Science.gov

Sample records for reduce clinical target

  1. Phosphate in early chronic kidney disease: associations with clinical outcomes and a target to reduce cardiovascular risk.

    PubMed

    Toussaint, Nigel D; Pedagogos, Eugenie; Tan, Sven-Jean; Badve, Sunil V; Hawley, Carmel M; Perkovic, Vlado; Elder, Grahame J

    2012-07-01

    There is an intimate association between mineral and bone disorders in chronic kidney disease (CKD) and the extensive burden of cardiovascular disease (CVD) in this population. High phosphate levels in CKD have been associated with increased all-cause mortality and cardiovascular morbidity and mortality. Observational studies have also shown a consistent relationship between serum phosphate in the normal range and all-cause and cardiovascular mortality, left ventricular hypertrophy (LVH) and decline in renal function. Furthermore, fibroblast growth factor-23 (FGF-23), a phosphaturic hormone, increases very early in the course of CKD and is strongly associated with death and CVD, including LVH and vascular calcification. Few studies have addressed outcomes using interventions to reduce serum phosphate in a randomized controlled fashion; however, strategies to address cardiovascular risk in early CKD are imperative and phosphate is a potential therapeutic target. This review outlines the epidemiological and experimental evidence highlighting the relationship between excess phosphate and adverse outcomes, and discusses clinical studies required to address this problem. PMID:22574672

  2. Target population for clinical trials

    PubMed Central

    Studenski, S

    2016-01-01

    The target population for clinical trials aimed at sarcopenia depends on the goals of treatment and the expected natural history of sarcopenia. Based on a natural history where loss of muscle mass and/or quality leads to loss of strength, and eventually to reduced mobility and functional dependence, treatment goals can be defined for both preventive and therapeutic interventions. For example, a target population with low muscle mass and poor strength could be treated to prevent the onset of mobility disability, or a target population with low muscle mass and poor strength with mobility disability could be treated therapeutically to improve mobility. Eligibility for a trial should also be based on careful consideration of factors that affect 1) the ability to respond to treatment, 2) the safety of treatment, 3) expected prevalence and 4) feasibility. PMID:19657558

  3. Targeting ApoC-III to Reduce Coronary Disease Risk.

    PubMed

    Khetarpal, Sumeet A; Qamar, Arman; Millar, John S; Rader, Daniel J

    2016-09-01

    Triglyceride-rich lipoproteins (TRLs) are causal contributors to the risk of developing coronary artery disease (CAD). Apolipoprotein C-III (apoC-III) is a component of TRLs that elevates plasma triglycerides (TGs) through delaying the lipolysis of TGs and the catabolism of TRL remnants. Recent human genetics approaches have shown that heterozygous loss-of-function mutations in APOC3, the gene encoding apoC-III, lower plasma TGs and protect from CAD. This observation has spawned new interest in therapeutic efforts to target apoC-III. Here, we briefly review both currently available as well as developing therapies for reducing apoC-III levels and function to lower TGs and cardiovascular risk. These therapies include existing options including statins, fibrates, thiazolidinediones, omega-3-fatty acids, and niacin, as well as an antisense oligonucleotide targeting APOC3 currently in clinical development. We review the mechanisms of action by which these drugs reduce apoC-III and the current understanding of how reduction in apoC-III may impact CAD risk. PMID:27443326

  4. Optimizing biologically targeted clinical trials for neurofibromatosis

    PubMed Central

    Gutmann, David H; Blakeley, Jaishri O; Korf, Bruce R; Packer, Roger J

    2014-01-01

    Introduction The neurofibromatoses (neurofibromatosis type 1, NF1 and neurofibromatosis type 2, NF2) comprise the most common inherited conditions in which affected children and adults develop tumors of the central and peripheral nervous system. In this review, the authors discuss how the establishment of the Neurofibromatosis Clinical Trials Consortium (NFCTC) has positively impacted on the design and execution of treatment studies for individuals with NF1 and NF2. Areas covered Using an extensive PUBMED search in collaboration with select NFCTC members expert in distinct NF topics, the authors discuss the clinical features of NF1 and NF2, the molecular biology of the NF1 and NF2 genes, the development and application of clinically relevant Nf1 and Nf2 genetically engineered mouse models and the formation of the NFCTC to enable efficient clinical trial design and execution. Expert opinion The NFCTC has resulted in a more seamless integration of mouse preclinical and human clinical trials efforts. Leveraging emerging enabling resources, current research is focused on identifying subtypes of tumors in NF1 and NF2 to deliver the most active compounds to the patients most likely to respond to the targeted therapy. PMID:23425047

  5. Quality of clinical trials: A moving target

    PubMed Central

    Bhatt, Arun

    2011-01-01

    Quality of clinical trials depends on data integrity and subject protection. Globalization, outsourcing and increasing complexicity of clinical trials have made the target of achieving global quality challenging. The quality, as judged by regulatory inspections of the investigator sites, sponsors/contract research organizations and Institutional Review Board, has been of concern to the US Food and Drug Administration, as there has been hardly any change in frequency and nature of common deficiencies. To meet the regulatory expectations, the sponsors need to improve quality by developing systems with specific standards for each clinical trial process. The quality systems include: personnel roles and responsibilities, training, policies and procedures, quality assurance and auditing, document management, record retention, and reporting and corrective and preventive action. With an objective to improve quality, the FDA has planned new inspection approaches such as risk-based inspections, surveillance inspections, real-time oversight, and audit of sponsor quality systems. The FDA has partnered with Duke University for Clinical Trials Transformation Initiative, which will conduct research projects on design principles, data quality and quantity including monitoring, study start-up, and adverse event reporting. These recent initiatives will go a long way in improving quality of clinical trials. PMID:22145122

  6. Targeting inflammation in pancreatic cancer: Clinical translation

    PubMed Central

    Steele, Colin William; Kaur Gill, Nina Angharad; Jamieson, Nigel Balfour; Carter, Christopher Ross

    2016-01-01

    Preclinical modelling studies are beginning to aid development of therapies targeted against key regulators of pancreatic cancer progression. Pancreatic cancer is an aggressive, stromally-rich tumor, from which few people survive. Within the tumor microenvironment cellular and extracellular components exist, shielding tumor cells from immune cell clearance, and chemotherapy, enhancing progression of the disease. The cellular component of this microenvironment consists mainly of stellate cells and inflammatory cells. New findings suggest that manipulation of the cellular component of the tumor microenvironment is possible to promote immune cell killing of tumor cells. Here we explore possible immunogenic therapeutic strategies. Additionally extracellular stromal elements play a key role in protecting tumor cells from chemotherapies targeted at the pancreas. We describe the experimental findings and the pitfalls associated with translation of stromally targeted therapies to clinical trial. Finally, we discuss the key inflammatory signal transducers activated subsequent to driver mutations in oncogenic Kras in pancreatic cancer. We present the preclinical findings that have led to successful early trials of STAT3 inhibitors in pancreatic adenocarcinoma. PMID:27096033

  7. Targeting inflammation in pancreatic cancer: Clinical translation.

    PubMed

    Steele, Colin William; Kaur Gill, Nina Angharad; Jamieson, Nigel Balfour; Carter, Christopher Ross

    2016-04-15

    Preclinical modelling studies are beginning to aid development of therapies targeted against key regulators of pancreatic cancer progression. Pancreatic cancer is an aggressive, stromally-rich tumor, from which few people survive. Within the tumor microenvironment cellular and extracellular components exist, shielding tumor cells from immune cell clearance, and chemotherapy, enhancing progression of the disease. The cellular component of this microenvironment consists mainly of stellate cells and inflammatory cells. New findings suggest that manipulation of the cellular component of the tumor microenvironment is possible to promote immune cell killing of tumor cells. Here we explore possible immunogenic therapeutic strategies. Additionally extracellular stromal elements play a key role in protecting tumor cells from chemotherapies targeted at the pancreas. We describe the experimental findings and the pitfalls associated with translation of stromally targeted therapies to clinical trial. Finally, we discuss the key inflammatory signal transducers activated subsequent to driver mutations in oncogenic Kras in pancreatic cancer. We present the preclinical findings that have led to successful early trials of STAT3 inhibitors in pancreatic adenocarcinoma. PMID:27096033

  8. Clinical targeting of the TNF and TNFR superfamilies

    PubMed Central

    Croft, Michael; Benedict, Chris A.; Ware, Carl F.

    2013-01-01

    Inhibitors of tumour necrosis factor (TNF) are among the most successful protein-based drugs (biologics) and have proven to be clinically efficacious at reducing inflammation associated with several autoimmune diseases. As a result, attention is focusing on the therapeutic potential of additional members of the TNF superfamily of structurally related cytokines. Many of these TNF-related cytokines or their cognate receptors are now in preclinical or clinical development as possible targets for modulating inflammatory diseases and cancer as well as other indications. This Review focuses on the biologics that are currently in clinical trials for immune-related diseases and other syndromes, discusses the successes and failures to date as well as the expanding therapeutic potential of modulating the activity of this superfamily of molecules. PMID:23334208

  9. PDE4B as a microglia target to reduce neuroinflammation.

    PubMed

    Pearse, Damien D; Hughes, Zoë A

    2016-10-01

    The importance of microglia in immune homeostasis within the brain is undisputed. Their role in a diversity of neurological and psychiatric diseases as well as CNS injury is the subject of much investigation. Cyclic adenosine monophosphate (AMP) is a critical regulator of microglia homeostasis; as the predominant negative modulator of cyclic AMP signaling within microglia, phosphodiesterase 4 (PDE4) represents a promising target for modulating immune function. PDE4 expression is regulated by inflammation, and in turn, PDE4 inhibition can alter microglia reactivity. As the prototypic PDE4 inhibitor, rolipram, was tested clinically in the 1980s, drug discovery and clinical development of PDE4 inhibitors have been severely hampered by tolerability issues involving nausea and emesis. The two PDE4 inhibitors approved for peripheral inflammatory disorders (roflumilast and apremilast) lack brain penetration and are dose-limited by side effects making them unsuitable for modulating microglial function. Subtype selective inhibitors targeting PDE4B are of high interest given the critical role PDE4B plays in immune function versus the association of PDE4D with nausea and emesis. The challenges and requirements for successful development of a novel brain-penetrant PDE4B inhibitor are discussed in the context of early clinical development strategies. Furthermore, the challenges of monitoring the state of microglia in vivo are highlighted, including a description of the currently available tools and their limitations. Continued drug discovery efforts to identify safe and well-tolerated, brain-penetrant PDE4 inhibitors are a reflection of the confidence in the rationale for modulation of this target to produce meaningful therapeutic benefit in a wide range of neurological conditions and injury. GLIA 2016;64:1698-1709. PMID:27038323

  10. Concept mapping: reducing clinical care plan paperwork and increasing learning.

    PubMed

    Schuster, P M

    2000-01-01

    The author describes how concept maps were used in place of nursing care plans to reduce care planning paperwork in fundamentals and medical-surgical clinical courses in acute care facilities. In addition to less paperwork, clinical concept mapping enhances students' critical thinking skills and clinical reasoning because students and faculty can clearly and succinctly visualize priorities and identify relationships in clinical patient data. PMID:11052005

  11. Targeting hedgehog signaling reduces self-renewal in embryonal rhabdomyosarcoma.

    PubMed

    Satheesha, S; Manzella, G; Bovay, A; Casanova, E A; Bode, P K; Belle, R; Feuchtgruber, S; Jaaks, P; Dogan, N; Koscielniak, E; Schäfer, B W

    2016-04-21

    Current treatment regimens for rhabdomyosarcoma (RMS), the most common pediatric soft tissue cancer, rely on conventional chemotherapy, and although they show clinical benefit, there is a significant risk of adverse side effects and secondary tumors later in life. Therefore, identifying and targeting sub-populations with higher tumorigenic potential and self-renewing capacity would offer improved patient management strategies. Hedgehog signaling has been linked to the development of embryonal RMS (ERMS) through mouse genetics and rare human syndromes. However, activating mutations in this pathway in sporadic RMS are rare and therefore the contribution of hedgehog signaling to oncogenesis remains unclear. Here, we show by genetic loss- and gain-of-function experiments and the use of clinically relevant small molecule modulators that hedgehog signaling is important for controlling self-renewal of a subpopulation of RMS cells in vitro and tumor initiation in vivo. In addition, hedgehog activity altered chemoresistance, motility and differentiation status. The core stem cell gene NANOG was determined to be important for ERMS self-renewal, possibly acting downstream of hedgehog signaling. Crucially, evaluating the presence of a subpopulation of tumor-propagating cells in patient biopsies identified by GLI1 and NANOG expression had prognostic significance. Hence, this work identifies novel functional aspects of hedgehog signaling in ERMS, redefines the rationale for its targeting as means to control ERMS self-renewal and underscores the importance of studying functional tumor heterogeneity in pediatric cancers. PMID:26189795

  12. Distributed Particle Filter for Target Tracking: With Reduced Sensor Communications.

    PubMed

    Ghirmai, Tadesse

    2016-01-01

    For efficient and accurate estimation of the location of objects, a network of sensors can be used to detect and track targets in a distributed manner. In nonlinear and/or non-Gaussian dynamic models, distributed particle filtering methods are commonly applied to develop target tracking algorithms. An important consideration in developing a distributed particle filtering algorithm in wireless sensor networks is reducing the size of data exchanged among the sensors because of power and bandwidth constraints. In this paper, we propose a distributed particle filtering algorithm with the objective of reducing the overhead data that is communicated among the sensors. In our algorithm, the sensors exchange information to collaboratively compute the global likelihood function that encompasses the contribution of the measurements towards building the global posterior density of the unknown location parameters. Each sensor, using its own measurement, computes its local likelihood function and approximates it using a Gaussian function. The sensors then propagate only the mean and the covariance of their approximated likelihood functions to other sensors, reducing the communication overhead. The global likelihood function is computed collaboratively from the parameters of the local likelihood functions using an average consensus filter or a forward-backward propagation information exchange strategy. PMID:27618057

  13. NIH-Supported Clinical Trial Finds Antidepressant Reduces Alzheimer's Agitation

    MedlinePlus

    ... Plan National Alzheimer's Project Act (NAPA) About ADEAR NIH-supported clinical trial finds antidepressant reduces Alzheimer’s agitation February 25, 2014 NIH-funded researchers are testing interventions to alleviate psychiatric ...

  14. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer

    PubMed Central

    YAN, LI-XU; LIU, YAN-HUI; XIANG, JIAN-WEN; WU, QI-NIAN; XU, LEI-BO; LUO, XIN-LAN; ZHU, XIAO-LAN; LIU, CHAO; XU, FANG-PING; LUO, DONG-LAN; MEI, PING; XU, JIE; ZHANG, KE-PING; CHEN, JIE

    2016-01-01

    We have previously shown that dysregulation of miR-21 functioned as an oncomiR in breast cancer. The aim of the present study was to elucidate the mechanisms by which miR-21 regulate breast tumor migration and invasion. We applied pathway analysis on genome microarray data and target-predicting algorithms for miR-21 target screening, and used luciferase reporting assay to confirm the direct target. Thereafter, we investigated the function of the target gene phosphoinositide-3-kinase, regulatory subunit 1 (α) (PIK3R1), and detected PIK3R1 coding protein (p85α) by immunohistochemistry and miR-21 by RT-qPCR on 320 archival paraffin-embedded tissues of breast cancer to evaluate the correlation of their expression with prognosis. First, we found that PIK3R1 suppressed growth, invasiveness, and metastatic properties of breast cancer cells. Next, we identified the PIK3R1 as a direct target of miR-21 and showed that it was negatively regulated by miR-21. Furthermore, we demonstrated that p85α overexpression phenocopied the suppression effects of antimiR-21 on breast cancer cell growth, migration and invasion, indicating its tumor suppressor role in breast cancer. On the contrary, PIK3R1 knockdown abrogated antimiR-21-induced effect on breast cancer cells. Notably, antimiR-21 induction increased p85α, accompanied by decreased p-AKT level. Besides, antimiR-21/PIK3R1-induced suppression of invasiveness in breast cancer cells was mediated by reversing epithelial-mesenchymal transition (EMT). p85α downregulation was found in 25 (7.8%) of the 320 breast cancer patients, and was associated with inferior 5-year disease-free survival (DFS) and overall survival (OS). Taken together, we provide novel evidence that miR-21 knockdown suppresses cell growth, migration and invasion partly by inhibiting PI3K/AKT activation via direct targeting PIK3R1 and reversing EMT in breast cancer. p85α downregulation defined a specific subgroup of breast cancer with shorter 5-year DFS and OS

  15. [Mechanism and clinical progress of molecular targeted cancer therapy].

    PubMed

    Hu, Hong-xiang; Wang, Xue-qing; Zhang, Hua; Zhang, Qiang

    2015-10-01

    Molecular target-based cancer therapy is playing a more and more important role in cancer therapy because of its high specificity, good tolerance and so on. There are different kinds of molecular targeted drugs such as monoclonal antibodies and small molecular kinase inhibitors, and more than 50 drugs have been approved since 1997. When the first monoclonal antibody, rituximab, was on the market. The development of molecular target-based cancer therapeutics has become the main approach. Based on this, we summarized the drugs approved by FDA and introduced their mechanism of actions and clinical applications. In order to incorporate most molecular targeted drugs and describe clearly various characteristics, we divided them into four categories: drugs related to EGFR, drugs related to antiangiogenesis, drugs related to specific antigen and other targeted drugs. The purpose of this review is to provide a current status of this field and discover the main problems in the molecular targeted therapy. PMID:26837167

  16. Identification of clinical target areas in the brainstem of prion‐infected mice

    PubMed Central

    Mirabile, Ilaria; Jat, Parmjit S.; Brandner, Sebastian

    2015-01-01

    Aims While prion infection ultimately involves the entire brain, it has long been thought that the abrupt clinical onset and rapid neurological decline in laboratory rodents relates to involvement of specific critical neuroanatomical target areas. The severity and type of clinical signs, together with the rapid progression, suggest the brainstem as a candidate location for such critical areas. In this study we aimed to correlate prion pathology with clinical phenotype in order to identify clinical target areas. Method We conducted a comprehensive survey of brainstem pathology in mice infected with two distinct prion strains, which produce different patterns of pathology, in mice overexpressing prion protein (with accelerated clinical onset) and in mice in which neuronal expression was reduced by gene targeting (which greatly delays clinical onset). Results We identified specific brainstem areas that are affected by prion pathology during the progression of the disease. In the early phase of disease the locus coeruleus, the nucleus of the solitary tract, and the pre‐Bötzinger complex were affected by prion protein deposition. This was followed by involvement of the motor and autonomic centres of the brainstem. Conclusions Neurodegeneration in the locus coeruleus, the nucleus of the solitary tract and the pre‐Bötzinger complex predominated and corresponded to the manifestation of the clinical phenotype. Because of their fundamental role in controlling autonomic function and the overlap with clinical signs in sporadic Creutzfeldt–Jakob disease, we suggest that these nuclei represent key clinical target areas in prion diseases. PMID:25311251

  17. Lung cancer biomarkers, targeted therapies and clinical assays

    PubMed Central

    Ersek, Jennifer L.; Kim, Edward S.

    2015-01-01

    Until recently, the majority of genomic cancer research has been in discovery and validation; however, as our knowledge of tumor molecular profiling improves, the idea of genomic application in the clinic becomes increasingly tangible, paralleled with the drug development of newer targeted therapies. A number of profiling methodologies exist to identify biomarkers found within the patient (germ-line DNA) and tumor (somatic DNA). Subsequently, commercially available clinical assays to test for both germ-line and somatic alterations that are prognostic and/or predictive of disease outcome, toxicity or treatment response have significantly increased. This review aims to summarize clinically relevant cancer biomarkers that serve as targets for therapy and their potential relationship to lung cancer. In order to realize the full potential of genomic cancer medicine, it is imperative that clinicians understand these intricate molecular pathways, the therapeutic implication of mutations within these pathways, and the availability of clinical assays to identify such biomarkers. PMID:26629419

  18. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    SciTech Connect

    Peres, Elodie A.; Valable, Samuel; Guillamo, Jean-Sebastien; Marteau, Lena; Bernaudin, Jean-Francois; Roussel, Simon; Lechapt-Zalcman, Emmanuele; Bernaudin, Myriam; Petit, Edwige

    2011-10-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  19. Clinical Trials Methods for Evaluation of Potential Reduced Exposure Products

    PubMed Central

    Hatsukami, Dorothy K.; Hanson, Karen; Briggs, Anna; Parascandola, Mark; Genkinger, Jeanine M.; O'Connor, Richard; Shields, Peter

    2009-01-01

    Potential reduced exposure tobacco products (PREPs) may have promise in reducing tobacco-related morbidity or mortality or may promote greater harm to individuals or the population. Critical to determining the risks or benefits from these products are valid human clinical trial PREP assessment methods. Assessment involves determining the effects of these products on biomarkers of exposure and of effect, which serve as proxies for harm, and assessing the potential for consumer uptake and abuse of the product. This article raises the critical methodological issues associated with PREP assessment, reviews the methods that have been used to assess PREPs, and describes the strengths and limitations of these methods. Additionally, recommendations for clinical trials PREP assessment methods and future research directions in this area based on this review and on the deliberations from a National Cancer Institute sponsored Clinical Trials PREP Methods Workshop are provided. PMID:19959672

  20. Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information.

    PubMed

    Yang, Hong; Qin, Chu; Li, Ying Hong; Tao, Lin; Zhou, Jin; Yu, Chun Yan; Xu, Feng; Chen, Zhe; Zhu, Feng; Chen, Yu Zong

    2016-01-01

    Extensive drug discovery efforts have yielded many approved and candidate drugs targeting various targets in different biological pathways. Several freely accessible databases provide the drug, target and drug-targeted pathway information for facilitating drug discovery efforts, but there is an insufficient coverage of the clinical trial drugs and the drug-targeted pathways. Here, we describe an update of the Therapeutic Target Database (TTD) previously featured in NAR. The updated contents include: (i) significantly increased coverage of the clinical trial targets and drugs (1.6 and 2.3 times of the previous release, respectively), (ii) cross-links of most TTD target and drug entries to the corresponding pathway entries of KEGG, MetaCyc/BioCyc, NetPath, PANTHER pathway, Pathway Interaction Database (PID), PathWhiz, Reactome and WikiPathways, (iii) the convenient access of the multiple targets and drugs cross-linked to each of these pathway entries and (iv) the recently emerged approved and investigative drugs. This update makes TTD a more useful resource to complement other databases for facilitating the drug discovery efforts. TTD is accessible at http://bidd.nus.edu.sg/group/ttd/ttd.asp. PMID:26578601

  1. Target Context Specification Can Reduce Costs in Nonfocal Prospective Memory

    ERIC Educational Resources Information Center

    Lourenço, Joana S.; White, Katherine; Maylor, Elizabeth A.

    2013-01-01

    Performing a nonfocal prospective memory (PM) task results in a cost to ongoing task processing, but the precise nature of the monitoring processes involved remains unclear. We investigated whether target context specification (i.e., explicitly associating the PM target with a subset of ongoing stimuli) can trigger trial-by-trial changes in task…

  2. Reducing burnout and stress: the effectiveness of clinical supervision.

    PubMed

    Wallbank, Sonya; Hatton, Sue

    2011-07-01

    Health visitors and school nurses have been identified as a particularly vulnerable group to stress given the complex, frontline clinical work that they are involved in. Recent high-profile reviews of safeguarding practices have brought an increased pressure on the profession. This paper provides evidence of the effectiveness of a model of clinical supervision that reduced burnout and stress for health visitor and school nurse Leaders. Commissioned by NHS West Midlands, the project delivered supervision to health visitors and school nurses with a safeguarding leadership responsibility within their organisation. PMID:21941708

  3. Reduced order constrained optimization (ROCO): Clinical application to lung IMRT

    PubMed Central

    Stabenau, Hans; Rivera, Linda; Yorke, Ellen; Yang, Jie; Lu, Renzhi; Radke, Richard J.; Jackson, Andrew

    2011-01-01

    Purpose: The authors use reduced-order constrained optimization (ROCO) to create clinically acceptable IMRT plans quickly and automatically for advanced lung cancer patients. Their new ROCO implementation works with the treatment planning system and full dose calculation used at Memorial Sloan-Kettering Cancer Center (MSKCC). The authors have implemented mean dose hard constraints, along with the point-dose and dose-volume constraints that the authors used for our previous work on the prostate.Methods: ROCO consists of three major steps. First, the space of treatment plans is sampled by solving a series of optimization problems using penalty-based quadratic objective functions. Next, an efficient basis for this space is found via principal component analysis (PCA); this reduces the dimensionality of the problem. Finally, a constrained optimization problem is solved over this basis to find a clinically acceptable IMRT plan. Dimensionality reduction makes constrained optimization computationally efficient.Results: The authors apply ROCO to 12 stage III non-small-cell lung cancer (NSCLC) cases, generating IMRT plans that meet all clinical constraints and are clinically acceptable, and demonstrate that they are competitive with the clinical treatment plans. The authors also test how many samples and PCA modes are necessary to achieve an adequate lung plan, demonstrate the importance of long-range dose calculation for ROCO, and evaluate the performance of nonspecific normal tissue (“rind”) constraints in ROCO treatment planning for the lung. Finally, authors show that ROCO can save time for planners, and they estimate that in the clinic, planning using their approach would save a median of 105 min for the patients in the study.Conclusions: New challenges arise when applying ROCO to the lung site, which include the lack of a class solution, a larger treatment site, an increased number of parameters and beamlets, a variable number of beams and beam arrangement, and

  4. Translation of Targeted Radiation Sensitizers into Clinical Trials.

    PubMed

    Reichert, Zachery R; Wahl, Daniel R; Morgan, Meredith A

    2016-10-01

    Over the past century, technologic advances have promoted the evolution of radiation therapy into a precise treatment modality allowing for the maximal administration of dose to tumors while sparing normal tissues. Coinciding with this technological maturation, systemic therapies have been combined with radiation in an effort to improve tumor control. Conventional cytotoxic agents have improved survival in several tumor types but cause increased toxicity due to effects on normal tissues. An increased understanding of tumor biology and the radiation response has led to the nomination of several pathways whose targeted inhibition has the potential to radiosensitize tumor cells with lesser effects on normal tissues. These pathways include those regulating the cell cycle, DNA damage repair, and mitogenic signaling. Few drugs targeting these pathways are in clinical practice, although many are in clinical trials. This review will describe the rationale for combining agents targeting these pathways with radiation, provide an overview of the current landscape in the clinical pipeline and attempt to outline the future steps. PMID:27619248

  5. Reducing inappropriate ESR testing with computerized clinical decision support

    PubMed Central

    Gottheil, Stephanie; Khemani, Ekta; Copley, Katherine; Keeney, Michael; Kinney, Jeff; Chin-Yee, Ian; Gob, Alan

    2016-01-01

    Laboratory test overutilization increases health care costs, leads to unwarranted investigations, and may have a negative impact on health outcomes. The American Society of Clinical Pathology, in its Choosing Wisely Campaign, advocates that inflammation be investigated with C-reactive protein (CRP) instead of Erythrocyte Sedimentation Rate (ESR). London Health Sciences Centre (LHSC), a tertiary care hospital organization in Ontario, Canada, set a goal to reduce inappropriate ESR orders by 50%. After developing appropriateness criteria for ESR, we used a series of PDSA cycles to reduce inappropriate ESR ordering and analyzed our results with an interrupted time series design. Our intervention began with an educational bulletin and moved to city-wide implementation of computerized Clinical Decision Support (CDS). After implementation, ESR orders decreased by 40% from 386 orders per week to 241 orders per week. Our results are supported by previous literature on the effectiveness of CDS in reducing overutilization and suggest that provider habit is a significant contributor to inappropriate ordering. PMID:27096092

  6. Reducing inappropriate ESR testing with computerized clinical decision support.

    PubMed

    Gottheil, Stephanie; Khemani, Ekta; Copley, Katherine; Keeney, Michael; Kinney, Jeff; Chin-Yee, Ian; Gob, Alan

    2016-01-01

    Laboratory test overutilization increases health care costs, leads to unwarranted investigations, and may have a negative impact on health outcomes. The American Society of Clinical Pathology, in its Choosing Wisely Campaign, advocates that inflammation be investigated with C-reactive protein (CRP) instead of Erythrocyte Sedimentation Rate (ESR). London Health Sciences Centre (LHSC), a tertiary care hospital organization in Ontario, Canada, set a goal to reduce inappropriate ESR orders by 50%. After developing appropriateness criteria for ESR, we used a series of PDSA cycles to reduce inappropriate ESR ordering and analyzed our results with an interrupted time series design. Our intervention began with an educational bulletin and moved to city-wide implementation of computerized Clinical Decision Support (CDS). After implementation, ESR orders decreased by 40% from 386 orders per week to 241 orders per week. Our results are supported by previous literature on the effectiveness of CDS in reducing overutilization and suggest that provider habit is a significant contributor to inappropriate ordering. PMID:27096092

  7. Reduced OSM for Long Duration Targets: Individuation or Items Loaded into VSTM?

    ERIC Educational Resources Information Center

    Guest, Duncan; Gellatly, Angus; Pilling, Michael

    2012-01-01

    Typical studies of object substitution masking (OSM) employ a briefly presented search array. The target item is indicated by a cue/mask that surrounds but does not overlap the target and, compared to a common offset control condition, report of the target is reduced when the mask remains present after target offset. Given how little observers are…

  8. Targeting dormant micrometastases: rationale, evidence to date and clinical implications

    PubMed Central

    Hurst, Robert E.; Bastian, Anja; Bailey-Downs, Lora; Ihnat, Michael A.

    2016-01-01

    In spite of decades of research, cancer survival has increased only modestly. This is because most research is based on models of primary tumors. Slow recognition has begun that disseminated, dormant cancer cells (micrometastatic cells) that are generally resistant to chemotherapy are the culprits in recurrence, and until these are targeted effectively we can expect only slow progress in increasing overall survival from cancer. This paper reviews efforts to understand the mechanisms by which cancer cells can become dormant, and thereby identify potential targets and drugs either on the market or in clinical trials that purport to prevent metastasis. This review targets the most recent literature because several excellent reviews have covered the literature from more than two years ago. The paper also describes recent work in the authors’ laboratories to develop a screening-based approach that does not require understanding of mechanisms of action or the molecular target. Success of this approach shows that targeting micrometastatic cells is definitely feasible. PMID:26929788

  9. Targeting homologous recombination, new pre-clinical and clinical therapeutic combinations inhibiting RAD51.

    PubMed

    Ward, Ambber; Khanna, Kum Kum; Wiegmans, Adrian P

    2015-01-01

    The DNA damage response (DDR) is essential for maintaining genomic stability and cell survival. However, when tumour cells with deficiencies in HR are faced with radio- and chemotherapies they are forced to rely on error-prone, alternative repair pathways or aberrant HR for survival; threatening genome integrity and driving further mutation. Accurate therapeutic targeting of the key drivers of DNA repair can circumvent survival pathways and avoid aggressive therapy resistant mutants. Several studies have identified that stabilization of the cancer genome in HR deficient cells can be achieved by overexpression of the recombinase RAD51. Radio- and chemotherapeutic resistance is associated with overactive HR repair mechanisms. However no clinical trials have directly targeted RAD51, despite RAD51 displaying synergy in several drug screens against multiple cancer types. Currently synthetic lethality targeting the DDR pathways and HR deficiency has had clinical success with BRCA1 functional loss and PARP inhibition. In this review we suggest that clinical outcomes could be improved by additionally targeting RAD51. We examine the latest developments in directly and indirectly targeting RAD51. We scrutinize the potential treatment efficacy and future clinical applications of RAD51 inhibitors as single agents and in combination with other therapies and consider the best therapeutic options. PMID:25467108

  10. Target biomarker profile for the clinical management of paracetamol overdose.

    PubMed

    Vliegenthart, A D Bastiaan; Antoine, Daniel J; Dear, James W

    2015-09-01

    Paracetamol (acetaminophen) overdose is one of the most common causes of acute liver injury in the Western world. To improve patient care and reduce pressure on already stretched health care providers new biomarkers are needed that identify or exclude liver injury soon after an overdose of paracetamol is ingested. This review highlights the current state of paracetamol poisoning management and how novel biomarkers could improve patient care and save healthcare providers money. Based on the widely used concept of defining a target product profile, a target biomarker profile is proposed that identifies desirable and acceptable key properties for a biomarker in development to enable the improved treatment of this patient population. The current biomarker candidates, with improved hepatic specificity and based on the fundamental mechanistic basis of paracetamol-induced liver injury, are reviewed and their performance compared with our target profile. PMID:26076366

  11. Targeting Neuroendocrine Prostate Cancer: Molecular and Clinical Perspectives

    PubMed Central

    Vlachostergios, Panagiotis J.; Papandreou, Christos N.

    2015-01-01

    Neuroendocrine prostate carcinoma, either co-present with the local adenocarcinoma disease or as a result of transdifferentiation later in time, was described as one major process of emerging resistance to androgen deprivation therapies, and at the clinical level it is consistent with the development of rapidly progressive visceral disease, often in the absence of elevated serum prostate-specific antigen level. Until present, platinum-based chemotherapy has been the only treatment modality, able to produce a fair amount of responses but of short duration. Recently, several efforts for molecular characterization of this lethal phenotype have resulted in identification of novel signaling factors involved in microenvironment interactions, mitosis, and neural reprograming as potential therapeutic targets. Ongoing clinical testing of specific inhibitors of these targets, for example, Aurora kinase A inhibitors, in carefully selected patients and exploitation of expression changes of the target before and after manipulation is anticipated to increase the existing data and facilitate therapeutic decision making at this late stage of the disease when hormonal manipulations, even with the newest androgen-directed therapies are no longer feasible. PMID:25699233

  12. Clinical improvement in psoriasis with specific targeting of interleukin-23.

    PubMed

    Kopp, Tamara; Riedl, Elisabeth; Bangert, Christine; Bowman, Edward P; Greisenegger, Elli; Horowitz, Ann; Kittler, Harald; Blumenschein, Wendy M; McClanahan, Terrill K; Marbury, Thomas; Zachariae, Claus; Xu, Danlin; Hou, Xiaoli Shirley; Mehta, Anish; Zandvliet, Anthe S; Montgomery, Diana; van Aarle, Frank; Khalilieh, Sauzanne

    2015-05-14

    Psoriasis is a chronic inflammatory skin disorder that affects approximately 2-3% of the population worldwide and has severe effects on patients' physical and psychological well-being. The discovery that psoriasis is an immune-mediated disease has led to more targeted, effective therapies; recent advances have focused on the interleukin (IL)-12/23p40 subunit shared by IL-12 and IL-23. Evidence suggests that specific inhibition of IL-23 would result in improvement in psoriasis. Here we evaluate tildrakizumab, a monoclonal antibody that targets the IL-23p19 subunit, in a three-part, randomized, placebo-controlled, sequential, rising multiple-dose phase I study in patients with moderate-to-severe psoriasis to provide clinical proof that specific targeting of IL-23p19 results in symptomatic improvement of disease severity in human subjects. A 75% reduction in the psoriasis area and severity index (PASI) score (PASI75) was achieved by all subjects in parts 1 and 3 (pooled) in the 3 and 10 mg kg(-1) groups by day 196. In part 2, 10 out of 15 subjects in the 3 mg kg(-1) group and 13 out of 14 subjects in the 10 mg kg(-1) group achieved a PASI75 by day 112. Tildrakizumab demonstrated important clinical improvement in moderate-to-severe psoriasis patients as demonstrated by improvements in PASI scores and histological samples. PMID:25754330

  13. Targeting NK Cells for Anticancer Immunotherapy: Clinical and Preclinical Approaches

    PubMed Central

    Carotta, Sebastian

    2016-01-01

    The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. Although the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer (NK) cells are the body’s first line of defense against infected or transformed cells, as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell-based anticancer therapies, which has lead to a steady increase of NK cell-based clinical and preclinical trials. Here, the role of NK cells in cancer immune surveillance is summarized, and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed. PMID:27148271

  14. Interobserver Variation of Clinical Target Volume Delineation in Gastric Cancer

    SciTech Connect

    Jansen, Edwin; Verheij, Marcel

    2010-07-15

    Purpose: To evaluate interobserver variability in clinical target volume (CTV) delineation in gastric cancer performed with the help of a delineation guide. Patients and Methods: Ten radiotherapy centers that participate in the CRITICS Phase III trial were provided with a delineation atlas, preoperative CT scans, a postoperative planning CT scan, and clinical information for a gastric cancer case and were asked to construct a CTV and create a dosimetric plan according to departmental policy. Results: The volumes of the CTVs and planning target volumes (PTVs) differed greatly, with a mean (SD) CTV volume of 392 (176) cm{sup 3} (range, 240-821cm{sup 3}) and PTV volume of 915 (312) cm{sup 3} (range, 634-1677cm{sup 3}). The overlapping volume was 376cm{sup 3} for the CTV and 890cm{sup 3} for the PTV. The greatest differences in the CTV were seen at the cranial and caudal parts. After planning, dose coverage of the overlapping PTV volume showed less variability than the CTV. Conclusion: In this series of 10 plans, variability of the CTV in postoperative chemoradiotherapy for gastric cancer is large. Strict and clear delineation guidelines should be provided, especially in Phase III multicenter studies. Adaptations of these guidelines should be evaluated in clinical studies.

  15. Clinical Significance of Auditory Target P300 Subcomponents in Psychosis: Differential Diagnosis, Symptom Profiles, and Course

    PubMed Central

    Perlman, Greg; Foti, Dan; Jackson, Felicia; Kotov, Roman; Constantino, Eduardo; Hajcak, Greg

    2015-01-01

    Background Reduced auditory target P300 amplitude is a leading biomarker for psychotic disorders, although its relevance for differential diagnosis and link to specific clinical features (symptom profiles, functional impairment, and course) is unclear. This study aims to clarify the clinical significance of auditory target P300 using concurrent and retrospective clinical data from a longitudinal cohort with psychosis. Methods 92 cases from an epidemiological study of first-admission psychosis were assessed using an auditory oddball paradigm at 15-year follow-up along with 44 never-psychotic adults. Subcomponents of auditory target P300 amplitude (i.e., a central positive P3a, a parietal positive P3b, and a frontal negative slow wave) were isolated using temporal-spatial principal components analysis. Results P3a amplitude was blunted across psychotic disorders relative to non-psychotic adults. P3b amplitude was reduced in schizophrenia specifically, including cases initially misclassified at baseline. The frontal negative slow wave did not distinguish among groups. P3b amplitude reduction was associated with several clinical features at the concurrent assessment, as well as previous time points, including recovery from psychosis even 5 years earlier and functioning even 15 years earlier. Conclusions Auditory target P300 amplitude yields both a schizophrenia-specific component (i.e., P3b) and a transdiagnostic psychosis component (i.e., P3a). The P3b component may also shed light on prognosis, real-world functioning, and course, as well as help to reduce misdiagnosis of psychotic disorders. Prospective studies are needed to test whether P3b tracks or predicts clinical status. PMID:25934167

  16. Clinical Overview of MDM2/X-Targeted Therapies

    PubMed Central

    Burgess, Andrew; Chia, Kee Ming; Haupt, Sue; Thomas, David; Haupt, Ygal; Lim, Elgene

    2016-01-01

    MDM2 and MDMX are the primary negative regulators of p53, which under normal conditions maintain low intracellular levels of p53 by targeting it to the proteasome for rapid degradation and inhibiting its transcriptional activity. Both MDM2 and MDMX function as powerful oncogenes and are commonly over-expressed in some cancers, including sarcoma (~20%) and breast cancer (~15%). In contrast to tumors that are p53 mutant, whereby the current therapeutic strategy restores the normal active conformation of p53, MDM2 and MDMX represent logical therapeutic targets in cancer for increasing wild-type (WT) p53 expression and activities. Recent preclinical studies suggest that there may also be situations that MDM2/X inhibitors could be used in p53 mutant tumors. Since the discovery of nutlin-3a, the first in a class of small molecule MDM2 inhibitors that binds to the hydrophobic cleft in the N-terminus of MDM2, preventing its association with p53, there is now an extensive list of related compounds. In addition, a new class of stapled peptides that can target both MDM2 and MDMX have also been developed. Importantly, preclinical modeling, which has demonstrated effective in vitro and in vivo killing of WT p53 cancer cells, has now been translated into early clinical trials allowing better assessment of their biological effects and toxicities in patients. In this overview, we will review the current MDM2- and MDMX-targeted therapies in development, focusing particularly on compounds that have entered into early phase clinical trials. We will highlight the challenges pertaining to predictive biomarkers for and toxicities associated with these compounds, as well as identify potential combinatorial strategies to enhance its anti-cancer efficacy. PMID:26858935

  17. Clinical development of cancer therapeutics that target metabolism.

    PubMed

    Clem, B F; O'Neal, J; Klarer, A C; Telang, S; Chesney, J

    2016-06-01

    Glucose and glutamine metabolism in cancer cells are markedly elevated relative to non-transformed normal cells. This metabolic reprogramming enables the production of adenosine triphosphate and the anabolic precursors needed for survival, growth and motility. The recent observations that mutant oncogenic proteins and the loss of tumor suppressors activate key metabolic enzymes suggest that selective inhibition of these enzymes may yield effective cancer therapeutics with acceptable toxicities. In support of this concept, pre-clinical studies of small molecule antagonists of several metabolic enzymes in tumor-bearing mice have demonstrated reasonable therapeutic indices. We will review the rationale for targeting metabolic enzymes as a strategy to treat cancer and will detail the results of several recent clinical trials of metabolic inhibitors in advanced cancer patients. PMID:26428335

  18. Companion diagnostics for targeted cancer drugs - clinical and regulatory aspects.

    PubMed

    Olsen, Dana; Jørgensen, Jan Trøst

    2014-01-01

    Companion diagnostics (CDx) holds the promise of improving the predictability of the oncology drug development process and become an important tool for the oncologist in relation to the choice of treatment for the individual patient. A number of drug-diagnostic co-development programs have already been completed successfully, and in the clinic, the use of several targeted cancer drugs is now guided by a CDx. This central role of the CDx assays has attracted the attention of the regulators, and especially the US Food and Drug Administration has been at the forefront in relation to developing regulatory strategies for CDx and the drug-diagnostic co-development project. For an increasing number of cancer patients the treatment selection will depend on the result generated by a CDx assay, and consequently this type of assay has become critical for the care and safety of the patients. In order to secure that the CDx assays have a high degree of analytical and clinical validity, they must undergo an extensive non-clinical and clinical testing before release for routine patient management. This review will give a brief introduction to some of the scientific and medical challenges related to the CDx development with specific emphasis on the regulatory requirements in different regions of the world. PMID:24904822

  19. Molecular Pathways: New Signaling Considerations When Targeting Cytoskeletal Balance to Reduce Tumor Growth.

    PubMed

    Chakrabarti, Kristi R; Hessler, Lindsay; Bhandary, Lekhana; Martin, Stuart S

    2015-12-01

    The dynamic balance between microtubule extension and actin contraction regulates mammalian cell shape, division, and motility, which has made the cytoskeleton an attractive and very successful target for cancer drugs. Numerous compounds in clinical use to reduce tumor growth cause microtubule breakdown (vinca alkaloids, colchicine-site, and halichondrins) or hyperstabilization of microtubules (taxanes and epothilones). However, both of these strategies indiscriminately alter the assembly and dynamics of all microtubules, which causes significant dose-limiting toxicities on normal tissues. Emerging data are revealing that posttranslational modifications of tubulin (detyrosination, acetylation) or microtubule-associated proteins (Tau, Aurora kinase) may allow for more specific targeting of microtubule subsets, thereby avoiding the broad disruption of all microtubule polymerization. Developing approaches to reduce tumor cell migration and invasion focus on disrupting actin regulation by the kinases SRC and ROCK. Because the dynamic balance between microtubule extension and actin contraction also regulates cell fate decisions and stem cell characteristics, disrupting this cytoskeletal balance could yield unexpected effects beyond tumor growth. This review will examine recent data demonstrating that cytoskeletal cancer drugs affect wound-healing responses, microtentacle-dependent reattachment efficiency, and stem cell characteristics in ways that could affect the metastatic potential of tumor cells, both beneficially and detrimentally. PMID:26463706

  20. Multimodality molecular imaging--from target description to clinical studies.

    PubMed

    Schober, O; Rahbar, K; Riemann, B

    2009-02-01

    This highlight lecture was presented at the closing session of the Annual Congress of the European Association of Nuclear Medicine (EANM) in Munich on 15 October 2008. The Congress was a great success: there were more than 4,000 participants, and 1,597 abstracts were submitted. Of these, 1,387 were accepted for oral or poster presentation, with a rejection rate of 14%. In this article a choice was made from 100 of the 500 lectures which received the highest scores by the scientific review panel. This article outlines the major findings and trends at the EANM 2008, and is only a brief summary of the large number of outstanding abstracts presented. Among the great number of oral and poster presentations covering nearly all fields of nuclear medicine some headlines have to be defined highlighting the development of nuclear medicine in the 21st century. This review focuses on the increasing impact of molecular and multimodality imaging in the field of nuclear medicine. In addition, the question may be asked as to whether the whole spectrum of nuclear medicine is nothing other than molecular imaging and therapy. Furthermore, molecular imaging will and has to go ahead to multimodality imaging. In view of this background the review was structured according to the single steps of molecular imaging, i.e. from target description to clinical studies. The following topics are addressed: targets, radiochemistry and radiopharmacy, devices and computer science, animals and preclinical evaluations, and patients and clinical evaluations. PMID:19130054

  1. Hyaluronic acid-siRNA conjugate/reducible polyethylenimine complexes for targeted siRNA delivery.

    PubMed

    Jang, Yeon Lim; Ku, Sook Hee; Jin, So; Park, Jae Hyung; Kim, Won Jong; Kwon, Ick Chan; Kim, Sun Hwa; Jeong, Ji Hoon

    2014-10-01

    The clinical applications of therapeutic siRNA remain as a challenge due to the lack of efficient delivery system. In the present study, hyaluronic acid-siRNA conjugate (HA-SS-siRNA)/reducible polyethylenimine (BPEI1.2k-SS) complexes were developed to efficiently deliver the siRNA to HA receptor abundant region with the improved siRNA stability. HA and siRNA were conjugated with disulfide bonds, which are cleavable in cytoplasm. The synthesized HA-SS-siRNA was further complexed with BPEI1.2k-SS, resulting in the formation of spherical nanostructures with approximately 190 nm of size and neutral surface charge. HA-SS-siRNA/BPEI1.2k-SS complexes exhibited the improved stability against serum proteins or polyanions. These complexes were successfully translocated into intracellular region via HA receptor-mediated endocytosis, and silenced target gene expression. PMID:25942799

  2. Reducing youth exposure to alcohol ads: targeting public transit.

    PubMed

    Simon, Michele

    2008-07-01

    Underage drinking is a major public health problem. Youth drink more heavily than adults and are more vulnerable to the adverse effects of alcohol. Previous research has demonstrated the connection between alcohol advertising and underage drinking. Restricting outdoor advertising in general and transit ads in particular, represents an important opportunity to reduce youth exposure. To address this problem, the Marin Institute, an alcohol industry watchdog group in Northern California, conducted a survey of alcohol ads on San Francisco bus shelters. The survey received sufficient media attention to lead the billboard company, CBS Outdoor, into taking down the ads. Marin Institute also surveyed the 25 largest transit agencies; results showed that 75 percent of responding agencies currently have policies that ban alcohol advertising. However, as the experience in San Francisco demonstrated, having a policy on paper does not necessarily mean it is being followed. Communities must be diligent in holding accountable government officials, the alcohol industry, and the media companies through which advertising occurs. PMID:18389374

  3. Clinical actionability enhanced through deep targeted sequencing of solid tumors

    PubMed Central

    Chen, Ken; Meric-Bernstam, Funda; Zhao, Hao; Zhang, Qingxiu; Ezzeddine, Nader; Tang, Lin-ya; Qi, Yuan; Mao, Yong; Chen, Tenghui; Chong, Zechen; Zhou, Wanding; Zheng, Xiaofeng; Johnson, Amber; Aldape, Kenneth D.; Routbort, Mark J.; Luthra, Rajyalakshmi; Kopetz, Scott; Davies, Michael A.; de Groot, John; Moulder, Stacy; Vinod, Ravi; Farhangfar, Carol J.; Shaw, Kenna Mills; Mendelsohn, John; Mills, Gordon B.; Eterovic, Agda Karina

    2015-01-01

    Background Further advances of targeted cancer therapy require comprehensive in-depth profiling of somatic mutations that are present in subpopulations of tumor cells in a clinical tumor sample. However, it is unclear to what extent such intra-tumor heterogeneity is present and whether it may affect clinical decision making. To unravel this challenge, we established a deep targeted sequencing platform to identify potentially actionable DNA alterations in tumor samples. Methods We assayed 515 FFPE tumor samples and matched germline (475 patients) from 11 disease sites by capturing and sequencing all the exons in 201 cancer related genes. Mutations, indels and copy number data were reported. Results We obtained a 1000-fold average sequencing depth and identified 4794 non-synonymous mutations in the samples analyzed, which 15.2% were present at less than 10% allele frequency. Most of these low level mutations occurred at known oncogenic hotspots and are likely functional. Identifying low level mutations improved identification of mutations in actionable genes in 118 (24.84%) patients, among which 47 (9.8%) would otherwise be unactionable. In addition, acquiring ultra-high depth also ensured a low false discovery rate (less than 2.2%) from FFPE samples. Conclusion Our results were as accurate as a commercially available CLIA-compliant hotspot panel, but allowed the detection of a higher number of mutations in actionable genes. Our study revealed the critical importance of acquiring and utilizing high depth in profiling clinical tumor samples and presented a very useful platform for implementing routine sequencing in a cancer care institution. PMID:25626406

  4. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation†

    PubMed Central

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M.; Radovic-Moreno, Aleksandar F.; Farokhzad, Omid C.

    2013-01-01

    Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development

  5. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation.

    PubMed

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M; Radovic-Moreno, Aleksandar F; Farokhzad, Omid C

    2012-04-01

    Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development

  6. Clinical implementation of target tracking by breathing synchronized delivery

    SciTech Connect

    Tewatia, Dinesh; Zhang Tiezhi; Tome, Wolfgang; Paliwal, Bhudatt; Metha, Minesh

    2006-11-15

    Target-tracking techniques can be categorized based on the mechanism of the feedback loop. In real time tracking, breathing-delivery phase correlation is provided to the treatment delivery hardware. Clinical implementation of target tracking in real time requires major hardware modifications. In breathing synchronized delivery (BSD), the patient is guided to breathe in accordance with target motion derived from four-dimensional computed tomography (4D-CT). Violations of mechanical limitations of hardware are to be avoided at the treatment planning stage. Hardware modifications are not required. In this article, using sliding window IMRT delivery as an example, we have described step-by-step the implementation of target tracking by the BSD technique: (1) A breathing guide is developed from patient's normal breathing pattern. The patient tries to reproduce this guiding cycle by following the display in the goggles; (2) 4D-CT scans are acquired at all the phases of the breathing cycle; (3) The average tumor trajectory is obtained by deformable image registration of 4D-CT datasets and is smoothed by Fourier filtering; (4) Conventional IMRT planning is performed using the images at reference phase (full exhalation phase) and a leaf sequence based on optimized fluence map is generated; (5) Assuming the patient breathes with a reproducible breathing pattern and the machine maintains a constant dose rate, the treatment process is correlated with the breathing phase; (6) The instantaneous average tumor displacement is overlaid on the dMLC position at corresponding phase; and (7) DMLC leaf speed and acceleration are evaluated to ensure treatment delivery. A custom-built mobile phantom driven by a computer-controlled stepper motor was used in the dosimetry verification. A stepper motor was programmed such that the phantom moved according to the linear component of tumor motion used in BSD treatment planning. A conventional plan was delivered on the phantom with and without

  7. Towards combinatorial targeted therapy in melanoma: From pre-clinical evidence to clinical application (Review)

    PubMed Central

    GRAZIA, GIULIA; PENNA, ILARIA; PEROTTI, VALENTINA; ANICHINI, ANDREA; TASSI, ELENA

    2014-01-01

    Over the last few years, clinical trials with BRAF and mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitors have shown significant clinical activity in melanoma, but only a fraction of patients respond to these therapies, and development of resistance is frequent. This has prompted a large set of preclinical studies looking at several new combinatorial approaches of pathway- or target-specific inhibitors. At least five main drug association strategies have been verified in vitro and in preclinical models. The most promising include: i) vertical targeting of either MEK or phosphoinositide-3 kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways, or their combined blockade; ii) association of receptor tyrosine kinases (RTKs) inhibitors with other pro-apoptotic strategies; iii) engagement of death receptors in combination with MEK-, mTOR/PI3K-, histone deacetylase (HDAC)-inhibitors, or with anti-apoptotic molecules modulators; iv) strategies aimed at blocking anti-apoptotic proteins belonging to B-cell lymphoma (Bcl-2) or inhibitors of apoptosis (IAP) families associated with MEK/BRAF/p38 inhibition; v) co-inhibition of other molecules important for survival [proteasome, HDAC and Signal transducers and activators of transcription (Stat)3] and the major pathways activated in melanoma; vi) simultaneous targeting of multiple anti-apoptotic molecules. Here we review the anti-melanoma efficacy and mechanism of action of the above-mentioned combinatorial strategies, together with the potential clinical application of the most promising studies that may eventually lead to therapeutic benefit. PMID:24920406

  8. Clinical impact of targeted amplicon sequencing for meningioma as a practical clinical-sequencing system.

    PubMed

    Yuzawa, Sayaka; Nishihara, Hiroshi; Yamaguchi, Shigeru; Mohri, Hiromi; Wang, Lei; Kimura, Taichi; Tsuda, Masumi; Tanino, Mishie; Kobayashi, Hiroyuki; Terasaka, Shunsuke; Houkin, Kiyohiro; Sato, Norihiro; Tanaka, Shinya

    2016-07-01

    Recent genetic analyses using next-generation sequencers have revealed numerous genetic alterations in various tumors including meningioma, which is the most common primary brain tumor. However, their use as routine laboratory examinations in clinical applications for tumor genotyping is not cost effective. To establish a clinical sequencing system for meningioma and investigate the clinical significance of genotype, we retrospectively performed targeted amplicon sequencing on 103 meningiomas and evaluated the association with clinicopathological features. We designed amplicon-sequencing panels targeting eight genes including NF2 (neurofibromin 2), TRAF7, KLF4, AKT1, and SMO. Libraries prepared with genomic DNA extracted from PAXgene-fixed paraffin-embedded tissues of 103 meningioma specimens were sequenced using the Illumina MiSeq. NF2 loss in some cases was also confirmed by interphase-fluorescent in situ hybridization. We identified NF2 loss and/or at least one mutation in NF2, TRAF7, KLF4, AKT1, and SMO in 81 out of 103 cases (79%) by targeted amplicon sequencing. On the basis of genetic status, we categorized meningiomas into three genotype groups: NF2 type, TRAKLS type harboring mutation in TRAF7, AKT1, KLF4, and/or SMO, and 'not otherwise classified' type. Genotype significantly correlated with tumor volume, tumor location, and magnetic resonance imaging findings such as adjacent bone change and heterogeneous gadolinium enhancement, as well as histopathological subtypes. In addition, multivariate analysis revealed that genotype was independently associated with risk of recurrence. In conclusion, we established a rapid clinical sequencing system that enables final confirmation of meningioma genotype within 7 days turnaround time. Our method will bring multiple benefits to neuropathologists and neurosurgeons for accurate diagnosis and appropriate postoperative management. PMID:27102344

  9. Accelerated Blood Clearance Phenomenon Reduces the Passive Targeting of PEGylated Nanoparticles in Peripheral Arterial Disease.

    PubMed

    Im, Hyung-Jun; England, Christopher G; Feng, Liangzhu; Graves, Stephen A; Hernandez, Reinier; Nickles, Robert J; Liu, Zhuang; Lee, Dong Soo; Cho, Steve Y; Cai, Weibo

    2016-07-20

    Peripheral arterial disease (PAD) is a leading global health concern. Due to limited imaging and therapeutic options, PAD and other ischemia-related diseases may benefit from the use of long circulating nanoparticles as imaging probes and/or drug delivery vehicles. Polyethylene glycol (PEG)-conjugated nanoparticles have shown shortened circulation half-lives in vivo when injected multiple times into a single subject. This phenomenon has become known as the accelerated blood clearance (ABC) effect. The phenomenon is of concern for clinical translation of nanomaterials as it limits the passive accumulation of nanoparticles in many diseases, yet it has not been evaluated using inorganic or organic-inorganic hybrid nanoparticles. Herein, we found that the ABC phenomenon was induced by reinjection of PEGylated long circulating organic-inorganic hybrid nanoparticles, which significantly reduced the passive targeting of (64)Cu-labeled PEGylated reduced graphene oxide-iron oxide nanoparticles ((64)Cu-RGO-IONP-PEG) in a murine model of PAD. Positron emission tomography (PET) imaging was performed at 3, 10, and 17 days postsurgical induction of hindlimb ischemia. At day 3 postsurgery, the nanoparticles displayed a long circulation half-life with enhanced accumulation in the ischemic hindlimb. At days 10 and 17 postsurgery, reinjected mice displayed a short circulation half-life and lower accumulation of the nanoparticles in the ischemic hindlimb, in comparison to the naïve group. Also, reinjected mice showed significantly higher liver uptake than the naïve group, indicating that the nanoparticles experienced higher sequestration by the liver in the reinjected group. Furthermore, photoacoustic (PA) imaging and Prussian blue staining confirmed the enhanced accumulation of the nanoparticles in the liver tissue of reinjected mice. These findings validate the ABC phenomenon using long circulating organic-inorganic hybrid nanoparticles upon multiple administrations to the same

  10. Targets in clinical oncology: the metabolic environment of the patient.

    PubMed

    Argilés, Josep M; Busquets, Silvia; Moore-Carrasco, Rodrigo; Figueras, Maite; Almendro, Vanessa; López-Soriano, Francisco J

    2007-01-01

    Cancer cachexia is a syndrome characterized by a marked weight loss, anorexia, asthenia and anemia. The degree of cachexia is inversely correlated with the survival time of the patient and it always implies a poor prognosis. Lean body mass depletion is one of the main features of cachexia and it involves not only skeletal muscle but also affects cardiac protein. The cachectic state is invariably associated with the presence and growth of the tumour and leads to a malnutrition status due to the induction of anorexia or decreased food intake. In addition, the competition for nutrients between the tumour and the host leads to an accelerated starvation state which promotes severe metabolic disturbances in the host, including hypermetabolism which leads to an increased energetic inefficiency. Unfortunately, at the clinical level, cachexia is not treated until the patient suffers from a considerable weight loss and wasting. Therefore, it is of great interest to analyze possible early markers of the syndrome. In the present review both metabolic and hormonal markers are described. Although the search for the cachectic factor(s) started a long time ago, and although many scientific and economic efforts have been devoted to its discovery, we are still a long way from fully understanding the underlying basis for this syndrome. The suggested mediators (associated with both depletion of fat stores and muscular tissue) can be divided into two categories: of tumour origin (produced and released by the neoplasm) and humoural factors (mainly cytokines). One of the aims of the present review is to summarize and evaluate the different catabolic mediators (both humoural and tumoural) involved in cancer cachexia, since they may represent targets for clinical investigations. Additionally, an overview of the main therapeutic approaches for the treatment of the cachectic syndrome is presented. PMID:17485280

  11. Treatment targets in systemic lupus erythematosus: biology and clinical perspective.

    PubMed

    Marian, Valentin; Anolik, Jennifer H

    2012-01-01

    Systemic lupus erythematosus (SLE) is a complex disease characterized by numerous autoantibodies and clinical involvement in multiple organ systems. The immunological events triggering the onset and progression of clinical manifestations are also complex and multi-step, including breach of tolerance in the adaptive immune system, amplification of autoimmunity through innate and adaptive immune system dysregulation, and end-organ damage. Studies of murine genetic manipulations and human risk variants have provided important clues to the cellular and molecular pathogenesis of SLE, operating at multiple of these steps. The breakdown of B-cell tolerance is probably a defining and early event in the disease process and may occur by multiple pathways, including alterations in factors that affect B-cell activation thresholds, B-cell longevity, and apoptotic cell processing. Examples of amplification of autoimmunity on the adaptive immune system side include disturbances in B-cell/T-cell collaboration. B cells can also amplify innate immune cell activation via antibody-dependent and antibody-independent mechanisms. Indeed, one of the key amplification loops in SLE is the activation of plasmacytoid dendritic cells via autoantibodies and RNA-containing and DNA-containing immune complexes, which act as Toll-like receptor ligands, stimulating the secretion of large quantities of IFNα. A more recent link between the innate and adaptive immune system in SLE includes the neutrophil, which can be primed by interferon and autoantibodies to release neutrophil extracellular traps as an additional source of immunogenic DNA, histones, and neutrophil proteins. The innate immune system activation then feeds back, driving autoreactive B-cell and T-cell survival and maturation. This self-perpetuating disease cycle creates the opportunity for targeted treatment inventions at multiple steps. PMID:23281796

  12. EGFR-targeting therapy as an evolving concept: learning from nimotuzumab clinical development.

    PubMed

    Perez, Rolando; Moreno, Ernesto

    2014-03-01

    Epidermal growth factor receptor (EGFR)-targeted therapies have been extensively evaluated in the clinic for different tumor localizations and using different EGFR-targeting products, either registered or still in clinical development. Nonetheless, there still is a long way to go to optimize the clinical benefit from EGFR-targeted therapies. In this article we briefly discuss on current paradigms guiding the use of EGFR-targeting agents in the clinic, and on new emergent concepts. The discussion is largely based on experiences from the clinical development of the monoclonal antibody nimotuzumab, which has shown a quite particular clinical profile, characterized by a very low toxicity. In order to optimize the design of EGFR-targeting therapies, clinical researchers should take into account the interconnection between the EGFR pathway and other cellular pathways. Thus, clinical trials need to incorporate more translational research. PMID:25842083

  13. Reducing Diagnostic Error with Computer-Based Clinical Decision Support

    ERIC Educational Resources Information Center

    Greenes, Robert A.

    2009-01-01

    Information technology approaches to delivering diagnostic clinical decision support (CDS) are the subject of the papers to follow in the proceedings. These will address the history of CDS and present day approaches (Miller), evaluation of diagnostic CDS methods (Friedman), and the role of clinical documentation in supporting diagnostic decision…

  14. Targeting zero non-attendance in healthcare clinics.

    PubMed

    Chan, Ka C; Chan, David B

    2012-01-01

    Non-attendance represents a significant cost to many health systems, resulting in inefficiency, wasted resources, poorer service delivery and lengthened waiting queues. Past studies have considered extensively the reasons for non-attendance and have generally concluded that the use of reminder systems is effective. Despite this, there will always be a certain level of non-attendance arising from unforeseeable and unpreventable circumstances, such as illness or accidents, leading to unfilled appointments. This paper reviews current approaches to the non-attendance problem, and presents a high-level approach to fill last minute appointments arising out of unforeseeable non-attendance. However, no single approach will work for all clinics and implementation of these ideas must occur at a local level. These approaches include use of social networks, such as Twitter and Facebook, as a communication tool in order to notify prospective patients when last-minute appointments become available. In addition, teleconsultation using video-conferencing technologies would be suitable for certain last-minute appointments where travel time would otherwise be inhibiting. Developments of new and innovative technologies and the increasing power of social media, means that zero non-attendance is now an achievable target. We hope that this will lead to more evidence-based evaluations from the implementation of these strategies in various settings at a local level. PMID:23138079

  15. Targeted treatment for chronic lymphocytic leukemia: clinical potential of obinutuzumab

    PubMed Central

    Smolej, Lukáš

    2015-01-01

    Introduction of targeted agents revolutionized the treatment of chronic lymphocytic leukemia (CLL) in the past decade. Addition of chimeric monoclonal anti-CD20 antibody rituximab to chemotherapy significantly improved efficacy including overall survival (OS) in untreated fit patients; humanized anti-CD52 antibody alemtuzumab and fully human anti-CD20 antibody ofatumumab lead to improvement in refractory disease. Novel small molecule inhibitors such as ibrutinib and idelalisib demonstrated excellent activity and were very recently licensed in relapsed/refractory CLL. Obinutuzumab (GA101) is the newest monoclonal antibody approved for the treatment of CLL. This novel, glycoengineered, type II humanized anti-CD20 antibody is characterized by enhanced antibody-dependent cellular cytotoxicity and direct induction of cell death compared to type I antibodies. Combination of obinutuzumab and chlorambucil yielded significantly better OS in comparison to chlorambucil monotherapy in untreated comorbid patients. These results led to approval of obinuzutumab for the treatment of CLL. Numerous clinical trials combining obinutuzumab with other cytotoxic drugs and novel small molecules are currently under way. This review focuses on the role of obinutuzumab in the treatment of CLL. PMID:25691812

  16. Tau-Centric Targets and Drugs in Clinical Development for the Treatment of Alzheimer's Disease

    PubMed Central

    Solfrizzi, Vincenzo; Imbimbo, Bruno P.; Lozupone, Madia; Santamato, Andrea; Zecca, Chiara; Barulli, Maria Rosaria; Bellomo, Antonello; Pilotto, Alberto; Daniele, Antonio; Greco, Antonio

    2016-01-01

    The failure of several Phase II/III clinical trials in Alzheimer's disease (AD) with drugs targeting β-amyloid accumulation in the brain fuelled an increasing interest in alternative treatments against tau pathology, including approaches targeting tau phosphatases/kinases, active and passive immunization, and anti-tau aggregation. The most advanced tau aggregation inhibitor (TAI) is methylthioninium (MT), a drug existing in equilibrium between a reduced (leuco-methylthioninium) and oxidized form (MT+). MT chloride (methylene blue) was investigated in a 24-week Phase II clinical trial in 321 patients with mild to moderate AD that failed to show significant positive effects in mild AD patients, although long-term observations (50 weeks) and biomarker studies suggested possible benefit. The dose of 138 mg/day showed potential benefits on cognitive performance of moderately affected AD patients and cerebral blood flow in mildly affected patients. Further clinical evidence will come from the large ongoing Phase III trials for the treatment of AD and the behavioral variant of frontotemporal dementia on a new form of this TAI, more bioavailable and less toxic at higher doses, called TRx0237. More recently, inhibitors of tau acetylation are being actively pursued based on impressive results in animal studies obtained by salsalate, a clinically used derivative of salicylic acid. PMID:27429978

  17. Tau-Centric Targets and Drugs in Clinical Development for the Treatment of Alzheimer's Disease.

    PubMed

    Panza, Francesco; Solfrizzi, Vincenzo; Seripa, Davide; Imbimbo, Bruno P; Lozupone, Madia; Santamato, Andrea; Zecca, Chiara; Barulli, Maria Rosaria; Bellomo, Antonello; Pilotto, Alberto; Daniele, Antonio; Greco, Antonio; Logroscino, Giancarlo

    2016-01-01

    The failure of several Phase II/III clinical trials in Alzheimer's disease (AD) with drugs targeting β-amyloid accumulation in the brain fuelled an increasing interest in alternative treatments against tau pathology, including approaches targeting tau phosphatases/kinases, active and passive immunization, and anti-tau aggregation. The most advanced tau aggregation inhibitor (TAI) is methylthioninium (MT), a drug existing in equilibrium between a reduced (leuco-methylthioninium) and oxidized form (MT(+)). MT chloride (methylene blue) was investigated in a 24-week Phase II clinical trial in 321 patients with mild to moderate AD that failed to show significant positive effects in mild AD patients, although long-term observations (50 weeks) and biomarker studies suggested possible benefit. The dose of 138 mg/day showed potential benefits on cognitive performance of moderately affected AD patients and cerebral blood flow in mildly affected patients. Further clinical evidence will come from the large ongoing Phase III trials for the treatment of AD and the behavioral variant of frontotemporal dementia on a new form of this TAI, more bioavailable and less toxic at higher doses, called TRx0237. More recently, inhibitors of tau acetylation are being actively pursued based on impressive results in animal studies obtained by salsalate, a clinically used derivative of salicylic acid. PMID:27429978

  18. The PCSK9 Inhibitors: A Novel Therapeutic Target Enters Clinical Practice.

    PubMed

    Lepor, Norman E; Kereiakes, Dean J

    2015-12-01

    There is a critical need for alternative, potent agents that can reduce low-density lipoprotein cholesterol (LDL-C) levels in patients with heterozygous familial hyperlipidemia and statin intolerance and those not reaching lipid-lowering treatment goals who are at high risk for cardiovascular (CV) events. The first proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor was approved in July 2015 by the US Food and Drug Administration as an adjunct to diet and maximally tolerated statin therapy for treatment of adults with heterozygous familial hyperlipidemia or clinical atherosclerotic CV disease, who require additional lowering of LDL-C levels. In clinical trials, PCSK9 inhibitors have been shown to reduce LDL-C levels by as much as 60% to 70% when administered as monotherapy or as an add-on treatment to statins and other lipid-lowering therapies. In studies of PCSK9 genetic mutations, loss of function in the PCSK9 allele was associated with a relative decrease of 88% in the risk for atherosclerotic CV events during 15 years of patient follow-up. The use of PCSK9 inhibitors may eventually support the LDL-C hypothesis that the lower the LDL-C level, the lower the CV risk. Although some recent clinical practice guidelines have deemphasized the importance of numeric LDL-C targets, many clinicians are reluctant to discard them, and this position is supported by recent clinical evidence. We eagerly await the results of the ODYSSEY, FOURIER, and SPIRE clinical outcome trials, which we anticipate will provide further validation that "lower is better" with respect to reducing LDL-C levels and improving clinical outcomes. PMID:26834934

  19. The PCSK9 Inhibitors: A Novel Therapeutic Target Enters Clinical Practice

    PubMed Central

    Lepor, Norman E.; Kereiakes, Dean J.

    2015-01-01

    There is a critical need for alternative, potent agents that can reduce low-density lipoprotein cholesterol (LDL-C) levels in patients with heterozygous familial hyperlipidemia and statin intolerance and those not reaching lipid-lowering treatment goals who are at high risk for cardiovascular (CV) events. The first proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor was approved in July 2015 by the US Food and Drug Administration as an adjunct to diet and maximally tolerated statin therapy for treatment of adults with heterozygous familial hyperlipidemia or clinical atherosclerotic CV disease, who require additional lowering of LDL-C levels. In clinical trials, PCSK9 inhibitors have been shown to reduce LDL-C levels by as much as 60% to 70% when administered as monotherapy or as an add-on treatment to statins and other lipid-lowering therapies. In studies of PCSK9 genetic mutations, loss of function in the PCSK9 allele was associated with a relative decrease of 88% in the risk for atherosclerotic CV events during 15 years of patient follow-up. The use of PCSK9 inhibitors may eventually support the LDL-C hypothesis that the lower the LDL-C level, the lower the CV risk. Although some recent clinical practice guidelines have deemphasized the importance of numeric LDL-C targets, many clinicians are reluctant to discard them, and this position is supported by recent clinical evidence. We eagerly await the results of the ODYSSEY, FOURIER, and SPIRE clinical outcome trials, which we anticipate will provide further validation that “lower is better” with respect to reducing LDL-C levels and improving clinical outcomes. PMID:26834934

  20. How Beyond Rule of 5 Drugs and Clinical Candidates Bind to Their Targets.

    PubMed

    Doak, Bradley C; Zheng, Jie; Dobritzsch, Doreen; Kihlberg, Jan

    2016-03-24

    To improve discovery of drugs for difficult targets, the opportunities of chemical space beyond the rule of 5 (bRo5) were examined by retrospective analysis of a comprehensive set of structures for complexes between drugs and clinical candidates and their targets. The analysis illustrates the potential of compounds far beyond rule of 5 space to modulate novel and difficult target classes that have large, flat, and groove-shaped binding sites. However, ligand efficiencies are significantly reduced for flat- and groove-shape binding sites, suggesting that adjustments of how to use such metrics are required. Ligands bRo5 appear to benefit from an appropriate balance between rigidity and flexibility to bind with sufficient affinity to their targets, with macrocycles and nonmacrocycles being found to have similar flexibility. However, macrocycles were more disk- and spherelike, which may contribute to their superior binding to flat sites, while rigidification of nonmacrocycles lead to rodlike ligands that bind well to groove-shaped binding sites. These insights should contribute to altering perceptions of what targets are considered "druggable" and provide support for drug design in beyond rule of 5 space. PMID:26457449

  1. CIP2A is a candidate therapeutic target in clinically challenging prostate cancer cell populations.

    PubMed

    Khanna, Anchit; Rane, Jayant K; Kivinummi, Kati K; Urbanucci, Alfonso; Helenius, Merja A; Tolonen, Teemu T; Saramäki, Outi R; Latonen, Leena; Manni, Visa; Pimanda, John E; Maitland, Norman J; Westermarck, Jukka; Visakorpi, Tapio

    2015-08-14

    Residual androgen receptor (AR)-signaling and presence of cancer stem-like cells (SCs) are the two emerging paradigms for clinically challenging castration-resistant prostate cancer (CRPC). Therefore, identification of AR-target proteins that are also overexpressed in the cancer SC population would be an attractive therapeutic approach.Our analysis of over three hundred clinical samples and patient-derived prostate epithelial cultures (PPECs), revealed Cancerous inhibitor of protein phosphatase 2A (CIP2A) as one such target. CIP2A is significantly overexpressed in both hormone-naïve prostate cancer (HN-PC) and CRPC patients . CIP2A is also overexpressed, by 3- and 30-fold, in HN-PC and CRPC SCs respectively. In vivo binding of the AR to the intronic region of CIP2A and its functionality in the AR-moderate and AR-high expressing LNCaP cell-model systems is also demonstrated. Further, we show that AR positively regulates CIP2A expression, both at the mRNA and protein level. Finally, CIP2A depletion reduced cell viability and colony forming efficiency of AR-independent PPECs as well as AR-responsive LNCaP cells, in which anchorage-independent growth is also impaired.These findings identify CIP2A as a common denominator for AR-signaling and cancer SC functionality, highlighting its potential therapeutic significance in the most clinically challenging prostate pathology: castration-resistant prostate cancer. PMID:25965834

  2. HaloPlex Targeted Resequencing for Mutation Detection in Clinical Formalin-Fixed, Paraffin-Embedded Tumor Samples.

    PubMed

    Moens, Lotte N J; Falk-Sörqvist, Elin; Ljungström, Viktor; Mattsson, Johanna; Sundström, Magnus; La Fleur, Linnéa; Mathot, Lucy; Micke, Patrick; Nilsson, Mats; Botling, Johan

    2015-11-01

    In recent years, the advent of massively parallel next-generation sequencing technologies has enabled substantial advances in the study of human diseases. Combined with targeted DNA enrichment methods, high sequence coverage can be obtained for different genes simultaneously at a reduced cost per sample, creating unique opportunities for clinical cancer diagnostics. However, the formalin-fixed, paraffin-embedded (FFPE) process of tissue samples, routinely used in pathology departments, results in DNA fragmentation and nucleotide modifications that introduce a number of technical challenges for downstream biomolecular analyses. We evaluated the HaloPlex target enrichment system for somatic mutation detection in 80 tissue fractions derived from 20 clinical cancer cases with paired tumor and normal tissue available in both FFPE and fresh-frozen format. Several modifications to the standard method were introduced, including a reduced target fragment length and two strand capturing. We found that FFPE material can be used for HaloPlex-based target enrichment and next-generation sequencing, even when starting from small amounts of DNA. By specifically capturing both strands for each target fragment, we were able to reduce the number of false-positive errors caused by FFPE-induced artifacts and lower the detection limit for somatic mutations. We believe that the HaloPlex method presented here will be broadly applicable as a tool for somatic mutation detection in clinical cancer settings. PMID:26354930

  3. Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9.

    PubMed

    Koo, Taeyoung; Lee, Jungjoon; Kim, Jin-Soo

    2015-06-01

    Programmable nucleases, which include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) repurposed from the type II clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system are now widely used for genome editing in higher eukaryotic cells and whole organisms, revolutionising almost every discipline in biological research, medicine, and biotechnology. All of these nucleases, however, induce off-target mutations at sites homologous in sequence with on-target sites, limiting their utility in many applications including gene or cell therapy. In this review, we compare methods for detecting nuclease off-target mutations. We also review methods for profiling genome-wide off-target effects and discuss how to reduce or avoid off-target mutations. PMID:25985872

  4. Assessing the Effect of a Contouring Protocol on Postprostatectomy Radiotherapy Clinical Target Volumes and Interphysician Variation

    SciTech Connect

    Mitchell, Darren M.; Perry, Lesley; Smith, Steve; Elliott, Tony; Wylie, James P.; Cowan, Richard A.; Livsey, Jacqueline E.; Logue, John P.

    2009-11-15

    Purpose: To compare postprostatectomy clinical target volume (CTV) delineation before and after the introduction of a contouring protocol and to investigate its effect on interphysician variability Methods and Materials: Six site-specialized radiation oncologists independently delineated a CTV on the computed tomography (CT) scans of 3 patients who had received postprostatectomy radiotherapy. At least 3 weeks later this was repeated, but with the physicians adhering to the contouring protocol from the Medical Research Council's Radiotherapy and Androgen Deprivation In Combination After Local Surgery (RADICALS) trial. The volumes obtained before and after the protocol were compared and the effect of the protocol on interphysician variability assessed. Results: An increase in mean CTV for all patients of 40.7 to 53.9cm{sup 3} was noted as a result of observing the protocol, with individual increases in the mean CTV of 65%, 15%, and 24% for Patients 1, 2, and 3 respectively. A reduction in interphysician variability was noted when the protocol was used. Conclusions: Substantial interphysician variation in target volume delineation for postprostatectomy radiotherapy exists, which can be reduced by the use of a contouring protocol. The RADICALS contouring protocol increases the target volumes when compared with those volumes typically applied at our center. The effect of treating larger volumes on the therapeutic ratio and resultant toxicity should be carefully monitored, particularly if the same dose-response as documented in radical prostate radiotherapy applies to the adjuvant and salvage setting. Prostate cancer, Postprostatectomy, Radiotherapy, Target volume.

  5. Interpretation modification training reduces social anxiety in clinically anxious children.

    PubMed

    Klein, Anke M; Rapee, Ronald M; Hudson, Jennifer L; Schniering, Carolyn A; Wuthrich, Viviana M; Kangas, Maria; Lyneham, Heidi J; Souren, Pierre M; Rinck, Mike

    2015-12-01

    The present study was designed to examine the effects of training in positive interpretations in clinically anxious children. A total of 87 children between 7 and 12 years of age were randomly assigned to either a positive cognitive bias modification training for interpretation (CMB-I) or a neutral training. Training included 15 sessions in a two-week period. Children with an interpretation bias prior to training in the positive training group showed a significant reduction in interpretation bias on the social threat scenarios after training, but not children in the neutral training group. No effects on interpretation biases were found for the general threat scenarios or the non-threat scenarios. Furthermore, children in the positive training did not self-report lower anxiety than children in the neutral training group. However, mothers and fathers reported a significant reduction in social anxiety in their children after positive training, but not after neutral training. This study demonstrated that clinically anxious children with a prior interpretation bias can be trained away from negative social interpretation biases and there is some evidence that this corresponds to reductions in social anxiety. This study also highlights the importance of using specific training stimuli. PMID:26580081

  6. Better clinical decision making and reducing diagnostic error.

    PubMed

    Croskerry, P; Nimmo, G R

    2011-06-01

    A major amount of our time working in clinical practice involves thinking and decision making. Perhaps it is because decision making is such a commonplace activity that it is assumed we can all make effective decisions. However, this is not the case and the example of diagnostic error supports this assertion. Until quite recently there has been a general nihilism about the ability to change the way that we think, but it is now becoming accepted that if we can think about, and understand, our thinking processes we can improve our decision making, including diagnosis. In this paper we review the dual process model of decision making and highlight ways in which decision making can be improved through the application of this model to our day-to-day practice and by the adoption of de-biasing strategies and critical thinking. PMID:21677922

  7. Reducing diagnostic error with computer-based clinical decision support.

    PubMed

    Greenes, Robert A

    2009-09-01

    Information technology approaches to delivering diagnostic clinical decision support (CDS) are the subject of the papers to follow in the proceedings. These will address the history of CDS and present day approaches (Miller), evaluation of diagnostic CDS methods (Friedman), and the role of clinical documentation in supporting diagnostic decision making (Schiff). In addition, several other considerations relating to this topic are interesting to ponder. We are moving toward increased understanding of gene regulation and gene expression, identification of biomarkers, and the ability to predict patient response to disease and to tailor treatments to these individual variations-referred to as "personalized" or, more recently, "predictive" medicine. Consequently, diagnostic decision making is more and more linked to management decision making, and generic diagnostic labels like "diabetes" or "colon cancer" will no longer be sufficient, because they don't tell us what to do. Ultimately, if we have more complete data including more structured capture of phenomic data as well as the characterization of the patient's genome, direct prediction from responses of highly refined subsets of similar patients in a database can be used to select appropriate management, the effectiveness of which was demonstrated in projects in selected limited domains as early as the 1970s. In general, there are six classes of methodologies, including the above, which can be applied to delivering CDS. In addition, patients are becoming more knowledgeable and should be regarded as active participants, not only in helping to obtain data but also in their own status assessment and as recipients of decision support. With the above advances, this is a very promising time to be engaged in pursuit of methods of CDS. PMID:19669915

  8. A Behavioral Intervention to Reduce Child Exposure to Indoor Air Pollution: Identifying Possible Target Behaviors

    ERIC Educational Resources Information Center

    Barnes, Brendon R.; Mathee, Angela; Shafritz, Lonna B.; Krieger, Laurie; Zimicki, Susan

    2004-01-01

    Indoor air pollution has been causally linked to acute lower respiratory infections in children younger than 5. The aim of this study was to identify target behaviors for a behavioral intervention to reduce child exposure to indoor air pollution by attempting to answer two research questions: Which behaviors are protective of child respiratory…

  9. Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons

    SciTech Connect

    Neumayer, P; Lee, H J; Offerman, D; Shipton, E; Kemp, A; Kritcher, A L; Doppner, T; Back, C A; Glenzer, S H

    2009-02-04

    We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 micrometers and mass of a few 10{sup -8} g were irradiated with up to 7 J of laser energy focused to intensities of several 10{sup 19} W/cm{sup 2}. The conversion of laser energy to K-alpha radiation is measured, as well as high resolution spectra that allow observation of line shifts, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.

  10. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Kieren Grant

    2015-11-01

    MRI is often the most sensitive or appropriate technique for important measurements in clinical diagnosis and research, but lengthy acquisition times limit its use due to cost and considerations of patient comfort and compliance. Once an image field of view and resolution is chosen, the minimum scan acquisition time is normally fixed by the amount of raw data that must be acquired to meet the Nyquist criteria. Recently, there has been research interest in using the theory of compressed sensing (CS) in MR imaging to reduce scan acquisition times. The theory argues that if our target MR image is sparse, having signal information in only a small proportion of pixels (like an angiogram), or if the image can be mathematically transformed to be sparse then it is possible to use that sparsity to recover a high definition image from substantially less acquired data. This review starts by considering methods of k-space undersampling which have already been incorporated into routine clinical imaging (partial Fourier imaging and parallel imaging), and then explains the basis of using compressed sensing in MRI. The practical considerations of applying CS to MRI acquisitions are discussed, such as designing k-space undersampling schemes, optimizing adjustable parameters in reconstructions and exploiting the power of combined compressed sensing and parallel imaging (CS-PI). A selection of clinical applications that have used CS and CS-PI prospectively are considered. The review concludes by signposting other imaging acceleration techniques under present development before concluding with a consideration of the potential impact and obstacles to bringing compressed sensing into routine use in clinical MRI.

  11. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction.

    PubMed

    Hollingsworth, Kieren Grant

    2015-11-01

    MRI is often the most sensitive or appropriate technique for important measurements in clinical diagnosis and research, but lengthy acquisition times limit its use due to cost and considerations of patient comfort and compliance. Once an image field of view and resolution is chosen, the minimum scan acquisition time is normally fixed by the amount of raw data that must be acquired to meet the Nyquist criteria. Recently, there has been research interest in using the theory of compressed sensing (CS) in MR imaging to reduce scan acquisition times. The theory argues that if our target MR image is sparse, having signal information in only a small proportion of pixels (like an angiogram), or if the image can be mathematically transformed to be sparse then it is possible to use that sparsity to recover a high definition image from substantially less acquired data. This review starts by considering methods of k-space undersampling which have already been incorporated into routine clinical imaging (partial Fourier imaging and parallel imaging), and then explains the basis of using compressed sensing in MRI. The practical considerations of applying CS to MRI acquisitions are discussed, such as designing k-space undersampling schemes, optimizing adjustable parameters in reconstructions and exploiting the power of combined compressed sensing and parallel imaging (CS-PI). A selection of clinical applications that have used CS and CS-PI prospectively are considered. The review concludes by signposting other imaging acceleration techniques under present development before concluding with a consideration of the potential impact and obstacles to bringing compressed sensing into routine use in clinical MRI. PMID:26448064

  12. Clinical Challenges to Current Molecularly Targeted Therapies in Lung Cancer

    PubMed Central

    Chhabra, Gagan; Eggert, Ashley; Puri, Neelu

    2016-01-01

    Lung cancer is difficult to treat with a poor prognosis and a five year survival of 15%. Current molecularly targeted therapies are initially effective in non-small cell lung cancer (NSCLC) patients; however, they are plagued with difficulties including induced resistance and small therapeutically responsive populations. This mini review describes the mechanism of resistance to several molecularly targeted therapies which are currently being used to treat NSCLC. The major targets discussed are c-Met, EGFR, HER2, ALK, VEGFR, and BRAF. The first generation tyrosine kinase inhibitors (TKIs) resulted in resistance; however, second and third generation TKIs are being developed, which are generally more efficacious and have potential to treat NSCLC patients with resistance to first generation TKIs. Combination therapies could also be effective in preventing TKI resistance in NSCLC patients.

  13. A quantitative way to estimate clinical off-target effects for human membrane brain targets in CNS research and development

    PubMed Central

    Spiros, Athan; Geerts, Hugo

    2012-01-01

    Although many preclinical programs in central nervous system research and development intend to develop highly selective and potent molecules directed at the primary target, they often act upon other off-target receptors. The simple rule of taking the ratios of affinities for the candidate drug at the different receptors is flawed since the affinity of the endogenous ligand for that off-target receptor or drug exposure is not taken into account. We have developed a mathematical receptor competition model that takes into account the competition between active drug moiety and the endogenous neurotransmitter to better assess the off-target effects on postsynaptic receptor activation under the correct target exposure conditions. As an example, we investigate the possible functional effects of the weak off-target effects for dopamine-1 receptor (D1R) in a computer simulation of a dopaminergic cortical synapse that is calibrated using published fast-cyclic rodent voltammetry and human imaging data in subjects with different catechol-O-methyltransferase genotypes. We identify the conditions under which off-target effects at the D1R can lead to clinically detectable consequences on cognitive tests, such as the N-back working memory test. We also demonstrate that certain concentrations of dimebolin (Dimebon), a recently tested Alzheimer drug, can affect D1R activation resulting in clinically detectable cognitive decrease. This approach can be extended to other receptor systems and can improve the selection of clinical candidate compounds by potentially dialing-out harmful off-target effects or dialing-in beneficial off-target effects in a quantitative and controlled way.

  14. Combined Recipe for Clinical Target Volume and Planning Target Volume Margins

    SciTech Connect

    Stroom, Joep; Gilhuijs, Kenneth; Vieira, Sandra; Chen, Wei; Salguero, Javier; Moser, Elizabeth; Sonke, Jan-Jakob

    2014-03-01

    Purpose: To develop a combined recipe for clinical target volume (CTV) and planning target volume (PTV) margins. Methods and Materials: A widely accepted PTV margin recipe is M{sub geo} = aΣ{sub geo} + bσ{sub geo}, with Σ{sub geo} and σ{sub geo} standard deviations (SDs) representing systematic and random geometric uncertainties, respectively. On the basis of histopathology data of breast and lung tumors, we suggest describing the distribution of microscopic islets around the gross tumor volume (GTV) by a half-Gaussian with SD Σ{sub micro}, yielding as possible CTV margin recipe: M{sub micro} = ƒ(N{sub i}) × Σ{sub micro}, with N{sub i} the average number of microscopic islets per patient. To determine ƒ(N{sub i}), a computer model was developed that simulated radiation therapy of a spherical GTV with isotropic distribution of microscopic disease in a large group of virtual patients. The minimal margin that yielded D{sub min} <95% in maximally 10% of patients was calculated for various Σ{sub micro} and N{sub i}. Because Σ{sub micro} is independent of Σ{sub geo}, we propose they should be added quadratically, yielding for a combined GTV-to-PTV margin recipe: M{sub GTV-PTV} = √([aΣ{sub geo}]{sup 2} + [ƒ(N{sub i})Σ{sub micro}]{sup 2}) + bσ{sub geo}. This was validated by the computer model through numerous simultaneous simulations of microscopic and geometric uncertainties. Results: The margin factor ƒ(N{sub i}) in a relevant range of Σ{sub micro} and N{sub i} can be given by: ƒ(N{sub i}) = 1.4 + 0.8log(N{sub i}). Filling in the other factors found in our simulations (a = 2.1 and b = 0.8) yields for the combined recipe: M{sub GTV-PTV} = √((2.1Σ{sub geo}){sup 2} + ([1.4 + 0.8log(N{sub i})] × Σ{sub micro}){sup 2}) + 0.8σ{sub geo}. The average margin difference between the simultaneous simulations and the above recipe was 0.2 ± 0.8 mm (1 SD). Calculating M{sub geo} and M{sub micro} separately and adding them linearly overestimated PTVs by on

  15. Carbapenem susceptibility breakpoints, clinical implications with the moving target.

    PubMed

    O'Donnell, J Nicholas; Miglis, Cristina M; Lee, Jane Y; Tuvell, Merika; Lertharakul, Tina; Scheetz, Marc H

    2016-01-01

    Carbapenems are primary agents used to treat a variety of Gram-negative multi-drug resistant infections. In parallel with increasing use, increasing resistance to carbapenem agents has manifested as increased minimum inhibitory concentrations (MICs). To attempt to improve clinical outcomes with carbapenems, the Clinical Laboratory Standards Institute and the Food Drug Administration decreased susceptibility breakpoints. The European equivalent expert committee, the European Committee on Antimicrobial Susceptibility Testing, also utilizes lower MIC susceptibility breakpoints. This review focuses on the rationale for recent breakpoint changes and the associated clinical outcomes for patients treated with carbapenems for infections with varying MICs proximal to the breakpoint. Supporting pharmacokinetics and pharmacodynamics that underpin the breakpoints are also reviewed. PMID:26918486

  16. Therapeutic hypothermia and targeted temperature management in traumatic brain injury: Clinical challenges for successful translation.

    PubMed

    Dietrich, W Dalton; Bramlett, Helen M

    2016-06-01

    The use of therapeutic hypothermia (TH) and targeted temperature management (TTM) for severe traumatic brain injury (TBI) has been tested in a variety of preclinical and clinical situations. Early preclinical studies showed that mild reductions in brain temperature after moderate to severe TBI improved histopathological outcomes and reduced neurological deficits. Investigative studies have also reported that reductions in post-traumatic temperature attenuated multiple secondary injury mechanisms including excitotoxicity, free radical generation, apoptotic cell death, and inflammation. In addition, while elevations in post-traumatic temperature heightened secondary injury mechanisms, the successful implementation of TTM strategies in injured patients to reduce fever burden appear to be beneficial. While TH has been successfully tested in a number of single institutional clinical TBI studies, larger randomized multicenter trials have failed to demonstrate the benefits of therapeutic hypothermia. The use of TH and TTM for treating TBI continues to evolve and a number of factors including patient selection and the timing of the TH appear to be critical in successful trial design. Based on available data, it is apparent that TH and TTM strategies for treating severely injured patients is an important therapeutic consideration that requires more basic and clinical research. Current research involves the evaluation of alternative cooling strategies including pharmacologically-induced hypothermia and the combination of TH or TTM approaches with more selective neuroprotective or reparative treatments. This manuscript summarizes the preclinical and clinical literature emphasizing the importance of brain temperature in modifying secondary injury mechanisms and in improving traumatic outcomes in severely injured patients. This article is part of a Special Issue entitled SI:Brain injury and recovery. PMID:26746342

  17. Hallmarks of hyperthermia in driving the future of clinical hyperthermia as targeted therapy: translation into clinical application.

    PubMed

    Issels, Rolf; Kampmann, Eric; Kanaar, Roland; Lindner, Lars H

    2016-01-01

    Regional hyperthermia is described as a targeted therapy and the definitions of six hallmarks of hyperthermia are proposed, representing the pleiotropic effect of this therapeutic modality to counteract tumour growth and progression. We recommend the considerations of these hallmarks in the design of clinical trials involving regional hyperthermia as targeted therapy. Randomised clinical studies using loco-regional hyperthermia as an adjuvant to radiotherapy or to chemotherapy for locally advanced tumours demonstrate the benefit of the combination compared to either of the standard treatments alone for tumour response, disease control, and patient survival outcome. These impressive results were obtained from proof-of-concept trials for superficial or deep-seated malignancies in unselected patients. None of these trials was designed as tailored approaches for the treatment of specified targets or to select potentially more sensitive subpopulations of patients using eligibility criteria. Based upon clinical examples of targeted chemotherapy, some guidelines are described for the successful development of targeted therapeutic combinations. We also retrospectively analyse the stepwise process of generating an ongoing new clinical trial using hyperthermia as targeted therapy to evade DNA repair in combination with a DNA damaging anticancer agent to implement this new vision. PMID:26803991

  18. Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the Interleukin-1 receptor.

    PubMed

    Gresnigt, Mark S; Rekiki, Abdessalem; Rasid, Orhan; Savers, Amélie; Jouvion, Grégory; Dannaoui, Eric; Parlato, Marianna; Fitting, Catherine; Brock, Matthias; Cavaillon, Jean-Marc; van de Veerdonk, Frank L; Ibrahim-Granet, Oumaïma

    2016-01-01

    Hypoxia as a result of pulmonary tissue damage due to unresolved inflammation during invasive pulmonary aspergillosis (IPA) is associated with a poor outcome. Aspergillus fumigatus can exploit the hypoxic microenvironment in the lung, but the inflammatory response required for fungal clearance can become severely disregulated as a result of hypoxia. Since severe inflammation can be detrimental to the host, we investigated whether targeting the interleukin IL-1 pathway could reduce inflammation and tissue hypoxia, improving the outcome of IPA. The interplay between hypoxia and inflammation was investigated by in vivo imaging of hypoxia and measurement of cytokines in the lungs in a model of corticosteroid immunocompromised and in Cxcr2 deficient mice. Severe hypoxia was observed following Aspergillus infection in both models and correlated with development of pulmonary inflammation and expression of hypoxia specific transcripts. Treatment with IL-1 receptor antagonist reduced hypoxia and slightly, but significantly reduced mortality in immunosuppressed mice, but was unable to reduce hypoxia in Cxcr2(-/-) mice. Our data provides evidence that the inflammatory response during invasive pulmonary aspergillosis, and in particular the IL-1 axis, drives the development of hypoxia. Targeting the inflammatory IL-1 response could be used as a potential immunomodulatory therapy to improve the outcome of aspergillosis. PMID:27215684

  19. Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the Interleukin-1 receptor

    PubMed Central

    Gresnigt, Mark S.; Rekiki, Abdessalem; Rasid, Orhan; Savers, Amélie; Jouvion, Grégory; Dannaoui, Eric; Parlato, Marianna; Fitting, Catherine; Brock, Matthias; Cavaillon, Jean-Marc; van de Veerdonk, Frank L.; Ibrahim-Granet, Oumaïma

    2016-01-01

    Hypoxia as a result of pulmonary tissue damage due to unresolved inflammation during invasive pulmonary aspergillosis (IPA) is associated with a poor outcome. Aspergillus fumigatus can exploit the hypoxic microenvironment in the lung, but the inflammatory response required for fungal clearance can become severely disregulated as a result of hypoxia. Since severe inflammation can be detrimental to the host, we investigated whether targeting the interleukin IL-1 pathway could reduce inflammation and tissue hypoxia, improving the outcome of IPA. The interplay between hypoxia and inflammation was investigated by in vivo imaging of hypoxia and measurement of cytokines in the lungs in a model of corticosteroid immunocompromised and in Cxcr2 deficient mice. Severe hypoxia was observed following Aspergillus infection in both models and correlated with development of pulmonary inflammation and expression of hypoxia specific transcripts. Treatment with IL-1 receptor antagonist reduced hypoxia and slightly, but significantly reduced mortality in immunosuppressed mice, but was unable to reduce hypoxia in Cxcr2−/− mice. Our data provides evidence that the inflammatory response during invasive pulmonary aspergillosis, and in particular the IL-1 axis, drives the development of hypoxia. Targeting the inflammatory IL-1 response could be used as a potential immunomodulatory therapy to improve the outcome of aspergillosis. PMID:27215684

  20. Reducing Toxicity of Immune Therapy Using Aptamer-Targeted Drug Delivery.

    PubMed

    Gilboa, Eli; Berezhnoy, Alexey; Schrand, Brett

    2015-11-01

    Modulating the function of immune receptors with antibodies is ushering in a new era in cancer immunotherapy. With the notable exception of PD-1 blockade used as monotherapy, immune modulation can be associated with significant toxicities that are expected to escalate with the development of increasingly potent immune therapies. A general way to reduce toxicity is to target immune potentiating drugs to the tumor or immune cells of the patient. This Crossroads article discusses a new class of nucleic acid-based immune-modulatory drugs that are targeted to the tumor or to the immune system by conjugation to oligonucleotide aptamer ligands. Cell-free chemically synthesized short oligonucleotide aptamers represent a novel and emerging platform technology for generating ligands with desired specificity that offer exceptional versatility and feasibility in terms of development, manufacture, and conjugation to an oligonucleotide cargo. In proof-of-concept studies, aptamer ligands were used to target immune-modulatory siRNAs or aptamers to induce neoantigens in the tumor cells, limit costimulation to the tumor lesion, or enhance the persistence of vaccine-induced immunity. Using increasingly relevant murine models, the aptamer-targeted immune-modulatory drugs engendered protective antitumor immunity that was superior to that of current "gold-standard" therapies in terms of efficacy and lack of toxicity or reduced toxicity. To overcome immune exhaustion aptamer-targeted siRNA conjugates could be used to downregulate intracellular mediators of exhaustion that integrate signals from multiple inhibitory receptors. Recent advances in aptamer development and second-generation aptamer-drug conjugates suggest that we have only scratched the surface. PMID:26541880

  1. Targeting Mitochondria-Derived Reactive Oxygen Species to Reduce Epithelial Barrier Dysfunction and Colitis

    PubMed Central

    Wang, Arthur; Keita, Åsa V.; Phan, Van; McKay, Catherine M.; Schoultz, Ida; Lee, Joshua; Murphy, Michael P.; Fernando, Maria; Ronaghan, Natalie; Balce, Dale; Yates, Robin; Dicay, Michael; Beck, Paul L.; MacNaughton, Wallace K.; Söderholm, Johan D.; McKay, Derek M.

    2015-01-01

    Epithelial permeability is often increased in inflammatory bowel diseases. We hypothesized that perturbed mitochondrial function would cause barrier dysfunction and hence epithelial mitochondria could be targeted to treat intestinal inflammation. Mitochondrial dysfunction was induced in human colon-derived epithelial cell lines or colonic biopsy specimens using dinitrophenol, and barrier function was assessed by transepithelial flux of Escherichia coli with or without mitochondria-targeted antioxidant (MTA) cotreatment. The impact of mitochondria-targeted antioxidants on gut permeability and dextran sodium sulfate (DSS)–induced colitis in mice was tested. Mitochondrial superoxide evoked by dinitrophenol elicited significant internalization and translocation of E. coli across epithelia and control colonic biopsy specimens, which was more striking in Crohn’s disease biopsy specimens; the mitochondria-targeted antioxidant, MitoTEMPO, inhibited these barrier defects. Increased gut permeability and reduced epithelial mitochondrial voltage-dependent anion channel expression were observed 3 days after DSS. These changes and the severity of DSS-colitis were reduced by MitoTEMPO treatment. In vitro DSS-stimulated IL-8 production by epithelia was reduced by MitoTEMPO. Metabolic stress evokes significant penetration of commensal bacteria across the epithelium, which is mediated by mitochondria-derived superoxide acting as a signaling, not a cytotoxic, molecule. MitoTEMPO inhibited this barrier dysfunction and suppressed colitis in DSS-colitis, likely via enhancing barrier function and inhibiting proinflammatory cytokine production. These novel findings support consideration of MTAs in the maintenance of epithelial barrier function and the management of inflammatory bowel diseases. PMID:25034594

  2. DNA vaccines targeting human papillomavirus-associated diseases: progresses in animal and clinical studies

    PubMed Central

    Han, Kyusun Torque

    2013-01-01

    Human papillomavirus (HPV) infection is a major cause of cervical cancer and its precancerous diseases. Cervical cancer is the second deadliest cancer killer among women worldwide. Moreover, HPV is also known to be a causative agent of oral, pharyngeal, anal and genital cancer. Recent application of HPV structural protein (L1)-targeted prophylactic vaccines (Gardasil® and Cervarix®) is expected to reduce the incidence of HPV infection and cervical cancer, and possibly other HPV-associated cancers. However, the benefit of the prophylactic vaccines for treating HPV-infected patients is unlikely, underscoring the importance of developing therapeutic vaccines against HPV infection. In this regard, numerous types of therapeutic vaccine approaches targeting the HPV regulatory proteins, E6 and E7, have been tested for their efficacy in animals and clinically. In this communication, we review HPV vaccine types, in particular DNA vaccines, their designs and delivery by electroporation and their immunologic and antitumor efficacy in animals and humans, along with the basics of HPV and its pathogenesis. PMID:23858401

  3. GEC-targeted HO-1 expression reduces proteinuria in glomerular immune injury.

    PubMed

    Duann, Pu; Lianos, Elias A

    2009-09-01

    Induction of heme oxygenase (HO)-1 is a key defense mechanism against oxidative stress. Compared with tubules, glomeruli are refractory to HO-1 upregulation in response to injury. This can be a disadvantage as it may be associated with insufficient production of cytoprotective heme-degradation metabolites. We, therefore, explored whether 1) targeted HO-1 expression can be achieved in glomeruli without altering their physiological integrity and 2) this expression reduces proteinuria in immune injury induced by an anti-glomerular basement membrane (GBM) antibody (Ab). We employed a 4.125-kb fragment of a mouse nephrin promoter downstream to which a FLAG-tagged hHO-1 cDNA sequence was inserted and subsequently generated transgenic mice from the FVB/N parental strain. There was a 16-fold higher transgene expression in the kidney than nonspecific background (liver) while the transprotein immunolocalized in glomerular epithelial cells (GEC). There was no change in urinary protein excretion, indicating that GEC-targeted HO-1 expression had no effect on glomerular protein permeability. Urinary protein excretion in transgenic mice with anti-GBM Ab injury (days 3 and 6) was significantly lower compared with wild-type controls. There was no significant change in renal expression levels of profibrotic (TGF-beta1) or anti-inflammatory (IL-10) cytokines in transgenic mice with anti-GBM Ab injury. These observations indicate that GEC-targeted HO-1 expression does not alter glomerular physiological integrity and reduces proteinuria in glomerular immune injury. PMID:19587144

  4. Kinesin-5: cross-bridging mechanism to targeted clinical therapy

    PubMed Central

    Wojcik, Edward J.; Buckley, Rebecca S.; Richard, Jessica; Liu, Liqiong; Huckaba, Thomas M.; Kim, Sunyoung

    2013-01-01

    Kinesin motor proteins comprise an ATPase superfamily that goes hand in hand with microtubules in every eukaryote. The mitotic kinesins, by virtue of their potential therapeutic role in cancerous cells, have been a major focus of research for the past 28 years since the discovery of the canonical Kinesin-1 heavy chain. Perhaps the simplest player in mitotic spindle assembly, Kinesin-5 (also known as Kif11, Eg5, or kinesin spindle protein, KSP) is a plus-end-directed motor localized to interpolar spindle microtubules and to the spindle poles. Comprised of a homotetramer complex, its function primarily is to slide anti-parallel microtubules apart from one another. Based on a multi-faceted analysis of this motor from numerous laboratories over the years, we have learned a great deal about the function of this motor at the atomic level for catalysis and as an integrated element of the cytoskeleton. These data have, in turn, informed the function of motile kinesins on the whole, as well as spearheaded integrative models of the mitotic apparatus in particular and regulation of the microtubule cytoskeleton in general. We review what is known about how this nanomotor works, its place inside the cytoskeleton of cells, and its small-molecule inhibitors that provide a toolbox for understanding motor function and for anticancer treatment in the clinic. PMID:23954229

  5. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction.

    PubMed

    Sager, Hendrik B; Dutta, Partha; Dahlman, James E; Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F; Kauffman, Kevin J; Xing, Yiping; Shaw, Taylor E; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K; Anderson, Daniel G; Nahrendorf, Matthias

    2016-06-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE(-/-) mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)-targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  6. Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target?

    PubMed Central

    Lin, Li-Chun; Sibille, Etienne

    2013-01-01

    Our knowledge of the pathophysiology of affect dysregulation has progressively increased, but the pharmacological treatments remain inadequate. Here, we summarize the current literature on deficits in somatostatin, an inhibitory modulatory neuropeptide, in major depression and other neurological disorders that also include mood disturbances. We focus on direct evidence in the human postmortem brain, and review rodent genetic and pharmacological studies probing the role of the somatostatin system in relation to mood. We also briefly go over pharmacological developments targeting the somatostatin system in peripheral organs and discuss the challenges of targeting the brain somatostatin system. Finally, the fact that somatostatin deficits are frequently observed across neurological disorders suggests a selective cellular vulnerability of somatostatin-expressing neurons. Potential cell intrinsic factors mediating those changes are discussed, including nitric oxide induced oxidative stress, mitochondrial dysfunction, high inflammatory response, high demand for neurotrophic environment, and overall aging processes. Together, based on the co-localization of somatostatin with gamma-aminobutyric acid (GABA), its presence in dendritic-targeting GABA neuron subtypes, and its temporal-specific function, we discuss the possibility that deficits in somatostatin play a central role in cortical local inhibitory circuit deficits leading to abnormal corticolimbic network activity and clinical mood symptoms across neurological disorders. PMID:24058344

  7. Chenodeoxycholic Acid Reduces Hypoxia Inducible Factor-1α Protein and Its Target Genes.

    PubMed

    Moon, Yunwon; Choi, Su Mi; Chang, Soojeong; Park, Bongju; Lee, Seongyeol; Lee, Mi-Ock; Choi, Hueng-Sik; Park, Hyunsung

    2015-01-01

    This study evaluated HIF-1α inhibitors under different hypoxic conditions, physiological hypoxia (5% O2) and severe hypoxia (0.1% O2). We found that chenodeoxy cholic acid (CDCA) reduced the amount of HIF-1α protein only under physiological hypoxia but not under severe hypoxia without decreasing its mRNA level. By using a proteasome inhibitor MG132 and a translation inhibitor cyclohexamide, we showed that CDCA reduced HIF-1α protein by decreasing its translation but not by enhancing its degradation. The following findings indicated that farnesoid X receptor (FXR), a CDCA receptor and its target gene, Small heterodimer partner (SHP) are not involved in this effect of CDCA. Distinctly from CDCA, MG132 prevented SHP and an exogenous FXR agonist, GW4064 from reducing HIF-1α protein. Furthermore a FXR antagonist, guggulsterone failed to prevent CDCA from decreasing HIF-1α protein. Furthermore, guggulsterone by itself reduced HIF-1α protein even in the presence of MG132. These findings suggested that CDCA and guggulsterone reduced the translation of HIF-1α in a mechanism which FXR and SHP are not involved. This study reveals novel therapeutic functions of traditional nontoxic drugs, CDCA and guggulsterone, as inhibitors of HIF-1α protein. PMID:26098428

  8. Different effects of laser contrast on proton emission from normal large foils and transverse-size-reduced targets

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Ge, Xulei; Yang, Su; Wei, Wenqing; Yu, Tongpu; Liu, Feng; Chen, Min; Liu, Jingquan; Yuan, Xiaohui; Sheng, Zhengming; Zhang, Jie

    2016-07-01

    We report experimental results on the effects of laser contrast on beam divergence and energy spectrum of protons emitted from ultrashort intense laser interactions with normal large foils and transverse-size-reduced targets. Correlations between beam divergence and spectral shape are found. Large divergence and near-plateau shape energy spectrum are observed for both types of targets when the laser pulse contrast is low. With high contrast laser irradiation, proton beam divergence is remarkably reduced and the energy spectral shape is changed to exponential for large foil targets. In comparison, a similar large divergence and the near-plateau spectral shape remain for transverse-size-reduced targets. The results could be explained by the preplasma formation and target deformation at different laser contrasts and modified accelerating sheath field evolution in transverse-size-reduced target, which were supported by the 2D hydrodynamic and PIC simulations.

  9. Bayesian Nonparametric Estimation of Targeted Agent Effects on Biomarker Change to Predict Clinical Outcome

    PubMed Central

    Graziani, Rebecca; Guindani, Michele; Thall, Peter F.

    2015-01-01

    Summary The effect of a targeted agent on a cancer patient's clinical outcome putatively is mediated through the agent's effect on one or more early biological events. This is motivated by pre-clinical experiments with cells or animals that identify such events, represented by binary or quantitative biomarkers. When evaluating targeted agents in humans, central questions are whether the distribution of a targeted biomarker changes following treatment, the nature and magnitude of this change, and whether it is associated with clinical outcome. Major difficulties in estimating these effects are that a biomarker's distribution may be complex, vary substantially between patients, and have complicated relationships with clinical outcomes. We present a probabilistically coherent framework for modeling and estimation in this setting, including a hierarchical Bayesian nonparametric mixture model for biomarkers that we use to define a functional profile of pre-versus-post treatment biomarker distribution change. The functional is similar to the receiver operating characteristic used in diagnostic testing. The hierarchical model yields clusters of individual patient biomarker profile functionals, and we use the profile as a covariate in a regression model for clinical outcome. The methodology is illustrated by analysis of a dataset from a clinical trial in prostate cancer using imatinib to target platelet-derived growth factor, with the clinical aim to improve progression-free survival time. PMID:25319212

  10. Bayesian nonparametric estimation of targeted agent effects on biomarker change to predict clinical outcome.

    PubMed

    Graziani, Rebecca; Guindani, Michele; Thall, Peter F

    2015-03-01

    The effect of a targeted agent on a cancer patient's clinical outcome putatively is mediated through the agent's effect on one or more early biological events. This is motivated by pre-clinical experiments with cells or animals that identify such events, represented by binary or quantitative biomarkers. When evaluating targeted agents in humans, central questions are whether the distribution of a targeted biomarker changes following treatment, the nature and magnitude of this change, and whether it is associated with clinical outcome. Major difficulties in estimating these effects are that a biomarker's distribution may be complex, vary substantially between patients, and have complicated relationships with clinical outcomes. We present a probabilistically coherent framework for modeling and estimation in this setting, including a hierarchical Bayesian nonparametric mixture model for biomarkers that we use to define a functional profile of pre-versus-post-treatment biomarker distribution change. The functional is similar to the receiver operating characteristic used in diagnostic testing. The hierarchical model yields clusters of individual patient biomarker profile functionals, and we use the profile as a covariate in a regression model for clinical outcome. The methodology is illustrated by analysis of a dataset from a clinical trial in prostate cancer using imatinib to target platelet-derived growth factor, with the clinical aim to improve progression-free survival time. PMID:25319212

  11. Cyclophosphamide followed by intravenous targeted busulfan for allogeneic hematopoietic cell transplantation: pharmacokinetics and clinical outcomes

    PubMed Central

    Rezvani, Andrew R.; McCune, Jeannine S.; Storer, Barry E.; Batchelder, Ami; Kida, Aiko; Deeg, H. Joachim; McDonald, George B.

    2013-01-01

    Targeted busulfan/cyclophosphamide (TBU/CY) for allogeneic hematopoietic cell transplantation (HCT) carries a high risk of sinusoidal obstruction syndrome (SOS) in patients transplanted for myelofibrosis. We tested the hypothesis that reversing the sequence of administration (from TBU/CY to CY/TBU) will reduce SOS and day +100 non-relapse mortality (NRM). We enrolled 51 patients with myelofibrosis (n=20), acute myeloid leukemia (AML, n=20), or myelodysplastic syndrome (MDS, n=11) in a prospective trial of CY/TBU conditioning for HCT. Cyclophosphamide 60 mg/kg/day IV for two days was followed by daily IV BU for four days, targeted to a concentration at steady state (Css) of 800–900 ng/mL. CY/TBU-conditioned patients had higher exposure to CY (p<0.0001) and lower exposure to 4-hydroxyCY (p<0.0001) compared to TBU/CY-conditioned patients. Clinical outcomes were compared with controls (n=271) conditioned with TBU/CY for the same indications. In patients with myelofibrosis, CY/TBU conditioning was associated with a significantly reduced incidence of SOS (0% vs. 30% after TBU/CY, p=0.006), while SOS incidence was low in both cohorts with AML/MDS. Day +100 mortality was significantly lower in the CY/TBU cohort (2% vs. 13%, p=0.01). CY/TBU conditioning markedly impacted CY pharmacokinetics and was associated with significantly lower incidences of SOS and day +100 mortality, suggesting that CY/TBU is superior to TBU/CY as conditioning for patients with myelofibrosis. PMID:23583825

  12. Targeting α4β7 integrin reduces mucosal transmission of SIV and protects GALT from infection

    PubMed Central

    Byrareddy, Siddappa N.; Kallam, Brianne; Arthos, James; Cicala, Claudia; Nawaz, Fatima; Hiatt, Joseph; Kersh, Ellen N.; McNicholl, Janet M.; Hanson, Debra; Reimann, Keith A.; Brameier, Markus; Walter, Lutz; Rogers, Kenneth; Mayne, Ann E.; Dunbar, Paul; Villinger, Tara; Little, Dawn; Parslow, Tristram G.; Santangelo, Philip J.; Villinger, Francois; Fauci, Anthony S.; Ansari, Aftab A.

    2014-01-01

    α4β7 integrin expressing CD4+ T cells preferentially traffic to gut-associated lymphoid tissues (GALT) and play a key role in HIV/SIV pathogenesis. The administration of an anti-α4β7 monoclonal antibody during acute infection protects macaques from transmission following repeated low-dose intra-vaginal challenges with SIVmac251. In treated animals that became infected the GALT was significantly protected and CD4+ T–cell numbers were maintained. Thus, targeting α4β7 reduces mucosal transmission of SIV in macaques. PMID:25419708

  13. Predicting New Target Conditions for Drug Retesting Using Temporal Patterns in Clinical Trials: A Proof of Concept.

    PubMed

    He, Zhe; Weng, Chunhua

    2015-01-01

    Drug discovery is costly and time-consuming. Efficient drug repurposing promises to accelerate drug discovery with reduced cost. However, most successful repurposing cases so far have been achieved by serendipity. There is a need for more efficient computational methods for predicting new indications for existing drugs. This paper conducts a retrospective analysis of the temporal patterns of drug intervention trials for every drug in a pair of different conditions in ClinicalTrials.gov, including 550 drugs used for 451 conditions between 2003 and 2013. We found that drugs are often targeted towards conditions that are related by similar or identical eligibility criteria. We demonstrated the preliminary feasibility of predicting new target conditions for drug retesting among conditions with similar aggregated clinical trial eligibility criteria and confirmed this hypothesis using evidence from the literature. PMID:26306283

  14. Predicting New Target Conditions for Drug Retesting Using Temporal Patterns in Clinical Trials: A Proof of Concept

    PubMed Central

    He, Zhe; Weng, Chunhua

    2015-01-01

    Drug discovery is costly and time-consuming. Efficient drug repurposing promises to accelerate drug discovery with reduced cost. However, most successful repurposing cases so far have been achieved by serendipity. There is a need for more efficient computational methods for predicting new indications for existing drugs. This paper conducts a retrospective analysis of the temporal patterns of drug intervention trials for every drug in a pair of different conditions in ClinicalTrials.gov, including 550 drugs used for 451 conditions between 2003 and 2013. We found that drugs are often targeted towards conditions that are related by similar or identical eligibility criteria. We demonstrated the preliminary feasibility of predicting new target conditions for drug retesting among conditions with similar aggregated clinical trial eligibility criteria and confirmed this hypothesis using evidence from the literature. PMID:26306283

  15. Tumor Vasculature Targeting and Imaging in Living Mice with Reduced Graphene Oxide

    PubMed Central

    Shi, Sixiang; Yang, Kai; Hong, Hao; Valdovinos, Hector F.; Nayak, Tapas R.; Zhang, Yin; Theuer, Charles P.; Barnhart, Todd E.; Liu, Zhuang; Cai, Weibo

    2013-01-01

    Graphene-based nanomaterials have attracted tremendous attention in the field of biomedicine due to their intriguing properties. Herein, we report tumor vasculature targeting and imaging in living mice using reduced graphene oxide (RGO), which was conjugated to the anti-CD105 antibody TRC105. The RGO conjugate, 64Cu-NOTA-RGO-TRC105, exhibited excellent stability in vitro and in vivo. Serial positron emission tomography (PET) imaging studies non-invasively assessed the pharmacokinetics and demonstrated specific targeting of 64Cu-NOTA-RGO-TRC105 to 4T1 murine breast tumors in vivo, compared to non-targeted RGO conjugate (64Cu-NOTA-RGO). In vivo (e.g., blocking 4T1 tumor uptake with excess TRC105), in vitro (e.g., flow cytometry), and ex vivo (e.g., histology) experiments confirmed the specificity of 64Cu-NOTA-RGO-TRC105 for tumor vascular CD105. Since RGO exhibits desirable properties for photothermal therapy, the tumor-specific RGO conjugate developed in this work may serve as a promising theranostic agent that integrates imaging and therapeutic components. PMID:23374706

  16. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide.

    PubMed

    Shi, Sixiang; Yang, Kai; Hong, Hao; Valdovinos, Hector F; Nayak, Tapas R; Zhang, Yin; Theuer, Charles P; Barnhart, Todd E; Liu, Zhuang; Cai, Weibo

    2013-04-01

    Graphene-based nanomaterials have attracted tremendous attention in the field of biomedicine due to their intriguing properties. Herein, we report tumor vasculature targeting and imaging in living mice using reduced graphene oxide (RGO), which was conjugated to the anti-CD105 antibody TRC105. The RGO conjugate, (64)Cu-NOTA-RGO-TRC105, exhibited excellent stability in vitro and in vivo. Serial positron emission tomography (PET) imaging studies non-invasively assessed the pharmacokinetics and demonstrated specific targeting of (64)Cu-NOTA-RGO-TRC105 to 4T1 murine breast tumors in vivo, compared to non-targeted RGO conjugate ((64)Cu-NOTA-RGO). In vivo (e.g., blocking 4T1 tumor uptake with excess TRC105), in vitro (e.g., flow cytometry), and ex vivo (e.g., histology) experiments confirmed the specificity of (64)Cu-NOTA-RGO-TRC105 for tumor vascular CD105. Since RGO exhibits desirable properties for photothermal therapy, the tumor-specific RGO conjugate developed in this work may serve as a promising theranostic agent that integrates imaging and therapeutic components. PMID:23374706

  17. Targeting of Alpha-V Integrins Reduces Malignancy of Bladder Carcinoma

    PubMed Central

    van der Horst, Geertje; Bos, Lieke; van der Mark, Maaike; Cheung, Henry; Heckmann, Bertrand; Clément-Lacroix, Philippe; Lorenzon, Giocondo; Pelger, Rob C. M.; Bevers, Rob F. M.; van der Pluijm, Gabri

    2014-01-01

    Low survival rates of metastatic cancers emphasize the need for a drug that can prevent and/or treat metastatic cancer. αv integrins are involved in essential processes for tumor growth and metastasis and targeting of αv integrins has been shown to decrease angiogenesis, tumor growth and metastasis. In this study, the role of αv integrin and its potential as a drug target in bladder cancer was investigated. Treatment with an αv integrin antagonist as well as knockdown of αv integrin in the bladder carcinoma cell lines, resulted in reduced malignancy invitro, as illustrated by decreased proliferative, migratory and clonogenic capacity. The CDH1/CDH2 ratio increased, indicating a shift towards a more epithelial phenotype. This shift appeared to be associated with downregulation of EMT-inducing transcription factors including SNAI2. The expression levels of the self-renewal genes NANOG and BMI1 decreased as well as the number of cells with high Aldehyde Dehydrogenase activity. In addition, self-renewal ability decreased as measured with the urosphere assay. In line with these observations, knockdown or treatment of αv integrins resulted in decreased metastatic growth in preclinical invivo models as assessed by bioluminescence imaging. In conclusion, we show that αv integrins are involved in migration, EMT and maintenance of Aldehyde Dehydrogenase activity in bladder cancer cells. Targeting of αv integrins might be a promising approach for treatment and/or prevention of metastatic bladder cancer. PMID:25247809

  18. Cost-effective targeting of conservation investments to reduce the northern Gulf of Mexico hypoxic zone

    PubMed Central

    Rabotyagov, Sergey S.; Campbell, Todd D.; White, Michael; Arnold, Jeffrey G.; Atwood, Jay; Norfleet, M. Lee; Kling, Catherine L.; Gassman, Philip W.; Valcu, Adriana; Richardson, Jeffrey; Turner, R. Eugene; Rabalais, Nancy N.

    2014-01-01

    A seasonally occurring summer hypoxic (low oxygen) zone in the northern Gulf of Mexico is the second largest in the world. Reductions in nutrients from agricultural cropland in its watershed are needed to reduce the hypoxic zone size to the national policy goal of 5,000 km2 (as a 5-y running average) set by the national Gulf of Mexico Task Force’s Action Plan. We develop an integrated assessment model linking the water quality effects of cropland conservation investment decisions on the more than 550 agricultural subwatersheds that deliver nutrients into the Gulf with a hypoxic zone model. We use this integrated assessment model to identify the most cost-effective subwatersheds to target for cropland conservation investments. We consider targeting of the location (which subwatersheds to treat) and the extent of conservation investment to undertake (how much cropland within a subwatershed to treat). We use process models to simulate the dynamics of the effects of cropland conservation investments on nutrient delivery to the Gulf and use an evolutionary algorithm to solve the optimization problem. Model results suggest that by targeting cropland conservation investments to the most cost-effective location and extent of coverage, the Action Plan goal of 5,000 km2 can be achieved at a cost of $2.7 billion annually. A large set of cost-hypoxia tradeoffs is developed, ranging from the baseline to the nontargeted adoption of the most aggressive cropland conservation investments in all subwatersheds (estimated to reduce the hypoxic zone to less than 3,000 km2 at a cost of $5.6 billion annually). PMID:25512489

  19. Cost-effective targeting of conservation investments to reduce the northern Gulf of Mexico hypoxic zone.

    PubMed

    Rabotyagov, Sergey S; Campbell, Todd D; White, Michael; Arnold, Jeffrey G; Atwood, Jay; Norfleet, M Lee; Kling, Catherine L; Gassman, Philip W; Valcu, Adriana; Richardson, Jeffrey; Turner, R Eugene; Rabalais, Nancy N

    2014-12-30

    A seasonally occurring summer hypoxic (low oxygen) zone in the northern Gulf of Mexico is the second largest in the world. Reductions in nutrients from agricultural cropland in its watershed are needed to reduce the hypoxic zone size to the national policy goal of 5,000 km(2) (as a 5-y running average) set by the national Gulf of Mexico Task Force's Action Plan. We develop an integrated assessment model linking the water quality effects of cropland conservation investment decisions on the more than 550 agricultural subwatersheds that deliver nutrients into the Gulf with a hypoxic zone model. We use this integrated assessment model to identify the most cost-effective subwatersheds to target for cropland conservation investments. We consider targeting of the location (which subwatersheds to treat) and the extent of conservation investment to undertake (how much cropland within a subwatershed to treat). We use process models to simulate the dynamics of the effects of cropland conservation investments on nutrient delivery to the Gulf and use an evolutionary algorithm to solve the optimization problem. Model results suggest that by targeting cropland conservation investments to the most cost-effective location and extent of coverage, the Action Plan goal of 5,000 km(2) can be achieved at a cost of $2.7 billion annually. A large set of cost-hypoxia tradeoffs is developed, ranging from the baseline to the nontargeted adoption of the most aggressive cropland conservation investments in all subwatersheds (estimated to reduce the hypoxic zone to less than 3,000 km(2) at a cost of $5.6 billion annually). PMID:25512489

  20. Clinical guidance on the perioperative use of targeted agents in solid tumor oncology.

    PubMed

    Mellor, James D; Cassumbhoy, Michelle; Jefford, Michael

    2011-06-01

    The use of targeted anti-cancer agents is increasing. It is common to utilize a multi-modal treatment approach towards solid tumors, often including surgical resection, and it has become apparent that some targeted agents can impair wound healing or cause an increased risk of perioperative complications. This article reviews targeted agents used in solid tumor oncology with an emphasis on clinically relevant details. Overall, the evidence of targeted agents causing surgical complications is limited. The greatest amount of evidence exists for bevacizumab causing perioperative complications, possibly due to its extended half-life. There are limited data for cetuximab, sorafenib and sunitinib and very little for other solid tumor targeted agents. Our findings suggest that there should be heightened pharmacovigilence around targeted agents with respect to perioperative complications and increased post-surgical support for patients to aid early detection of postoperative complications until definitive data become available. PMID:21585689

  1. SU-E-J-34: Clinical Evaluation of Targeting Accuracy and Tractogrphy Delineation of Radiosurgery

    SciTech Connect

    Juh, R; Suh, T; Kim, Y; Han, J; Kim, C; Oh, C; Kim, D

    2014-06-01

    Purpose: Focal radiosurgery is a common treatment modality for trigeminal neuralgia (TN), a neuropathic facial pain condition. Assessment of treatment effectiveness is primarily clinical, given the paucity of investigational tools to assess trigeminal nerve changes. The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgery with Gamma knife. We hypothesized that trigeminal tractography provides more information than 2D-MR imaging, allowing detection of unique, focal changes in the target area after radiosurgery. Methods: Sixteen TN patients (2 females, 4 male, average age 65.3 years) treated with Gamma Knife radiosurgery, 40 Gy/50% isodose line underwent 1.5Tesla MR trigeminal nerve . Target accuracy was assessed from deviation of the coordinates of the target compared with the center of enhancement on post MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was within 1mm. The radiation doses fitting within the borders of the contrast enhancement the target ranged from 37.5 to 40 Gy. Trigeminal tractography accurately detected the radiosurgical target. Radiosurgery resulted in 47% drop in FA values at the target with no significant change in FA outside the target, suggesting that radiosurgery primarily affects myelin. Tractography was more sensitive, since FA changes were detected regardless of trigeminal nerve enhancement Conclusion: The median deviation found in clinical assessment of gamma knife treatment for TN Is low and compatible with its high rate of efficiency. DTI parameters accurately detect the effects of focal radiosurgery on the trigeminal nerve, serving as an in vivo imaging tool to study TN. This study is a proof of principle for further assessment of DTI parameters to understand the pathophysiology of TN and treatment effects.

  2. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date.

    PubMed

    Park, Jae H; Geyer, Mark B; Brentjens, Renier J

    2016-06-30

    Adoptive transfer of T cells genetically modified to express chimeric antigen receptors (CARs) targeting CD19 has produced impressive results in treating patients with B-cell malignancies. Although these CAR-modified T cells target the same antigen, the designs of CARs vary as well as several key aspects of the clinical trials in which these CARs have been studied. It is unclear whether these differences have any impact on clinical outcome and treatment-related toxicities. Herein, we review clinical results reflecting the investigational use of CD19-targeted CAR T-cell therapeutics in patients with B-cell hematologic malignancies, in light of differences in CAR design and production, and outline the limitations inherent in comparing outcomes between studies. PMID:27207800

  3. Reduce in Variation and Improve Efficiency of Target Volume Delineation by a Computer-Assisted System Using a Deformable Image Registration Approach

    SciTech Connect

    Chao, K.S. Clifford . E-mail: cchao@mdanderson.org; Bhide, Shreerang FRCR; Chen, Hansen; Asper, Joshua PAC; Bush, Steven; Franklin, Gregg; Kavadi, Vivek; Liengswangwong, Vichaivood; Gordon, William; Raben, Adam; Strasser, Jon; Koprowski, Christopher; Frank, Steven; Chronowski, Gregory; Ahamad, Anesa; Malyapa, Robert; Zhang Lifei; Dong Lei

    2007-08-01

    Purpose: To determine whether a computer-assisted target volume delineation (CAT) system using a deformable image registration approach can reduce the variation of target delineation among physicians with different head and neck (HN) IMRT experiences and reduce the time spent on the contouring process. Materials and Methods: We developed a deformable image registration method for mapping contours from a template case to a patient case with a similar tumor manifestation but different body configuration. Eight radiation oncologists with varying levels of clinical experience in HN IMRT performed target delineation on two HN cases, one with base-of-tongue (BOT) cancer and another with nasopharyngeal cancer (NPC), by first contouring from scratch and then by modifying the contours deformed by the CAT system. The gross target volumes were provided. Regions of interest for comparison included the clinical target volumes (CTVs) and normal organs. The volumetric and geometric variation of these regions of interest and the time spent on contouring were analyzed. Results: We found that the variation in delineating CTVs from scratch among the physicians was significant, and that using the CAT system reduced volumetric variation and improved geometric consistency in both BOT and NPC cases. The average timesaving when using the CAT system was 26% to 29% for more experienced physicians and 38% to 47% for the less experienced ones. Conclusions: A computer-assisted target volume delineation approach, using a deformable image-registration method with template contours, was able to reduce the variation among physicians with different experiences in HN IMRT while saving contouring time.

  4. Targeting acid sphingomyelinase reduces cardiac ceramide accumulation in the post-ischemic heart.

    PubMed

    Klevstig, Martina; Ståhlman, Marcus; Lundqvist, Annika; Scharin Täng, Margareta; Fogelstrand, Per; Adiels, Martin; Andersson, Linda; Kolesnick, Richard; Jeppsson, Anders; Borén, Jan; Levin, Malin C

    2016-04-01

    Ceramide accumulation is known to accompany acute myocardial ischemia, but its role in the pathogenesis of ischemic heart disease is unclear. In this study, we aimed to determine how ceramides accumulate in the ischemic heart and to determine if cardiac function following ischemia can be improved by reducing ceramide accumulation. To investigate the association between ceramide accumulation and heart function, we analyzed myocardial left ventricle biopsies from subjects with chronic ischemia and found that ceramide levels were higher in biopsies from subjects with reduced heart function. Ceramides are produced by either de novo synthesis or hydrolysis of sphingomyelin catalyzed by acid and/or neutral sphingomyelinase. We used cultured HL-1 cardiomyocytes to investigate these pathways and showed that acid sphingomyelinase activity rather than neutral sphingomyelinase activity or de novo sphingolipid synthesis was important for hypoxia-induced ceramide accumulation. We also used mice with a partial deficiency in acid sphingomyelinase (Smpd1(+/-) mice) to investigate if limiting ceramide accumulation under ischemic conditions would have a beneficial effect on heart function and survival. Although we showed that cardiac ceramide accumulation was reduced in Smpd1(+/-) mice 24h after an induced myocardial infarction, this reduction was not accompanied by an improvement in heart function or survival. Our findings show that accumulation of cardiac ceramides in the post-ischemic heart is mediated by acid sphingomyelinase. However, targeting ceramide accumulation in the ischemic heart may not be a beneficial treatment strategy. PMID:26930027

  5. Suppressing unwanted memories reduces their unconscious influence via targeted cortical inhibition.

    PubMed

    Gagnepain, Pierre; Henson, Richard N; Anderson, Michael C

    2014-04-01

    Suppressing retrieval of unwanted memories reduces their later conscious recall. It is widely believed, however, that suppressed memories can continue to exert strong unconscious effects that may compromise mental health. Here we show that excluding memories from awareness not only modulates medial temporal lobe regions involved in explicit retention, but also neocortical areas underlying unconscious expressions of memory. Using repetition priming in visual perception as a model task, we found that excluding memories of visual objects from consciousness reduced their later indirect influence on perception, literally making the content of suppressed memories harder for participants to see. Critically, effective connectivity and pattern similarity analysis revealed that suppression mechanisms mediated by the right middle frontal gyrus reduced activity in neocortical areas involved in perceiving objects and targeted the neural populations most activated by reminders. The degree of inhibitory modulation of the visual cortex while people were suppressing visual memories predicted, in a later perception test, the disruption in the neural markers of sensory memory. These findings suggest a neurobiological model of how motivated forgetting affects the unconscious expression of memory that may be generalized to other types of memory content. More generally, they suggest that the century-old assumption that suppression leaves unconscious memories intact should be reconsidered. PMID:24639546

  6. Suppressing unwanted memories reduces their unconscious influence via targeted cortical inhibition

    PubMed Central

    Gagnepain, Pierre; Henson, Richard N.; Anderson, Michael C.

    2014-01-01

    Suppressing retrieval of unwanted memories reduces their later conscious recall. It is widely believed, however, that suppressed memories can continue to exert strong unconscious effects that may compromise mental health. Here we show that excluding memories from awareness not only modulates medial temporal lobe regions involved in explicit retention, but also neocortical areas underlying unconscious expressions of memory. Using repetition priming in visual perception as a model task, we found that excluding memories of visual objects from consciousness reduced their later indirect influence on perception, literally making the content of suppressed memories harder for participants to see. Critically, effective connectivity and pattern similarity analysis revealed that suppression mechanisms mediated by the right middle frontal gyrus reduced activity in neocortical areas involved in perceiving objects and targeted the neural populations most activated by reminders. The degree of inhibitory modulation of the visual cortex while people were suppressing visual memories predicted, in a later perception test, the disruption in the neural markers of sensory memory. These findings suggest a neurobiological model of how motivated forgetting affects the unconscious expression of memory that may be generalized to other types of memory content. More generally, they suggest that the century-old assumption that suppression leaves unconscious memories intact should be reconsidered. PMID:24639546

  7. Molecular targets for the treatment of pancreatic cancer: Clinical and experimental studies

    PubMed Central

    Matsuoka, Tasuku; Yashiro, Masakazu

    2016-01-01

    Pancreatic cancer is the fourth most common cause of cancer deaths worldwide. Although recent therapeutic developments for patients with pancreatic cancer have provided survival benefits, the outcomes for patients with pancreatic cancer remain unsatisfactory. Molecularly targeted cancer therapy has advanced in the past decade with the use of a number of pathways as candidates of therapeutic targets. This review summarizes the molecular features of this refractory disease while focusing on the recent clinical and experimental findings on pancreatic cancer. It also discusses the data supporting current standard clinical outcomes, and offers conclusions that may improve the management of pancreatic cancer in the future. PMID:26811624

  8. Molecular targets for the treatment of pancreatic cancer: Clinical and experimental studies.

    PubMed

    Matsuoka, Tasuku; Yashiro, Masakazu

    2016-01-14

    Pancreatic cancer is the fourth most common cause of cancer deaths worldwide. Although recent therapeutic developments for patients with pancreatic cancer have provided survival benefits, the outcomes for patients with pancreatic cancer remain unsatisfactory. Molecularly targeted cancer therapy has advanced in the past decade with the use of a number of pathways as candidates of therapeutic targets. This review summarizes the molecular features of this refractory disease while focusing on the recent clinical and experimental findings on pancreatic cancer. It also discusses the data supporting current standard clinical outcomes, and offers conclusions that may improve the management of pancreatic cancer in the future. PMID:26811624

  9. Inflammatory therapeutic targets in coronary atherosclerosis—from molecular biology to clinical application

    PubMed Central

    Linden, Fabian; Domschke, Gabriele; Erbel, Christian; Akhavanpoor, Mohammadreza; Katus, Hugo A.; Gleissner, Christian A.

    2014-01-01

    Atherosclerosis is the leading cause of death worldwide. Over the past two decades, it has been clearly recognized that atherosclerosis is an inflammatory disease of the arterial wall. Accumulating data from animal experiments have supported this hypothesis, however, clinical applications making use of this knowledge remain scarce. In spite of optimal interventional and medical therapy, the risk for recurrent myocardial infarction remains by about 20% over 3 years after acute coronary syndromes, novel therapies to prevent atherogenesis or treat atherosclerosis are urgently needed. This review summarizes selected potential molecular inflammatory targets that may be of clinical relevance. We also review recent and ongoing clinical trails that target inflammatory processes aiming at preventing adverse cardiovascular events. Overall, it seems surprising that translation of basic science into clinical practice has not been a great success. In conclusion, we propose to focus on specific efforts that promote translational science in order to improve outcome and prognosis of patients suffering from atherosclerosis. PMID:25484870

  10. Concise review: Emerging concepts in clinical targeting of cancer stem cells

    PubMed Central

    Rasheed, Zeshaan A.; Kowalski, Jeanne; Smith, B. Douglas; Matsui, William

    2012-01-01

    Cancer stem cells (CSCs) are functionally defined by their ability to self-renew and recapitulate tumors in the ectopic setting. They have been identified in a growing number of human malignancies and their association with poor clinical outcomes has suggested that they are a major factor in dictating clinical outcomes. Moreover, recent studies have demonstrated that CSCs may display other functional attributes, such as drug resistance and invasion and migration, that implicates a broad role in clinical oncology spanning initial tumor formation, relapse following treatment, and disease progression. Although our knowledge regarding the basic biology of CSCs continues to improve, a major issue remains proof that they are clinically relevant, and translation of the CSC hypothesis from the lab to the clinic is of paramount importance. We will review current evidence supporting the role of CSCs in clinical oncology and discuss potential barriers and strategies in designing trials examining CSC-targeting agents. PMID:21509907

  11. Reducing Patient Clinical Management Errors Using Structured Content and Electronic Nursing Handover.

    PubMed

    Johnson, Maree; Sanchez, Paula; Zheng, Catherine

    2016-01-01

    We examined whether an integrated nursing handover system-structured content and an electronic tool within the patient clinical information system with bedside delivery-would improve the quality of information delivered at nursing handover and reduce adverse patient outcomes. Using a pre/posttest evaluative design, improvements in the transfer of critical patient information and reductions in nursing clinical management incidents were demonstrated. No changes in falls or medication incident rates were identified. PMID:26796972

  12. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma.

    PubMed

    van de Donk, Niels W C J; Moreau, Philippe; Plesner, Torben; Palumbo, Antonio; Gay, Francesca; Laubach, Jacob P; Malavasi, Fabio; Avet-Loiseau, Hervé; Mateos, Maria-Victoria; Sonneveld, Pieter; Lokhorst, Henk M; Richardson, Paul G

    2016-02-11

    Immunotherapeutic strategies are emerging as promising therapeutic approaches in multiple myeloma (MM), with several monoclonal antibodies in advanced stages of clinical development. Of these agents, CD38-targeting antibodies have marked single agent activity in extensively pretreated MM, and preliminary results from studies with relapsed/refractory patients have shown enhanced therapeutic efficacy when daratumumab and isatuximab are combined with other agents. Furthermore, although elotuzumab (anti-SLAMF7) has no single agent activity in advanced MM, randomized trials in relapsed/refractory MM have demonstrated significantly improved progression-free survival when elotuzumab is added to lenalidomide-dexamethasone or bortezomib-dexamethasone. Importantly, there has been no significant additive toxicity when these monoclonal antibodies are combined with other anti-MM agents, other than infusion-related reactions specific to the therapeutic antibody. Prevention and management of infusion reactions is important to avoid drug discontinuation, which may in turn lead to reduced efficacy of anti-MM therapy. Therapeutic antibodies interfere with several laboratory tests. First, interference of therapeutic antibodies with immunofixation and serum protein electrophoresis assays may lead to underestimation of complete response. Strategies to mitigate interference, based on shifting the therapeutic antibody band, are in development. Furthermore, daratumumab, and probably also other CD38-targeting antibodies, interfere with blood compatibility testing and thereby complicate the safe release of blood products. Neutralization of the therapeutic CD38 antibody or CD38 denaturation on reagent red blood cells mitigates daratumumab interference with transfusion laboratory serologic tests. Finally, therapeutic antibodies may complicate flow cytometric evaluation of normal and neoplastic plasma cells, since the therapeutic antibody can affect the availability of the epitope for binding

  13. Clinical Evaluation of Stereotactic Target Localization Using 3-Tesla MRI for Radiosurgery Planning

    SciTech Connect

    MacFadden, Derek; Zhang Beibei; Brock, Kristy K.; Hodaie, Mojgan; Laperriere, Normand; Schwartz, Michael; Tsao, May; Stainsby, Jeffrey; Lockwood, Gina; Mikulis, David; Menard, Cynthia

    2010-04-15

    Purpose: Increasing the magnetic resonance imaging (MRI) field strength can improve image resolution and quality, but concerns remain regarding the influence on geometric fidelity. The objectives of the present study were to spatially investigate the effect of 3-Tesla (3T) MRI on clinical target localization for stereotactic radiosurgery. Methods and Materials: A total of 39 patients were enrolled in a research ethics board-approved prospective clinical trial. Imaging (1.5T and 3T MRI and computed tomography) was performed after stereotactic frame placement. Stereotactic target localization at 1.5T vs. 3T was retrospectively analyzed in a representative cohort of patients with tumor (n = 4) and functional (n = 5) radiosurgical targets. The spatial congruency of the tumor gross target volumes was determined by the mean discrepancy between the average gross target volume surfaces at 1.5T and 3T. Reproducibility was assessed by the displacement from an averaged surface and volume congruency. Spatial congruency and the reproducibility of functional radiosurgical targets was determined by comparing the mean and standard deviation of the isocenter coordinates. Results: Overall, the mean absolute discrepancy across all patients was 0.67 mm (95% confidence interval, 0.51-0.83), significantly <1 mm (p < .010). No differences were found in the overall interuser target volume congruence (mean, 84% for 1.5T vs. 84% for 3T, p > .4), and the gross target volume surface mean displacements were similar within and between users. The overall average isocenter coordinate discrepancy for the functional targets at 1.5T and 3T was 0.33 mm (95% confidence interval, 0.20-0.48), with no patient-specific differences between the mean values (p >.2) or standard deviations (p >.1). Conclusion: Our results have provided clinically relevant evidence supporting the spatial validity of 3T MRI for use in stereotactic radiosurgery under the imaging conditions used.

  14. Intervention development to reduce musculoskeletal disorders: Is the process on target?

    PubMed

    Oakman, Jodi; Rothmore, Paul; Tappin, David

    2016-09-01

    Work related musculoskeletal disorders remain an intractable OHS problem. In 2002, Haslam proposed applying the stage of change model to target ergonomics interventions and other health and safety prevention activities. The stage of change model proposes that taking into account an individual's readiness for change in developing intervention strategies is likely to improve uptake and success. This paper revisits Haslam's proposal in the context of interventions to reduce musculoskeletal disorders. Effective MSD interventions require a systematic approach and need to take into account a combination of measures. Research evidence suggests that in practice, those charged with the management of MSDs are not consistently adopting such an approach. Consequently, intervention development may not represent contemporary best practice. We propose a potential method of addressing this gap is the stage of change model, and use a case study to illustrate this argument in tailoring intervention development for managing MSDs. PMID:27184326

  15. Review of novel therapeutic targets for improving heart failure treatment based on experimental and clinical studies

    PubMed Central

    Bonsu, Kwadwo Osei; Owusu, Isaac Kofi; Buabeng, Kwame Ohene; Reidpath, Daniel Diamond; Kadirvelu, Amudha

    2016-01-01

    Heart failure (HF) is a major public health priority due to its epidemiological transition and the world’s aging population. HF is typified by continuous loss of contractile function with reduced, normal, or preserved ejection fraction, elevated vascular resistance, fluid and autonomic imbalance, and ventricular dilatation. Despite considerable advances in the treatment of HF over the past few decades, mortality remains substantial. Pharmacological treatments including β-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone antagonists have been proven to prolong the survival of patients with HF. However, there are still instances where patients remain symptomatic, despite optimal use of existing therapeutic agents. This understanding that patients with chronic HF progress into advanced stages despite receiving optimal treatment has increased the quest for alternatives, exploring the roles of additional pathways that contribute to the development and progression of HF. Several pharmacological targets associated with pathogenesis of HF have been identified and novel therapies have emerged. In this work, we review recent evidence from proposed mechanisms to the outcomes of experimental and clinical studies of the novel pharmacological agents that have emerged for the treatment of HF. PMID:27350750

  16. [Gross tumor volume (GTV) and clinical target volume (CTV) in radiotherapy of benign skull base tumors].

    PubMed

    Maire, J P; Liguoro, D; San Galli, F

    2001-10-01

    Skull base tumours represent about 35 to 40% of all intracranial tumours. There are now many reports in the literature confirming the fact that about 80 to 90% of such tumours are controlled with fractionated radiotherapy. Stereotactic and 3-dimensional treatment planning techniques increase local control and central nervous system tolerance. Definition of the gross tumor volume (GTV) is generally easy with currently available medical imaging systems and computers for 3-dimensional dosimetry. The definition of the clinical target volume (CTV) is more difficult to appreciate; it is defined from the CTV plus a margin, which depends on the histology and anterior therapeutic history of the tumour. It is important to take into account the visible tumour and its possible extension pathways (adjacent bone, holes at the base of skull) and/or an anatomic region (sella turcica + adjacent cavernous sinus). It is necessary to evaluate these volumes with CT Scan and MRI to appreciate tumor extension in a 3-dimentional approach, in order to reduce the risk of marginal recurrences. The aim of this paper is to discuss volume definition as a function of tumour site and tumour type to be irradiated. PMID:11715310

  17. Optimal antisense target reducing INS intron 1 retention is adjacent to a parallel G quadruplex

    PubMed Central

    Kralovicova, Jana; Lages, Ana; Patel, Alpa; Dhir, Ashish; Buratti, Emanuele; Searle, Mark; Vorechovsky, Igor

    2014-01-01

    Splice-switching oligonucleotides (SSOs) have been widely used to inhibit exon usage but antisense strategies that promote removal of entire introns to increase splicing-mediated gene expression have not been developed. Here we show reduction of INS intron 1 retention by SSOs that bind transcripts derived from a human haplotype expressing low levels of proinsulin. This haplotype is tagged by a polypyrimidine tract variant rs689 that decreases the efficiency of intron 1 splicing and increases the relative abundance of mRNAs with extended 5' untranslated region (5' UTR), which curtails translation. Co-expression of haplotype-specific reporter constructs with SSOs bound to splicing regulatory motifs and decoy splice sites in primary transcripts revealed a motif that significantly reduced intron 1-containing mRNAs. Using an antisense microwalk at a single nucleotide resolution, the optimal target was mapped to a splicing silencer containing two pseudoacceptor sites sandwiched between predicted RNA guanine (G) quadruplex structures. Circular dichroism spectroscopy and nuclear magnetic resonance of synthetic G-rich oligoribonucleotide tracts derived from this region showed formation of a stable parallel 2-quartet G-quadruplex on the 3' side of the antisense retention target and an equilibrium between quadruplexes and stable hairpin-loop structures bound by optimal SSOs. This region interacts with heterogeneous nuclear ribonucleoproteins F and H that may interfere with conformational transitions involving the antisense target. The SSO-assisted promotion of weak intron removal from the 5' UTR through competing noncanonical and canonical RNA structures may facilitate development of novel strategies to enhance gene expression. PMID:24944197

  18. Pancratistatin selectively targets cancer cell mitochondria and reduces growth of human colon tumor xenografts.

    PubMed

    Griffin, Carly; Karnik, Aditya; McNulty, James; Pandey, Siyaram

    2011-01-01

    The naturally occurring Amaryllidaceae alkaloid pancratistatin exhibits potent apoptotic activity against a large panel of cancer cells lines and has an insignificant effect on noncancerous cell lines, although with an elusive cellular target. Many current chemotherapeutics induce apoptosis via genotoxic mechanisms and thus have low selectivity. The observed selectivity of pancratistatin for cancer cells promoted us to consider the hypothesis that this alkaloid targets cancer cell mitochondria rather than DNA or its replicative machinery. In this study, we report that pancratistatin decreased mitochondrial membrane potential and induced apoptotic nuclear morphology in p53-mutant (HT-29) and wild-type p53 (HCT116) colorectal carcinoma cell lines, but not in noncancerous colon fibroblast (CCD-18Co) cells. Interestingly, pancratistatin was found to be ineffective against mtDNA-depleted (ρ(0)) cancer cells. Moreover, pancratistatin induced cell death in a manner independent of Bax and caspase activation, and did not alter β-tubulin polymerization rate nor cause double-stranded DNA breaks. For the first time we report the efficacy of pancratistatin in vivo against human colorectal adenocarcinoma xenografts. Intratumor administration of pancratistatin (3 mg/kg) caused significant reduction in the growth of subcutaneous HT-29 tumors in Nu/Nu mice (n = 6), with no apparent toxicity to the liver or kidneys as indicated by histopathologic analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Altogether, this work suggests that pancratistatin may be a novel mitochondria-targeting compound that selectively induces apoptosis in cancer cells and significantly reduces tumor growth. PMID:21220492

  19. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion.

    PubMed

    Alonso, Florian; Domingos-Pereira, Sonia; Le Gal, Loïc; Derré, Laurent; Meda, Paolo; Jichlinski, Patrice; Nardelli-Haefliger, Denise; Haefliger, Jacques-Antoine

    2016-03-22

    Endothelial connexin40 (Cx40) contributes to regulate the structure and function of vessels. We have examined whether the protein also modulates the altered growth of vessels in tumor models established in control mice (WT), mice lacking Cx40 (Cx40-/-), and mice expressing the protein solely in endothelial cells (Tie2-Cx40). Tumoral angiogenesis and growth were reduced, whereas vessel perfusion, smooth muscle cell (SMC) coverage and animal survival were increased in Cx40-/- but not Tie2-Cx40 mice, revealing a critical involvement of endothelial Cx40 in transformed tissues independently of the hypertensive status of Cx40-/- mice. As a result, Cx40-/- mice bearing tumors survived significantly longer than corresponding controls, including after a cytotoxic administration. Comparable observations were made in WT mice injected with a peptide targeting Cx40, supporting the Cx40 involvement. This involvement was further confirmed in the absence of Cx40 or by peptide-inhibition of this connexin in aorta-sprouting, matrigel plug and SMC migration assays, and associated with a decreased expression of the phosphorylated form of endothelial nitric oxide synthase. The data identify Cx40 as a potential novel target in cancer treatment. PMID:26883111

  20. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion

    PubMed Central

    Alonso, Florian; Domingos-Pereira, Sonia; Le Gal, Loïc; Derré, Laurent; Meda, Paolo; Jichlinski, Patrice; Nardelli-Haefliger, Denise; Haefliger, Jacques-Antoine

    2016-01-01

    Endothelial connexin40 (Cx40) contributes to regulate the structure and function of vessels. We have examined whether the protein also modulates the altered growth of vessels in tumor models established in control mice (WT), mice lacking Cx40 (Cx40−/−), and mice expressing the protein solely in endothelial cells (Tie2-Cx40). Tumoral angiogenesis and growth were reduced, whereas vessel perfusion, smooth muscle cell (SMC) coverage and animal survival were increased in Cx40−/− but not Tie2-Cx40 mice, revealing a critical involvement of endothelial Cx40 in transformed tissues independently of the hypertensive status of Cx40−/− mice. As a result, Cx40−/− mice bearing tumors survived significantly longer than corresponding controls, including after a cytotoxic administration. Comparable observations were made in WT mice injected with a peptide targeting Cx40, supporting the Cx40 involvement. This involvement was further confirmed in the absence of Cx40 or by peptide-inhibition of this connexin in aorta-sprouting, matrigel plug and SMC migration assays, and associated with a decreased expression of the phosphorylated form of endothelial nitric oxide synthase. The data identify Cx40 as a potential novel target in cancer treatment. PMID:26883111

  1. Targeting hedgehog signalling by arsenic trioxide reduces cell growth and induces apoptosis in rhabdomyosarcoma.

    PubMed

    Boehme, Karen A; Zaborski, Julian J; Riester, Rosa; Schweiss, Sabrina K; Hopp, Ulrike; Traub, Frank; Kluba, Torsten; Handgretinger, Rupert; Schleicher, Sabine B

    2016-02-01

    Rhabdomyosarcomas (RMS) are soft tissue tumours treated with a combination of surgery and chemotherapy. However, mortality rates remain high in case of recurrences and metastatic disease due to drug resistance and failure to undergo apoptosis. Therefore, innovative approaches targeting specific signalling pathways are urgently needed. We analysed the impact of different hedgehog (Hh) pathway inhibitors on growth and survival of six RMS cell lines using MTS assay, colony formation assay, 3D spheroid cultures, flow cytometry and western blotting. Especially the glioma-associated oncogene family (GLI) inhibitor arsenic trioxide (ATO) effectively reduced viability as well as clonal growth and induced cell death in RMS cell lines of embryonal, alveolar and sclerosing, spindle cell subtype, whereas normal skeletal muscle cells were hardly compromised by ATO. Combination of ATO with itraconazole potentiated the reduction of colony formation and spheroid size. These results show that ATO is a promising substance for treatment of relapsed and refractory RMS by directly targeting GLI transcription factors. The combination with itraconazole or other chemotherapeutic drugs has the opportunity to enforce the treatment efficiency of resistant and recurrent RMS. PMID:26676886

  2. Odours reduce the magnitude of object substitution masking for matching visual targets in females.

    PubMed

    Robinson, Amanda K; Laning, Julia; Reinhard, Judith; Mattingley, Jason B

    2016-08-01

    Recent evidence suggests that olfactory stimuli can influence early stages of visual processing, but there has been little focus on whether such olfactory-visual interactions convey an advantage in visual object identification. Moreover, despite evidence that some aspects of olfactory perception are superior in females than males, no study to date has examined whether olfactory influences on vision are gender-dependent. We asked whether inhalation of familiar odorants can modulate participants' ability to identify briefly flashed images of matching visual objects under conditions of object substitution masking (OSM). Across two experiments, we had male and female participants (N = 36 in each group) identify masked visual images of odour-related objects (e.g., orange, rose, mint) amongst nonodour-related distracters (e.g., box, watch). In each trial, participants inhaled a single odour that either matched or mismatched the masked, odour-related target. Target detection performance was analysed using a signal detection (d') approach. In females, but not males, matching odours significantly reduced OSM relative to mismatching odours, suggesting that familiar odours can enhance the salience of briefly presented visual objects. We conclude that olfactory cues exert a subtle influence on visual processes by transiently enhancing the salience of matching object representations. The results add to a growing body of literature that points towards consistent gender differences in olfactory perception. PMID:27306640

  3. The impact of patient support programs on adherence, clinical, humanistic, and economic patient outcomes: a targeted systematic review

    PubMed Central

    Ganguli, Arijit; Clewell, Jerry; Shillington, Alicia C

    2016-01-01

    Background Patient support programs (PSPs), including medication management and counseling, have the potential to improve care in chronic disease states with complex therapies. Little is known about the program’s effects on improving clinical, adherence, humanistic, and cost outcomes. Purpose To conduct a targeted review describing medical conditions in which PSPs have been implemented; support delivery components (eg, face-to-face, phone, mail, and internet); and outcomes associated with implementation. Data sources MEDLINE – 10 years through March 2015 with supplemental handsearching of reference lists. Study selection English-language trials and observational studies of PSPs providing at minimum, counseling for medication management, measurement of ≥1 clinical outcome, and a 3-month follow-up period during which outcomes were measured. Data extraction Program characteristics and related clinical, adherence, humanistic, and cost outcomes were abstracted. Study quality and the overall strength of evidence were reviewed using standard criteria. Data synthesis Of 2,239 citations, 64 studies met inclusion criteria. All targeted chronic disease processes and the majority (48 [75%]) of programs offered in-clinic, face-to-face support. All but 9 (14.1%) were overseen by allied health care professionals (eg, nurses, pharmacists, paraprofessionals). Forty-one (64.1%) reported at least one significantly positive clinical outcome. The most frequent clinical outcome impacted was adherence, where 27 of 41 (66%) reported a positive outcome. Of 42 studies measuring humanistic outcomes (eg, quality of life, functional status), 27 (64%) reported significantly positive outcomes. Only 15 (23.4%) programs reported cost or utilization-related outcomes, and, of these, 12 reported positive impacts. Conclusion The preponderance of evidence suggests a positive impact of PSPs on adherence, clinical and humanistic outcomes. Although less often measured, health care utilization and

  4. Targeting the schizophrenia genome: a fast track strategy from GWAS to clinic.

    PubMed

    Lencz, T; Malhotra, A K

    2015-07-01

    The Psychiatric Genomics Consortium-Schizophrenia Workgroup (PGC-SCZ) has recently published a genomewide association study (GWAS) identifying >100 genetic loci, encompassing a total of 341 protein-coding genes, attaining genomewide significance for susceptibility to schizophrenia. Given the extremely long time (12-15 years) and expense (>$1 billion) associated with the development of novel drug targets, repurposing of drugs with known and validated targets may be the most expeditious path toward deriving clinical utility from these GWAS findings. In the present study, we examined all genes within loci implicated by the PGC-SCZ GWAS against databases of targets of both approved and registered pharmaceutical compounds. We identified 20 potential schizophrenia susceptibility genes that encode proteins that are the targets of approved drugs. Of these, we prioritized genes/targets that are of clear neuropsychiatric interest and that are also sole members of the linkage disequilibrium block surrounding a PGC-SCZ GWAS hit. In addition to DRD2, 5 genes meet these criteria: CACNA1C, CACNB2, CACNA1I, GRIN2A and HCN1. An additional 20 genes coding for proteins that are the targets of drugs in registered clinical trials, but without approved indications, were also identified. Although considerable work is still required to fully explicate the biological implications of the PGC-SCZ GWAS results, pathways related to these known, druggable targets may represent a promising starting point. PMID:25869805

  5. Neuronal-Targeted TFEB Accelerates Lysosomal Degradation of APP, Reducing Aβ Generation and Amyloid Plaque Pathogenesis

    PubMed Central

    Xiao, Qingli; Yan, Ping; Ma, Xiucui; Liu, Haiyan; Perez, Ronaldo; Zhu, Alec; Gonzales, Ernesto; Tripoli, Danielle L.; Czerniewski, Leah; Ballabio, Andrea; Cirrito, John R.

    2015-01-01

    In AD, an imbalance between Aβ production and removal drives elevated brain Aβ levels and eventual amyloid plaque deposition. APP undergoes nonamyloidogenic processing via α-cleavage at the plasma membrane, amyloidogenic β- and γ-cleavage within endosomes to generate Aβ, or lysosomal degradation in neurons. Considering multiple reports implicating impaired lysosome function as a driver of increased amyloidogenic processing of APP, we explored the efficacy of targeting transcription factor EB (TFEB), a master regulator of lysosomal pathways, to reduce Aβ levels. CMV promoter-driven TFEB, transduced via stereotactic hippocampal injections of adeno-associated virus particles in APP/PS1 mice, localized primarily to neuronal nuclei and upregulated lysosome biogenesis. This resulted in reduction of APP protein, the α and β C-terminal APP fragments (CTFs), and in the steady-state Aβ levels in the brain interstitial fluid. In aged mice, total Aβ levels and amyloid plaque load were selectively reduced in the TFEB-transduced hippocampi. TFEB transfection in N2a cells stably expressing APP695, stimulated lysosome biogenesis, reduced steady-state levels of APP and α- and β-CTFs, and attenuated Aβ generation by accelerating flux through the endosome-lysosome pathway. Cycloheximide chase assays revealed a shortening of APP half-life with exogenous TFEB expression, which was prevented by concomitant inhibition of lysosomal acidification. These data indicate that TFEB enhances flux through lysosomal degradative pathways to induce APP degradation and reduce Aβ generation. Activation of TFEB in neurons is an effective strategy to attenuate Aβ generation and attenuate amyloid plaque deposition in AD. SIGNIFICANCE STATEMENT A key driver for AD pathogenesis is the net balance between production and clearance of Aβ, the major component of amyloid plaques. Here we demonstrate that lysosomal degradation of holo-APP influences Aβ production by limiting the availability of

  6. Target Volume Delineation for Partial Breast Radiotherapy Planning: Clinical Characteristics Associated with Low Interobserver Concordance

    SciTech Connect

    Petersen, Ross P.; Truong, Pauline T. Kader, Hosam A.; Berthelet, Eric; Lee, Junella C.; Hilts, Michelle L.; Kader, Adam S.; Beckham, Wayne A.; Olivotto, Ivo A.

    2007-09-01

    Purpose: To examine variability in target volume delineation for partial breast radiotherapy planning and evaluate characteristics associated with low interobserver concordance. Methods and Materials: Thirty patients who underwent planning CT for adjuvant breast radiotherapy formed the study cohort. Using a standardized scale to score seroma clarity and consensus contouring guidelines, three radiation oncologists independently graded seroma clarity and delineated seroma volumes for each case. Seroma geometric center coordinates, maximum diameters in three axes, and volumes were recorded. Conformity index (CI), the ratio of overlapping volume and encompassing delineated volume, was calculated for each case. Cases with CI {<=}0.50 were analyzed to identify features associated with low concordance. Results: The median time from surgery to CT was 42.5 days. For geometric center coordinates, variations from the mean were 0.5-1.1 mm and standard deviations (SDs) were 0.5-1.8 mm. For maximum seroma dimensions, variations from the mean and SDs were predominantly <5 mm, with the largest SDs observed in the medial-lateral axis. The mean CI was 0.61 (range, 0.27-0.84). Five cases had CI {<=}0.50. Conformity index was significantly associated with seroma clarity (p < 0.001) and seroma volume (p < 0.002). Features associated with reduced concordance included tissue stranding from the surgical cavity, proximity to muscle, dense breast parenchyma, and benign calcifications that may be mistaken for surgical clips. Conclusion: Variability in seroma contouring occurred in three dimensions, with the largest variations in the medial-lateral axis. Awareness of clinical features associated with reduced concordance may be applied toward training staff and refining contouring guidelines for partial breast radiotherapy trials.

  7. Comparison of FDA Approved Kinase Targets to Clinical Trial Ones: Insights from Their System Profiles and Drug-Target Interaction Networks

    PubMed Central

    Xu, Jingyu; Wang, Panpan; Yang, Hong; Li, Yinghong; Yu, Chunyan; Tian, Yubin

    2016-01-01

    Kinase is one of the most productive classes of established targets, but the majority of approved drugs against kinase were developed only for cancer. Intensive efforts were therefore exerted for releasing its therapeutic potential by discovering new therapeutic area. Kinases in clinical trial could provide great opportunities for treating various diseases. However, no systematic comparison between system profiles of established targets and those of clinical trial ones was conducted. The reveal of probable difference or shift of trend would help to identify key factors defining druggability of established targets. In this study, a comparative analysis of system profiles of both types of targets was conducted. Consequently, the systems profiles of the majority of clinical trial kinases were identified to be very similar to those of established ones, but percentages of established targets obeying the system profiles appeared to be slightly but consistently higher than those of clinical trial targets. Moreover, a shift of trend in the system profiles from the clinical trial to the established targets was identified, and popular kinase targets were discovered. In sum, this comparative study may help to facilitate the identification of the druggability of established drug targets by their system profiles and drug-target interaction networks. PMID:27547755

  8. Small Molecule Sequential Dual-Targeting Theragnostic Strategy (SMSDTTS): from Preclinical Experiments towards Possible Clinical Anticancer Applications

    PubMed Central

    Li, Junjie; Oyen, Raymond; Verbruggen, Alfons; Ni, Yicheng

    2013-01-01

    Hitting the evasive tumor cells proves challenging in targeted cancer therapies. A general and unconventional anticancer approach namely small molecule sequential dual-targeting theragnostic strategy (SMSDTTS) has recently been introduced with the aims to target and debulk the tumor mass, wipe out the residual tumor cells, and meanwhile enable cancer detectability. This dual targeting approach works in two steps for systemic delivery of two naturally derived drugs. First, an anti-tubulin vascular disrupting agent, e.g., combretastatin A4 phosphate (CA4P), is injected to selectively cut off tumor blood supply and to cause massive necrosis, which nevertheless always leaves peripheral tumor residues. Secondly, a necrosis-avid radiopharmaceutical, namely 131I-hypericin (131I-Hyp), is administered the next day, which accumulates in intratumoral necrosis and irradiates the residual cancer cells with beta particles. Theoretically, this complementary targeted approach may biologically and radioactively ablate solid tumors and reduce the risk of local recurrence, remote metastases, and thus cancer mortality. Meanwhile, the emitted gamma rays facilitate radio-scintigraphy to detect tumors and follow up the therapy, hence a simultaneous theragnostic approach. SMSDTTS has now shown promise from multicenter animal experiments and may demonstrate unique anticancer efficacy in upcoming preliminary clinical trials. In this short review article, information about the two involved agents, the rationale of SMSDTTS, its preclinical antitumor efficacy, multifocal targetability, simultaneous theragnostic property, and toxicities of the dose regimens are summarized. Meanwhile, possible drawbacks, practical challenges and future improvement with SMSDTTS are discussed, which hopefully may help to push forward this strategy from preclinical experiments towards possible clinical applications. PMID:23412554

  9. Clinical Efficacy of a Specifically Targeted Antimicrobial Peptide Mouth Rinse: Targeted Elimination of Streptococcus mutans and Prevention of Demineralization

    PubMed Central

    Sullivan, R.; Santarpia, P.; Lavender, S.; Gittins, E.; Liu, Z.; Anderson, M.H.; He, J.; Shi, W.; Eckert, R.

    2011-01-01

    Background/Aims Streptococcus mutans, the major etiological agent of dental caries, has a measurable impact on domestic and global health care costs. Though persistent in the oral cavity despite conventional oral hygiene, S. mutans can be excluded from intact oral biofilms through competitive exclusion by other microorganisms. This suggests that therapies capable of selectively eliminating S. mutans while limiting the damage to the normal oral flora might be effective long-term interventions to fight cariogenesis. To meet this challenge, we designed C16G2, a novel synthetic specifically targeted antimicrobial peptide with specificity for S. mutans. C16G2 consists of a S. mutans-selective ‘targeting region’ comprised of a fragment from S. mutans competence stimulation peptide (CSP) conjoined to a ‘killing region’ consisting of a broad-spectrum antimicrobial peptide (G2). In vitro studies have indicated that C16G2 has robust efficacy and selectivity for S. mutans, and not other oral bacteria, and affects targeted bacteria within seconds of contact. Methods In the present study, we evaluated C16G2 for clinical utility in vitro, followed by a pilot efficacy study to examine the impact of a 0.04% (w/v) C16G2 rinse in an intra-oral remineralization/demineralization model. Results and Conclusions C16G2 rinse usage was associated with reductions in plaque and salivary S. mutans, lactic acid production, and enamel demineralization. The impact on total plaque bacteria was minimal. These results suggest that C16G2 is effective against S. mutans in vivo and should be evaluated further in the clinic. PMID:21860239

  10. The effect of image-guided radiation therapy on the margin between the clinical target volume and planning target volume in lung cancer

    SciTech Connect

    Liang, Jun; Li, Minghui; Zhang, Tao; Han, Wei; Chen, Dongfu; Hui, Zhouguang; Lv, Jima; Zhang, Zhong; Zhang, Yin; Zhang, Liansheng; Zheng, Rong; Dai, Jianrong; Wang, Luhua

    2014-02-15

    Introduction: This study aimed to evaluate the effect of image-guided radiation therapy (IGRT) on the margin between the clinical target volume (CTV) and planning target volume (PTV) in lung cancer. Methods: The CTV and PTV margin were determined in three dimensions by four radiation oncologists using a standard method in 10 lung cancer patients, and compared to consensus values. Transfer error was measured using a rigid phantom containing gold markers. Systematic error and random error set up errors were calculated in three dimensions from pre-treatment and post-treatment cone beam CT scans. Finally, the margin between the CTV and PTV was corrected for set up error and calculated. Results: The margins between the CTV and PTV with IGRT (and without IGRT) were 0.88 cm (0.96 cm), 0.99 cm (1.08 cm) and 1.28 cm (1.82 cm) in the anterior and posterior (AP), left and right (LR) and superior and inferior (SI) directions, respectively. Images from two other patients verified the validity of the corrected margin. The target delineation errors of the radiation oncologists are considered to be the largest compared with the set up errors. The application of IGRT reduced the set up errors and the margins between CTV and PTV. Conclusions: The delineation errors of radiation oncologists are the most important factor to consider for the margin between CTV and PTV for lung cancer. IGRT can reduce the margins by reducing the set up errors, especially in the SI direction. Further research is required to assess whether the reduction in the margin is solely based on set up errors.

  11. The effect of image-guided radiation therapy on the margin between the clinical target volume and planning target volume in lung cancer

    PubMed Central

    Liang, Jun; Li, Minghui; Zhang, Tao; Han, Wei; Chen, Dongfu; Hui, Zhouguang; Lv, Jima; Zhang, Zhong; Zhang, Yin; Zhang, Liansheng; Zheng, Rong; Dai, Jianrong; Wang, Luhua

    2014-01-01

    IntroductionThis study aimed to evaluate the effect of image-guided radiation therapy (IGRT) on the margin between the clinical target volume (CTV) and planning target volume (PTV) in lung cancer. MethodsThe CTV and PTV margin were determined in three dimensions by four radiation oncologists using a standard method in 10 lung cancer patients, and compared to consensus values. Transfer error was measured using a rigid phantom containing gold markers. Systematic error () and random error () set up errors were calculated in three dimensions from pre-treatment and post-treatment cone beam CT scans. Finally, the margin between the CTV and PTV was corrected for set up error and calculated. ResultsThe margins between the CTV and PTV with IGRT (and without IGRT) were 0.88 cm (0.96 cm), 0.99 cm (1.08 cm) and 1.28 cm (1.82 cm) in the anterior and posterior (AP), left and right (LR) and superior and inferior (SI) directions, respectively. Images from two other patients verified the validity of the corrected margin. The target delineation errors of the radiation oncologists are considered to be the largest compared with the set up errors. The application of IGRT reduced the set up errors and the margins between CTV and PTV. ConclusionsThe delineation errors of radiation oncologists are the most important factor to consider for the margin between CTV and PTV for lung cancer. IGRT can reduce the margins by reducing the set up errors, especially in the SI direction. Further research is required to assess whether the reduction in the margin is solely based on set up errors. PMID:26229633

  12. [Clinical investigation on target value of T>MIC in carbapenems].

    PubMed

    Mikamo, Hiroshige; Yamagishi, Yuka; Tanaka, Kaori; Watanabe, Kunitomo

    2008-04-01

    There have been few clinical reports on pharmacokinetics-pharmacodynamics (PK-PD) theory, although many basic or fundamental researches on appropriate use for the antimicrobials based on the PK-PD theory have been performed. We evaluated the target T>MIC values on meropenem and biapenem which have been obtained by basic researches. While we investigated whether the target T>MIC values were also useful for anaerobic infections. Clinical and bacteriological efficacies of meropenem and biapenem were about 70% in T>MIC over 25% or over 80% in T>MIC over 30%. When monomicrobial infections by anaerobes were occurred as abscesses, there have been no correlation between target T>MIC values and clinical effect. When polymicrobial infections between aerobes and anaerobes were occurred, we have achieved over 90% clinical efficacy when over 20% T>MIC values. These results supported the data by Craig, W. A. and Drusano, G. L. The regimen based on PK-PD theory would be useful in clinical practice including against anaerobic infections. PMID:18669417

  13. Reducing undesirable hepatic clearance of a tumor-targeted vinca alkaloid via novel saccharopeptidic modifications.

    PubMed

    Leamon, Christopher P; Reddy, Joseph A; Klein, Patrick J; Vlahov, Iontcho R; Dorton, Ryan; Bloomfield, Alicia; Nelson, Melissa; Westrick, Elaine; Parker, Nikki; Bruna, Kristen; Vetzel, Marilynn; Gehrke, Mark; Nicoson, Jeffrey S; Messmann, Richard A; LoRusso, Patricia M; Sausville, Edward A

    2011-02-01

    During a phase I trial of EC145 (a folate-targeted vinca alkaloid conjugate), constipation was identified as the dose-limiting toxicity, probably from a nonfolate receptor-related liver clearance process capable of releasing unconjugated vinca alkaloid from EC145 and shuttling it to the bile. Here, we report on the selective placement of novel carbohydrate segments (1-amino-1-deoxy-glucitolyl-γ-glutamate) spaced in-between the folate and vinca alkaloid moieties of EC145, which yielded a new agent (EC0489) that is equipotent but less toxic than EC145. Whereas both compounds could cure tumor-bearing mice reproducibly, EC0489 differed from EC145 with i) a shorter elimination half-life, ii) approximately 70% decrease in bile clearance, iii) a 4-fold increase in urinary excretion, and iv) improved tolerability in rodents. This combination of improvements justified the clinical evaluation of EC0489 where currently administered dose levels have exceeded the maximal tolerated dose of EC145 by approximately 70%, thereby reflecting the translational benefits to this new approach. PMID:20978169

  14. Chemokines in Wound Healing and as Potential Therapeutic Targets for Reducing Cutaneous Scarring

    PubMed Central

    Rees, Peter Adam; Greaves, Nicholas Stuart; Baguneid, Mohamed; Bayat, Ardeshir

    2015-01-01

    Significance: Cutaneous scarring is an almost inevitable end point of adult human wound healing. It is associated with significant morbidity, both physical and psychological. Pathological scarring, including hypertrophic and keloid scars, can be particularly debilitating. Manipulation of the chemokine system may lead to effective therapies for problematic lesions. Recent Advances: Rapid advancement in the understanding of chemokines and their receptors has led to exciting developments in the world of therapeutics. Modulation of their function has led to clinically effective treatments for conditions as diverse as human immunodeficiency virus and inflammatory bowel disease. Potential methods of targeting chemokines include monoclonal antibodies, small-molecule antagonists, interference with glycosaminoglycan binding and the use of synthetic truncated chemokines. Early work has shown promising results on scar development and appearance when the chemokine system is manipulated. Critical Issues: Chemokines are implicated in all stages of wound healing leading to the development of a cutaneous scar. An understanding of entirely regenerative wound healing in the developing fetus and how the expression of chemokines and their receptors change during the transition to the adult phenotype is central to addressing pathological scarring in adults. Future Directions: As our understanding of chemokine/receptor interactions and scar formation evolves it has become apparent that effective therapies will need to mirror the complexities in these diverse biological processes. It is likely that sophisticated treatments that sequentially influence multiple ligand/receptor interactions throughout all stages of wound healing will be required to deliver viable treatment options. PMID:26543682

  15. In vitro pharmacological profiling of R406 identifies molecular targets underlying the clinical effects of fostamatinib

    PubMed Central

    Rolf, Michael G; Curwen, Jon O; Veldman-Jones, Margaret; Eberlein, Cath; Wang, Jianyan; Harmer, Alex; Hellawell, Caroline J; Braddock, Martin

    2015-01-01

    Off-target pharmacology may contribute to both adverse and beneficial effects of a new drug. In vitro pharmacological profiling is often applied early in drug discovery; there are fewer reports addressing the relevance of broad profiles to clinical adverse effects. Here, we have characterized the pharmacological profile of the active metabolite of fostamatinib, R406, linking an understanding of drug selectivity to the increase in blood pressure observed in clinical studies. R406 was profiled in a broad range of in vitro assays to generate a comprehensive pharmacological profile and key targets were further investigated using functional and cellular assay systems. A combination of traditional literature searches and text-mining approaches established potential mechanistic links between the profile of R406 and clinical side effects. R406 was selective outside the kinase domain, with only antagonist activity at the adenosine A3 receptor in the range relevant to clinical effects. R406 was less selective in the kinase domain, having activity at many protein kinases at therapeutically relevant concentrations when tested in multiple in vitro systems. Systematic literature analyses identified KDR as the probable target underlying the blood pressure increase observed in patients. While the in vitro pharmacological profile of R406 suggests a lack of selectivity among kinases, a combination of classical searching and text-mining approaches rationalized the complex profile establishing linkage between off-target pharmacology and clinically observed effects. These results demonstrate the utility of in vitro pharmacological profiling for a compound in late-stage clinical development. PMID:26516587

  16. In vitro pharmacological profiling of R406 identifies molecular targets underlying the clinical effects of fostamatinib.

    PubMed

    Rolf, Michael G; Curwen, Jon O; Veldman-Jones, Margaret; Eberlein, Cath; Wang, Jianyan; Harmer, Alex; Hellawell, Caroline J; Braddock, Martin

    2015-10-01

    Off-target pharmacology may contribute to both adverse and beneficial effects of a new drug. In vitro pharmacological profiling is often applied early in drug discovery; there are fewer reports addressing the relevance of broad profiles to clinical adverse effects. Here, we have characterized the pharmacological profile of the active metabolite of fostamatinib, R406, linking an understanding of drug selectivity to the increase in blood pressure observed in clinical studies. R406 was profiled in a broad range of in vitro assays to generate a comprehensive pharmacological profile and key targets were further investigated using functional and cellular assay systems. A combination of traditional literature searches and text-mining approaches established potential mechanistic links between the profile of R406 and clinical side effects. R406 was selective outside the kinase domain, with only antagonist activity at the adenosine A3 receptor in the range relevant to clinical effects. R406 was less selective in the kinase domain, having activity at many protein kinases at therapeutically relevant concentrations when tested in multiple in vitro systems. Systematic literature analyses identified KDR as the probable target underlying the blood pressure increase observed in patients. While the in vitro pharmacological profile of R406 suggests a lack of selectivity among kinases, a combination of classical searching and text-mining approaches rationalized the complex profile establishing linkage between off-target pharmacology and clinically observed effects. These results demonstrate the utility of in vitro pharmacological profiling for a compound in late-stage clinical development. PMID:26516587

  17. Integrated analysis of microRNA-target interactions with clinical outcomes for cancers

    PubMed Central

    2014-01-01

    Background Clinical statement alone is not enough to predict the progression of disease. Instead, the gene expression profiles have been widely used to forecast clinical outcomes. Many genes related to survival have been identified, and recently miRNA expression signatures predicting patient survival have been also investigated for several cancers. However, miRNAs and their target genes associated with clinical outcomes have remained largely unexplored. Methods Here, we demonstrate a survival analysis based on the regulatory relationships of miRNAs and their target genes. The patient survivals for the two major cancers, ovarian cancer and glioblastoma multiforme (GBM), are investigated through the integrated analysis of miRNA-mRNA interaction pairs. Results We found that there is a larger survival difference between two patient groups with an inversely correlated expression profile of miRNA and mRNA. It supports the idea that signatures of miRNAs and their targets related to cancer progression can be detected via this approach. Conclusions This integrated analysis can help to discover coordinated expression signatures of miRNAs and their target mRNAs that can be employed for therapeutics in human cancers. PMID:25079112

  18. Dependable and Efficient Clinical Molecular Diagnosis of Chinese RP Patient with Targeted Exon Sequencing

    PubMed Central

    Yin, Xiaobei; Dou, Hongliang; Zhao, Lin; Chen, Ningning; Zhang, Jinlu; Zhang, Huirong; Li, Genlin; Ma, Zhizhong

    2015-01-01

    Retinitis pigmentosa (RP) is the most common inherited retinal disease. It is a clinically and genetically heterogeneous disorder, which is why it is particularly challenging to diagnose. The aim of this study was to establish a targeted next-generation sequencing (NGS) approach for the comprehensive, rapid, and cost-effective clinical molecular diagnosis of RP. A specific hereditary eye disease enrichment panel (HEDEP) based on exome capture technology was used to collect the protein coding regions of 371 targeted hereditary eye disease genes, followed by high-throughput sequencing on the Illumina HiSeq2000 platform. From a cohort of 34 Chinese RP families, 13 families were successfully diagnosed; thus, the method achieves a diagnostic rate of approximately 40%. Of 16 pathogenic mutations identified, 11 were novel. Our study demonstrates that targeted capture sequencing offers a rapid and effective method for the molecular diagnosis of RP, which helps to provide a more accurate clinical diagnosis and paves the way for genetic counseling, family planning, and future gene-targeted treatment. PMID:26496393

  19. Detection of Gene Rearrangements in Targeted Clinical Next-Generation Sequencing

    PubMed Central

    Abel, Haley J.; Al-Kateb, Hussam; Cottrell, Catherine E.; Bredemeyer, Andrew J.; Pritchard, Colin C.; Grossmann, Allie H.; Wallander, Michelle L.; Pfeifer, John D.; Lockwood, Christina M.; Duncavage, Eric J.

    2015-01-01

    The identification of recurrent gene rearrangements in the clinical laboratory is the cornerstone for risk stratification and treatment decisions in many malignant tumors. Studies have reported that targeted next-generation sequencing assays have the potential to identify such rearrangements; however, their utility in the clinical laboratory is unknown. We examine the sensitivity and specificity of ALK and KMT2A (MLL) rearrangement detection by next-generation sequencing in the clinical laboratory. We analyzed a series of seven ALK rearranged cancers, six KMT2A rearranged leukemias, and 77 ALK/KMT2A rearrangement–negative cancers, previously tested by fluorescence in situ hybridization (FISH). Rearrangement detection was tested using publicly available software tools, including Breakdancer, ClusterFAST, CREST, and Hydra. Using Breakdancer and ClusterFAST, we detected ALK rearrangements in seven of seven FISH-positive cases and KMT2A rearrangements in six of six FISH-positive cases. Among the 77 ALK/KMT2A FISH-negative cases, no false-positive identifications were made by Breakdancer or ClusterFAST. Further, we identified one ALK rearranged case with a noncanonical intron 16 breakpoint, which is likely to affect its response to targeted inhibitors. We report that clinically relevant chromosomal rearrangements can be detected from targeted gene panel–based next-generation sequencing with sensitivity and specificity equivalent to that of FISH while providing finer-scale information and increased efficiency for molecular oncology testing. PMID:24813172

  20. Microinterventions targeting regulatory focus and regulatory fit selectively reduce dysphoric and anxious mood.

    PubMed

    Strauman, Timothy J; Socolar, Yvonne; Kwapil, Lori; Cornwell, James F M; Franks, Becca; Sehnert, Steen; Higgins, E Tory

    2015-09-01

    Depression and generalized anxiety, separately and as comorbid states, continue to represent a significant public health challenge. Current cognitive-behavioral treatments are clearly beneficial but there remains a need for continued development of complementary interventions. This manuscript presents two proof-of-concept studies, in analog samples, of "microinterventions" derived from regulatory focus and regulatory fit theories and targeting dysphoric and anxious symptoms. In Study 1, participants with varying levels of dysphoric and/or anxious mood were exposed to a brief intervention either to increase or to reduce engagement in personal goal pursuit, under the hypothesis that dysphoria indicates under-engagement of the promotion system whereas anxiety indicates over-engagement of the prevention system. In Study 2, participants with varying levels of dysphoric and/or anxious mood received brief training in counterfactual thinking, under the hypothesis that inducing individuals in a state of promotion failure to generate subtractive counterfactuals for past failures (a non-fit) will lessen their dejection/depression-related symptoms, whereas inducing individuals in a state of prevention failure to generate additive counterfactuals for past failures (a non-fit) will lessen their agitation/anxiety-related symptoms. In both studies, we observed discriminant patterns of reduction in distress consistent with the hypothesized links between dysfunctional states of the two motivational systems and dysphoric versus anxious symptoms. PMID:26163353

  1. Saffron reduces ATP-induced retinal cytotoxicity by targeting P2X7 receptors.

    PubMed

    Corso, Lucia; Cavallero, Anna; Baroni, Debora; Garbati, Patrizia; Prestipino, Gianfranco; Bisti, Silvia; Nobile, Mario; Picco, Cristiana

    2016-03-01

    P2X7-type purinergic receptors are distributed throughout the nervous system where they contribute to physiological and pathological functions. In the retina, this receptor is found in both inner and outer cells including microglia modulating signaling and health of retinal cells. It is involved in retinal neurodegenerative disorders such as retinitis pigmentosa and age-related macular degeneration (AMD). Experimental studies demonstrated that saffron protects photoreceptors from light-induced damage preserving both retinal morphology and visual function and improves retinal flicker sensitivity in AMD patients. To evaluate a possible interaction between saffron and P2X7 receptors (P2X7Rs), different cellular models and experimental approaches were used. We found that saffron positively influences the viability of mouse primary retinal cells and photoreceptor-derived 661W cells exposed to ATP, and reduced the ATP-induced intracellular calcium increase in 661W cells. Similar results were obtained on HEK cells transfected with recombinant rat P2X7R but not on cells transfected with rat P2X2R. Finally, patch-clamp experiments showed that saffron inhibited cationic currents in HEK-P2X7R cells. These results point out a novel mechanism through which saffron may exert its protective role in neurodegeneration and support the idea that P2X7-mediated calcium signaling may be a crucial therapeutic target in the treatment of neurodegenerative diseases. PMID:26739703

  2. Rapid targeted somatic mutation analysis of solid tumors in routine clinical diagnostics

    PubMed Central

    Francaviglia, Ilaria; Dal Cin, Elena; Barbieri, Gianluca; Arrigoni, Gianluigi; Pecciarini, Lorenza; Doglioni, Claudio; Cangi, Maria Giulia

    2015-01-01

    Tumor genotyping is an essential step in routine clinical practice and pathology laboratories face a major challenge in being able to provide rapid, sensitive and updated molecular tests. We developed a novel mass spectrometry multiplexed genotyping platform named PentaPanel to concurrently assess single nucleotide polymorphisms in 56 hotspots of the 5 most clinically relevant cancer genes, KRAS, NRAS, BRAF, EGFR and PIK3CA for a total of 221 detectable mutations. To both evaluate and validate the PentaPanel performance,we investigated 1025 tumor specimens of 6 different cancer types (carcinomas of colon, lung, breast, pancreas, and biliary tract, and melanomas), systematically addressing sensitivity, specificity, and reproducibility of our platform. Sanger sequencing was also performed for all the study samples. Our data showed that PentaPanel is a high throughput and robust tool, allowing genotyping for targeted therapy selection of 10 patients in the same run, with a practical turnaround time of 2 working days. Importantly, it was successfully used to interrogate different DNAs isolated from routinely processed specimens (formalin-fixed paraffin embedded, frozen, and cytological samples), covering all the requirements of clinical tests. In conclusion, the PentaPanel platform can provide an immediate, accurate and cost effective multiplex approach for clinically relevant gene mutation analysis in many solid tumors and its utility across many diseases can be particularly relevant in multiple clinical trials, including the new basket trial approach, aiming to identify appropriate targeted drug combination strategies. PMID:26435479

  3. Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI

    PubMed Central

    Farace, P; Giri, M G; Meliadò, G; Amelio, D; Widesott, L; Ricciardi, G K; Dall'Oglio, S; Rizzotti, A; Sbarbati, A; Beltramello, A; Maluta, S; Amichetti, M

    2011-01-01

    Objectives Delineation of clinical target volume (CTV) is still controversial in glioblastomas. In order to assess the differences in volume and shape of the radiotherapy target, the use of pre-operative vs post-operative/pre-radiotherapy T1 and T2 weighted MRI was compared. Methods 4 CTVs were delineated in 24 patients pre-operatively and post-operatively using T1 contrast-enhanced (T1PRECTV and T1POSTCTV) and T2 weighted images (T2PRECTV and T2POSTCTV). Pre-operative MRI examinations were performed the day before surgery, whereas post-operative examinations were acquired 1 month after surgery and before chemoradiation. A concordance index (CI) was defined as the ratio between the overlapping and composite volumes. Results The volumes of T1PRECTV and T1POSTCTV were not statistically different (248 ± 88 vs 254 ± 101), although volume differences >100 cm3 were observed in 6 out of 24 patients. A marked increase due to tumour progression was shown in three patients. Three patients showed a decrease because of a reduced mass effect. A significant reduction occurred between pre-operative and post-operative T2 volumes (139 ± 68 vs 78 ± 59). Lack of concordance was observed between T1PRECTV and T1POSTCTV (CI = 0.67 ± 0.09), T2PRECTV and T2POSTCTV (CI = 0.39 ± 0.20) and comparing the portion of the T1PRECTV and T1POSTCTV not covered by that defined on T2PRECTV images (CI = 0.45 ± 0.16 and 0.44 ± 0.17, respectively). Conclusion Using T2 MRI, huge variations can be observed in peritumoural oedema, which are probably due to steroid treatment. Using T1 MRI, brain shifts after surgery and possible progressive enhancing lesions produce substantial differences in CTVs. Our data support the use of post-operative/pre-radiotherapy T1 weighted MRI for planning purposes. PMID:21045069

  4. Potential Therapeutic Strategies for Alzheimer's Disease Targeting or Beyond β-Amyloid: Insights from Clinical Trials

    PubMed Central

    Jia, Qiutian; Qing, Hong

    2014-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with two hallmarks: β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer's disease. PMID:25136630

  5. Molecular and Clinical Aspects of Targeting the VEGF Pathway in Tumors

    PubMed Central

    Korpanty, Grzegorz; Sullivan, Laura A.; Smyth, Elizabeth; Carney, Desmond N.; Brekken, Rolf A.

    2010-01-01

    Tumor angiogenesis is a complex process resulting from many signals from the tumor microenvironment. From preclinical animal models to clinical trials and practice, targeting tumors with antiangiogenic therapy remains an exciting area of study. Although many scientific advances have been achieved, leading to the development and clinical use of antiangiogenic drugs such as bevacizumab, sorafenib, and sunitinib, these therapies fall short of their anticipated benefits and leave many questions unanswered. Continued research into the complex signaling cascades that promote tumor angiogenesis may yield new targets or improve upon current therapies. In addition, the development of reliable tools to track tumor responses to antiangiogenic therapy will enable a better understanding of current therapeutic efficacy and may elucidate mechanisms to predict patient response to therapy. PMID:20628530

  6. Preparation of near-infrared-labeled targeted contrast agents for clinical translation

    NASA Astrophysics Data System (ADS)

    Olive, D. Michael

    2011-03-01

    Targeted fluorophore-labeled contrast agents are moving toward translation to human surgical use. To prepare for future clinical use, we examined the performance of potential ligands targeting the epidermal growth factor receptor, α5β3 integrins, and GLUT transporters for their suitability as directed contrast agents. Each agent was labeled with IRDye 800CW, and near-infrared dye with excitation/emission wavelengths of 789/805 nm, which we determined had favorable toxicity characteristics. The probe molecules examined consisted of Affibodies, nanobodies, peptides, and the sugar 2-deoxy-D-glucose. Each probe was tested for specific and non-specific binding in cell based assays. All probe types showed good performance in mouse models for detecting either spontaneous tumors or tumor xenografts in vivo. Each of the probes tested show promise for future human clinical studies.

  7. Brain Malignancy Steering Committee clinical trials planning workshop: Report from the Targeted Therapies Working Group

    PubMed Central

    Alexander, Brian M.; Galanis, Evanthia; Yung, W.K. Alfred; Ballman, Karla V.; Boyett, James M.; Cloughesy, Timothy F.; Degroot, John F.; Huse, Jason T.; Mann, Bhupinder; Mason, Warren; Mellinghoff, Ingo K.; Mikkelsen, Tom; Mischel, Paul S.; O'Neill, Brian P.; Prados, Michael D.; Sarkaria, Jann N.; Tawab-Amiri, Abdul; Trippa, Lorenzo; Ye, Xiaobu; Ligon, Keith L.; Berry, Donald A.; Wen, Patrick Y.

    2015-01-01

    Glioblastoma is the most common primary brain malignancy and is associated with poor prognosis despite aggressive local and systemic therapy, which is related to a paucity of viable treatment options in both the newly diagnosed and recurrent settings. Even so, the rapidly increasing number of targeted therapies being evaluated in oncology clinical trials offers hope for the future. Given the broad range of possibilities for future trials, the Brain Malignancy Steering Committee convened a clinical trials planning meeting that was held at the Udvar-Hazy Center in Chantilly, Virginia, on September 19 and 20, 2013. This manuscript reports the deliberations leading up to the event from the Targeted Therapies Working Group and the results of the meeting. PMID:25165194

  8. Population and target considerations for triple-negative breast cancer clinical trials

    PubMed Central

    Hyslop, Terry; Michael, Yvonne; Avery, Tiffany; Rui, Hallgeir

    2013-01-01

    Triple-negative breast cancer (TNBC) is an aggressive disease subtype that has a poor prognosis. Extensive epidemiological evidence demonstrates clear socioeconomic and demographic associations with increased likelihood of TNBC in both poorer and minority populations. Thus, biological aggressiveness with few known therapeutic directions generates disparities in breast cancer outcomes for vulnerable populations. Emerging molecular evidence of potential targets in triple-negative subpopulations offers great potential for future clinical trial directions. However, trials must appropriately consider populations at risk for aggressive subtypes of disease in order to address this disparity most completely. New US FDA draft guidance documents provide both flexible outcomes for accelerated approvals as well as flexibility in design with adaptive trials. Careful planning with design, potential patient population and choices of molecular targets informed by biomarkers will be critical to address TNBC clinical care. PMID:23387481

  9. Guidelines for delineation of lymphatic clinical target volumes for high conformal radiotherapy: head and neck region

    PubMed Central

    2011-01-01

    The success of radiotherapy depends on the accurate delineation of the clinical target volume. The delineation of the lymph node regions has most impact, especially for tumors in the head and neck region. The purpose of this article was the development an atlas for the delineation of the clinical target volume for patients, who should receive radiotherapy for a tumor of the head and neck region. Literature was reviewed for localisations of the adjacent lymph node regions and their lymph drain in dependence of the tumor entity. On this basis the lymph node regions were contoured on transversal CT slices. The probability for involvement was reviewed and a recommendation for the delineation of the CTV was generated. PMID:21854585

  10. Overcoming resistance to targeted therapies in NSCLC: current approaches and clinical application

    PubMed Central

    Sacco, Paola Claudia; Sgambato, Assunta; Casaluce, Francesca; Rossi, Antonio; Gridelli, Cesare

    2015-01-01

    The discovery that a number of aberrant tumorigenic processes and signal transduction pathways are mediated by druggable protein kinases has led to a revolutionary change in nonsmall cell lung cancer (NSCLC) treatment. Epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) are the targets of several tyrosine kinase inhibitors (TKIs), some of them approved for treatment and others currently in clinical development. First-generation agents offer, in target populations, a substantial improvement of outcomes compared with standard chemotherapy in the treatment of advanced NSCLC. Unfortunately, drug resistance develops after initial benefit through a variety of mechanisms. Novel generation EGFR and ALK inhibitors are currently in advanced clinical development and are producing encouraging results in patients with acquired resistance to previous generation agents. The search for new drugs or strategies to overcome the TKI resistance in patients with EGFR mutations or ALK rearrangements is to be considered a priority for the improvement of outcomes in the treatment of advanced NSCLC. PMID:26327924

  11. Overcoming resistance to targeted therapies in NSCLC: current approaches and clinical application.

    PubMed

    Maione, Paolo; Sacco, Paola Claudia; Sgambato, Assunta; Casaluce, Francesca; Rossi, Antonio; Gridelli, Cesare

    2015-09-01

    The discovery that a number of aberrant tumorigenic processes and signal transduction pathways are mediated by druggable protein kinases has led to a revolutionary change in nonsmall cell lung cancer (NSCLC) treatment. Epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) are the targets of several tyrosine kinase inhibitors (TKIs), some of them approved for treatment and others currently in clinical development. First-generation agents offer, in target populations, a substantial improvement of outcomes compared with standard chemotherapy in the treatment of advanced NSCLC. Unfortunately, drug resistance develops after initial benefit through a variety of mechanisms. Novel generation EGFR and ALK inhibitors are currently in advanced clinical development and are producing encouraging results in patients with acquired resistance to previous generation agents. The search for new drugs or strategies to overcome the TKI resistance in patients with EGFR mutations or ALK rearrangements is to be considered a priority for the improvement of outcomes in the treatment of advanced NSCLC. PMID:26327924

  12. Network Analysis Reveals Sex- and Antibiotic Resistance-Associated Antivirulence Targets in Clinical Uropathogens

    PubMed Central

    2015-01-01

    Increasing antibiotic resistance among uropathogenic Escherichia coli (UPEC) is driving interest in therapeutic targeting of nonconserved virulence factor (VF) genes. The ability to formulate efficacious combinations of antivirulence agents requires an improved understanding of how UPEC deploy these genes. To identify clinically relevant VF combinations, we applied contemporary network analysis and biclustering algorithms to VF profiles from a large, previously characterized inpatient clinical cohort. These mathematical approaches identified four stereotypical VF combinations with distinctive relationships to antibiotic resistance and patient sex that are independent of traditional phylogenetic grouping. Targeting resistance- or sex-associated VFs based upon these contemporary mathematical approaches may facilitate individualized anti-infective therapies and identify synergistic VF combinations in bacterial pathogens. PMID:26985454

  13. Peptidic Tumor Targeting Agents: The Road from Phage Display Peptide Selections to Clinical Applications

    PubMed Central

    Brown, Kathlynn C.

    2014-01-01

    Cancer has become the number one cause of death amongst Americans, killing approximately 1,600 people per day. Novel methods for early detection and the development of effective treatments are an eminent priority in medicine. For this reason, isolation of tumor-specific ligands is a growing area of research. Tumor-specific binding agents can be used to probe the tumor cell surface phenotype and customize treatment accordingly by conjugating the appropriate cell-targeting ligand to an anticancer drug. This refines the molecular diagnosis of the tumor and creates guided drugs that can target the tumor while sparing healthy tissues. Additionally, these targeting agents can be used as in vivo imaging agents that allow for earlier detection of tumors and micrometastasis. Phage display is a powerful technique for the isolation of peptides that bind to a particular target with high affinity and specificity. The biopanning of intact cancer cells or tumors in animals can be used to isolate peptides that bind to cancer-specific cell surface biomarkers. Over the past 10 years, unbiased biopanning of phage-displayed peptide libraries has generated a suite of cancer targeting peptidic ligands. This review discusses the recent advances in the isolation of cancer-targeting peptides by unbiased biopanning methods and highlights the use of the isolated peptides in clinical applications. PMID:20030617

  14. From DNA to Targeted Therapeutics: Bringing Synthetic Biology to the Clinic

    PubMed Central

    Chen, Yvonne Y.; Smolke, Christina D.

    2012-01-01

    Synthetic biology aims to make biological engineering more scalable and predictable, lowering the cost and facilitating the translation of synthetic biological systems to practical applications. Increasingly sophisticated, rationally designed synthetic systems that are capable of complex functions pave the way to translational applications, including disease diagnostics and targeted therapeutics. Here, we provide an overview of recent developments in synthetic biology in the context of translational research and discuss challenges at the interface between synthetic biology and clinical medicine. PMID:22030748

  15. Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy

    PubMed Central

    Durrant, L G; Noble, P; Spendlove, I

    2012-01-01

    Research into aberrant glycosylation and over-expression of glycolipids on the surface of the majority of cancers, coupled with a knowledge of glycolipids as functional molecules involved in a number of cellular physiological pathways, has provided a novel area of targets for cancer immunotherapy. This has resulted in the development of a number of vaccines and monoclonal antibodies that are showing promising results in recent clinical trials. PMID:22235996

  16. Clinical Evaluation of Targeting Accuracy of Gamma Knife Radiosurgery in Trigeminal Neuralgia

    SciTech Connect

    Massager, Nicolas Abeloos, Laurence; Devriendt, Daniel; Op de Beeck, Marc; Levivier, Marc

    2007-12-01

    Purpose: The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgical treatment with the Leksell Gamma Knife for trigeminal neuralgia. We also studied the applied radiation dose within the area of focal contrast enhancement on the trigeminal nerve root following radiosurgery. Methods and Materials: From an initial group of 78 patients with trigeminal neuralgia treated with gamma knife radiosurgery using a 90-Gy dose, we analyzed a subgroup of 65 patients for whom 6-month follow-up MRI showed focal contrast enhancement of the trigeminal nerve. Follow-up MRI was spatially coregistered to the radiosurgical planning MRI. Target accuracy was assessed from deviation of the coordinates of the intended target compared with the center of enhancement on postoperative MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated. Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was 0.91 mm in Euclidean space. The radiation doses fitting within the borders of the contrast enhancement of the trigeminal nerve root ranged from 49 to 85 Gy (median value, 77 {+-} 8.7 Gy). Conclusions: The median deviation found in clinical assessment of gamma knife treatment for trigeminal neuralgia is low and compatible with its high rate of efficiency. Focal enhancement of the trigeminal nerve after radiosurgery occurred in 83% of our patients and was not associated with clinical outcome. Focal enhancement borders along the nerve root fit with a median dose of 77 {+-} 8.7 Gy.

  17. The Potential and Hurdles of Targeted Alpha Therapy – Clinical Trials and Beyond

    PubMed Central

    Elgqvist, Jörgen; Frost, Sofia; Pouget, Jean-Pierre; Albertsson, Per

    2013-01-01

    This article presents a general discussion on what has been achieved so far and on the possible future developments of targeted alpha (α)-particle therapy (TAT). Clinical applications and potential benefits of TAT are addressed as well as the drawbacks, such as the limited availability of relevant radionuclides. Alpha-particles have a particular advantage in targeted therapy because of their high potency and specificity. These features are due to their densely ionizing track structure and short path length. The most important consequence, and the major difference compared with the more widely used β−-particle emitters, is that single targeted cancer cells can be killed by self-irradiation with α-particles. Several clinical trials on TAT have been reported, completed, or are on-going: four using 213Bi, two with 211At, two with 225Ac, and one with 212Pb/212Bi. Important and conceptual proof-of-principle of the therapeutic advantages of α-particle therapy has come from clinical studies with 223Ra-dichloride therapy, showing clear benefits in castration-resistant prostate cancer. PMID:24459634

  18. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update

    PubMed Central

    Miele, Lucio; Harris, Pamela Jo; Jeong, Woondong; Bando, Hideaki; Kahn, Michael; Yang, Sherry X.

    2015-01-01

    During the past decade, cancer stem cells (CSCs) have been increasingly identified in many malignancies. Although the origin and plasticity of these cells remain controversial, tumour heterogeneity and the presence of small populations of cells with stem-like characteristics is established in most malignancies. CSCs display many features of embryonic or tissue stem cells, and typically demonstrate persistent activation of one or more highly conserved signal transduction pathways involved in development and tissue homeostasis, including the Notch, Hedgehog (HH), and Wnt pathways. CSCs generally have slow growth rates and are resistant to chemotherapy and/or radiotherapy. Thus, new treatment strategies targeting these pathways to control stem-cell replication, survival and differentiation are under development. Herein, we provide an update on the latest advances in the clinical development of such approaches, and discuss strategies for overcoming CSC-associated primary or acquired resistance to cancer treatment. Given the crosstalk between the different embryonic developmental signalling pathways, as well as other pathways, designing clinical trials that target CSCs with rational combinations of agents to inhibit possible compensatory escape mechanisms could be of particular importance. We also share our views on the future directions for targeting CSCs to advance the clinical development of these classes of agents. PMID:25850553

  19. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites

    PubMed Central

    Naito, Yuki; Hino, Kimihiro; Bono, Hidemasa; Ui-Tei, Kumiko

    2015-01-01

    Summary: CRISPRdirect is a simple and functional web server for selecting rational CRISPR/Cas targets from an input sequence. The CRISPR/Cas system is a promising technique for genome engineering which allows target-specific cleavage of genomic DNA guided by Cas9 nuclease in complex with a guide RNA (gRNA), that complementarily binds to a ∼20 nt targeted sequence. The target sequence requirements are twofold. First, the 5′-NGG protospacer adjacent motif (PAM) sequence must be located adjacent to the target sequence. Second, the target sequence should be specific within the entire genome in order to avoid off-target editing. CRISPRdirect enables users to easily select rational target sequences with minimized off-target sites by performing exhaustive searches against genomic sequences. The server currently incorporates the genomic sequences of human, mouse, rat, marmoset, pig, chicken, frog, zebrafish, Ciona, fruit fly, silkworm, Caenorhabditis elegans, Arabidopsis, rice, Sorghum and budding yeast. Availability: Freely available at http://crispr.dbcls.jp/. Contact: y-naito@dbcls.rois.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25414360

  20. Targeted Delivery System of Nanobiomaterials in Anticancer Therapy: From Cells to Clinics

    PubMed Central

    Jin, Su-Eon; Jin, Hyo-Eon; Hong, Soon-Sun

    2014-01-01

    Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1–100 nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regarding in vitro and in vivo applications and the translation of nanobiomaterials to nanomedicine in anticancer therapy. PMID:24672796

  1. ALK and ROS1 as targeted therapy paradigms and clinical implications to overcome crizotinib resistance

    PubMed Central

    Li, Nan; Zhang, Yong; Jing, Pengyu; Chang, Ning; Wu, Jianxiong; Ren, Xinling; Zhang, Jian

    2016-01-01

    During the past decade, more than 10 targetable oncogenic driver genes have been validated in non-small cell lung cancer (NSCLC). Anaplastic lymphoma kinase (ALK) and ROS1 kinase are two new driver genes implicated in ALK- and ROS1-rearranged NSCLC. Inhibition of ALK and ROS1 by crizotinib has been reported to be highly effective and well tolerated in these patients. However, resistance to crizotinib emerges years after treatment, and increasing efforts have been made to overcome this issue. Here, we review the biology of ALK and ROS1 and their roles in cancer progression. We also summarize the ongoing and completed clinical trials validating ALK and ROS1 as targets for cancer treatment. In the last section of the review, we will discuss the molecular mechanisms of crizotinib resistance and focus approaches to overcome it. This review describes an exciting new area of research and may provide new insights for targeted cancer therapies. PMID:26802023

  2. From orphan drugs to adopted therapies: Advancing C3-targeted intervention to the clinical stage.

    PubMed

    Mastellos, Dimitrios C; Reis, Edimara S; Yancopoulou, Despina; Hajishengallis, George; Ricklin, Daniel; Lambris, John D

    2016-10-01

    Complement dysregulation is increasingly recognized as an important pathogenic driver in a number of clinical disorders. Complement-triggered pathways intertwine with key inflammatory and tissue destructive processes that can either increase the risk of disease or exacerbate pathology in acute or chronic conditions. The launch of the first complement-targeted drugs in the clinic has undeniably stirred the field of complement therapeutic design, providing new insights into complement's contribution to disease pathogenesis and also helping to leverage a more personalized, comprehensive approach to patient management. In this regard, a rapidly expanding toolbox of complement therapeutics is being developed to address unmet clinical needs in several immune-mediated and inflammatory diseases. Elegant approaches employing both surface-directed and fluid-phase inhibitors have exploited diverse components of the complement cascade as putative points of therapeutic intervention. Targeting C3, the central hub of the system, has proven to be a promising strategy for developing biologics as well as small-molecule inhibitors with clinical potential. Complement modulation at the level of C3 has recently shown promise in preclinical primate models, opening up new avenues for therapeutic intervention in both acute and chronic indications fueled by uncontrolled C3 turnover. This review highlights recent developments in the field of complement therapeutics, focusing on C3-directed inhibitors and alternative pathway (AP) regulator-based approaches. Translational perspectives and considerations are discussed, particularly with regard to the structure-guided drug optimization and clinical advancement of a new generation of C3-targeted peptidic inhibitors. PMID:27353192

  3. Access to a polymerase chain reaction assay method targeting 13 respiratory viruses can reduce antibiotics: a randomised, controlled trial

    PubMed Central

    2011-01-01

    Background Viral respiratory infections are common worldwide and range from completely benign disease to life-threatening illness. Symptoms can be unspecific, and an etiologic diagnosis is rarely established because of a lack of suitable diagnostic tools. Improper use of antibiotics is common in this setting, which is detrimental in light of the development of bacterial resistance. It has been suggested that the use of diagnostic tests could reduce antibiotic prescription rates. The objective of this study was to evaluate whether access to a multiplex polymerase chain reaction (PCR) assay panel for etiologic diagnosis of acute respiratory tract infections (ARTIs) would have an impact on antibiotic prescription rate in primary care clinical settings. Methods Adult patients with symptoms of ARTI were prospectively included. Nasopharyngeal and throat swabs were analysed by using a multiplex real-time PCR method targeting thirteen viruses and two bacteria. Patients were recruited at 12 outpatient units from October 2006 through April 2009, and samples were collected on the day of inclusion (initial visit) and after 10 days (follow-up visit). Patients were randomised in an open-label treatment protocol to receive a rapid or delayed result (on the following day or after eight to twelve days). The primary outcome measure was the antibiotic prescription rate at the initial visit, and the secondary outcome was the total antibiotic prescription rate during the study period. Results A total sample of 447 patients was randomised. Forty-one were excluded, leaving 406 patients for analysis. In the group of patients randomised for a rapid result, 4.5% (9 of 202) of patients received antibiotics at the initial visit, compared to 12.3% (25 of 204) (P = 0.005) of patients in the delayed result group. At follow-up, there was no significant difference between the groups: 13.9% (28 of 202) in the rapid result group and 17.2% (35 of 204) in the delayed result group (P = 0

  4. A Miniaturized Chemical Proteomic Approach for Target Profiling of Clinical Kinase Inhibitors in Tumor Biopsies

    PubMed Central

    Chamrád, Ivo; Rix, Uwe; Stukalov, Alexey; Gridling, Manuela; Parapatics, Katja; Müller, André C.; Altiok, Soner; Colinge, Jacques; Superti-Furga, Giulio; Haura, Eric B.; Bennett, Keiryn L.

    2014-01-01

    While targeted therapy based on the idea of attenuating the activity of a preselected, therapeutically relevant protein has become one of the major trends in modern cancer therapy, no truly specific targeted drug has been developed and most clinical agents have displayed a degree of polypharmacology. Therefore, the specificity of anticancer therapeutics has emerged as a highly important but severely underestimated issue. Chemical proteomics is a powerful technique combining postgenomic drug-affinity chromatography with high-end mass spectrometry analysis and bioinformatic data processing to assemble a target profile of a desired therapeutic molecule. Due to high demands on the starting material, however, chemical proteomic studies have been mostly limited to cancer cell lines. Herein, we report a down-scaling of the technique to enable the analysis of very low abundance samples, as those obtained from needle biopsies. By a systematic investigation of several important parameters in pull-downs with the multikinase inhibitor bosutinib, the standard experimental protocol was optimized to 100 µg protein input. At this level, more than 30 well-known targets were detected per single pull-down replicate with high reproducibility. Moreover, as presented by the comprehensive target profile obtained from miniaturized pull-downs with another clinical drug, dasatinib, the optimized protocol seems to be extendable to other drugs of interest. Sixty distinct human and murine targets were finally identified for bosutinib and dasatinib in chemical proteomic experiments utilizing core needle biopsy samples from xenotransplants derived from patient tumor tissue. Altogether, the developed methodology proves robust and generic and holds many promises for the field of personalized health care. PMID:23901793

  5. Targeting Kv1.3 channels to reduce white matter pathology after traumatic brain injury.

    PubMed

    Reeves, Thomas M; Trimmer, Patricia A; Colley, Beverly S; Phillips, Linda L

    2016-09-01

    Axonal injury is present in essentially all clinically significant cases of traumatic brain injury (TBI). While no effective treatment has been identified to date, experimental TBI models have shown promising axonal protection using immunosuppressants FK506 and Cyclosporine-A, with treatment benefits attributed to calcineurin inhibition or protection of mitochondrial function. However, growing evidence suggests neuroprotective efficacy of these compounds may also involve direct modulation of ion channels, and in particular Kv1.3. The present study tested whether blockade of Kv1.3 channels, using Clofazimine (CFZ), would alleviate TBI-induced white matter pathology in rodents. Postinjury CFZ administration prevented suppression of compound action potential (CAP) amplitude in the corpus callosum of adult rats following midline fluid percussion TBI, with injury and treatment effects primarily expressed in unmyelinated CAPs. Kv1.3 protein levels in callosal tissue extracts were significantly reduced postinjury, but this loss was prevented by CFZ treatment. In parallel, CFZ also attenuated the injury-induced elevation in pro-inflammatory cytokine IL1-β. The effects of CFZ on glial function were further studied using mixed microglia/astrocyte cell cultures derived from P3-5 mouse corpus callosum. Cultures of callosal glia challenged with lipopolysaccharide exhibited a dramatic increase in IL1-β levels, accompanied by reactive morphological changes in microglia, both of which were attenuated by CFZ treatment. These results support a cell specific role for Kv1.3 signaling in white matter pathology after TBI, and suggest a treatment approach based on the blockade of these channels. This therapeutic strategy may be especially efficacious for normalizing neuro-glial interactions affecting unmyelinated axons after TBI. PMID:27302680

  6. Neurooncology clinical trial design for targeted therapies: lessons learned from the North American Brain Tumor Consortium.

    PubMed

    Chang, Susan M; Lamborn, Kathleen R; Kuhn, John G; Yung, W K Alfred; Gilbert, Mark R; Wen, Patrick Y; Fine, Howard A; Mehta, Minesh P; DeAngelis, Lisa M; Lieberman, Frank S; Cloughesy, Timothy F; Robins, H Ian; Abrey, Lauren E; Prados, Michael D

    2008-08-01

    The North American Brain Tumor Consortium (NABTC) is a multi-institutional consortium with the primary objective of evaluating novel therapeutic strategies through early phase clinical trials. The NABTC has made substantial changes to the design and methodology of its trials since its inception in 1994. These changes reflect developments in technology, new types of therapies, and advances in our understanding of tumor biology and biological markers. We identify the challenges of early clinical assessment of therapeutic agents by reviewing the clinical trial effort of the NABTC and the evolution of the protocol template used to design trials. To better prioritize effort and allocation of patient resources and funding, we propose an integrated clinical trial design for the early assessment of efficacy of targeted therapies in neurooncology. This design would mandate tissue acquisition prior to therapeutic intervention with the drug, allowing prospective evaluation of its effects. It would also include a combined phase 0/I pharmacokinetic study to determine the safety and biologically optimal dose of the agent and to verify successful modulation of the target prior to initiating a larger, phase II efficacy study. PMID:18559968

  7. Neurooncology clinical trial design for targeted therapies: Lessons learned from the North American Brain Tumor Consortium

    PubMed Central

    Chang, Susan M.; Lamborn, Kathleen R.; Kuhn, John G.; Yung, W.K. Alfred; Gilbert, Mark R.; Wen, Patrick Y.; Fine, Howard A.; Mehta, Minesh P.; DeAngelis, Lisa M.; Lieberman, Frank S.; Cloughesy, Timothy F.; Robins, H. Ian; Abrey, Lauren E.; Prados, Michael D.

    2008-01-01

    The North American Brain Tumor Consortium (NABTC) is a multi-institutional consortium with the primary objective of evaluating novel therapeutic strategies through early phase clinical trials. The NABTC has made substantial changes to the design and methodology of its trials since its inception in 1994. These changes reflect developments in technology, new types of therapies, and advances in our understanding of tumor biology and biological markers. We identify the challenges of early clinical assessment of therapeutic agents by reviewing the clinical trial effort of the NABTC and the evolution of the protocol template used to design trials. To better prioritize effort and allocation of patient resources and funding, we propose an integrated clinical trial design for the early assessment of efficacy of targeted therapies in neurooncology. This design would mandate tissue acquisition prior to therapeutic intervention with the drug, allowing prospective evaluation of its effects. It would also include a combined phase 0/I pharmacokinetic study to determine the safety and biologically optimal dose of the agent and to verify successful modulation of the target prior to initiating a larger, phase II efficacy study. PMID:18559968

  8. Comprehensive evaluation and validation of targeted next-generation sequencing performance in two clinical laboratories.

    PubMed

    Mendez, Pedro; Dang, Jennifer; Kim, James Wansoo; Lee, Sharon; Yoon, Jun-Hee; Kim, Thomas; Sailey, Charles J; Jablons, David M; Kim, Il-Jin

    2016-07-01

    Next-generation sequencing (NGS) has led to breakthroughs for genetic and genomic analyses and personalized medicine approaches for many diseases. More and more clinical laboratories are using NGS as a genetic screening tool for providing mutation information that is used to select the best treatment regimens for cancer patients. However, several obstacles prevent the routine implementation of NGS technology into the clinical molecular diagnosis setting: the sophisticated sample preparation process, high cost, time-consuming data analyses, as well as the reproducibility and accuracy of interpretation. To systematically evaluate the performance and quality of targeted NGS cancer panel analyses in clinical laboratories, we performed three different tests: i) laboratory-to-laboratory accuracy test, ii) intra-laboratory precision validation, and iii) limit of detection test, using formalin-fixed, paraffin-embedded cancer tissue specimens, cell lines and mutation positive DNA. A laboratory-to-laboratory accuracy test performed using 51 samples showed 100% sensitivity and 99.97% specificity. For the intra-laboratory precision test, 100% reproducibility was observed. For the limit of detection test, KRAS mutations from samples diluted from 70 to 2% of mutant allele frequencies were detected correctly. We believe that the present study demonstrated the feasibility of clinical implementation of a targeted NGS cancer panel analysis for personalized medicine. PMID:27121194

  9. Precision Medicine for Molecularly Targeted Agents and Immunotherapies in Early-Phase Clinical Trials

    PubMed Central

    Lopez, Juanita; Harris, Sam; Roda, Desam; Yap, Timothy A

    2015-01-01

    Precision medicine in oncology promises the matching of genomic, molecular, and clinical data with underlying mechanisms of a range of novel anticancer therapeutics to develop more rational and effective antitumor strategies in a timely manner. However, despite the remarkable progress made in the understanding of novel drivers of different oncogenic processes, success rates for the approval of oncology drugs remain low with substantial fiscal consequences. In this article, we focus on how recent rapid innovations in technology have brought greater clarity to the biological and clinical complexities of different cancers and advanced the development of molecularly targeted agents and immunotherapies in clinical trials. We discuss the key challenges of identifying and validating predictive biomarkers of response and resistance using both tumor and surrogate tissues, as well as the hurdles associated with intratumor heterogeneity. Finally, we outline evolving strategies employed in early-phase trial designs that incorporate omics-based technologies. PMID:26609214

  10. Use of clinical pharmacists to reduce cefamandole, cefoxitin, and ticarcillin costs.

    PubMed

    Abramowitz, P W; Nold, E G; Hatfield, S M

    1982-07-01

    The financial impact of using cefamandole and cefoxitin rather than cefazolin and of using ticarcillin rather than carbenicillin in one institution was assessed; the effectiveness of clinical pharmacists in reducing the costs associated with these drugs also was determined. During Phase 1 (July 1, 1980-March 31, 1981), the numbers of intravenous piggyback cefazolin, cephalothin, cefamandole, cefoxitin, carbenicillin, and ticarcillin doses prepared were recorded. Quarterly purchase data for each drug were determined from invoice records. During Phase 2 (April 1, 1981-September 30, 1981), eight clinical pharmacists reviewed all patient charts for cefamandole, cefoxitin, and ticarcillin orders. If the indication for these orders was missing or considered inappropriate, the pharmacist contacted the prescriber and recommended substituting appropriate doses of cefazolin for cefamandole and cefoxitin and of carbenicillin for ticarcillin. The number of doses prepared and quarterly purchase data were collected as in Phase 1. The projected savings resulting from clinical pharmacist input relating to these drugs was calculated. Based on Phase 1 data, the total theoretical expense resulting from cefamandole and cefoxitin use instead of cefazolin and from ticarcillin use in place of carbenicillin was projected to be $233,448 annually. Cefamandole and cefoxitin accounted for 59.8 and 39.7% of total cephalosporin use in Phases 1 and 2, respectively. Ticarcillin accounted for 77.1% of the total ticarcillin and carbenicillin doses in Phase 1, and 16.6% in Phase 2. A projected annual savings of $156,756 was achieved because of clinical pharmacist input at a cost of $16,000 for time devoted to the effort. Clinical pharmacists were effective in reducing the use of cefamandole, cefoxitin, and ticarcillin in situations where cefazolin or carbenicillin could be substituted. PMID:7114059

  11. Effectiveness of Physical Exercise to Reduce Cardiovascular Risk Factors in Youths: A Randomized Clinical Trial

    PubMed Central

    Cesa, Claudia Ciceri; Barbiero, Sandra Mari; Petkowicz, Rosemary de Oliveira; Martins, Carla Correa; Marques, Renata das Virgens; Andreolla, Allana Abreu Martins; Pellanda, Lucia Campos

    2015-01-01

    Background The aim of the current study was to test the effectiveness of a physical activity and exercise-based program in a clinical context to reduce cardiovascular risk factors in children and adolescents. Methods A randomized clinical trial was conducted in a pediatric preventive outpatient clinic. Intervention was 14 weeks of exercise for the intervention group or general health advice for the control group. The primary and the secondary outcomes were reduction of cardiovascular risk factors and the feasibility and the effectiveness of clinical advice plan to practice physical exercises at home. Results A total of 134 children were screened; 26 met eligibility criteria. Of these, 10 were allocated in the exercise intervention group and nine were included in the control group until the end of the intervention. Those patients who discontinued the intervention had the lowest scores of z-BMI (P = 0.033) and subscapular skin fold (P = 0.048). After 14 weeks of intervention, no statistical differences were found between the groups. High-density lipoprotein cholesterol (HDL-C) was higher in the exercise group, with a mild tendency to be significant (P = 0.066). Patients who adhere to treatment had diastolic blood pressure decreased from baseline to the end of the follow-up period in the control group (P = 0.013). Regardless of this result, the other comparisons within the group were not statistically different between T0 and T14. Conclusion A low-cost physical activity advice intervention presented many barriers for implementation in routine clinical care, limiting its feasibility and evaluation of effectiveness to reduce cardiovascular risk factors. PMID:25780484

  12. Targeting FAK in human cancer: from finding to first clinical trials.

    PubMed

    Golubovskaya, Vita M

    2014-01-01

    It is twenty years since Focal Adhesion Kinase (FAK) was found to be overexpressed in many types of human cancer. FAK plays an important role in adhesion, spreading, motility, invasion, metastasis, survival, angiogenesis, and recently has been found to play an important role as well in epithelial to mesenchymal transition (EMT), cancer stem cells and tumor microenvironment. FAK has kinase-dependent and kinase independent scaffolding, cytoplasmic and nuclear functions. Several years ago FAK was proposed as a potential therapeutic target; the first clinical trials were just reported, and they supported further studies of FAK as a promising therapeutic target. This review discusses the main functions of FAK in cancer, and specifically focuses on recent novel findings on the role of FAK in cancer stem cells, microenvironment, epithelial-to-mesenchymal transition, invasion, metastasis, and also highlight new approaches of targeting FAK and critically discuss challenges that lie ahead for its targeted therapeutics. The review provides a summary of translational approaches of FAK-targeted and combination therapies and outline perspectives and future directions of FAK research. PMID:24389213

  13. Targeting the EP1 receptor reduces Fas ligand expression and increases the antitumor immune response in an in vivo model of colon cancer.

    PubMed

    O'Callaghan, Grace; Ryan, Aideen; Neary, Peter; O'Mahony, Caitlin; Shanahan, Fergus; Houston, Aileen

    2013-08-15

    Despite studies demonstrating that inhibition of cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2 ) has significant chemotherapeutic benefits in vitro and in vivo, inhibition of COX enzymes is associated with serious gastrointestinal and cardiovascular side effects, limiting the clinical utility of these drugs. PGE2 signals through four different receptors (EP1-EP4) and targeting individual receptor(s) may avoid these side effects, while retaining significant anticancer benefits. Here, we show that targeted inhibition of the EP1 receptor in the tumor cells and the tumor microenvironment resulted in the significant inhibition of tumor growth in vivo. Both dietary administration and direct injection of the EP1 receptor-specific antagonist, ONO-8713, effectively reduced the growth of established CT26 tumors in BALB/c mice, with suppression of the EP1 receptor in the tumor cells alone less effective in reducing tumor growth. This antitumor effect was associated with reduced Fas ligand expression and attenuated tumor-induced immune suppression. In particular, tumor infiltration by CD4(+) CD25(+) Foxp3(+) regulatory T cells was decreased, whereas the cytotoxic activity of isolated splenocytes against CT26 cells was increased. F4/80(+) macrophage infiltration was also decreased; however, there was no change in macrophage phenotype. These findings suggest that the EP1 receptor represents a potential target for the treatment of colon cancer. PMID:23390011

  14. Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1

    PubMed Central

    Schessl, Joachim; Taratuto, Ana L.; Sewry, Caroline; Battini, Roberta; Chin, Steven S.; Maiti, Baijayanta; Dubrovsky, Alberto L.; Erro, Marcela G.; Espada, Graciela; Robertella, Monica; Saccoliti, Maria; Olmos, Patricia; Bridges, Leslie R.; Standring, Peter; Hu, Ying; Zou, Yaqun; Swoboda, Kathryn J.; Scavina, Mena; Goebel, Hans-Hilmar; Mitchell, Christina A.; Flanigan, Kevin M.; Muntoni, Francesco

    2009-01-01

    We recently identified the X-chromosomal four and a half LIM domain gene FHL1 as the causative gene for reducing body myopathy, a disorder characterized by progressive weakness and intracytoplasmic aggregates in muscle that exert reducing activity on menadione nitro-blue-tetrazolium (NBT). The mutations detected in FHL1 affected highly conserved zinc coordinating residues within the second LIM domain and lead to the formation of aggregates when transfected into cells. Our aim was to define the clinical and morphological phenotype of this myopathy and to assess the mutational spectrum of FHL1 mutations in reducing body myopathy in a larger cohort of patients. Patients were ascertained via the detection of reducing bodies in muscle biopsy sections stained with menadione-NBT followed by clinical, histological, ultrastructural and molecular genetic analysis. A total of 11 patients from nine families were included in this study, including seven sporadic patients with early childhood onset disease and four familial cases with later onset. Weakness in all patients was progressive, sometimes rapidly so. Respiratory failure was common and scoliosis and spinal rigidity were significant in some of the patients. Analysis of muscle biopsies confirmed the presence of aggregates of FHL1 positive material in all biopsies. In two patients in whom sequential biopsies were available the aggregate load in muscle sections appeared to increase over time. Ultrastructural analysis revealed that cytoplasmic bodies were regularly seen in conjunction with the reducing bodies. The mutations detected were exclusive to the second LIM domain of FHL1 and were found in both sporadic as well as familial cases of reducing body myopathy. Six of the nine mutations affected the crucial zinc coordinating residue histidine 123. All mutations in this residue were de novo and were associated with a severe clinical course, in particular in one male patient (H123Q). Mutations in the zinc coordinating residue

  15. Intravenous Paracetamol Reduces Postoperative Opioid Consumption after Orthopedic Surgery: A Systematic Review of Clinical Trials

    PubMed Central

    Khanna, Puneet

    2013-01-01

    Postoperative pain management is one of the most challenging jobs in orthopedic surgical population as it comprises of patients from extremes of ages and with multiple comorbidities. Though effective, opioids may contribute to serious adverse effects particularly in old age patients. Intravenous paracetamol is widely used in the postoperative period with the hope that it may reduce opioid consumption and produce better pain relief. A brief review of human clinical trials where intravenous paracetamol was compared with placebo or no treatment in postoperative period in orthopedic surgical population has been done here. We found that four clinical trials reported that there is a significant reduction in postoperative opioid consumption. When patients received an IV injection of 2 g propacetamol, reduction of morphine consumption up to 46% has been reported. However, one study did not find any reduction of opioid requirement after spinal surgery in children and adolescent. Four clinical trials reported better pain scores when paracetamol has been used, but other three trials denied. We conclude that postoperative intravenous paracetamol is a safe and effective adjunct to opioid after orthopedic surgery, but at present there is no data to decide whether paracetamol reduces opioid related adverse effects or not. PMID:24307945

  16. Intravenous paracetamol reduces postoperative opioid consumption after orthopedic surgery: a systematic review of clinical trials.

    PubMed

    Jebaraj, Bright; Maitra, Souvik; Baidya, Dalim Kumar; Khanna, Puneet

    2013-01-01

    Postoperative pain management is one of the most challenging jobs in orthopedic surgical population as it comprises of patients from extremes of ages and with multiple comorbidities. Though effective, opioids may contribute to serious adverse effects particularly in old age patients. Intravenous paracetamol is widely used in the postoperative period with the hope that it may reduce opioid consumption and produce better pain relief. A brief review of human clinical trials where intravenous paracetamol was compared with placebo or no treatment in postoperative period in orthopedic surgical population has been done here. We found that four clinical trials reported that there is a significant reduction in postoperative opioid consumption. When patients received an IV injection of 2 g propacetamol, reduction of morphine consumption up to 46% has been reported. However, one study did not find any reduction of opioid requirement after spinal surgery in children and adolescent. Four clinical trials reported better pain scores when paracetamol has been used, but other three trials denied. We conclude that postoperative intravenous paracetamol is a safe and effective adjunct to opioid after orthopedic surgery, but at present there is no data to decide whether paracetamol reduces opioid related adverse effects or not. PMID:24307945

  17. Dissecting the PI3K Signaling Axis in Pediatric Solid Tumors: Novel Targets for Clinical Integration

    PubMed Central

    Loh, Amos H. P.; Brennan, Rachel C.; Lang, Walter H.; Hickey, Robert J.; Malkas, Linda H.; Sandoval, John A.

    2013-01-01

    Children with solid tumors represent a unique population. Recent improvements in pediatric solid tumor survival rates have been confined to low- and moderate-risk cancers, whereas minimal to no notable improvement in survival have been observed in high-risk and advanced-stage childhood tumors. Treatments for patients with advanced disease are rarely curative, and responses to therapy are often followed by relapse, which highlights the large unmet need for novel therapies. Recent advances in cancer treatment have focused on personalized therapy, whereby patients are treated with agents that best target the molecular drivers of their disease. Thus, a better understanding of the pathways that drive cancer or drug resistance is of critical importance. One such example is the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, which is activated in many solid cancer patients and represents a target for therapy. PI3K/Akt/mTOR pathway activation has also been observed in tumors resistant to agents targeting upstream receptor tyrosine kinases (RTKs). Agents that target this pathway have the potential to shut down survival pathways, and are being explored both in the setting of pathway-activating mutations and for their ability to restore sensitivity to upstream signaling targeted agents. Here, we examine the role of the PI3K/Akt/mTOR pathway in pediatric solid tumors, review the novel agents being explored to target this pathway, and explore the potential role of the inhibition of this pathway in the clinical development of these agents in children. PMID:23638435

  18. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma

    SciTech Connect

    Chang, Eric L. . E-mail: echang@mdanderson.org; Akyurek, Serap; Avalos, Tedde C; Rebueno, Neal C; Spicer, Chris C; Garcia, John C; Famiglietti, Robin; Allen, Pamela K.; Chao, K.S. Clifford; Mahajan, Anita; Woo, Shiao Y.; Maor, Moshe H.

    2007-05-01

    Purpose: To evaluate the spatial relationship between peritumoral edema and recurrence pattern in patients with glioblastoma (GBM). Methods and Materials: Forty-eight primary GBM patients received three-dimensional conformal radiotherapy that did not intentionally include peritumoral edema within the clinical target volume between July 2000 and June 2001. All 48 patients have subsequently recurred, and their original treatment planning parameters were used for this study. New theoretical radiation treatment plans were created for the same 48 patients, based on Radiation Therapy Oncology Group (RTOG) target delineation guidelines that specify inclusion of peritumoral edema. Target volume and recurrent tumor coverage, as well as percent volume of normal brain irradiated, were assessed for both methods of target delineation using dose-volume histograms. Results: A comparison between the location of recurrent tumor and peritumoral edema volumes from all 48 cases failed to show correlation by linear regression modeling (r {sup 2} 0.0007; p = 0.3). For patients with edema >75 cm{sup 3}, the percent volume of brain irradiated to 46 Gy was significantly greater in treatment plans that intentionally included peritumoral edema compared with those that did not (38% vs. 31%; p = 0.003). The pattern of failure was identical between the two sets of plans (40 central, 3 in-field, 3 marginal, and 2 distant recurrence). Conclusion: Clinical target volume delineation based on a 2-cm margin rather than on peritumoral edema did not seem to alter the central pattern of failure for patients with GBM. For patients with peritumoral edema >75 cm{sup 3}, using a constant 2-cm margin resulted in a smaller median percent volume of brain being irradiated to 30 Gy, 46 Gy, and 50 Gy compared with corresponding theoretical RTOG plans that deliberately included peritumoral edema.

  19. Fracture clinic redesign reduces the cost of outpatient orthopaedic trauma care

    PubMed Central

    Morton, A.; Anderson, G.; Van Der Meer, R. B.; Rymaszewski, L. A.

    2016-01-01

    Objectives “Virtual fracture clinics” have been reported as a safe and effective alternative to the traditional fracture clinic. Robust protocols are used to identify cases that do not require further review, with the remainder triaged to the most appropriate subspecialist at the optimum time for review. The objective of this study was to perform a “top-down” analysis of the cost effectiveness of this virtual fracture clinic pathway. Methods National Health Service financial returns relating to our institution were examined for the time period 2009 to 2014 which spanned the service redesign. Results The total staffing costs rose by 4% over the time period (from £1 744 933 to £1 811 301) compared with a national increase of 16%. The total outpatient department rate of attendance fell by 15% compared with a national fall of 5%. Had our local costs increased in line with the national average, an excess expenditure of £212 705 would have been required for staffing costs. Conclusions The virtual fracture clinic system was associated with less overall use of staff resources in comparison to national cost data. Adoption of this system nationally may have the potential to achieve significant cost savings. Cite this article: P. J. Jenkins. Fracture clinic redesign reduces the cost of outpatient orthopaedic trauma care. Bone Joint Res 2016;5:33–36. DOI: 10.1302/2046-3758.52.2000506 PMID:26851287

  20. Current HER2 Testing Recommendations and Clinical Relevance as a Predictor of Response to Targeted Therapy.

    PubMed

    Ballinger, Tarah J; Sanders, Melinda E; Abramson, Vandana G

    2015-06-01

    Clinical decision-making in the treatment of breast cancer depends on an accurate determination and understanding of human epidermal growth factor receptor 2 (HER2) status. The guidelines for HER2 testing were recently updated in late 2013, but limitations continue to exist in the interpretation and clinical application of results when the tumor specimens do not fall neatly into positive or negative categories with immunohistochemistry and fluorescence in situ hybridization testing. The issues, including discordance between pathologists or laboratories, polysomy, and genetic heterogeneity, present challenging situations that are difficult to translate into clinical significance. The present review discussed the changes in the updated American Society of Clinical Oncology/College of American Pathologists guidelines, the clinical relevance of complex issues in HER2 testing, and the implications of the results on the response to HER2-targeted therapies. Great advances have been made in the treatment of HER2-positive breast cancer; however, the challenge remains to determine the best testing analysis that will identify patients who will benefit the most from these therapies. PMID:25516402

  1. TWEAK/Fn14 Axis-Targeted Therapeutics: Moving Basic Science Discoveries to the Clinic

    PubMed Central

    Cheng, Emily; Armstrong, Cheryl L.; Galisteo, Rebeca; Winkles, Jeffrey A.

    2013-01-01

    The TNF superfamily member TWEAK (TNFSF12) is a multifunctional cytokine implicated in physiological tissue regeneration and wound repair. TWEAK is initially synthesized as a membrane-anchored protein, but furin cleavage within the stalk region can generate a secreted TWEAK isoform. Both TWEAK isoforms bind to a small cell surface receptor named Fn14 (TNFRSF12A) and this interaction stimulates various cellular responses, including proliferation and migration. Fn14, like other members of the TNF receptor superfamily, is not a ligand-activated protein kinase. Instead, TWEAK:Fn14 engagement promotes Fn14 association with members of the TNFR associated factor family of adapter proteins, which triggers activation of various signaling pathways, including the classical and alternative NF-κB pathways. Numerous studies have revealed that Fn14 gene expression is significantly elevated in injured tissues and in most solid tumor types. Also, sustained Fn14 signaling has been implicated in the pathogenesis of cerebral ischemia, chronic inflammatory diseases, and cancer. Accordingly, several groups are developing TWEAK- or Fn14-targeted agents for possible therapeutic use in patients. These agents include monoclonal antibodies, fusion proteins, and immunotoxins. In this article, we provide an overview of some of the TWEAK/Fn14 axis-targeted agents currently in pre-clinical animal studies or in human clinical trials and discuss two other potential approaches to target this intriguing signaling node. PMID:24391646

  2. A Preliminary Controlled Comparison of Programs Designed to Reduce Risk of Eating Disorders Targeting Perfectionism and Media Literacy

    ERIC Educational Resources Information Center

    Wilksch, Simon M.; Durbridge, Mitchell R.; Wade, Tracey D.

    2008-01-01

    The study aims to find out whether programs targeting perfectionism and media literacy are more effective than control classes in reducing eating disorder risk factors. Finding reveals that perfectionism programs are well suited to individuals of mid- to late adolescent age and shows the importune of making prevention programs developmentally…

  3. An Integrated Approach to Change the Outcome Part II: Targeted Neuromuscular Training Techniques to Reduce Identified ACL Injury Risk Factors

    PubMed Central

    Myer, Gregory D.; Ford, Kevin R.; Brent, Jensen L.; Hewett, Timothy E.

    2014-01-01

    Prior reports indicate that female athletes who demonstrate high knee abduction moments (KAMs) during landing are more responsive to neuromuscular training designed to reduce KAM. Identification of female athletes who demonstrate high KAM, which accurately identifies those at risk for noncontact anterior cruciate ligament (ACL) injury, may be ideal for targeted neuromuscular training. Specific neuromuscular training targeted to the underlying biomechanical components that increase KAM may provide the most efficient and effective training strategy to reduce noncontact ACL injury risk. The purpose of the current commentary is to provide an integrative approach to identify and target mechanistic underpinnings to increased ACL injury in female athletes. Specific neuromuscular training techniques will be presented that address individual algorithm components related to high knee load landing patterns. If these integrated techniques are employed on a widespread basis, prevention strategies for noncontact ACL injury among young female athletes may prove both more effective and efficient. PMID:22580980

  4. A targeted next-generation sequencing method for identifying clinically relevant mutation profiles in lung adenocarcinoma

    PubMed Central

    Shao, Di; Lin, Yongping; Liu, Jilong; Wan, Liang; Liu, Zu; Cheng, Shaomin; Fei, Lingna; Deng, Rongqing; Wang, Jian; Chen, Xi; Liu, Liping; Gu, Xia; Liang, Wenhua; He, Ping; Wang, Jun; Ye, Mingzhi; He, Jianxing

    2016-01-01

    Molecular profiling of lung cancer has become essential for prediction of an individual’s response to targeted therapies. Next-generation sequencing (NGS) is a promising technique for routine diagnostics, but has not been sufficiently evaluated in terms of feasibility, reliability, cost and capacity with routine diagnostic formalin-fixed, paraffin-embedded (FFPE) materials. Here, we report the validation and application of a test based on Ion Proton technology for the rapid characterisation of single nucleotide variations (SNVs), short insertions and deletions (InDels), copy number variations (CNVs), and gene rearrangements in 145 genes with FFPE clinical specimens. The validation study, using 61 previously profiled clinical tumour samples, showed a concordance rate of 100% between results obtained by NGS and conventional test platforms. Analysis of tumour cell lines indicated reliable mutation detection in samples with 5% tumour content. Furthermore, application of the panel to 58 clinical cases, identified at least one actionable mutation in 43 cases, 1.4 times the number of actionable alterations detected by current diagnostic tests. We demonstrated that targeted NGS is a cost-effective and rapid platform to detect multiple mutations simultaneously in various genes with high reproducibility and sensitivity. PMID:26936516

  5. Bridging academic science and clinical research in the search for novel targeted anti-cancer agents

    PubMed Central

    Matter, Alex

    2015-01-01

    This review starts with a brief history of drug discovery & development, and the place of Asia in this worldwide effort discussed. The conditions and constraints of a successful translational R&D involving academic basic research and clinical research are discussed and the Singapore model for pursuit of open R&D described. The importance of well-characterized, validated drug targets for the search for novel targeted anti-cancer agents is emphasized, as well as a structured, high quality translational R&D. Furthermore, the characteristics of an attractive preclinical development drug candidate are discussed laying the foundation of a successful preclinical development. The most frequent sources of failures are described and risk management at every stage is highly recommended. Organizational factors are also considered to play an important role. The factors to consider before starting a new drug discovery & development project are described, and an example is given of a successful clinical project that has had its roots in local universities and was carried through preclinical development into phase I clinical trials. PMID:26779369

  6. Neprilysin Inhibition in Heart Failure with Reduced Ejection Fraction: A Clinical Review.

    PubMed

    King, Jordan B; Bress, Adam P; Reese, Austin D; Munger, Mark A

    2015-09-01

    There has been a 10-year hiatus in the approval of a new pharmacotherapy for patients with chronic heart failure with a reduced ejection fraction (HFrEF). Combining an angiotensin receptor blocker, valsartan, with sacubitril, an inhibitor of neprilysin, results in increasing levels of natriuretic peptides that counterbalance high circulating levels of neurohormones in HFrEF. This has resulted in the development of a new agent, LCZ696. A comprehensive overview of LCZ696, its pharmacology, its role in the pathophysiology of HFrEF, completed and future clinical trial information, specific critical issues, and the place of LCZ696 in HFrEF therapy are presented. PMID:26406774

  7. Clinical Use of Virtual Reality Distraction System to Reduce Anxiety and Pain in Dental Procedures

    PubMed Central

    Gao, Kenneth; Wiederhold, Brenda K.

    2014-01-01

    Abstract Virtual reality (VR) has been used by clinicians to manage pain in clinical populations. This study examines the use of VR as a form of distraction for dental patients using both subjective and objective measures to determine how a VR system affects patients' reported anxiety level, pain level, and physiological factors. As predicted, results of self-evaluation questionnaires showed that patients experienced less anxiety and pain after undergoing VR treatment. Physiological data reported similar trends in decreased anxiety. Overall, the favorable subjective and objective responses suggest that VR distraction systems can reduce discomfort and pain for patients with mild to moderate fear and anxiety. PMID:24892198

  8. Clinical use of virtual reality distraction system to reduce anxiety and pain in dental procedures.

    PubMed

    Wiederhold, Mark D; Gao, Kenneth; Wiederhold, Brenda K

    2014-06-01

    Virtual reality (VR) has been used by clinicians to manage pain in clinical populations. This study examines the use of VR as a form of distraction for dental patients using both subjective and objective measures to determine how a VR system affects patients' reported anxiety level, pain level, and physiological factors. As predicted, results of self-evaluation questionnaires showed that patients experienced less anxiety and pain after undergoing VR treatment. Physiological data reported similar trends in decreased anxiety. Overall, the favorable subjective and objective responses suggest that VR distraction systems can reduce discomfort and pain for patients with mild to moderate fear and anxiety. PMID:24892198

  9. Two visual targets for the price of one? Pupil dilation shows reduced mental effort through temporal integration.

    PubMed

    Wolff, Michael J; Scholz, Sabine; Akyürek, Elkan G; van Rijn, Hedderik

    2015-02-01

    In dynamic sensory environments, successive stimuli may be combined perceptually and represented as a single, comprehensive event by means of temporal integration. Such perceptual segmentation across time is intuitively plausible. However, the possible costs and benefits of temporal integration in perception remain underspecified. In the present study pupil dilation was analyzed as a measure of mental effort. Observers viewed either one or two successive targets amidst distractors in rapid serial visual presentation, which they were asked to identify. Pupil dilation was examined dependent on participants' report: dilation associated with the report of a single target, of two targets, and of an integrated percept consisting of the features of both targets. There was a clear distinction between dilation observed for single-target reports and integrations on the one side, and two-target reports on the other. Regardless of report order, two-target reports produced increased pupil dilation, reflecting increased mental effort. The results thus suggested that temporal integration reduces mental effort and may thereby facilitate perceptual processing. PMID:24841237

  10. A Clinical Process Change and Educational Intervention to Reduce the Use of Unnecessary Preoperative Tests

    PubMed Central

    Richards, Sarah E.; Shiffermiller, Jason F.; Wells, Adam D.; May, Sara M.; Chakraborty, Subhankar; Caverzagie, Kelly J.; Beachy, Micah W.

    2014-01-01

    Background Internal medicine residents receive limited training on how to be good stewards of health care dollars while preserving high-quality care. Intervention We implemented a clinical process change and an educational intervention focused on the appropriate use of preoperative diagnostic testing by residents at a Veterans Administration (VA) medical center. Methods The clinical process change consisted of reducing routine ordering of preoperative tests in the absence of specific indications. Residents received a short didactic session, which included algorithms for determining the appropriate use of perioperative diagnostic testing. One outcome was the average cost savings on preoperative testing for a continuous cohort of patients referred for elective knee or hip surgery. Resident knowledge and confidence prior to and after the intervention was measured by pre- and posttest. Results The mean cost of preoperative testing decreased from $74 to $28 per patient after the dual intervention (P < .001). The bulk of cost savings came from elimination of unnecessary blood and urine tests, as well as reduced numbers of electrocardiograms and chest radiographs. Among residents who completed the pretest and posttest, the mean score on the pretest was 54%, compared with 80% on the posttest (P  =  .027). Following the educational intervention, 70% of residents stated they felt “very comfortable” ordering appropriate preoperative testing (P  =  .006). Conclusions This initiative required few resources, and it simultaneously improved the educational experience for residents and reduced costs. Other institutions may be able to adopt or adapt this intervention to reduce unnecessary diagnostic expenditures. PMID:26140127

  11. Genetic profiling of intrahepatic cholangiocarcinoma and its clinical implication in targeted therapy

    PubMed Central

    Xie, Diyang; Ren, Zhenggang; Fan, Jia; Gao, Qiang

    2016-01-01

    Intrahepatic cholangiocarcinoma (iCCA) is a treatment-refractory primary liver cancer with an increasing incidence and mortality worldwide in recent years. Lack of a stereotyped genetic signature and limited understanding of genomic landscape make the development of effective targeted therapies challenging. Recent application of advanced technologies such as next-generation sequencing (NGS) has broadened our understanding of genetic heterogeneity in iCCA and many potentially actionable genetic alterations have been identified. This review explores the recent advances in defining genetic alterations in iCCAs, which may present potent therapeutic targets. Chromatin remodeling genes and genes encoding isocitrate dehydrogenase and tyrosine kinase receptors as well as their downstream effectors are among the most frequently altered genes. Clinical trials testing the effect of new targeted agents on iCCA patients, especially those with the above genetic markers are under way. However, the complex interplay of environmental and evolutionary factors contributing to the genetic variability in iCCA calls for a more cautionary use of NGS in tailoring targeted regimen to the patients. Next-generation functional testing may complement NGS to execute precision medicine in future. PMID:27152236

  12. Genetic profiling of intrahepatic cholangiocarcinoma and its clinical implication in targeted therapy.

    PubMed

    Xie, Diyang; Ren, Zhenggang; Fan, Jia; Gao, Qiang

    2016-01-01

    Intrahepatic cholangiocarcinoma (iCCA) is a treatment-refractory primary liver cancer with an increasing incidence and mortality worldwide in recent years. Lack of a stereotyped genetic signature and limited understanding of genomic landscape make the development of effective targeted therapies challenging. Recent application of advanced technologies such as next-generation sequencing (NGS) has broadened our understanding of genetic heterogeneity in iCCA and many potentially actionable genetic alterations have been identified. This review explores the recent advances in defining genetic alterations in iCCAs, which may present potent therapeutic targets. Chromatin remodeling genes and genes encoding isocitrate dehydrogenase and tyrosine kinase receptors as well as their downstream effectors are among the most frequently altered genes. Clinical trials testing the effect of new targeted agents on iCCA patients, especially those with the above genetic markers are under way. However, the complex interplay of environmental and evolutionary factors contributing to the genetic variability in iCCA calls for a more cautionary use of NGS in tailoring targeted regimen to the patients. Next-generation functional testing may complement NGS to execute precision medicine in future. PMID:27152236

  13. Prevention of hepatocellular carcinoma: potential targets, experimental models, and clinical challenges

    PubMed Central

    Hoshida, Yujin; Fuchs, Bryan C.; Tanabe, Kenneth K.

    2013-01-01

    Chronic fibrotic liver diseases such as viral hepatitis eventually develop liver cirrhosis, which causes occurrence of hepatocellular carcinoma (HCC). Given the limited therapeutic efficacy in advanced HCC, prevention of HCC development could be an effective strategy for improving patient prognosis. However, there is still no established therapy to meet the goal. Studies have elucidated a wide variety of molecular mechanisms and signaling pathways involved in HCC development. Genetically-engineered or chemically-treated experimental models of cirrhosis and HCC have been developed and shown their potential value in investigating molecular therapeutic targets and diagnostic biomarkers for HCC prevention. In this review, we overview potential targets of prevention and currently available experimental models, and discuss strategies to translate the findings into clinical practice. PMID:22873223

  14. The mTOR pathway in obesity driven gastrointestinal cancers: Potential targets and clinical trials.

    PubMed

    Malley, Cian O; Pidgeon, Graham P

    2016-06-01

    The mechanistic target of rapamycin (mTOR) is a crucial point of convergence between growth factor signalling, metabolism, nutrient status and cellular proliferation. The mTOR pathway is heavily implicated in the progression of many cancers and is emerging as an important driver of gastrointestinal (GI) malignancies. Due to its central role in adapting metabolism to environmental conditions, mTOR signalling is also believed to be critical in the development of obesity. Recent research has delineated that excessive nutrient intake can promote signalling through the mTOR pathway and possibly evoke changes to cellular metabolism that could accelerate obesity related cancers. Acting through its two effector complexes mTORC1 and mTORC2, mTOR dictates the transcription of genes important in glycolysis, lipogenesis, protein translation and synthesis and has recently been defined as a central mediator of the Warburg effect in cancer cells. Activation of the mTOR pathway is involved in both the pathogenesis of GI malignancies and development of resistance to conventional chemotherapy and radiotherapy. The use of mTOR inhibitors is a promising therapeutic option in many GI malignancies, with greatest clinical efficacy seen in combination regimens. Recent research has also provided insight into crosstalk between mTOR and other pathways which could potentially expand the list of therapeutic targets in the mTOR pathway. Here we review the available strategies for targeting the mTOR pathway in GI cancers. We discuss current clinical trials of both established and novel mTOR inhibitors, with particular focus on combinations of these drugs with conventional chemotherapy, radiotherapy and targeted therapies. PMID:27051587

  15. The mTOR pathway in obesity driven gastrointestinal cancers: Potential targets and clinical trials

    PubMed Central

    Malley, Cian O.; Pidgeon, Graham P.

    2015-01-01

    The mechanistic target of rapamycin (mTOR) is a crucial point of convergence between growth factor signalling, metabolism, nutrient status and cellular proliferation. The mTOR pathway is heavily implicated in the progression of many cancers and is emerging as an important driver of gastrointestinal (GI) malignancies. Due to its central role in adapting metabolism to environmental conditions, mTOR signalling is also believed to be critical in the development of obesity. Recent research has delineated that excessive nutrient intake can promote signalling through the mTOR pathway and possibly evoke changes to cellular metabolism that could accelerate obesity related cancers. Acting through its two effector complexes mTORC1 and mTORC2, mTOR dictates the transcription of genes important in glycolysis, lipogenesis, protein translation and synthesis and has recently been defined as a central mediator of the Warburg effect in cancer cells. Activation of the mTOR pathway is involved in both the pathogenesis of GI malignancies and development of resistance to conventional chemotherapy and radiotherapy. The use of mTOR inhibitors is a promising therapeutic option in many GI malignancies, with greatest clinical efficacy seen in combination regimens. Recent research has also provided insight into crosstalk between mTOR and other pathways which could potentially expand the list of therapeutic targets in the mTOR pathway. Here we review the available strategies for targeting the mTOR pathway in GI cancers. We discuss current clinical trials of both established and novel mTOR inhibitors, with particular focus on combinations of these drugs with conventional chemotherapy, radiotherapy and targeted therapies. PMID:27051587

  16. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer.

    PubMed

    Scheiermann, Julia; Klinman, Dennis M

    2014-11-12

    Synthetic oligonucleotides (ODN) that express unmethylated "CpG motifs" trigger cells that express Toll-like receptor 9. In humans this includes plasmacytoid dendritic cells and B cells. CpG ODN induce an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. Their utility as vaccine adjuvants was evaluated in a number of clinical trials. Results indicate that CpG ODN improve antigen presentation and the generation of vaccine-specific cellular and humoral responses. This work provides an up-to-date overview of the utility of CpG ODN as adjuvants for vaccines targeting infectious agents and cancer. PMID:24975812

  17. Targeted Next Generation Sequencing Identifies Clinically Actionable Mutations in Patients with Melanoma

    PubMed Central

    Jeck, William R.; Parker, Joel; Carson, Craig C.; Shields, Janiel M.; Sambade, Maria J.; Peters, Eldon C.; Burd, Christin E.; Thomas, Nancy E.; Chiang, Derek Y.; Liu, Wenjin; Eberhard, David A.; Ollila, David; Grilley-Olson, Juneko; Moschos, Stergios; Hayes, D. Neil; Sharpless, Norman E.

    2014-01-01

    Somatic sequencing of cancers has produced new insight into tumorigenesis, tumor heterogeneity, and disease progression, but the vast majority of genetic events identified are of indeterminate clinical significance. Here we describe a NextGen sequencing approach to fully analyze 248 genes, including all those of known clinical significance in melanoma. This strategy features solution capture of DNA followed by multiplexed, high-throughput sequencing, and was evaluated in 31 melanoma cell lines and 18 tumor tissues from patients with metastatic melanoma. Mutations in melanoma cell lines correlated with their sensitivity to corresponding small molecule inhibitors, confirming, for example, lapatinib sensitivity in ERBB4 mutant lines and identifying a novel activating mutation of BRAF. The latter event would not have been identified by clinical sequencing and was associated with responsiveness to a BRAF kinase inhibitor. This approach identified focal copy number changes of PTEN not found by standard methods, such as comparative genomic hybridization (CGH). Actionable mutations were found in 89% of the tumor tissues analyzed, 56% of which would not be identified by standard-of-care approaches. This work shows that targeted sequencing is an attractive approach for clinical use in melanoma. PMID:24628946

  18. Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting.

    PubMed

    Antonarakis, E S; Armstrong, A J; Dehm, S M; Luo, J

    2016-09-01

    While there are myriad mechanisms of primary and acquired resistance to conventional and next-generation hormonal therapies in prostate cancer, the potential role of androgen receptor splice variants (AR-Vs) has recently gained momentum. AR-Vs are abnormally truncated isoforms of the androgen receptor (AR) protein that lack the COOH-terminal domain but retain the NH2-terminal domain and DNA-binding domain and are thus constitutively active even in the absence of ligands. Although multiple preclinical studies have previously implicated AR-Vs in the development of castration resistance as well as resistance to abiraterone and enzalutamide, recent technological advances have made it possible to reliably detect and quantify AR-Vs from human clinical tumor specimens including blood samples. Initial clinical studies have now shown that certain AR-Vs, in particular AR-V7, may be associated with resistance to abiraterone and enzalutamide but not taxane chemotherapies when detected in circulating tumor cells. Efforts are now underway to clinically validate AR-V7 as a relevant treatment-selection biomarker in the context of other key genomic aberrations in men with metastatic castration-resistant prostate cancer. Additional efforts are underway to therapeutically target both AR and AR-Vs either directly or indirectly. Whether AR-Vs represent drivers of castration-resistant prostate cancer, or whether they are simply passenger events associated with aggressive disease or clonal heterogeneity, will ultimately be answered only through these types of clinical trials. PMID:27184811

  19. Late-stage clinical development in lower urogenital targets: sexual dysfunction

    PubMed Central

    Azam, Usman

    2006-01-01

    In recent years, late-stage clinical drug development that primarily focuses on urogenital targets has centered around four areas of medical need (both unmet need and aiming to improve on existing therapies). These include male sexual dysfunction (MSD), female sexual dysfunction (FSD), prostatic pathology (neoplastic, pre-neoplasitic, and non-neoplastic), and improvement in lower urinary tract symptoms. Despite the regulatory approval of compounds to treat erectile dysfunction (ED), benign prostatic hyperplasia, a number of treatments for overactive bladder, and stress urinary incontinence, there remains a deficiency in addressing a number of conditions that arise out of pathophysiological dysfunction resulting in lower urogenital tract sexual conditions. In terms of late-stage clinical development, significant progress has most recently been made in MSD development, especially in understanding further a common and complex sexual dysfunction – that of premature ejaculation. The search also continues for compounds that improve ED in terms of better efficacy and superior safety profile compared to the currently marketed phosphodiesterase-5-inhibitors. Whilst there are no approved medications to treat the subtypes of FSD, there has been significant progress in attempting to better understand how to appropriately assess treatment benefit in clinical trial settings for this difficult to diagnose and treat condition. This review will focus on late-stage human clinical development pertaining to MSD and FSD. PMID:16465180

  20. Long-Term Effects of a Personality-Targeted Intervention to Reduce Alcohol Use in Adolescents

    ERIC Educational Resources Information Center

    Conrod, Patricia J.; Castellanos-Ryan, Natalie; Mackie, Clare

    2011-01-01

    Objective: To examine the long-term effects of a personality-targeted intervention on drinking quantity and frequency (QF), problem drinking, and personality-specific motivations for alcohol use in early adolescence. Method: A randomized control trial was carried out with 364 adolescents (median age 14) recruited from 13 secondary schools with…

  1. Reduced breastfeeding rates among obese mothers: a review of contributing factors, clinical considerations and future directions.

    PubMed

    Bever Babendure, Jennie; Reifsnider, Elizabeth; Mendias, Elnora; Moramarco, Michael W; Davila, Yolanda R

    2015-01-01

    Maternal obesity is associated with significantly lower rates of breastfeeding initiation, duration and exclusivity. Increasing rates of obesity among reproductive-age women has prompted the need to carefully examine factors contributing to lower breastfeeding rates in this population. Recent research has demonstrated a significant impact of breastfeeding to reduce the risk of obesity in both mothers and their children. This article presents a review of research literature from three databases covering the years 1995 to 2014 using the search terms of breastfeeding and maternal obesity. We reviewed the existing research on contributing factors to lower breastfeeding rates among obese women, and our findings can guide the development of promising avenues to increase breastfeeding among a vulnerable population. The key findings concerned factors impacting initiation and early breastfeeding, factors impacting later breastfeeding and exclusivity, interventions to increase breastfeeding in obese women, and clinical considerations. The factors impacting early breastfeeding include mechanical factors and delayed onset of lactogenesis II and we have critically analyzed the potential contributors to these factors. The factors impacting later breastfeeding and exclusivity include hormonal imbalances, psychosocial factors, and mammary hypoplasia. Several recent interventions have sought to increase breastfeeding duration in obese women with varying levels of success and we have presented the strengths and weaknesses of these clinical trials. Clinical considerations include specific techniques that have been found to improve breastfeeding incidence and duration in obese women. Many obese women do not obtain the health benefits of exclusive breastfeeding and their children are more likely to also be overweight or obese if they are not breastfed. Further research is needed into the physiological basis for decreased breastfeeding among obese women along with effective

  2. VisCap: inference and visualization of germ-line copy-number variants from targeted clinical sequencing data

    PubMed Central

    Pugh, Trevor J.; Amr, Sami S.; Bowser, Mark J.; Gowrisankar, Sivakumar; Hynes, Elizabeth; Mahanta, Lisa M.; Rehm, Heidi L.; Funke, Birgit; Lebo, Matthew S.

    2016-01-01

    Purpose: To develop and validate VisCap, a software program targeted to clinical laboratories for inference and visualization of germ-line copy-number variants (CNVs) from targeted next-generation sequencing data. Genet Med 18 7, 712–719. Methods: VisCap calculates the fraction of overall sequence coverage assigned to genomic intervals and computes log2 ratios of these values to the median of reference samples profiled using the same test configuration. Candidate CNVs are called when log2 ratios exceed user-defined thresholds. Genet Med 18 7, 712–719. Results: We optimized VisCap using 14 cases with known CNVs, followed by prospective analysis of 1,104 cases referred for diagnostic DNA sequencing. To verify calls in the prospective cohort, we used droplet digital polymerase chain reaction (PCR) to confirm 10/27 candidate CNVs and 72/72 copy-neutral genomic regions scored by VisCap. We also used a genome-wide bead array to confirm the absence of CNV calls across panels applied to 10 cases. To improve specificity, we instituted a visual scoring system that enabled experienced reviewers to differentiate true-positive from false-positive calls with minimal impact on laboratory workflow. Genet Med 18 7, 712–719. Conclusions: VisCap is a sensitive method for inferring CNVs from targeted sequence data from targeted gene panels. Visual scoring of data underlying CNV calls is a critical step to reduce false-positive calls for follow-up testing. Genet Med 18 7, 712–719. PMID:26681316

  3. Target Salt 2025: A Global Overview of National Programs to Encourage the Food Industry to Reduce Salt in Foods

    PubMed Central

    Webster, Jacqui; Trieu, Kathy; Dunford, Elizabeth; Hawkes, Corinna

    2014-01-01

    Reducing population salt intake has been identified as a priority intervention to reduce non-communicable diseases. Member States of the World Health Organization have agreed to a global target of a 30% reduction in salt intake by 2025. In countries where most salt consumed is from processed foods, programs to engage the food industry to reduce salt in products are being developed. This paper provides a comprehensive overview of national initiatives to encourage the food industry to reduce salt. A systematic review of the literature was supplemented by key informant questionnaires to inform categorization of the initiatives. Fifty nine food industry salt reduction programs were identified. Thirty eight countries had targets for salt levels in foods and nine countries had introduced legislation for some products. South Africa and Argentina have both introduced legislation limiting salt levels across a broad range of foods. Seventeen countries reported reductions in salt levels in foods—the majority in bread. While these trends represent progress, many countries have yet to initiate work in this area, others are at early stages of implementation and further monitoring is required to assess progress towards achieving the global target. PMID:25195640

  4. A Pharmacist-Staffed, Virtual Gout Management Clinic for Achieving Target Serum Uric Acid Levels: A Randomized Clinical Trial

    PubMed Central

    Goldfien, Robert; Pressman, Alice; Jacobson, Alice; Ng, Michele; Avins, Andrew

    2016-01-01

    Context: Relatively few patients with gout receive appropriate treatment. Objective: To determine whether a pharmacist-staffed gout management program is more effective than usual care in achieving target serum uric acid (sUA) levels in gout patients. Design: A parallel-group, randomized controlled trial of a pharmacist-staffed, telephone-based program for managing hyperuricemia vs usual care. Trial duration was 26 weeks. Main Outcome Measures: Primary outcome measure was achieving sUA levels at or below 6 mg/dL at the 26-week visit. Secondary outcome was mean change in sUA levels in the control and intervention groups. Participants were adults with recurrent gout and sUA levels above 6.0 mg/dL. Participants were randomly assigned to management by a clinical pharmacist following protocol or to monitoring of sUA levels but management of their gout by their usual treating physician. Results: Of 102 patients who met eligibility criteria, 77 subjects obtained a baseline sUA measurement and were entered into the trial. Among 37 participants in the intervention group, 13 (35%) had sUA levels at or below 6.0 mg/dL at 26 weeks, compared with 5 (13%) of 40 participants in the control group (risk ratio = 2.8, 95% confidence interval [CI] = 1.1 to 7.1, p = 0.03). The mean change in sUA levels among controls was +0.1 mg/dL compared with −1.5 mg/dL in the intervention group (sUA difference = −1.6, 95% CI = −0.9 to −2.4, p < 0.001). Conclusions: A structured pharmacist-staffed program was more effective than usual care for achieving target sUA levels. These results suggest a structured program could greatly improve gout management. PMID:27352414

  5. Targeted Next-Generation Sequencing for Clinical Diagnosis of 561 Mendelian Diseases

    PubMed Central

    Kong, Xiangdong; Guo, Xueqin; Sun, Yan; Man, Jianfen; Du, Lique; Zhu, Hui; Qu, Zelan; Tian, Ping; Mao, Bing; Yang, Yun

    2015-01-01

    Background Targeted next-generation sequencing (NGS) is a cost-effective approach for rapid and accurate detection of genetic mutations in patients with suspected genetic disorders, which can facilitate effective diagnosis. Methodology/Principal Findings We designed a capture array to mainly capture all the coding sequence (CDS) of 2,181 genes associated with 561 Mendelian diseases and conducted NGS to detect mutations. The accuracy of NGS was 99.95%, which was obtained by comparing the genotypes of selected loci between our method and SNP Array in four samples from normal human adults. We also tested the stability of the method using a sample from normal human adults. The results showed that an average of 97.79% and 96.72% of single-nucleotide variants (SNVs) in the sample could be detected stably in a batch and different batches respectively. In addition, the method could detect various types of mutations. Some disease-causing mutations were detected in 69 clinical cases, including 62 SNVs, 14 insertions and deletions (Indels), 1 copy number variant (CNV), 1 microdeletion and 2 microduplications of chromosomes, of which 35 mutations were novel. Mutations were confirmed by Sanger sequencing or real-time polymerase chain reaction (PCR). Conclusions/Significance Results of the evaluation showed that targeted NGS enabled to detect disease-causing mutations with high accuracy, stability, speed and throughput. Thus, the technology can be used for the clinical diagnosis of 561 Mendelian diseases. PMID:26274329

  6. Reactive Oxygen-Related Diseases: Therapeutic Targets and Emerging Clinical Indications

    PubMed Central

    Daiber, Andreas; Maghzal, Ghassan J.; Di Lisa, Fabio; Kaludercic, Nina; Leach, Sonia; Cuadrado, Antonio; Jaquet, Vincent; Seredenina, Tamara; Krause, Karl H.; López, Manuela G.; Stocker, Roland

    2015-01-01

    Abstract Significance: Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear. Recent Advances: We are now beginning to understand the reasons for these failures, which reside in the many important physiological roles of ROS in cell signaling. To exploit ROS therapeutically, it would be essential to define and treat the disease-relevant ROS at the right moment and leave physiological ROS formation intact. This breakthrough seems now within reach. Critical Issues: Rather than antioxidants, a new generation of protein targets for classical pharmacological agents includes ROS-forming or toxifying enzymes or proteins that are oxidatively damaged and can be functionally repaired. Future Directions: Linking these target proteins in future to specific disease states and providing in each case proof of principle will be essential for translating the oxidative stress concept into the clinic. Antioxid. Redox Signal. 23, 1171–1185. PMID:26583264

  7. Enteric Glial Cells: A New Frontier in Neurogastroenterology and Clinical Target for Inflammatory Bowel Diseases

    PubMed Central

    Ochoa-Cortes, Fernando; Turco, Fabio; Linan-Rico, Andromeda; Soghomonyan, Suren; Whitaker, Emmett; Wehner, Sven; Cuomo, Rosario

    2015-01-01

    Abstract: The word “glia” is derived from the Greek word “γλοια,” glue of the enteric nervous system, and for many years, enteric glial cells (EGCs) were believed to provide mainly structural support. However, EGCs as astrocytes in the central nervous system may serve a much more vital and active role in the enteric nervous system, and in homeostatic regulation of gastrointestinal functions. The emphasis of this review will be on emerging concepts supported by basic, translational, and/or clinical studies, implicating EGCs in neuron-to-glial (neuroglial) communication, motility, interactions with other cells in the gut microenvironment, infection, and inflammatory bowel diseases. The concept of the “reactive glial phenotype” is explored as it relates to inflammatory bowel diseases, bacterial and viral infections, postoperative ileus, functional gastrointestinal disorders, and motility disorders. The main theme of this review is that EGCs are emerging as a new frontier in neurogastroenterology and a potential therapeutic target. New technological innovations in neuroimaging techniques are facilitating progress in the field, and an update is provided on exciting new translational studies. Gaps in our knowledge are discussed for further research. Restoring normal EGC function may prove to be an efficient strategy to dampen inflammation. Probiotics, palmitoylethanolamide (peroxisome proliferator-activated receptor–α), interleukin-1 antagonists (anakinra), and interventions acting on nitric oxide, receptor for advanced glycation end products, S100B, or purinergic signaling pathways are relevant clinical targets on EGCs with therapeutic potential. PMID:26689598

  8. Utilizing mapping targets of sequences underrepresented in the reference assembly to reduce false positive alignments

    PubMed Central

    Miga, Karen H.; Eisenhart, Christopher; Kent, W. James

    2015-01-01

    The human reference assembly remains incomplete due to the underrepresentation of repeat-rich sequences that are found within centromeric regions and acrocentric short arms. Although these sequences are marginally represented in the assembly, they are often fully represented in whole-genome short-read datasets and contribute to inappropriate alignments and high read-depth signals that localize to a small number of assembled homologous regions. As a consequence, these regions often provide artifactual peak calls that confound hypothesis testing and large-scale genomic studies. To address this problem, we have constructed mapping targets that represent roughly 8% of the human genome generally omitted from the human reference assembly. By integrating these data into standard mapping and peak-calling pipelines we demonstrate a 10-fold reduction in signals in regions common to the blacklisted region and identify a comprehensive set of regions that exhibit mapping sensitivity with the presence of the repeat-rich targets. PMID:26163063

  9. Targeting STAT3 signaling reduces immunosuppressive myeloid cells in head and neck squamous cell carcinoma.

    PubMed

    Bu, Lin-Lin; Yu, Guang-Tao; Deng, Wei-Wei; Mao, Liang; Liu, Jian-Feng; Ma, Si-Rui; Fan, Teng-Fei; Hall, Bradford; Kulkarni, Ashok B; Zhang, Wen-Feng; Sun, Zhi-Jun

    2016-05-01

    Cumulative evidence suggests that constitutively activated signal transducer and activator of transcription (STAT3) may contribute to sustaining immunosuppressive status, and that inhibiting STAT3 signaling represents a potential strategy to improve antitumor immunity. In the present study, we observed that high levels phosphorylated of STAT3 are significantly associated with the markers for both myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) in human head and neck squamous cell carcinoma (HNSCC). Additionally, we showed that targeting STAT3 signaling with a tolerable selective inhibitor S3I-201 significantly decreased immature myeloid cells such as MDSCs, TAMs and iDCs in genetically defined mice HNSCC model. These findings highlight that targeting STAT3 signaling may be effective to enhance antitumor immunity via myeloid suppressor cells in HNSCC. PMID:27467947

  10. Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression

    PubMed Central

    Skubitz, Amy P.N.; Taras, Elizabeth P.; Boylan, Kristin L.M.; Waldron, Nate N.; Oh, Seunguk; Panoskaltsis-Mortari, Angela; Vallera, Daniel A.

    2013-01-01

    Objectives While most women with ovarian cancer will achieve complete remission after treatment, the majority will relapse within two years, highlighting the need for novel therapies. Cancer stem cells (CSC) have been identified in ovarian cancer and most other carcinomas as a small population of cells that can self-renew. CSC are more chemoresistant and radio-resistant than the bulk tumor cells; it is likely that CSC are responsible for relapse, the major problem in cancer treatment. CD133 has emerged as one of the most promising markers for CSC in ovarian cancer. The hypothesis driving this study is that despite their low numbers in ovarian cancer tumors, CSC can be eradicated using CD133 targeted therapy and tumor growth can be inhibited. Methods Ovarian cancer cell lines were evaluated using flow cytometry for expression of CD133. In vitro viability studies with an anti-CD133 targeted toxin were performed on one of the cell lines, NIH:OVCAR5. The drug was tested in vivo using a stably transfected luciferase-expressing NIH:OVCAR5 subline in nude mice, so that tumor growth could be monitored by digital imaging in real time. Results Ovarian cancer cell lines showed 5.6% to 16.0% CD133 expression. dCD133KDEL inhibited the in vitro growth of NIH:OVCAR5 cells. Despite low numbers of CD133-expressing cells in the tumor population, intraperitoneal drug therapy caused a selective decrease in tumor progression in intraperitoneal NIH: OVCAR5-luc tumors. Conclusions Directly targeting CSC that are a major cause of drug resistant tumor relapse with an anti-CD133 targeted toxin shows promise for ovarian cancer therapy. PMID:23721800

  11. Challenges of clinical trial design for targeted agents against pediatric leukemias.

    PubMed

    Mussai, Francis Jay; Yap, Christina; Mitchell, Christopher; Kearns, Pamela

    2014-01-01

    The past 40 years have seen significant improvements in both event-free and overall survival for children with acute lymphoblastic and acute myeloid leukemia (ALL and AML, respectively). Serial national and international clinical trials have optimized the use of conventional chemotherapeutic drugs and, along with improvements in supportive care that have enabled the delivery of more intensive regimens, have been responsible for the major improvements in patient outcome seen over the past few decades. However, the benefits of dose intensification have likely now been maximized, and over the same period, the identification of new cytotoxic drugs has been limited. Therefore, challenges remain if survival is to be improved further. In pediatric ALL, 5-year-survival rates of over 85% have been achieved with risk-stratified therapy, but a notable minority of patients will still not be cured. In pediatric AML, different challenges remain. A slower improvement in overall survival has taken place in this patient population. Despite the obvious morphological heterogeneity of AML blasts, biological stratification is comparatively limited, and translation into risk-stratified therapeutic approaches has only best characterized by the use of retinoic acid for t(15;17)-positive AML. Even where prognostic markers have been identified, limited therapeutic options or multi-drug resistance of AML blasts has limited the impact on patient benefit. For both, the acute morbidities of current treatment remain significant and may be life-threatening alone. In addition, the Childhood Cancer Survivor Study (CCSS) highlighted many leukemia survivors develop one or more chronic medical conditions attributable to treatment (1, 2). As the biology of leukemogenesis has become better understood, key molecules and intracellular pathways have been identified that offer the possibility of targeting directly the leukemia cells while sparing normal cells. Consequently, there is now a drive to develop

  12. Clinical roundtable monograph: CD30 in lymphoma: its role in biology, diagnostic testing, and targeted therapy.

    PubMed

    Sotomayor, Eduardo M; Young, Ken H; Younes, Anas

    2014-04-01

    CD30, a member of the tumor necrosis factor receptor superfamily, is a transmembrane glycoprotein receptor consisting of an extracellular domain, a transmembrane domain, and an intracellular domain. CD30 has emerged as an important molecule in the field of targeted therapy because its expression is generally restricted to specific disease types and states. The major cancers with elevated CD30 expression include Hodgkin lymphoma and anaplastic large T-cell lymphoma, and CD30 expression is considered essential to the differential diagnosis of these malignancies. Most commonly, CD30 expression is detected and performed by immunohistochemical staining of biopsy samples. Alternatively, flow cytometry analysis has also been developed for fresh tissue and cell aspiration specimens, including peripheral blood and bone marrow aspirate. Over the past several years, several therapeutic agents were developed to target CD30, with varying success in clinical trials. A major advance in the targeting of CD30 was seen with the development of the antibody-drug conjugate brentuximab vedotin, which consists of the naked anti-CD30 antibody SGN-30 conjugated to the synthetic antitubulin agent monomethyl auristatin E. In 2011, brentuximab vedotin was approved by the US Food and Drug Administration for use in Hodgkin lymphoma and anaplastic large cell lymphoma based on clinical trial data showing high response rates in these indications. Ongoing trials are examining brentuximab vedotin after autologous stem cell transplantation, as part of chemotherapy combination regimens, and in other CD30-expressing malignancies, including primary mediastinal large B-cell lymphomas, diffuse large B-cell lymphoma, lymphoma positive for Epstein-Barr virus, peripheral T-cell lymphoma not otherwise specified, and cutaneous anaplastic large cell lymphoma. PMID:24870054

  13. Concordance of preclinical and clinical pharmacology and toxicology of monoclonal antibodies and fusion proteins: soluble targets

    PubMed Central

    Martin, Pauline L; Bugelski, Peter J

    2012-01-01

    Monoclonal antibodies (mAbs) and fusion proteins directed towards soluble targets make an important contribution to the treatment of disease. The purpose of this review was to correlate the clinical and preclinical data on the 14 currently approved mAbs and fusion proteins targeted to soluble targets. The principal sources used to gather data were: the peer reviewed Literature; European Medicines Agency ‘Scientific Discussions’ and United States Food and Drug Administration ‘Pharmacology/Toxicology Reviews’ and package inserts (United States Prescribing Information). Data on the following approved biopharmaceuticals were included: adalimumab, anakinra, bevacizumab, canakinumab, certolizumab pegol, denosumab, eculizumab, etanercept, golimumab, infliximab, omalizumab, ranibizumab, rilonacept and ustekinumab. Some related biopharmaceuticals in late-stage development were also included for comparison. Good concordance with human pharmacodynamics was found for both non-human primates (NHPs) receiving the human biopharmaceutical and mice receiving rodent homologues (surrogates). In contrast, there was limited concordance for human adverse effects in genetically deficient mice, mice receiving surrogates or NHPs receiving the human pharmaceutical. In summary, the results of this survey show that although both mice and NHPs have good predictive value for human pharmacodynamics, neither species have good predictive value for human adverse effects. No evidence that NHPs have superior predictive value was found. PMID:22168335

  14. Radiation Induced Non-targeted Response: Mechanism and Potential Clinical Implications

    PubMed Central

    Hei, Tom K.; Zhou, Hongning; Chai, Yunfei; Ponnaiya, Brian; Ivanov, Vladimir N.

    2012-01-01

    Generations of students in radiation biology have been taught that heritable biological effects require direct damage to DNA. Radiation-induced non-targeted/bystander effects represent a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the biological consequences of exposure to low doses of radiation. Although radiation induced bystander effects have been well documented in a variety of biological systems, including 3D human tissue samples and whole organisms, the mechanism is not known. There is recent evidence that the NF-κB-dependent gene expression of interleukin 8, interleukin 6, cyclooxygenase-2, tumor necrosis factor and interleukin 33 in directly irradiated cells produced the cytokines and prostaglandin E2 with autocrine/paracrine functions, which further activated signaling pathways and induced NF-κB-dependent gene expression in bystander cells. The observations that heritable DNA alterations can be propagated to cells many generations after radiation exposure and that bystander cells exhibit genomic instability in ways similar to directly hit cells indicate that the low dose radiation response is a complex interplay of various modulating factors. The potential implication of the non-targeted response in radiation induced secondary cancer is discussed. A better understanding of the mechanism of the non-targeted effects will be invaluable to assess its clinical relevance and ways in which the bystander phenomenon can be manipulated to increase therapeutic gain in radiotherapy. PMID:21143185

  15. Soy Protein Supplementation Reduces Clinical Indices in Type 2 Diabetes and Metabolic Syndrome

    PubMed Central

    Zhang, Yun-Bo; Chi, Mei-Hua

    2016-01-01

    Purpose Clinical trials have studied the use of soy protein for treating type 2 diabetes (T2D) and metabolic syndrome (MS). The purpose of this study was to outline evidence on the effects of soy protein supplementation on clinical indices in T2D and MS subjects by performing a meta-analysis of randomized controlled trials (RCTs). Materials and Methods We searched PubMed, EMBASE, and Cochrane databases up to March 2015 for RCTs. Pooled estimates and 95% confidence intervals (CIs) were calculated by the fixed-and-random-effects model. A total of eleven studies with eleven clinical variables met the inclusion criteria. Results The meta-analysis showed that fasting plasma glucose (FPG) [weighted mean difference (WMD), -0.207; 95% CI, -0.374 to -0.040; p=0.015], fasting serum insulin (FSI) (WMD, -0.292; 95% CI, -0.496 to -0.088; p=0.005), homeostasis model of assessment for insulin resistance index (HOMA-IR) (WMD, -0.346; 95% CI, -0.570 to -0.123; p=0.002), diastolic blood pressure (DBP) (WMD, -0.230; 95% CI, -0.441 to -0.019; p=0.033), low-density lipoprotein cholesterol (LDL-C) (WMD, -0.304; 95% CI, -0.461 to -0.148; p=0.000), total cholesterol (TC) (WMD, -0.386; 95% CI, -0.548 to -0.225; p=0.000), and C-reactive protein (CRP) (WMD, -0.510; 95% CI, -0.722 to -0.299; p=0.000) are significant reduced with soy protein supplementation, compared with a placebo control group, in T2D and MS patients. Furthermore, soy protein supplementation for longer duration (≥6 mo) significantly reduced FPG, LDL-C, and CRP, while that for a shorter duration (<6 mo) significantly reduced FSI and HOMA-IR. Conclusion Soy protein supplementation could be beneficial for FPG, FSI, HOMA-IR, DBP, LDL-C, TC, and CRP control in plasma. PMID:26996569

  16. Pharmaceutical and clinical development of phosphonate-based radiopharmaceuticals for the targeted treatment of bone metastases.

    PubMed

    Lange, Rogier; Ter Heine, Rob; Knapp, Russ Ff; de Klerk, John M H; Bloemendal, Haiko J; Hendrikse, N Harry

    2016-10-01

    Therapeutic phosphonate-based radiopharmaceuticals radiolabeled with beta, alpha and conversion electron emitting radioisotopes have been investigated for the targeted treatment of painful bone metastases for >35years. We performed a systematic literature search and focused on the pharmaceutical development, preclinical research and early human studies of these radiopharmaceuticals. The characteristics of an ideal bone-targeting therapeutic radiopharmaceutical are presented and compliance with these criteria by the compounds discussed is verified. The importance of both composition and preparation conditions for the stability and biodistribution of several agents is discussed. Very few studies have described the characterization of these products, although knowledge on the molecular structure is important with respect to in vivo behavior. This review discusses a total of 91 phosphonate-based therapeutic radiopharmaceuticals, of which only six agents have progressed to clinical use. Extensive clinical studies have only been described for (186)Re-HEDP, (188)Re-HEDP and (153)Sm-EDTMP. Of these, (153)Sm-EDTMP represents the only compound with worldwide marketing authorization. (177)Lu-EDTMP has recently received approval for clinical use in India. This review illustrates that a thorough understanding of the radiochemistry of these agents is required to design simple and robust preparation and quality control methods, which are needed to fully exploit the potential benefits of these theranostic radiopharmaceuticals. Extensive biodistribution and dosimetry studies are indispensable to provide the portfolios that are required for assessment before human administration is possible. Use of the existing knowledge collected in this review should guide future research efforts and may lead to the approval of new promising agents. PMID:27496068

  17. The clinical development of molecularly targeted agents in combination with radiation therapy: a pharmaceutical perspective.

    PubMed

    Ataman, Ozlem U; Sambrook, Sally J; Wilks, Chris; Lloyd, Andrew; Taylor, Amanda E; Wedge, Stephen R

    2012-11-15

    This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the clinicaltrials.gov Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, and PubMed databases and then cross-correlated with clinicaltrials.gov protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests that such trials are

  18. Survey and Rapid Detection of Bordetella pertussis in Clinical Samples Targeting the BP485 in China

    PubMed Central

    Liu, Wei; Xu, Yinghua; Dong, Derong; Li, Huan; Zhao, Xiangna; Li, Lili; Zhang, Ying; Wei, Xiao; Wang, Xuesong; Huang, Simo; Zeng, Ming; Huang, Liuyu; Zhang, Shumin; Yuan, Jing

    2015-01-01

    Bordetella pertussis is an important human respiratory pathogen. Here, we describe a loop-mediated isothermal amplification (LAMP) method for the rapid detection of B. pertussis in clinical samples based on a visual test. The LAMP assay detected the BP485 target sequence within 60 min with a detection limit of 1.3 pg/μl, a 10-fold increase in sensitivity compared with conventional PCR. All 31 non-pertussis respiratory pathogens tested were negative for LAMP detection, indicating the high specificity of the primers for B. pertussis. To evaluate the application of the LAMP assay to clinical diagnosis, of 105 sputum and nasopharyngeal samples collected from the patients with suspected respiratory infections in China, a total of 12 B. pertussis isolates were identified from 33 positive samples detected by LAMP-based surveillance targeting BP485. Strikingly, a 4.5 months old baby and her mother were found to be infected with B. pertussis at the same time. All isolates belonged to different B. pertussis multilocus sequence typing groups with different alleles of the virulence-related genes including four alleles of ptxA, six of prn, four of tcfA, two of fim2, and three of fim3. The diversity of B. pertussis carrying toxin genes in clinical strains indicates a rapid and continuing evolution of B. pertussis. This combined with its high prevalence will make it difficult to control. In conclusion, we have developed a visual detection LAMP assay, which could be a useful tool for rapid B. pertussis detection, especially in situations where resources are poor and in point-of-care tests. PMID:25798436

  19. The Clinical Development of Molecularly Targeted Agents in Combination With Radiation Therapy: A Pharmaceutical Perspective

    SciTech Connect

    Ataman, Ozlem U.; Sambrook, Sally J.; Wilks, Chris; Lloyd, Andrew; Taylor, Amanda E.; Wedge, Stephen R.

    2012-11-15

    Summary: This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the (clinicaltrials.gov) Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, and PubMed databases and then cross-correlated with (clinicaltrials.gov) protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests that such

  20. Laser Coupling to Reduced-Scale Targets at the Early Light Program of the National Ignition Facility

    SciTech Connect

    Hinkel, D E; Schneider, M B; Baldis, H A; Bower, D; Campbell, K M; Celeste, J R; Compton, S; Costa, R; Dewald, E L; Dixit, S; Eckart, M J; Eder, D C; Edwards, M J; Ellis, A; Emig, J; Froula, D H; Glenzer, S H; Hargrove, D; Haynam, C A; Heeter, R F; Holder, J P; Holtmeier, G; James, L; Jancaitis, K S; Kalantar, D H; Kauffman, R L; Kimbrough, J; Kirkwood, R K; Koniges, A E; Kamperschroer, J; Landen, O L; Landon, M; Langdon, A B; Lee, F D; MacGowan, B J; MacKinnon, A J; Manes, K R; May, M J; McDonald, J W; Munro, D H; Murray, J R; Niemann, C; Pellinen, D; Rekow, V; Ruppe, J A; Schein, J; Shepherd, R; Singh, M S; Springer, P T; Still, C H; Suter, L J; Turner, R E; Wallace, R J; Warrick, A; Watts, P; Weber, F; Williams, E A; Young, B K; Young, P E

    2004-11-18

    A platform for analysis of material properties under extreme conditions, where a sample is bathed in radiation with a high temperature, is under development. This hot environment is produced with a laser by depositing maximum energy into a small, high-Z can. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility, under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, there is a unique wavelength dependence of the Raman backscattered light that is consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Finally, novel diagnostic capabilities indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light.

  1. Radium-223: From Radiochemical Development to Clinical Applications in Targeted Cancer Therapy

    SciTech Connect

    Bruland, Oyvind S.; Jonasdottir, Thora J.; Fisher, Darrell R.; Larsen, Roy H.

    2008-09-15

    The radiochemical properties of radium-223 (223Ra, T1/2 = 11.4 d) render this alpha-emitting radionuclide promising for targeted cancer therapy. Together with its short-lived daughters, each 223Ra decay produces four alpha-particle emissions—which enhance therapy effectiveness at the cellular level. In this paper, we review the recently published data reported for pre-clinical and clinical use of 223Ra in cancer treatment. We have evaluated two distinct chemical forms of 223Ra in vivo: 1) cationic 223Ra as dissolved RaCl2, and 2) liposome-encapsulated 223Ra. Cationic 223Ra seeks metabolically active osteoblastic bone and tumor lesions with high uptake and strong binding affinity based on its similarities to calcium. Based on these properties, we have advanced the clinical use of 223Ra for treating bone metastases from late-stage breast and prostate cancer. The results show impressive anti-tumor activity and improved overall survival in hormone-refractory prostate cancer patients with bone metastases. In other studies, we have evaluated the biodistribution and tumor uptake of liposomally encapsulated 223Ra in mice with human osteosarcoma xenografts, and in dogs with spontaneous osteosarcoma and associated soft tissue metastases. Results indicate excellent biodistributions in both species. In dogs, we found considerable uptake of liposomal 223Ra in cancer metastases in multiple organs, resulting in favorable tumor-to-normal soft tissue ratios. Collectively, these findings show an outstanding potential for 223Ra as a therapeutic agent.

  2. Reduced 25-OH vitamin D in patients with autoimmune cytopenias, clinical correlations and literature review.

    PubMed

    Fattizzo, Bruno; Zaninoni, Anna; Giannotta, Juri A; Binda, Francesca; Cortelezzi, Agostino; Barcellini, Wilma

    2016-07-01

    Vitamin D deficiency is widespread in Western Countries and has been found related to autoimmune and hematologic disease incidence and clinical course. We evaluated vitamin D levels, vitamin D receptor (VDR) and T helper (Th)1, Th2 and Th17 immunomodulatory cytokines in patients with immune thrombocytopenic purpura (ITP, N=44), primary autoimmune hemolytic anemia (AIHA, n=35), Evans' syndrome (n=5) and chronic idiopathic neutropenia (CIN, n=19) and also tested vitamin D effect on the in vitro production of anti-erythrocyte autoantibodies. 25-OH-vitamin D levels were significantly lower and vitamin D receptor higher in patients than in controls. Among ITP cases, those with very low vitamin D levels displayed reduced platelet counts, irrespective of the bleeding history. In AIHA patients, LDH values negatively correlated with vitamin D levels in mixed forms, and reticulocyte counts were positively related with vitamin D. Considering treatment, AIHA patients who had been treated with 2 therapy lines or more showed lower mean 25-OH-vitamin D levels than those untreated or treated with one line of therapy only. IL-6, IL-10, IL-17 and IFN-γ levels were higher in patients versus controls, whereas TNF-α was significantly reduced. Finally, vitamin D at concentrations of 10, 20, and 40ng/mL reduced the in vitro production of anti-erythrocyte autoantibodies both in pokeweed-stimulated and unstimulated cultures. In conclusion, vitamin D is reduced in autoimmune cytopenias and correlate with disease severity, supporting its possible protective role against the development of autoimmunity. Literature review showed vitamin D deficiency reports both in onco- and in non onco-hematologic diseases with a relationship with disease severity/activity in myeloid and lymphoid neoplasms, as well as in sickle cell disease. Supplementation has produced weak results in autoimmune and hematologic diseases, and further studies are needed. PMID:26988993

  3. Different causes of reduced sensitivity to thyroid hormone: diagnosis and clinical management.

    PubMed

    Visser, W Edward; van Mullem, Alies A A; Visser, Theo J; Peeters, Robin P

    2013-11-01

    Normal thyroid hormone (TH) metabolism and action require adequate cellular TH signalling. This entails proper function of TH transporters in the plasma membrane, intracellular deiodination of TH and action of the bioactive hormone T3 at its nuclear receptors (TRs). The present review summarizes the discoveries of different syndromes with reduced sensitivity at the cellular level. Mutations in the TH transporter MCT8 cause psychomotor retardation and abnormal thyroid parameters. Mutations in the SBP2 protein, which is required for normal deiodination, give rise to a multisystem disorder including abnormal thyroid function tests. Mutations in TRβ1 are a well-known cause of resistance to TH with mostly a mild phenotype, while only recently, patients with mutations in TRα1 were identified. The latter patients have slightly abnormal TH levels, growth retardation and cognitive defects. This review will describe the mechanisms of disease, clinical phenotype, diagnostic testing and suggestions for treatment strategies for each of these syndromes. PMID:23834164

  4. Heterogeneity in head and neck IMRT target design and clinical practice

    PubMed Central

    Hong, Theodore S.; Tomé, Wolfgang A.; Harari, Paul M.

    2013-01-01

    Purpose To assess patterns of H&N IMRT practice with particular emphasis on elective target delineation. Materials and methods Twenty institutions with established H&N IMRT expertise were solicited to design clinical target volumes for the identical H&N cancer case. To limit contouring variability, a primary tonsil GTV and ipsilateral level II node were pre-contoured. Participants were asked to accept this GTV, and contour their recommended CTV and PTV. Dose prescriptions, contouring time, and recommendations regarding chemotherapy were solicited. Results All 20 institutions responded. Remarkable heterogeneity in H&N IMRT design and practice was identified. Seventeen of 20 centers recommended treatment of bilateral necks whereas 3/20 recommended treatment of the ipsilateral neck only. The average CTV volume was 250 cm3 (range 37–676 cm3). Although there was high concordance in coverage of ipsilateral neck levels II and III, substantial variation was identified for levels I, V, and the contralateral neck. Average CTV expansion was 4.1 mm (range 0–15 mm). Eight of 20 centers recommended chemotherapy (cisplatin), whereas 12/20 recommended radiation alone. Responders prescribed on average 69 and 68 Gy to the tumor and metastatic node GTV, respectively. Average H&N target volume contouring time was 102.5 min (range 60–210 min). Conclusion This study identifies substantial heterogeneity in H&N IMRT target definition, prescription, neck treatment, and use of chemotherapy among practitioners with established H&N IMRT expertise. These data suggest that continued efforts to standardize and simplify the H&N IMRT process are desirable for the safe and effective global advancement of H&N IMRT practice. PMID:22405806

  5. Dual actions of albumin packaging and tumor targeting enhance the antitumor efficacy and reduce the cardiotoxicity of doxorubicin in vivo

    PubMed Central

    Zheng, Ke; Li, Rui; Zhou, Xiaolei; Hu, Ping; Zhang, Yaxin; Huang, Yunmei; Chen, Zhuo; Huang, Mingdong

    2015-01-01

    Doxorubicin (DOX) is an effective chemotherapy drug used to treat different types of cancers. However, DOX has severe side effects, especially life-threatening cardiotoxicity. We herein report a new approach to reduce the toxicity of DOX by embedding DOX inside human serum albumin (HSA). HSA is further fused by a molecular biology technique with a tumor-targeting agent, amino-terminal fragment of urokinase (ATF). ATF binds with a high affinity to urokinase receptor, which is a cell-surface receptor overexpressed in many types of tumors. The as-prepared macromolecule complex (ATF–HSA:DOX) was not as cytotoxic as free DOX to cells in vitro, and was mainly localized in cell cytosol in contrast to DOX that was localized in cell nuclei. However, in tumor-bearing mice, ATF–HSA:DOX was demonstrated to have an enhanced tumor-targeting and antitumor efficacy compared with free DOX. More importantly, histopathological examinations of the hearts from the mice treated with ATF–HSA:DOX showed a significantly reduced cardiotoxicity compared with hearts from mice treated with free DOX. These results demonstrate the feasibility of this approach in reducing the cardiotoxicity of DOX while strengthening its antitumor efficacy. Such a tumor-targeted albumin packaging strategy can also be applied to other antitumor drugs. PMID:26346331

  6. From lab to clinic: Extinction of cued cravings to reduce overeating.

    PubMed

    Jansen, Anita; Schyns, Ghislaine; Bongers, Peggy; van den Akker, Karolien

    2016-08-01

    Food cue reactivity is a strong motivation to eat, even in the absence of hunger. Therefore, food cue reactivity might sabotage healthy eating, induce weight gain and impede weight loss or weight maintenance. Food cue reactivity can be learned via Pavlovian appetitive conditioning: It is easily acquired but the extinction of appetitive responding seems to be more challenging. Several properties of extinction make it fragile: extinction does not erase the original learning and extinction is context-dependent. These properties threaten full extinction and increase the risk of full relapse. Extinction procedures are discussed to reduce or prevent the occurrence of rapid reacquisition, spontaneous recovery, renewal and reinstatement after extinction. A translation to food cue exposure treatment is made and suggestions are provided, such as conducting the exposure in relevant contexts, using occasional reinforcement and targeting expectancy violation instead of habituation. A new hypothesis proposed here is that the adding of inhibition training to strengthen inhibition skills that reduce instrumental responding, might be beneficial to improve food cue exposure effects. PMID:26994737

  7. Derivation and validation of clinical prediction rules for reduced vancomycin susceptibility in Staphylococcus aureus bacteraemia.

    PubMed

    Han, J H; Bilker, W B; Edelstein, P H; Mascitti, K B; Lautenbach, E

    2013-01-01

    Reduced vancomycin susceptibility (RVS) may lead to poor clinical outcomes in Staphylococcus aureus bacteraemia. We conducted a cohort study of 392 patients with S. aureus bacteraemia within a university health system. The association between RVS, as defined by both Etest [vancomycin minimum inhibitory concentration (MIC) >1·0 μg/ml] and broth microdilution (vancomycin MIC ≥1·0 μg/ml), and patient and clinical variables were evaluated to create separate predictive models for RVS. In total, 134 (34·2%) and 73 (18·6%) patients had S. aureus isolates with RVS by Etest and broth microdilution, respectively. The final model for RVS by Etest included methicillin resistance [odds ratio (OR) 1·51, 95% confidence interval (CI) 0·97-2·34], non-white race (OR 0·67, 95% CI 0·42-1·07), healthcare-associated infection (OR 0·56, 95% CI 0·32-0·96), and receipt of any antimicrobial therapy ≤30 days prior to the culture date (OR 3·06, 95% CI 1·72-5·44). The final model for RVS by broth microdilution included methicillin resistance (OR 2·45, 95% CI 1·42-4·24), admission through the emergency department (OR 0·54, 95% CI 0·32-0·92), presence of an intravascular device (OR 2·24, 95% CI 1·30-3·86), and malignancy (OR 0·51, 95% CI 0·26-1·00). The availability of an easy and rapid clinical prediction rule for early identification of RVS can be used to help guide the timely and individualized management of these serious infections. PMID:22490228

  8. Nurse-led risk assessment/management clinics reduce predicted cardiac morbidity and mortality in claudicants.

    PubMed

    Hatfield, Josephine; Gulati, Sumit; Abdul Rahman, Morhisham N A; Coughlin, Patrick A; Chetter, Ian C

    2008-12-01

    Nurse-led assessment/management of risk factors is effective in many chronic medical conditions. We aimed to evaluate whether this finding was true for patients with intermittent claudication and to analyze its impact on patient-reported quality of life and predicted mortality due to coronary heart disease. We prospectively studied a series of 78 patients (51 men; median age, 65 years [IQR: 56-74 years]), diagnosed with intermittent claudication and referred to a nurse-led risk assessment/management clinic (NLC) from a consultant-led vascular surgical clinic. The NLC used clinical care pathways to manage antiplatelet medication, smoking cessation, hyperlipidemia, hypertension, and diabetes and to provide exercise advice. All patients were reassessed at a 3 months. Medication compliance, smoking status, fasting lipid profiles, blood pressure, and HbA1c were recorded. Disease-specific quality of life was assessed using King's College VascuQoL and predicted cardiac morbidity and mortality were calculated using the PROCAM and Framingham risk scores. We found that NLC enrollment produced an antiplatelet and a statin compliance of 100%, a smoking cessation rate of 17% (9 patients) and significant improvements in total cholesterol (median, 5.2-4.5 mmol/l), LDL (median, 3.1-2.5 mmol/l) and triglyceride (median, 1.7-1.4 mmol/l) levels. Significant disease-specific quality of life improvements and significant reduction in both the PROCAM (14% to 10%) and Framingham (14% to 11%) coronary risk scores were observed. Providing care at NLCs for claudicants is effective in assessing and managing risk factors, improves disease-specific quality of life and reduces predicted morbidity and mortality due to coronary heart disease. PMID:19022170

  9. Burnout and Work Demands Predict Reduced Job Satisfaction in Health Professionals Working In a Surgery Clinic

    PubMed Central

    Mijakoski, Dragan; Karadzinska-Bislimovska, Jovanka; Basarovska, Vera; Stoleski, Sasho; Minov, Jordan

    2015-01-01

    BACKGROUND: Burnout syndrome develops in health professionals (HPs) as a result of exposure to chronic emotional and interpersonal workplace stressors. Research demonstrates the links between burnout, work demands, and job satisfaction in hospital HPs. AIMS: To examine the associations between burnout, work demands and job satisfaction, and to demonstrate the mediation effect of emotional exhaustion on the relationship between work demands and job satisfaction in surgery clinic HPs. METHODS: Maslach Burnout Inventory was used for assessment of burnout. Work demands and job satisfaction were measured with Hospital Experience Scale and Job Satisfaction Survey, respectively. In order to examine the role of emotional exhaustion, depersonalization, and work demands, controlling for age, hospital tenure, and unit tenure, a hierarchical multiple regression models were tested for each job satisfaction factor. RESULTS: Job satisfaction was negatively predicted by emotional exhaustion. Certain types of work demands negatively predicted different factors of job satisfaction. Emotional exhaustion was a significant partial mediator of the relationship between work demands and job satisfaction. CONCLUSIONS: Adequate management of work demands, particularly excessive workload, time pressure, and lack of staff can lead to prevention of burnout and reduced job satisfaction in surgery clinic HPs, and contribute to better quality of patient care. PMID:27275216

  10. Mammalian target of rapamycin (mTOR) inhibition reduces cerebral vasospasm following a subarachnoid hemorrhage injury in canines.

    PubMed

    Zhang, Weiguang; Khatibi, Nikan H; Yamaguchi-Okada, Mitsuo; Yan, Junhao; Chen, Chunhua; Hu, Qin; Meng, Haiwei; Han, Hongbin; Liu, Shuwei; Zhou, Changman

    2012-02-01

    Mammalian target of rapamycin (mTOR) pathway is a serine/threonine protein kinase that plays a vital role in regulating growth, proliferation, survival, and protein synthesis among cells. In the present study, we investigated the role of the mTOR pathway following subarachnoid hemorrhage brain injury--specifically investigating its ability to mediate the activation of cerebral vasospasm. Additionally, we investigated whether key signaling pathway molecules such as the mTOR, P70S6K1, and 4E-BP1 play a role in the process. Thirty dogs were randomly divided into 5 groups: sham, SAH (subarachnoid hemorrhage), SAH+DMSO (dimethyl sulfoxide), SAH+Rapamycin and SAH+AZD8055. An established canine double-hemorrhage model of SAH was used by injecting autologous arterial blood into the cisterna magna on days 0 and 2. Angiography was performed at days 0 and 7. Clinical behavior, histology, immunohistochemistry, and Western blot of mTOR, P70S6K1, 4E-BP1 and PCNA (proliferating cell nuclear antigen) in the basilar arteries were examined. In the SAH and SAH+DMSO groups, severe angiographic vasospasm was obtained (34.3±19.8%, 38.4±10.3) compared with that in Sham (93.9±5.0%) respectively. mTOR, P70S6K1, 4E-BP1 and PCNA increased in the sample of spastic basilar arteries (p<0.05). In the SAH+RAPA and SAH+AZD8055 groups, Rapamycin and AZD8055 attenuated angiographic vasospasm (62.3±15.9% and 65.2±10.3%) while improving appetite and activity scores (p<0.05) on days 5 through 7. Rapamycin and AZD8055 significantly reduced the level and expression of mTOR, P70S6K1, 4E-BP1 and PCNA (p<0.05). In conclusion, our study suggests that the mTOR molecular signaling pathway plays a significant role in cerebral vasospasm following SAH, and that inhibition of the mTOR pathway has the potential to become an attractive strategy to treat vasospasm following SAH. PMID:22177999

  11. High-affinity σ1 protein agonist reduces clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Oxombre, B; Lee-Chang, C; Duhamel, A; Toussaint, M; Giroux, M; Donnier-Maréchal, M; Carato, P; Lefranc, D; Zéphir, H; Prin, L; Melnyk, P; Vermersch, P

    2015-01-01

    Background and Purpose Selective agonists of the sigma-1 receptor (σ1 protein) are generally reported to protect against neuronal damage and modulate oligodendrocyte differentiation. Human and rodent lymphocytes possess saturable, high-affinity binding sites for compounds binding to the σ1 protein and potential immunomodulatory properties have been described for σ1 protein ligands. Experimental autoimmune encephalomyelitis (EAE) is recognized as a valuable model of the inflammatory aspects of multiple sclerosis (MS). Here, we have assessed the role of a σ1 protein agonist, containing the tetrahydroisoquinoline-hydantoin structure, in EAE. Experimental Approach EAE was induced in SJL/J female mice by active immunization with myelin proteolipid protein (PLP)139–151 peptide. The σ1 protein agonist was injected i.p. at the time of immunization (day 0). Disease severity was assessed clinically and by histopathological evaluation of the CNS. Phenotyping of B-cell subsets and regulatory T-cells were performed by flow cytometry in spleen and cervical lymph nodes. Key Results Prophylactic treatment of EAE mice with the σ1 protein agonist prevented mononuclear cell accumulation and demyelination in brain and spinal cord and increased T2 B-cells and regulatory T-cells, resulting in an overall reduction in the clinical progression of EAE. Conclusions and Implications This σ1 protein agonist, containing the tetrahydroisoquinoline-hydantoin structure, decreased the magnitude of inflammation in EAE. This effect was associated with increased proportions of B-cell subsets and regulatory T-cells with potential immunoregulatory functions. Targeting of the σ1 protein might thus provide new therapeutic opportunities in MS. PMID:25521311

  12. A clinical score to reduce unnecessary antibiotic use in patients with sore throat

    PubMed Central

    McIsaac, W J; White, D; Tannenbaum, D; Low, D E

    1998-01-01

    OBJECTIVE: To validate a score based on clinical symptoms and signs for the identification of group A Streptococcus (GAS) infection in general practice patients with score throat. DESIGN: A single throat swab was used as the gold standard for diagnosing GAS infection. Clinical information was recorded by experienced family physicians on standardized encounter forms. Score criteria were identified by means of logistic regression modelling of data from patients enrolled in the first half of the study. The score was then validated among the remaining patients. SETTING: University-affiliated family medicine centre in Toronto. PATIENTS: A total of 521 patients aged 3 to 76 years presenting with a new upper respiratory tract infection from December 1995 to February 1997. OUTCOME MEASURES: Sensitivity, specificity and likelihood ratios for identification of GAS infection with the score approach compared with throat culture. Proportion of patients prescribed antibiotics, throat culture use, and sensitivity and specificity with usual physician care and with score-based recommendations were compared. RESULTS: A score was developed ranging in value from 0 to 4. The sensitivity of the score for identifying GAS infection was 83.1%, compared with 69.4% for usual physician care (p = 0.06); the specificity values of the 2 approaches were similar. Among patients aged 3 to 14 years, the sensitivity of the score approach was higher than that of usual physician care (96.9% v. 70.6%) (p < 0.05). The proportion of patients receiving initial antibiotic prescriptions would have been reduced 48% by following score-based recommendations compared with observed physician prescribing (p < 0.001), without any increase in throat culture use. CONCLUSIONS: An age-appropriate sore throat score identified GAS infection in children and adults with sore throat better than usual care by family physicians, with significant reductions in unnecessary prescribing of antibiotics. A randomized trial

  13. Reducing Conduct Problems among Children Exposed to Intimate Partner Violence: A Randomized Clinical Trial Examining Effects of Project Support

    ERIC Educational Resources Information Center

    Jouriles, Ernest N.; McDonald, Renee; Rosenfield, David; Stephens, Nanette; Corbitt-Shindler, Deborah; Miller, Pamela C.

    2009-01-01

    This study was a randomized clinical trial of Project Support, an intervention designed to reduce conduct problems among children exposed to intimate partner violence. Participants were 66 families (mothers and children) with at least 1 child exhibiting clinical levels of conduct problems. Families were recruited from domestic violence shelters.…

  14. Micro–RNA-126 Reduces the Blood Thrombogenicity in Diabetes Mellitus via Targeting of Tissue Factor

    PubMed Central

    Witkowski, Marco; Weithauser, Alice; Tabaraie, Termeh; Steffens, Daniel; Kränkel, Nicolle; Witkowski, Mario; Stratmann, Bernd; Tschoepe, Diethelm; Landmesser, Ulf

    2016-01-01

    Objective— Diabetes mellitus involves vascular inflammatory processes and is a main contributor to cardiovascular mortality. Notably, heightened levels of circulating tissue factor (TF) account for the increased thrombogenicity and put those patients at risk for thromboembolic events. Here, we sought to investigate the role of micro-RNA (miR)–driven TF expression and thrombogenicity in diabetes mellitus. Approach and Results— Plasma samples of patients with diabetes mellitus were analyzed for TF protein and activity as well as miR-126 expression before and after optimization of the antidiabetic treatment. We found low miR-126 levels to be associated with markedly increased TF protein and TF-mediated thrombogenicity. Reduced miR-126 expression was accompanied by increased vascular inflammation as evident from the levels of vascular adhesion molecule-1 and fibrinogen, as well as leukocyte counts. With optimization of the antidiabetic treatment miR-126 levels increased and thrombogenicity was reduced. Using a luciferase reporter system, we demonstrated miR-126 to directly bind to the F3-3′-untranslated region, thereby reducing TF expression both on mRNA and on protein levels in human microvascular endothelial cells as well as TF mRNA and activity in monocytes. Conclusions— Circulating miR-126 exhibits antithrombotic properties via regulating post-transcriptional TF expression, thereby impacting the hemostatic balance of the vasculature in diabetes mellitus. PMID:27127202

  15. Reducing unnecessary preoperative testing in elective ENT surgery: clinical and financial implications.

    PubMed

    Leung, B C; Nazeer, S; Smith, M; McRae, D

    2015-11-01

    Guidelines on appropriate preoperative testing in elective surgery were published by the National Institute for Health and Care Excellence (NICE) in 2003. However, compliance has been poor, with frequent unnecessary tests being performed. We aimed to assess our trust's guideline compliance and to implement changes to optimise adherence. Preoperative investigations performed for elective ENT surgery during a three-month period were retrospectively audited. Unnecessary investigations were identified and costs calculated. A staff-training program was implemented and targeted written information was provided for clinics. A second audit cycle was conducted subsequently. Overall, 69.2% of blood tests were unnecessary (FBC 44.9%, U&Es 63.5%, clotting 99.2%), which equated to £1955.77 with an annual estimate of £7,823.08. None of the test results affected the management of the patient. Post-intervention, full compliance was achieved. It was concluded that preoperative investigations are overused in elective surgery, with obvious financial implications and causing unnecessary anxiety to patients. Through basic training and guideline dissemination, complete compliance can be achieved. PMID:26721128

  16. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

    PubMed

    Medico, Enzo; Russo, Mariangela; Picco, Gabriele; Cancelliere, Carlotta; Valtorta, Emanuele; Corti, Giorgio; Buscarino, Michela; Isella, Claudio; Lamba, Simona; Martinoglio, Barbara; Veronese, Silvio; Siena, Salvatore; Sartore-Bianchi, Andrea; Beccuti, Marco; Mottolese, Marcella; Linnebacher, Michael; Cordero, Francesca; Di Nicolantonio, Federica; Bardelli, Alberto

    2015-01-01

    The development of molecularly targeted anticancer agents relies on large panels of tumour-specific preclinical models closely recapitulating the molecular heterogeneity observed in patients. Here we describe the mutational and gene expression analyses of 151 colorectal cancer (CRC) cell lines. We find that the whole spectrum of CRC molecular and transcriptional subtypes, previously defined in patients, is represented in this cell line compendium. Transcriptional outlier analysis identifies RAS/BRAF wild-type cells, resistant to EGFR blockade, functionally and pharmacologically addicted to kinase genes including ALK, FGFR2, NTRK1/2 and RET. The same genes are present as expression outliers in CRC patient samples. Genomic rearrangements (translocations) involving the ALK and NTRK1 genes are associated with the overexpression of the corresponding proteins in CRC specimens. The approach described here can be used to pinpoint CRCs with exquisite dependencies to individual kinases for which clinically approved drugs are already available. PMID:25926053

  17. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy.

    PubMed

    Morera, Ludovica; Lübbert, Michael; Jung, Manfred

    2016-01-01

    The term epigenetics is defined as heritable changes in gene expression that are not due to alterations of the DNA sequence. In the last years, it has become more and more evident that dysregulated epigenetic regulatory processes have a central role in cancer onset and progression. In contrast to DNA mutations, epigenetic modifications are reversible and, hence, suitable for pharmacological interventions. Reversible histone methylation is an important process within epigenetic regulation, and the investigation of its role in cancer has led to the identification of lysine methyltransferases and demethylases as promising targets for new anticancer drugs. In this review, we describe those enzymes and their inhibitors that have already reached the first stages of clinical trials in cancer therapy, namely the histone methyltransferases DOT1L and EZH2 as well as the demethylase LSD1. PMID:27222667

  18. Hepatic Dimethylarginine-Dimethylaminohydrolase1 is Reduced in Cirrhosis and is a Target for Therapy in Portal Hypertension

    PubMed Central

    Mookerjee, Rajeshwar P; Mehta, Gautam; Balasubramaniyan, Vairappan; Mohamed, Fatma; Davies, Nathan; Sharma, Vikram; Iwakiri, Yasuko; Jalan, Rajiv

    2015-01-01

    Background and Aims Portal hypertension is characterized by reduced hepatic eNOS activity. Asymmetric-dimethylarginine (ADMA), an eNOS inhibitor, is elevated in cirrhosis and correlates with severity of portal hypertension. Dimethylargininedimethylaminohydrolase-1 (DDAH-1) is the key enzyme metabolizing hepatic ADMA. This study characterized DDAH-1 in cirrhosis, and explored hepatic DDAH-1 reconstitution through FXR agonism and DDAH-1 gene therapy. Methods DDAH-1 Immunohistochemistry was conducted on human cirrhosis and healthy liver tissue. Subsequently, sham-operated or bile-duct-ligated (BDL) cirrhosis rats were treated with FXR agonist Obeticholic acid (OA, 5mg/kg) or vehicle for 5 days. Further animals underwent hydrodynamic injection with DDAH-1-expressing plasmid or saline control. Groups: Sham+saline, BDL+saline, BDL+DDAH-1-plasmid. Portal pressure (PP) measurements were performed. Plasma ALT was measured by Cobas-Integra; DDAH-1 expression by qPCR and Western blot; eNOS activity by radiometric assay. Results Immunohistochemistry and Western-blotting confirmed hepatic DDAH-1 was restricted to hepatocytes, and expression decreased significantly in cirrhosis. In BDL rats, reduced DDAH-1 expression was associated with elevated hepatic ADMA, reduced eNOS activity and high PP. OA treatment significantly increased DDAH-1 expression, reduced hepatic tissue ADMA, and increased liver NO generation. PP was significantly reduced in BDL+OA vs. BDL+vehicle (8±1 vs. 13.5±0.6 mmHg; p<0.01) with no change in MAP. Similarly, DDAH-1 hydrodynamic injection significantly increased hepatic DDAH-1 gene and protein expression, and significantly reduced PP in BDL+DDAH-1 vs. BDL+ saline (p<0.01). Conclusion This study demonstrates DDAH-1 is a specific molecular target for portal pressure reduction, through actions on ADMA-mediated regulation of eNOS activity. Our data support translational studies targeting DDAH-1 in cirrhosis and portal hypertension. PMID:25152204

  19. Combining the FtsZ-Targeting Prodrug TXA709 and the Cephalosporin Cefdinir Confers Synergy and Reduces the Frequency of Resistance in Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Kaul, Malvika; Mark, Lilly; Parhi, Ajit K; LaVoie, Edmond J; Pilch, Daniel S

    2016-07-01

    Combination therapy of bacterial infections with synergistic drug partners offers distinct advantages over monotherapy. Among these advantages are (i) a reduction of the drug dose required for efficacy, (ii) a reduced potential for drug-induced toxicity, and (iii) a reduced potential for the emergence of resistance. Here, we describe the synergistic actions of the third-generation oral cephalosporin cefdinir and TXA709, a new, FtsZ-targeting prodrug that we have developed with improved pharmacokinetics and enhanced in vivo efficacy against methicillin-resistant Staphylococcus aureus (MRSA) relative to earlier agents. We show that the active product of TXA709 (TXA707) acts synergistically with cefdinir in vitro against clinical isolates of MRSA, vancomycin-intermediate S. aureus (VISA), vancomycin-resistant S. aureus (VRSA), and linezolid-resistant S. aureus (LRSA). In addition, relative to TXA707 alone, the combination of TXA707 and cefdinir significantly reduces or eliminates the detectable emergence of resistance. We also demonstrate synergy in vivo with oral administration of the prodrug TXA709 and cefdinir in mouse models of both systemic and tissue (thigh) infections with MRSA. This synergy reduces the dose of TXA709 required for efficacy 3-fold. Viewed as a whole, our results highlight the potential of TXA709 and cefdinir as a promising combination for the treatment of drug-resistant staphylococcal infections. PMID:27161635

  20. Targeting Pyruvate Carboxylase Reduces Gluconeogenesis and Adiposity and Improves Insulin Resistance

    PubMed Central

    Kumashiro, Naoki; Beddow, Sara A.; Vatner, Daniel F.; Majumdar, Sachin K.; Cantley, Jennifer L.; Guebre-Egziabher, Fitsum; Fat, Ioana; Guigni, Blas; Jurczak, Michael J.; Birkenfeld, Andreas L.; Kahn, Mario; Perler, Bryce K.; Puchowicz, Michelle A.; Manchem, Vara Prasad; Bhanot, Sanjay; Still, Christopher D.; Gerhard, Glenn S.; Petersen, Kitt Falk; Cline, Gary W.; Shulman, Gerald I.; Samuel, Varman T.

    2013-01-01

    We measured the mRNA and protein expression of the key gluconeogenic enzymes in human liver biopsy specimens and found that only hepatic pyruvate carboxylase protein levels related strongly with glycemia. We assessed the role of pyruvate carboxylase in regulating glucose and lipid metabolism in rats through a loss-of-function approach using a specific antisense oligonucleotide (ASO) to decrease expression predominantly in liver and adipose tissue. Pyruvate carboxylase ASO reduced plasma glucose concentrations and the rate of endogenous glucose production in vivo. Interestingly, pyruvate carboxylase ASO also reduced adiposity, plasma lipid concentrations, and hepatic steatosis in high fat–fed rats and improved hepatic insulin sensitivity. Pyruvate carboxylase ASO had similar effects in Zucker Diabetic Fatty rats. Pyruvate carboxylase ASO did not alter de novo fatty acid synthesis, lipolysis, or hepatocyte fatty acid oxidation. In contrast, the lipid phenotype was attributed to a decrease in hepatic and adipose glycerol synthesis, which is important for fatty acid esterification when dietary fat is in excess. Tissue-specific inhibition of pyruvate carboxylase is a potential therapeutic approach for nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. PMID:23423574

  1. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine.

    PubMed

    Coupel-Ledru, Aude; Lebon, Eric; Christophe, Angélique; Gallo, Agustina; Gago, Pilar; Pantin, Florent; Doligez, Agnès; Simonneau, Thierry

    2016-08-01

    Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE. PMID:27457942

  2. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine

    PubMed Central

    Coupel-Ledru, Aude; Lebon, Eric; Christophe, Angélique; Gallo, Agustina; Gago, Pilar; Pantin, Florent; Doligez, Agnès; Simonneau, Thierry

    2016-01-01

    Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)—that is, the biomass produced per unit of water transpired—has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En. Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE. PMID:27457942

  3. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy.

    PubMed

    Hu, Yanfang; He, Liang; Ding, Jianxun; Sun, Diankui; Chen, Li; Chen, Xuesi

    2016-06-25

    Graphene-based nanocarriers show great potential in photo-chemotherapy, however, to prepare desired reduced graphene oxide (rGO) nanoparticles in a facile way is still a challenge. Herein, a novel strategy has been presented to prepare rGO nanoparticle using dextran (Dex) as a reducing agent. In this strategy, Dex was directly conjugated on rGO by hydrogen bond and then self-assemble to form rGO/Dex nanoparticles. After decorated by dextran, rGO-based nanoparticles not only show excellent biocompatibility but also can load anticancer drug for photo-chemotherapy. The data of fourier transform infrared (FT-IR) analysis, Raman spectrum analysis, thermos-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), the transmission electron microscope (TEM) image and dynamic light scattering (DLS) measurements powerfully proved that the stable rGO-based nanoparticles with desired nanosize have been successfully prepared. To verify the photo-chemotherapy, anticancer drug, doxorubicin (DOX), has been loaded on rGO/Dex nanoparticles (rGO/DOX/Dex). And RGD, a kind of oligopeptide which can improve the intracellular uptake by αvβ3 recognition, also has been introduced (rGO/DOX/RDex). Compared with single chemotherapy, rGO/DOX/Dex and rGO/DOX/RDex combining the local specific chemotherapy and external near-infrared (NIR) photo-thermal therapy show higher therapeutic efficacy, endowing the desired rGO-based nanoparticle with great potential for cancer treatments. PMID:27083812

  4. Optimal marker-strategy clinical trial design to detect predictive markers for targeted therapy.

    PubMed

    Zang, Yong; Liu, Suyu; Yuan, Ying

    2016-07-01

    In developing targeted therapy, the marker-strategy design (MSD) provides an important approach to evaluate the predictive marker effect. This design first randomizes patients into non-marker-based or marker-based strategies. Patients allocated to the non-marker-based strategy are then further randomized to receive either the standard or targeted treatments, while patients allocated to the marker-based strategy receive treatments based on their marker statuses. Little research has been done on the statistical properties of the MSD, which has led to some widespread misconceptions and placed clinical researchers at high risk of using inefficient designs. In this article, we show that the commonly used between-strategy comparison has low power to detect the predictive effect and is valid only under a restrictive condition that the randomization ratio within the non-marker-based strategy matches the marker prevalence. We propose a Wald test that is generally valid and also uniformly more powerful than the between-strategy comparison. Based on that, we derive an optimal MSD that maximizes the power to detect the predictive marker effect by choosing the optimal randomization ratios between the two strategies and treatments. Our numerical study shows that using the proposed optimal designs can substantially improve the power of the MSD to detect the predictive marker effect. We use a lung cancer trial to illustrate the proposed optimal designs. PMID:26951724

  5. PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes

    PubMed Central

    Pal, Ipsita; Mandal, Mahitosh

    2012-01-01

    The PI3K-Akt pathway is a vital regulator of cell proliferation and survival. Alterations in the PIK3CA gene that lead to enhanced PI3K kinase activity have been reported in many human cancer types, including cancers of the colon, breast, brain, liver, stomach and lung. Deregulation of PI3K causes aberrant Akt activity. Therefore targeting this pathway could have implications for cancer treatment. The first generation PI3K-Akt inhibitors were proven to be highly effective with a low IC50, but later, they were shown to have toxic side effects and poor pharmacological properties and selectivity. Thus, these inhibitors were only effective in preclinical models. However, derivatives of these first generation inhibitors are much more selective and are quite effective in targeting the PI3K-Akt pathway, either alone or in combination. These second-generation inhibitors are essentially a specific chemical moiety that helps to form a strong hydrogen bond interaction with the PI3K/Akt molecule. The goal of this review is to delineate the current efforts that have been undertaken to inhibit the various components of the PI3K and Akt pathway in different types of cancer both in vitro and in vivo. Our focus here is on these novel therapies and their inhibitory effects that depend upon their chemical nature, as well as their development towards clinical trials. PMID:22983389

  6. BACE and gamma-secretase characterization and their sorting as therapeutic targets to reduce amyloidogenesis.

    PubMed

    Marks, Neville; Berg, Martin J

    2010-02-01

    Secretases are named for enzymes processing amyloid precursor protein (APP), a prototypic type-1 membrane protein. This led directly to discovery of novel Aspartyl proteases (beta-secretases or BACE), a tetramer complex gamma-secretase (gamma-SC) containing presenilins, nicastrin, aph-1 and pen-2, and a new role for metalloprotease(s) of the ADAM family as a alpha-secretases. Recent advances in defining pathways that mediate endosomal-lysosomal-autophagic-exosomal trafficking now provide targets for new drugs to attenuate abnormal production of fibril forming products characteristic of AD. A key to success includes not only characterization of relevant secretases but mechanisms for sorting and transport of key metabolites to abnormal vesicles or sites for assembly of fibrils. New developments we highlight include an important role for an 'early recycling endosome' coated in retromer complex containing lipoprotein receptor LRP-II (SorLA) for switching APP to a non-amyloidogenic pathway for alpha-secretases processing, or to shuttle APP to a 'late endosome compartment' to form Abeta or AICD. LRP11 (SorLA) is of particular importance since it decreases in sporadic AD whose etiology otherwise is unknown. PMID:19760173

  7. CAR T Cells Targeting Podoplanin Reduce Orthotopic Glioblastomas in Mouse Brains.

    PubMed

    Shiina, Satoshi; Ohno, Masasuke; Ohka, Fumiharu; Kuramitsu, Shunichiro; Yamamichi, Akane; Kato, Akira; Motomura, Kazuya; Tanahashi, Kuniaki; Yamamoto, Takashi; Watanabe, Reiko; Ito, Ichiro; Senga, Takeshi; Hamaguchi, Michinari; Wakabayashi, Toshihiko; Kaneko, Mika K; Kato, Yukinari; Chandramohan, Vidyalakshmi; Bigner, Darell D; Natsume, Atsushi

    2016-03-01

    Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in adults with a 5-year overall survival rate of less than 10%. Podoplanin (PDPN) is a type I transmembrane mucin-like glycoprotein, expressed in the lymphatic endothelium. Several solid tumors overexpress PDPN, including the mesenchymal type of GBM, which has been reported to present the worst prognosis among GBM subtypes. Chimeric antigen receptor (CAR)-transduced T cells can recognize predefined tumor surface antigens independent of MHC restriction, which is often downregulated in gliomas. We constructed a lentiviral vector expressing a third-generation CAR comprising a PDPN-specific antibody (NZ-1-based single-chain variable fragment) with CD28, 4-1BB, and CD3ζ intracellular domains. CAR-transduced peripheral blood monocytes were immunologically evaluated by calcein-mediated cytotoxic assay, ELISA, tumor size, and overall survival. The generated CAR T cells were specific and effective against PDPN-positive GBM cells in vitro. Systemic injection of the CAR T cells into an immunodeficient mouse model inhibited the growth of intracranial glioma xenografts in vivo. CAR T-cell therapy that targets PDPN would be a promising adoptive immunotherapy to treat mesenchymal GBM. Cancer Immunol Res; 4(3); 259-68. ©2016 AACR. PMID:26822025

  8. Emerging molecular targets in oncology: clinical potential of MET/hepatocyte growth-factor inhibitors

    PubMed Central

    Smyth, Elizabeth C; Sclafani, Francesco; Cunningham, David

    2014-01-01

    The MET/hepatocyte growth-factor (HGF) signaling pathway plays a key role in the processes of embryogenesis, wound healing, and organ regeneration. Aberrant activation of MET/HGF occurs through multiple mechanisms including gene amplification, mutation, protein overexpression, and abnormal gene splicing interrupting autocrine and paracrine regulatory feedback mechanisms. In many cancers including non-small-cell lung cancer, colorectal, gastric, renal, and hepatocellular cancer, dysregulation of MET may lead to a more aggressive cancer phenotype and may be a negative prognostic indicator. Successful therapeutic targeting of the MET/HGF pathway has been achieved using monoclonal antibodies against the MET receptor and its ligand HGF in addition to MET-specific and multitargeted small-molecule tyrosine-kinase inhibitors with several drugs in late-phase clinical trials including onartuzumab, rilotumumab, tivantinib, and cabozantinib. MET frequently interacts with other key oncogenic tyrosine kinases including epidermal growth-factor receptor (EGFR) and HER-3 and these interactions may be responsible for resistance to anti-EGFR therapies. Similarly, resistance to MET inhibition may be mediated through EGFR activation, or alternatively by increasing levels of MET amplification or acquisition of novel “gatekeeper” mutations. In order to optimize development of effective inhibitors of the MET/HGF pathway clinical trials must be enriched for patients with demonstrable MET-pathway dysregulation for which robustly standardized and validated assays are required. PMID:24959087

  9. Clinical Validation of Targeted Next Generation Sequencing for Colon and Lung Cancers

    PubMed Central

    D’Haene, Nicky; Le Mercier, Marie; De Nève, Nancy; Blanchard, Oriane; Delaunoy, Mélanie; El Housni, Hakim; Dessars, Barbara; Heimann, Pierre; Remmelink, Myriam; Demetter, Pieter; Tejpar, Sabine; Salmon, Isabelle

    2015-01-01

    Objective Recently, Next Generation Sequencing (NGS) has begun to supplant other technologies for gene mutation testing that is now required for targeted therapies. However, transfer of NGS technology to clinical daily practice requires validation. Methods We validated the Ion Torrent AmpliSeq Colon and Lung cancer panel interrogating 1850 hotspots in 22 genes using the Ion Torrent Personal Genome Machine. First, we used commercial reference standards that carry mutations at defined allelic frequency (AF). Then, 51 colorectal adenocarcinomas (CRC) and 39 non small cell lung carcinomas (NSCLC) were retrospectively analyzed. Results Sensitivity and accuracy for detecting variants at an AF >4% was 100% for commercial reference standards. Among the 90 cases, 89 (98.9%) were successfully sequenced. Among the 86 samples for which NGS and the reference test were both informative, 83 showed concordant results between NGS and the reference test; i.e. KRAS and BRAF for CRC and EGFR for NSCLC, with the 3 discordant cases each characterized by an AF <10%. Conclusions Overall, the AmpliSeq colon/lung cancer panel was specific and sensitive for mutation analysis of gene panels and can be incorporated into clinical daily practice. PMID:26366557

  10. Impact of GPCRs in clinical medicine: genetic variants and drug targets

    PubMed Central

    Insel, Paul A.; Tang, Chih-Min; Hahntow, Ines; Michel, Martin C.

    2007-01-01

    Summary By virtue of their large number, widespread distribution and important roles in cell physiology and biochemistry, G-protein-coupled receptors (GPCR) play multiple important roles in clinical medicine. Here, we focus on 3 areas that subsume much of the recent work in this aspect of GPCR biology: 1) Monogenic diseases of GPCR; 2) Genetic variants of GPCR; and 3) Clinically useful pharmacological agonists and antagonists of GPCR. Diseases involving mutations of GPCR are rare, occurring in <1/1000 people, but disorders in which antibodies are directed against GPCR are more common. Genetic variants, especially single nucleotide polymorphisms (SNP), show substantial heterogeneity in frequency among different GPCRs but have not been evaluated for some GPCR. Many therapeutic agonists and antagonists target GPCR and show inter-subject variability in terms of efficacy and toxicity. For most of those agents, it remains an open question whether genetic variation in primary sequence of the GPCR is an important contributor to such inter-subject variability, although this is an active area of investigation. PMID:17081496