 to $500 per tree. Tree-planting programs can be designed to have lower costs so that they offer potential savings to communities that plant trees. Our calculations suggest that urban trees play a major role in sequestering CO2 and thereby delay global warming. We estimate that a tree planted in Los Angeles avoids the combustion of 18 kg of carbon annually, even though it sequesters only 4.5-11 kg (as it would if growing in a forest). In this sense, one shade tree in Los Angeles is equivalent to three to five forest trees. In a recent analysis for Baton Rouge, Sacramento, and Salt Lake City, we estimated that planting an average of four shade trees per house (each with a top view cross section of 50 m2) would lead to an annual reduction in carbon emissions from power plants of 16,000, 41,000, and 9000 t, respectively (the per-tree reduction in carbon emissions is about 10-11 kg per year). These reductions only account for the direct reduction in the net cooling- and heating-energy use of buildings. Once the impact of the community cooling is included, these savings are increased by at least 25%. PMID:11833899

Akbari, H

2002-01-01

229

Shade trees reduce building energy use and CO2 emissions from power plants  

SciTech Connect

Urban shade trees offer significant benefits in reducing building air-conditioning demand and improving urban air quality by reducing smog. The savings associated with these benefits vary by climate region and can be up to $200 per tree. The cost of planting trees and maintaining them can vary from $10 to $500 per tree. Tree-planting programs can be designed to have lower costs so that they offer potential savings to communities that plant trees. Our calculations suggest that urban trees play a major role in sequestering C02 and thereby delay global warming. We estimate that a tree planted in Los Angeles avoids the combustion of 18 kg of carbon annually, even though it sequesters only 4.5-11 kg (as it would if growing in a forest). In this sense, one shade tree in Los Angeles is equivalent to three to five forest trees. In a recent analysis for Baton Rouge, Sacramento, and Salt Lake City, we estimated that planting an average of four shade trees per house (each with a top view cross section of 50 m2) would lead to an annual reduction in carbon emissions from power plants of 16,000, 41,000, and 9000 t, respectively (the per-tree reduction in carbon emissions is about 10-11 kg per year). These reductions only account for the direct reduction in the net cooling- and heating-energy use of buildings. Once the impact of the community cooling is included, these savings are increased by at least 25 percent.

Akbari, H.

2001-11-01

230

Reducing U.S. residential energy use and CO2 emissions: how much, how soon, and at what cost?  

PubMed

There is growing interest in reducing energy use and emissions of carbon dioxide from the residential sector by deploying cost-effectiveness energy efficiency measures. However, there is still large uncertainty about the magnitude of the reductions that could be achieved by pursuing different energy efficiency measures across the nation. Using detailed estimates of the current inventory and performance of major appliances in U.S. homes, we model the cost, energy, and CO2 emissions reduction if they were replaced with alternatives that consume less energy or emit less CO2. We explore trade-offs between reducing CO2, reducing primary or final energy, or electricity consumption. We explore switching between electricity and direct fuel use, and among fuels. The trade-offs between different energy efficiency policy goals, as well as the environmental metrics used, are important but have been largely unexplored by previous energy modelers and policy-makers. We find that overnight replacement of the full stock of major residential appliances sets an upper bound of just over 710 × 10(6) tonnes/year of CO2 or a 56% reduction from baseline residential emissions. However, a policy designed instead to minimize primary energy consumption instead of CO2 emissions will achieve a 48% reduction in annual carbon dioxide emissions from the nine largest energy consuming residential end-uses. Thus, we explore the uncertainty regarding the main assumptions and different policy goals in a detailed sensitivity analysis. PMID:23398047

Lima Azevedo, Inês; Morgan, M Granger; Palmer, Karen; Lave, Lester B

2013-03-19

231

Carbon dioxide and methane emission dynamics in central London (UK)  

NASA Astrophysics Data System (ADS)

London, with a population of 8.2 million, is the largest city in Europe. It is heavily built-up (typically 8% vegetation cover within the central boroughs) and boasts some of the busiest arteries in Europe despite efforts to reduce traffic in the city centre with the introduction of a congestion charging scheme in 2007. We report on two substantial pollution monitoring efforts in the heart of London between October 2006 and present. Fluxes of carbon dioxide (CO2) and water (H2O) were measured continuously by eddy-covariance in central London from October 2006 until May 2008 from a 190 m telecommunication tower (BT tower; 51° 31' 17.4'' N 0° 8' 20.04'' W). The eddy-covariance system consisted of a Gill R3-50 ultrasonic anemometer operated at 20 Hz and a LI-COR 6262 infrared gas analyser. Air was sampled 0.3 m below the sensor head of the ultrasonic anemometer - which was itself mounted on a 3 m mast to the top of a 15 m lattice tower situated on the roof of the tower (instrument head at 190 m above street level) - and pulled down 45 m of 12.7 mm OD Teflon tubing. In addition, meteorological variables (temperature, relative humidity, pressure, precipitation, wind speed and direction) were also measured with a multi-sensor (Weather Transmitter WXT510, Vaisala). Eddy-covariance measurements at the BT tower location were reinstated in July 2011 and include methane (CH4), CO2 and H2O concentrations measured by a Picarro fast methane analyser (G2301-f). CO2 emissions were found to be mainly controlled by fossil fuel combustion (e.g. traffic, commercial and domestic heating). Diurnal averages of CO2 fluxes were found to be highly correlated to traffic. However changes in heating-related natural gas consumption and, to a lesser extent, photosynthetic activity in two large city centre green spaces (Hyde Park and Regent's Park) explained the seasonal variability. Annual estimates of net exchange of CO2 obtained by eddy-covariance agreed well with up-scaled data from the UK National Atmospheric Emissions Inventory (NAEI) for the flux footprint estimated using a simple Kormann-Meixner model. Methane emissions from central London exhibit diurnal trends both for concentrations and fluxes. The former is consistent with cycles of growth and shrinkage of the urban boundary layer. Methane fluxes are strongly correlated with those of carbon dioxide. Work is ongoing to establish to what extent the diurnal cycles reflect dynamic changes in ground sources (emissions from road traffic, commercial/ domestic heating, variations in flux footprint) and to what extent they are affected by transport efficiency between street level and the top of the tower and storage in between, given the high measurement height.

Helfter, Carole; Nemitz, Eiko; Barlow, Janet F.; Wood, Curtis R.

2013-04-01

232

Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel  

PubMed Central

Carbon dioxide (CO2) emissions from motorised travel are hypothesised to be associated with individual, household, spatial and other environmental factors. Little robust evidence exists on who contributes most (and least) to travel CO2 and, in particular, the factors influencing commuting, business, shopping and social travel CO2. This paper examines whether and how demographic, socio-economic and other personal and environmental characteristics are associated with land-based passenger transport and associated CO2 emissions. Primary data were collected from 3474 adults using a newly developed survey instrument in the iConnect study in the UK. The participants reported their past-week travel activity and vehicle characteristics from which CO2 emissions were derived using an adapted travel emissions profiling method. Multivariable linear and logistic regression analyses were used to examine what characteristics predicted higher CO2 emissions. CO2 emissions from motorised travel were distributed highly unequally, with the top fifth of participants producing more than two fifth of emissions. Car travel dominated overall CO2 emissions, making up 90% of the total. The strongest independent predictors of CO2 emissions were owning at least one car, being in full-time employment and having a home-work distance of more than 10 km. Income, education and tenure were also strong univariable predictors of CO2 emissions, but seemed to be further back on the causal pathway than having a car. Male gender, late-middle age, living in a rural area and having access to a bicycle also showed significant but weaker associations with emissions production. The findings may help inform the development of climate change mitigation policies for the transport sector. Targeting individuals and households with high car ownership, focussing on providing viable alternatives to commuting by car, and supporting planning and other policies that reduce commuting distances may provide an equitable and efficient approach to meeting carbon mitigation targets. PMID:24882922

Brand, Christian; Goodman, Anna; Rutter, Harry; Song, Yena; Ogilvie, David

2013-01-01

233

Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.  

PubMed

Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts. PMID:24343906

de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P

2014-07-01

234

Nitrous oxide emission by denitrifying phosphorus removal culture using polyhydroxyalkanoates as carbon source.  

PubMed

Nitrous oxide (N2O) emission has been reported to be enhanced during denitrification when internally-stored compounds are used as carbon sources. However, negligible N2O emissions have been detected in the few studies where polyhydroxyalkanoates (PHA) were specifically used. This study investigated and compared the potential enhancement of N2O production, based on utilization of an internally-stored polymer and external carbon (acetate) by a denitrifying phosphorus removal culture. Results indicated that at relatively low chemical oxygen demand-to-nitrogen (COD/N) ratios, more nitrite was reduced to N2O in the presence of an external carbon source as compared to an internal carbon source (PHA). At relatively higher COD/N ratios, similar N2O reduction rates were obtained in all cases regardless of the type of carbon source available. N2O reduction rates were, however, generally higher in the presence of an internal carbon source. Results from the study imply that when the presence of an external carbon source is not sufficient to support denitrification, it is likely competitively utilized by different metabolic pathways of denitrifying polyphosphate accumulating organisms (DPAOs) and other ordinary denitrifiers. This study also reveals that the consumption of PHA is potentially the rate-limiting step for N2O reduction during denitrification. PMID:23520869

Zhou, Yan; Lim, Melvin; Harjono, Soekendro; Ng, Wun Jern

2012-01-01

235

40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.  

Code of Federal Regulations, 2011 CFR

...section are used to calculate 5-cycle carbon-related exhaust emissions...vehicle tested, determine the 5-cycle city carbon-related exhaust emissions using...vehicle tested, determine the 5-cycle highway carbon-related exhaust emissions...

2011-07-01

236

Thermionic Emission of Single-Wall Carbon Nanotubes Measured  

NASA Technical Reports Server (NTRS)

Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.

Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

2004-01-01

237

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

SciTech Connect

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31

238

High black carbon emissions from kerosene wick lamps  

NASA Astrophysics Data System (ADS)

Kerosene-fueled wick lamps used in millions of developing-country households are a significant but overlooked source of black carbon (BC) emissions. Anecdotal accounts from field-based observations and the few measurements reported in the literature generally agree that kerosene lamps produce black carbon, but there have been no relevant emission measurements to quantify this source. We now present new laboratory and field measurements showing that 7-9% of kerosene consumed by widely used simple wick lamps becomes carbonaceous particulate matter that is nearly pure BC. We produce estimates of kerosene consumed for lighting by simple-wick lamps with a new synthesis of household energy data. Combined with the high measured emission factors, we estimate that BC emissions from household kerosene lamps are 270 Gg/year, with 90% uncertainty bounds of 110 and 590 Gg/year—a 20-fold increase from previous estimates of BC emissions from residential kerosene use. Aerosol climate forcing on atmosphere and snow from this source is estimated at 22 mW, or 7% of BC forcing by all other energy-related sources. The net effect on climate is definitively positive forcing as co-emitted organic carbon is low. Kerosene lamps have affordable alternatives that pose few adoption barriers and would provide immediate benefit to user welfare. No other major BC source has such readily available alternatives, definitive climate forcing effects, and important co-benefits. Replacement of kerosene-fueled wick lamps should be added as a top priority in programs that target short-lived climate forcers. Direct black carbon radiative forcing from residential kerosene lighting (W/m2)

Lam, N. L.; Chen, Y.; Weyant, C.; Venkataraman, C.; Sadavarte, P.; Johnson, M. A.; Smith, K. R.; Brem, B. T.; Arineitwe, J.; Ellis, J. E.; Bond, T. C.

2012-12-01

239

Attributing land-use change carbon emissions to exported biomass  

SciTech Connect

In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The most important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. - Highlights: Black-Right-Pointing-Pointer CO{sub 2} emissions from land use changes are highly important. Black-Right-Pointing-Pointer Attribution of land use changes for products is difficult. Black-Right-Pointing-Pointer Simple and robust method is developed to attribute land use change emissions.

Saikku, Laura, E-mail: laura.saikku@helsinki.fi [University of Helsinki, P.O Box 65, 00014 University of Helsinki (Finland); Soimakallio, Sampo, E-mail: sampo.soimakallio@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT (Finland); Pingoud, Kim, E-mail: kim.pingoud@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT (Finland)

2012-11-15

240

GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)  

E-print Network

of fossil fuels, have risen dramatically since the start of the industrial revolution. Globally, energy,London or Beijing.To avoid dangerous climate change,emissions ultimately must be reduced worldwide. An effective

Green, Donna

241

Control of variable geometry turbocharged diesel engines for reduced emissions  

Microsoft Academic Search

The emission control problem for an automotive direct injected compression ignition (diesel) engine equipped with exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT) is considered. The objective is to operate the engine to meet driver's torque demand and minimize NOx emissions while at the same time avoiding visible smoke generation. It is demonstrated that the steady-state optimization of

Anna G. Stefanopoulou; Ilya Kolmanovsky; James S. Freudenberg

2000-01-01

242

40 CFR Table U-1 to Subpart U of... - CO2 Emission Factors for Common Carbonates  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false CO2 Emission Factors for Common Carbonates... Table U-1 to Subpart U of Part 98—CO2 Emission Factors for Common Carbonates Mineral name—carbonate CO2 emission factor(tons CO2 /ton...

2011-07-01

243

40 CFR Table U-1 to Subpart U of... - CO2 Emission Factors for Common Carbonates  

...2014-07-01 2013-07-01 true CO2 Emission Factors for Common Carbonates... Table U-1 to Subpart U of Part 98—CO2 Emission Factors for Common Carbonates Mineral name—carbonate CO2 emission factor(tons CO2 /ton...

2014-07-01

244

40 CFR Table U-1 to Subpart U of... - CO2 Emission Factors for Common Carbonates  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false CO2 Emission Factors for Common Carbonates... Table U-1 to Subpart U of Part 98—CO2 Emission Factors for Common Carbonates Mineral name—carbonate CO2 emission factor(tons CO2 /ton...

2012-07-01

245

40 CFR Table U-1 to Subpart U of... - CO2 Emission Factors for Common Carbonates  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false CO2 Emission Factors for Common Carbonates... Table U-1 to Subpart U of Part 98—CO2 Emission Factors for Common Carbonates Mineral name—carbonate CO2 emission factor(tons CO2 /ton...

2013-07-01

246

A technology-based global inventory of black and organic carbon emissions from combustion  

Microsoft Academic Search

We present a global tabulation of black carbon (BC) and primary organic carbon (OC) particles emitted from combustion. We include emissions from fossil fuels, biofuels, open biomass burning, and burning of urban waste. Previous “bottom-up” inventories of black and organic carbon have assigned emission factors on the basis of fuel type and economic sector alone. Because emission rates are highly

Tami C. Bond; David G. Streets; Kristen F. Yarber; Sibyl M. Nelson; Jung-Hun Woo; Zbigniew Klimont

2004-01-01

247

A technology-based global inventory of black and organic carbon emissions from combustion  

Microsoft Academic Search

We present a global tabulation of black carbon (BC) and primary organic carbon (OC) particles emitted from combustion. We include emissions from fossil fuels, biofuels, open biomass burning, and burning of urban waste. Previous ``bottom-up'' inventories of black and organic carbon have assigned emission factors on the basis of fuel type and economic sector alone. Because emission rates are highly

Tami C. Bond; David G. Streets; Kristen F. Yarber; Sibyl M. Nelson; Jung-Hun Woo; Zbigniew Klimont

2004-01-01

248

Trend in global black carbon emissions from 1960 to 2007.  

PubMed

Black carbon (BC) plays an important role in both climate change and health impact. Still, BC emissions as well as the historical trends are associated with high uncertainties in existing inventories. In the present study, global BC emissions from 1960 to 2007 were estimated for 64 sources, by using recompiled fuel consumption and emission factor data sets. Annual BC emissions had increased from 5.3 (3.4-8.5 as an interquartile range) to 9.1 (5.6-14.4) teragrams during this period. Our estimations are 11-16% higher than those in previous inventories. Over the period, we found that the BC emission intensity, defined as the amount of BC emitted per unit of energy production, had decreased for all the regions, especially China and India. Improvements in combustion technology and changes in fuel composition had led to an increase in energy use efficiency, and subsequently a decline of BC emission intensities in power plants, the residential sector, and transportation. On the other hand, the BC emission intensities had increased in the industrial and agricultural sectors, mainly due to an expansion of low-efficiency industry (coke and brick production) in developing countries and to an increasing usage of diesel in agriculture in developed countries. PMID:24825392

Wang, Rong; Tao, Shu; Shen, Huizhong; Huang, Ye; Chen, Han; Balkanski, Yves; Boucher, Olivier; Ciais, Philippe; Shen, Guofeng; Li, Wei; Zhang, Yanyan; Chen, Yuanchen; Lin, Nan; Su, Shu; Li, Bengang; Liu, Junfeng; Liu, Wenxin

2014-06-17

249

Energy, Carbon-emission and Financial Savings from Thermostat Control  

SciTech Connect

Among the easiest approaches to energy, and cost, savings for most people is the adjustment of thermostats to save energy. Here we estimate savings of energy, carbon, and money in the United States of America (USA) that would result from adjusting thermostats in residential and commercial buildings by about half a degree Celsius downward during the heating season and upward during the cooling season. To obtain as small a unit as possible, and therefore the least likely to be noticeable by most people, we selected an adjustment of one degree Fahrenheit (0.56 degree Celsius) which is the gradation used almost exclusively on thermostats in the USA and is the smallest unit of temperature that has been used historically. Heating and/or cooling of interior building space for personal comfort is sometimes referred to as space conditioning, a term we will use for convenience throughout this work without consideration of humidity. Thermostat adjustment, as we use the term here, applies to thermostats that control the indoor temperature, and not to other thermostats such as those on water heaters. We track emissions of carbon only, rather than of carbon dioxide, because carbon atoms change atomic partners as they move through the carbon cycle, from atmosphere to biosphere or ocean and, on longer time scales, through the rock cycle. To convert a mass of carbon to an equivalent mass of carbon dioxide (thereby including the mass of the 2 oxygen atoms in each molecule) simply multiply by 3.67.

Blasing, T J [ORNL; Schroeder, Dana [University of Georgia, Athens, GA

2013-08-01

250

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry  

Microsoft Academic Search

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and

Nathan Martin; N. Anglani; D. Einstein; M. Khrushch; E. Worrell; L. K. Price

2000-01-01

251

Global carbon dioxide emission to the atmosphere by volcanoes  

SciTech Connect

Global emission of carbon dioxide by subaerial volcanoes is calculated, using CO{sub 2}/SO{sub 2} from volcanic gas analyses and SO{sub 2} flux, to be 34 {plus minus} 24 {times} 10{sup 12} g CO{sub 2}/yr from passive degassing and 31 {plus minus} 22 {times} 10{sup 12} g CO{sub 2}/yr from eruptions. Volcanic CO{sub 2} presently represents only 0.22% of anthropogenic emissions but may have contributed to significant greenhouse' effects at times in Earth history. Models of climate response to CO{sub 2} increases may be tested against geological data.

Williams, S.N.; Schaefer, S.J. (Arizona State Univ., Tempe (United States)); Calvache V., M.L. (Arizona State Univ., Tempe (United States) Observatorio Vulcanologico de Colombia, Pasto (Colombia)); Lopez, D. (Univ. of British Columbia, Vancouver (Canada))

1992-04-01

252

Carbon emissions performance of commercial logging in East Kalimantan, Indonesia.  

PubMed

Adoption of reduced-impact logging (RIL) methods could reduce CO2 emissions by 30-50% across at least 20% of remaining tropical forests. We developed two cost effective and robust indices for comparing the climate benefits (reduced CO2 emissions) due to RIL. The indices correct for variability in the volume of commercial timber among concessions. We determined that a correction for variability in terrain slope was not needed. We found that concessions certified by the Forest Stewardship Council (FSC, N = 3), when compared with noncertified concessions (N = 6), did not have lower overall CO2 emissions from logging activity (felling, skidding, and hauling). On the other hand, FSC certified concessions did have lower emissions from one type of logging impact (skidding), and we found evidence of a range of improved practices using other field metrics. One explanation of these results may be that FSC criteria and indicators, and associated RIL practices, were not designed to achieve overall emissions reductions. Also, commonly used field metrics are not reliable proxies for overall logging emissions performance. Furthermore, the simple distinction between certified and noncertified concessions does not fully represent the complex history of investments in improved logging practices. To clarify the relationship between RIL and emissions reductions, we propose the more explicit term 'RIL-C' to refer to the subset of RIL practices that can be defined by quantified thresholds and that result in measurable emissions reductions. If tropical forest certification is to be linked with CO2 emissions reductions, certification standards need to explicitly require RIL-C practices. PMID:24022913

Griscom, Bronson; Ellis, Peter; Putz, Francis E

2014-03-01

253

Just Say No to Carbon Emissions (LBNL Science at the Theater)  

SciTech Connect

Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency in China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.

Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt

2010-04-26

254

Just Say No to Carbon Emissions (LBNL Science at the Theater)  

ScienceCinema

Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency in China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.

Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt

2011-04-28

255

2002 Monthly Carbon Dioxide Emissions from Mexico at a 10x10k Spatial Resolution  

NASA Astrophysics Data System (ADS)

The contribution of fossil fuel CO2 emissions to the total measured amount of CO2 in the Earth’s atmosphere remains an important component of carbon cycle science, particularly as efforts to understand the net exchange of carbon at the surface move to smaller scales. In order to reduce the uncertainty of this flux, researchers led by Purdue University have built a high-resolution fossil fuel CO2 flux inventory for the United States, called “Vulcan”. The Vulcan inventory quantifies emissions for the United States at 10km resolution every hour for the year 2002 and can be seen as a key component of a national assessment and verification system for greenhouse gas emissions and emissions mitigation. As part of the North American Carbon Project, the 2002 carbon dioxide emissions from Mexico are presented at the monthly temporal and municipality spatial scale. Mexico is of particular importance because of the scientific integration under the North American Carbon Program. Furthermore, Mexico has seen a notable growth in its population as well as migration toward urban centers and increasing energy requirements due in part to industrial intensification. The native resolution of the emissions is geolocated (lat/lon) for point sources, such as power plants, airports, and large industry. The emissions are estimated at the municipality level for residential and commercial sources, and allocated to roads for the mobile transport sector. Data sources include the National Emissions Inventory (NEI), Commission for Environmental Cooperation (CEC), and Carbon Monitoring for Action (CARMA). CO2 emissions are calculated from the 1999 NEI data by converting CO emissions using sector and process-dependent emission factors, and is scaled up to 2002 using statistics obtained from the Carbon Dioxide Information Analysis Center CDIAC. CEC and CARMA data, which encompass power plant emissions, are already in units of CO2. Emissions are regridded to 10x10k and 0.1x0.1 deg grids to enable atmospheric CO2 transport modeling. All economic sectors are analyzed, including power plants, commercial, residential, industrial, on-road, and non-road. Municipality and regional scale analysis is presented to explore the differences in economic and industrial development and need. Specific centers of high emissions are highlighted and analyzed in order to put into context the development and growth of certain economic sectors. The annualized emissions are compared to estimates by the International Energy Agency and found to be very similar although some discrepancies are expected due to the different methods of obtaining results. Vulcan reports process-based emissions while IEA reports fuel sales. The Vulcan output is also disaggregated by fuel type and comparisons with IEA are presented across economic sectors. A monthly product based on monthly sales is also presented. Sales by major fuel types (oil, natural gas, coal) are obtained from EIA data and those results shape the monthly cycle. These results are compared to a similar national studies, and similarities and differences are analyzed and discussed.

Mendoza, D. L.; Gurney, K. R.; Geethakumar, S.; Zhou, Y.; Sahni, N.

2009-12-01

256

Co 2e emissions abatement costs of reducing natural gas flaring in Brazil by investing in offshore GTL plants producing premium diesel  

Microsoft Academic Search

This study evaluates the possibility of installing an offshore gas-to-liquids (GTL) plant in Brazil to reduce Natural Gas (NG) flaring, curb carbon dioxide equivalent (CO2e) emissions and produce premium diesel. CO2e emissions abatement costs were estimated by comparing two alternatives. The first alternative (baseline) considers that the volume of NG flared will not be reduced. Low-sulfur fuels (diesel and naphtha)

David A. Castelo Branco; Alexandre S. Szklo; Roberto Schaeffer

2010-01-01

257

Effect of Morphology on Field Emission Properties of Carbon Nanocoils and Carbon Nanotubes  

NASA Astrophysics Data System (ADS)

Helical carbon nanocoils exhibit excellent field emission properties, and are thus expected to be applicable as electron emitters in field emission displays. We have synthesized carbon nanocoils with different diameters by the catalytic thermal decomposition of acetylene using iron-indium-tin-oxide catalysts. It is found that the turn-on voltage is decreased by decreasing the average diameter of the grown carbon nanocoils. The turn-on voltage of as low as 30 V at the electrode gap of 130 ?m was achieved when the coil diameter is decreased to 60 nm. The calculation for the concentration of the electric field on the coil surface has been performed using a finite element method. It is found that the strength of the electric field around the top ring of a coil is increased with the decrease of the tubular diameter of the coil and has a similar value as that at the tip of a carbon nanotube, suggesting that the efficiency of the field emission from nanocoils would be higher than that from nanotubes. These results can explain the high stability of field emission from carbon nanocoils.

Pan, Lujun; Konishi, Yasumoto; Tanaka, Hiroyoshi; Suekane, Osamu; Nosaka, Toshikazu; Nakayama, Yoshikazu

2005-04-01

258

A process concept for utilizing fossil fuel resources with reduced CO sub 2 emission  

SciTech Connect

There is increasing evidence of the probability of a global carbon dioxide greenhouse warming effect. The concentration of CO{sub 2} in the atmosphere at the turn of the century was 280 ppM; presently it is 345 ppM, an increase of 23%. This increase has resulted mainly from human activity in burning increasing amounts of fossil fuel -- coal, oil, gas and from deforestation, the cutting down of forested areas. This paper discusses studies that have been made dealing with reducing CO{sub 2} emissions from coal burning power plants. Included are: CO{sub 2} can be removed, recovered and stored in the deep oceans; recover and utilize CO{sub 2} as a commodity; large acreages of trees can be planted to photosynthetically absorb the CO{sub 2} from fossil fuel plants; and improve energy technology efficiency of existing and future power plants. 5 refs., 1 fig., 3 tabs.

Steinberg, M.

1989-04-01

259

Carbon nanotube composite: Dispersion routes and field emission parameters  

Microsoft Academic Search

A correlation has been established between the dispersibility of the thin multiwall carbon nanotubes (t-MWCNTs) in the composite, achieved via the chemical and mechanical dispersion routes, to their field emission parameters. The pristine t-MWCNTs (0.1wt%) have been soaked in ?–terpineol solution (C10H18O, (R)-2-(4-Methyl-3-cyclohexenyl)-2-propenol) followed by the sonication and admixing with the ethyl cellulose polymer to obtain the raw-composite. In the

J. H. Park; P. S. Alegaonkar; S. Y. Jeon; J. B. Yoo

2008-01-01

260

Imaging Carbon Monoxide Emission in the Starburst Galaxy NGC 6000  

Microsoft Academic Search

We present measurements of carbon monoxide emission in the central region of the nearby starburst NGC 6000 taken with the Submillimeter Array. The J = 2-1 transition of 12CO, 13CO, and C18O were imaged at a resolution of ~3'' × 2'' (450 × 300 pc). We accurately determine the dynamical center of NGC 6000 at alphaJ2000.0 = 15h49m49.s5 and deltaJ2000.0

Sergio Martín; Matthew R. George; David J. Wilner; Daniel Espada

2010-01-01

261

IMAGING CARBON MONOXIDE EMISSION IN THE STARBURST GALAXY NGC 6000  

Microsoft Academic Search

We present measurements of carbon monoxide emission in the central region of the nearby starburst NGC 6000 taken with the Submillimeter Array. The J = 2-1 transition of ¹²CO, ¹³CO, and C¹O were imaged at a resolution of 3'' x 2'' (450 x 300 pc). We accurately determine the dynamical center of NGC 6000 at {sub J2000.0} = 15{sup h}49{sup

Sergio Martin; Matthew R. George; David J. Wilner; Daniel Espada

2010-01-01

262

Probabilistic quantification of allowable carbon emissions for meeting multiple climate targets  

NASA Astrophysics Data System (ADS)

Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise, ocean acidification, and net primary production on land. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced when multiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies, climate sensitivity, and carbon cycle feedbacks by varying nineteen key model parameters. A broad set of site-specific and gridded observational data from atmosphere, ocean, and land is used to constrain the model ensemble to realizations that are compatible with observations. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions.

Steinacher, M.; Joos, F.; Stocker, T. F.

2013-12-01

263

How Could Carbon Credits for Reducing Deforestation Compete with Returns from Palm Oil: A Proposal for a More Flexible REDD Valuation Tool  

Microsoft Academic Search

In order for carbon credits awarded for reducing emissions from deforestation and degradation of forests (REDD) to be effective, they need to be competitive with alternative land uses. In the case of Southeast Asia, oil palm cultivation is one of the most lucrative possible land uses. Existing mechanisms for awarding certified emission reductions (CERs) might not be adequately flexible to

Alexandra C. Morel; Benoit F. Morel

2012-01-01

264

Reducing health care's carbon footprint--the power of nursing.  

PubMed

Global warming and environmentalism continue to be national and international issues as their complexities and implications become better understood. One ironic contributor to the degradation of the environment is the health care system. Serving as clinical laboratories, hotels, restaurants, and offices that never close, U.S. hospitals produce more than 2 million tons of waste annually. Although the consequences and significance of health care's carbon footprint are undeniable, strategies to reduce this impact are challenging. This article discusses how the role, traits, and knowledge of nurses combined with their positions in the health care system make them key players in creating an environmentally sustainable health care industry. With an analysis of environmental action versus inaction, this article explores how nurses at the forefront of health care are equipped to change practice that will reach far beyond the bedside. PMID:23413481

Muñoz, Aliria

2012-11-01

265

Cars, carbon, and Kyoto: Evaluating an emission charge and other policy instruments as incentives for a transition to hybrid cars in New Zealand  

Microsoft Academic Search

Transition to hybrid petrol\\/electric vehicles (HEVs) is one means among many of reducing carbon emissions pursuant to the New Zealand emissions reduction targets under the Kyoto Protocol. The potential financial incentive value of an emissions charge was evaluated by comparing purchase and running costs of an HEV with an equivalent petrol?fuelled car. Had a carbon tax of $15\\/tonne CO2 operated

B. B. Gleisner; S. A. Weaver

2006-01-01

266

A thin film triode type carbon nanotube field emission cathode  

NASA Astrophysics Data System (ADS)

The field electron emission of carbon nanotubes has been heavily studied over the past two decades for various applications, such as in display technologies, microwave amplifiers, and spacecraft propulsion. However, a commercializable lightweight and internally gated electron source has yet to be realized. This work presents the fabrication and testing of a novel internally gated carbon nanotube field electron emitter. Several specific methods are used to prevent electrical shorting of the gate layer, a common failure for internally gated devices. A unique design is explored where the etch pits extend into the silicon substrate and isotropic etching is used to create a lateral buffer zone between the gate and carbon nanotubes. Carbon nanotubes are self-aligned to and within 10 microns from the gate, which creates large electric fields at low potential inputs. Initial tests confirm high field emission performance with an anode current density (based on total area of the device) of 293 ?A cm-2 and a gate current density of 1.68 mA cm-2 at 250 V.

Sanborn, Graham; Turano, Stephan; Collins, Peter; Ready, W. Jud

2013-01-01

267

Reduced Nitrous Oxide Emissions in Tomato Cropping Systems under Drip Irrigation and Fertigation  

NASA Astrophysics Data System (ADS)

In California, agriculture and forestry account for 8% of the total greenhouse gas (GHG) emissions, of which 50% is accounted for by nitrous oxide (N2O). Furrow irrigation and high temperatures in the Central Valley, together with conventional fertilization, are ideal for the production of food, but also N2O. These conditions lead to high N2O fluxes, but also mean there is great potential to reduce N2O emissions by optimizing fertilizer use and irrigation practices. Improving fertilizer use by better synchronizing nitrogen (N) availability and crop demand can reduce N losses and fertilizer costs. Smaller, more frequent fertilizer applications can increase the synchrony between available soil N and crop N uptake. Fertigation allows for more control over how much N is being added and can therefore allow for better synchrony throughout the growing season. In our study, we determined how management practices, such as fertilization, irrigation, tillage and harvest, affect direct N2O emissions in typical tomato cropping systems. We evaluated two contrasting irrigation managements and their associated fertilizer application method, i.e. furrow irrigation and knife injection versus drip irrigation and fertigation. Across two tomato-growing seasons, we found that shifts in fertilizer and irrigation water management directly affect GHG emissions. Seasonal N2O fluxes were 3.4 times lower under drip versus furrow irrigation. In 2010, estimated losses of fertilizer N as N2O were 0.60 ± 0.06 kg N2O-N ha-1 yr-1 in the drip system versus 2.06 ± 0.11 N2O-N kg ha-1 yr-1 in the furrow system, which was equivalent to 0.29% and 0.87% of the added fertilizer, respectively. Carbon dioxide (CO2) emissions were also lower in the drip system (2.21 ± 0.16 Mg CO2-C ha-1 yr-1) than the furrow system (4.65 ± 0.23 Mg CO2-C ha-1 yr-1). Soil mineral N, dissolved organic carbon and soil moisture also varied between the two systems and correlated positively with N2O and CO2 emissions, depending on the management event and sampling position. Soil ammonium and nitrate exposure, used as indexes of substrate availability, were significantly lower in the drip system (1.43 ± 0.06 mg NH4-N yr-1 and 10.75 ± 0.08 mg NO3-N yr-1) compared to the furrow system (2.93 ± 0.09 mg NH4-N yr-1 and 18.06 ± 0.44 mg NO3-N yr-1). These changes in irrigation water and fertilizer management also increased crop yield in the drip system, highlighting the potential for concomitant increased yields and reduced GHG emissions through the use of fertigation techniques.

Kennedy, T.; Suddick, E. C.; Six, J. W.

2011-12-01

268

Removal of floral microbiota reduces floral terpene emissions  

PubMed Central

The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting ?-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination. PMID:25335793

Penuelas, Josep; Farre-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

2014-01-01

269

Removal of floral microbiota reduces floral terpene emissions.  

PubMed

The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting ?-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination. PMID:25335793

Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

2014-01-01

270

Removal of floral microbiota reduces floral terpene emissions  

NASA Astrophysics Data System (ADS)

The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting ?-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.

Peñuelas, Josep; Farré-Armengol, Gerard; Llusia, Joan; Gargallo-Garriga, Albert; Rico, Laura; Sardans, Jordi; Terradas, Jaume; Filella, Iolanda

2014-10-01

271

Carbon soundings: greenhouse gas emissions of the UK music industry  

NASA Astrophysics Data System (ADS)

Over the past decade, questions regarding how to reduce human contributions to climate change have become more commonplace and non-nation state actors—such as businesses, non-government organizations, celebrities—have increasingly become involved in climate change mitigation and adaptation initiatives. For these dynamic and rapidly expanding spaces, this letter provides an accounting of the methods and findings from a 2007 assessment of greenhouse gas (GHG) emissions in the UK music industry. The study estimates that overall GHG emissions associated with the UK music market are approximately 540 000 t CO2e per annum. Music recording and publishing accounted for 26% of these emissions (138 000 t CO2e per annum), while three-quarters (74%) derived from activities associated with live music performances (400 000 t CO2e per annum). These results have prompted a group of music industry business leaders to design campaigns to reduce the GHG emissions of their supply chains. The study has also provided a basis for ongoing in-depth research on CD packaging, audience travel, and artist touring as well as the development of a voluntary accreditation scheme for reducing GHG emissions from activities of the UK music industry.

Bottrill, C.; Liverman, D.; Boykoff, M.

2010-01-01

272

A "carbonizing dragon": China's fast growing CO2 emissions revisited.  

PubMed

China's annual CO(2) emissions grew by around 4 billion tonnes between 1992 and 2007. More than 70% of this increase occurred between 2002 and 2007. While growing export demand contributed more than 50% to the CO(2) emission growth between 2002 and 2005, capital investments have been responsible for 61% of emission growth in China between 2005 and 2007. We use structural decomposition analysis to identify the drivers for China's emission growth between 1992 and 2007, with special focus on the period 2002 to 2007 when growth was most rapid. In contrast to previous analysis, we find that efficiency improvements have largely offset additional CO(2) emissions from increased final consumption between 2002 and 2007. The strong increases in emissions growth between 2002 and 2007 are instead explained by structural change in China's economy, which has newly emerged as the third major emission driver. This structural change is mainly the result of capital investments, in particular, the growing prominence of construction services and their carbon intensive supply chain. By closing the model for capital investment, we can now show that the majority of emissions embodied in capital investment are utilized for domestic household and government consumption (35-49% and 19-36%, respectively) with smaller amounts for the production of exports (21-31%). Urbanization and the associated changes in lifestyle are shown to be more important than other socio-demographic drivers like the decreasing household size or growing population. We argue that mitigation efforts will depend on the future development of these key drivers, particularly capital investments which dictate future mitigation costs. PMID:21888374

Minx, Jan C; Baiocchi, Giovanni; Peters, Glen P; Weber, Christopher L; Guan, Dabo; Hubacek, Klaus

2011-11-01

273

Reducing emissions from deforestation--The ``combined incentives'' mechanism and empirical simulations  

E-print Network

Reducing emissions from deforestation--The ``combined incentives'' mechanism and empirical throughout a century of climate-change (Gullison et al., 2007). The financial rationale for deforestation be sufficient to greatly reduce deforestation (Stern, 2007). For political and methodological reasons

Vermont, University of

274

Warming Reduces Carbon Losses from Grassland Exposed to Elevated Atmospheric Carbon Dioxide  

PubMed Central

The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate – carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate – carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil. PMID:23977180

Pendall, Elise; Heisler-White, Jana L.; Williams, David G.; Dijkstra, Feike A.; Carrillo, Yolima; Morgan, Jack A.; LeCain, Daniel R.

2013-01-01

275

The potential impact of conservation, alternative energy sources, and reduced nonenergy emissions on global warming  

Microsoft Academic Search

In this report, we examine two global energy consumption scenarios and corresponding nonenergy scenarios to determine how each will contribute to the greenhouse effect and global warming. A steady emissions trend scenario assumes only modest energy conservation and little change in the world's energy consumption patterns and nonenergy emissions. A reduced emissions trend scenario assumes significant conservation, switching from a

E. A. Aronson; M. W. Edenburn

1989-01-01

276

Optimal Production Policy under the Carbon Emission Market  

E-print Network

the pollution. One can propose the standard taxation system which imposes a limitation level on the production to reduce the emission is to impose the taxation on the installations whose production increases. This taxation method has some significant disadvantages. First, there is no change in the production

Touzi, Nizar

277

Parameterized MPC to reduce dispersion of road traffic emissions  

Microsoft Academic Search

This paper has two main contributions. First, it presents a simple area-wide emission (or dispersion) model for a freeway traffic networks. The model takes the variation of the wind speed and direction into account. Second, it presents a nonlinear parameterized MPC controller for freeway traffic systems. Next, the proposed model and control approach are illustrated with a simulation-based case study.

S. K. Zegeye; B. De Schutter; J. Hellendoorn; E. A. Breunesse

2011-01-01

278

Radiative Forcing associated with Particulate Carbon Emissions resulting from the Use of Mercury Control Technology  

NASA Astrophysics Data System (ADS)

Mercury is a persistent, toxic metal that bio-accumulates within the food web and causes neurological damage and fetal defects in humans. The U.S. was the first country to regulate the leading anthropogenic source of mercury into the atmosphere: coal combustion for electric power generation. The U.S. EPA's 2005 Clean Air Mercury Rule (CAMR) was replaced and further tightened in 2012 by the Mercury and Air Toxics Standard (MATS), which required existing coal-fired utilities to reduce their mercury emissions by approximately 90% by 2015. Outside the U.S., the Governing Council of the United Nations Environment Programme (UNEP) has passed the legally binding Minamata global mercury treaty that compels its signatory countries to prevent and reduce the emission and release of mercury. The most mature technology for controlling mercury emissions from coal combustion is the injection into the flue gas of powdered activated carbon (PAC) adsorbents having chemically treated surfaces designed to rapidly oxidize and adsorb mercury. However, such PAC is known to have electrical properties that make it difficult to remove from flue gas via electrostatic precipitation, by far the most common particulate control technology used in countries such as the U.S., India, and China which rely heavily on coal for power generation. As a result, PAC used to control mercury emissions can be emitted into the atmosphere, the sub-micron fraction of which may result in unintended radiative forcing similar to black carbon (BC). Here, we estimate the potential increases in secondary BC emissions, those not produced from combustion but arising instead from the use of injected PAC for mercury emission reduction. We also calculate the radiative forcing associated with these secondary BC emissions by using a global atmospheric chemical transport model coupled with a radiative transfer model.

Clack, H.; Penner, J. E.; Lin, G.

2013-12-01

279

Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario.  

PubMed

The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

Keller, David P; Feng, Ellias Y; Oschlies, Andreas

2014-01-01

280

Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario  

PubMed Central

The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

Keller, David P.; Feng, Ellias Y.; Oschlies, Andreas

2014-01-01

281

Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario  

NASA Astrophysics Data System (ADS)

The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited.

Keller, David P.; Feng, Ellias Y.; Oschlies, Andreas

2014-02-01

282

Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic.  

PubMed

Mangroves are recognized to possess a variety of ecosystem services including high rates of carbon sequestration and storage. Deforestation and conversion of these ecosystems continue to be high and have been predicted to result in significant carbon emissions to the atmosphere. Yet few studies have quantified the carbon stocks or losses associated with conversion of these ecosystems. In this study we quantified the ecosystem carbon stocks of three common mangrove types of the Caribbean as well as those of abandoned shrimp ponds in areas formerly occupied by mangrove-a common land-use conversion of mangroves throughout the world. In the mangroves of the Montecristi Province in Northwest Dominican Republic we found C stocks ranged from 706 to 1131 Mg/ha. The medium-statured mangroves (3-10 m in height) had the highest C stocks while the tall (> 10 m) mangroves had the lowest ecosystem carbon storage. Carbon stocks of the low mangrove (shrub) type (< 3 m) were relatively high due to the presence of carbon-rich soils as deep as 2 m. Carbon stocks of abandoned shrimp ponds were 95 Mg/ha or approximately 11% that of the mangroves. Using a stock-change approach, the potential emissions from the conversion of mangroves to shrimp ponds ranged from 2244 to 3799 Mg CO2e/ha (CO2 equivalents). This is among the largest measured C emissions from land use in the tropics. The 6260 ha of mangroves and converted mangroves in the Montecristi Province are estimated to contain 3,841,490 Mg of C. Mangroves represented 76% of this area but currently store 97% of the carbon in this coastal wetland (3,696,722 Mg C). Converted lands store only 4% of the total ecosystem C (144,778 Mg C) while they comprised 24% of the area. By these metrics the replacement of mangroves with shrimp and salt ponds has resulted in estimated emissions from this region totaling 3.8 million Mg CO2e or approximately 21% of the total C prior to conversion. Given the high C stocks of mangroves, the high emissions from their conversion, and the other important functions and services they provide, their inclusion in climate-change mitigation strategies is warranted. PMID:24834737

Kauffman, J Boone; Heider, Chris; Norfolk, Jennifer; Payton, Frederick

2014-04-01

283

Reducing the uncertainties in carbon emissions fromReducing the uncertainties in carbon emissions from tropical deforestation -the BIOMASS mission  

E-print Network

from tropical deforestation - the BIOMASS mission Shaun Quegan University of Sheffield x average biomassCem = deforested area x average biomass (UN Framework Convention on Climate Change Good Practice Guide 2003) #12;How well is biomass known? Model Model + SatelliteInterpolation Model

284

Return to 1990: The cost of mitigating United States carbon emissions in the post-2000 period  

SciTech Connect

The Second Generation Model (SGM) is employed to examine four hypothetical agreements to reduce emissions in Annex 1 nations (OECD nations plus most of the nations of Eastern Europe and the former Soviet Union) to levels in the neighborhood of those which existed in 1990, with obligations taking effect in the year 2010. The authors estimate the cost to the US of complying with such agreements under three distinct conditions: no trading of emissions rights, trading of emissions rights only among Annex 1 nations, and a fully global trading regime. The authors find that the marginal cost of returning to 1990 emissions levels in the US in the absence of trading opportunities is approximately $108 per metric ton carbon in 2010. The total cost in that year is approximately 0.2% of GDP. International trade in emissions permits lowers the cost of achieving any mitigation objective by equalizing the marginal cost of carbon mitigation among countries. For the four mitigation scenarios in this study, economic costs to the US remain below 1% of GDP through at least the year 2020.

Edmonds, J.A.; Kim, S.H.; MacCracken, C.N.; Sands, R.D.; Wise, M.A.

1997-10-01

285

Impact of inland shipping emissions on elemental carbon concentrations near waterways in The Netherlands  

NASA Astrophysics Data System (ADS)

This study aims to quantify the impact of black carbon from inland shipping on air quality, expressed as elemental carbon (EC) near inland waterways in The Netherlands. Downwind measurements of particle numbers and EC were used to establish emission factors for EC from inland shipping using inverse modelling. These emission factors were combined with data on energy consumption to derive annual average emissions rates for all Dutch waterways. A line source model was applied to compute the contribution of inland shipping to annual average EC concentrations for around 140,000 people living within 200 m of busy waterways in The Netherlands. The results showed that they are exposed to additional EC concentrations of up to 0.5 ?g EC per m3 depending on the shipping volume and distance from the waterway. In view of the envisaged growth in water transport, this underlines the need to reduce combustion emissions from inland shipping. Targeting “gross” polluters may be the most effective approach since 30% of ships cause more than 80% of the total emissions.

Keuken, M. P.; Moerman, M.; Jonkers, J.; Hulskotte, J.; Denier van der Gon, H. A. C.; Hoek, G.; Sokhi, R. S.

2014-10-01

286

Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting.  

PubMed

Aeration is an important factor influencing CO2, CH4, N2O and NH3 emissions from the composting process. Both CH4 and N2O are potent greenhouse gases (GHG) of high importance. Here, we examined the effects of high and low aeration rates together with addition of barley straw with and without bio-char on GHG and NH3 emissions from composting cattle slurry and hen manure in small-scale laboratory composters. Depending on treatment, cumulative C losses via CO2 and CH4 emissions accounted for 11.4-22.5% and 0.004-0.2% of initial total carbon, while N losses as N2O and NH3 emissions comprised 0.05-0.1% and 0.8-26.5% of initial total nitrogen, respectively. Decreasing the flow rate reduced cumulative NH3 losses non-significantly (by 88%) but significantly increased CH4 losses (by 51%) from composting of cattle slurry with barley straw. Among the hen manure treatments evaluated, bio-char addition to composting hen manure and barley straw at low flow rates proved most effective in reducing cumulative NH3 and CH4 losses. Addition of bio-char in combination with barley straw to hen manure at both high and low flow rates reduced total GHG emissions (as CO2-equivalents) by 27-32% compared with barley straw addition alone. Comparisons of flow rates showed that low flow could be an alternative strategy for reducing NH3 losses without any significant change in N2O emissions, pointing to the need for well-controlled composting conditions if gaseous emissions are to be minimised. PMID:24210550

Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

2014-02-01

287

Historical carbon emissions and uptake from the agricultural frontier of the Brazilian Amazon.  

PubMed

Tropical ecosystems play a large and complex role in the global carbon cycle. Clearing of natural ecosystems for agriculture leads to large pulses of CO2 to the atmosphere from terrestrial biomass. Concurrently, the remaining intact ecosystems, especially tropical forests, may be sequestering a large amount of carbon from the atmosphere in response to global environmental changes including climate changes and an increase in atmospheric CO2. Here we use an approach that integrates census-based historical land use reconstructions, remote-sensing-based contemporary land use change analyses, and simulation modeling of terrestrial biogeochemistry to estimate the net carbon balance over the period 1901-2006 for the state of Mato Grosso, Brazil, which is one of the most rapidly changing agricultural frontiers in the world. By the end of this period, we estimate that of the state's 925 225 km2, 221 092 km2 have been converted to pastures and 89 533 km2 have been converted to croplands, with forest-to-pasture conversions being the dominant land use trajectory but with recent transitions to croplands increasing rapidly in the last decade. These conversions have led to a cumulative release of 4.8 Pg C to the atmosphere, with 80% from forest clearing and 20% from the clearing of cerrado. Over the same period, we estimate that the residual undisturbed ecosystems accumulated 0.3 Pg C in response to CO2 fertilization. Therefore, the net emissions of carbon from Mato Grosso over this period were 4.5 Pg C. Net carbon emissions from Mato Grosso since 2000 averaged 146 Tg C/yr, on the order of Brazil's fossil fuel emissions during this period. These emissions were associated with the expansion of croplands to grow soybeans. While alternative management regimes in croplands, including tillage, fertilization, and cropping patterns promote carbon storage in ecosystems, they remain a small portion of the net carbon balance for the region. This detailed accounting of a region's carbon balance is the type of foundation analysis needed by the new United Nations Collaborative Programmme for Reducing Emissions from Deforestation and Forest Degradation (REDD). PMID:21639042

Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Mustard, John F; Cronin, Timothy W; Cerri, Carlos E P; Cerri, Carlos C

2011-04-01

288

Management options for reducing CO2 emissions from agricultural soils  

Microsoft Academic Search

Crop-based agriculture occupies 1.7 billion hectares, globally, with a soil C stock of about 170 Pg. Of the past anthropogenic CO2 additions to the atmosphere, about 50 Pg C came from the loss of soil organic matter (SOM) in cultivated soils. Improved management practices, however, can rebuild C stocks in agricultural soils and help mitigate CO2 emissions. Increasing soil C

K. PAUSTIAN; E. T. ELLIOTT; H. W. HUNT

2000-01-01

289

Irreversible climate change due to carbon dioxide emissions  

PubMed Central

The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450–600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the “dust bowl” era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4–1.0 m if 21st century CO2 concentrations exceed 600 ppmv and 0.6–1.9 m for peak CO2 concentrations exceeding ?1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

2009-01-01

290

Irreversible climate change due to carbon dioxide emissions.  

PubMed

The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450-600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the "dust bowl" era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4-1.0 m if 21st century CO(2) concentrations exceed 600 ppmv and 0.6-1.9 m for peak CO(2) concentrations exceeding approximately 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

2009-02-10

291

Reducing emissions from deforestation and forest degradation (REDD+): game changer or just another quick fix?  

PubMed

Reducing emissions from deforestation and forest degradation (REDD+) provides financial compensation to land owners who avoid converting standing forests to other land uses. In this paper, we review the main opportunities and challenges for REDD+ implementation, including expectations for REDD+ to deliver on multiple environmental and societal cobenefits. We also highlight a recent case study, the Norway-Indonesia REDD+ agreement and discuss how it might be a harbinger of outcomes in other forest-rich nations seeking REDD+ funds. Looking forward, we critically examine the fundamental assumptions of REDD+ as a solution for the atmospheric buildup of greenhouse gas emissions and tropical deforestation. We conclude that REDD+ is currently the most promising mechanism driving the conservation of tropical forests. Yet, to emerge as a true game changer, REDD+ must still demonstrate that it can access low transaction cost and high-volume carbon markets or funds, while also providing or complimenting a suite of nonmonetary incentives to encourage a developing nation's transition from forest losing to forest gaining, and align with, not undermine, a globally cohesive attempt to mitigate anthropogenic climate change. PMID:22168380

Venter, Oscar; Koh, Lian Pin

2012-02-01

292

A DRAMATICALLY REDUCED SIZE IN THE GANTRY DESIGN FOR THE PROTON-CARBON THERAPY*  

E-print Network

A DRAMATICALLY REDUCED SIZE IN THE GANTRY DESIGN FOR THE PROTON-CARBON THERAPY* D. Trbojevic, R, LBNL, Berkeley CA, USA Abstract Gantries in the proton/carbon cancer therapy machines represent for the carbon machine, reducing dramatically the size. INTRODUCTION The cancer hadron therapy facilities exist

Keil, Eberhard

293

Global carbon emissions in the coming decades: the case of China  

SciTech Connect

China's annual energy-related carbon emissions surpassed those of the United States in 2006, years ahead of published international and Chinese forecasts. Why were forecasts so greatly in error and what drove the rapid growth of China's energy-related carbon emissions after 2001? The divergence between actual and forecasted carbon emissions underscores the rapid changes that have taken place in China's energy system since 2001. In order to build a more robust understanding of China's energy-related carbon emissions, this article reviews the role of economic restructuring, urbanization, coal dependence, international trade, and central government policies in driving emissions growth.

Levine, M.D.; Aderi, N.T. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

2008-07-01

294

Model Project Streamlines Compliance, Reduces Emissions and Energy Use  

E-print Network

Marathon's Texas City refinery was subject to five separate EPA regulations in addition to a state program for monitoring and repairing fugitive leaks. The refinery sought an organizational solution that reduced monitoring costs and kept...

Vining, S. K.

295

ADVANCED DEHYDRATOR DESIGN SAVES GAS AND REDUCES HAP EMISSIONS  

EPA Science Inventory

Glycol dehydrators remove water from gas pipe lines. An advanced dehydrator by Engineered Concepts, Farmington, NM, saves a significant amount of gas, while reducing hazardous air pollutants, volatile organic compounds and CO2 air pollutants...

296

Reducible emission probabilities and thermal scaling in multifragmentation  

SciTech Connect

Intermediate-mass-fragment multiplicity distributions for a variety of reactions at intermediate energies are shown to be binomial and thus reducible at all measured transverse energies. From these distributions a single binary event probability can be extracted that has a thermal dependence. A strong thermal signature is also found in the charge distributions. The {eta}-fold charge distributions are reducible to the {eta}-fold charge distributions through a simple scaling that is dictated by fold number and charge conservation.

Moretto, L.G.; Phair, L.; Tso, K. [and others

1995-08-01

297

The European carbon balance. Part 1: fossil fuel emissions  

SciTech Connect

We analyzed the magnitude, the trends and the uncertainties of fossil-fuel CO2 emissions in the European Union 25 member states (hereafter EU-25), based on emission inventories from energy-use statistics. The stability of emissions during the past decade at EU-25 scale masks decreasing trends in some regions, offset by increasing trends elsewhere. In the recent 4 years, the new Eastern EU-25 member states have experienced an increase in emissions, reversing after a decade-long decreasing trend. Mediterranean and Nordic countries have also experienced a strong acceleration in emissions. In Germany, France and United Kingdom, the stability of emissions is due to the decrease in the industry sector, offset by an increase in the transportation sector. When four different inventories models are compared, we show that the between-models uncertainty is as large as 19% of the mean for EU-25, and even bigger for individual countries. Accurate accounting for fossil CO2 emissions depends on a clear understanding of system boundaries, i.e. emitting activities included in the accounting. We found that the largest source of errors between inventories is the use of distinct systems boundaries (e.g. counting or not bunker fuels, cement manufacturing, nonenergy products). Once these inconsistencies are corrected, the between-models uncertainty can be reduced down to 7% at EU-25 scale. The uncertainty of emissions at smaller spatial scales than the country scale was analyzed by comparing two emission maps based upon distinct economic and demographic activities. A number of spatial and temporal biases have been found among the two maps, indicating a significant increase in uncertainties when increasing the resolution at scales finer than 200 km. At 100km resolution, for example, the uncertainty of regional emissions is estimated to be 60 gCm2 yr1, up to 50% of the mean. The uncertainty on regional fossil-fuel CO2 fluxes to the atmosphere could be reduced by making accurate 14C measurements in atmospheric CO2, and by combining them with transport models.

Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Paris, J. D. [Laboratoire des Sciences du Climat et de l'Environement, France; Peylin, Philippe [National Center for Scientific Research, Gif-sur-Yvette, France; Piao, S. L. [National Center for Scientific Research, Gif-sur-Yvette, France; River, L. [National Center for Scientific Research, Gif-sur-Yvette, France; Marland, Gregg [ORNL; Levin, I. [University of Heidelberg; Pregger, T. [Universitat Stuttgart; Scholz, Y. [Universitat Stuttgart; Friedrich, R. [Universitat Stuttgart; Schulze, E.-D. [Max Planck Institute for Biogeochemistry

2009-05-01

298

Emissions of black carbon and co-pollutants emitted from diesel vehicles in the Mexico City Metropolitan Area  

NASA Astrophysics Data System (ADS)

Black carbon emitted from freight, public transport, and heavy duty trucks sources is linked with adverse effects on human health. In addition, the control of emissions of black carbon, an important short-lived climate forcing agent (SLCF), has recently been considered as one of the key strategies for mitigating regional near-term climate change. Despite the availability of new emissions control technologies for reducing emissions from diesel-powered mobile sources, their introduction is still not widespread in many urban areas and there is a need to characterize real-world emission rates of black carbon from this key source. The emissions of black carbon, organic carbon, and other gaseous and particle pollutants from diesel-powered mobile sources in Mexico were characterized by deploying a mobile laboratory equipped with real-time instrumentation in Mexico City as part of the SLCFs-Mexico 2013 project. From February 25-28 of 2013 the emissions from selected diesel-powered vehicles were measured in both controlled experiments and real-world on-road driving conditions. Sampled vehicles had several emissions levels technologies, including: EPA98, EPA03, EPA04, EURO3-5, and Hybrid. All vehicles were sampled using diesel fuel and several vehicles were measured using both diesel and biodiesel fuels. Additional measurements included the use of a remote sensing unit for the co-sampling of all tested vehicles, and the installation and operation of a Portable Emissions Measurements System (PEMS) for the measurement of emissions from a test vehicle. We will present inter-comparisons of the emission factors obtained among the various vehicle technologies that were sampled during the experiment as well as the inter-comparison of results from the various sampling platforms. The results can be used to

Zavala, Miguel; Molina, Luisa T.; Fortner, Edward; Knighton, Berk; Herndon, Scott; Yacovitch, Tara; Floerchinger, Cody; Roscioli, Joseph; Kolb, Charles; Mejia, Jose Antonio; Sarmiento, Jorge; Paramo, Victor Hugo; Zirath, Sergio; Jazcilevich, Aron

2014-05-01

299

Trade-offs between solar radiation management, carbon dioxide removal, emissions mitigation and adaptation  

Microsoft Academic Search

The possible use of solar radiation control strategies to counteract global warming is explored through a number scenarios of different anthropogenic CO2 emission reduction pathways and carbon dioxide removal interventions. Using a simple Earth system model, we illustrate the trade-offs between CO2 emission reduction, the use of carbon dioxide removal geoengineering interventions (`negative emissions') and solar radiation management (SRM). These

Naomi Vaughan; Timothy Lenton

2010-01-01

300

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-print Network

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California Lawrence Berkeley National Laboratory October, 2008 Contract #05-310 "Improving the Carbon Dioxide Emission-310 "Spatial disaggregated estimate of energy-related carbon dioxide for California" #12;Acknowledgments

301

Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China  

E-print Network

Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China, Global Biogeochem. Cycles, 23, GB1007, doi:10.1029/2008GB003180. 1. Introduction [2] Carbon (C) sequestration has

302

COMPARISON OF THREE METHODS TO PROJECT FUTURE BASELINE CARBON EMISSIONS IN TEMPERATE RAINFOREST, CURINANCO, CHILE  

Microsoft Academic Search

Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a

Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor

2005-01-01

303

MASTER THESIS IN AQUATIC PHOTOCHEMISTRY Sunlight-induced carbon dioxide emissions from lakes  

E-print Network

MASTER THESIS IN AQUATIC PHOTOCHEMISTRY Sunlight-induced carbon dioxide emissions from lakes The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet, the fundamental. In this project, the sunlight-induced/photochemical production of carbon dioxide will be determined in a study

Uppsala Universitet

304

Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions  

SciTech Connect

This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

Not Available

1997-10-01

305

Setting cumulative emissions targets to reduce the risk of dangerous climate change  

PubMed Central

Avoiding “dangerous anthropogenic interference with the climate system” requires stabilization of atmospheric greenhouse gas concentrations and substantial reductions in anthropogenic emissions. Here, we present an inverse approach to coupled climate-carbon cycle modeling, which allows us to estimate the probability that any given level of carbon dioxide (CO2) emissions will exceed specified long-term global mean temperature targets for “dangerous anthropogenic interference,” taking into consideration uncertainties in climate sensitivity and the carbon cycle response to climate change. We show that to stabilize global mean temperature increase at 2 °C above preindustrial levels with a probability of at least 0.66, cumulative CO2 emissions from 2000 to 2500 must not exceed a median estimate of 590 petagrams of carbon (PgC) (range, 200 to 950 PgC). If the 2 °C temperature stabilization target is to be met with a probability of at least 0.9, median total allowable CO2 emissions are 170 PgC (range, ?220 to 700 PgC). Furthermore, these estimates of cumulative CO2 emissions, compatible with a specified temperature stabilization target, are independent of the path taken to stabilization. Our analysis therefore supports an international policy framework aimed at avoiding dangerous anthropogenic interference formulated on the basis of total allowable greenhouse gas emissions. PMID:19706489

Zickfeld, Kirsten; Eby, Michael; Matthews, H. Damon; Weaver, Andrew J.

2009-01-01

306

Using Sensor Information to Reduce the Carbon Footprint of Perishable Goods  

Microsoft Academic Search

Sensors enhance the control of perishable goods. New applications not only help to increase profits but also to reduce greenhouse gas emissions. An abatement cost analysis examines the trade-offs between profit maximization and emission minimization.

Alexander Ilic; Thorsten Staake; Elgar Fleisch

2009-01-01

307

Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality  

NASA Astrophysics Data System (ADS)

As a component of fine particulate matter (PM2.5), black carbon (BC) is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally, from eight world regions, and from three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m-3 (1.8%) and avoids 157 000 (95% confidence interval, 120 000-194 000) annual premature deaths globally, with the vast majority occurring within the source region. While most of these avoided deaths can be achieved by halving East Asian emissions (54%), followed by South Asian emissions (31%), South Asian emissions have 50% greater mortality impacts per unit BC emitted than East Asian emissions. Globally, the contribution of residential, industrial, and transportation BC emissions to PM2.5-related mortality is 1.3, 1.2, and 0.6 times each sector's contribution to anthropogenic BC emissions, owing to the degree of co-location with population. Impacts of residential BC emissions are underestimated since indoor PM2.5 exposure is excluded. We estimate ~8 times more avoided deaths when BC and organic carbon (OC) emissions are halved together, suggesting that these results greatly underestimate the full air pollution-related mortality benefits of BC mitigation strategies which generally decrease both BC and OC. Confidence in our results would be strengthened by reducing uncertainties in emissions, model parameterization of aerosol processes, grid resolution, and PM2.5 concentration-mortality relationships globally.

Anenberg, S. C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J. J.

2011-04-01

308

Reduced Carbon Solubility in Fe Nanoclusters and Implications for the Growth of Single-Walled Carbon Nanotubes  

E-print Network

Reduced Carbon Solubility in Fe Nanoclusters and Implications for the Growth of Single of the minimum temperature necessary for the growth. We address this phenomenon in terms of solubility of C in Fe of single-walled carbon nanotubes, corresponding to unaffected, reduced, and no solubility of C

Curtarolo, Stefano

309

Wheat straw cover for reducing ammonia and hydrogen sulfide emissions from dairy manure storage  

SciTech Connect

Analysis of the use of a wheat straw cover for reducing ammonia and hydrogen sulfide emissions from liquid manure was conducted in both a laboratory and a pilot system. Two straw covers with different thicknesses (5 cm and 10 cm) were evaluated for their effectiveness in reducing odorous gas emissions. The rates of ammonia and hydrogen sulfide emissions from the treatments were monitored; concentrations of ammonia, dissolved sulfide, chemical oxygen demand (COD), and pH of the liquid manure were measured. Additionally, the overall mass transfer coefficients of ammonia and hydrogen sulfide were calculated for the conditions of the experiment. The results demonstrated that both the 5-cm and 10-cm straw covers were effective in reducing ammonia and hydrogen sulfide emissions from manure storage. In the laboratory tests, when a crust formed on the manure surface within three to four weeks after the straw application, ammonia emissions were reduced by up to 95%. A similar trend was observed in the pilot experiments in the field. Hydrogen sulfide emissions were suppressed by 95% with the wheat straw cover. The mass transfer coefficients of hydrogen sulfide with the straw covers were significantly lower than those of the control, which indicated the effectiveness of a straw cover as a physical barrier for reducing hydrogen sulfide emissions. Reduced pH and decreased ammonia that biological reactions might also be a factor contributing to the emission reductions.

Xue, S.K.; Hermanson, R.E.

1999-08-01

310

Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.  

PubMed

This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO(2) emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world's largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO(2) emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO(2) emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO(2) emissions, which qualifies this product for CDM projects. PMID:20493626

Fairbairn, Eduardo M R; Americano, Branca B; Cordeiro, Guilherme C; Paula, Thiago P; Toledo Filho, Romildo D; Silvoso, Marcos M

2010-09-01

311

Analytical relationships between atmospheric carbon dioxide, carbon emissions, and ocean processes  

NASA Astrophysics Data System (ADS)

Carbon perturbations leading to an increase in atmospheric CO2 are partly offset by the carbon uptake by the oceans and the rest of the climate system. Atmospheric CO2 approaches a new equilibrium state, reached after ocean invasion ceases after typically 1000 years, given by PCO2 = P0exp(?I?/IB), where P0 and PCO2 are the initial and final partial pressures of atmospheric CO2, ?I? is a CO2 perturbation, and IB is the buffered carbon inventory of the air-sea system. The perturbation, ?I?, includes carbon emissions and changes in the terrestrial reservoir, as well as ocean changes in the surface carbon disequilibrium and fallout of organic soft tissue material. Changes in marine calcium carbonate, ?ICaCO3, lead to a more complex relationship with atmospheric CO2, where PCO2 is changed by the ratio PCO2 = P0{IO(A - C)/(IO(A - C) - ?ICaCO3)} and then modified by a similar exponential relationship, where IO(A - C) is the difference between the inventories of titration alkalinity and dissolved inorganic carbon. The overall atmospheric PCO2 response to a range of perturbations is sensitive to their nonlinear interactions, depending on the product of the separate amplification factors for each perturbation.

Goodwin, Philip; Follows, Michael J.; Williams, Richard G.

2008-09-01

312

Do volcanic emissions affect carbon gas fluxes in peatlands?  

NASA Astrophysics Data System (ADS)

Recently, a link has been suggested between volcanic deposition of SO4 and the suppression of CH4 emissions in northern peatlands (Gauci et al., 2008). This link stems from the widely accepted idea that acid rain SO4 additions to peatlands can cause a shift in microbial communities as SO4 reducing bacteria out-compete methanogens for substrates, which results in a suppression of CH4 emission. However, volcanic emissions contain besides S other chemically reactive species that are potentially harmful to the environment. In particular, gaseous and particulate F emissions from volcanoes constitute a steady or intermittent source of F emission and deposition into the environment both close to the source and within fallout range of large eruptions. The objective of this study was to investigate the effect of volcanic depositions of SO4, both alone and in combination with F, on CH4 emission in peatlands. Peat mesocosms collected from Pennine uplands in the UK were treated with weekly pulses of Na2SO4 and NaF over 20 weeks in doses of 74 kg SO4/ ha and 13.5 and 135 kg F /ha. CH4 emissions were measured at regular intervals by taking headspace samples, which were analysed by GC-FID. CO2 fluxes were also measured using a portable Infra Red Gas Analyser (IRGA). No significant differences in CH4 and CO2 emissions were observed for any of the treatments when compared to the controls, which had only received deionised water. These findings are in contrast with previous studies where SO4 reduces CH4 emission in peatlands. The reason for this is unclear but may be due to the heterogeneous nature of peat soils. An alternative explanation relates to the previous history of the soils used in the mesocosms which are known to have been previously exposed to large volumes of anthropogenic S pollution. This may have caused microbial communities to evolve and become acclimatised to high levels of S addition. In either case, the assumption that CH4 suppression in peatlands occurs upon exposure to volcanic depositions is questionable. Gauci, V., S. Blake, et al. (2008). Halving of the northern wetland methane source by a large icelandic volcanic eruption. JGR, doi:10.1029/2007JG000499

Harrison, Nicola; Delmelle, Pierre; Toet, Sylvia; Gauci, Vincent; Ineson, Phil

2010-05-01

313

Woody encroachment reduces nutrient limitation and promotes soil carbon sequestration  

PubMed Central

During the past century, the biomass of woody species has increased in many grassland and savanna ecosystems. As many of these species fix nitrogen symbiotically, they may alter not only soil nitrogen (N) conditions but also those of phosphorus (P). We studied the N-fixing shrub Dichrostachys cinerea in a mesic savanna in Zambia, quantifying its effects upon pools of soil N, P, and carbon (C), and availabilities of N and P. We also evaluated whether these effects induced feedbacks upon the growth of understory vegetation and encroaching shrubs. Dichrostachys cinerea shrubs increased total N and P pools, as well as resin-adsorbed N and soil extractable P in the top 10-cm soil. Shrubs and understory grasses differed in their foliar N and P concentrations along gradients of increasing encroachment, suggesting that they obtained these nutrients in different ways. Thus, grasses probably obtained them mainly from the surface upper soil layers, whereas the shrubs may acquire N through symbiotic fixation and probably obtain some of their P from deeper soil layers. The storage of soil C increased significantly under D. cinerea and was apparently not limited by shortages of either N or P. We conclude that the shrub D. cinerea does not create a negative feedback loop by inducing P-limiting conditions, probably because it can obtain P from deeper soil layers. Furthermore, C sequestration is not limited by a shortage of N, so that mesic savanna encroached by this species could represent a C sink for several decades. We studied the effects of woody encroachment on soil N, P, and C pools, and availabilities of N and P to Dichrostachys cinerea shrubs and to the understory vegetation. Both N and P pools in the soil increased along gradients of shrub age and cover, suggesting that N fixation by D. cinerea did not reduce the P supply. This in turn suggests that continued growth and carbon sequestration in this mesic savanna ecosystems are unlikely to be constrained by nutrient limitation and could represent a C sink for several decades. PMID:24834338

Blaser, Wilma J; Shanungu, Griffin K; Edwards, Peter J; Olde Venterink, Harry

2014-01-01

314

Woody encroachment reduces nutrient limitation and promotes soil carbon sequestration.  

PubMed

During the past century, the biomass of woody species has increased in many grassland and savanna ecosystems. As many of these species fix nitrogen symbiotically, they may alter not only soil nitrogen (N) conditions but also those of phosphorus (P). We studied the N-fixing shrub Dichrostachys cinerea in a mesic savanna in Zambia, quantifying its effects upon pools of soil N, P, and carbon (C), and availabilities of N and P. We also evaluated whether these effects induced feedbacks upon the growth of understory vegetation and encroaching shrubs. Dichrostachys cinerea shrubs increased total N and P pools, as well as resin-adsorbed N and soil extractable P in the top 10-cm soil. Shrubs and understory grasses differed in their foliar N and P concentrations along gradients of increasing encroachment, suggesting that they obtained these nutrients in different ways. Thus, grasses probably obtained them mainly from the surface upper soil layers, whereas the shrubs may acquire N through symbiotic fixation and probably obtain some of their P from deeper soil layers. The storage of soil C increased significantly under D. cinerea and was apparently not limited by shortages of either N or P. We conclude that the shrub D. cinerea does not create a negative feedback loop by inducing P-limiting conditions, probably because it can obtain P from deeper soil layers. Furthermore, C sequestration is not limited by a shortage of N, so that mesic savanna encroached by this species could represent a C sink for several decades. We studied the effects of woody encroachment on soil N, P, and C pools, and availabilities of N and P to Dichrostachys cinerea shrubs and to the understory vegetation. Both N and P pools in the soil increased along gradients of shrub age and cover, suggesting that N fixation by D. cinerea did not reduce the P supply. This in turn suggests that continued growth and carbon sequestration in this mesic savanna ecosystems are unlikely to be constrained by nutrient limitation and could represent a C sink for several decades. PMID:24834338

Blaser, Wilma J; Shanungu, Griffin K; Edwards, Peter J; Olde Venterink, Harry

2014-04-01

315

A Systems Approach to Reducing Institutional GHG Emissions  

ERIC Educational Resources Information Center

Purpose: The purpose of this paper is to establish necessity and methods for considering greenhouse gas (GHG) mitigation policies at a system-level. The research emphasizes connecting narrowly focused GHG mitigation objectives (e.g. reduce single occupancy vehicle travel) with broader institutional objectives (e.g. growth in student population) to…

Williamson, Sean R.

2012-01-01

316

SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.  

PubMed

The United States Department of Energy's SunShot Initiative has set cost-reduction targets of $1/watt for central-station solar technologies. We use SWITCH, a high-resolution electricity system planning model, to study the implications of achieving these targets for technology deployment and electricity costs in western North America, focusing on scenarios limiting carbon emissions to 80% below 1990 levels by 2050. We find that achieving the SunShot target for solar photovoltaics would allow this technology to provide more than a third of electric power in the region, displacing natural gas in the medium term and reducing the need for nuclear and carbon capture and sequestration (CCS) technologies, which face technological and cost uncertainties, by 2050. We demonstrate that a diverse portfolio of technological options can help integrate high levels of solar generation successfully and cost-effectively. The deployment of GW-scale storage plays a central role in facilitating solar deployment and the availability of flexible loads could increase the solar penetration level further. In the scenarios investigated, achieving the SunShot target can substantially mitigate the cost of implementing a carbon cap, decreasing power costs by up to 14% and saving up to $20 billion ($2010) annually by 2050 relative to scenarios with Reference solar costs. PMID:23865424

Mileva, Ana; Nelson, James H; Johnston, Josiah; Kammen, Daniel M

2013-08-20

317

Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia  

PubMed Central

Industrial agricultural plantations are a rapidly increasing yet largely unmeasured source of tropical land cover change. Here, we evaluate impacts of oil palm plantation development on land cover, carbon flux, and agrarian community lands in West Kalimantan, Indonesian Borneo. With a spatially explicit land change/carbon bookkeeping model, parameterized using high-resolution satellite time series and informed by socioeconomic surveys, we assess previous and project future plantation expansion under five scenarios. Although fire was the primary proximate cause of 1989–2008 deforestation (93%) and net carbon emissions (69%), by 2007–2008, oil palm directly caused 27% of total and 40% of peatland deforestation. Plantation land sources exhibited distinctive temporal dynamics, comprising 81% forests on mineral soils (1994–2001), shifting to 69% peatlands (2008–2011). Plantation leases reveal vast development potential. In 2008, leases spanned ?65% of the region, including 62% on peatlands and 59% of community-managed lands, yet <10% of lease area was planted. Projecting business as usual (BAU), by 2020 ?40% of regional and 35% of community lands are cleared for oil palm, generating 26% of net carbon emissions. Intact forest cover declines to 4%, and the proportion of emissions sourced from peatlands increases 38%. Prohibiting intact and logged forest and peatland conversion to oil palm reduces emissions only 4% below BAU, because of continued uncontrolled fire. Protecting logged forests achieves greater carbon emissions reductions (21%) than protecting intact forests alone (9%) and is critical for mitigating carbon emissions. Extensive allocated leases constrain land management options, requiring trade-offs among oil palm production, carbon emissions mitigation, and maintaining community landholdings. PMID:22523241

Carlson, Kimberly M.; Curran, Lisa M.; Ratnasari, Dessy; Pittman, Alice M.; Soares-Filho, Britaldo S.; Asner, Gregory P.; Trigg, Simon N.; Gaveau, David A.; Lawrence, Deborah; Rodrigues, Hermann O.

2012-01-01

318

Stable Electron Field Emission afrom Opened-Tip Carbon Nanotube Bundles  

NASA Astrophysics Data System (ADS)

Effective electron field emission from carbon nanotubes (CNTs) has been known for years but reliable commercial devices are still not available. Most reported works describe low emission threshold field (Eth) of CNTs and their device architectures. However, fundamental factors that determine stable emission from CNTs are still not clear. We previously reported that graphitic order of CNTs affects their emission stability [1]. Here, we found that both opened tip nanotubes and bundling, when introduced independently, can reduce Eth of CNTs and enhance the emission stability. The combined of both factors, i.e., opened tip nanotube bundles are shown to emit electron continuously > ten hours with notable stability. Theoretical simulation was conducted in supporting our explanation on these enhanced emission properties. SEM, TEM and Raman spectroscopy was conducted to characterize the as grown CNTs. Y. K. Yap acknowledges support from the Defense Advanced Research Projects Agency (DAAD17-03-C-0115, through Army Research Laboratory). [1]. Kayastha et al, Nanotechnology 18, 035206 (2007).

Pandey, Archana; Prasad, Abhishek; Moscatello, Jason; Khin Yap, Yoke

2009-03-01

319

Energy use and carbon dioxide emissions from cropland production in the United States, 1990-2004.  

PubMed

Changes in cropland production and management influence energy consumption and emissions of CO(2) from fossil-fuel combustion. A method was developed to calculate on-site and off-site energy and CO(2) emissions for cropping practices in the United States at the county scale. Energy consumption and emissions occur on-site from the operation of farm machinery and occur off-site from the manufacture and transport of cropland production inputs, such as fertilizers, pesticides, and agricultural lime. Estimates of fossil-fuel consumption and associated CO(2) emissions for cropping practices enable (i) the monitoring of energy and emissions with changes in land management and (ii) the calculation and balancing of regional and national carbon budgets. Results indicate on-site energy use and total energy use (i.e., the sum of on-site and off-site) on U.S. croplands in 2004 ranged from 1.6 to 7.9 GJ ha(-1) yr(-1) and from 5.5 to 20.5 GJ ha(-1) yr(-1), respectively. On-site and total CO(2) emissions in 2004 ranged from 23 to 176 kg C ha(-1) yr(-1) and from 91 to 365 kg C ha(-1) yr(-1), respectively. During the period of this analysis (1990-2004), national total energy consumption for crop production ranged from 1204 to 1297 PJ yr(-1) (Petajoule = 1 x 10(15) Joule) with associated total fossil CO(2) emissions ranging from 21.5 to 23.2 Tg C yr(-1) (Teragram = 1 x 10(12) gram). The annual proportion of on-site CO(2) to total CO(2) emissions changed depending on the diversity of crops planted. Adoption of reduced tillage practices in the United States from 1990 to 2004 resulted in a net fossil emissions reduction of 2.4 Tg C. PMID:19202012

Nelson, Richard G; Hellwinckel, Chad M; Brandt, Craig C; West, Tristram O; De La Torre Ugarte, Daniel G; Marland, Gregg

2009-01-01

320

The Effect of the Hayward Corridor Improvement Project on Carbon Monoxide Emission  

NASA Astrophysics Data System (ADS)

In August of 2010, construction began on a stretch of road in Downtown Hayward to address a problem with traffic flow. Known as the Hayward Corridor, the project reshaped the flow of traffic, replacing the two way streets of Foothill, Mission, and A Street with a loop between them. This project began with the initiative of reducing congestion in this area and improving access to businesses for pedestrians. The project was expected to have little environmental impact in most common assessments of degree of effect, including particulate matter, ozone and carbon monoxide levels. This report will discuss the effect of the Hayward Corridor Improvement Project on carbon monoxide emission. Data available to the public in the project's Environmental Impact Report shows that carbon monoxide levels before construction began were at an acceptable level according to federal and state standards. Projections for future concentrations both with and without the project show a decrease in carbon monoxide levels due to technological improvements and the gradual replacement of older, less efficient vehicles. The Environmental Impact Report projected that there would be little difference in carbon monoxide levels whether the project took place or not, at an average of 1.67x102 fewer parts per million per 1 hour period of measurement emitted in the case of the project not taking place. While it is not possible to draw a conclusion on what the current carbon monoxide levels would be if the project had not taken place due to the changes in traffic flow and other surrounding roads as a result of the project, the data gathered in June of 2013 suggested that carbon monoxide levels are higher than the values projected in 2007. This report summarizes both the accuracy of these carbon monoxide level projections and the effect of construction on carbon monoxide levels in the Hayward Corridor and the surrounding area.

Muhlfelder, M.; Martinez, E.; Maestas, A.; Peek, A.

2013-12-01

321

Treading Lightly Steps Toward Reducing Our Carbon Footprint  

E-print Network

to add an all-electric car to its car-sharing fleet. The nissan leaf is the first zero-emissions car Source: 2007 PAG/ UA Travel Demand Survey Curb Transportation Emissions Directly Financed Air Travel. According to the UA Travel Demand Survey, the university community has saved 7,668,501 driving miles, 383

Wong, Pak Kin

322

A human needs approach to reducing atmospheric carbon  

Microsoft Academic Search

Recent research has shown that once CO2 has been emitted to the atmosphere, it will take centuries for natural removal. Clearly, the longer we delay deep reductions in CO2, the greater the risk that total greenhouse gas emissions will exceed prudent limits for avoiding dangerous anthropogenic change. We evaluate the three possible technical approaches for climate change mitigation: emission reduction

Patrick Moriarty; Damon Honnery

2010-01-01

323

Black and Organic Carbon Emission Inventories: Review and Application to California  

Microsoft Academic Search

Particulate black or elemental carbon (EC) (black carbon [BC]) and organic carbon (OC) affect climate, visibility, and human health. Several “top-down” and “bottom-up” global emission inventories for these components have compiled country-wide emission factors, source profiles, and activity levels that do not necessarily reflect local conditions. Recent estimates of global BC and OC emissions range from 8 to 24 and

Judith C. Chow; John G. Watson; Douglas H. Lowenthal; Lung-Wen Antony Chen; Nehzat Motallebi; Wellington Jesus; Walter Nakaema; Maria Jorge; Rauda Mariani; Klara Slezakova; Dionísia Castro; Maria Pereira; Simone Morais; Cristina Delerue-Matos; Maria Alvim-Ferraz; Catherine Barton; Charles Zarzecki; Mark Russell; Marjaleena Aatamila; Pia Verkasalo; Maarit Korhonen; Marja Viluksela; Kari Pasanen; Pekka Tiittanen; Aino Nevalainen; Li Rong; Peter Nielsen; Guoqiang Zhang; Yi-Ming Kuo; Juu-En Chang; Kun-Yu Chang; Chih-C. Chao; Yeu-Juin Tuan; Guo-Ping Chang-Chien; Yongping Li; Guohe Huang; Arhontoula Chatzilazarou; Evangelos Katsoyannos; Olga Gortzi; Stavros Lalas; Yiannis Paraskevopoulos; Euthalia Dourtoglou; John Tsaknis; Tarek Abichou; Jeremy Clark; Sze Tan; Jeffery Chanton; Gary Hater; Roger Green; Doug Goldsmith; Morton Barlaz; Nathan Swan; Gang Sun; Huiqing Guo; Jonathan Peterson; Zhengmin Qian; Hung-Mo Lin; Walter Stewart; Nirav Shah; Linli Kong; Fen Xu; Denjin Zhou; Zhicao Zhu; Qingci He; Shengwen Liang; Weiqing Chen; Chungsying Lu; Hsunling Bai; Fengsheng Su; Wenfa Chen; Jyh Hwang; Hsiu-Hsia Lee

2010-01-01

324

Freshwater greenhouse gas emissions and their implications on landscape level carbon balances in India  

NASA Astrophysics Data System (ADS)

Methane (CH4) and carbon dioxide (CO2) emissions from global freshwaters are important sources of greenhouse gases to the atmosphere. It has been estimated that about 0.65 Pg of C (CO2 equiv.) yr-1 in the form of CH4 and 1.4 Pg C yr -1 in the form of CO2 is being emitted from global freshwaters. Therefore, including freshwater emissions in the greenhouse gas budgets in the national or global levels could significantly reduce the estimated land carbon sink, but present estimates suffer from lack of data, in particular from tropical freshwaters. Hence, we attempted to test the validity of the land carbon sink estimate in India, a tropical country with a large number of natural and man-made water bodies. We measured the CH4 and CO2 fluxes and surface water concentrations from a wide variety of inland freshwaters like lakes, ponds, rivers, reservoirs, open wells, canals and springs in three South Indian states, Tamil Nadu, Kerala and Andhra Pradesh. We observed that almost all of these freshwater systems emitted varied amounts of CH4 and a majority of them emitted CO2, similar to other tropical locations in South America. We extrapolated the measured fluxes for the whole of Indian inland waters by using the total area of different categories of inland waters in the national wetland atlas of India. By comparing our estimates of aquatic fluxes with the national greenhouse gas budget, we show that the land carbon sink of India is substantially overestimated. Thus, freshwater emissions are important components of greenhouse gas budgets on a landscape level and it is necessary to incorporate them in national and global greenhouse gas budgets to accurately quantify the land carbon sink.

Panneer Selvam, B.; Natchimuthu, S.; Arunachalam, L.; Bastviken, D.

2012-04-01

325

Reducing Industrial Energy Use and CO 2 Emissions: The Role of Materials Science  

Microsoft Academic Search

Nearly one-third of the world's energy consumption and 36% of its carbon dioxide (CO2) emissions are attributable to manufacturing industries. However, the adoption of advanced technologies already in commercial use could provide technical energy savings in industry of 27-41 exajoules (EJ), along with a reduction in CO2 emissions of 2.2-3.2 gigatonnes (Gt) per year, about 7-12% of today's global CO2

Dolf Gielen; Martin K. Patel

2008-01-01

326

Field Emission Properties of Carbon Nanotube Pillar Arrays Patterned Directly on Metal Alloy Surfaces.  

National Technical Information Service (NTIS)

Carbon nanotube pillar arrays (CPAs) for cold field emission were fabricated using a conventional photolithography process, and the geometry of these arrays was studied and the effect of pillar height on field emission was quantified. Our CPA samples achi...

B. P. Ribaya, D. L. Niemann, J. Silan, J. L. Killian, N. Z. Silan

2008-01-01

327

Wildlife conservation and reduced emissions from deforestation in a case study of Nantu Wildlife Reserve, Sulawesi: 2. An institutional framework for REDD implementation  

Microsoft Academic Search

Climate change threatens ecosystems and human society, with tropical deforestation contributing a fifth of anthropogenic carbon emissions. The proposed REDD mechanism will provide compensation for tropical forest nations to reduce deforestation, and potentially also co-benefits for rural communities and biodiversity. The success of REDD implementation will be partially determined by domestic institutional conditions. These have not yet been well articulated,

Murray Collins; Ewan A. Macdonald; Lynn Clayton; Iswan Dunggio; David W. Macdonald; E. J. Milner-Gulland

2011-01-01

328

A synthesis of carbon dioxide emissions from fossil-fuel combustion  

Microsoft Academic Search

This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts

Robert Joseph Andres; Thomas A Boden; F.-M. Breon; P. Ciais; S. Davis; D Erickson; J. S. Gregg; Andrew Jacobson; Gregg Marland; J. Miller; T Oda; J. G. J. Oliver; Michael Raupach; P Rayner; K. Treanton

2012-01-01

329

Cumulative emission budgets and their implications: the case for SAFE carbon  

Microsoft Academic Search

The risk of dangerous long-term climate change due to anthropogenic carbon dioxide emissions is predominantly determined by cumulative emissions over all time, not the rate of emission in any given year or commitment period. This has profound implications for climate mitigation policy: emission targets for specific years such as 2020 or 2050 provide no guarantee of meeting any overall cumulative

Myles Allen; Niel Bowerman; David Frame; Charles Mason

2010-01-01

330

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING  

E-print Network

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING in strategies for climate protection. 1. Introduction Carbon sequestration has been highlighted recently concentration of carbon dioxide (CO2) in the atmo- sphere include sequestering carbon (C) in soils

331

Carbon Emissions from Deforestation in the Brazilian Amazon Region  

NASA Technical Reports Server (NTRS)

A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from year to year during the period 2000-2002. This is the first study to use MODIS data to model all carbon pools (wood, leaf, root) dynamically in simulations of Amazon forest deforestation from clearing and burning of all kinds.

Potter, C.; Klooster, S.; Genovese, V.

2009-01-01

332

Carbon emissions from deforestation in the Brazilian Amazon Region  

NASA Astrophysics Data System (ADS)

A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; g C m-2) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazônia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C yr-1 (1 Pg{=}1015 g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C yr-1 from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C yr-1 in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from year to year during the period 2000-2002. This is the first study to use MODIS data to model all carbon pools (wood, leaf, root) dynamically in simulations of Amazon forest deforestation from clearing and burning of all kinds.

Potter, C.; Klooster, S.; Genovese, V.

2009-11-01

333

Carbon dioxide emissions from estuaries of northern and northeastern Brazil  

NASA Astrophysics Data System (ADS)

The carbon dioxide flux through the air-water interface of coastal estuarine systems must be quantified to understand the regional balance of carbon and its transport through adjacent coastal regions. We estimated and calculated the emissions of carbon dioxide (FCO2) and the partial pressure of CO2 (pCO2) values in 28 estuarine environments at a variety of spatial scales in the northern and northeastern regions of Brazil. The results showed a mean FCO2 (water to air) of 55 +/- 45 mmol.m-2.d-1. Additionally, a negative correlation between dissolved oxygen saturation and pCO2 was observed, indicating a control by biological processes and especially by organic matter degradation. This leads to increased dissolved CO2 concentration in estuarine waters which results in a pCO2 that reached 8,638 ?atm. Our study suggests that northern and northeastern Brazilian estuaries act as sources of atmospheric CO2. The range of pCO2 observed were similar to those found in inner estuaries in other places around the world, with the exception of a few semi-arid estuaries (Köppen climate classification - BSh) in which record low levels of pCO2 have been detected.

Noriega, Carlos; Araujo, Moacyr

2014-08-01

334

Reduced emissions from deforestation and degredation (REDD) and its potential role in Canada's climate change action plan.  

E-print Network

??Deforestation contributes approximately 20 percent of global annual carbon dioxide (CO2) emissions. Increased CO2 is thought to contribute to increased global temperatures. Proposals have been… (more)

Rindt, Cornelia Antje

2009-01-01

335

Thickness dependency of field emission in amorphous and nanostructured carbon thin films.  

PubMed

Thickness dependency of the field emission of amorphous and nanostructured carbon thin films has been studied. It is found that in amorphous and carbon films with nanometer-sized sp2 clusters, the emission does not depend on the film thickness. This further proves that the emission happens from the surface sp2 sites due to large enhancement of electric field on these sites. However, in the case of carbon films with nanocrystals of preferred orientation, the emission strongly depends on the film thickness. sp2-bonded nanocrystals have higher aspect ratio in thicker films which in turn results in higher field enhancement and hence easier electron emission. PMID:22655860

Shakerzadeh, Maziar; Teo, Edwin Hang Tong; Tay, Beng Kang

2012-01-01

336

Experimental evidence for the reducibility of multifragment emission probabilities  

SciTech Connect

Multifragmentation has been studied for {sup 36}Ar-induced reactions on a {sup 197}Au target at E/A = 80 and 110 MeV and for {sup 129}Xe-induced reactions on several targets ({sup nat}Cu, {sup 89}y, {sup 165}ho, {sup 197}Au) and E/A = 40, 50 and 60 MeV. The probability of emitting n intermediate-mass-fragments is shown to be binomial at each transversal energy and reducible to an elementary binary probability p. For each target and at each bombarding energy, this probability p shows a thermal nature by giving linear Arrhenius plots. For the {sup 129}Xe-induced reactions, a nearly universal linear Arrhenius plot is observed at each bombarding energy, indicating a large degree of target independence.

Wozniak, G.J.; Tso, K.; Phair, L. [and others

1995-01-01

337

Shaping the Terms of Competition: Environmental Regulation and Corporate Strategies to Reduce Diesel Vehicle Emissions  

E-print Network

Diesel Vehicle Emissions by Christine Bik-Kay Ng B.S., Civil and Environmental Engineering University Strategies to Reduce Diesel Vehicle Emissions by Christine Bik-Kay Ng Submitted to the Engineering Systems. This research explains the conditions under which competitive regulatory strategies are pursued in the diesel

de Weck, Olivier L.

338

Dynamics of implementation of mitigating measures to reduce CO? emissions from commercial aviation  

E-print Network

Increasing demand for air transportation and growing environmental concerns motivate the need to implement measures to reduce CO? emissions from aviation. Case studies of historical changes in the aviation industry have ...

Kar, Rahul, 1979-

2010-01-01

339

Carbon Cycles  

NSDL National Science Digital Library

Students are introduced to the concept of energy cycles by learning about the carbon cycle. They learn how carbon atoms travel through the geological (ancient) carbon cycle and the biological/physical carbon cycle. They consider how human activities disturb the carbon cycle by emitting carbon dioxide into the atmosphere. They discuss how engineers and scientists are working to reduce carbon dioxide emissions. Lastly, students consider how they can help the world through simple energy conservation measures.

Integrated Teaching And Learning Program

340

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL  

Microsoft Academic Search

In full-scale boilers, the effect of biomass cofiring on NO and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This

Larry G. Felix; P. Vann Bush; Stephen Niksa

2003-01-01

341

Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes  

Microsoft Academic Search

The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun

Min Kyoon Shin; Bommy Lee; Shi Hyeong Kim; Jae Ah Lee; Geoffrey M. Spinks; Sanjeev Gambhir; Gordon G. Wallace; Mikhail E. Kozlov; Ray H. Baughman; Seon Jeong Kim

2012-01-01

342

Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)  

EIA Publications

Carbon Dioxide (CO2) emissions from the combustion of biomass to produce energy are excluded from the energy-related CO2 emissions reported in Annual Energy Outlook 2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

2010-01-01

343

Laser–Arc Treatment of Iron–Carbon Alloys with Emissive Coatings and of Carbon–Carbon Composites  

Microsoft Academic Search

The conditions for stabilization of the sustaining spot of an electric arc on the surface of metals and carbon-graphite materials in a wide range of laser-radiation intensities are studied. The use of a laser–arc source with a low intensity of laser radiation and a reverse-polarity arc is substantiated physically for efficient surface treatment of metals with emissive coatings and of

D. M. Gureev; S. I. Kuznetsov; A. L. Petrov; V. A. Shcheglov

2002-01-01

344

Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars  

NASA Astrophysics Data System (ADS)

Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

Meinrenken, Christoph; Lackner, Klaus S.

2012-02-01

345

Greenhouse gas emission accounting and management of low-carbon community.  

PubMed

As the major source of greenhouse gas (GHG) emission, cities have been under tremendous pressure of energy conservation and emission reduction for decades. Community is the main unit of urban housing, public facilities, transportation, and other properties of city's land use. The construction of low-carbon community is an important pathway to realize carbon emission mitigation in the context of rapid urbanization. Therefore, an efficient carbon accounting framework should be proposed for CO? emissions mitigation at a subcity level. Based on life-cycle analysis (LCA), a three-tier accounting framework for the carbon emissions of the community is put forward, including emissions from direct fossil fuel combustion, purchased energy (electricity, heat, and water), and supply chain emissions embodied in the consumption of goods. By compiling a detailed CO? emission inventory, the magnitude of carbon emissions and the mitigation potential in a typical high-quality community in Beijing are quantified within the accounting framework proposed. Results show that emissions from supply chain emissions embodied in the consumption of goods cannot be ignored. Specific suggestions are also provided for the urban decision makers to achieve the optimal resource allocation and further promotion of low-carbon communities. PMID:23251104

Song, Dan; Su, Meirong; Yang, Jin; Chen, Bin

2012-01-01

346

Greenhouse Gas Emission Accounting and Management of Low-Carbon Community  

PubMed Central

As the major source of greenhouse gas (GHG) emission, cities have been under tremendous pressure of energy conservation and emission reduction for decades. Community is the main unit of urban housing, public facilities, transportation, and other properties of city's land use. The construction of low-carbon community is an important pathway to realize carbon emission mitigation in the context of rapid urbanization. Therefore, an efficient carbon accounting framework should be proposed for CO2 emissions mitigation at a subcity level. Based on life-cycle analysis (LCA), a three-tier accounting framework for the carbon emissions of the community is put forward, including emissions from direct fossil fuel combustion, purchased energy (electricity, heat, and water), and supply chain emissions embodied in the consumption of goods. By compiling a detailed CO2 emission inventory, the magnitude of carbon emissions and the mitigation potential in a typical high-quality community in Beijing are quantified within the accounting framework proposed. Results show that emissions from supply chain emissions embodied in the consumption of goods cannot be ignored. Specific suggestions are also provided for the urban decision makers to achieve the optimal resource allocation and further promotion of low-carbon communities. PMID:23251104

Song, Dan; Su, Meirong; Yang, Jin; Chen, Bin

2012-01-01

347

Tetraphenylethylene-based phosphine: tuneable emission and carbon dioxide fixation.  

PubMed

A tetraphenylethylene-based phosphine, 1,1,2,2-tetrakis((4-diphenylphosphino)phenyl)ethylene (TPE-P4), was synthesized and showed novel aggregation-induced and mechano-responsive emission. A mixture of TPE-P4 and Ag(+) could fix atmospheric CO2in situ as carbonate ions in neutral solution to yield a rare 3D metal-organic framework with zeolite-like SOD topology, [Ag2(TPE-P4)CO3]x?nH2O (Ag-TPE-P4). Ag-TPE-P4 showed turn-on luminescence of TPE-P4, emitting bright bluish green light in the solid state. PMID:25216390

Zhang, Jianyong; Yang, Qiuli; Zhu, Yixuan; Liu, Haoliang; Chi, Zhenguo; Su, Cheng-Yong

2014-10-01

348

Thermionic field emission transport in carbon nanotube transistors.  

PubMed

With experimental and analytical analysis, we demonstrate a relationship between the metal contact work function and the electrical transport properties saturation current (Isat) and differential conductance (?sd=?Isd/?Vsd) in ambient exposed carbon nanotubes (CNT). A single chemical vapor deposition (CVD) grown 6 mm long semiconducting single-walled CNT is electrically contacted with a statistically significant number of Hf, Cr, Ti, Pd, and Au electrodes, respectively. The observed exponentially increasing relationship of Isat and ?sd with metal contact work function is explained by a theoretical model derived from thermionic field emission. Statistical analysis and spread of the data suggest that the conduction variability in same CNT devices results from differences in local surface potential of the metal contact. Based on the theoretical model and methodology, an improved CNT-based gas sensing device layout is suggested. A method to experimentally determine gas-induced work function changes in metals is also examined. PMID:21309557

Perello, David J; Lim, Seong Chu; Chae, Seung Jin; Lee, Innam; Kim, Moon J; Lee, Young Hee; Yun, Minhee

2011-03-22

349

Carbon emission and sequestration of urban turfgrass systems in Hong Kong.  

PubMed

Climate change is more than just a global issue. Locally released carbon dioxide may lead to a rise in global ambient temperature and influence the surrounding climate. Urban greenery may mitigate this as they can remove carbon dioxide by storing carbon in substrates and vegetation. On the other hand, urban greenery systems which are under intense management and maintenance may contribute to the emission of carbon dioxide or other greenhouse gases. The impact of urban greenery on carbon balance in major metropolitan areas thus remains controversial. We investigated the carbon footprints of urban turf operation and maintenance by conducting a research questionnaire on different Hong Kong turfs in 2012, and showed that turf maintenance contributed 0.17 to 0.63 kg Ce m(-2)y(-1) to carbon emissions. We also determined the carbon storage of turfs at 0.05 to 0.21 kg C m(-2) for aboveground grass biomass and 1.26 to 4.89 kg C m(-2) for soils (to 15 cm depth). We estimated that the carbon sink capacity of turfs could be offset by carbon emissions in 5-24 years under current management patterns, shifting from carbon sink to carbon source. Our study suggested that maintenance management played a key role in the carbon budget and footprint of urban greeneries. The environmental impact of turfgrass systems can be optimized by shifting away from empirically designed maintenance schedules towards rational ones based on carbon sink and emission principles. PMID:24365589

Kong, Ling; Shi, Zhengjun; Chu, L M

2014-03-01

350

Field emission with ultralow turn on voltage from metal decorated carbon nanotubes.  

PubMed

A simple and scalable method of decorating 3D-carbon nanotube (CNT) forest with metal particles has been developed. The results observed in aluminum (Al) decorated CNTs and copper (Cu) decorated CNTs on silicon (Si) and Inconel are compared with undecorated samples. A significant improvement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage (Eto ? 0.1 V/?m) due to decoration of CNTs with metal nanoparticles. Contact resistance between the CNTs and the substrate has also been reduced to a large extent, allowing us to get stable emission for longer duration without any current degradation, thereby providing a possibility of their use in vacuum microelectronic devices. PMID:25054222

Sridhar, Srividya; Tiwary, Chandrasekhar; Vinod, Soumya; Taha-Tijerina, Jose Jaime; Sridhar, Srividvatha; Kalaga, Kaushik; Sirota, Benjamin; Hart, Amelia H C; Ozden, Sehmus; Sinha, Ravindra Kumar; Harsh; Vajtai, Robert; Choi, Wongbong; Kordás, Krisztián; Ajayan, Pulickel M

2014-08-26

351

Detection of reduced carbon in basalt using Raman spectroscopy: a signpost to habitat on Mars  

NASA Astrophysics Data System (ADS)

In the search for evidence of the environmental history of the Martian surface, and the possibility of life at some stage in the planet's history, a key component is reduced carbon. Carbon is available to the surface environment through meteoritic infall [1] and erosion of abundant volcanic rocks which contain magmatic carbon [2][3], in addition to the possibility of some biogenic carbonaceous matter. However, reduced carbon has not yet been detected by a range of missions to Mars. Carbonate minerals, containing carbon in inorganic oxidized form, have been recorded [4], which together with carbon dioxide in the Martian atmosphere and magmatic carbon in Martian meteorites provide evidence for a carbon cycle on Mars [5][6]. The mobility of carbon on Mars is also evident in fracture-bound carbon in the Nakhla meteorite, derived from Martian basalt [7] [8]. Basalts are widespread on Mars, so are readily accessible for sampling and analysis. Basalt-hosted carbon could have a relationship to life in both a consequential or causative manner. Basalt could incorporate carbon from organic matter disseminated in sediments through which the basaltic magma passed. It is even possible that basalt could concentrate carbon scavenged from sediments into carbon-rich structures. Alternatively, basalt could act as a feedstock of carbon to provide biomass for colonizing microbes. In this way, the discovery of carbon in (Martian) basalt could be regarded as a signpost to habitat, i.e. the identification of carbon is a key aspect of the strategy for targeting where evidence of life should be sought. The ExoMars mission, currently intended to fly in 2018, includes a Raman spectroscopy instrument, whose targets for detection include reduced carbon. We report here the study of an analogue for the carbon-bearing Nakhla meteorite, representing nearsurface Martian crust, using Raman spectroscopy and other techniques to demonstrate the potential to detect the reduced carbon therein. The analogue is a terrestrial basalt containing traces of reduced carbon in cross-cutting fractures.

Harris, L. V.; Hutchinson, I. B.; Parnell, J.; Ingley, R.; Edwards, H. G. M.

2013-09-01

352

Imaging Carbon Monoxide Emission in the Starburst Galaxy NGC 6000  

NASA Astrophysics Data System (ADS)

We present measurements of carbon monoxide emission in the central region of the nearby starburst NGC 6000 taken with the Submillimeter Array. The J = 2-1 transition of 12CO, 13CO, and C18O were imaged at a resolution of ~3'' × 2'' (450 × 300 pc). We accurately determine the dynamical center of NGC 6000 at ?J2000.0 = 15h49m49.s5 and ?J2000.0 = -29°23'13'' which agrees with the peak of molecular emission position. The observed CO dynamics could be explained in the context of the presence of a bar potential affecting the molecular material, likely responsible for the strong nuclear concentration where more than 85% of the gas is located. We detect a kinematically detached component of dense molecular gas at relatively high velocity which might be fueling the star formation. A total nuclear dynamical mass of 7 × 109 M sun is derived and a total mass of gas of 4.6 × 108 M sun, yielding a M gas/M dyn ~ 6%, similar to other previously studied barred galaxies with central starbursts. We determined the mass of molecular gas with the optically thin isotopologue C18O and we estimate a CO-to-H2 conversion factor X CO = 0.4 × 1020 cm-2(K km s-1)-1 in agreement with that determined in other starburst galaxies.

Martín, Sergio; George, Matthew R.; Wilner, David J.; Espada, Daniel

2010-06-01

353

India's aluminum industry: Productivity, energy efficiency and carbon emissions  

SciTech Connect

Historical estimates of productivity growth in India's aluminum sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. An analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector declined slightly by 0.2%. An econometric analysis reveals that technical progress in India's aluminum sector has been biased towards the use of energy, while it has been labor saving. The decline in productivity was mainly driven by a decline in the 1970s when capacity utilization was low and the energy crisis hit India and the world. From the early 1980s on productivity recuperated. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian aluminum sector has high potential to move towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. Substantial energy savings and carbon reduction options exist.

Schumacher, Katja; Sathaye, Jayant

1999-07-01

354

India's cement industry: Productivity, energy efficiency and carbon emissions  

SciTech Connect

Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

Schumacher, Katja; Sathaye, Jayant

1999-07-01

355

Estimating Diesel Fuel Consumption and Carbon Dioxide Emissions from Forest Road Construction  

Microsoft Academic Search

Forest access road construction is a necessary component of many on-the- ground forest vegetation treatment projects. However, the fuel energy requirements and associated carbon dioxide emissions from forest road construction are unknown. We present a method for estimating diesel fuel consumed and related carbon dioxide emissions from constructing forest roads using published results from a study designed to measure road

Dan Loeffler; Greg Jones; Nikolaus Vonessen; Sean Healey; Woodam Chung

356

Stabilizing a pulsed field emission from an array of carbon nanotubes  

Microsoft Academic Search

In this paper, we propose a new design configuration for a carbon nanotube (CNT) array based pulsed field emission device to stabilize the field emission current. In the new design, we consider a pointed height distribution of the carbon nanotube array under a diode configuration with two side gates maintained at a negative potential to obtain a highly intense beam

D. Roy Mahapatra; S. Anand; N. Sinha; R. V. N. Melnik

2009-01-01

357

Drivers on carbon dioxide emissions from the Scheldt river basin  

NASA Astrophysics Data System (ADS)

Inland waters are a key component of the global carbon (C) cycle that transport organic and inorganic C from the terrestrial biosphere to the coastal ocean and emit CO2 to the atmosphere at a significant rate for global CO2 budgets. Yet, mechanisms underlying this CO2 emission to the atmosphere remain poorly understood and seldom modelled mechanistically. For this application a module describing the carbonate system and CO2 air-water exchange was added to the biogeochemical Seneque/Riverstrahler model describing transformation of C, N, P, Si occurring within hydrological networks. The model was applied to the human impacted Scheldt basin and the evolution of the partial pressure of CO2 (pCO2) and air-water CO2 flux was simulated for the year 1997 when data of dissolved inorganic carbon (DIC), total alkalinity (TA) and pCO2 are available for model validation. The model reproduces reasonably well the seasonal and spatial variations of the DIC, TA and pCO2 within the 5 main rivers of the Scheldt basin where data are available. At the annual level, the studied rivers act as major sources of CO2 to the atmosphere. Results show that the longitudinal variations of pCO2 are mainly controlled by the importance of air-water CO2 exchange. However, the choice of the parameterization of the gas transfer coefficient does not appear critical for this particular system. Biological activity also locally modulates the longitudinal variations of pCO2, while diffuse inputs from the watershed determine the initial conditions in the river without significantly altering the patterns observed from the upstream to the downstream. Both diffuse and punctual sources of C and TA are important drivers of the CO2 exchange in the river. In particular, model application evidences the sensitivity of the simulated CO2 fluxes to the description of human activities on the watershed.

Gypens, Nathalie; Passy, Paul; Garnier, Josette; Billen, Gilles; Silvestre, Marie; Borges, Alberto V.

2014-05-01

358

Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions  

PubMed Central

Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions. PMID:23977273

Heimpel, George E.; Yang, Yi; Hill, Jason D.; Ragsdale, David W.

2013-01-01

359

The 217.5 nm band, infrared absorption and infrared emission features in hydrogenated amorphous carbon nanoparticles  

E-print Network

We report on the preparation of hydrogenated amorphous carbon nano-particles whose spectral characteristics include an absorption band at 217.5 nm with the profile and characteristics of the interstellar 217.5 nm feature. Vibrational spectra of these particles also contain the features commonly observed in absorption and emission from dust in the diffuse interstellar medium. These materials are produced under slow deposition conditions by minimizing the flux of incident carbon atoms and by reducing surface mobility. The initial chemistry leads to the formation of carbon chains, together with a limited range of small aromatic ring molecules, and eventually results in carbon nano-particles having an sp2/sp3 ratio = 0.4. Spectroscopic analysis of particle composition indicates that naphthalene and naphthalene derivatives are important constituents of this material. We suggest that carbon nano-particles with similar composition are responsible for the appearance of the interstellar 217.5 nm band and outline how t...

Duley, W W

2012-01-01

360

Assessing the potential of hybrid energy technology to reduce exhaust emissions from global shipping  

Microsoft Academic Search

The combination of a prime mover and an energy storage device for reduction of fuel consumption has successfully been used in automotive industry. The shipping industry has utilised this for conventional submarines. The potential of a load levelling strategy through use of a hybrid battery–diesel–electric propulsion system is investigated. The goal is to reduce exhaust gas emissions by reducing fuel

Eleftherios K. Dedes; Dominic A. Hudson; Stephen R. Turnock

361

Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality  

NASA Astrophysics Data System (ADS)

As a component of fine particulate matter (PM2.5), black carbon (BC) is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m-3 (1.8 %) and avoids 157 000 (95 % confidence interval, 120 000-194 000) annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %), followed by South Asia (India; 31 %), however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times more avoided deaths when BC and organic carbon (OC) emissions are halved together, suggesting that these results greatly underestimate the full air pollution-related mortality benefits of BC mitigation strategies which generally decrease both BC and OC. The choice of concentration-response factor and health effect thresholds affects estimated global avoided deaths by as much as 56 % but does not strongly affect the regional distribution. Confidence in our results would be strengthened by reducing uncertainties in emissions, model parameterization of aerosol processes, grid resolution, and PM2.5 concentration-mortality relationships globally.

Anenberg, S. C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J. J.

2011-07-01

362

Carbon-doped SiO x nanowires with a large yield of white emission  

NASA Astrophysics Data System (ADS)

The growth of SiO x nanowires (NWs) with intense white emission is reported. Due to carbon monoxide gas being used as a dopant precursor, carbon-doped under-stoichiometric silicon dioxide NWs are obtained. The doping of the NWs is studied by means of x-ray photoelectron spectroscopy, which allows to assess the presence of carbon atoms in the silicon oxide amorphous structure. The light emission properties are studied by means of cathodoluminescence spectroscopy, which shows three main emission bands set at 2.7 eV (blue), 2.3 eV (green) and 1.9 eV (red), resulting in the white emission.

Fabbri, Filippo; Rossi, Francesca; Negri, Marco; Tatti, Roberta; Aversa, Lucrezia; Chander Dhanabalan, Sathish; Verucchi, Roberto; Attolini, Giovanni; Salviati, Giancarlo

2014-05-01

363

Numerical analysis of electron emission site distribution of carbon nanofibers for field emission properties.  

PubMed

To obtain optimal field emission (FE) properties, it is important to evaluate FE parameters including the electron emission site ? and the field enhancement factor ?. However, it is difficult to evaluate ? quantitatively because the emitting electrons cannot be observed directly. The authors have aimed to analyze this site using an original architecture with a computation system tool based on the surface charge method, and a three-dimensional model has been employed to calculate FE properties with high accuracy. In this study, to analyze ? for determining FE properties, each carbon nanofiber (CNF) model separated by Cr islands which include the minimum area for calculating electric fields by the surface charge method was constructed on the surface of a Ni catalyst. The FE current was simulated with a Fowler-Nordheim formula using the calculated electric fields, followed by a simulation performed using all CNFs on a field emitter cathode. The electron emission site ? was determined by comparing the simulation and experimental results of the FE current. It was found that ? depends on the morphology of the CNF bundles, and a close quantitative correspondence between the experimental and the computation results of FE properties was obtained. In summary, a method of analyzing FE properties was established using an original architecture, making it possible to predict FE properties with a computational tool based on the surface charge method. PMID:23273149

Shimoi, Norihiro; Tanaka, Shun-ichiro

2013-02-01

364

The impact of electric passenger transport technology under an economy-wide climate policy in the United States: Carbon dioxide emissions, coal use, and carbon dioxide capture and storage  

Microsoft Academic Search

Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear.

Marshall A. Wise; G. Page Kyle; James J. Dooley; Son H. Kim

2010-01-01

365

Oxidized and reduced biogenic nitrogen compound emissions into the rural troposphere: Characterization and modeling  

NASA Astrophysics Data System (ADS)

Using a dynamic flow-through chamber technique in conjunction with a state-of-the-art mobile laboratory, this research attempts to characterize and model oxidized and reduced biogenic nitrogen compound emissions into the rural troposphere. Nitrogen compound emissions are known to have profound effects on air quality. Consequences associated with increased emissions of oxidized and reduced nitrogen species are known to be increased tropospheric ozone production, fine particulate aerosol production, nitrate contamination of drinking water, eutrophication and acidification of soil and water bodies. It is well recognized that soil emissions can contribute a substantial percent of the total inventory for both the oxidized and reduced species, but great uncertainty still exists in this inventory. A controlled experiment involving the application of municipal waste biosolids to agricultural soils was shown to enhance NO emissions. A more detailed analysis throughout several seasons found the nitric oxide emissions from biosolid amended soils to have a strong temperature dependence and that their source strength is much larger relative to soils amended with chemically derived fertilizers. Emissions of nitric oxide from biosolid amended soils were modeled using the MultiScale Air Quality Simulation Platform (MAQSIP). Results from this model indicated that ozone concentrations can decrease by approximately 12% (in the evening) and increase by approximately 2% (during the daylight hours) when these biosolid amended soils are taken into consideration in the land use database. Emissions of ammonia from soils amended with swine waste effluent were also measured and modeled. This study revealed that while the average source strength of ammonia from soils is significantly smaller than that of the lagoons, the much larger surface area of the soils causes them to also be an important emissions source. A fundamental mechanistic mass transfer model is presented and discussed in terms of its applicability for estimating NH3 flux and was found to be an effective predictor of the NH3 emissions for time periods immediately following slurry application.

Roelle, Paul Andrew

2001-12-01

366

High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission  

SciTech Connect

We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

Hojati-Talemi, Pejman [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia); Mawson Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Gibson, Mark A. [Process Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Clayton, Vic 3168 (Australia); East, Daniel; Simon, George P. [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia)

2011-11-07

367

The effect of economical and technological measures to reduce CO{sub 2} emission from the offshore oil and gas industry in Norway  

SciTech Connect

As of January 1991 a carbon tax of US$40 per ton of CO{sub 2} was levied on a large part of Norwegian emissions. The purpose of introducing the carbon tax was to encourage operators to limit, by year 2000, the total emissions of CO{sub 2} (both onshore and offshore) to a level not exceeding the 1989 figure of some 35 million ton CO{sub 2}. Today`s tax is US$50 per ton CO{sub 2} However, four years of heavy CO{sub 2} taxation has proved to Norway that national CO{sub 2} emission targets have not been achieved through taxation. CO{sub 2} emissions have, in fact, increased by several percent since 1992. The increase may be in the order of 13% from 1989 to 2000 unless more efficient measures are brought into play The offshore oil and natural gas industry is responsible for approximately 23% of Norwegian CO{sub 2} emissions and for much of the increase experienced from 1989 to date. Consequently there is considerable pressure to reduce the emissions, or rather to curtail the increased emissions. Ministry of the Environment has been concerned about the influence of the carbon tax on emission from the petroleum production on the Norwegian Continental Shelf In 1994 the Norwegian Petroleum Directorate started a project to study this matter. The objective of this project was to analyses the possible short- and long-term effects of higher carbon taxes on the CO{sub 2} emission level, as well as on the production level, in the Norwegian petroleum sector.

Henriksen, B.; Klausen, L.M.; Utseth, A.

1995-12-31

368

Light pollution and solid-state lighting: reducing the carbon dioxide footprint is not enough  

NASA Astrophysics Data System (ADS)

Public and private lighting account for a relevant share of the overall electric power consumption worldwide. The pressing need of reducing the carbon dioxide emissions as well as of lowering the lumen•hour price tag has fostered the search for alternative lighting technologies to substitute for the incandescent and gas-discharge based lamps. The most successful approach to date, solid-state lighting, is already finding its way into the public lighting market, very often helped by substantial public investments and support. LED-based sources have distinct advantages: under controlled coditions their efficacy equals or surpasses that of conventional solutions, their small source size allows for an efficient collimation of the lightbeam (delivering the photons where they are actually needed and reducing lightspill on the surrounding areas), and they can be switched and/or dimmed on demand at very high rates, thus allowing for a taylored schedule of lighting. However, energy savings and carbon dioxide reduction are not the only crucial issues faced by present day lighting. A growing body of research has shown the significance of the spectral composition of light when it comes to assess the detrimental effects of artificial light-at-night (ALAN). The potential ALAN blueshift associated to the deployment of LED-based lighting systems has raised sensible concerns about its scientific, cultural, ecological and public health consequences, which can be further amplified if an increased light consumption is produced due to the rebound effect. This contribution addresses some of the challenges that these issues pose to the Optics and Photonics community.

Bará, Salvador

2013-11-01

369

Carbon emissions from cities and urban regions at multiple levels (Invited)  

NASA Astrophysics Data System (ADS)

The role of urban areas in global carbon emissions is expected to be significant and thus crucial for the global climate change mitigation. Accordingly, in this paper, consolidate and present the existing knowledge and information on the urban carbon emissions at global, regional and city levels. This is built on a consolidated knowledge from author’s organized and co-edited special issue in Energy Policy Journal titled Carbon Emissions and Carbon Management in Cities published in 2010, other of author’s own work in China, Thailand and North-East Asian cities, and the existing literatures on cities. In particular, we present and clarify the contribution of urban areas in the global and respective regional CO2 emissions and the CO2 emissions from the global cities including their inter-comparisons. In those discussions, we present the trends and patterns of CO2 emissions from cities and highlight the points of caution and uncertainties in CO2 estimation imposed by the definitions of urban areas and cities, the scope and approach of estimations, and the methodological limitations. We will pay a special attention to the carbon attribution challenges since urban area is essentially an open system with intense interactions outside its physical boundaries. Their responsibilities for carbon emissions and mitigation vary depending on the choice of the system boundary of urban activities and how carbon emissions are attributed. We show example of such phenomenon quantitatively thorough a case study of Tokyo.

Dhakal, S.

2010-12-01

370

The impacts of population change on carbon emissions in China during 1978-2008  

SciTech Connect

This study examines the impacts of population size, population structure, and consumption level on carbon emissions in China from 1978 to 2008. To this end, we expanded the stochastic impacts by regression on population, affluence, and technology model and used the ridge regression method, which overcomes the negative influences of multicollinearity among independent variables under acceptable bias. Results reveal that changes in consumption level and population structure were the major impact factors, not changes in population size. Consumption level and carbon emissions were highly correlated. In terms of population structure, urbanization, population age, and household size had distinct effects on carbon emissions. Urbanization increased carbon emissions, while the effect of age acted primarily through the expansion of the labor force and consequent overall economic growth. Shrinking household size increased residential consumption, resulting in higher carbon emissions. Households, rather than individuals, are a more reasonable explanation for the demographic impact on carbon emissions. Potential social policies for low carbon development are also discussed. - Highlights: Black-Right-Pointing-Pointer We examine the impacts of population change on carbon emissions in China. Black-Right-Pointing-Pointer We expand the STIRPAT model by containing population structure factors in the model. Black-Right-Pointing-Pointer The population structure includes age structure, urbanization level, and household size. Black-Right-Pointing-Pointer The ridge regression method is used to estimate the model with multicollinearity. Black-Right-Pointing-Pointer The population structure plays a more important role compared with the population size.

Zhu Qin, E-mail: zhuqin@fudan.edu.cn; Peng Xizhe, E-mail: xzpeng@fudan.edu.cn

2012-09-15

371

Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport.  

PubMed

We used Comparative Risk Assessment methods to estimate the health effects of alternative urban land transport scenarios for two settings-London, UK, and Delhi, India. For each setting, we compared a business-as-usual 2030 projection (without policies for reduction of greenhouse gases) with alternative scenarios-lower-carbon-emission motor vehicles, increased active travel, and a combination of the two. We developed separate models that linked transport scenarios with physical activity, air pollution, and risk of road traffic injury. In both cities, we noted that reduction in carbon dioxide emissions through an increase in active travel and less use of motor vehicles had larger health benefits per million population (7332 disability-adjusted life-years [DALYs] in London, and 12 516 in Delhi in 1 year) than from the increased use of lower-emission motor vehicles (160 DALYs in London, and 1696 in Delhi). However, combination of active travel and lower-emission motor vehicles would give the largest benefits (7439 DALYs in London, 12 995 in Delhi), notably from a reduction in the number of years of life lost from ischaemic heart disease (10-19% in London, 11-25% in Delhi). Although uncertainties remain, climate change mitigation in transport should benefit public health substantially. Policies to increase the acceptability, appeal, and safety of active urban travel, and discourage travel in private motor vehicles would provide larger health benefits than would policies that focus solely on lower-emission motor vehicles. PMID:19942277

Woodcock, James; Edwards, Phil; Tonne, Cathryn; Armstrong, Ben G; Ashiru, Olu; Banister, David; Beevers, Sean; Chalabi, Zaid; Chowdhury, Zohir; Cohen, Aaron; Franco, Oscar H; Haines, Andy; Hickman, Robin; Lindsay, Graeme; Mittal, Ishaan; Mohan, Dinesh; Tiwari, Geetam; Woodward, Alistair; Roberts, Ian

2009-12-01

372

Black Carbon Particulate Matter Emission Factors for Buoyancy Driven Associated Gas Flares  

Microsoft Academic Search

Flaring is a technique used extensively in the oil and gas industry to burn unwanted flammable gases. Oxidation of the gas can preclude emissions of methane (a potent greenhouse gas); however flaring creates other pollutant emissions such as particulate matter (PM) in the form of soot or black carbon (BC). Currently available PM emission factors for flares were reviewed and

James D. N. McEwen; Matthew R. Johnson

2012-01-01

373

Black carbon particulate matter emission factors for buoyancy-driven associated gas flares  

Microsoft Academic Search

Flaring is a technique used extensively in the oil and gas industry to burn unwanted flammable gases. Oxidation of the gas can preclude emissions of methane (a potent greenhouse gas); however, flaring creates other pollutant emissions such as particulate matter (PM) in the form of soot or black carbon (BC). Currently available PM emission factors for flares were reviewed and

James D. N. McEwen; Matthew R. Johnson

2012-01-01

374

A fast method for updating global fossil fuel carbon dioxide emissions  

Microsoft Academic Search

We provide a fast and efficient method for calculating global annual mean carbon dioxide emissions from the combustion of fossil fuels by combining data from an established data set with BP annual statistics. Using this method it is possible to retrieve an updated estimate of global CO2 emissions six months after the actual emissions occurred. Using this data set we

375

A fast method for updating global fossil fuel carbon dioxide emissions  

Microsoft Academic Search

We provide a fast and efficient method for calculating global annual mean carbon dioxide emissions from the combustion of fossil fuels by combining data from an established data set with BP annual statistics. Using this method it is possible to retrieve an updated estimate of global CO2 emissions six months after the actual emissions occurred. Using this data set we

G. Myhre; K. Alterskjær; D. Lowe

2009-01-01

376

Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested  

E-print Network

Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration nonnegligible roles in mitigation in comparison with carbon sequestration. Forests are recognized for having

377

Estimates of Fossil Fuel Carbon Dioxide Emissions From Mexico at Monthly Time Intervals  

Microsoft Academic Search

Human consumption of fossil fuels has greatly contributed to the rise of carbon dioxide in the Earth's atmosphere. To better understand the global carbon cycle, it is important to identify the major sources of these fossil fuels. Mexico is among the top fifteen nations in the world for producing fossil fuel carbon dioxide emissions. Based on this information and that

L. M. Losey; R. J. Andres

2003-01-01

378

emissions: mineral carbonation and Finnish pulp and paper industry (CO2  

E-print Network

CO2 emissions: mineral carbonation and Finnish pulp and paper industry (CO2 Nordic Plus) and Use, utilisation and long-term storage of carbon dioxide (CO2) in the pulp and paper industry. The Geological of ultra- mafic rock formations for mineral carbonation of CO2. Tekes and the GTK funded development work

Zevenhoven, Ron

379

Capture and mineralization of carbon dioxide from coal combustion flue gas emissions  

NASA Astrophysics Data System (ADS)

(Proprietary information: PCT/US/2006/49411 and WO/2007/ 081561A) Enormous amounts of carbon dioxide (CO2) released by human activity (anthropogenic), may lead to climate changes that could spread diseases, ruin crops, cause intense droughts and floods, and dramatically raise the sea levels, thereby submerging the low lying coastal regions. The objective of this study was to test whether CO2 and sulfur dioxide (SO2) from flue gases can be directly captured and converted into carbonate and sulfate minerals respectively through the mineralization process of alkaline solid wastes. A flow-through carbonation process was designed to react flue gases directly with alkaline fly ash, under coal combustion power plant conditions. For the first time, CO2 levels in the flue gas were reduced from 13.6% to 9.7% after the reaction with alkaline fly ash in a reaction time of less than 1 minute. Using a combination of Orion RTM plus multi-gas detector, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) techniques, flue gas CO2 mineralization on fly ash particles was detected. This method can simultaneously help in separate, capture, and mineralize anthropogenic CO2 and SO2. Moreover, this process may be environmentally safe and a stable storage for anthropogenic CO2. Capturing anthropogenic CO2 using this mineralization process is an initial step towards developing more efficient methods of reducing industrial point source CO2 emissions into the atmosphere.

Attili, Viswatej

380

Different sources of reduced carbon contribute to form three classes of terpenoid emitted by Quercus ilex L. leaves.  

PubMed Central

Quercus ilex L. leaves emit terpenes but do not have specialized structures for terpene storage. We exploited this unique feature to investigate terpene biosynthesis in intact leaves of Q. ilex. Light induction allowed us to distinguish three classes of terpenes: (i) a rapidly induced class including alpha-pinene; (ii) a more slowly induced class, including cis-beta-ocimene; and (iii) the most slowly induced class, including 3-methyl-3-buten-1-ol. Using 13C, we found that alpha-pinene and cis-beta-ocimene were labeled quickly and almost completely while there was a delay before label appeared in linalool and 3-methyl-3-buten-1-ol. The acetyl group of 3-methyl-3-buten-1-yl acetate was labeled quickly but label was limited to 20% of the moiety. It is suggested that the ocimene class of monoterpenes is made from one or more terpenes of the alpha-pinene class and that both classes are made entirely from reduced carbon pools inside the chloroplasts. Linalool and 3-methyl-3-buten-1-ol are made from a different pool of reduced carbon, possibly in nonphotosynthetic plastids. The acetyl group of the 3-methyl-3-buten-1-yl acetate is derived mostly from carbon that does not participate in photosynthetic reactions. Low humidity and prolonged exposure to light favored ocimenes emission and induced linalool emission. This may indicate conversion between terpene classes. PMID:11607702

Loreto, F; Ciccioli, P; Brancaleoni, E; Cecinato, A; Frattoni, M; Sharkey, T D

1996-01-01

381

Cooling the greenhouse effect: Options and costs for reducing CO{sub 2} emissions from the American Electric Power Company  

SciTech Connect

A recent report from the National Academy of Sciences concludes that the earth is likely to face a doubling of preindustrial greenhouse gases in the next half century. This doubling could be expected to push average global temperatures. up from between 1.8 to 9 degrees Fahrenheit. Much of the potential for human impacts on the global climate is linked to fossil fuel consumption. Carbon dioxide emissions from energy consumption in the US totals about one-quarter of the world`s total emissions from energy consumption. Global warming is different from other environmental problems because CO{sub 2} emissions can be captured naturally by trees, grasses, soil, and other plants. In contrast, acid rain emissions reductions can only be accomplished through switching to lower-polluting fuels, conserving energy, or installing costly retrofit technologies. Terrestrial biota, such as trees, plants, grasses and soils, directly affect the CO{sub 2} concentrations in the atmosphere. A number of reports have concluded that forestry and land-use practices can increase CO{sub 2} sequestration and can help reduce or delay the threat of global warming.

Helme, N.; Popovich, M.G.; Gille, J. [Center for Clean Air Policy, Washington, DC (United States)

1993-05-01

382

Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions  

PubMed Central

Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of “dangerous anthropogenic interference” (DAI). Scientific and policy literature refers to the need for “early,” “urgent,” “rapid,” and “fast-action” mitigation to help avoid DAI and abrupt climate changes. We define “fast-action” to include regulatory measures that can begin within 2–3 years, be substantially implemented in 5–10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO2 GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO2 emissions. PMID:19822751

Molina, Mario; Zaelke, Durwood; Sarma, K. Madhava; Andersen, Stephen O.; Ramanathan, Veerabhadran; Kaniaru, Donald

2009-01-01

383

How to reduce pollutant emissions from small fluidised-bed combustors  

Microsoft Academic Search

As a result of 27 series of tests, it was concluded that the maximum reduction of NOx emissions occurred when the sulphur retention was also at its highest, so emphasising the important role that CaSO4 plays as a catalyst in pollution-reducing reactions. Although the minimal emissions of both SO2 and NOx (at 85 and 45 ppm, respectively) presently recorded occurred

K. Findlay; S. D. Probert

1992-01-01

384

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry  

SciTech Connect

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01

385

Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry  

SciTech Connect

The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the cost-effective energy savings potential in case B increases to 22%.

Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

2000-07-01

386

IMAGING CARBON MONOXIDE EMISSION IN THE STARBURST GALAXY NGC 6000  

SciTech Connect

We present measurements of carbon monoxide emission in the central region of the nearby starburst NGC 6000 taken with the Submillimeter Array. The J = 2-1 transition of {sup 12}CO, {sup 13}CO, and C{sup 18}O were imaged at a resolution of {approx}3'' x 2'' (450 x 300 pc). We accurately determine the dynamical center of NGC 6000 at {alpha}{sub J2000.0} = 15{sup h}49{sup m}49.{sup s}5 and {delta}{sub J2000.0} = -29{sup 0}23'13'' which agrees with the peak of molecular emission position. The observed CO dynamics could be explained in the context of the presence of a bar potential affecting the molecular material, likely responsible for the strong nuclear concentration where more than 85% of the gas is located. We detect a kinematically detached component of dense molecular gas at relatively high velocity which might be fueling the star formation. A total nuclear dynamical mass of 7 x 10{sup 9} M{sub sun} is derived and a total mass of gas of 4.6 x 10{sup 8} M{sub sun}, yielding a M{sub gas}/M{sub dyn} {approx} 6%, similar to other previously studied barred galaxies with central starbursts. We determined the mass of molecular gas with the optically thin isotopologue C{sup 18}O and we estimate a CO-to-H{sub 2} conversion factor X{sub CO} = 0.4 x 10{sup 20} cm{sup -2}(K km s{sup -1}){sup -1} in agreement with that determined in other starburst galaxies.

Martin, Sergio [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); George, Matthew R.; Wilner, David J.; Espada, Daniel, E-mail: smartin@eso.or [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2010-06-15

387

Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane  

NASA Astrophysics Data System (ADS)

Soil tillage and other methods of soil management may influence CO2 emissions because they accelerate the mineralization of organic carbon in the soil. This study aimed to quantify the CO2 emissions under conventional tillage (CT), minimum tillage (MT) and reduced tillage (RT) during the renovation of sugarcane fields in southern Brazil. The experiment was performed on an Oxisol in the sugarcane-planting area with mechanical harvesting. An undisturbed or no-till (NT) plot was left as a control treatment. The CO2 emissions results indicated a significant interaction (p < 0.001) between tillage method and time after tillage. By quantifying the accumulated emissions over the 44 days after soil tillage, we observed that tillage-induced emissions were higher after the CT system than the RT and MT systems, reaching 350.09 g m-2 of CO2 in CT, and 51.7 and 5.5 g m-2 of CO2 in RT and MT respectively. The amount of C lost in the form of CO2 due to soil tillage practices was significant and comparable to the estimated value of potential annual C accumulation resulting from changes in the harvesting system in Brazil from burning of plant residues to the adoption of green cane harvesting. The CO2 emissions in the CT system could respond to a loss of 80% of the potential soil C accumulated over one year as result of the adoption of mechanized sugarcane harvesting. Meanwhile, soil tillage during the renewal of the sugar plantation using RT and MT methods would result in low impact, with losses of 12% and 2% of the C that could potentially be accumulated during a one year period.

Silva-Olaya, A. M.; Cerri, C. E. P.; La Scala, N., Jr.; Dias, C. T. S.; Cerri, C. C.

2013-03-01

388

Prediction of Carbon Monoxide and Hydrocarbon Emissions in Isooctane HCCI Engine Combustion Using Multi-Zone Simulations  

SciTech Connect

Homogeneous Charge Compression Ignitions (HCCI) engines show promise as an alternative to Diesel engines, yet research remains: development of practical HCCI engines will be aided greatly by accurate modeling tools. A novel detailed chemical kinetic model that incorporates information from a computational fluid mechanics code has been developed to simulate HCCI combustion. This model very accurately predicts many aspects of the HCCI combustion process. High-resolution computational grids can be used for the fluid mechanics portion of the simulation, but the chemical kinetics portion of the simulation can be reduced to a handful of computational zones (for all previous work 10 zones have been used). While overall this model has demonstrated a very good predictive capability for HCCI combustion, previous simulations using this model have tended to underpredict carbon monoxide emissions by an order of magnitude. A factor in the underprediction of carbon monoxide may be that all previous simulations have been conducted with 10 chemical kinetic zones. The chemistry that results in carbon monoxide emissions is very sensitive to small changes in temperature within the engine. The resolution in temperature is determined directly by the number of zones. This paper investigates how the number of zones (i.e. temperature resolution) affects the model's prediction of hydrocarbon and carbon monoxide emissions in an HCCI engine. Simulations with 10, 20, and 40 chemical kinetic zones have been conducted using a detailed chemical kinetic mechanism (859 species, 3606 reactions) to simulate an isooctane fueled HCCI engine. The results show that 10-zones are adequate to resolve the hydrocarbon emissions, but a greater numbers of zones are required to resolve carbon monoxide emissions. Results are also presented that explore spatial sources of the exhaust emissions within the HCCI engine combustion chamber.

Flowers, D; Aceves, S M; Martinez-Frias, J; Dibble, R

2002-05-02

389

Analyzing carbon dioxide and methane emissions in California using airborne measurements and model simulations  

NASA Astrophysics Data System (ADS)

Greenhouse gas (GHG) concentrations have increased over the past decades and are linked to global temperature increases and climate change. These changes in climate have been suggested to have varying effects, and uncertain consequences, on agriculture, water supply, weather, sea-level rise, the economy, and energy. To counteract the trend of increasing atmospheric concentrations of GHGs, the state of California has passed the California Global Warming Act of 2006 (AB-32). This requires that by the year 2020, GHG (e.g., carbon dioxide (CO2) and methane (CH4)) emissions will be reduced to 1990 levels. To quantify GHG fluxes, emission inventories are routinely compiled for the State of California (e.g., CH4 emissions from the California Greenhouse Gas Emissions Measurement (CALGEM) Project). The major sources of CO2 and CH4 in the state of California are: transportation, electricity production, oil and gas extraction, cement plants, agriculture, landfills/waste, livestock, and wetlands. However, uncertainties remain in these emission inventories because many factors contributing to these processes are poorly quantified. To alleviate these uncertainties, a synergistic approach of applying air-borne measurements and chemical transport modeling (CTM) efforts to provide a method of quantifying local and regional GHG emissions will be performed during this study. Additionally, in order to further understand the temporal and spatial distributions of GHG fluxes in California and the impact these species have on regional climate, CTM simulations of daily variations and seasonality of total column CO2 and CH4 will be analyzed. To assess the magnitude and spatial variation of GHG emissions and to identify local 'hot spots', airborne measurements of CH4 and CO2 were made by the Alpha Jet Atmospheric eXperiment (AJAX) over the San Francisco Bay Area (SFBA) and San Joaquin Valley (SJV) in January and February 2013 during the Discover-AQ-CA study. High mixing ratios of GHGs were observed in-flight with a high degree of spatial variability. To provide an additional method to quantify GHG emissions, and analyze AJAX measurement data, the GEOS-Chem CTM is used to simulate SFBA/SJV GHG measurements. A nested-grid version of GEOS-Chem will be applied and utilizes varying emission inventories and model parameterizations to simulate GHG fluxes/emissions. The model considers CO2 fluxes from fossil fuel use, biomass/biofuel burning, terrestrial and oceanic biosphere exchanges, shipping and aviation, and production from the oxidation of carbon monoxide, CH4, and non-methane volatile organic carbons. The major sources of CH4 simulated in GEOS-Chem are domesticated animals, rice fields, natural gas leakage, natural gas venting/flaring (oil production), coal mining, wetlands, and biomass burning. Preliminary results from the comparison between available observations (e.g., AJAX and CALGEM CH4 emission maps) and GEOS-Chem results will be presented, along with a discussion of CO2 and CH4 source apportionment and the use of the GEOS-Chem-adjoint to perform inverse GHG modeling.

Johnson, M. S.; Yates, E. L.; Iraci, L. T.; Jeong, S.; Fischer, M. L.

2013-12-01

390

Treading Lightly Steps Toward Reducing Our Carbon Footprint  

E-print Network

costs first 3 buildings submitted earn leed-Platinum UA tech Park includes 222-acre solar Zone Reduce the largest chilled-water loop system in the world. The UA also generates half its electric power onsite Building Council eighty-five percent of construction waste was recycled or reused The University

Wong, Pak Kin

391

Monthly Estimates of Fossil Fuel Carbon Dioxide Emissions from Five European Countries: The United Kingdom, France, Spain, Italy and Poland  

Microsoft Academic Search

Human consumption of fossil fuels has greatly contributed to the rise of carbon dioxide (CO2) emissions in the Earth's atmosphere. To better understand the global carbon cycle, it is important to identify the major sources of these fossil fuel emissions. Annual analyses for fossil fuel carbon dioxide emissions have dominated the literature to this date. By studying the monthly consumption

L. M. Losey; R. J. Andres

2004-01-01

392

40 CFR Table N-1 to Subpart N of... - CO2 Emission Factors for Carbonate-Based Raw Materials  

...2014-07-01 2013-07-01 true CO2 Emission Factors for Carbonate-Based Raw... Table N-1 to Subpart N of Part 98—CO2 Emission Factors for Carbonate-Based...Carbonate-basedraw material—mineral CO2 emission factor a...

2014-07-01

393

Method of depositing multi-layer carbon-based coatings for field emission  

DOEpatents

A novel field emitter device is disclosed for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials. 8 figs.

Sullivan, J.P.; Friedmann, T.A.

1999-08-10

394

Lack of carbon catabolite inactivation in a mutant of Saccharomyces cerevisiae with reduced hexokinase activity  

Microsoft Academic Search

A mutant of Saccharomyces cerevisiae with reduced hexokinase activity and deficient in carbon catabolite inactivation is described. The reason for this lack of inactivation is not a lowered concentration of glycolysis metabolites or other low molecular effectors such as glucose, and ATP. The results point to the hexose phosphorylation step as initiator for carbon catabolite inactivation. It appears that one

K.-D. Entian

1977-01-01

395

Reduced pulmonary inflammatory response during cardiopulmonary bypass: effects of combined pulmonary perfusion and carbon monoxide inhalation  

Microsoft Academic Search

Objective: Pulmonary inflammation induced by cardiopulmonary bypass (CPB) is one of the main causes for lung injury after cardiac surgery. Pulmonary perfusions as well as carbon monoxide (CO) inhalation are known to reduce the inflammatory reaction of the lung. We hypothesized that a combination of pulmonary perfusion and carbon monoxide inhalation leads to an even stronger reduction of the lung

Ulrich Goebel; Matthias Siepe; Anne Mecklenburg; Torsten Doenst; Friedhelm Beyersdorf; Torsten Loop; Christian Schlensak

2010-01-01

396

Reduced pulmonary inflammatory response during cardiopulmonary bypass: effects of combined pulmonary perfusion and carbon monoxide inhalation  

Microsoft Academic Search

Objective: Pulmonary inflammation induced by cardiopulmonary bypass (CPB) is one of the main causes for lung injury after cardiac surgery. Pulmonary perfusions as well as carbon monoxide (CO) inhalation are known to reduce the inflammatory reaction of the lung. We hypothesized that a combination of pulmonary perfusion and carbon monoxide inhalation leads to an even stronger reduction of the lung

Ulrich Goebel; Matthias Siepe; Anne Mecklenburg; Torsten Doenst; Friedhelm Beyersdorf; Torsten Loop; Christian Schlensak

2008-01-01

397

Carbon-related matrix effects in inductively coupled plasma atomic emission spectrometry  

NASA Astrophysics Data System (ADS)

In Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), it has been observed that the emission intensity of some atomic lines is enhanced or depressed by the presence of carbon in the matrix. The goal of this work was to investigate the origin and magnitude of the carbon-related matrix effects in ICP-AES. To this end, the influence of the carbon concentration and source (i.e. glycerol, citric acid and potassium hydrogen phthalate), the experimental conditions and sample introduction system on the aerosol characteristics and transport, plasma excitation conditions and the emission intensity of several atomic and ionic lines of a total of 15 elements has been studied. Results indicate that carbon related matrix effects do not depend on the carbon source and they become more severe when the amount of carbon loaded into the plasma increases, i.e., when using: (i) carbon concentrations higher than 5 g L - 1 ; (ii) high sample uptake rates; and (iii) efficient sample introduction systems. Thus, when introducing carbon into the plasma, the emission intensity of atomic lines with excitation energies below 6 eV is depressed (up to 15%) whereas the emission intensity of atomic lines of higher excitation energies (i.e. As and Se) are enhanced (up to 30%). The emission intensity of the ionic lines is not affected by the presence of carbon. The origin of the carbon-related interferences on the emission intensity of atomic lines is related to changes in the line excitation mechanism since the carbon containing solutions show the same aerosol characteristics and transport efficiencies as the corresponding aqueous solutions. Based on the previous findings, a calibration approach for the accurate determination of Se in a Se-enriched yeast certified material (SELM-1) has been proposed.

Grindlay, G.; Gras, L.; Mora, J.; de Loos-Vollebregt, M. T. C.

2008-02-01

398

Trace gas and particle emissions from open burning of three cereal crop residues: Increase in residue moistness enhances emissions of carbon monoxide, methane, and particulate organic carbon  

NASA Astrophysics Data System (ADS)

We determined emission factors for open burning of straw of rice, wheat, and barley, as well as rice husks, and we incorporated the effects of moisture content on the emission factors for the straw. A closed system that simulated on-site backfiring of residues on the soil surface under moderate wind conditions was used to measure the gas and particle emissions from open burning of the residues on an upland field. Two moisture content conditions were evaluated: a dry condition (air-dried residues, 11-13% by weight) and a moist condition (20%). When a linear regression model with the initial moisture content of the residue as the explanatory variable showed good correlation between the primary emission data of a substance and the moisture content, the regression model was adopted as a function to give the emission factors. Otherwise, the unmodified primary data were used as the emission factors. The magnitudes of the gas and particle emissions differed among the residue types. For example, carbon monoxide (CO) emissions from straw of rice, wheat, and barley and rice husks burned under the dry condition were 27.2 ± 1.7, 41.8 ± 24.2, 46.9 ± 2.1, and 66.1 g kg-1 dry matter, and emissions of methane (CH4) were 0.75 ± 0.01, 2.01 ± 0.93, 1.47 ± 0.06, and 5.81 g kg-1 dry matter, respectively (n = 2 for straw with the standard deviation; n = 1 for husks). Emissions of carbon-containing gases and particles (e.g., CO, CH4, and particulate organic carbon) were higher under the moist condition than under the dry condition, which suggests that emission factors for open burning should incorporate the effects of moisture content except open burning performed in the dry season or arid zones.

Hayashi, Kentaro; Ono, Keisuke; Kajiura, Masako; Sudo, Shigeto; Yonemura, Seiichiro; Fushimi, Akihiro; Saitoh, Katsumi; Fujitani, Yuji; Tanabe, Kiyoshi

2014-10-01

399

Field emission effects of nitrogenated carbon nanotubes on chlorination and oxidation  

SciTech Connect

With reference to our recent reports [Appl. Phys. Lett. 90, 192107 (2007); Appl. Phys. Lett. 91, 202102 (2007)] about the electronic structure of chlorine treated and oxygen-plasma treated nitrogenated carbon nanotubes (N-CNTs), here we studied the electron field emission effects on chlorination (N-CNT:Cl) and oxidation (N-CNT:O) of N-CNT. A high current density (J) of 15.0 mA/cm{sup 2} has been achieved on chlorination, whereas low J of 0.0052 mA/cm{sup 2} is observed on oxidation compared to J=1.3 mA/cm{sup 2} for untreated N-CNT at an applied electric field E{sub A} of {approx}1.9 V/{mu}m. The turn-on electric field (E{sub TO}) was {approx}0.875. The 1.25 V/{mu}m was achieved for N-CNT:Cl and N-CNT:O, respectively, with respect to E{sub TO}=1.0 V/{mu}m for untreated one. These findings are due to the formation of different bonds with carbon and nitrogen in the N-CNT during the process of chlorine (oxygen)-plasma treatment by the charge transfer, or else that changes the density of free charge carriers and hence enhances (reduces) the field emission properties of N-CNTs:Cl (N-CNTs:O)

Ray, S. C.; Palnitkar, U.; Pao, C. W.; Tsai, H. M.; Pong, W. F.; Lin, I-N. [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China); Papakonstantinou, P. [NRI, School of Electrical and Mechanical Engineering, University of Ulster at Jordanstown, Newtownabbey, County Antrim BT37OQB, Northern Ireland (United Kingdom); Ganguly, Abhijit; Chen, L. C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Chen, K. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China)

2008-09-15

400

Dousing our inflammatory environment(s): is personal carbon trading an option for reducing obesity--and climate change?  

PubMed

Obesity and climate change are two problems currently challenging humanity. Although apparently unrelated, an epidemiological approach to both shows a similar environmental aetiology, based in modern human lifestyles and their driving economic forces. One way of analysing this is through inflammation (defined as '. . . a disturbance of function following insult or injury') of both the internal (biological) and external (ecological) environments. Chronic, low-grade, systemic inflammation has recently been shown to accompany obesity, as well as a range of biological pathologies associated with obesity (diabetes, heart disease, some cancers, etc.). This is influenced by the body's inability to soak up excess glucose as a result of insulin resistance. In a broader sense, inflammation is a metaphor for ecological 'pathologies', manifest particularly in unnatural disturbances like climate change, ocean acidity, rising temperatures and species extinction, associated with the inability of the world's environmental 'sinks' to soak up carbon dioxide ('carbon resistance'?). The use of such a metaphorical analysis opens the possibilities for dealing with two interdisciplinary problems simultaneously. Strategies for managing climate change, including personal carbon trading, could provide a 'stealth intervention' for reducing population levels of obesity by increasing personal energy expenditure and decreasing energy-dense food intake, as well as reducing the carbon emissions causing climate change. PMID:18282177

Egger, G

2008-09-01