Science.gov

Sample records for reduce excess amyloid

  1. Reducing Excessive Television Viewing.

    ERIC Educational Resources Information Center

    Jason, Leonard A.; Rooney-Rebeck, Patty

    1984-01-01

    A youngster who excessively watched television was placed on a modified token economy: earned tokens were used to activate the television for set periods of time. Positive effects resulted in the child's school work, in the amount of time his family spent together, and in his mother's perception of family social support. (KH)

  2. Passive immunotherapy targeting amyloidreduces cerebral amyloid angiopathy and improves vascular reactivity.

    PubMed

    Bales, Kelly R; O'Neill, Sharon M; Pozdnyakov, Nikolay; Pan, Feng; Caouette, David; Pi, YeQing; Wood, Kathleen M; Volfson, Dmitri; Cirrito, John R; Han, Byung-Hee; Johnson, Andrew W; Zipfel, Gregory J; Samad, Tarek A

    2016-02-01

    Prominent cerebral amyloid angiopathy is often observed in the brains of elderly individuals and is almost universally found in patients with Alzheimer's disease. Cerebral amyloid angiopathy is characterized by accumulation of the shorter amyloid-β isoform(s) (predominantly amyloid-β40) in the walls of leptomeningeal and cortical arterioles and is likely a contributory factor to vascular dysfunction leading to stroke and dementia in the elderly. We used transgenic mice with prominent cerebral amyloid angiopathy to investigate the ability of ponezumab, an anti-amyloid-β40 selective antibody, to attenuate amyloid-β accrual in cerebral vessels and to acutely restore vascular reactivity. Chronic administration of ponezumab to transgenic mice led to a significant reduction in amyloid and amyloid-β accumulation both in leptomeningeal and brain vessels when measured by intravital multiphoton imaging and immunohistochemistry. By enriching for cerebral vascular elements, we also measured a significant reduction in the levels of soluble amyloid-β biochemically. We hypothesized that the reduction in vascular amyloid-β40 after ponezumab administration may reflect the ability of ponezumab to mobilize an interstitial fluid pool of amyloid-β40 in brain. Acutely, ponezumab triggered a significant and transient increase in interstitial fluid amyloid-β40 levels in old plaque-bearing transgenic mice but not in young animals. We also measured a beneficial effect on vascular reactivity following acute administration of ponezumab, even in vessels where there was a severe cerebral amyloid angiopathy burden. Taken together, the beneficial effects ponezumab administration has on reducing the rate of cerebral amyloid angiopathy deposition and restoring cerebral vascular health favours a mechanism that involves rapid removal and/or neutralization of amyloid-β species that may otherwise be detrimental to normal vessel function. PMID:26493635

  3. Matrix Metalloproteinase-9 Reduces Islet Amyloid Formation by Degrading Islet Amyloid Polypeptide*

    PubMed Central

    Aston-Mourney, Kathryn; Zraika, Sakeneh; Udayasankar, Jayalakshmi; Subramanian, Shoba L.; Green, Pattie S.; Kahn, Steven E.; Hull, Rebecca L.

    2013-01-01

    Deposition of islet amyloid polypeptide (IAPP) as amyloid is a pathological hallmark of the islet in type 2 diabetes, which is toxic to β-cells. We previously showed that the enzyme neprilysin reduces islet amyloid deposition and thereby reduces β-cell apoptosis, by inhibiting fibril formation. Two other enzymes, matrix metalloproteinase (MMP)-2 and MMP-9, are extracellular gelatinases capable of degrading another amyloidogenic peptide, Aβ, the constituent of amyloid deposits in Alzheimer disease. We therefore investigated whether MMP-2 and MMP-9 play a role in reducing islet amyloid deposition. MMP-2 and MMP-9 mRNA were present in mouse islets but only MMP-9 activity was detectable. In an islet culture model where human IAPP (hIAPP) transgenic mouse islets develop amyloid but nontransgenic islets do not, a broad spectrum MMP inhibitor (GM6001) and an MMP-2/9 inhibitor increased amyloid formation and the resultant β-cell apoptosis. In contrast, a specific MMP-2 inhibitor had no effect on either amyloid deposition or β-cell apoptosis. Mass spectrometry demonstrated that MMP-9 degraded amyloidogenic hIAPP but not nonamyloidogenic mouse IAPP. Thus, MMP-9 constitutes an endogenous islet protease that limits islet amyloid deposition and its toxic effects via degradation of hIAPP. Because islet MMP-9 mRNA levels are decreased in type 2 diabetic subjects, islet MMP-9 activity may also be decreased in human type 2 diabetes, thereby contributing to increased islet amyloid deposition and β-cell loss. Approaches to increase islet MMP-9 activity could reduce or prevent amyloid deposition and its toxic effects in type 2 diabetes. PMID:23229548

  4. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    NASA Astrophysics Data System (ADS)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  5. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity.

    PubMed

    Du, Wen-Jie; Guo, Jing-Jing; Gao, Ming-Tao; Hu, Sheng-Quan; Dong, Xiao-Yan; Han, Yi-Fan; Liu, Fu-Feng; Jiang, Shaoyi; Sun, Yan

    2015-01-01

    Soluble amyloid β-protein (Aβ) oligomers, the main neurotoxic species, are predominantly formed from monomers through a fibril-catalyzed secondary nucleation. Herein, we virtually screened an in-house library of natural compounds and discovered brazilin as a dual functional compound in both Aβ42 fibrillogenesis inhibition and mature fibril remodeling, leading to significant reduction in Aβ42 cytotoxicity. The potent inhibitory effect of brazilin was proven by an IC50 of 1.5 ± 0.3 μM, which was smaller than that of (-)-epigallocatechin gallate in Phase III clinical trials and about one order of magnitude smaller than those of curcumin and resveratrol. Most importantly, it was found that brazilin redirected Aβ42 monomers and its mature fibrils into unstructured Aβ aggregates with some β-sheet structures, which could prevent both the primary nucleation and the fibril-catalyzed secondary nucleation. Molecular simulations demonstrated that brazilin inhibited Aβ42 fibrillogenesis by directly binding to Aβ42 species via hydrophobic interactions and hydrogen bonding and remodeled mature fibrils by disrupting the intermolecular salt bridge Asp23-Lys28 via hydrogen bonding. Both experimental and computational studies revealed a different working mechanism of brazilin from that of known inhibitors. These findings indicate that brazilin is of great potential as a neuroprotective and therapeutic agent for Alzheimer's disease. PMID:25613018

  6. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity

    NASA Astrophysics Data System (ADS)

    Du, Wen-Jie; Guo, Jing-Jing; Gao, Ming-Tao; Hu, Sheng-Quan; Dong, Xiao-Yan; Han, Yi-Fan; Liu, Fu-Feng; Jiang, Shaoyi; Sun, Yan

    2015-01-01

    Soluble amyloid β-protein (Aβ) oligomers, the main neurotoxic species, are predominantly formed from monomers through a fibril-catalyzed secondary nucleation. Herein, we virtually screened an in-house library of natural compounds and discovered brazilin as a dual functional compound in both Aβ42 fibrillogenesis inhibition and mature fibril remodeling, leading to significant reduction in Aβ42 cytotoxicity. The potent inhibitory effect of brazilin was proven by an IC50 of 1.5 +/- 0.3 μM, which was smaller than that of (-)-epigallocatechin gallate in Phase III clinical trials and about one order of magnitude smaller than those of curcumin and resveratrol. Most importantly, it was found that brazilin redirected Aβ42 monomers and its mature fibrils into unstructured Aβ aggregates with some β-sheet structures, which could prevent both the primary nucleation and the fibril-catalyzed secondary nucleation. Molecular simulations demonstrated that brazilin inhibited Aβ42 fibrillogenesis by directly binding to Aβ42 species via hydrophobic interactions and hydrogen bonding and remodeled mature fibrils by disrupting the intermolecular salt bridge Asp23-Lys28 via hydrogen bonding. Both experimental and computational studies revealed a different working mechanism of brazilin from that of known inhibitors. These findings indicate that brazilin is of great potential as a neuroprotective and therapeutic agent for Alzheimer's disease.

  7. A subcutaneous cellular implant for passive immunization against amyloidreduces brain amyloid and tau pathologies.

    PubMed

    Lathuilière, Aurélien; Laversenne, Vanessa; Astolfo, Alberto; Kopetzki, Erhard; Jacobsen, Helmut; Stampanoni, Marco; Bohrmann, Bernd; Schneider, Bernard L; Aebischer, Patrick

    2016-05-01

    Passive immunization against misfolded toxic proteins is a promising approach to treat neurodegenerative disorders. For effective immunotherapy against Alzheimer's disease, recent clinical data indicate that monoclonal antibodies directed against the amyloid-β peptide should be administered before the onset of symptoms associated with irreversible brain damage. It is therefore critical to develop technologies for continuous antibody delivery applicable to disease prevention. Here, we addressed this question using a bioactive cellular implant to deliver recombinant anti-amyloid-β antibodies in the subcutaneous tissue. An encapsulating device permeable to macromolecules supports the long-term survival of myogenic cells over more than 10 months in immunocompetent allogeneic recipients. The encapsulated cells are genetically engineered to secrete high levels of anti-amyloid-β antibodies. Peripheral implantation leads to continuous antibody delivery to reach plasma levels that exceed 50 µg/ml. In a proof-of-concept study, we show that the recombinant antibodies produced by this system penetrate the brain and bind amyloid plaques in two mouse models of the Alzheimer's pathology. When encapsulated cells are implanted before the onset of amyloid plaque deposition in TauPS2APP mice, chronic exposure to anti-amyloid-β antibodies dramatically reduces amyloid-β40 and amyloid-β42 levels in the brain, decreases amyloid plaque burden, and most notably, prevents phospho-tau pathology in the hippocampus. These results support the use of encapsulated cell implants for passive immunotherapy against the misfolded proteins, which accumulate in Alzheimer's disease and other neurodegenerative disorders. PMID:26956423

  8. Experimental manipulations of microglia in mouse models of Alzheimer’s pathology. Activation reduces amyloid but hastens tau pathology

    PubMed Central

    Lee, Daniel C.; Rizer, Justin; Hunt, Jerry B.; Selenica, Maj-Linda B.; Gordon, Marcia N.; Morgan, Dave

    2015-01-01

    The inflammation hypothesis of Alzheimer’s pathogenesis has directed much scientific effort towards ameliorating this disease. The development of mouse models of amyloid deposition permitted direct tests of the proposal that amyloid-activated microglia could cause neurodegeneration in vivo. Many approaches to manipulating microglial activation have been applied to these mouse models, and are the subject of this review. In general, these results do not support a direct neuricidal action of microglia in mouse amyloid models under any activation state. Some of the manipulations cause both a reduction in pathology, and a reduction in microglial activation. However, at least for agents like ibuprofen, this outcome may result from a direct action on amyloid production, and a reduction in the microglial provoking amyloid deposits, rather than from reduced microglial activation leading to a decline in amyloid deposition. Instead, a surprising number of the experimental manipulations which increase microglial activation lead to enhanced clearance of the amyloid deposits. Both the literature and new data presented here suggest that either classical or alternative activation of microglia can lead to enhanced amyloid clearance. However, a limited number of studies comparing the same treatments in amyloid-depositing vs tau-depositing mice find the opposite effects. Treatments that benefit amyloid pathology accelerate tau pathology. This observation argues strongly that potential treatments be tested for impact on both amyloid and tau pathology before consideration of testing in humans. PMID:23171029

  9. Early Treatment Critical: Bexarotene Reduces Amyloid-Beta Burden In Silico

    PubMed Central

    Belfort, Georges; Isaacson, David

    2016-01-01

    Amyloid-beta peptides have long been implicated in the pathology of Alzheimer’s disease. Bexarotene, a drug approved by the U.S. Food and Drug Administration for treating a class of non-Hodgkin’s lymphoma, has been reported to facilitate the removal of amyloid-beta. We have developed a mathematical model to explore the efficacy of bexarotene treatment in reducing amyloid-beta load, and simulate amyloid-beta production throughout the lifespan of diseased mice. Both aspects of the model are based on and consistent with previous experimental results. Beyond what is known empirically, our model shows that low dosages of bexarotene are unable to reverse symptoms in diseased mice, but dosages at and above an age-dependent critical concentration can recover healthy brain cells. Further, early treatment was shown to have significantly improved efficacy versus treatment in older mice. Relevance with respect to bexarotene-based amyloid-beta-clearance mechanism and direct treatment for Alzheimer’s disease is emphasized. PMID:27073866

  10. Curcumin Reduces Amyloid Fibrillation of Prion Protein and Decreases Reactive Oxidative Stress

    PubMed Central

    Lin, Chi-Fen; Yu, Kun-Hua; Jheng, Cheng-Ping; Chung, Raymond; Lee, Cheng-I

    2013-01-01

    Misfolding and aggregation into amyloids of the prion protein (PrP) is responsible for the development of fatal transmissible neurodegenerative diseases. Various studies on curcumin demonstrate promise for the prevention of Alzheimer’s disease and inhibition of PrPres accumulation. To evaluate the effect of curcumin on amyloid fibrillation of prion protein, we first investigated the effect of curcumin on mouse prion protein (mPrP) in a cell-free system. Curcumin reduced the prion fibril formation significantly. Furthermore, we monitored the change in apoptosis and reactive oxygen species (ROS) level upon curcumin treatment in mouse neuroblastoma cells (N2a). Curcumin effectively rescues the cells from apoptosis and decreases the ROS level caused by subsequent co-incubation with prion amyloid fibrils. The assays in cell-free mPrP and in N2a cells of this work verified the promising effect of curcumin on the prevention of transmissible neurodegenerative diseases. PMID:25437204

  11. Mechanisms for Reduced Excess Sludge Production in the Cannibal Process.

    PubMed

    Labelle, Marc-André; Dold, Peter L; Comeau, Yves

    2015-08-01

    Reducing excess sludge production is increasingly attractive as a result of rising costs and constraints with respect to sludge treatment and disposal. A technology in which the mechanisms remain not well understood is the Cannibal process, for which very low sludge yields have been reported. The objective of this work was to use modeling as a means to characterize excess sludge production at a full-scale Cannibal facility by providing a long sludge retention time and removing trash and grit by physical processes. The facility was characterized by using its historical data, from discussion with the staff and by conducting a sampling campaign to prepare a solids inventory and an overall mass balance. At the evaluated sludge retention time of 400 days, the sum of the daily loss of suspended solids to the effluent and of the waste activated sludge solids contributed approximately equally to the sum of solids that are wasted daily as trash and grit from the solids separation module. The overall sludge production was estimated to be 0.14 g total suspended solids produced/g chemical oxygen demand removed. The essential functions of the Cannibal process for the reduction of sludge production appear to be to remove trash and grit from the sludge by physical processes of microscreening and hydrocycloning, respectively, and to provide a long sludge retention time, which allows the slow degradation of the "unbiodegradable" influent particulate organics (XU,Inf) and the endogenous residue (XE). The high energy demand of 1.6 kWh/m³ of treated wastewater at the studied facility limits the niche of the Cannibal process to small- to medium-sized facilities in which sludge disposal costs are high but electricity costs are low. PMID:26237684

  12. A PPARdelta agonist reduces amyloid burden and brain inflammation in a transgenic mouse model of Alzheimer's disease.

    PubMed

    Kalinin, Sergey; Richardson, Jill C; Feinstein, Douglas L

    2009-10-01

    Agonists of the peroxisome proliferator activated receptor gamma (PPARgamma) have been shown to reduce inflammatory responses in several animal models of neurological diseases and conditions and to reduce amyloid burden in transgenic mice expressing mutant forms of human amyloid precursor protein. However, the effects of activating the related receptor PPARdelta (PPARdelta), which is expressed at higher levels in the brain than PPARgamma, on inflammation and amyloid burden have not been explored. In this study we tested the effects of the selective PPARdelta agonist GW742 in 5xFAD mice which harbor 3 mutations in amyloid precursor protein and 2 mutations in presenilin 1, develop plaques by 5-6 weeks of age, and show robust inflammation and neuronal damage. Oral delivery of GW742 significantly reduced amyloid plaque burden in the subiculum region of 3-month old male and female 5xFAD mice. GW742 also significantly reduced astrocyte activation, suggesting anti-inflammatory effects on glia cells. The changes in plaque burden were accompanied by increased expression of the amyloid degrading enzymes neprilysin and insulin degrading enzyme, while in transfected HEK293 cells, GW742 activated a neprilysin promoter driving luciferase expression. These results suggest that, as found for some PPARgamma agonists, PPARdelta agonists can also reduce amyloid burden likely to be mediated by effects on amyloid clearance. PMID:19874267

  13. Long-term dantrolene treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice.

    PubMed

    Wu, Zhen; Yang, Bin; Liu, Chunxia; Liang, Ge; Liu, Weixia; Pickup, Stephen; Meng, Qingcheng; Tian, Yuke; Li, Shitong; Eckenhoff, Maryellen F; Wei, Huafeng

    2015-01-01

    In this study, we investigated the long-term treatment of dantrolene on amyloid and tau neuropathology, brain volume, and cognitive function in aged triple transgenic Alzheimer (3xTg-AD) mice. Fifteen-month old 3xTg-AD mice and wild-type controls were treated with oral dantrolene (5 mg/kg) or vehicle control twice a week for 6 months. Learning and memory were examined using the Morris Water Maze at 21 and 22 months of age. After the behavioral testing, hippocampal and cortical brain volumes were calculated with magnetic resonance imaging and motor function was evaluated using the rotorod. The amyloid burden and tau neurofibrillary tangles in the hippocampus were determined using immunohistochemistry. We found that dantrolene significantly decreased the intraneuronal amyloid accumulation by as much as 76% compared with its corresponding vehicle control, together with a trend to reduce phosphorylated tau in the hippocampus. No significant differences could be detected in hippocampal or cortical brain volume, motor function or cognition among all experimental groups, indicating that the mice were still presymptomatic for Alzheimer disease. Thus, presymptomatic and long-term dantrolene treatment significantly decreased the intraneuronal amyloid burden in aged 3xTg-AD mice before significant changes in brain volume, or cognition. PMID:25650693

  14. Increased Expression of Reticulon 3 in Neurons Leads to Reduced Axonal Transport of β Site Amyloid Precursor Protein-cleaving Enzyme 1*

    PubMed Central

    Deng, Minzi; He, Wanxia; Tan, Ya; Han, Hailong; Hu, Xiangyou; Xia, Kun; Zhang, Zhuohua; Yan, Riqiang

    2013-01-01

    BACE1 is the sole enzyme responsible for cleaving amyloid precursor protein at the β-secretase site, and this cleavage initiates the generation of β-amyloid peptide (Aβ). Because amyloid precursor protein is predominantly expressed by neurons and deposition of Aβ aggregates in the human brain is highly correlated with the Aβ released at axonal terminals, we focused our investigation of BACE1 localization on the neuritic region. We show that BACE1 was not only enriched in the late Golgi, trans-Golgi network, and early endosomes but also in both axons and dendrites. BACE1 was colocalized with the presynaptic vesicle marker synaptophysin, indicating the presence of BACE1 in synapses. Because the excessive release of Aβ from synapses is attributable to an increase in amyloid deposition, we further explored whether the presence of BACE1 in synapses was regulated by reticulon 3 (RTN3), a protein identified previously as a negative regulator of BACE1. We found that RTN3 is not only localized in the endoplasmic reticulum but also in neuritic regions where no endoplasmic reticulum-shaping proteins are detected, implicating additional functions of RTN3 in neurons. Coexpression of RTN3 with BACE1 in cultured neurons was sufficient to reduce colocalization of BACE1 with synaptophysin. This reduction correlated with decreased anterograde transport of BACE1 in axons in response to overexpressed RTN3. Our results in this study suggest that altered RTN3 levels can impact the axonal transport of BACE1 and demonstrate that reducing axonal transport of BACE1 in axons is a viable strategy for decreasing BACE1 in axonal terminals and, perhaps, reducing amyloid deposition. PMID:24005676

  15. Neuronal-Targeted TFEB Accelerates Lysosomal Degradation of APP, Reducing Aβ Generation and Amyloid Plaque Pathogenesis

    PubMed Central

    Xiao, Qingli; Yan, Ping; Ma, Xiucui; Liu, Haiyan; Perez, Ronaldo; Zhu, Alec; Gonzales, Ernesto; Tripoli, Danielle L.; Czerniewski, Leah; Ballabio, Andrea; Cirrito, John R.

    2015-01-01

    In AD, an imbalance between Aβ production and removal drives elevated brain Aβ levels and eventual amyloid plaque deposition. APP undergoes nonamyloidogenic processing via α-cleavage at the plasma membrane, amyloidogenic β- and γ-cleavage within endosomes to generate Aβ, or lysosomal degradation in neurons. Considering multiple reports implicating impaired lysosome function as a driver of increased amyloidogenic processing of APP, we explored the efficacy of targeting transcription factor EB (TFEB), a master regulator of lysosomal pathways, to reduce Aβ levels. CMV promoter-driven TFEB, transduced via stereotactic hippocampal injections of adeno-associated virus particles in APP/PS1 mice, localized primarily to neuronal nuclei and upregulated lysosome biogenesis. This resulted in reduction of APP protein, the α and β C-terminal APP fragments (CTFs), and in the steady-state Aβ levels in the brain interstitial fluid. In aged mice, total Aβ levels and amyloid plaque load were selectively reduced in the TFEB-transduced hippocampi. TFEB transfection in N2a cells stably expressing APP695, stimulated lysosome biogenesis, reduced steady-state levels of APP and α- and β-CTFs, and attenuated Aβ generation by accelerating flux through the endosome-lysosome pathway. Cycloheximide chase assays revealed a shortening of APP half-life with exogenous TFEB expression, which was prevented by concomitant inhibition of lysosomal acidification. These data indicate that TFEB enhances flux through lysosomal degradative pathways to induce APP degradation and reduce Aβ generation. Activation of TFEB in neurons is an effective strategy to attenuate Aβ generation and attenuate amyloid plaque deposition in AD. SIGNIFICANCE STATEMENT A key driver for AD pathogenesis is the net balance between production and clearance of Aβ, the major component of amyloid plaques. Here we demonstrate that lysosomal degradation of holo-APP influences Aβ production by limiting the availability of

  16. Analysis of the ability of pramlintide to inhibit amyloid formation by human islet amyloid polypeptide reveals a balance between optimal recognition and reduced amyloidogenicity.

    PubMed

    Wang, Hui; Ridgway, Zachary; Cao, Ping; Ruzsicska, Bela; Raleigh, Daniel P

    2015-11-10

    The hormone human islet amyloid polypeptide (hIAPP or amylin) plays a role in glucose metabolism, but forms amyloid in the pancreas in type 2 diabetes (T2D) and is associated with β-cell death and dysfunction in the disease. Inhibitors of islet amyloid have therapeutic potential; however, there are no clinically approved inhibitors, and the mode of action of existing inhibitors is not well understood. Rat IAPP (rIAPP) differs from hIAPP at six positions, does not form amyloid, and is an inhibitor of amyloid formation by hIAPP. Five of the six differences are located within the segment of residues 20-29, and three of them are Pro residues, which are well-known disruptors of β-sheet structure. rIAPP is thus a natural example of a "β-breaker inhibitor", a molecule that combines a recognition element with an entity that inhibits β-sheet formation. Pramlintide (PM) is a peptide drug approved for use as an adjunct to insulin therapy for treatment of diabetes. PM was developed by introducing the three Pro substitutions found in rIAPP into hIAPP. Thus, it more closely resembles the human peptide than does rIAPP. Here we examine and compare the ability of rIAPP, PM, and a set of designed analogues of hIAPP to inhibit amyloid formation by hIAPP, to elucidate the factors that lead to effective peptide-based inhibitors. Our results reveal, for this class of molecules, a balance between the reduced amyloidogenicity of the inhibitory sequence on one hand and its ability to recognize hIAPP on the other. PMID:26407043

  17. Alzheimer Precursor Protein Interaction with the Nogo-66 Receptor Reduces Amyloid-β Plaque Deposition

    PubMed Central

    Park, James H.; Gimbel, David A.; GrandPre, Tadzia; Lee, Jung-Kil; Kim, Ji-Eun; Li, Weiwei; Lee, Daniel H. S.; Strittmatter, Stephen M.

    2010-01-01

    Pathophysiologic hypotheses for Alzheimer’s disease (AD) are centered on the role of the amyloid plaque Aβpeptide and the mechanism of its derivation from the amyloid precursor protein (APP). As part of the disease process, an aberrant axonal sprouting response is known to occur near Aβ deposits. A Nogo to Nogo-66 receptor (NgR) pathway contributes to determining the ability of adult CNS axons to extend after traumatic injuries. Here, we consider the potential role of NgR mechanisms in AD. Both Nogo and NgR are mislocalized in AD brain samples. APP physically associates with the NgR. Overexpression of NgR decreases Aβ production in neuroblastoma culture, and targeted disruption of NgR expression increases transgenic mouse brain Aβ levels, Aβ plaque deposition, and dystrophic neurites. Infusion of a soluble NgR fragment reduces Aβlevels, amyloid plaque deposits, and dystrophic neurites in a mouse transgenic AD model. Changes in NgR level produce parallel changes in secreted APPαand Aβ, implicating NgR as a blocker of secretase processing of APP. The NgR provides a novel site for modifying the course of AD and highlights the role of axonal dysfunction in the disease. PMID:16452662

  18. Minocycline Reduces Spontaneous Hemorrhage in Mouse Models of Cerebral Amyloid Angiopathy

    PubMed Central

    Liao, Fan; Xiao, Qingli; Kraft, Andrew; Gonzales, Ernie; Perez, Ron; Greenberg, Steven M.; Holtzman, David; Lee, Jin-Moo

    2015-01-01

    Background and Purpose Cerebral Amyloid Angiopathy (CAA) is a common cause of recurrent intracerebral hemorrhage (ICH) in the elderly. Previous studies have shown that CAA induces inflammation and expression of matrix metalloproteinase-2 and -9 (gelatinases) in amyloid-laden vessels. Here, we inhibited both using minocycline in CAA mouse models to determine if spontaneous ICH could be reduced. Methods Tg2576 (n=16) and 5×FAD/ApoE4 knock-in mice (n=16), aged to 17 and 12 months, respectively, were treated with minocycline (50 mg/kg, i.p.) or saline every other day for two months. Brains were extracted and stained with X-34 (to quantify amyloid), Perl’s blue (to quantify hemorrhage), and immunostained to examined Aβ load, gliosis (GFAP, Iba-1), and vascular markers of blood-brain-barrier integrity (ZO-1 and collagen IV). Brain extracts were used to quantify mRNA for a variety of inflammatory genes. Results Minocycline treatment significantly reduced hemorrhage frequency in the brains of Tg2576 and 5×FAD/ApoE4 mice relative to the saline-treated mice, without affecting CAA load. Gliosis (GFAP and Iba-1 immunostaining), gelatinase activity, and expression of a variety of inflammatory genes (MMP-9, Nox4, CD45, S-100b, Iba-1) were also significantly reduced. Higher levels of microvascular tight junction and basal lamina proteins were found in the brains of minocycline-treated Tg2576 mice relative to saline-treated controls. Conclusions Minocycline reduced gliosis, inflammatory gene expression, gelatinase activity, and spontaneous hemorrhage in two different mouse models of CAA, supporting the importance of MMP-related and inflammatory pathways in ICH pathogenesis. As an FDA-approved drug, minocycline might be considered for clinical trials to test efficacy in preventing CAA-related ICH. PMID:25944329

  19. Formation of Amyloid Fibers by Monomeric Light Chain Variable Domains*

    PubMed Central

    Brumshtein, Boris; Esswein, Shannon R.; Landau, Meytal; Ryan, Christopher M.; Whitelegge, Julian P.; Phillips, Martin L.; Cascio, Duilio; Sawaya, Michael R.; Eisenberg, David S.

    2014-01-01

    Systemic light chain amyloidosis is a lethal disease characterized by excess immunoglobulin light chains and light chain fragments composed of variable domains, which aggregate into amyloid fibers. These fibers accumulate and damage organs. Some light chains induce formation of amyloid fibers, whereas others do not, making it unclear what distinguishes amyloid formers from non-formers. One mechanism by which sequence variation may reduce propensity to form amyloid fibers is by shifting the equilibrium toward an amyloid-resistant quaternary structure. Here we identify the monomeric form of the Mcg immunoglobulin light chain variable domain as the quaternary unit required for amyloid fiber assembly. Dimers of Mcg variable domains remain stable and soluble, yet become prone to assemble into amyloid fibers upon disassociation into monomers. PMID:25138218

  20. Cyclooxygenase-1 null mice show reduced neuroinflammation in response to β-amyloid

    PubMed Central

    Choi, Sang-Ho; Bosetti, Francesca

    2009-01-01

    Several independent epidemiological studies indicate that chronic use of non-steroidal anti-inflammatory drugs can reduce the risk of developing Alzheimer's disease (AD), supporting the inflammatory cascade hypothesis. Although the first clinical trial with indomethacin, a preferential cyclooxygenase (COX)-1 inhibitor, showed beneficial effects, subsequent large clinical trials, mostly using COX-2 inhibitors, failed to show any beneficial effect in AD patients with mild to severe cognitive impairment. These combined data suggest that either an early treatment is crucial to stop the mechanisms underlying the disease before the onset of the symptoms, or that preferential COX-1 inhibition, rather than COX-2, is beneficial. Therefore, a full understanding of the physiological, pathological, and/or neuroprotective role of COX isoforms may help to develop better therapeutic strategies for the prevention or treatment of AD. In this study, we examined the effect of COX-1 genetic deletion on the inflammatory response and neurodegeneration induced by β-amyloid. β-amyloid (Aβ1-42) was centrally injected in the lateral ventricle of COX-1-deficient (COX-1-/-) and their respective wild-type (WT) mice. In COX-1-/- mice, Aβ1-42-induced inflammatory response and neuronal damage were attenuated compared to WT mice, as shown by Fluoro-Jade B and nitrotyrosine staining. These results indicate that inhibition of COX-1 activity may be valid therapeutic strategy to reduce brain inflammatory response and neurodegeneration. PMID:20157512

  1. Quercetin stabilizes apolipoprotein E and reduces brain Aβ levels in amyloid model mice.

    PubMed

    Zhang, Xilin; Hu, Jin; Zhong, Li; Wang, Na; Yang, Longyu; Liu, Chia-Chen; Li, Huifang; Wang, Xin; Zhou, Ying; Zhang, Yunwu; Xu, Huaxi; Bu, Guojun; Zhuang, Jiangxing

    2016-09-01

    Apolipoprotein E (apoE) is a major cholesterol carrier that regulates lipid homeostasis by mediating lipid transport from one tissue or cell type to another. In the central neural system (CNS), apoE is mainly produced by astrocytes, and transports cholesterol to neurons via apoE receptors, which are members of the low-density lipoprotein receptor family. The APOEε4 gene is a strong genetic risk factor for late-onset sporadic Alzheimer's disease (AD), likely through its strong effect on the accumulation of amyloid-β (Aβ) peptide. ApoE protein levels in cerebrospinal fluid (CSF) and plasma are reduced in APOEε4 carriers and in patients with AD. Furthermore, altered cholesterol levels are also associated with the risk of AD. Aβ accumulation, oligomerization and deposition in the brain are central to the pathogenesis of AD. Mounting evidence demonstrates that apoE and apoE receptors play important roles in these processes. Astrocyte-derived apoE is pivotal for cerebral cholesterol metabolism and clearance of Aβ. Thus, we hypothesized that increased apoE in the brain may be an effective therapeutic strategy for AD. We report here that quercetin can significantly increase apoE levels by inhibiting apoE degradation in immortalized astrocytes. Importantly, we show that oral administration of quercetin significantly increased brain apoE and reduced insoluble Aβ levels in the cortex of 5xFAD amyloid model mice. Our results demonstrate that quercetin increases apoE levels through a novel mechanism and can be explored as a novel class of drug for AD therapy. PMID:27114256

  2. Baicalein reduces β-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model

    PubMed Central

    Zhang, She-Qing; Obregon, Demian; Ehrhart, Jared; Deng, Juan; Tian, Jun; Hou, Huayan; Giunta, Brian; Sawmiller, Darrell; Tan, Jun

    2013-01-01

    Baicalein, a flavonoid isolated from the roots of Scutellaria baicalensis, is known to modulate γ-aminobutyric acid (GABA) type A receptors. Given prior reports demonstrating benefits of GABAA modulation for Alzheimer’s disease (AD) treatment, we wished to determine whether this agent might be beneficial for AD. CHO cells engineered to overexpress wild-type amyloid precursor protein (APP), primary culture neuronal cells from AD mice (Tg2576) and AD mice were treated with baicalein. In the cell cultures, baicalein significantly reduced the production of β-amyloid (Aβ) by increasing APP α-processing. These effects were blocked by the GABAA antagonist bicuculline. Likewise, AD mice treated daily with i.p. baicalein for 8 weeks showed enhanced APP α-secretase processing, reduced Aβ production, and reduced AD-like pathology together with improved cognitive performance. Our findings suggest that baicalein promotes nonamyloidogenic processing of APP, thereby reducing Aβ production and improving cognitive performance, by activating GABAA receptors. © 2013 Wiley Periodicals, Inc. PMID:23686791

  3. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease.

    PubMed

    Bard, F; Cannon, C; Barbour, R; Burke, R L; Games, D; Grajeda, H; Guido, T; Hu, K; Huang, J; Johnson-Wood, K; Khan, K; Kholodenko, D; Lee, M; Lieberburg, I; Motter, R; Nguyen, M; Soriano, F; Vasquez, N; Weiss, K; Welch, B; Seubert, P; Schenk, D; Yednock, T

    2000-08-01

    One hallmark of Alzheimer disease is the accumulation of amyloid beta-peptide in the brain and its deposition as plaques. Mice transgenic for an amyloid beta precursor protein (APP) mini-gene driven by a platelet-derived (PD) growth factor promoter (PDAPP mice), which overexpress one of the disease-linked mutant forms of the human amyloid precursor protein, show many of the pathological features of Alzheimer disease, including extensive deposition of extracellular amyloid plaques, astrocytosis and neuritic dystrophy. Active immunization of PDAPP mice with human amyloid beta-peptide reduces plaque burden and its associated pathologies. Several hypotheses have been proposed regarding the mechanism of this response. Here we report that peripheral administration of antibodies against amyloid beta-peptide, was sufficient to reduce amyloid burden. Despite their relatively modest serum levels, the passively administered antibodies were able to enter the central nervous system, decorate plaques and induce clearance of preexisting amyloid. When examined in an ex vivo assay with sections of PDAPP or Alzheimer disease brain tissue, antibodies against amyloid beta-peptide triggered microglial cells to clear plaques through Fc receptor-mediated phagocytosis and subsequent peptide degradation. These results indicate that antibodies can cross the blood-brain barrier to act directly in the central nervous system and should be considered as a therapeutic approach for the treatment of Alzheimer disease and other neurological disorders. PMID:10932230

  4. Methionine oxidation reduces lag-times for amyloid-β(1-40) fiber formation but generates highly fragmented fibers.

    PubMed

    Gu, Miao; Viles, John H

    2016-09-01

    Oxidative stress and the formation of amyloid plaques containing amyloid-β (Aβ) peptides are two key hallmarks of Alzheimer's disease. A proportion of methionine (Met) at position 35 within Aβ is oxidized to methionine sulphoxide (Met(OX)) within the Alzheimer's plaques. These oxidative processes may be the key to understanding the early stages of Alzheimer's disease. In vitro oxidation of Aβ, by the physiological oxidant H2O2, was monitored using (1)H NMR and mass spectrometry. Here we investigate the effect of Aβ methionine oxidation on fiber formation kinetics and morphology using the amyloid specific fluorescence dye Thioflavin T (ThT) and Transmission Electron Microscopy (TEM). Methionine oxidation reduces the total amount of fibers generated for both dominant forms of Aβ, however there are marked differences in the effect of Met(OX) between Aβ(1-40) and Aβ(1-42). Surprisingly the presence of Met(OX) reduces lag-times for Aβ(1-40) fiber formation but extends lag-times for Aβ(1-42). TEM indicates a change in fiber morphology with a pronounced reduction in fiber length for both methionine oxidized Aβ(1-40) and Aβ(1-42). In contrast, the morphology of preformed amyloid fibers is largely unaffected by the presence of H2O2. Our studies suggest that methionine oxidation promotes highly fragmented fiber assemblies of Aβ. Oxidative stress associated with Alzheimer's disease can cause oxidation of methionine within Aβ and this in turn will influence the complex assembly of Aβ monomer into amyloid fibers, which is likely to impact Aβ toxicity. PMID:27108954

  5. Butanol extract of Ecklonia cava prevents production and aggregation of beta-amyloid, and reduces beta-amyloid mediated neuronal death.

    PubMed

    Kang, Il-Jun; Jeon, Young Eun; Yin, Xing Fu; Nam, Jin-Sik; You, Sang Guan; Hong, Myo Soon; Jang, Bong Geom; Kim, Min-Ju

    2011-09-01

    Beta-amyloid (Aβ) is a major pathogenic peptide for Alzheimer's disease (AD) and is generated by the processing of amyloid precursor protein (APP). The Aβ monomers aggregate into oligomeric and fibrillar forms which have been implicated as the toxic species inducing the neuronal dysfunction. Brown algae Ecklonia cava is known for its anti-oxidant and anti-inflammatory functions. Therefore, we tested the effect of E. cava extract on the production and aggregation of Aβ peptides. The butanol extract of E. cava reduced Aβ secretion from HEK293 cells expressing APP with Swedish mutation and increased soluble APPα and C-terminal fragment-α (CTFα), of which activity was similar to BACE (β-site of APP cleaving enzyme) inhibitors. Furthermore, the extract inhibited Aβ oligomerization, particularly mid-size oligomer formation, confirmed by the ultrastructural morphology. Congo red, thioflavin T assays, and electron microscopy showed that the extract inhibited Aβ fibril formation effectively. Finally, the extract protected primary cortical neurons from various Aβ-induced cell deaths, especially oligomer-induced death. Although further study is needed to test the effectiveness of the extract in vivo, our results demonstrate, for the first time, that the butanol extract of E. cava could be used as an anti-Aβ agent for AD therapeutics. PMID:21693162

  6. Structure-Based Peptide Design to Modulate Amyloid Beta Aggregation and Reduce Cytotoxicity

    PubMed Central

    Kumar, Jitendra; Namsechi, Risa; Sim, Valerie L.

    2015-01-01

    The deposition of Aβ peptide in the brain is the key event in Alzheimer disease progression. Therefore, the prevention of Aβ self assembly into disease-associated oligomers is a logical strategy for treatment. π stacking is known to provide structural stability to many amyloids; two phenylalanine residues within the Aβ 14–23 self recognition element are in such an arrangement in many solved structures. Therefore, we targeted this structural stacking by substituting these two phenylalanine residues with their D-enantiomers. The resulting peptides were able to modulate Aβ aggregation in vitro and reduce Aβ cytotoxicity in primary neuronal cultures. Using kinetic analysis of fibril formation, electron microscopy and dynamic light scattering characterization of oligomer size distributions, we demonstrate that, in addition to altering fibril structural characteristics, these peptides can induce the formation of larger amorphous aggregates which are protective against toxic oligomers, possibly because they are able to sequester the toxic oligomers during co-incubation. Alternatively, they may alter the surface structure of the oligomers such that they can no longer interact with cells to induce toxic pathways. PMID:26070139

  7. Peptides of presenilin-1 bind the amyloid precursor protein ectodomain and offer a novel and specific therapeutic approach to reduce ß-amyloid in Alzheimer's disease.

    PubMed

    Dewji, Nazneen N; Singer, S Jonathan; Masliah, Eliezer; Rockenstein, Edward; Kim, Mihyun; Harber, Martha; Horwood, Taylor

    2015-01-01

    β-Amyloid (Aβ) accumulation in the brain is widely accepted to be critical to the development of Alzheimer's disease (AD). Current efforts at reducing toxic Aβ40 or 42 have largely focused on modulating γ-secretase activity to produce shorter, less toxic Aβ, while attempting to spare other secretase functions. In this paper we provide data that offer the potential for a new approach for the treatment of AD. The method is based on our previous findings that the production of Aβ from the interaction between the β-amyloid precursor protein (APP) and Presenilin (PS), as part of the γ-secretase complex, in cell culture is largely inhibited if the entire water-soluble NH2-terminal domain of PS is first added to the culture. Here we demonstrate that two small, non-overlapping water-soluble peptides from the PS-1 NH2-terminal domain can substantially and specifically inhibit the production of total Aβ as well as Aβ40 and 42 in vitro and in vivo in the brains of APP transgenic mice. These results suggest that the inhibitory activity of the entire amino terminal domain of PS-1 on Aβ production is largely focused in a few smaller sequences within that domain. Using biolayer interferometry and confocal microscopy we provide evidence that peptides effective in reducing Aβ give a strong, specific and biologically relevant binding with the purified ectodomain of APP 695. Finally, we demonstrate that the reduction of Aβ by the peptides does not affect the catalytic activities of β- or γ-secretase, or the level of APP. P4 and P8 are the first reported protein site-specific small peptides to reduce Aβ production in model systems of AD. These peptides and their derivatives offer new potential drug candidates for the treatment of AD. PMID:25923432

  8. Doped diamond-like carbon coatings for surgical instruments reduce protein and prion-amyloid biofouling and improve subsequent cleaning.

    PubMed

    Secker, T J; Hervé, R; Zhao, Q; Borisenko, K B; Abel, E W; Keevil, C W

    2012-01-01

    Doped diamond-like carbon (DLC) coatings offer potential antifouling surfaces against microbial and protein attachment. In particular, stainless steel surgical instruments are subject to tissue protein and resilient prion protein attachment, making decontamination methods used in sterile service departments ineffective, potentially increasing the risk of iatrogenic Creutzfeldt-Jakob disease during surgical procedures. This study examined the adsorption of proteins and prion-associated amyloid to doped DLC surfaces and the efficacy of commercial cleaning chemistries applied to these spiked surfaces, compared to titanium nitride coating and stainless steel. Surfaces inoculated with ME7-infected brain homogenate were visualised using SYPRO Ruby/Thioflavin T staining and modified epi-fluorescence microscopy before and after cleaning. Reduced protein and prion amyloid contamination was observed on the modified surfaces and subsequent decontamination efficacy improved. This highlights the potential for a new generation of coatings for surgical instruments to reduce the risk of iatrogenic CJD infection. PMID:22694725

  9. Identifying opportunities to reduce excess nitrogen in croplands while maintaining current crop yields

    NASA Astrophysics Data System (ADS)

    West, P. C.; Mueller, N. D.; Foley, J. A.

    2011-12-01

    Use of synthetic nitrogen fertilizer has greatly contributed to the increased crop yields brought about by the Green Revolution. Unfortunately, it also has also contributed to substantial excess nitrogen in the environment. Application of excess nitrogen not only is a waste of energy and other resources used to produce, transport and apply it, it also pollutes aquatic ecosystems and has led to the development of more than 200 hypoxic-or "dead"-zones in coastal areas around the world. How can we decrease use of excess nitrogen without compromising crop yields? To help address this challenge, our study (1) quantified hot spots of excess nitrogen, and (2) estimated how much nitrogen reduction is possible in these areas while still maintaining yields. We estimated excess nitrogen for major crops using a mass balance approach and global spatial data sets of crop area and yield, fertilizer application rates, and nitrogen deposition. Hot spots of excess nitrogen were identified by quantifying the smallest area within large river basins that contributed 25% and 50% of the total load within each basin. Nitrogen reduction scenarios were developed using a yield response model to estimate nitrogen application rates needed to maintain current yields. Our research indicated that excess nitrogen is concentrated in very small portions of croplands within river basins, with 25% of the total nitrogen load in each basin from ~10% of the cropland, and 50% of the total nitrogen load in each basin from ~25% of the cropland. Targeting reductions in application rates in these hot spots can allow us to maintain current crop yields while greatly reducing nitrogen loading to coastal areas and creating the opportunity to reallocate resources to boost yields on nitrogen-limited croplands elsewhere.

  10. Cooking rice in excess water reduces both arsenic and enriched vitamins in the cooked grain.

    PubMed

    Gray, Patrick J; Conklin, Sean D; Todorov, Todor I; Kasko, Sasha M

    2016-01-01

    This paper reports the effects of rinsing rice and cooking it in variable amounts of water on total arsenic, inorganic arsenic, iron, cadmium, manganese, folate, thiamin and niacin in the cooked grain. We prepared multiple rice varietals both rinsed and unrinsed and with varying amounts of cooking water. Rinsing rice before cooking has a minimal effect on the arsenic (As) content of the cooked grain, but washes enriched iron, folate, thiamin and niacin from polished and parboiled rice. Cooking rice in excess water efficiently reduces the amount of As in the cooked grain. Excess water cooking reduces average inorganic As by 40% from long grain polished, 60% from parboiled and 50% from brown rice. Iron, folate, niacin and thiamin are reduced by 50-70% for enriched polished and parboiled rice, but significantly less so for brown rice, which is not enriched. PMID:26515534

  11. Environmental enrichment strengthens corticocortical interactions and reduces amyloid-β oligomers in aged mice.

    PubMed

    Mainardi, Marco; Di Garbo, Angelo; Caleo, Matteo; Berardi, Nicoletta; Sale, Alessandro; Maffei, Lamberto

    2014-01-01

    Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ) oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE), a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP) recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes. PMID:24478697

  12. Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer's disease mouse models.

    PubMed

    Huang, Yunhong; Skwarek-Maruszewska, Aneta; Horré, Katrien; Vandewyer, Elke; Wolfs, Leen; Snellinx, An; Saito, Takashi; Radaelli, Enrico; Corthout, Nikky; Colombelli, Julien; Lo, Adrian C; Van Aerschot, Leen; Callaerts-Vegh, Zsuzsanna; Trabzuni, Daniah; Bossers, Koen; Verhaagen, Joost; Ryten, Mina; Munck, Sebastian; D'Hooge, Rudi; Swaab, Dick F; Hardy, John; Saido, Takaomi C; De Strooper, Bart; Thathiah, Amantha

    2015-10-14

    The orphan G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) GPR3 regulates activity of the γ-secretase complex in the absence of an effect on Notch proteolysis, providing a potential therapeutic target for Alzheimer's disease (AD). However, given the vast resources required to develop and evaluate any new therapy for AD and the multiple failures involved in translational research, demonstration of the pathophysiological relevance of research findings in multiple disease-relevant models is necessary before initiating costly drug development programs. We evaluated the physiological consequences of loss of Gpr3 in four AD transgenic mouse models, including two that contain the humanized murine Aβ sequence and express similar amyloid precursor protein (APP) levels as wild-type mice, thereby reducing potential artificial phenotypes. Our findings reveal that genetic deletion of Gpr3 reduced amyloid pathology in all of the AD mouse models and alleviated cognitive deficits in APP/PS1 mice. Additional three-dimensional visualization and analysis of the amyloid plaque burden provided accurate information on the amyloid load, distribution, and volume in the structurally intact adult mouse brain. Analysis of 10 different regions in healthy human postmortem brain tissue indicated that GPR3 expression was stable during aging. However, two cohorts of human AD postmortem brain tissue samples showed a correlation between elevated GPR3 and AD progression. Collectively, these studies provide evidence that GPR3 mediates the amyloidogenic proteolysis of APP in four AD transgenic mouse models as well as the physiological processing of APP in wild-type mice, suggesting that GPR3 may be a potential therapeutic target for AD drug development. PMID:26468326

  13. The effectiveness of tax policy interventions for reducing excessive alcohol consumption and related harms.

    PubMed

    Elder, Randy W; Lawrence, Briana; Ferguson, Aneeqah; Naimi, Timothy S; Brewer, Robert D; Chattopadhyay, Sajal K; Toomey, Traci L; Fielding, Jonathan E

    2010-02-01

    A systematic review of the literature to assess the effectiveness of alcohol tax policy interventions for reducing excessive alcohol consumption and related harms was conducted for the Guide to Community Preventive Services (Community Guide). Seventy-two papers or technical reports, which were published prior to July 2005, met specified quality criteria, and included evaluation outcomes relevant to public health (e.g., binge drinking, alcohol-related crash fatalities), were included in the final review. Nearly all studies, including those with different study designs, found that there was an inverse relationship between the tax or price of alcohol and indices of excessive drinking or alcohol-related health outcomes. Among studies restricted to underage populations, most found that increased taxes were also significantly associated with reduced consumption and alcohol-related harms. According to Community Guide rules of evidence, these results constitute strong evidence that raising alcohol excise taxes is an effective strategy for reducing excessive alcohol consumption and related harms. The impact of a potential tax increase is expected to be proportional to its magnitude and to be modified by such factors as disposable income and the demand elasticity for alcohol among various population groups. PMID:20117579

  14. Amyloid-Peptide Vaccinations Reduce β-Amyloid Plaques but Exacerbate Vascular Deposition and Inflammation in the Retina of Alzheimer’s Transgenic Mice

    PubMed Central

    Liu, Bingqian; Rasool, Suhail; Yang, Zhikuan; Glabe, Charles G.; Schreiber, Steven S.; Ge, Jian; Tan, Zhiqun

    2009-01-01

    Alzheimer’s disease (AD) is pathologically characterized by accumulation of β-amyloid (Aβ) protein deposits and/or neurofibrillary tangles in association with progressive cognitive deficits. Although numerous studies have demonstrated a relationship between brain pathology and AD progression, the Alzheimer’s pathological hallmarks have not been found in the AD retina. A recent report showed Aβ plaques in the retinas of APPswe/PS1ΔE9 transgenic mice. We now report the detection of Aβ plaques with increased retinal microvascular deposition of Aβ and neuroinflammation in Tg2576 mouse retinas. The majority of Aβ-immunoreactive plaques were detected from the ganglion cell layer to the inner plexiform layer, and some plaques were observed in the outer nuclear layer, photoreceptor outer segment, and optic nerve. Hyperphosphorylated tau was labeled in the corresponding areas of the Aβ plaques in adjacent sections. Although Aβ vaccinations reduced retinal Aβ deposits, there was a marked increase in retinal microvascular Aβ deposition as well as local neuroinflammation manifested by microglial infiltration and astrogliosis linked with disruption of the retinal organization. These results provide evidence to support further investigation of the use of retinal imaging to diagnose AD and to monitor disease activity. PMID:19834067

  15. Use of Continuous Transdermal Alcohol Monitoring during a Contingency Management Procedure to Reduce Excessive Alcohol Use

    PubMed Central

    Dougherty, Donald M.; Hill-Kapturczak, Nathalie; Liang, Yuanyuan; Karns, Tara E.; Cates, Sharon E.; Lake, Sarah L.; Mullen, Jillian; Roache, John D.

    2014-01-01

    Background Research on contingency management to treat excessive alcohol use is limited due to feasibility issues with monitoring adherence. This study examined the effectiveness of using transdermal alcohol monitoring as a continuous measure of alcohol use to implement financial contingencies to reduce heavy drinking. Methods Twenty-six male and female drinkers (from 21–39 years old) were recruited from the community. Participants were randomly assigned to one of two treatment sequences. Sequence 1 received 4 weeks of no financial contingency (i.e., $0) drinking followed by 4 weeks each of $25 and then $50 contingency management; Sequence 2 received 4 weeks of $25 contingency management followed by 4 weeks each of no contingency (i.e., $0) and then $50 contingency management. During the $25 and $50 contingency management conditions, participants were paid each week when the Secure Continuous Remote Alcohol Monitor (SCRAM-II™) identified no heavy drinking days. Results Participants in both contingency management conditions had fewer drinking episodes and reduced frequencies of heavy drinking compared to the $0 condition. Participants randomized to Sequence 2 (receiving $25 contingency before the $0 condition) exhibited less frequent drinking and less heavy drinking in the $0 condition compared to participants from Sequence 1. Conclusions Transdermal alcohol monitoring can be used to implement contingency management programs to reduce excessive alcohol consumption. PMID:25064019

  16. Cerebrolysin reduces amyloid-β deposits, apoptosis and autophagy in the thalamus and improves functional recovery after cortical infarction.

    PubMed

    Xing, Shihui; Zhang, Jian; Dang, Chao; Liu, Gang; Zhang, Yusheng; Li, Jingjing; Fan, Yuhua; Pei, Zhong; Zeng, Jinsheng

    2014-02-15

    Focal cerebral infarction causes amyloid-β (Aβ) deposits and secondary thalamic neuronal degeneration. The present study aimed to determine the protective effects of Cerebrolysin on Aβ deposits and secondary neuronal damage in thalamus after cerebral infarction. At 24h after distal middle cerebral artery occlusion (MCAO), Cerebrolysin (5 ml/kg) or saline as control was once daily administered for consecutive 13 days by intraperitoneal injection. Sensory function and secondary thalamic damage were assessed with adhesive-removal test, Nissl staining and immunofluorescence at 14 days after MCAO. Aβ deposits, activity of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), apoptosis and autophagy were determined by TUNEL staining, immunofluorescence and immunoblot. The results showed that Cerebrolysin significantly improved sensory deficit compared to controls (p<0.05). Aβ deposits and BACE1 were obviously reduced by Cerebrolysin, which was accompanied by decreases in neuronal loss and astroglial activation compared to controls (all p < 0.05). Coincidently, Cerebrolysin markedly inhibited cleaved caspase-3, conversion of LC3-II, downregulation of Bcl-2 and upregulation of Bax in the ipsilateral thalamus compared to controls (all p<0.05). These findings suggest that Cerebrolysin reduces Aβ deposits, apoptosis and autophagy in the ipsilateral thalamus, which may be associated with amelioration of secondary thalamic damage and functional recovery after cerebral infarction. PMID:24315581

  17. Systemic administration of fibroblast growth factor-2 (FGF2) reduces BACE1 expression and amyloid pathology in APP23 mice.

    PubMed

    Katsouri, Loukia; Ashraf, Azhaar; Birch, Amy M; Lee, Kevin K L; Mirzaei, Nazanin; Sastre, Magdalena

    2015-02-01

    There is an emerging evidence that growth factors may have a potential beneficial use in the treatment of Alzheimer's disease (AD) because of their neuroprotective properties and effects on neuronal proliferation. Basic fibroblast growth factor or fibroblast growth factor-2 (FGF2) is an anti-inflammatory, angiogenic, and neurotrophic factor that is expressed in many cell types, including neurons and glial cells. Here, we explored whether subcutaneous administration of FGF2 could have therapeutic effects in the APP 23 transgenic mouse, a model of amyloid pathology. FGF2 treatment attenuated spatial memory deficits, reduced amyloid-β (Aβ) and tau pathologies, decreased inducible nitric oxide synthase expression, and increased the number of astrocytes in the dentate gyrus in APP 23 mice compared with the vehicle-treated controls. The decrease in Aβ deposition was associated with a reduction in the expression of BACE1, the main enzyme responsible for Aβ generation. These results were confirmed in a neuroblastoma cell line, which demonstrated that incubation with FGF2 regulates BACE1 transcription. In addition, and in contrast with what has been previously published, the levels of FGF2 were reduced in postmortem brains from AD patients compared with controls. These data, therefore, suggest that systemic administration of FGF2 could have a potential therapeutic application in AD. PMID:25457554

  18. Crude caffeine reduces memory impairment and amyloid β(1-42) levels in an Alzheimer's mouse model.

    PubMed

    Chu, Yi-Fang; Chang, Wen-Han; Black, Richard M; Liu, Jia-Ren; Sompol, Pradoldej; Chen, Yumin; Wei, Huilin; Zhao, Qiuyan; Cheng, Irene H

    2012-12-01

    Alzheimer's disease (AD), a chronic neurodegenerative disorder associated with the abnormal accumulations of amyloid β (Aβ) peptide and oxidative stress in the brain, is the most common form of dementia among the elderly. Crude caffeine (CC), a major by-product of the decaffeination of coffee, has potent hydrophilic antioxidant activity and may reduce inflammatory processes. Here, we showed that CC and pure caffeine intake had beneficial effects in a mouse model of AD. Administration of CC or pure caffeine for 2months partially prevented memory impairment in AD mice, with CC having greater effects than pure caffeine. Furthermore, consumption of CC, but not pure caffeine, reduced the Aβ(1-42) levels and the number of amyloid plaques in the hippocampus. Moreover, CC and caffeine protected primary neurons from Aβ-induced cell death and suppressed Aβ-induced caspase-3 activity. Our data indicate that CC may contain prophylactic agents against the cell death and the memory impairment in AD. PMID:22953961

  19. A novel approach to breast cancer prevention: reducing excessive ovarian androgen production in elderly women.

    PubMed

    Secreto, Giorgio; Sieri, Sabina; Agnoli, Claudia; Grioni, Sara; Muti, Paola; Zumoff, Barnett; Sant, Milena; Meneghini, Elisabetta; Krogh, Vittorio

    2016-08-01

    Minimizing endogenous estrogen production and activity in women at high risk for breast cancer is a prominent approach to prevention of the disease. A number of clinical trials have shown that the administration of selective-estrogen receptor modulators or aromatase inhibitors significantly reduces the incidence of breast cancer in healthy women. Unfortunately, these drugs often produce adverse effects on the quality of life and are, therefore, poorly accepted by many women, even those who are at high risk for breast cancer. We propose a novel alternative approach to decreasing estrogen production: suppression of ovarian synthesis of the androgen precursors of estrogens by administration of long-acting gonadotropin-releasing hormone analogs to women with ovarian stromal hyperplasia. The specific target population would be elderly postmenopausal women, at increased risk of breast cancer, and with high blood levels of testosterone, marker of ovarian hyperandrogenemia, and recognized factor of risk for breast cancer. Testosterone levels are measured at baseline to identify women at risk and during the follow-up to evaluate the effectiveness of therapy. The postmenopausal ovary is an important source of excessive androgen production which originates from the ovarian interstitial cell hyperplasia frequently present in breast cancer patients. We propose to counter the source of androgen excess in women with ovarian stromal hyperplasia, thus reducing the substrate for estrogen formation without completely inhibiting estrogen synthesis. Available evidence indicates that gonadotropin-releasing hormone analogs can be safely used for breast cancer prevention in postmenopausal women. PMID:27393623

  20. Icariin Decreases the Expression of APP and BACE-1 and Reduces the β-amyloid Burden in an APP Transgenic Mouse Model of Alzheimer's Disease

    PubMed Central

    Zhang, Lan; Shen, Cong; Chu, Jin; Zhang, Ruyi; Li, Yali; Li, Lin

    2014-01-01

    Objective: The purpose of this study was to investigate the effects and pharmacological mechanisms of icariin, which is the main component in the traditional Chinese herb Epimedium, on β-amyloid (Aβ) production in an amyloid precursor protein (APP) transgenic (Tg) mouse model of Alzheimer's disease (AD). Methods: APPV717I Tg mice were randomly divided into a model group and icariin-treated (30 and 100 μmol/kg per day) groups. Learning-memory abilities were determined by Morris water maze and object recognition tests. Aβ contents were measured by enzyme-linked immunosorbent assays and immunohistochemistry. Amyloid plaques were detected by Congo red staining and Bielschowsky silver staining. The levels of expression of APP and β-site APP-cleaving enzyme 1 (BACE-1) were measured by western blotting and immunohistochemistry. Results: Ten-month-old Tg mice showed obvious learning-memory impairments, and significant increases in Aβ contents, amyloid plaques, and APP and BACE-1 levels in the hippocampus. The intragastric administration of icariin to Tg mice for 6 months (from 4 to 10 months of age) improved the learning-memory abilities and significantly decreased the Aβ contents, amyloid plaques, and APP and BACE-1 levels in the hippocampus. Conclusion: Icariin reduced the Aβ burden and amyloid plaque deposition in the hippocampus of APP transgenic mice by decreasing the APP and BACE-1 levels. These novel findings suggest that icariin may be a promising treatment in patients with AD. PMID:24550686

  1. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes.

    PubMed

    Wang, Hong-Mei; Zhao, Yan-Xin; Zhang, Shi; Liu, Gui-Dong; Kang, Wen-Yan; Tang, Hui-Dong; Ding, Jian-Qing; Chen, Sheng-Di

    2010-01-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Accumulating data indicate that astrocytes play an important role in the neuroinflammation related to the pathogenesis of AD. It has been shown that microglia and astrocytes are activated in AD brain and amyloid-beta (Abeta) can increase the expression of cyclooxygenase 2 (COX-2), interleukin-1, and interleukin-6. Suppressing the inflammatory response caused by activated astrocytes may help to inhibit the development of AD. Curcumin is a major constituent of the yellow curry spice turmeric and proved to be a potential anti-inflammatory drug in arthritis and colitis. There is a low age-adjusted prevalence of AD in India, a country where turmeric powder is commonly used as a culinary compound. Curcumin has been shown to suppress activated astroglia in amyloid-beta protein precursor transgenic mice. The real mechanism by which curcumin inhibits activated astroglia is poorly understood. Here we report that the expression of COX-2 and glial fibrillary acidic protein were enhanced and that of peroxisome proliferator-activated receptor gamma (PPARgamma) was decreased in Abeta(25-35)-treated astrocytes. In line with these results, nuclear factor-kappaB translocation was increased in the presence of Abeta. All these can be reversed by the pretreatment of curcumin. Furthermore, GW9662, a PPARgamma antagonist, can abolish the anti-inflammatory effect of curcumin. These results show that curcumin might act as a PPARgamma agonist to inhibit the inflammation in Abeta-treated astrocytes. PMID:20413894

  2. Ryanodine receptors blockade reduces Amyloid-beta load and memory impairments in Tg2576 mouse model of Alzheimer disease

    PubMed Central

    Oulès, Bénédicte; Del Prete, Dolores; Greco, Barbara; Zhang, Xuexin; Lauritzen, Inger; Sevalle, Jean; Moreno, Sebastien; Paterlini-Bréchot, Patrizia; Trebak, Mohamed; Checler, Frédéric; Benfenati, Fabio; Chami, Mounia

    2012-01-01

    In Alzheimer disease (AD), the perturbation of the endoplasmic reticulum (ER) calcium (Ca2+) homeostasis has been linked to presenilins (PS), the catalytic core in γ-secretase complexes cleaving the amyloid precursor protein (APP) thereby generating amyloid-β (Aβ) peptides. Here we investigate whether APP contributes to ER Ca2+ homeostasis and whether ER Ca2+ could in turn influence Aβ production. We show that overexpression of wild-type human APP (APP695), or APP harboring the Swedish double mutation (APPswe) triggers increased Ryanodine receptors (RyR) expression and enhances RyR-mediated ER Ca2+ release in SH-SY5Y neuroblastoma cells and in APPswe-expressing (Tg2576) mice. Interestingly, dantrolene-induced lowering of RyR-mediated Ca2+ release leads to the reduction of both intracellular and extracellular Aβ load in neuroblastoma cells as well as in primary cultured neurons derived from Tg2576 mice. This Aβ reduction can be accounted for by decreased Thr-668-dependent APP phosphorylation and β- and γ-secretases activities. Importantly, dantrolene diminishes Aβ load, reduces Aβ-related histological lesions and slows down learning and memory deficits in Tg2576 mice. Overall, our data document a key role of RyR in Aβ production and learning and memory performances, and delineate RyR-mediated control of Ca2+ homeostasis as a physiological paradigm that could be targeted for innovative therapeutic approaches. PMID:22915123

  3. Modulation of γ-secretase by EVP-0015962 reduces amyloid deposition and behavioral deficits in Tg2576 mice

    PubMed Central

    2012-01-01

    Background A hallmark of Alzheimer’s disease is the presence of senile plaques in human brain primarily containing the amyloid peptides Aβ42 and Aβ40. Many drug discovery efforts have focused on decreasing the production of Aβ42 through γ-secretase inhibition. However, identification of γ-secretase inhibitors has also uncovered mechanism-based side effects. One approach to circumvent these side effects has been modulation of γ-secretase to shift Aβ production to favor shorter, less amyloidogenic peptides than Aβ42, without affecting the overall cleavage efficiency of the enzyme. This approach, frequently called γ-secretase modulation, appears more promising and has lead to the development of new therapeutic candidates for disease modification in Alzheimer’s disease. Results Here we describe EVP-0015962, a novel small molecule γ-secretase modulator. EVP-0015962 decreased Aβ42 in H4 cells (IC50 = 67 nM) and increased the shorter Aβ38 by 1.7 fold at the IC50 for lowering of Aβ42. AβTotal, as well as other carboxyl-terminal fragments of amyloid precursor protein, were not changed. EVP-0015962 did not cause the accumulation of other γ-secretase substrates, such as the Notch and ephrin A4 receptors, whereas a γ-secretase inhibitor reduced processing of both. A single oral dose of EVP-0015962 (30 mg/kg) decreased Aβ42 and did not alter AβTotal peptide levels in a dose-dependent manner in Tg2576 mouse brain at an age when overt Aβ deposition was not present. In Tg2576 mice, chronic treatment with EVP-0015962 (20 or 60 mg/kg/day in a food formulation) reduced Aβ aggregates, amyloid plaques, inflammatory markers, and cognitive deficits. Conclusions EVP-0015962 is orally bioavailable, detected in brain, and a potent, selective γ-secretase modulator in vitro and in vivo. Chronic treatment with EVP-0015962 was well tolerated in mice and lowered the production of Aβ42, attenuated memory deficits, and reduced Aβ plaque formation and inflammation in Tg

  4. Antioxidant activity, delayed aging, and reduced amyloid-β toxicity of methanol extracts of tea seed pomace from Camellia tenuifolia.

    PubMed

    Wei, Chia-Cheng; Yu, Chan-Wei; Yen, Pei-Ling; Lin, Huan-You; Chang, Shang-Tzen; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2014-11-01

    There is a growing interest in the exploitation of the residues generated by plants. This study explored the potential beneficial health effects from the main biowaste, tea seed pomace, produced when tea seed is processed. DPPH radical scavenging and total phenolic content assays were performed to evaluate the in vitro activities of the extracts. Caenorhabditis elegans was used as in vivo model to evaluate the beneficial health effects, including antioxidant activity, delayed aging, and reduced amyloid-β toxicity. Among all soluble fractions obtained from the extracts of tea seed pomace from Camellia tenuifolia, the methanol (MeOH)-soluble fraction has the best in vivo antioxidant activities. The MeOH-soluble extraction was further divided into six fractions by chromatography with a Diaion HP-20 column eluted with water/MeOH, and fraction 3 showed the best in vitro and in vivo antioxidant activities. Further analysis in C. elegans showed that the MeOH extract (fraction 3) of tea seed pomace significantly decreased intracellular reactive oxygen species, prolonged C. elegans lifespan, and reduced amyloid-β (Aβ) toxicity in transgenic C. elegans expressing human Aβ. Moreover, bioactivity-guided fractionation yielded two potent constituents from fraction 3 of the MeOH extract, namely, kaempferol 3-O-(2″-glucopyranosyl)-rutinoside and kaempferol 3-O-(2″-xylopyranosyl)-rutinoside, and both compounds exhibited excellent in vivo antioxidant activity. Taken together, MeOH extracts of tea seed pomace from C. tenuifolia have multiple beneficial health effects, suggesting that biowaste might be valuable to be explored for further development as nutraceutical products. Furthermore, the reuse of agricultural byproduct tea seed pomace also fulfills the environmental perspective. PMID:25295856

  5. Increased onset of vergence adaptation reduces excessive accommodation during the orthoptic treatment of convergence insufficiency.

    PubMed

    Sreenivasan, Vidhyapriya; Bobier, William R

    2015-06-01

    This research tested the hypothesis that the successful treatment of convergence insufficiency (CI) with vision-training (VT) procedures, leads to an increased capacity of vergence adaptation (VAdapt) allowing a more rapid downward adjustment of the convergence accommodation cross-link. Nine subjects with CI were recruited from a clinical population, based upon reduced fusional vergence amplitudes, receded near point of convergence or symptomology. VAdapt and the resulting changes to convergence accommodation (CA) were measured at specific intervals over 15 min (pre-training). Separate clinical measures of the accommodative convergence cross link, horizontal fusion limits and near point of convergence were taken and a symptomology questionnaire completed. Subjects then participated in a VT program composed of 2.5h at home and 1h in-office weekly for 12-14 weeks. Clinical testing was done weekly. VAdapt and CA measures were retaken once clinical measures normalized for 2 weeks (mid-training) and then again when symptoms had cleared (post-training). VAdapt and CA responses as well as the clinical measures were taken on a control group showing normal clinical findings. Six subjects provided complete data sets. CI clinical findings reached normal levels between 4 and 7 weeks of training but symptoms, VAdapt, and CA output remained significantly different from the controls until 12-14 weeks. The hypothesis was retained. The reduced VAdapt and excessive CA found in CI were normalized through orthoptic treatment. This time course was underestimated by clinical findings but matched symptom amelioration. PMID:25891521

  6. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer's disease mouse models.

    PubMed

    Zhao, Lingzhi; Gottesdiener, Andrew J; Parmar, Mayur; Li, Mingjie; Kaminsky, Stephen M; Chiuchiolo, Maria J; Sondhi, Dolan; Sullivan, Patrick M; Holtzman, David M; Crystal, Ronald G; Paul, Steven M

    2016-08-01

    The common apolipoprotein E alleles (ε4, ε3, and ε2) are important genetic risk factors for late-onset Alzheimer's disease, with the ε4 allele increasing risk and reducing the age of onset and the ε2 allele decreasing risk and markedly delaying the age of onset. Preclinical and clinical studies have shown that apolipoprotein E (APOE) genotype also predicts the timing and amount of brain amyloid-β (Aβ) peptide deposition and amyloid burden (ε4 >ε3 >ε2). Using several administration protocols, we now report that direct intracerebral adeno-associated virus (AAV)-mediated delivery of APOE2 markedly reduces brain soluble (including oligomeric) and insoluble Aβ levels as well as amyloid burden in 2 mouse models of brain amyloidosis whose pathology is dependent on either the expression of murine Apoe or more importantly on human APOE4. The efficacy of APOE2 to reduce brain Aβ burden in either model, however, was highly dependent on brain APOE2 levels and the amount of pre-existing Aβ and amyloid deposition. We further demonstrate that a widespread reduction of brain Aβ burden can be achieved through a single injection of vector via intrathalamic delivery of AAV expressing APOE2 gene. Our results demonstrate that AAV gene delivery of APOE2 using an AAV vector rescues the detrimental effects of APOE4 on brain amyloid pathology and may represent a viable therapeutic approach for treating or preventing Alzheimer's disease especially if sufficient brain APOE2 levels can be achieved early in the course of the disease. PMID:27318144

  7. The FDA-approved natural product dihydroergocristine reduces the production of the Alzheimer's disease amyloid-β peptides.

    PubMed

    Lei, Xiling; Yu, Jing; Niu, Qi; Liu, Jianhua; Fraering, Patrick C; Wu, Fang

    2015-01-01

    Known γ-secretase inhibitors or modulators display an undesirable pharmacokinetic profile and toxicity and have therefore not been successful in clinical trials for Alzheimer's disease (AD). So far, no compounds from natural products have been identified as direct inhibitors of γ-secretase. To search for bioactive molecules that can reduce the amount of amyloid-beta peptides (Aβ) and that have better pharmacokinetics and an improved safety profile, we completed a screen of ~400 natural products by using cell-based and cell-free γ-secretase activity assays. We identified dihydroergocristine (DHEC), a component of an FDA- (Food and Drug Administration)-approved drug, to be a direct inhibitor of γ-secretase. Micromolar concentrations of DHEC substantially reduced Aβ levels in different cell types, including a cell line derived from an AD patient. Structure-activity relationship studies implied that the key moiety for inhibiting γ-secretase is the cyclized tripeptide moiety of DHEC. A Surface Plasmon Resonance assay showed that DHEC binds directly to γ-secretase and Nicastrin, with equilibrium dissociation constants (Kd) of 25.7 nM and 9.8 μM, respectively. This study offers DHEC not only as a new chemical moiety for selectively modulating the activity of γ-secretase but also a candidate for drug repositioning in Alzheimer's disease. PMID:26567970

  8. The FDA-approved natural product dihydroergocristine reduces the production of the Alzheimer’s disease amyloid-β peptides

    PubMed Central

    Lei, Xiling; Yu, Jing; Niu, Qi; Liu, Jianhua; Fraering, Patrick C.; Wu, Fang

    2015-01-01

    Known γ-secretase inhibitors or modulators display an undesirable pharmacokinetic profile and toxicity and have therefore not been successful in clinical trials for Alzheimer’s disease (AD). So far, no compounds from natural products have been identified as direct inhibitors of γ-secretase. To search for bioactive molecules that can reduce the amount of amyloid-beta peptides (Aβ) and that have better pharmacokinetics and an improved safety profile, we completed a screen of ~400 natural products by using cell-based and cell-free γ-secretase activity assays. We identified dihydroergocristine (DHEC), a component of an FDA- (Food and Drug Administration)-approved drug, to be a direct inhibitor of γ-secretase. Micromolar concentrations of DHEC substantially reduced Aβ levels in different cell types, including a cell line derived from an AD patient. Structure-activity relationship studies implied that the key moiety for inhibiting γ-secretase is the cyclized tripeptide moiety of DHEC. A Surface Plasmon Resonance assay showed that DHEC binds directly to γ-secretase and Nicastrin, with equilibrium dissociation constants (Kd) of 25.7 nM and 9.8 μM, respectively. This study offers DHEC not only as a new chemical moiety for selectively modulating the activity of γ-secretase but also a candidate for drug repositioning in Alzheimer’s disease. PMID:26567970

  9. Apigenin modulates the expression levels of pro-inflammatory mediators to reduce the human insulin amyloid-induced oxidant damages in SK-N-MC cells.

    PubMed

    Amini, R; Yazdanparast, R; Ghaffari, S H

    2015-06-01

    Amyloid depositions of proteins play crucial roles in a wide variety of degenerative disorders called amyloidosis. Although the exact mechanisms involved in amyloid-mediated cytotoxicity remain unknown, increased formation of reactive oxygen species (ROS) and nitrogen species and overproduction of pro-inflammatory cytokines are believed to play key roles in the process. In that regard, we investigated the effect of apigenin, a common dietary flavonoid with high antioxidant and anti-inflammatory properties on potential factors involved in cytotoxicity of human insulin amyloids. Pretreatment of SK-N-MC neuroblastoma cells with apigenin increased cell viability and reduced the apoptosis induced by insulin fibrils. In addition, apigenin attenuated insulin fibril-induced ROS production and lipid peroxidation. Our result also demonstrated that pretreatment of the fibril-affected cells with apigenin caused an increase in catalase activity and the intracellular glutathione content along with reduction in nitric oxide production and nuclear factor κB, tumor necrosis factor α, and interleukin 6 gene expression based on real-time polymerase chain reaction evaluation. In accordance with these results, apigenin could be a promising candidate in the design of natural-based drugs for treatment or prevention of amyloid-related disorders. PMID:25304968

  10. Diet rich in date palm fruits improves memory, learning and reduces beta amyloid in transgenic mouse model of Alzheimer's disease

    PubMed Central

    Subash, Selvaraju; Essa, Musthafa Mohamed; Braidy, Nady; Awlad-Thani, Kathyia; Vaishnav, Ragini; Al-Adawi, Samir; Al-Asmi, Abdullah; Guillemin, Gilles J.

    2015-01-01

    Background: At present, the treatment options available to delay the onset or slow down the progression of Alzheimer's disease (AD) are not effective. Recent studies have suggested that diet and lifestyle factors may represent protective strategies to minimize the risk of developing AD. Date palm fruits are a good source of dietary fiber and are rich in total phenolics and natural antioxidants, such as anthocyanins, ferulic acid, protocatechuic acid and caffeic acid. These polyphenolic compounds have been shown to be neuroprotective in different model systems. Objective: We investigated whether dietary supplementation with 2% and 4% date palm fruits (grown in Oman) could reduce cognitive and behavioral deficits in a transgenic mouse model for AD (amyloid precursor protein [APPsw]/Tg2576). Materials and Methods: The experimental groups of APP-transgenic mice from the age of 4 months were fed custom-mix diets (pellets) containing 2% and 4% date fruits. We assessed spatial memory and learning ability, psychomotor coordination, and anxiety-related behavior in all the animals at the age of 4 months and after 14 months of treatment using the Morris water maze test, rota-rod test, elevated plus maze test, and open-field test. We have also analyzed the levels of amyloid beta (Aβ) protein (1–40 and 1–42) in plasma of control and experimental animals. Results: Standard diet-fed Tg mice showed significant memory deficits, increased anxiety-related behavior, and severe impairment in spatial learning ability, position discrimination learning ability and motor coordination when compared to wild-type on the same diet and Tg mice fed 2% and 4% date supplementation at the age of 18 months. The levels of both Aβ proteins were significantly lowered in date fruits supplemented groups than the Tg mice without the diet supplement. The neuroprotective effect offered by 4% date fruits diet to AD mice is higher than 2% date fruits diet. Conclusions: Our results suggest that date

  11. Green tea aroma fraction reduces β-amyloid peptide-induced toxicity in Caenorhabditis elegans transfected with human β-amyloid minigene.

    PubMed

    Takahashi, Atsushi; Watanabe, Tatsuro; Fujita, Takashi; Hasegawa, Toshio; Saito, Michio; Suganuma, Masami

    2014-01-01

    Green tea is a popular world-wide beverage with health benefits that include preventive effects on cancer as well as cardiovascular, liver and Alzheimer's diseases (AD). This study will examine the preventive effects on AD of a unique aroma of Japanese green tea. First, a transgenic Caenorhabditis elegans (C. elegans) CL4176 expressing human β-amyloid peptide (Aβ) was used as a model of AD. A hexane extract of processed green tea was further fractionated into volatile and non-volatile fractions, named roasty aroma and green tea aroma fractions depending on their aroma, by microscale distillation. Both hexane extract and green tea aroma fraction were found to inhibit Aβ-induced paralysis, while only green tea aroma fraction extended lifespan in CL4176. We also found that green tea aroma fraction has antioxidant activity. This paper indicates that the green tea aroma fraction is an additional component for prevention of AD. PMID:25229860

  12. Nascent HDL formation by hepatocytes is reduced by the concerted action of serum amyloid A and endothelial lipase.

    PubMed

    Wroblewski, Joanne M; Jahangiri, Anisa; Ji, Ailing; de Beer, Frederick C; van der Westhuyzen, Deneys R; Webb, Nancy R

    2011-12-01

    Inflammation is associated with significant decreases in plasma HDL-cholesterol (HDL-C) and apoA-I levels. Endothelial lipase (EL) is known to be an important determinant of HDL-C in mice and in humans and is upregulated during inflammation. In this study, we investigated whether serum amyloid A (SAA), an HDL apolipoprotein highly induced during inflammation, alters the ability of EL to metabolize HDL. We determined that EL hydrolyzes SAA-enriched HDL in vitro without liberating lipid-free apoA-I. Coexpression of SAA and EL in mice by adenoviral vector produced a significantly greater reduction in HDL-C and apoA-I than a corresponding level of expression of either SAA or EL alone. The loss of HDL occurred without any evidence of HDL remodeling to smaller particles that would be expected to have more rapid turnover. Studies with primary hepatocytes demonstrated that coexpression of SAA and EL markedly impeded ABCA1-mediated lipidation of apoA-I to form nascent HDL. Our findings suggest that a reduction in nascent HDL formation may be partly responsible for reduced HDL-C during inflammation when both EL and SAA are known to be upregulated. PMID:21957202

  13. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer's disease animal models.

    PubMed

    Frydman-Marom, Anat; Levin, Aviad; Farfara, Dorit; Benromano, Tali; Scherzer-Attali, Roni; Peled, Sivan; Vassar, Robert; Segal, Daniel; Gazit, Ehud; Frenkel, Dan; Ovadia, Michael

    2011-01-01

    An increasing body of evidence indicates that accumulation of soluble oligomeric assemblies of β-amyloid polypeptide (Aβ) play a key role in Alzheimer's disease (AD) pathology. Specifically, 56 kDa oligomeric species were shown to be correlated with impaired cognitive function in AD model mice. Several reports have documented the inhibition of Aβ plaque formation by compounds from natural sources. Yet, evidence for the ability of common edible elements to modulate Aβ oligomerization remains an unmet challenge. Here we identify a natural substance, based on cinnamon extract (CEppt), which markedly inhibits the formation of toxic Aβ oligomers and prevents the toxicity of Aβ on neuronal PC12 cells. When administered to an AD fly model, CEppt rectified their reduced longevity, fully recovered their locomotion defects and totally abolished tetrameric species of Aβ in their brain. Furthermore, oral administration of CEppt to an aggressive AD transgenic mice model led to marked decrease in 56 kDa Aβ oligomers, reduction of plaques and improvement in cognitive behavior. Our results present a novel prophylactic approach for inhibition of toxic oligomeric Aβ species formation in AD through the utilization of a compound that is currently in use in human diet. PMID:21305046

  14. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    PubMed Central

    West, Ewan; Osborne, Craig; Nolan, William; Bate, Clive

    2015-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage. PMID:26043272

  15. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage.

    PubMed

    West, Ewan; Osborne, Craig; Nolan, William; Bate, Clive

    2015-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound "natural Aβ", sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson's disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage. PMID:26043272

  16. Ablation of the Microglial Protein DOCK2 Reduces Amyloid Burden in a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Cimino, Patrick J.; Yang, Yue; Li, Xianwu; Hemingway, Jake F.; Cherne, Makenzie K.; Khademi, Shawn B.; Fukui, Yoshinori; Montine, Kathleen S.; Montine, Thomas J.; Keene, C. Dirk

    2013-01-01

    Alzheimer’s disease (AD) neuropathology is characterized by innate immune activation primarily through prostaglandin E2 (PGE2) signaling. Dedicator of cytokinesis 2 (DOCK2) is a guanyl nucleotide exchange factor expressed exclusively in microglia in the brain and is regulated by PGE2 receptor EP2. DOCK2 modulates microglia cytokine secretion, phagocytosis, and paracrine neurotoxicity. EP2 ablation in experimental AD results in reduced oxidative damage and amyloid beta (Aβ) burden. This discovery led us to hypothesize that genetic ablation of DOCK2 would replicate the anti-Aβ effects of loss of EP2 in experimental AD. To test this hypothesis, we crossed mice that lacked DOCK2 (DOCK2−/−), were hemizygous for DOCK2 (DOCK2+/−), or that expressed two DOCK2 genes (DOCK2+/+) with APPswe-PS1Δe9 mice (a model of AD). While we found no DOCK2-dependent differences in cortex or in hippocampal microglia density or morphology in APPswe-PS1Δe9 mice, cerebral cortical and hippocampal Aβ plaque area and size were significantly reduced in 10-month-old APPswe-PS1Δe9/DOCK2−/− mice compared with APPswe-PS1Δe9/DOCK2+/+ controls. DOCK2 hemizygous APPswe-PS1Δe9 mice had intermediate Aβ plaque levels. Interestingly, soluble Aβ42 was not significantly different among the three genotypes, suggesting the effects were mediated specifically in fibrillar Aβ. In combination with earlier cell culture results, our in vivo results presented here suggest DOCK2 contributes to Aβ plaque burden via regulation of microglial innate immune function and may represent a novel therapeutic target for AD. PMID:23318649

  17. Reduced amyloidogenic processing of the amyloid β-protein precursor by the small-molecule Differentiation Inducing Factor-1

    PubMed Central

    Myre, Michael A.; Washicosky, Kevin; Moir, Robert D.; Tesco, Giuseppina; Tanzi, Rudolph E.; Wasco, Wilma

    2013-01-01

    The detection of cell cycle proteins in Alzheimer’s disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Aβ properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid β-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Aβ40 and Aβ42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Aβ42 to Aβ40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Aβ. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a γ-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668. PMID:19154786

  18. Reduced amyloidogenic processing of the amyloid beta-protein precursor by the small-molecule Differentiation Inducing Factor-1.

    PubMed

    Myre, Michael A; Washicosky, Kevin; Moir, Robert D; Tesco, Giuseppina; Tanzi, Rudolph E; Wasco, Wilma

    2009-04-01

    The detection of cell cycle proteins in Alzheimer's disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Abeta properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid beta-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Abeta40 and Abeta42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Abeta42 to Abeta40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Abeta. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a gamma-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668. PMID:19154786

  19. Wharton's Jelly-derived mesenchymal stem cells alleviate memory deficits and reduce amyloid-β deposition in an APP/PS1 transgenic mouse model.

    PubMed

    Xie, Zhao-Hong; Liu, Zhen; Zhang, Xiao-Ran; Yang, Hui; Wei, Li-Fei; Wang, Yun; Xu, Shun-Liang; Sun, Lin; Lai, Chao; Bi, Jian-Zhong; Wang, Xiao-Yun

    2016-02-01

    Alzheimer's disease (AD) is the leading cause of dementia in the elderly and is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Cumulative evidence supports that neuroinflammation is an important factor for the pathogenesis of AD and contributes to amyloid beta (Aβ) generation. However, there has been no effective treatment for AD. Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) have a potential therapeutic effect in the treatment for neurological diseases. In the present study, we evaluated the therapeutic effect of WJ-MSC transplantation on the neuropathology and memory deficits in amyloid precursor protein (APP) and presenilin-1 (PS1) double-transgenic mice and discussed the mechanism. WJ-MSCs were intravenously transplanted into the APP/PS1 mice. Four weeks after treatment, WJ-MSCs significantly improved the spatial learning and alleviated the memory decline in the APP/PS1 mice. Aβ deposition and soluble Aβ levels were significantly reduced after WJ-MSC treatment. Furthermore, WJ-MSCs significantly increased the expression of the anti-inflammatory cytokine, IL-10. Meanwhile, pro-inflammatory microglial activation and the expressions of pro-inflammatory cytokines, IL-1β and TNFα, were significantly down-regulated by WJ-MSC treatment. Thus, our findings suggest that WJ-MSCs might produce beneficial effects on the prevention and treatment for AD through modulation of neuroinflammation. PMID:26188488

  20. Cilostazol Upregulates Autophagy via SIRT1 Activation: Reducing Amyloid-β Peptide and APP-CTFβ Levels in Neuronal Cells

    PubMed Central

    Lee, Hye Rin; Shin, Hwa Kyoung; Park, So Youn; Kim, Hye Young; Bae, Sun Sik; Lee, Won Suk; Rhim, Byung Yong; Hong, Ki Whan; Kim, Chi Dae

    2015-01-01

    Autophagy is a vital pathway for the removal of β-amyloid peptide (Aβ) and the aggregated proteins that cause Alzheimer’s disease (AD). We previously found that cilostazol induced SIRT1 expression and its activity in neuronal cells, and thus, we hypothesized that cilostazol might stimulate clearances of Aβ and C-terminal APP fragment β subunit (APP-CTFβ) by up-regulating autophagy.When N2a cells were exposed to soluble Aβ1–42, protein levels of beclin-1, autophagy-related protein5 (Atg5), and SIRT1 decreased significantly. Pretreatment with cilostazol (10–30 μM) or resveratrol (20 μM) prevented these Aβ1–42 evoked suppressions. LC3-II (a marker of mammalian autophagy) levels were significantly increased by cilostazol, and this increase was reduced by 3-methyladenine. To evoke endogenous Aβ overproduction, N2aSwe cells (N2a cells stably expressing human APP containing the Swedish mutation) were cultured in medium with or without tetracycline (Tet+ for 48 h and then placed in Tet- condition). Aβ and APP-CTFβ expressions were increased after 12~24 h in Tet- condition, and these increased expressions were significantly reduced by pretreating cilostazol. Cilostazol-induced reductions in the expressions of Aβ and APP-CTFβ were blocked by bafilomycin A1 (a blocker of autophagosome to lysosome fusion). After knockdown of the SIRT1 gene (to ~40% in SIRT1 protein), cilostazol failed to elevate the expressions of beclin-1, Atg5, and LC3-II, indicating that cilostazol increases these expressions by up-regulating SIRT1. Further, decreased cell viability induced by Aβ was prevented by cilostazol, and this inhibition was reversed by 3-methyladenine, indicating that the protective effect of cilostazol against Aβ induced neurotoxicity is, in part, ascribable to the induction of autophagy. In conclusion, cilostazol modulates autophagy by increasing the activation of SIRT1, and thereby enhances Aβ clearance and increases cell viability. PMID:26244661

  1. Biofilm-associated bacterial amyloids dampen inflammation in the gut: oral treatment with curli fibres reduces the severity of hapten-induced colitis in mice

    PubMed Central

    Oppong, Gertrude O; Rapsinski, Glenn J; Tursi, Sarah A; Biesecker, Steven G; Klein-Szanto, Andres JP; Goulian, Mark; McCauley, Christine; Healy, Catherine; Wilson, R Paul; Tükel, Cagla

    2015-01-01

    BACKGROUND/OBJECTIVES A disruption of epithelial barrier function can lead to intestinal inflammation. Toll-like receptor (TLR) 2 activation by microbial products promotes intestinal epithelial integrity and overall gut health. Several bacterial species, including enteric bacteria, actively produce amyloid proteins as a part of their biofilms. Recognition of amyloid fibres found in enteric biofilms, termed curli, by the Toll-like receptor (TLR)2/1 complex reinforces barrier function. Here, we investigated the effect of purified curli fibres on inflammation in a mouse model of acute colitis. METHODS Bone marrow–derived macrophages as well as lamina propria cells were treated with curli fibres of both pathogenic Salmonella enterica serovar Typhimurium and commensal Escherichia coli Nissle 1917 biofilms. Mice were given 0.1 or 0.4 mg of purified curli orally 1 day post administration of 1% 2,4,6-trinitrobenzene sulphonic acid (TNBS) enema. Histopathological analysis was performed on distal colonic tissue taken 6 days post TNBS enema. RNA extracted from colonic tissue was subjected to RT-PCR. RESULTS Here we show that curli fibres of both pathogenic and commensal bacteria are recognised by TLR2 leading to the production of IL-10, immunomodulatory cytokine of intestinal homeostasis. Treatment of mice with a single dose of curli heightens transcript levels of Il10 in the colon and ameliorates the disease pathology in TNBS-induced colitis. Curli treatment is comparable to the treatment with anti-tumour necrosis factor alpha (anti-TNFα) antibodies, a treatment known to reduce the severity of acute colitis in humans and mice. CONCLUSION These results suggest that the bacterial amyloids had a role in helping to maintain immune homeostasis in the intestinal mucosa via the TLR2/IL-10 axis. Furthermore, bacterial amyloids may be a potential candidate therapeutic to treat intestinal inflammatory disorders owing to their remarkable immunomodulatory activity. PMID:26855788

  2. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer's disease and ROCK1 depletion reduces amyloid-β levels in brain.

    PubMed

    Henderson, Benjamin W; Gentry, Erik G; Rush, Travis; Troncoso, Juan C; Thambisetty, Madhav; Montine, Thomas J; Herskowitz, Jeremy H

    2016-08-01

    Alzheimer's disease (AD) is the leading cause of dementia and mitigating amyloid-β (Aβ) levels may serve as a rational therapeutic avenue to slow AD progression. Pharmacologic inhibition of the Rho-associated protein kinases (ROCK1 and ROCK2) is proposed to curb Aβ levels, and mechanisms that underlie ROCK2's effects on Aβ production are defined. How ROCK1 affects Aβ generation remains a critical barrier. Here, we report that ROCK1 protein levels were elevated in mild cognitive impairment due to AD (MCI) and AD brains compared to controls. Aβ42 oligomers marginally increased ROCK1 and ROCK2 protein levels in neurons but strongly induced phosphorylation of Lim kinase 1 (LIMK1), suggesting that Aβ42 activates ROCKs. RNAi depletion of ROCK1 or ROCK2 suppressed endogenous Aβ40 production in neurons, and Aβ40 levels were reduced in brains of ROCK1 heterozygous knock-out mice compared to wild-type littermate controls. ROCK1 knockdown decreased amyloid precursor protein (APP), and treatment with bafilomycin accumulated APP levels in neurons depleted of ROCK1. These observations suggest that reduction of ROCK1 diminishes Aβ levels by enhancing APP protein degradation. Collectively, these findings support the hypothesis that both ROCK1 and ROCK2 are therapeutic targets to combat Aβ production in AD. Mitigating amyloid-β (Aβ) levels is a rational strategy for Alzheimer's disease (AD) treatment, however, therapeutic targets with clinically available drugs are lacking. We hypothesize that Aβ accumulation in mild cognitive impairment because of AD (MCI) and AD activates the RhoA/ROCK pathway which in turn fuels production of Aβ. Escalation of this cycle over the course of many years may contribute to the buildup of amyloid pathology in MCI and/or AD. PMID:27246255

  3. Excessive Exoergicity Reduces Singlet Exciton Fission Efficiency of Heteroacenes in Solutions.

    PubMed

    Zhang, You-Dan; Wu, Yishi; Xu, Yanqing; Wang, Qiang; Liu, Ke; Chen, Jian-Wei; Cao, Jing-Jing; Zhang, Chunfeng; Fu, Hongbing; Zhang, Hao-Li

    2016-06-01

    The energy difference between a singlet exciton and twice of a triplet exciton, ΔESF, provides the thermodynamic driving force for singlet exciton fission (SF). This work reports a systematic investigation on the effect of ΔESF on SF efficiency of five heteroacenes in their solutions. The low-temperature, near-infrared phosphorescence spectra gave the energy levels of the triplet excitons, allowing us to identify the values of ΔESF, which are -0.58, -0.34, -0.31, -0.32, and -0.34 eV for the thiophene, benzene, pyridine, and two tetrafluorobenzene terminated molecules, respectively. Corresponding SF efficiencies of the five heteroacenes in 0.02 M solutions were determined via femtosecond transient absorption spectroscopy to be 117%, 124%, 140%, 132%, and 135%, respectively. This result reveals that higher ΔESF is not, as commonly expected, always beneficial for higher SF efficiency in solution phase. On the contrary, excessive exoergicity results in reduction of SF efficiency in the heteroacenes due to the promotion of other competitive exciton relaxation pathways. Therefore, it is important to optimize thermodynamic driving force when designing organic materials for high SF efficiency. PMID:27167770

  4. Transmissible amyloid.

    PubMed

    Tjernberg, L O; Rising, A; Johansson, J; Jaudzems, K; Westermark, P

    2016-08-01

    There are around 30 human diseases associated with protein misfolding and amyloid formation, each one caused by a certain protein or peptide. Many of these diseases are lethal and together they pose an enormous burden to society. The prion protein has attracted particular interest as being shown to be the pathogenic agent in transmissible diseases such as kuru, Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Whether similar transmission could occur also in other amyloidoses such as Alzheimer's disease, Parkinson's disease and serum amyloid A amyloidosis is a matter of intense research and debate. Furthermore, it has been suggested that novel biomaterials such as artificial spider silk are potentially amyloidogenic. Here, we provide a brief introduction to amyloid, prions and other proteins involved in amyloid disease and review recent evidence for their potential transmission. We discuss the similarities and differences between amyloid and silk, as well as the potential hazards associated with protein-based biomaterials. PMID:27002185

  5. Selenomethionine reduces the deposition of beta-amyloid plaques by modulating β-secretase and enhancing selenoenzymatic activity in a mouse model of Alzheimer's disease.

    PubMed

    Zhang, Zhong-Hao; Chen, Chen; Wu, Qiu-Yan; Zheng, Rui; Liu, Qiong; Ni, Jia-Zuan; Hoffmann, Peter R; Song, Guo-Li

    2016-08-01

    Alzheimer's disease (AD) is characterized by the production of large amounts of beta-amyloid (Aβ) and the accumulation of extracellular senile plaques, which have been considered to be potential targets in the treatment of AD. Selenium (Se) is a nutritionally essential trace element with known antioxidant potential and Se status has been shown to decrease with age and has a close relationship with cognitive competence in AD. Selenomethionine (Se-Met), a major reserve form of Se in organisms, has been shown in our previous study to ameliorate the decline in cognitive function, increase oxidation resistance, and reduce tau hyperphosphorylation in a triple transgenic mouse model of AD. However, it has not been reported whether Se-Met has any effects on Aβ pathology in AD mice. To study the effect of Se-Met on Aβ pathology and the function of selenoproteins/selenoenzymes in 3× Tg-AD mice, 3× Tg-AD mice at 8 months of age were treated with Se-Met for 3 months. Se-Met led to significantly reduced production and deposition of Aβ, down-regulation of β-secretase levels and enhanced activity of selenoenzymes as well as increased levels of Se in the hippocampus and cortex. Se-Met reduces amyloidogenic processing of amyloid precursor protein while modulating β-secretase and selenoenzymatic activity in AD mice. These results indicate that Se-Met might exert its therapeutic effect through multiple pathways in AD. PMID:27465436

  6. Brief motivational interventions to reduce excessive drinking, intimate partner violence fail to positively impact outcomes.

    PubMed

    2015-10-01

    Findings from a large, randomized clinical trial suggest that the use of an ED-based motivational intervention is not sufficient to reduce incidents of heavy drinking or intimate partner violence (IPV) among women who present to the ED. Investigators have found that while heavy drinking and incidents of IPV declined in all groups being evaluated, the intervention, which involved a 20- to 30-minute motivational interview by a masters-prepared social worker and a follow-up reinforcement call, did not make a difference in outcomes. Investigators conclude that more comprehensive solutions are needed. Participants for the study were recruited from two urban-area EDs in Philadelphia between January 2011 and December 2014. Patients were randomized to an intervention group or one of two control groups. At one year post-enrollment, nearly half (45%) of all the study participants reported no incidents of IPV in the previous three months, and the researchers found that 22% of all participants were consuming alcohol at safe drinking levels. However, there was no evidence that the intervention influenced outcomes. Investigators recommend EDs set up routine screening to identify IPV and co-occurring psychosocial risk factors, and train social workers and IPV advocates to perform safety assessments and provide referrals for more intensive, evidence-based interventions that are tailored to the patient's needs and goals. PMID:26447261

  7. Amyloid fibrils

    PubMed Central

    Rambaran, Roma N

    2008-01-01

    Amyloid refers to the abnormal fibrous, extracellular, proteinaceous deposits found in organs and tissues. Amyloid is insoluble and is structurally dominated by β-sheet structure. Unlike other fibrous proteins it does not commonly have a structural, supportive or motility role but is associated with the pathology seen in a range of diseases known as the amyloidoses. These diseases include Alzheimer's, the spongiform encephalopathies and type II diabetes, all of which are progressive disorders with associated high morbidity and mortality. Not surprisingly, research into the physicochemical properties of amyloid and its formation is currently intensely pursued. In this chapter we will highlight the key scientific findings and discuss how the stability of amyloid fibrils impacts on bionanotechnology. PMID:19158505

  8. Cerebral amyloid angiopathy

    MedlinePlus

    Cerebral amyloid angiopathy is a neurological condition in which proteins called amyloid build up on the walls of the arteries ... The cause of cerebral amyloid angiopathy is unknown. Sometimes, it ... Persons with this condition have deposits of amyloid protein ...

  9. 1α,25-Dihydroxyvitamin D3 reduces cerebral amyloid-β accumulation and improves cognition in mouse models of Alzheimer's disease.

    PubMed

    Durk, Matthew R; Han, Kyung; Chow, Edwin C Y; Ahrens, Rosemary; Henderson, Jeffrey T; Fraser, Paul E; Pang, K Sandy

    2014-05-21

    We demonstrate a role of the vitamin D receptor (VDR) in reducing cerebral soluble and insoluble amyloid-β (Aβ) peptides. Short-term treatment of two human amyloid precursor protein-expressing models, Tg2576 and TgCRND8 mice, with 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], the endogenous active ligand of VDR, resulted in higher brain P-glycoprotein (P-gp) and lower soluble Aβ levels, effects negated with coadministration of elacridar, a P-gp inhibitor. Long-term treatment of TgCRND8 mice with 1,25(OH)2D3 during the period of plaque formation reduced soluble and insoluble plaque-associated Aβ, particularly in the hippocampus in which the VDR is abundant and P-gp induction is greatest after 1,25(OH)2D3 treatment, and this led to improved conditioned fear memory. In mice fed a vitamin D-deficient diet, lower cerebral P-gp expression was observed, but levels were restored on replenishment with VDR ligands. The composite data suggest that the VDR is an important therapeutic target in the prevention and treatment of Alzheimer's disease. PMID:24849345

  10. β-Amyloid Impairs AMPA Receptor Trafficking and Function by Reducing Ca2+/Calmodulin-dependent Protein Kinase II Synaptic Distribution*

    PubMed Central

    Gu, Zhenglin; Liu, Wenhua; Yan, Zhen

    2009-01-01

    A fundamental feature of Alzheimer disease (AD) is the accumulation of β-amyloid (Aβ), a peptide generated from the amyloid precursor protein (APP). Emerging evidence suggests that soluble Aβ oligomers adversely affect synaptic function, which leads to cognitive failure associated with AD. The Aβ-induced synaptic dysfunction has been attributed to the synaptic removal of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors (AMPARs); however, it is unclear how Aβ induces the loss of AMPARs at the synapses. In this study we have examined the potential involvement of Ca2+/calmodulin-dependent protein kinase II (CaMKII), a signaling molecule critical for AMPAR trafficking and function. We found that the synaptic pool of CaMKII was significantly decreased in cortical neurons from APP transgenic mice, and the density of CaMKII clusters at synapses was significantly reduced by Aβ oligomer treatment. In parallel, the surface expression of GluR1 subunit as well as AMPAR-mediated synaptic response and ionic current was selectively decreased in APP transgenic mice and Aβ-treated cultures. Moreover, the reducing effect of Aβ on AMPAR current density was mimicked and occluded by knockdown of CaMKII and blocked by overexpression of CaMKII. These results suggest that the Aβ-induced change in CaMKII subcellular distribution may underlie the removal of AMPARs from synaptic membrane by Aβ. PMID:19240035

  11. Intraperitoneal injection of the pancreatic peptide amylin potently reduces behavioral impairment and brain amyloid pathology in murine models of Alzheimer's disease.

    PubMed

    Zhu, H; Wang, X; Wallack, M; Li, H; Carreras, I; Dedeoglu, A; Hur, J-Y; Zheng, H; Li, H; Fine, R; Mwamburi, M; Sun, X; Kowall, N; Stern, R A; Qiu, W Q

    2015-02-01

    Amylin, a pancreatic peptide, and amyloid-beta peptides (Aβ), a major component of Alzheimer's disease (AD) brain, share similar β-sheet secondary structures, but it is not known whether pancreatic amylin affects amyloid pathogenesis in the AD brain. Using AD mouse models, we investigated the effects of amylin and its clinical analog, pramlintide, on AD pathogenesis. Surprisingly, chronic intraperitoneal (i.p.) injection of AD animals with either amylin or pramlintide reduces the amyloid burden as well as lowers the concentrations of Aβ in the brain. These treatments significantly improve their learning and memory assessed by two behavioral tests, Y maze and Morris water maze. Both amylin and pramlintide treatments increase the concentrations of Aβ1-42 in cerebral spinal fluid (CSF). A single i.p. injection of either peptide also induces a surge of Aβ in the serum, the magnitude of which is proportionate to the amount of Aβ in brain tissue. One intracerebroventricular injection of amylin induces a more significant surge in serum Aβ than one i.p. injection of the peptide. In 330 human plasma samples, a positive association between amylin and Aβ1-42 as well as Aβ1-40 is found only in patients with AD or amnestic mild cognitive impairment. As amylin readily crosses the blood-brain barrier, our study demonstrates that peripheral amylin's action on the central nervous system results in translocation of Aβ from the brain into the CSF and blood that could be an explanation for a positive relationship between amylin and Aβ in blood. As naturally occurring amylin may play a role in regulating Aβ in brain, amylin class peptides may provide a new avenue for both treatment and diagnosis of AD. PMID:24614496

  12. Pyruvate prevents the development of age-dependent cognitive deficits in a mouse model of Alzheimer's disease without reducing amyloid and tau pathology.

    PubMed

    Isopi, Elisa; Granzotto, Alberto; Corona, Carlo; Bomba, Manuela; Ciavardelli, Domenico; Curcio, Michele; Canzoniero, Lorella M T; Navarra, Riccardo; Lattanzio, Rossano; Piantelli, Mauro; Sensi, Stefano L

    2015-09-01

    Amyloid-β (Aβ) deposition and tau-dependent pathology are key features of Alzheimer's disease (AD). However, to date, approaches aimed at counteracting these two pathogenic factors have produced only modest therapeutic outcomes. More effective therapies should therefore consider additional pathogenic factors like energy production failure, hyperexcitability and excitotoxicity, oxidative stress, deregulation of metal ion homeostasis, and neuroinflammation. Pyruvate is an energy substrate associated with neuroprotective properties. In this study, we evaluated protective effects of long-term administration of pyruvate in 3xTg-AD mice, a preclinical AD model that develops amyloid-β- and tau-dependent pathology. Chronic (9 months) treatment with pyruvate inhibited short and long-term memory deficits in 6 and 12 months old 3xTg-AD mice as assessed with the Morris water maze test. Pyruvate had no effects on intraneuronal amyloid-β accumulation and, surprisingly, the molecule increased deposition of phosphorylated tau. Pyruvate did not change aerobic or anaerobic metabolisms but decreased lipid peroxidation, counteracted neuronal hyperexcitability, decreased baseline levels of oxidative stress, and also reduced reactive oxygen species-driven elevations of intraneuronal Zn(2+) as well as glutamate receptor-mediated deregulation of intraneuronal Ca(2+). Thus, pyruvate promotes beneficial cognitive effects without affecting Aβ and tau pathology. The molecule mainly promotes a reduction of hyperexcitability, oxidative stress while favors the regulation of intraneuronal Ca(2+) and Zn(2+) homeostasis rather than acting as energy substrate. Pyruvate can be therefore a valuable, safe, and affordable pharmacological tool to be associated with classical anti-Aβ and tau drugs to counteract the development and progression of AD-related cognitive deficits and neuronal loss. PMID:25434488

  13. Tripchlorolide improves cognitive deficits by reducing amyloid β and upregulating synapse-related proteins in a transgenic model of Alzheimer's Disease.

    PubMed

    Zeng, Yuqi; Zhang, Jian; Zhu, Yuangui; Zhang, Jing; Shen, Hui; Lu, Jianping; Pan, Xiaodong; Lin, Nan; Dai, Xiaoman; Zhou, Meng; Chen, Xiaochun

    2015-04-01

    Alzheimer's disease (AD) is characterized by early impairments in memory and progressive neurodegeneration. Disruption of synaptic plasticity processes that underlie learning and memory contribute partly to this pathophysiology. Tripchlorolide (T4 ), an extract from a traditional Chinese herbal Tripterygium wilfordii Hook F, has been shown to be neuroprotective in animal models of Parkinson's disease and to improve cognitive deficits in senescence-accelerated mouse P8. In this study, we investigated the effect of T4 on cognitive decline and synaptic plasticity in five times familial AD (5XFAD) mice co-expressing mutated amyloid precursor protein and presenilin-1. Five-month-old 5XFAD mice and wild type littermates were intraperitoneally injected with T4 , 5 μg/kg or 25 μg/kg, every other day for 60 days. T4 treatment significantly improved spatial learning and memory, alleviated synaptic ultrastructure degradation, up-regulated expression of synapse-related proteins, including synaptophysin, post-synaptic density-95, N-methyl-D-aspartate receptor subunit 1, phosphorylation of calcium/calmodulin dependent protein kinase II α, and phosphorylation of cyclic AMP-response element binding protein, and promoted activation of the phophoinositide-3-kinase-Akt-mammalian target of rapamycin signaling pathway in 5XFAD mice. Accumulation of amyloid β (Aβ) may contribute to synapse dysfunction and memory impairment in AD. We found that T4 treatment significantly reduced cerebral Aβ deposits and lowered Aβ levels in brain homogenates. These effects coincided with a reduction in cleavage of β-carboxyl-terminal amyloid precursor protein (APP) fragment, levels of soluble APPβ, and protein expression of β-site APP cleaving enzyme 1. Taken together, our findings identify T4 as a potent negative regulator of brain Aβ levels and show that it significantly ameliorates synaptic degeneration and cognitive deficits in a mouse model of AD. PMID:25661995

  14. Elimination of GD3 synthase improves memory and reduces amyloid-beta plaque load in transgenic mice.

    PubMed

    Bernardo, Alexandra; Harrison, Fiona E; McCord, Meghan; Zhao, Jiali; Bruchey, Aleksandra; Davies, Sean S; Jackson Roberts, L; Mathews, Paul M; Matsuoka, Yasuji; Ariga, Toshio; Yu, Robert K; Thompson, Rebecca; McDonald, Michael P

    2009-11-01

    Gangliosides have been shown to be necessary for beta-amyloid (Abeta) binding and aggregation. GD3 synthase (GD3S) is responsible for biosynthesis of the b- and c-series gangliosides, including two of the four major brain gangliosides. We examined Abeta-ganglioside interactions in neural tissue from mice lacking the gene coding for GD3S (St8sia1), and in a double-transgenic (APP/PSEN1) mouse model of Alzheimer's disease cross-bred with GD3S-/- mice. In primary neurons and astrocytes lacking GD3S, Abeta-induced cell death and Abeta aggregation were inhibited. Like GD3S-/- and APP/PSEN1 double-transgenic mice, APP/PSEN1/GD3S-/- "triple-mutant" mice are indistinguishable from wild-type mice on casual examination. APP/PSEN1 double-transgenics exhibit robust impairments on a number of reference-memory tasks. In contrast, APP/PSEN1/GD3S-/- triple-mutant mice performed as well as wild-type control and GD3S-/- mice. Consistent with the behavioral improvements, both aggregated and unaggregated Abeta and associated neuropathology were almost completely eliminated in triple-mutant mice. These results suggest that GD3 synthase may be a novel therapeutic target to combat the cognitive deficits, amyloid plaque formation, and neurodegeneration that afflict Alzheimer's patients. PMID:18258340

  15. Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer's disease.

    PubMed

    Sung, Syuan; Yao, Yuemang; Uryu, Kunihiro; Yang, Hengxuan; Lee, Virginia M-Y; Trojanowski, John Q; Praticò, Domenico

    2004-02-01

    Increased brain oxidative stress is a key feature of Alzheimer's disease (AD) and manifests predominantly as lipid peroxidation. However, clinical evidence that antioxidants can affect the clinical course of the disease is limited. In the present study, we investigated the effect of the antioxidant Vitamin E on the AD-like phenotype when given to a transgenic mouse model (Tg2576) of the disease before or after the amyloid plaques are deposited. One group of Tg2576 received Vitamin E starting at 5 months of age until they were 13 months old, the second group started at 14 months of age until they were 20 months old. Brain levels of 8,12-iso-iPF2alpha-VI, a specific marker of lipid peroxidation, were significantly reduced in both groups of mice receiving Vitamin E compared with placebo. Tg2576 administered with Vitamin E at a younger age showed a significant reduction in Abeta levels and amyloid deposition. By contrast, mice receiving the diet supplemented with Vitamin E at a later age did not show any significant difference in either marker when compared with placebo. These results support the hypothesis that oxidative stress is an important early event in AD pathogenesis, and antioxidant therapy may be beneficial only if given at this stage of the disease process. PMID:14656990

  16. Phlorotannin-rich Ecklonia cava reduces the production of beta-amyloid by modulating alpha- and gamma-secretase expression and activity.

    PubMed

    Kang, Il-Jun; Jang, Bong Geom; In, Sua; Choi, Boyoung; Kim, Misook; Kim, Min-Ju

    2013-01-01

    Beta-amyloid (Aβ) is a major pathogenic peptide in Alzheimer's disease (AD) and is generated by the processing of amyloid precursor protein (APP). We have previously reported that the brown algae Ecklonia cava, which has anti-oxidant and anti-inflammatory functions, decreased Aβ production and further aggregation in HEK293 cells expressing the APP Swedish mutation. Here, we show the reduction mechanism of Aβ production using the butanol extract of Ecklonia cava through the examination of expression and activity of alpha-, beta-, and gamma-secretase. Treatment with the extract resulted in the activation of alpha-secretase with a contrasting decrease in its mRNA and protein expression. This activation was consistent with the translocation of the extract into the plasma membrane of the secretase. Gamma-secretase activity was lowered by E. cava, and this effect may be due to the decreased expression of PSEN1 mRNA and protein. In addition, the basal nuclear location of PSEN1, which may affect chromosome missegregation in neurodegenerative disease, was reduced by the extract, despite the significance of this finding remains unclear. Taken together, these results led us to conclude that E. cava regulated the expression and activity of gamma-secretase and alpha-secretase, leading to a reduction in Aβ production by the stable cells. Our data indicate that E. cava is a novel natural-product candidate for AD treatment, although further in vivo studies are needed. PMID:23041113

  17. Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity.

    PubMed

    Zhang, Jingnan; Zhou, Xianbo; Yu, Qianqian; Yang, Licong; Sun, Dongdong; Zhou, Yanhui; Liu, Jie

    2014-06-11

    Alzheimer's disease (AD), the most common neurodegenerative disease, is caused by an accumulation of amyloid-β (Aβ) plaque deposits in the brains. Evidence is increasingly showing that epigallocatechin-3-gallate (EGCG) can partly protect cells from Aβ-mediated neurotoxicity by inhibiting Aβ aggregation. In order to better understand the process of Aβ aggregation and amyloid fibril disaggregation and reduce the cytotoxicity of EGCG at high doses, we attached EGCG onto the surface of selenium nanoparticles (EGCG@Se). Given the low delivery efficiency of EGCG@Se to the targeted cells and the involvement of selenoprotein in antioxidation and neuroprotection, which are the key factors for preventing the onset and progression of AD, we synthesized EGCG-stabilized selenium nanoparticles coated with Tet-1 peptide (Tet-1-EGCG@Se, a synthetic selenoprotein analogue), considering the affinity of Tet-1 peptide to neurons. We revealed that Tet-1-EGCG@Se can effectively inhibit Aβ fibrillation and disaggregate preformed Aβ fibrils into nontoxic aggregates. In addition, we found that both EGCG@Se and Tet-1-EGCG@Se can label Aβ fibrils with a high affinity, and Tet-1 peptides can significantly enhance the cellular uptake of Tet-1-EGCG@Se in PC12 cells rather than in NIH/3T3 cells. PMID:24758520

  18. Brain pyroglutamate amyloid-β is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer's disease therapeutic.

    PubMed

    Hook, Gregory; Yu, Jin; Toneff, Thomas; Kindy, Mark; Hook, Vivian

    2014-01-01

    Pyroglutamate amyloid-β peptides (pGlu-Aβ) are particularly pernicious forms of amyloid-β peptides (Aβ) present in Alzheimer's disease (AD) brains. pGlu-Aβ peptides are N-terminally truncated forms of full-length Aβ peptides (flAβ(1-40/42)) in which the N-terminal glutamate is cyclized to pyroglutamate to generate pGlu-Aβ(3-40/42). β-secretase cleavage of amyloid-β precursor protein (AβPP) produces flAβ(1-40/42), but it is not yet known whether the β-secretase BACE1 or the alternative β-secretase cathepsin B (CatB) participate in the production of pGlu-Aβ. Therefore, this study examined the effects of gene knockout of these proteases on brain pGlu-Aβ levels in transgenic AβPPLon mice, which express AβPP isoform 695 and have the wild-type (wt) β-secretase activity found in most AD patients. Knockout or overexpression of the CatB gene reduced or increased, respectively, pGlu-Aβ(3-40/42), flAβ(1-40/42), and pGlu-Aβ plaque load, but knockout of the BACE1 gene had no effect on those parameters in the transgenic mice. Treatment of AβPPLon mice with E64d, a cysteine protease inhibitor of CatB, also reduced brain pGlu-Aβ(3-42), flAβ(1-40/42), and pGlu-Aβ plaque load. Treatment of neuronal-like chromaffin cells with CA074Me, an inhibitor of CatB, resulted in reduced levels of pGlu-Aβ(3-40) released from the activity-dependent, regulated secretory pathway. Moreover, CatB knockout and E64d treatment has been previously shown to improve memory deficits in the AβPPLon mice. These data illustrate the role of CatB in producing pGlu-Aβ and flAβ that participate as key factors in the development of AD. The advantages of CatB inhibitors, especially E64d and its derivatives, as alternatives to BACE1 inhibitors in treating AD patients are discussed. PMID:24595198

  19. Microbial Manipulation of the Amyloid Fold

    PubMed Central

    DePas, William H.

    2012-01-01

    Microbial biofilms are encased in a protein, DNA and polysaccharide matrix that protects the community, promotes interactions with the environment, and helps cells to adhere together. The protein component of these matrices is often a remarkably stable, β-sheet-rich polymer called amyloid. Amyloids form ordered, self-templating fibers that are highly aggregative, making them a valuable biofilm component. Some eukaryotic proteins inappropriately adopt the amyloid fold and these misfolded protein aggregates disrupt normal cellular proteostasis, which can cause significant cytotoxicity. Indeed, until recently amyloids were considered solely the result of protein misfolding. However, research over the past decade has revealed how various organisms have capitalized on the amyloid fold by developing sophisticated biogenesis pathways that coordinate gene expression, protein folding, and secretion so that amyloid-related toxicities are minimized. How microbes manipulate amyloids, by augmenting their advantageous properties and by reducing their undesirable properties, will be the subject of this review. PMID:23108148

  20. Reduction of low-density lipoprotein receptor-related protein (LRP1) in hippocampal neurons does not proportionately reduce, or otherwise alter, amyloid deposition in APPswe/PS1dE9 transgenic mice

    PubMed Central

    2012-01-01

    Introduction The low-density lipoprotein receptor-related protein (LRP1) and its family members have been implicated in the pathogenesis of Alzheimer's disease. Multiple susceptibility factors converge to metabolic pathways that involve LRP1, including modulation of the processing of amyloid precursor protein (APP) and the clearance of Aβ peptide. Methods We used the Cre-lox system to lower LRP1 levels in hippocampal neurons of mice that develop Alzheimer-type amyloid by crosses between mice that express Cre recombinase under the transcriptional control of the GFAP promoter, mice that harbor loxp sites in the LRP1 gene, and the APPswe/PS1dE9 transgenic model. We compared amyloid plaque numbers in APPswe/PS1dE9 mice lacking LRP1 expression in hippocampus (n = 13) to mice with normal levels of LRP1 (n = 12). Student t-test was used to test whether there were significant differences in plaque numbers and amyloid levels between the groups. A regression model was used to fit two regression lines for these groups, and to compare the rates of Aβ accumulation. Results Immunohistochemical analyses demonstrated efficient elimination of LRP1 expression in the CA fields and dentate gyrus of the hippocampus. Within hippocampus, we observed no effect on the severity of amyloid deposition, the rate of Aβ40/42 accumulation, or the architecture of amyloid plaques when LRP1 levels were reduced. Conclusions Expression of LRP1 by neurons in proximity to senile amyloid plaques does not appear to play a major role in modulating the formation of these proximal deposits or in the appearance of the associated neuritic pathology. PMID:22537779

  1. Deferiprone reduces amyloid-β and tau phosphorylation levels but not reactive oxygen species generation in hippocampus of rabbits fed a cholesterol-enriched diet.

    PubMed

    Prasanthi, Jaya R P; Schrag, Matthew; Dasari, Bhanu; Marwarha, Gurdeep; Dickson, April; Kirsch, Wolff M; Ghribi, Othman

    2012-01-01

    Accumulation of amyloid-β (Aβ) peptide and the hyperphosphorylation of tau protein are major hallmarks of Alzheimer's disease (AD). The causes of AD are not well known but a number of environmental and dietary factors are suggested to increase the risk of developing AD. Additionally, altered metabolism of iron may have a role in the pathogenesis of AD. We have previously demonstrated that cholesterol-enriched diet causes AD-like pathology with iron deposition in rabbit brain. However, the extent to which chelation of iron protects against this pathology has not been determined. In this study, we administered the iron chelator deferiprone in drinking water to rabbits fed with a 2% cholesterol diet for 12 weeks. We found that deferiprone (both at 10 and 50 mg/kg/day) significantly decreased levels of Aβ40 and Aβ42 as well as BACE1, the enzyme that initiates cleavage of amyloid-β protein precursor to yield Aβ. Deferiprone also reduced the cholesterol diet-induced increase in phosphorylation of tau but failed to reduce reactive oxygen species generation. While deferiprone treatment was not associated with any change in brain iron levels, it was associated with a significant reduction in plasma iron and cholesterol levels. These results demonstrate that deferiprone confers important protection against hypercholesterolemia-induced AD pathology but the mechanism(s) may involve reduction in plasma iron and cholesterol levels rather than chelation of brain iron. We propose that adding an antioxidant therapy to deferiprone may be necessary to fully protect against cholesterol-enriched diet-induced AD-like pathology. PMID:22406440

  2. Effects of brain amyloid deposition and reduced glucose metabolism on the default mode of brain function in normal aging.

    PubMed

    Kikuchi, Mitsuru; Hirosawa, Tetsu; Yokokura, Masamichi; Yagi, Shunsuke; Mori, Norio; Yoshikawa, Etsuji; Yoshihara, Yujiro; Sugihara, Genichi; Takebayashi, Kiyokazu; Iwata, Yasuhide; Suzuki, Katsuaki; Nakamura, Kazuhiko; Ueki, Takatoshi; Minabe, Yoshio; Ouchi, Yasuomi

    2011-08-01

    Brain β-amyloid (Aβ) deposition during normal aging is highlighted as an initial pathogenetic event in the development of Alzheimer's disease. Many recent brain imaging studies have focused on areas deactivated during cognitive tasks [the default mode network (DMN), i.e., medial frontal gyrus/anterior cingulate cortex and precuneus/posterior cingulate cortex], where the strength of functional coordination was more or less affected by cerebral Aβ deposits. In the present positron emission tomography study, to investigate whether regional glucose metabolic alterations and Aβ deposits seen in nondemented elderly human subjects (n = 22) are of pathophysiological importance in changes of brain hemodynamic coordination in DMN during normal aging, we measured cerebral glucose metabolism with [(18)F]FDG, Aβ deposits with [(11)C]PIB, and regional cerebral blood flow during control and working memory tasks by H(2)(15)O on the same day. Data were analyzed using both region of interest and statistical parametric mapping. Our results indicated that the amount of Aβ deposits was negatively correlated with hemodynamic similarity between medial frontal and medial posterior regions, and the lower similarity was associated with poorer working memory performance. In contrast, brain glucose metabolism was not related to this medial hemodynamic similarity. These findings suggest that traceable Aβ deposition, but not glucose hypometabolism, in the brain plays an important role in occurrence of neuronal discoordination in DMN along with poor working memory in healthy elderly people. PMID:21813680

  3. The Kunitz-protease inhibitor domain in amyloid precursor protein reduces cellular mitochondrial enzymes expression and function.

    PubMed

    Chua, Li-Min; Lim, Mei-Li; Wong, Boon-Seng

    2013-08-01

    Mitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD) and this can be contributed by aberrant metabolic enzyme function. But, the mechanism causing this enzymatic impairment is unclear. Amyloid precursor protein (APP) is known to be alternatively spliced to produce three major isoforms in the brain (APP695, APP751, APP770). Both APP770 and APP751 contain the Kunitz Protease Inhibitory (KPI) domain, but the former also contain an extra OX-2 domain. APP695 on the other hand, lacks both domains. In AD, up-regulation of the KPI-containing APP isoforms has been reported. But the functional contribution of this elevation is unclear. In the present study, we have expressed and compared the effect of the non-KPI containing APP695 and the KPI-containing APP751 on mitochondrial function. We found that the KPI-containing APP751 significantly decreased the expression of three major mitochondrial metabolic enzymes; citrate synthase, succinate dehydrogenase and cytochrome c oxidase (COX IV). This reduction lowers the NAD(+)/NADH ratio, COX IV activity and mitochondrial membrane potential. Overall, this study demonstrated that up-regulation of the KPI-containing APP isoforms is likely to contribute to the impairment of metabolic enzymes and mitochondrial function in AD. PMID:23872114

  4. Non-fibrillar amyloid-{beta} peptide reduces NMDA-induced neurotoxicity, but not AMPA-induced neurotoxicity

    SciTech Connect

    Niidome, Tetsuhiro; Goto, Yasuaki; Kato, Masaru; Wang, Pi-Lin; Goh, Saori; Tanaka, Naoki; Akaike, Akinori; Kihara, Takeshi; Sugimoto, Hachiro

    2009-09-04

    Amyloid-{beta} peptide (A{beta}) is thought to be linked to the pathogenesis of Alzheimer's disease. Recent studies suggest that A{beta} has important physiological roles in addition to its pathological roles. We recently demonstrated that A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity, but the relationship between A{beta}42 assemblies and their neuroprotective effects remains largely unknown. In this study, we prepared non-fibrillar and fibrillar A{beta}42 based on the results of the thioflavin T assay, Western blot analysis, and atomic force microscopy, and examined the effects of non-fibrillar and fibrillar A{beta}42 on glutamate-induced neurotoxicity. Non-fibrillar A{beta}42, but not fibrillar A{beta}42, protected hippocampal neurons from glutamate-induced neurotoxicity. Furthermore, non-fibrillar A{beta}42 decreased both neurotoxicity and increases in the intracellular Ca{sup 2+} concentration induced by N-methyl-D-aspartate (NMDA), but not by {alpha}-amino-3-hydrozy-5-methyl-4-isoxazole propionic acid (AMPA). Our results suggest that non-fibrillar A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity through regulation of the NMDA receptor.

  5. Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood–brain barrier model

    PubMed Central

    2013-01-01

    Introduction The amyloid-β42 (Aβ42) peptide plays a crucial role in the pathogenesis of Alzheimer’s disease (AD), the most common neurodegenerative disorder affecting the elderly. Over the past years, several approaches and compounds developed for the treatment of AD have failed in clinical studies, likely in part due to their low penetration of the blood–brain barrier (BBB). Since nanotechnology-based strategies offer new possibilities for the delivery of drugs to the brain, this technique is studied intensively for the treatment of AD and other neurological disorders. Methods The Aβ42 lowering drug flurbiprofen was embedded in polylactide (PLA) nanoparticles by emulsification-diffusion technique and their potential as drug carriers in an in vitro BBB model was examined. First, the cytotoxic potential of the PLA-flurbiprofen nanoparticles on endothelial cells and the cellular binding and uptake by endothelial cells was studied. Furthermore, the biological activity of the nanoparticulate flurbiprofen on γ-secretase modulation as well as its in vitro release was examined. Furthermore, the protein corona of the nanoparticles was studied as well as their ability to transport flurbiprofen across an in vitro BBB model. Results PLA-flurbiprofen nanoparticles were endocytosed by endothelial cells and neither affected the vitality nor barrier function of the endothelial cell monolayer. The exposure of the PLA-flurbiprofen nanoparticles to human plasma occurred in a rapid protein corona formation, resulting in their decoration with bioactive proteins, including apolipoprotein E. Furthermore, luminally administered PLA-flurbiprofen nanoparticles in contrast to free flurbiprofen were able to modulate γ-secretase activity by selectively decreasing Aβ42 levels in the abluminal compartment of the BBB model. Conclusions In this study, we were able to show that flurbiprofen can be transported by PLA nanoparticles across an in vitro BBB model and most importantly, the

  6. Central and Peripheral Administration of Antisense Oligonucleotide Targeting Amyloid Precursor Protein Improves Learning and Memory and Reduces Neuroinflammatory Cytokines in Tg2576 (APPswe) Mice

    PubMed Central

    Farr, Susan A.; Erickson, Michelle A.; Niehoff, Michael L.; Banks, William A.; Morley, John E.

    2014-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease. The World Health Organization estimates that there are currently 18 million people worldwide living with AD and that number is expected to double by early 2025. Currently, there are no therapies to stop or reverse the symptoms of AD. We have developed an antisense oligonucleotide (OL-1) against the amyloid betaprotein precursor (AβPP) that can decrease AβPP expression and amyloid beta protein (Aβ) production. This antisense rapidly crosses the blood-brain barrier, reverses learning and memory impairments, reduces oxidative stress and restores brain-to-blood efflux of Aβ in SAMP8 mice. In the current study, we examined the effects of this AβPP antisense in the Tg2576 mouse model of AD. The Tg2576 overproduces human Aβ, develops age-related learning and memory deficits, and exhibits oxidative damage in the brain. First, we administered the AβPP antisense centrally into the lateral ventricle 3 times at 2 week intervals. Seventy-two hours after the third injection, we tested learning and memory in T-maze foot shock avoidance. In the second study, we injected the mice with AβPP antisense 3 times at two week intervals via the tail vein. Seventy-two hours later, we tested learning and memory T-maze foot shock avoidance, novel object recognition and elevated plus maze. At the end of behavioral testing, mice were sacrificed and brain tissue was collected for evaluation of AβPP, Aβ, and expression of cytokines and chemokines. AβPP antisense administered centrally improved acquisition and retention of T-maze foot shock avoidance. AβPP antisense administered via tail vein improved learning and memory in both T-maze foot shock avoidance and novel object-place recognition. In the elevated plus maze the mice which received OL-1 AβPP antisense spent less time in the open arms and had fewer entries into the open arms indicating reduced disinhibitation. Biochemical analyses reveal significant

  7. Increased efflux of amyloid-β peptides through the blood-brain barrier by muscarinic acetylcholine receptor inhibition reduces pathological phenotypes in mouse models of brain amyloidosis.

    PubMed

    Paganetti, Paolo; Antoniello, Katia; Devraj, Kavi; Toni, Nicolas; Kieran, Dairin; Madani, Rime; Pihlgren, Maria; Adolfsson, Oskar; Froestl, Wolfgang; Schrattenholz, André; Liebner, Stefan; Havas, Daniel; Windisch, Manfred; Cirrito, John R; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    The formation and accumulation of toxic amyloid-β peptides (Aβ) in the brain may drive the pathogenesis of Alzheimer's disease. Accordingly, disease-modifying therapies for Alzheimer's disease and related disorders could result from treatments regulating Aβ homeostasis. Examples are the inhibition of production, misfolding, and accumulation of Aβ or the enhancement of its clearance. Here we show that oral treatment with ACI-91 (Pirenzepine) dose-dependently reduced brain Aβ burden in AβPPPS1, hAβPPSL, and AβPP/PS1 transgenic mice. A possible mechanism of action of ACI-91 may occur through selective inhibition of muscarinic acetylcholine receptors (AChR) on endothelial cells of brain microvessels and enhanced Aβ peptide clearance across the blood-brain barrier. One month treatment with ACI-91 increased the clearance of intrathecally-injected Aβ in plaque-bearing mice. ACI-91 also accelerated the clearance of brain-injected Aβ in blood and peripheral tissues by favoring its urinal excretion. A single oral dose of ACI-91 reduced the half-life of interstitial Aβ peptide in pre-plaque mhAβPP/PS1d mice. By extending our studies to an in vitro model, we showed that muscarinic AChR inhibition by ACI-91 and Darifenacin augmented the capacity of differentiated endothelial monolayers for active transport of Aβ peptide. Finally, ACI-91 was found to consistently affect, in vitro and in vivo, the expression of endothelial cell genes involved in Aβ transport across the Blood Brain Brain (BBB). Thus increased Aβ clearance through the BBB may contribute to reduced Aβ burden and associated phenotypes. Inhibition of muscarinic AChR restricted to the periphery may present a therapeutic advantage as it avoids adverse central cholinergic effects. PMID:24072071

  8. Traditional Chinese Nootropic Medicine Radix Polygalae and Its Active Constituent Onjisaponin B Reduce β-Amyloid Production and Improve Cognitive Impairments.

    PubMed

    Li, Xiaohang; Cui, Jin; Yu, Yang; Li, Wei; Hou, Yujun; Wang, Xin; Qin, Dapeng; Zhao, Cun; Yao, Xinsheng; Zhao, Jian; Pei, Gang

    2016-01-01

    Decline of cognitive function is the hallmark of Alzheimer's disease (AD), regardless of the pathological mechanism. Traditional Chinese medicine has been used to combat cognitive impairments and has been shown to improve learning and memory. Radix Polygalae (RAPO) is a typical and widely used herbal medicine. In this study, we aimed to follow the β-amyloid (Aβ) reduction activity to identify active constituent(s) of RAPO. We found that Onjisaponin B of RAPO functioned as RAPO to suppress Aβ production without direct inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and γ-secretase activities. Our mechanistic study showed that Onjisaponin B promoted the degradation of amyloid precursor protein (APP). Further, oral administration of Onjisaponin B ameliorated Aβ pathology and behavioral defects in APP/PS1 mice. Taken together, our results indicate that Onjisaponin B is effective against AD, providing a new therapeutic agent for further drug discovery. PMID:26954017

  9. Traditional Chinese Nootropic Medicine Radix Polygalae and Its Active Constituent Onjisaponin B Reduce β-Amyloid Production and Improve Cognitive Impairments

    PubMed Central

    Li, Xiaohang; Cui, Jin; Yu, Yang; Li, Wei; Hou, Yujun; Wang, Xin; Qin, Dapeng; Zhao, Cun; Yao, Xinsheng; Zhao, Jian; Pei, Gang

    2016-01-01

    Decline of cognitive function is the hallmark of Alzheimer’s disease (AD), regardless of the pathological mechanism. Traditional Chinese medicine has been used to combat cognitive impairments and has been shown to improve learning and memory. Radix Polygalae (RAPO) is a typical and widely used herbal medicine. In this study, we aimed to follow the β-amyloid (Aβ) reduction activity to identify active constituent(s) of RAPO. We found that Onjisaponin B of RAPO functioned as RAPO to suppress Aβ production without direct inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and γ-secretase activities. Our mechanistic study showed that Onjisaponin B promoted the degradation of amyloid precursor protein (APP). Further, oral administration of Onjisaponin B ameliorated Aβ pathology and behavioral defects in APP/PS1 mice. Taken together, our results indicate that Onjisaponin B is effective against AD, providing a new therapeutic agent for further drug discovery. PMID:26954017

  10. Pharmacological modulation of GSAP reduces amyloid-β levels and tau phosphorylation in a mouse model of Alzheimer's disease with plaques and tangles.

    PubMed

    Chu, Jin; Lauretti, Elisabetta; Craige, Caryne P; Praticò, Domenico

    2014-01-01

    Accumulation of neurotoxic amyloid-β (Aβ) is a major hallmark of Alzheimer's disease (AD) pathology and an important player in its clinical manifestations. Formation of Aβ is controlled by the availability of an enzyme called γ-secretase. Despite its blockers being attractive therapeutic tools for lowering Aβ, this approach has failed because of their serious toxic side-effects. The discovery of the γ-secretase activating protein (GSAP), a co-factor for this protease which facilitates Aβ production without affecting other pathways responsible for the toxicity, is giving us the opportunity to develop a safer anti-Aβ therapy. In this study we have characterized the effect of Imatinib, an inhibitor of GSAP, in the 3×Tg mice, a mouse model of AD with plaques and tangles. Compared with controls, mice receiving the drug had a significant reduction in brain Aβ levels and deposition, but no changes in the steady state levels of AβPP, BACE-1, ADAM-10, or the four components of the γ-secretase complex. By contrast, Imatinib-treated animals had a significant increase in CTF-β and a significant reduction in GSAP expression levels. Additionally, we observed that tau phosphorylation was reduced at specific epitopes together with its insoluble fraction. In vitro studies confirmed that Imatinib prevents Aβ formation by modulating γ-secretase activity and GSAP levels. Our findings represent the first in vivo demonstration of the biological role that GSAP plays in the development of the AD-like neuropathologies. They establish this protein as a viable target for a safer anti-Aβ therapeutic approach in AD. PMID:24662099

  11. GLP-1 Receptor Stimulation Reduces Amyloid-β Peptide Accumulation and Cytotoxicity in Cellular and Animal Models of Alzheimer’s Disease

    PubMed Central

    Li, Yazhou; Duffy, Kara B.; Ottinger, Mary Ann; Ray, Balmiki; Bailey, Jason A.; Holloway, Harold W.; Tweedie, David; Perry, TracyAnn; Mattson, Mark P.; Kapogiannis, Dimitrios; Sambamurti, Kumar; Lahiri, Debomoy K.; Greiga, Nigel H.

    2010-01-01

    Type 2 (T2) diabetes mellitus (DM) has been associated with an increased incidence of neurodegenerative disorders, including Alzheimer’s disease (AD). Several pathological features are shared between diabetes and AD, including dysfunctional insulin signaling and a dysregulation of glucose metabolism. It has therefore been suggested that not only may the two conditions share specific molecular mechanisms but also that agents with proven efficacy in one may be useful against the other. Hence, the present study characterized the effects of a clinically approved long-acting analogue, exendin-4 (Ex-4), of the endogenous insulin releasing incretin, glucagon-like peptide-1 (GLP-1), on stress-induced toxicity in neuronal cultures and on amyloid-β protein (Aβ) and tau levels in triple transgenic AD (3xTg-AD) mice with and without streptozocin (STZ)-induced diabetes. Ex-4 ameliorated the toxicity of Aβ and oxidative challenge in primary neuronal cultures and human SH-SY5Y cells in a concentration-dependent manner. When 11 to 12.5 month old female 3xTg AD mice were challenged with STZ or saline, and thereafter treated with a continuous subcutaneous infusion of Ex-4 or vehicle, Ex-4 ameliorated the diabetic effects of STZ in 3xTg-AD mice, elevating plasma insulin and lowering both plasma glucose and hemoglobin A1c (HbA1c) levels. Furthermore, brain levels of Aβ protein precursor and Aβ, which were elevated in STZ 3xTg-AD mice, were significantly reduced in Ex-4 treated mice. Brain tau levels were unaffected following STZ challenge, but showed a trend toward elevation that was absent following Ex-4 treatment. Together, these results suggest a potential value of Ex-4 in AD, particularly when associated with T2DM or glucose intolerance. PMID:20308787

  12. Safflower yellow reduces lipid peroxidation, neuropathology, tau phosphorylation and ameliorates amyloid β-induced impairment of learning and memory in rats.

    PubMed

    Ma, Qin; Ruan, Ying-ying; Xu, Hui; Shi, Xiao-meng; Wang, Zhi-xiang; Hu, Yan-li

    2015-12-01

    Insoluble plaques of amyloid β proteins (Aβ) and neurofibrillary tangles of hyperphosphorylated tau are key markers for Alzheimer's disease (AD). Safflower yellow (SY) is one of traditional Chinese medicine extracted from safflower, which is suggested to have therapeutic potential for neurodegenerative disorders. However, whether SY can ameliorate impairment of learning and memory in AD model, and its causal mechanism are still unclear. Here, we applied different doses of SY intragastrically to Wistar rats injected with amyloid β (1-42) for 1 month. By the Morris water maze test, we found that treatment of SY significantly attenuated amyloid β (1-42)-induced impairment of memory in rats. Mechanistically, SY treatment increased the level of superoxidedismutase (SOD) and Glutathione peroxidase (GSH-Px), and decreased the level of malondialdehyde (MDA) and acetylcholinesterase (T-CHE) in brain tissues of AD rats. Pathological analysis also showed that SY treatment inhibited the morphological alteration of neurons and tau hyperphosphorylation induced by amyloid β (1-42)-injection in the cortex and hippocampus. Moreover, SY treatment inhibited CDK-5 and GSK-3 signaling pathways, which are upregulated in AD rats. Our data indicate that safflower yellow can serve as a therapeutic candidate for Alzheimer's disease. PMID:26653563

  13. Reduced Alzheimer's disease β-amyloid deposition in transgenic mice expressing S-palmitoylation-deficient APH1aL and nicastrin

    PubMed Central

    Meckler, Xavier; Roseman, Jelita; Das, Pritam; Cheng, Haipeng; Pei, Susan; Keat, Marcia; Kassarjian, Breanne; Golde, Todd E.; Parent, Angèle T.; Thinakaran, Gopal

    2010-01-01

    Sequential cleavage of amyloid precursor protein by β- and γ-secretases generates β-amyloid peptides (Aβ), which accumulate in the brains of patients with Alzheimer's disease. We recently identified S-palmitoylation of two γ-secretase subunits, APH1 and nicastrin. S-palmitoylation is an essential post-translational modification for the proper trafficking and function of many neuronal proteins. In cultured cell lines, lack of S-palmitoylation causes instability of nascent APH1 and nicastrin, but does not affect γ-secretase processing of amyloid precursor protein. To determine the importance of γ-secretase S-palmitoylation for Aβ deposition in the brain, we generated transgenic mice co-expressing human wild-type or S-palmitoylation-deficient APH1aL and nicastrin in neurons in the forebrain. We found that lack of S-palmitoylation did not impair the ability of APH1aL and nicastrin to form enzymatically active protein complexes with endogenous presenilin 1 and PEN2, or affect the localization of γ-secretase subunits in dendrites and axons of cortical neurons. When we crossed these mice with 85Dbo transgenic mice, which co-express familial Alzheimer's disease-causing amyloid precursor protein and presenilin 1 variants, we found that co-expression of wild-type or mutant APH1aL and nicastrin led to marked stabilization of transgenic presenilin 1 in the brains of double transgenic mice. Interestingly, we observed a moderate, but significant, reduction in amyloid deposits in the forebrain of mice expressing S-palmitoylation-deficient γ-secretase subunits as compared with mice overexpressing wild-type subunits, as well as a reduction in the levels of insoluble Aβ40-42. These results indicate that γ-secretase S-palmitoylation modulates Aβ deposition in the brain. PMID:21123562

  14. Reduced Alzheimer's disease ß-amyloid deposition in transgenic mice expressing S-palmitoylation-deficient APH1aL and nicastrin.

    PubMed

    Meckler, Xavier; Roseman, Jelita; Das, Pritam; Cheng, Haipeng; Pei, Susan; Keat, Marcia; Kassarjian, Breanne; Golde, Todd E; Parent, Angèle T; Thinakaran, Gopal

    2010-12-01

    Sequential cleavage of amyloid precursor protein by β- and γ-secretases generates β-amyloid peptides (Aβ), which accumulate in the brains of patients with Alzheimer's disease. We recently identified S-palmitoylation of two γ-secretase subunits, APH1 and nicastrin. S-Palmitoylation is an essential posttranslational modification for the proper trafficking and function of many neuronal proteins. In cultured cell lines, lack of S-palmitoylation causes instability of nascent APH1 and nicastrin but does not affect γ-secretase processing of amyloid precursor protein. To determine the importance of γ-secretase S-palmitoylation for Aβ deposition in the brain, we generated transgenic mice coexpressing human wild-type or S-palmitoylation-deficient APH1aL and nicastrin in neurons in the forebrain. We found that lack of S-palmitoylation did not impair the ability of APH1aL and nicastrin to form enzymatically active protein complexes with endogenous presenilin 1 and PEN2 or affect the localization of γ-secretase subunits in dendrites and axons of cortical neurons. When we crossed these mice with 85Dbo transgenic mice, which coexpress familial Alzheimer's disease-causing amyloid precursor protein and presenilin 1 variants, we found that coexpression of wild-type or mutant APH1aL and nicastrin led to marked stabilization of transgenic presenilin 1 in the brains of double-transgenic mice. Interestingly, we observed a moderate, but significant, reduction in amyloid deposits in the forebrain of mice expressing S-palmitoylation-deficient γ-secretase subunits compared with mice overexpressing wild-type subunits, as well as a reduction in the levels of insoluble Aβ(40-42). These results indicate that γ-secretase S-palmitoylation modulates Aβ deposition in the brain. PMID:21123562

  15. Water influx into cerebrospinal fluid is significantly reduced in senile plaque bearing transgenic mice, supporting beta-amyloid clearance hypothesis of Alzheimer's disease.

    PubMed

    Igarashi, Hironaka; Suzuki, Yuji; Kwee, Ingrid L; Nakada, Tsutomu

    2014-12-01

    Recent studies on cerebrospinal fluid (CSF) homeostasis emphasize the importance of water influx into the peri-capillary (Virchow-Robin) space through aquaporin 4 (AQP-4). This water flow is believed to have the functionality equivalent to the systemic lymphatic system and plays a critical role in beta-amyloid clearance. Using a newly developed molecular imaging technique capable of tracing water molecules, in vivo, water influx into the CSF was quantitatively analyzed in senile plaque (SP) bearing transgenic Alzheimer's disease (AD) model mice. The results unequivocally demonstrated that water influx into CSF is significantly impaired in SP-bearing transgenic mice, the degree of which being virtually identical to that previously observed in AQP-4 knockout mice. The study strongly indicates that disturbance in AQP-4-based water flow and, hence, impairment in beta-amyloid clearance play a significant role in SP formation. PMID:25082552

  16. Amyloid goes global

    PubMed Central

    Bezprozvanny, Ilya

    2016-01-01

    The brains of Alzheimer’s disease (AD) patients contain abundant amyloid plaques composed of Aβ peptides. It is generally assumed that amyloid plaques and soluble Aβ oligomers induce neuronal pathology in AD. The mechanism of amyloid-mediated pathological effects is not clearly understood. Recent in vivo calcium (Ca2+) imaging studies with AD mouse models provide novel insights into changes in brain function resulting from accumulation of amyloid plaques. The unexpected lesson from these studies is that amyloid plaques result in both localized and global changes in brain function. The amyloid-induced effects include “short-range” changes in neuronal Ca2+ levels, “medium-range” changes in neuronal activity and ‘long-range” changes in astrocytic Ca2+ signaling and induction of intracellular Ca2+ waves spreading via astrocytic network. These results have potential implications for understanding synaptic and neuronal network dysfunction in AD brains. PMID:19318622

  17. Altered Theca and Cumulus Oocyte Complex Gene Expression, Follicular Arrest and Reduced Fertility in Cows with Dominant Follicle Follicular Fluid Androgen Excess

    PubMed Central

    Summers, Adam F.; Pohlmeier, William E.; Sargent, Kevin M.; Cole, Brizett D.; Vinton, Rebecca J.; Kurz, Scott G.; McFee, Renee M.; Cushman, Robert A.; Cupp, Andrea S.; Wood, Jennifer R.

    2014-01-01

    Aspiration of bovine follicles 12–36 hours after induced corpus luteum lysis serendipitously identified two populations of cows, one with High androstenedione (A4; >40 ng/ml; mean = 102) and another with Low A4 (<20 ng/ml; mean = 9) in follicular fluid. We hypothesized that the steroid excess in follicular fluid of dominant follicles in High A4 cows would result in reduced fertility through altered follicle development and oocyte maternal RNA abundance. To test this hypothesis, estrous cycles of cows were synchronized and ovariectomy was performed 36 hours later. HPLC MS/MS analysis of follicular fluid showed increased dehydroepiandrosterone (6-fold), A4 (158-fold) and testosterone (31-fold) in the dominant follicle of High A4 cows. However, estrone (3-fold) and estradiol (2-fold) concentrations were only slightly elevated, suggesting a possible inefficiency in androgen to estrogen conversion in High A4 cows. Theca cell mRNA expression of LHCGR, GATA6, CYP11A1, and CYP17A1 was greater in High A4 cows. Furthermore, abundance of ZAR1 was decreased 10-fold in cumulus oocyte complexes from High A4 cows, whereas NLRP5 abundance tended to be 19.8-fold greater (P = 0.07). There was a tendency for reduction in stage 4 follicles in ovarian cortex samples from High A4 cows suggesting that progression to antral stages were impaired. High A4 cows tended (P<0.07) to have a 17% reduction in calving rate compared with Low A4 cows suggesting reduced fertility in the High A4 population. These data suggest that the dominant follicle environment of High A4 cows including reduced estrogen conversion and androgen excess contributes to infertility in part through altered follicular and oocyte development. PMID:25330369

  18. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    PubMed

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils. PMID:26657371

  19. Exercise reduces appetite and traffics excess nutrients away from energetically efficient pathways of lipid deposition during the early stages of weight regain.

    PubMed

    Steig, Amy J; Jackman, Matthew R; Giles, Erin D; Higgins, Janine A; Johnson, Ginger C; Mahan, Chad; Melanson, Edward L; Wyatt, Holly R; Eckel, Robert H; Hill, James O; MacLean, Paul S

    2011-09-01

    The impact of regular exercise on energy balance, fuel utilization, and nutrient availability, during weight regain was studied in obese rats, which had lost 17% of their weight by a calorie-restricted, low-fat diet. Weight reduced rats were maintained for 6 wk with and without regular treadmill exercise (1 h/day, 6 days/wk, 15 m/min). In vivo tracers and indirect calorimetry were then used in combination to examine nutrient metabolism during weight maintenance (in energy balance) and during the first day of relapse when allowed to eat ad libitum (relapse). An additional group of relapsing, sedentary rats were provided just enough calories to create the same positive energy imbalance as the relapsing, exercised rats. Exercise attenuated the energy imbalance by 50%, reducing appetite and increasing energy requirements. Expenditure increased beyond the energetic cost of the exercise bout, as exercised rats expended more energy to store the same nutrient excess in sedentary rats with the matched energy imbalance. Compared with sedentary rats with the same energy imbalance, exercised rats exhibited the trafficking of dietary fat toward oxidation and away from storage in adipose tissue, as well as a higher net retention of fuel via de novo lipogenesis in adipose tissue. These metabolic changes in relapse were preceded by an increase in the skeletal muscle expression of genes involved in lipid uptake, mobilization, and oxidation. Our observations reveal a favorable shift in fuel utilization with regular exercise that increases the energetic cost of storing excess nutrients during relapse and alterations in circulating nutrients that may affect appetite. The attenuation of the biological drive to regain weight, involving both central and peripheral aspects of energy homeostasis, may explain, in part, the utility of regular exercise in preventing weight regain after weight loss. PMID:21715696

  20. Exercise reduces appetite and traffics excess nutrients away from energetically efficient pathways of lipid deposition during the early stages of weight regain

    PubMed Central

    Steig, Amy J.; Jackman, Matthew R.; Giles, Erin D.; Higgins, Janine A.; Johnson, Ginger C.; Mahan, Chad; Melanson, Edward L.; Wyatt, Holly R.; Eckel, Robert H.; Hill, James O.

    2011-01-01

    The impact of regular exercise on energy balance, fuel utilization, and nutrient availability, during weight regain was studied in obese rats, which had lost 17% of their weight by a calorie-restricted, low-fat diet. Weight reduced rats were maintained for 6 wk with and without regular treadmill exercise (1 h/day, 6 days/wk, 15 m/min). In vivo tracers and indirect calorimetry were then used in combination to examine nutrient metabolism during weight maintenance (in energy balance) and during the first day of relapse when allowed to eat ad libitum (relapse). An additional group of relapsing, sedentary rats were provided just enough calories to create the same positive energy imbalance as the relapsing, exercised rats. Exercise attenuated the energy imbalance by 50%, reducing appetite and increasing energy requirements. Expenditure increased beyond the energetic cost of the exercise bout, as exercised rats expended more energy to store the same nutrient excess in sedentary rats with the matched energy imbalance. Compared with sedentary rats with the same energy imbalance, exercised rats exhibited the trafficking of dietary fat toward oxidation and away from storage in adipose tissue, as well as a higher net retention of fuel via de novo lipogenesis in adipose tissue. These metabolic changes in relapse were preceded by an increase in the skeletal muscle expression of genes involved in lipid uptake, mobilization, and oxidation. Our observations reveal a favorable shift in fuel utilization with regular exercise that increases the energetic cost of storing excess nutrients during relapse and alterations in circulating nutrients that may affect appetite. The attenuation of the biological drive to regain weight, involving both central and peripheral aspects of energy homeostasis, may explain, in part, the utility of regular exercise in preventing weight regain after weight loss. PMID:21715696

  1. Amyloid-β and Astrocytes Interplay in Amyloid-β Related Disorders.

    PubMed

    Batarseh, Yazan S; Duong, Quoc-Viet; Mousa, Youssef M; Al Rihani, Sweilem B; Elfakhri, Khaled; Kaddoumi, Amal

    2016-01-01

    Amyloid-β (Aβ) pathology is known to promote chronic inflammatory responses in the brain. It was thought previously that Aβ is only associated with Alzheimer's disease and Down syndrome. However, studies have shown its involvement in many other neurological disorders. The role of astrocytes in handling the excess levels of Aβ has been highlighted in the literature. Astrocytes have a distinctive function in both neuronal support and protection, thus its involvement in Aβ pathological process may tip the balance toward chronic inflammation and neuronal death. In this review we describe the involvement of astrocytes in Aβ related disorders including Alzheimer's disease, Down syndrome, cerebral amyloid angiopathy, and frontotemporal dementia. PMID:26959008

  2. Plasticity of amyloid fibrils†

    PubMed Central

    Wetzel, Ronald; Shivaprasad, Shankaramma; Williams, Angela D.

    2008-01-01

    In experiments designed to characterize the basis of amyloid fibril stability through mutational analysis of the Aβ(1-40) molecule, fibrils exhibit consistent, significant structural malleability. In these results, and in other properties, amyloid fibrils appear to more resemble plastic materials generated from synthetic polymers than they do globular proteins. Thus, like synthetic polymers and plastics, amyloid fibrils exhibit both polymorphism, the ability of one polypeptide to form aggregates of different morphologies, and isomorphism, the ability of different polypeptides to grow into a fibrillar amyloid morphology. This view links amyloid with the prehistorical and 20th Century use of proteins as starting materials to make films, fibers, and plastics, and with the classic protein fiber stretching experiments of the Astbury group. Viewing amyloid from the point of view of the polymer chemist may shed new light on issues such as the role of protofibrils in the mechanism of amyloid formation, the biological potency of fibrils, and the prospects for discovering inhibitors of amyloid fibril formation. PMID:17198370

  3. Fibril Fragmentation Enhances Amyloid Cytotoxicity*♦

    PubMed Central

    Xue, Wei-Feng; Hellewell, Andrew L.; Gosal, Walraj S.; Homans, Steve W.; Hewitt, Eric W.; Radford, Sheena E.

    2009-01-01

    Fibrils associated with amyloid disease are molecular assemblies of key biological importance, yet how cells respond to the presence of amyloid remains unclear. Cellular responses may not only depend on the chemical composition or molecular properties of the amyloid fibrils, but their physical attributes such as length, width, or surface area may also play important roles. Here, we report a systematic investigation of the effect of fragmentation on the structural and biological properties of amyloid fibrils. In addition to the expected relationship between fragmentation and the ability to seed, we show a striking finding that fibril length correlates with the ability to disrupt membranes and to reduce cell viability. Thus, despite otherwise unchanged molecular architecture, shorter fibrillar samples show enhanced cytotoxic potential than their longer counterparts. The results highlight the importance of fibril length in amyloid disease, with fragmentation not only providing a mechanism by which fibril load can be rapidly increased but also creating fibrillar species of different dimensions that can endow new or enhanced biological properties such as amyloid cytotoxicity. PMID:19808677

  4. Memantine prevents cognitive impairment and reduces Bcl-2 and caspase 8 immunoreactivity in rats injected with amyloid β1-40.

    PubMed

    Miguel-Hidalgo, José Javier; Paul, Ian A; Wanzo, Valerie; Banerjee, Pradeep K

    2012-10-01

    Amyloid-beta peptides (Aβ) can trigger apoptotic cascades in neurons. We found previously that memantine, an uncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptors approved for the treatment of moderate to severe Alzheimer's disease, can prevent neurodegeneration induced by intracranial Aβ(1-40) injection. In this study, we tested the hypothesis that memantine prevents Aβ(1-40)-mediated cognitive impairment, neurodegeneration, and apoptosis of hippocampal neurons in rats. In addition, we hypothesized that Aβ(1-40) injection would induce changes in the levels of one or more apoptosis-related proteins, and that these changes would be attenuated by memantine treatment. Female Sprague-Dawley rats were administered memantine (continuous subcutaneous application, 9.6-14.4mg/kg/day; n=8) or vehicle (water; n=8) for 9 days. Two days after treatment initiation, the animals were bilaterally injected with Aβ(1-40) into the CA1/DG region of the hippocampus, subjected to active avoidance testing for 7 days, and sacrificed for immunohistochemical examination of four caspases (3, 6, 8, and 9) and three proteins of the Bcl-2 family (Bcl-2, Bax, and Bad). Injection of Aβ resulted in neurodegeneration, DNA fragmentation, increased Bcl-2 immunostaining, and significantly impaired performance in an active avoidance task, all which were significantly attenuated in rats treated with memantine. No differences in immunoreactivity of caspases 3, 6, 8, and 9 were discovered between groups after 7 days. Additional experiments demonstrated that an increase in caspase 8 immunostaining, observed 3 days after Aβ(1-40) injection, was significantly attenuated in memantine-treated rats. These data suggest that, in rats, memantine can prevent amyloid-triggered expression of apoptosis-related markers and concomitant cognitive deficits. PMID:22824463

  5. Brain Pyroglutamate Amyloid-Beta is Produced by Cathepsin B and is Reduced by the Cysteine Protease Inhibitor E64d, Representing a Potential Alzheimer’s Disease Therapeutic

    PubMed Central

    Hook, Gregory; Yu, Jin; Toneff, Thomas; Kindy, Mark; Hook, Vivian

    2014-01-01

    Pyroglutamate amyloid-β peptides (pGlu-Aβ) are particularly pernicious forms of amyloid-β peptides (Aβ) present in Alzheimer’s disease (AD) brains. pGlu-Aβ peptides are N-terminally truncated forms of full-length Aβ peptides (flAβ(1-40/42)) in which the N-terminal glutamate is cyclized to pyroglutamate to generate pGlu-Aβ(3-40/42). β-secretase cleavage of amyloid-β precursor protein (AβPP) produces flAβ(1-40/42), but it is not yet known whether the β-secretase BACE1 or the alternative β-secretase cathepsin B (CatB) participate in the production of pGlu-Aβ. Therefore, this study examined the effects of gene knockout of these proteases on brain pGlu-Aβ levels in transgenic AβPPLon mice, which express AβPP isoform 695 and have the wild-type (wt) β-secretase activity found in most AD patients. Knockout or overexpression of the CatB gene reduced or increased, respectively, pGlu-Aβ(3-40/42), flAβ(1-40/42), and pGlu-Aβ plaque load, but knockout of the BACE1 gene had no effect on those parameters in the transgenic mice. Treatment of AβPPLon mice with E64d, a cysteine protease inhibitor of CatB, also reduced brain pGlu-Aβ(3-42), flAβ(1-40/42), and pGlu-Aβ plaque load. Treatment of neuronal-like chromaffin cells with CA074Me, an inhibitor of CatB, resulted in reduced levels of pGlu-Aβ(3-40) released from the activity-dependent, regulated secretory pathway. Moreover, CatB knockout and E64d treatment has been previously shown to improve memory deficits in the AβPPLon mice. These data illustrate the role of CatB in producing pGlu-Aβ and flAβ that participate as key factors in the development of AD. The advantages of CatB inhibitors, especially E64d and its derivatives, as alternatives to BACE1 inhibitors in treating AD patients are discussed. PMID:24595198

  6. Gx-50 reduces β-amyloid-induced TNF-α, IL-1β, NO, and PGE2 expression and inhibits NF-κB signaling in a mouse model of Alzheimer's disease.

    PubMed

    Shi, Shi; Liang, Dongli; Chen, Yi; Xie, Yilin; Wang, Yingchao; Wang, Lianyun; Wang, Zhaoxia; Qiao, Zhongdong

    2016-03-01

    Chronic inflammation, which is regulated by overactivated microglia in the brain, accelerates the occurrence and development of Alzheimer's disease (AD). Gx-50 has been investigated as a novel drug for the treatment of AD in our previous studies. Here, we investigated whether gx-50 possesses anti-inflammatory effects in primary rat microglia and a mouse model of AD, amyloid precursor protein (APP) Tg mice. The expression of TNF-α, IL-1β, NO, prostaglandin E2, and the expression of iNOS and COX2 were inhibited by gx-50 in amyloid β (Aβ) treated rat microglia; additionally, microglial activation and the expression of IL-1β, iNOS, and COX2 were also significantly suppressed by gx-50 in APP(+) transgenic mice. Furthermore, gx-50 inhibited the activation of NF-κB and MAPK cascades in vitro and in vivo in APP-Tg mice. Moreover, the expression of TLR4 and its downstream signaling proteins MyD88 and tumor necrosis factor receptor associated factor 6 (TRAF6) was reduced by gx-50 in vitro and in vivo. Interestingly, silencing of TLR4 reduced Aβ-induced upregulation of IL-1β and TRAF6 to levels similar to gx-50 inhibition; moreover, overexpression of TLR4 increased the expression of MyD88 and TRAF6, which was significantly reduced by gx-50. These findings provide strong evidence that gx-50 has anti-inflammatory effects against Aβ-triggered microglial overactivation via a mechanism that involves the TLR4-mediated NF-κBB/MAPK signaling cascade. PMID:26643273

  7. Contrasting effects of nanoparticle-protein attraction on amyloid aggregation

    PubMed Central

    Radic, Slaven; Davis, Thomas P; Ke, Pu Chun; Ding, Feng

    2015-01-01

    Nanoparticles (NPs) have been experimentally found to either promote or inhibit amyloid aggregation of proteins, but the molecular mechanisms for such complex behaviors remain unknown. Using coarse-grained molecular dynamics simulations, we investigated the effects of varying the strength of nonspecific NP-protein attraction on amyloid aggregation of a model protein, the amyloid-beta peptide implicated in Alzheimer's disease. Specifically, with increasing NP-peptide attraction, amyloid aggregation on the NP surface was initially promoted due to increased local protein concentration on the surface and destabilization of the folded state. However, further increase of NP-peptide attraction decreased the stability of amyloid fibrils and reduced their lateral diffusion on the NP surface necessary for peptide conformational changes and self-association, thus prohibiting amyloid aggregation. Moreover, we found that the relative concentration between protein and NPs also played an important role in amyloid aggregation. With a high NP/protein ratio, NPs that intrinsically promote protein aggregation may display an inhibitive effect by depleting the proteins in solution while having a low concentration of the proteins on each NP's surface. Our coarse-grained molecular dynamics simulation study offers a molecular mechanism for delineating the contrasting and seemingly conflicting effects of NP-protein attraction on amyloid aggregation and highlights the potential of tailoring anti-aggregation nanomedicine against amyloid diseases. PMID:26989481

  8. Inhibition by small-molecule ligands of formation of amyloid fibrils of an immunoglobulin light chain variable domain

    PubMed Central

    Brumshtein, Boris; Esswein, Shannon R; Salwinski, Lukasz; Phillips, Martin L; Ly, Alan T; Cascio, Duilio; Sawaya, Michael R; Eisenberg, David S

    2015-01-01

    Overproduction of immunoglobulin light chains leads to systemic amyloidosis, a lethal disease characterized by the formation of amyloid fibrils in patients' tissues. Excess light chains are in equilibrium between dimers and less stable monomers which can undergo irreversible aggregation to the amyloid state. The dimers therefore must disassociate into monomers prior to forming amyloid fibrils. Here we identify ligands that inhibit amyloid formation by stabilizing the Mcg light chain variable domain dimer and shifting the equilibrium away from the amyloid-prone monomer. DOI: http://dx.doi.org/10.7554/eLife.10935.001 PMID:26576950

  9. Lysosomal NEU1 deficiency affects Amyloid Precursor Protein levels and amyloid-β secretion via deregulated lysosomal exocytosis

    PubMed Central

    Annunziata, Ida; Patterson, Annette; Helton, Danielle; Hu, Huimin; Moshiach, Simon; Gomero, Elida; Nixon, Ralph; d’Azzo, Alessandra

    2013-01-01

    Alzheimer’s disease (AD) belongs to a category of adult neurodegenerative conditions which are associated with intracellular and extracellular accumulation of neurotoxic protein aggregates. Understanding how these aggregates are formed, secreted and propagated by neurons has been the subject of intensive research, but so far no preventive or curative therapy for AD is available and clinical trials have been largely unsuccessful. Here we show that deficiency of the lysosomal sialidase NEU1 leads to the spontaneous occurrence of an AD-like amyloidogenic process in mice. This involves two consecutive events linked to NEU1 loss-of-function – accumulation and amyloidogenic processing of an oversialylated amyloid precursor protein in lysosomes, and extracellular release of Aβ-peptides by excessive lysosomal exocytosis. Furthermore, cerebral injection of NEU1 in an established AD mouse model substantially reduces β-amyloid plaques. Our findings identify an additional pathway for the secretion of Aβ and define NEU1 as a potential therapeutic molecule for AD. PMID:24225533

  10. Can a nudge keep you warm? Using nudges to reduce excess winter deaths: insight from the Keeping Warm in Later Life Project (KWILLT)

    PubMed Central

    Allmark, Peter; Tod, Angela M.

    2014-01-01

    Nudges are interventions that aim to change people's behaviour through changing the environment in which they choose rather than appealing to their reasoning. Nudges have been proposed as of possible use in relation to health-related behaviour. However, nudges have been criticized as ethically dubious because they bypass peoples reasoning and (anyway) are of little help in relation to affecting ill-health that results from social determinants, such as poverty. Reducing the rate of excess winter deaths (EWDs) is a public health priority; however, EWD seems clearly to be socially determined such that nudges arguably have little role. This article defends two claims: (i) nudges could have a place in tackling even the heavily socially determined problem of EWD. We draw on evidence from an empirical study, the Keeping Warm in Later Life Project (KWILLT), to argue that in some cases the risk of cold is within the person’s control to some extent such that environmental modifications to influence behaviour such as nudges are possible. (ii) Some uses of behavioural insights in the form of nudges are acceptable, including some in the area of EWD. We suggest a question-based framework by which to judge the ethical acceptability of nudges. PMID:23873728

  11. Can a nudge keep you warm? Using nudges to reduce excess winter deaths: insight from the Keeping Warm in Later Life Project (KWILLT).

    PubMed

    Allmark, Peter; Tod, Angela M

    2014-03-01

    Nudges are interventions that aim to change people's behaviour through changing the environment in which they choose rather than appealing to their reasoning. Nudges have been proposed as of possible use in relation to health-related behaviour. However, nudges have been criticized as ethically dubious because they bypass peoples reasoning and (anyway) are of little help in relation to affecting ill-health that results from social determinants, such as poverty. Reducing the rate of excess winter deaths (EWDs) is a public health priority; however, EWD seems clearly to be socially determined such that nudges arguably have little role. This article defends two claims: (i) nudges could have a place in tackling even the heavily socially determined problem of EWD. We draw on evidence from an empirical study, the Keeping Warm in Later Life Project (KWILLT), to argue that in some cases the risk of cold is within the person's control to some extent such that environmental modifications to influence behaviour such as nudges are possible. (ii) Some uses of behavioural insights in the form of nudges are acceptable, including some in the area of EWD. We suggest a question-based framework by which to judge the ethical acceptability of nudges. PMID:23873728

  12. Sulindac Sulfide Induces the Formation of Large Oligomeric Aggregates of the Alzheimer's Disease Amyloid-β Peptide Which Exhibit Reduced Neurotoxicity.

    PubMed

    Prade, Elke; Barucker, Christian; Sarkar, Riddhiman; Althoff-Ospelt, Gerhard; Lopez del Amo, Juan Miguel; Hossain, Shireen; Zhong, Yifei; Multhaup, Gerd; Reif, Bernd

    2016-03-29

    Alzheimer's disease is characterized by deposition of the amyloid β-peptide (Aβ) in brain tissue of affected individuals. In recent years, many potential lead structures have been suggested that can potentially be used for diagnosis and therapy. However, the mode of action of these compounds is so far not understood. Among these small molecules, the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide received a lot of attention. In this manuscript, we characterize the interaction between the monomeric Aβ peptide and the NSAID sulindac sulfide. We find that sulindac sulfide efficiently depletes the pool of toxic oligomers by enhancing the rate of fibril formation. In vitro, sulindac sulfide forms colloidal particles which catalyze the formation of fibrils. Aggregation is immediate, presumably by perturbing the supersaturated Aβ solution. We find that sulindac sulfide induced Aβ aggregates are structurally homogeneous. The C-terminal part of the peptide adopts a β-sheet structure, whereas the N-terminus is disordered. The salt bridge between D23 and K28 is present, similar as in wild type fibril structures. (13)C-(19)F transferred echo double resonance experiments suggest that sulindac sulfide colocalizes with the Aβ peptide in the aggregate. PMID:26900939

  13. Alpha-tocopherol quinine ameliorates spatial memory deficits by reducing beta-amyloid oligomers, neuroinflammation and oxidative stress in transgenic mice with Alzheimer's disease.

    PubMed

    Wang, Shao-Wei; Yang, Shi-Gao; Liu, Wen; Zhang, Yang-Xin; Xu, Peng-Xin; Wang, Teng; Ling, Tie-Jun; Liu, Rui-Tian

    2016-01-01

    The pathologies of Alzheimer's disease (AD) is associated with soluble beta-amyloid (Aβ) oligomers, neuroinflammation and oxidative stress. Decreasing the levels of Aβ oligomer, glial activation and oxidative stress are potential therapeutic approaches for AD treatment. We previously found alpha-tocopherol quinine (α-TQ) inhibited Aβ aggregation and cytotoxicity, decreased the release of inflammatory cytokines and reactive oxygen species (ROS) in vitro. However, whether α-TQ ameliorates memory deficits and other neuropathologies in mice or patients with AD remains unknown. In this study, we reported that orally administered α-TQ ameliorated memory impairment in APPswe/PS1dE9 transgenic mice, decreased oxidative stress and the levels of Aβ oligomer in the brains of mice, prevented the production of inducible nitric oxide synthase and inflammatory mediators, such as interleukin-6 and interleukin-1β, and inhibited microglial activation by inhibiting NF-κB signaling pathway. These findings suggest that α-TQ has potential therapeutic value for AD treatment. PMID:26358659

  14. Structure-Based Design of Functional Amyloid Materials

    SciTech Connect

    Li, Dan; Jones, Eric M.; Sawaya, Michael R.; Furukawa, Hiroyasu; Luo, Fang; Ivanova, Magdalena; Sievers, Stuart A.; Wang, Wenyuan; Yaghi, Omar M.; Liu, Cong; Eisenberg, David S.

    2014-12-04

    We report that amyloid fibers, once exclusively associated with disease, are acquiring utility as a class of biological nanomaterials. We introduce a method that utilizes the atomic structures of amyloid peptides, to design materials with versatile applications. As a model application, we designed amyloid fibers capable of capturing carbon dioxide from flue gas, to address the global problem of excess anthropogenic carbon dioxide. By measuring dynamic separation of carbon dioxide from nitrogen, we show that fibers with designed amino acid sequences double the carbon dioxide binding capacity of the previously reported fiber formed by VQIVYK from Tau protein. In a second application, we designed fibers that facilitate retroviral gene transfer. Finally, by measuring lentiviral transduction, we show that designed fibers exceed the efficiency of polybrene, a commonly used enhancer of transduction. The same procedures can be adapted to the design of countless other amyloid materials with a variety of properties and uses.

  15. Structure-Based Design of Functional Amyloid Materials

    DOE PAGESBeta

    Li, Dan; Jones, Eric M.; Sawaya, Michael R.; Furukawa, Hiroyasu; Luo, Fang; Ivanova, Magdalena; Sievers, Stuart A.; Wang, Wenyuan; Yaghi, Omar M.; Liu, Cong; et al

    2014-12-04

    We report that amyloid fibers, once exclusively associated with disease, are acquiring utility as a class of biological nanomaterials. We introduce a method that utilizes the atomic structures of amyloid peptides, to design materials with versatile applications. As a model application, we designed amyloid fibers capable of capturing carbon dioxide from flue gas, to address the global problem of excess anthropogenic carbon dioxide. By measuring dynamic separation of carbon dioxide from nitrogen, we show that fibers with designed amino acid sequences double the carbon dioxide binding capacity of the previously reported fiber formed by VQIVYK from Tau protein. In amore » second application, we designed fibers that facilitate retroviral gene transfer. Finally, by measuring lentiviral transduction, we show that designed fibers exceed the efficiency of polybrene, a commonly used enhancer of transduction. The same procedures can be adapted to the design of countless other amyloid materials with a variety of properties and uses.« less

  16. Cerebral amyloid angiopathy

    MedlinePlus

    ... Fenichel GM, Jankovic J, Mazziotta JC, eds. Bradley's Neurology in Clinical Practice . 6th ed. Philadelphia, PA: Elsevier ... al. Course of cerebral amyloid angiopathy-related inflammation. Neurology. 2007;68:1411-1416. PMID: 17452586 www.ncbi. ...

  17. Nucleofection of Rat Pheochromocytoma PC-12 Cells with Human Mutated Beta-Amyloid Precursor Protein Gene (APP-sw) Leads to Reduced Viability, Autophagy-Like Process, and Increased Expression and Secretion of Beta Amyloid

    PubMed Central

    Pająk, Beata; Kania, Elżbieta

    2015-01-01

    Pheochromocytoma PC-12 cells are immune to physiological stimuli directed to evoke programmed cell death. Besides, metabolic inhibitors are incapable of sensitizing PC-12 cells to extrinsic or intrinsic apoptosis unless they are used in toxic concentrations. Surprisingly, these cells become receptive to cell deletion after human APP-sw gene expression. We observed reduced cell viability in GFP vector + APP-sw-nucleofected cells (drop by 36%) but not in GFP vector − or GFP vector + APP-wt-nucleofected cells. Lower viability was accompanied by higher expression of Aβ 1-16 and elevated secretion of Aβ 1-40 (in average 53.58 pg/mL). At the ultrastructural level autophagy-like process was demonstrated to occur in APP-sw-nucleofected cells with numerous autophagosomes and multivesicular bodies but without autolysosomes. Human APP-sw gene is harmful to PC-12 cells and cells are additionally driven to incomplete autophagy-like process. When stimulated by TRAIL or nystatin, CLU protein expression accompanies early phase of autophagy. PMID:25821818

  18. Altered theca and cumulus oocyte complex gene expression, follicular arrest and reduced fertility in cows with dominant follicle follicular fluid androgen excess

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To date, animal models with naturally occurring androgen excess have not been identified. Serendipitously, we discovered two subpopulations of cows with dramatically different follicular fluid androgen concentrations in dominant follicles within our research herd. In the cow, androstenedione is the...

  19. Raft lipids as common components of human extracellular amyloid fibrils

    PubMed Central

    Gellermann, Gerald P.; Appel, Thomas R.; Tannert, Astrid; Radestock, Anja; Hortschansky, Peter; Schroeckh, Volker; Leisner, Christian; Lütkepohl, Tim; Shtrasburg, Shmuel; Röcken, Christoph; Pras, Mordechai; Linke, Reinhold P.; Diekmann, Stephan; Fändrich, Marcus

    2005-01-01

    Amyloid fibrils are fibrillar polypeptide aggregates from several degenerative human conditions, including Alzheimer's and Creutzfeldt-Jakob diseases. Analysis of amyloid fibrils derived from various human diseases (AA, ATTR, Aβ2M, ALλ, and ALκ amyloidosis) shows that these are associated with a common lipid component that has a conserved chemical composition and that is specifically rich in cholesterol and sphingolipids, the major components of cellular lipid rafts. This pattern is not notably affected by the purification procedure, and no tight lipid interactions can be detected when preformed fibrils are mixed with lipids. By contrast, the early and prefibrillar aggregates formed in an AA amyloid-producing cell system interact with the raft marker ganglioside-1, and amyloid formation is impaired by addition of cholesterol-reducing agents. These data suggest the existence of common cellular mechanisms in the generation of different types of clinical amyloid deposits. PMID:15851687

  20. Amyloid Beta Mediates Memory Formation

    ERIC Educational Resources Information Center

    Garcia-Osta, Ana; Alberini, Cristina M.

    2009-01-01

    The amyloid precursor protein (APP) undergoes sequential cleavages to generate various polypeptides, including the amyloid [beta] (1-42) peptide (A[beta][1-42]), which is believed to play a major role in amyloid plaque formation in Alzheimer's disease (AD). Here we provide evidence that, in contrast with its pathological role when accumulated,…

  1. Amyloid Fibril Solubility.

    PubMed

    Rizzi, L G; Auer, S

    2015-11-19

    It is well established that amyloid fibril solubility is protein specific, but how solubility depends on the interactions between the fibril building blocks is not clear. Here we use a simple protein model and perform Monte Carlo simulations to directly measure the solubility of amyloid fibrils as a function of the interaction between the fibril building blocks. Our simulations confirms that the fibril solubility depends on the fibril thickness and that the relationship between the interactions and the solubility can be described by a simple analytical formula. The results presented in this study reveal general rules how side-chain-side-chain interactions, backbone hydrogen bonding, and temperature affect amyloid fibril solubility, which might prove to be a powerful tool to design protein fibrils with desired solubility and aggregation properties in general. PMID:26496385

  2. A Controlled Intervention to Promote a Healthy Body Image, Reduce Eating Disorder Risk and Prevent Excessive Exercise among Trainee Health Education and Physical Education Teachers

    ERIC Educational Resources Information Center

    Yager, Zali; O'Dea, Jennifer

    2010-01-01

    This study examined the impact of two interventions on body image, eating disorder risk and excessive exercise among 170 (65% female) trainee health education and physical education (HE & PE) teachers of mean (standard deviation) age 21.6 (2.3) who were considered an "at-risk" population for poor body image and eating disorders. In the first year…

  3. Hydrogen Sulfide Inhibits Amyloid Formation

    PubMed Central

    2015-01-01

    Amyloid fibrils are large aggregates of misfolded proteins, which are often associated with various neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and vascular dementia. The amount of hydrogen sulfide (H2S) is known to be significantly reduced in the brain tissue of people diagnosed with Alzheimer’s disease relative to that of healthy individuals. These findings prompted us to investigate the effects of H2S on the formation of amyloids in vitro using a model fibrillogenic protein hen egg white lysozyme (HEWL). HEWL forms typical β-sheet rich fibrils during the course of 70 min at low pH and high temperatures. The addition of H2S completely inhibits the formation of β-sheet and amyloid fibrils, as revealed by deep UV resonance Raman (DUVRR) spectroscopy and ThT fluorescence. Nonresonance Raman spectroscopy shows that disulfide bonds undergo significant rearrangements in the presence of H2S. Raman bands corresponding to disulfide (RSSR) vibrational modes in the 550–500 cm–1 spectral range decrease in intensity and are accompanied by the appearance of a new 490 cm–1 band assigned to the trisulfide group (RSSSR) based on the comparison with model compounds. The formation of RSSSR was proven further using a reaction with TCEP reduction agent and LC-MS analysis of the products. Intrinsic tryptophan fluorescence study shows a strong denaturation of HEWL containing trisulfide bonds. The presented evidence indicates that H2S causes the formation of trisulfide bridges, which destabilizes HEWL structure, preventing protein fibrillation. As a result, small spherical aggregates of unordered protein form, which exhibit no cytotoxicity by contrast with HEWL fibrils. PMID:25545790

  4. Accumulation of murine amyloid-β mimics early Alzheimer's disease.

    PubMed

    Krohn, Markus; Bracke, Alexander; Avchalumov, Yosef; Schumacher, Toni; Hofrichter, Jacqueline; Paarmann, Kristin; Fröhlich, Christina; Lange, Cathleen; Brüning, Thomas; von Bohlen Und Halbach, Oliver; Pahnke, Jens

    2015-08-01

    Amyloidosis mouse models of Alzheimer's disease are generally established by transgenic approaches leading to an overexpression of mutated human genes that are known to be involved in the generation of amyloid-β in Alzheimer's families. Although these models made substantial contributions to the current knowledge about the 'amyloid hypothesis' of Alzheimer's disease, the overproduction of amyloid-β peptides mimics only inherited (familiar) Alzheimer's disease, which accounts for <1% of all patients with Alzheimer's disease. The inherited form is even regarded a 'rare' disease according to the regulations for funding of the European Union (www.erare.eu). Here, we show that mice that are double-deficient for neprilysin (encoded by Mme), one major amyloid-β-degrading enzyme, and the ABC transporter ABCC1, a major contributor to amyloid-β clearance from the brain, develop various aspects of sporadic Alzheimer's disease mimicking the clinical stage of mild cognitive impairment. Using behavioural tests, electrophysiology and morphological analyses, we compared different ABC transporter-deficient animals and found that alterations are most prominent in neprilysin × ABCC1 double-deficient mice. We show that these mice have a reduced probability to survive, show increased anxiety in new environments, and have a reduced working memory performance. Furthermore, we detected morphological changes in the hippocampus and amygdala, e.g. astrogliosis and reduced numbers of synapses, leading to defective long-term potentiation in functional measurements. Compared to human, murine amyloid-β is poorly aggregating, due to changes in three amino acids at N-terminal positions 5, 10, and 13. Interestingly, our findings account for the action of early occurring amyloid-β species/aggregates, i.e. monomers and small amyloid-β oligomers. Thus, neprilysin × ABCC1 double-deficient mice present a new model for early effects of amyloid-β-related mild cognitive impairment that allows

  5. Amyloid Hypothesis: Is There a Role for Antiamyloid Treatment in Late-Life Depression?

    PubMed

    Mahgoub, Nahla; Alexopoulos, George S

    2016-03-01

    Antidepressants have modest efficacy in late-life depression (LLD), perhaps because various neurobiologic processes compromise frontolimbic networks required for antidepressant response. We propose that amyloid accumulation is an etiologic factor for frontolimbic compromise that predisposes to depression and increases treatment resistance in a subgroup of older adults. In patients without history of depression, amyloid accumulation during the preclinical phase of Alzheimer disease (AD) may result in the prodromal depression syndrome that precedes cognitive impairment. In patients with early-onset depression, pathophysiologic changes during recurrent episodes may promote amyloid accumulation, further compromise neurocircuitry required for antidepressant response, and increase treatment resistance during successive depressive episodes. The findings that support the amyloid hypothesis of LLD are (1) Depression is a risk factor, a prodrome, and a common behavioral manifestation of AD; (2) amyloid deposition occurs during a long predementia period when depression is prevalent; (3) patients with lifetime history of depression have significant amyloid accumulation in brain regions related to mood regulation; and (4) amyloid deposition leads to neurobiologic processes, including vascular damage, neurodegeneration, neuroinflammation, and disrupted functional connectivity, that impair networks implicated in depression. The amyloid hypothesis of LLD is timely because availability of ligands allows in vivo assessment of amyloid in the human brain, a number of antiamyloid agents are relatively safe, and there is evidence that some antidepressants may reduce amyloid production. A model of LLD introducing the role of amyloid may guide the design of studies aiming to identify novel antidepressant approaches and prevention strategies of AD. PMID:26946981

  6. Amyloid-β and Astrocytes Interplay in Amyloid-β Related Disorders

    PubMed Central

    Batarseh, Yazan S.; Duong, Quoc-Viet; Mousa, Youssef M.; Al Rihani, Sweilem B.; Elfakhri, Khaled; Kaddoumi, Amal

    2016-01-01

    Amyloid-β (Aβ) pathology is known to promote chronic inflammatory responses in the brain. It was thought previously that Aβ is only associated with Alzheimer’s disease and Down syndrome. However, studies have shown its involvement in many other neurological disorders. The role of astrocytes in handling the excess levels of Aβ has been highlighted in the literature. Astrocytes have a distinctive function in both neuronal support and protection, thus its involvement in Aβ pathological process may tip the balance toward chronic inflammation and neuronal death. In this review we describe the involvement of astrocytes in Aβ related disorders including Alzheimer’s disease, Down syndrome, cerebral amyloid angiopathy, and frontotemporal dementia. PMID:26959008

  7. Targeting the γ-/β-secretase interaction reduces β-amyloid generation and ameliorates Alzheimer’s disease-related pathogenesis

    PubMed Central

    Cui, Jin; Wang, Xiaoyin; Li, Xiaohang; Wang, Xin; Zhang, Chenlu; Li, Wei; Zhang, Yangming; Gu, Haifeng; Xie, Xin; Nan, Fajun; Zhao, Jian; Pei, Gang

    2015-01-01

    Despite decades of intense global effort, no disease-modifying drugs for Alzheimer’s disease have emerged. Molecules targeting catalytic activities of γ-secretase or β-site APP-cleaving enzyme 1 (BACE1) have been beset by undesired side effects. We hypothesized that blocking the interaction between BACE1 and γ-secretase subunit presenilin-1 (PS1) might offer an alternative strategy to selectively suppress Aβ generation. Through high-throughput screening, we discovered that 3-α-akebonoic acid (3AA) interferes with PS1/BACE1 interaction and reduces Aβ production. Structural analogs of 3AA were systematically synthesized and the functional analog XYT472B was identified. Photo-activated crosslinking and biochemical competition assays showed that 3AA and XYT472B bind to PS1, interfere with PS1/BACE1 interaction, and reduce Aβ production, whereas sparing secretase activities. Furthermore, treatment of APP/PS1 mice with XYT472B alleviated cognitive dysfunction and Aβ-related pathology. Together, our results indicate that chemical interference of PS1/BACE1 interaction is a promising strategy for Alzheimer’s disease therapeutics. PMID:27462420

  8. Inhibition of mTOR by Rapamycin Abolishes Cognitive Deficits and Reduces Amyloid-β Levels in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Spilman, Patricia; Podlutskaya, Natalia; Hart, Matthew J.; Debnath, Jayanta; Gorostiza, Olivia; Bredesen, Dale; Richardson, Arlan; Strong, Randy; Galvan, Veronica

    2010-01-01

    Background Reduced TOR signaling has been shown to significantly increase lifespan in a variety of organisms [1], [2], [3], [4]. It was recently demonstrated that long-term treatment with rapamycin, an inhibitor of the mTOR pathway[5], or ablation of the mTOR target p70S6K[6] extends lifespan in mice, possibly by delaying aging. Whether inhibition of the mTOR pathway would delay or prevent age-associated disease such as AD remained to be determined. Methodology/Principal Findings We used rapamycin administration and behavioral tools in a mouse model of AD as well as standard biochemical and immunohistochemical measures in brain tissue to provide answers for this question. Here we show that long-term inhibition of mTOR by rapamycin prevented AD-like cognitive deficits and lowered levels of Aβ42, a major toxic species in AD[7], in the PDAPP transgenic mouse model. These data indicate that inhibition of the mTOR pathway can reduce Aβ42 levels in vivo and block or delay AD in mice. As expected from the inhibition of mTOR, autophagy was increased in neurons of rapamycin-treated transgenic, but not in non-transgenic, PDAPP mice, suggesting that the reduction in Aβ and the improvement in cognitive function are due in part to increased autophagy, possibly as a response to high levels of Aβ. Conclusions/Significance Our data suggest that inhibition of mTOR by rapamycin, an intervention that extends lifespan in mice, can slow or block AD progression in a transgenic mouse model of the disease. Rapamycin, already used in clinical settings, may be a potentially effective therapeutic agent for the treatment of AD. PMID:20376313

  9. AMYLOID FORMATION RESULTS IN RECURRENCE OF HYPERGLYCAEMIA FOLLOWING TRANSPLANTATION OF HUMAN ISLET AMYLOID POLYPEPTIDE TRANSGENIC MOUSE ISLETS

    PubMed Central

    Udayasankar, J.; Kodama, K.; Hull, R.L.; Zraika, S.; Aston-Mourney, K.; Subramanian, S.L.; Tong, J.; Faulenbach, M.V.; Vidal, J.; Kahn, S.E.

    2016-01-01

    Aims/Hypothesis Islet transplantation is a potential cure for diabetes; however, rates of graft failure remain high. We sought to determine whether amyloid deposition is associated with reduced beta cell volume in islet grafts and the recurrence of hyperglycaemia following islet transplantation. Methods We transplanted streptozotocin-diabetic mice with 100 islets from human islet amyloid polypeptide transgenic mice that have the propensity to form islet amyloid (n=8–12) or from non-transgenic mice that do not develop amyloid (n=6–10) in sets of studies that lasted one or six weeks. Results Plasma glucose before and for one week after transplantation was similar in mice that received transgenic or non-transgenic islets, and at that time amyloid was detected in all transgenic grafts and, as expected, in none of the non-transgenic grafts. However, over six weeks following transplantation, plasma glucose increased in transgenic but remained stable in non-transgenic islet graft recipients (p<0.05). At six weeks, amyloid was present in 92% of the transgenic grafts and in none of the non-transgenic grafts. Beta cell volume was reduced by 30% (p<0.05), beta cell apoptosis was two-fold higher (p<0.05), while beta cell replication was reduced by 50% (p<0.001) in transgenic compared to non-transgenic grafts. In summary, amyloid deposition in islet grafts occurs prior to the recurrence of hyperglycaemia and its accumulation over time is associated with beta cell loss. Conclusion/Interpretation Islet amyloid formation may explain in part the non-immune loss of beta cells and recurrence of hyperglycaemia following clinical islet transplantation. PMID:19002432

  10. Nucleation of amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Kashchiev, Dimo; Auer, Stefan

    2010-06-01

    We consider nucleation of amyloid fibrils in the case when the process occurs by the mechanism of direct polymerization of practically fully extended protein segments, i.e., β-strands, into β-sheets. Applying the classical nucleation theory, we derive a general expression for the work to form a nanosized amyloid fibril (protofilament) constituted of successively layered β-sheets. Analysis of this expression reveals that with increasing its size, the fibril transforms from one-dimensional to two-dimensional aggregate in order to preserve the equilibrium shape corresponding to minimal formation work. We determine the size of the fibril nucleus, the fibril nucleation work, and the fibril nucleation rate as explicit functions of the concentration and temperature of the protein solution. The results obtained are applicable to homogeneous nucleation, which occurs when the solution is sufficiently pure and/or strongly supersaturated.

  11. Are amyloid fibrils molecular spandrels?

    PubMed

    Hane, Francis

    2013-11-15

    Amyloid-β, the protein implicated in Alzheimer's disease, along with a number of other proteins, has been shown to form amyloid fibrils. Fibril forming proteins share no common primary structure and have little known function. Furthermore, all proteins have the ability to form amyloid fibrils under certain conditions as the fibrillar structure lies at the global free energy minimum of proteins. This raises the question of the mechanism of the evolution of the amyloid fibril structure. Experimental evidence supports the hypothesis that the fibril structure is a by-product of the forces of protein folding and lies outside the bounds of evolutionary pressures. PMID:24140343

  12. Amyloids: from Pathogenesis to Function.

    PubMed

    Nizhnikov, A A; Antonets, K S; Inge-Vechtomov, S G

    2015-09-01

    The term "amyloids" refers to fibrillar protein aggregates with cross-β structure. They have been a subject of intense scrutiny since the middle of the previous century. First, this interest is due to association of amyloids with dozens of incurable human diseases called amyloidoses, which affect hundreds of millions of people. However, during the last decade the paradigm of amyloids as pathogens has changed due to an increase in understanding of their role as a specific variant of quaternary protein structure essential for the living cell. Thus, functional amyloids are found in all domains of the living world, and they fulfill a variety of roles ranging from biofilm formation in bacteria to long-term memory regulation in higher eukaryotes. Prions, which are proteins capable of existing under the same conditions in two or more conformations at least one of which having infective properties, also typically have amyloid features. There are weighty reasons to believe that the currently known amyloids are only a minority of their real number. This review provides a retrospective analysis of stages in the development of amyloid biology that during the last decade resulted, on one hand, in reinterpretation of the biological role of amyloids, and on the other hand, in the development of systems biology of amyloids, or amyloidomics. PMID:26555466

  13. Antimicrobial Properties of Amyloid Peptides

    PubMed Central

    Kagan, Bruce L.; Jang, Hyunbum; Capone, Ricardo; Arce, Fernando Teran; Ramachandran, Srinivasan; Lal, Ratnesh; Nussinov, Ruth

    2011-01-01

    More than two dozen clinical syndromes known as amyloid diseases are characterized by the buildup of extended insoluble fibrillar deposits in tissues. These amorphous Congo red staining deposits known as amyloids exhibit a characteristic green birefringence and cross-β structure. Substantial evidence implicates oligomeric intermediates of amyloids as toxic species in the pathogenesis of these chronic disease states. A growing body of data has suggested that these toxic species form ion channels in cellular membranes causing disruption of calcium homeostasis, membrane depolarization, energy drainage, and in some cases apoptosis. Amyloid peptide channels exhibit a number of common biological properties including the universal U-shape β-strand-turn-β-strand structure, irreversible and spontaneous insertion into membranes, production of large heterogeneous single-channel conductances, relatively poor ion selectivity, inhibition by Congo red, and channel blockade by zinc. Recent evidence has suggested that increased amounts of amyloids are not only toxic to its host target cells but also possess antimicrobial activity. Furthermore, at least one human antimicrobial peptide, protegrin-1, which kills microbes by a channel-forming mechanism, has been shown to possess the ability to form extended amyloid fibrils very similar to those of classic disease-forming amyloids. In this paper, we will review the reported antimicrobial properties of amyloids and the implications of these discoveries for our understanding of amyloid structure and function. PMID:22081976

  14. Islet amyloid inhibitors improve glucose homeostasis in a transgenic mouse model of type 2 diabetes.

    PubMed

    Wijesekara, N; Ahrens, R; Wu, L; Ha, K; Liu, Y; Wheeler, M B; Fraser, P E

    2015-10-01

    Increasing evidence points to the cytotoxicity of islet amyloid polypeptide (IAPP) aggregates as a major contributor to the loss of β-cell mass in type 2 diabetes. Prevention of IAPP formation represents a potential treatment to increase β-cell survival and function. The IAPP inhibitory peptide, D-ANFLVH, has been previously shown to prevent islet amyloid accumulation in cultured human islets. To assess its activity in vivo, D-ANFLVH was administered by intraperitoneal injection into a human IAPP transgenic mouse model, which replicates type 2 diabetes islet amyloid pathology. The peptide was a potent inhibitor of islet amyloid deposition, resulting in reduced islet cell apoptosis and preservation of β-cell area leading to improved glucose tolerance. These findings provide support for a key role of islet amyloid in β-cell survival and validate the application of anti-amyloid compounds as therapeutic strategies to maintain normal insulin secretion in patients with type 2 diabetes. PMID:26095311

  15. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation.

    PubMed

    Kurnellas, Michael P; Adams, Chris M; Sobel, Raymond A; Steinman, Lawrence; Rothbard, Jonathan B

    2013-04-01

    The amyloid-forming proteins tau, αB crystallin, and amyloid P protein are all found in lesions of multiple sclerosis (MS). Our previous work established that amyloidogenic peptides from the small heat shock protein αB crystallin (HspB5) and from amyloid β fibrils, characteristic of Alzheimer's disease, were therapeutic in experimental autoimmune encephalomyelitis (EAE), reflecting aspects of the pathology of MS. To understand the molecular basis for the therapeutic effect, we showed a set of amyloidogenic peptides composed of six amino acids, including those from tau, amyloid β A4, major prion protein (PrP), HspB5, amylin, serum amyloid P, and insulin B chain, to be anti-inflammatory and capable of reducing serological levels of interleukin-6 and attenuating paralysis in EAE. The chaperone function of the fibrils correlates with the therapeutic outcome. Fibrils composed of tau 623-628 precipitated 49 plasma proteins, including apolipoprotein B-100, clusterin, transthyretin, and complement C3, supporting the hypothesis that the fibrils are active biological agents. Amyloid fibrils thus may provide benefit in MS and other neuroinflammatory disorders. PMID:23552370

  16. Amyloid Fibrils Composed of Hexameric Peptides Attenuate Neuroinflammation

    PubMed Central

    Kurnellas, Michael P.; Adams, Chris M.; Sobel, Raymond A.; Steinman, Lawrence; Rothbard, Jonathan B.

    2013-01-01

    Amyloid forming proteins Tau, alpha B crystallin, and amyloid P protein are all found in lesions of multiple sclerosis (MS). Our previous work established that amyloidogenic peptides from the small heat shock protein, alpha B crystallin(HspB5), and from amyloid β fibrils, characteristic of Alzheimer’s disease, were therapeutic in experimental autoimmune encephalomyelitis (EAE), reflecting aspects of the pathology of MS. To understand the molecular basis for the therapeutic effect, a set of amyloidogenic peptides composed of six amino acids, including those from tau, amyloid β A4, major prion protein (PrP), HspB5, amylin, serum amyloid P (SAP), and insulin B chain were shown to be anti-inflammatory, capable of reducing serological levels of IL-6, and attenuating paralysis in EAE. The chaperone function of the fibrils correlates with the therapeutic outcome. Fibrils composed of Tau 623–628 precipitated 49 plasma proteins, including apolipoprotein B-100, clusterin, transthyretin, and complement C3, supporting the hypothesis that the fibrils are active biological agents. Amyloid fibrils thus may provide benefit in MS and other neuroinflammatory disorders. PMID:23552370

  17. The Acyl-Coenzyme A:Cholesterol Acyltransferase Inhibitor CI-1011 Reverses Diffuse Brain Amyloid Pathology in Aged Amyloid Precursor Protein Transgenic Mice

    PubMed Central

    Huttunen, Henri J.; Havas, Daniel; Peach, Camilla; Barren, Cory; Duller, Stephan; Xia, Weiming; Frosch, Matthew P.; Hutter-Paier, Birgit; Windisch, Manfred; Kovacs, Dora M.

    2010-01-01

    Cerebral accumulation of amyloid β-peptide (Aβ) is characteristic of Alzheimer disease and of amyloid precursor protein (APP) transgenic mice. Here, we assessed the efficacy of CI-1011, an inhibitor of acyl-coenzyme A:cholesterol acyltransferase, which is suitable for clinical use, in reducing amyloid pathology in both young (6.5 months old) and aged (16 months old) hAPP transgenic mice. Treatment of young animals with CI-1011 decreased amyloid plaque load in the cortex and hippocampus and reduced the levels of insoluble Aβ40 and Aβ42 and C-terminal fragments of APP in brain extracts. In aged mice, CI-1011 specifically reduced diffuse amyloid plaques with a minor effect on thioflavin S+ dense-core plaques. Reduced diffusible amyloid was accompanied by suppression of astrogliosis and enhanced microglial activation. Collectively, these data suggest that CI-1011 treatment reduces amyloid burden in hAPP mice by limiting generation and increasing clearance of diffusible Aβ. PMID:20613640

  18. Amyloid-Associated Depression

    PubMed Central

    Sun, Xiaoyan; Steffens, David C.; Au, Rhoda; Folstein, Marshal; Summergrad, Paul; Yee, Jacqueline; Rosenberg, Irwin; Mwamburi, D. Mkaya; Qiu, Wei Qiao

    2010-01-01

    Context A high ratio of plasma amyloid-β peptide 40 (Aβ40) toAβ42, determined by both high Aβ40 and low Aβ42 levels, increases the risk of Alzheimer disease. In a previous study, we reported that depression is also associated with low plasma Aβ42 levels in the elderly population. Objective To characterize plasma Aβ40:Aβ42 ratio and cognitive function in elderly individuals with and without depression. Design Cross-sectional study. Setting Homecare agencies. Participants A total of 995 homebound elderly individuals of whom 348 were defined as depressed by a Center for Epidemiological Studies Depression score of 16 or greater. Main Outcome Measures Cognitive domains of memory, language, executive, and visuospatial functions according to levels of plasma Aβ40 and Aβ42 peptides. Results Subjects with depression had lower plasma Aβ42 levels (median, 14.1 vs 19.2 pg/mL; P = .006) and a higher plasma Aβ40:Aβ42 ratio (median, 8.9 vs 6.4; P < .001) than did those without depression in the absence of cardiovascular disease and antidepressant use. The interaction between depression and plasma Aβ40:Aβ42 ratio was associated with lower memory score (β = −1.9, SE = 0.7, P = .006) after adjusting for potentially confounders. Relative to those without depression, “amyloid-associated depression,” defined by presence of depression and a high plasma Aβ40:Aβ42 ratio, was associated with greater impairment in memory, visuospatial ability, and executive function; in contrast, nonamyloid depression was not associated with memory impairment but with other cognitive disabilities. Conclusion Amyloid-associated depression may define a subtype of depression representing a prodromal manifestation of Alzheimer disease. PMID:18458206

  19. Towards a Pharmacophore for Amyloid

    SciTech Connect

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.; Laganowsky, Arthur; Jiang, Lin; Sievers, Stuart A.; Liu, Jie; Barrio, Jorge R.; Eisenberg, David

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a cocktail of compounds

  20. Nanomaterials: amyloids reflect their brighter side

    PubMed Central

    Mankar, Shruti; Anoop, A.; Sen, Shamik; Maji, Samir K.

    2011-01-01

    Amyloid fibrils belong to the group of ordered nanostructures that are self-assembled from a wide range of polypeptides/proteins. Amyloids are highly rigid structures possessing a high mechanical strength. Although amyloids have been implicated in the pathogenesis of several human diseases, growing evidence indicates that amyloids may also perform native functions in host organisms. Discovery of such amyloids, referred to as functional amyloids, highlight their possible use in designing novel nanostructure materials. This review summarizes recent advances in the application of amyloids for the development of nanomaterials and prospective applications of such materials in nanotechnology and biomedicine. PMID:22110868

  1. The Excess Winter Deaths Measure

    PubMed Central

    Gasparrini, Antonio

    2016-01-01

    Background: Excess winter deaths, the ratio between average daily deaths in December–March versus other months, is a measure commonly used by public health practitioners and analysts to assess health burdens associated with wintertime weather. We seek to demonstrate that this measure is fundamentally biased and can lead to misleading conclusions about health impacts associated with current and future winter climate. Methods: Time series regression analysis of 779,372 deaths from natural causes in London over 15 years (1 August 1997–31 July 2012),collapsed by day of death and linked to daily temperature values. The outcome measures were the excess winter deaths index, and daily and annual deaths attributable specifically to cold. Results: Most of the excess winter deaths are driven by cold: The excess winter deaths index decreased from 1.19 to 1.07 after excluding deaths attributable to low temperatures. Over 40% of cold-attributable deaths occurred outside of the December–March period, leading to bias in the excess winter deaths measure. Although there was no relationship between winter severity and annual excess winter deaths, there was a clear correlation with annual cold-attributable deaths. Conclusions: Excess winter deaths is not an appropriate indicator of cold-related health impacts, and its use should be discontinued. We advocate alternative measures. The findings we present bring into doubt previous claims that cold-related deaths in the UK will not reduce in future as a result of climate change. PMID:26986872

  2. Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits.

    PubMed

    Agyare, Edward K; Jaruszewski, Kristen M; Curran, Geoffry L; Rosenberg, Jens T; Grant, Samuel C; Lowe, Val J; Ramakrishnan, Subramanian; Paravastu, Anant K; Poduslo, Joseph F; Kandimalla, Karunya K

    2014-07-10

    Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid beta (Aβ) proteins within the walls of the cerebral vasculature with subsequent aggressive vascular inflammation leading to recurrent hemorrhagic strokes. The objective of the study was to develop theranostic nanovehicles (TNVs) capable of a) targeting cerebrovascular amyloid; b) providing magnetic resonance imaging (MRI) contrast for the early detection of CAA; and c) treating cerebrovascular inflammation resulting from CAA. The TNVs comprised of a polymeric nanocore made from Magnevist (MRI contrast agent) conjugated chitosan. The nanocore was also loaded with cyclophosphamide (CYC), an immunosuppressant shown to reduce the cerebrovascular inflammation in CAA. Putrescine modified F(ab')2 fragment of anti-amyloid antibody, IgG4.1 (pF(ab')24.1) was conjugated to the surface of the nanocore to target cerebrovascular amyloid. The average size of the control chitosan nanoparticles (conjugated with albumin and are devoid of Magnevist, CYC, and pF(ab')24.1) was 164±1.2 nm and that of the TNVs was 239±4.1 nm. The zeta potential values of the CCNs and TNVs were 21.6±1.7 mV and 11.9±0.5 mV, respectively. The leakage of Magnevist from the TNVs was a modest 0.2% over 4 days, and the CYC release from the TNVs followed Higuchi's model that describes sustained drug release from polymeric matrices. The studies conducted in polarized human microvascular endothelial cell monolayers (hCMEC/D3) in vitro as well as in mice in vivo have demonstrated the ability of TNVs to target cerebrovascular amyloid. In addition, the TNVs provided contrast for imaging cerebrovascular amyloid using MRI and single photon emission computed tomography. Moreover, the TNVs were shown to reduce pro-inflammatory cytokine production by the Aβ challenged blood brain barrier (BBB) endothelium more effectively than the cyclophosphamide alone. PMID:24735640

  3. Obesogenic environment by excess of dietary fats in different phases of development reduces spermatic efficiency of wistar rats at adulthood: correlations with metabolic status.

    PubMed

    Reame, Vanessa; Pytlowanciv, Eloísa Zanin; Ribeiro, Daniele Lisboa; Pissolato, Thiago Feres; Taboga, Sebastião Roberto; Góes, Rejane Maira; Pinto-Fochi, Maria Etelvina

    2014-12-01

    This study compares the impact of obesogenic environment (OE) in six different periods of development on sperm parameters and the testicular structure of adult rats and their correlations with sex steroid and metabolic scenario. Wistar rats were exposed to OE during gestation (O1), during gestation/lactation (O2), from weaning to adulthood (O3), from lactation to adulthood (O4), from gestation to sexual maturity (O5), and after sexual maturation (O6). OE was induced by a 20% fat diet, and control groups were fed a balanced diet (4% fat). Serum leptin levels and adiposity index indicate that all groups were obese, except for O1. Three progressive levels of impaired metabolic status were observed: O1 presented insulin resistance, O2 were insulin resistant and obese, and groups O3, O4, and O5 were insulin resistant, obese, and diabetic. These three levels of metabolic damage were proportional to the increase of leptin and decreased circulating testosterone. The impairment in the daily sperm production (DSP) paralleled these three levels of metabolic and hormonal damage being marginal in O1, increasing in O2, and being higher in groups O3, O4, O5, and O6. None of the OE periods affected the sperm transit time in the epididymis, and the lower sperm reserves were caused mainly by impaired DSP. In conclusion, OE during sexual maturation markedly reduces the DSP at adulthood in the rat. A severe reduction in the DSP also occurs in OE exposure during gestation/lactation but not in gestation, indicating that breast-feeding is a critical period for spermatogenic impairment under obesogenic conditions. PMID:25339108

  4. The effect of tachykinin neuropeptides on amyloid {beta} aggregation

    SciTech Connect

    Flashner, Efrat; Raviv, Uri; Friedler, Assaf

    2011-04-01

    Research highlights: {yields} Mechanistic explanation of how tachykinin neuropeptides reduce A{beta}-induced neurotoxicity. {yields} Biophysical studies suggest that tachykinins do not modulate the distribution of A{beta} oligomeric states, but rather may incorporate into the fibrils. {yields} A possible strategy to inhibit toxicity of amyloid fibrils. -- Abstract: A hallmark of Alzheimer's disease is production of amyloid {beta} peptides resulting from aberrant cleavage of the amyloid precursor protein. Amyloid {beta} assembles into fibrils under physiological conditions, through formation of neurotoxic intermediate oligomers. Tachykinin peptides are known to affect amyloid {beta} neurotoxicity in cells. To understand the mechanism of this effect, we studied how tachykinins affect A{beta}(1-40) aggregation in vitro. Fibrils grown in the presence of tachykinins exhibited reduced thioflavin T (ThT) fluorescence, while their morphology, observed in transmission electron microscopy (TEM), did not alter. Cross linking studies revealed that the distribution of low molecular weight species was not affected by tachykinins. Our results suggest that there may be a specific interaction between tachykinins and A{beta}(1-40) that allows them to co-assemble. This effect may explain the reduction of A{beta}(1-40) neurotoxicity in cells treated with tachykinins.

  5. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts

    SciTech Connect

    Martin, Emily B.; Williams, Angela; Heidel, Eric; Macy, Sallie; Kennel, Stephen J.; Wall, Jonathan S.

    2013-06-21

    Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as

  6. Excessive Sweating (Hyperhidrosis)

    MedlinePlus

    ... and rashes clinical tools newsletter | contact Share | Excessive Sweating (Hyperhidrosis) Information for adults A A A Profusely ... palms. Overview Hyperhidrosis, the medical name for excessive sweating, involves overactive sweat glands, usually of a defined ...

  7. Pituicytoma with gelsolin amyloid deposition.

    PubMed

    Ida, Cristiane M; Yan, Xiaoling; Jentoft, Mark E; Kip, N Sertac; Scheithauer, Bernd W; Morris, Jonathan M; Dogan, Ahmet; Parisi, Joseph E; Kovacs, Kalman

    2013-09-01

    Pituicytoma is a rare low-grade (WHO grade I) sellar region glioma. Among sellar tumors, pituitary adenomas, mainly prolactinomas, may show amyloid deposits. Gelsolin is a ubiquitous calcium-dependent protein that regulates actin filament dynamics. Two known gene point mutations result in gelsolin amyloid deposition, a characteristic feature of a rare type of familial amyloid polyneuropathy (FAP), the Finnish-type FAP, or hereditary gelsolin amyloidosis (HGA). HGA is an autosomal-dominant systemic amyloidosis, characterized by slowly progressive neurological deterioration with corneal lattice dystrophy, cranial neuropathy, and cutis laxa. A unique case of pituicytoma with marked gelsolin amyloid deposition in a 67-year-old Chinese woman is described. MRI revealed a 2.6-cm well-circumscribed, uniformly contrast-enhancing solid sellar mass with suprasellar extension. Histologically, the lesion was characterized by solid sheets and fascicles of spindle cells with slightly fibrillary cytoplasm and oval nuclei with pinpoint nucleoli. Surrounding brain parenchyma showed marked reactive piloid gliosis. Remarkably, conspicuous amyloid deposits were identified as pink homogeneous spherules on light microscopy that showed apple-green birefringence on Congo red with polarization. Mass spectrometric-based proteomic analysis identified the amyloid as gelsolin type. Immunohistochemically, diffuse reactivity to S100 protein and TTF1, focal reactivity for GFAP, and no reactivity to EMA, synaptophysin, and chromogranin were observed. HGA-related mutations were not identified in the tumor. No recurrence was noted 14 months after surgery. To the knowledge of the authors, amyloid deposition in pituicytoma or tumor-associated gelsolin amyloidosis has not been previously described. This novel finding expands the spectrum of sellar tumors that may be associated with amyloid deposition. PMID:23817895

  8. Cerebral Amyloid Angiopathy: Emerging Concepts

    PubMed Central

    2015-01-01

    Cerebral amyloid angiopathy (CAA) involves cerebrovascular amyloid deposition and is classified into several types according to the amyloid protein involved. Of these, sporadic amyloid β-protein (Aβ)-type CAA is most commonly found in older individuals and in patients with Alzheimer's disease (AD). Cerebrovascular Aβ deposits accompany functional and pathological changes in cerebral blood vessels (CAA-associated vasculopathies). CAA-associated vasculopathies lead to development of hemorrhagic lesions [lobar intracerebral macrohemorrhage, cortical microhemorrhage, and cortical superficial siderosis (cSS)/focal convexity subarachnoid hemorrhage (SAH)], ischemic lesions (cortical infarction and ischemic changes of the white matter), and encephalopathies that include subacute leukoencephalopathy caused by CAA-associated inflammation/angiitis. Thus, CAA is related to dementia, stroke, and encephalopathies. Recent advances in diagnostic procedures, particularly neuroimaging, have enabled us to establish a clinical diagnosis of CAA without brain biopsies. Sensitive magnetic resonance imaging (MRI) methods, such as gradient-echo T2* imaging and susceptibility-weighted imaging, are useful for detecting cortical microhemorrhages and cSS. Amyloid imaging with amyloid-binding positron emission tomography (PET) ligands, such as Pittsburgh Compound B, can detect CAA, although they cannot discriminate vascular from parenchymal amyloid deposits. In addition, cerebrospinal fluid markers may be useful, including levels of Aβ40 for CAA and anti-Aβ antibody for CAA-related inflammation. Moreover, cSS is closely associated with transient focal neurological episodes (TFNE). CAA-related inflammation/angiitis shares pathophysiology with amyloid-related imaging abnormalities (ARIA) induced by Aβ immunotherapies in AD patients. This article reviews CAA and CAA-related disorders with respect to their epidemiology, pathology, pathophysiology, clinical features, biomarkers, diagnosis

  9. Overexpression of Heparanase Lowers the Amyloid Burden in Amyloid-β Precursor Protein Transgenic Mice*

    PubMed Central

    Jendresen, Charlotte B.; Cui, Hao; Zhang, Xiao; Vlodavsky, Israel; Nilsson, Lars N. G.; Li, Jin-Ping

    2015-01-01

    Heparan sulfate (HS) and HS proteoglycans (HSPGs) colocalize with amyloid-β (Aβ) deposits in Alzheimer disease brain and in Aβ precursor protein (AβPP) transgenic mouse models. Heparanase is an endoglycosidase that specifically degrades the unbranched glycosaminoglycan side chains of HSPGs. The aim of this study was to test the hypothesis that HS and HSPGs are active participators of Aβ pathogenesis in vivo. We therefore generated a double-transgenic mouse model overexpressing both human heparanase and human AβPP harboring the Swedish mutation (tgHpa*Swe). Overexpression of heparanase did not affect AβPP processing because the steady-state levels of Aβ1–40, Aβ1–42, and soluble AβPP β were the same in 2- to 3-month-old double-transgenic tgHpa*Swe and single-transgenic tgSwe mice. In contrast, the Congo red-positive amyloid burden was significantly lower in 15-month-old tgHpa*Swe brain than in tgSwe brain. Likewise, the Aβ burden, measured by Aβx-40 and Aβx-42 immunohistochemistry, was reduced significantly in tgHpa*Swe brain. The intensity of HS-stained plaques correlated with the Aβx-42 burden and was reduced in tgHpa*Swe mice. Moreover, the HS-like molecule heparin facilitated Aβ1–42-aggregation in an in vitro Thioflavin T assay. The findings suggest that HSPGs contribute to amyloid deposition in tgSwe mice by increasing Aβ fibril formation because heparanase-induced fragmentation of HS led to a reduced amyloid burden. Therefore, drugs interfering with Aβ-HSPG interactions might be a potential strategy for Alzheimer disease treatment. PMID:25548284

  10. Unzipping a Functional Microbial Amyloid

    PubMed Central

    Alsteens, David; Ramsook, Caleen B.; Lipke, Peter N.; Dufrêne, Yves F.

    2012-01-01

    Bacterial and fungal species produce some of the best-characterized functional amyloids, i.e. extracellular fibres that play key roles in mediating adhesion and biofilm formation. Yet, the molecular details underlying their mechanical strength remain poorly understood. Here, we use single-molecule atomic force microscopy to measure the mechanical properties of amyloids formed by Als cell adhesion proteins from the pathogen Candida albicans. We show that stretching Als proteins through their amyloid sequence yields characteristic force signatures corresponding to the mechanical unzipping of β-sheet interactions formed between surfacearrayed Als proteins. The unzipping probability increases with contact time, reflecting the time necessary for optimal inter β-strand associations. These results demonstrate that amyloid interactions provide cohesive strength to a major adhesion protein from a microbial pathogen, thereby strengthening cell adhesion. We suggest that such functional amyloids may represent a generic mechanism for providing mechanical strength to cell adhesion proteins. In nanotechnology, these single-molecule manipulation experiments provide new opportunities to understand the molecular mechanisms driving the cohesion of functional amyloid-based nanostructures. PMID:22924880

  11. S-Nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration

    PubMed Central

    Nakamura, Tomohiro; Cieplak, Piotr; Cho, Dong-Hyung; Godzik, Adam; Lipton, Stuart A.

    2010-01-01

    Neurons are known to use large amounts of energy for their normal function and activity. In order to meet this demand, mitochondrial fission, fusion, and movement events (mitochondrial dynamics) control mitochondrial morphology, facilitating biogenesis and proper distribution of mitochondria within neurons. In contrast, dysfunction in mitochondrial dynamics results in reduced cell bioenergetics and thus contributes to neuronal injury and death in many neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease, and Huntington’s disease. We recently reported that amyloid-β peptide, thought to be a key mediator of AD pathogenesis, engenders S-nitrosylation and thus hyperactivation of the mitochondrial fission protein Drp1. This activation leads to excessive mitochondrial fragmentation, bioenergetic compromise, and synaptic damage in models of AD. Here, we provide an extended commentary on our findings of nitric oxide-mediated abnormal mitochondrial dynamics. PMID:20447471

  12. S-nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration.

    PubMed

    Nakamura, Tomohiro; Cieplak, Piotr; Cho, Dong-Hyung; Godzik, Adam; Lipton, Stuart A

    2010-08-01

    Neurons are known to use large amounts of energy for their normal function and activity. In order to meet this demand, mitochondrial fission, fusion, and movement events (mitochondrial dynamics) control mitochondrial morphology, facilitating biogenesis and proper distribution of mitochondria within neurons. In contrast, dysfunction in mitochondrial dynamics results in reduced cell bioenergetics and thus contributes to neuronal injury and death in many neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease, and Huntington's disease. We recently reported that amyloid-beta peptide, thought to be a key mediator of AD pathogenesis, engenders S-nitrosylation and thus hyperactivation of the mitochondrial fission protein Drp1. This activation leads to excessive mitochondrial fragmentation, bioenergetic compromise, and synaptic damage in models of AD. Here, we provide an extended commentary on our findings of nitric oxide-mediated abnormal mitochondrial dynamics. PMID:20447471

  13. Amyloid-β aggregation on model lipid membranes: an atomic force microscopy study.

    PubMed

    Hane, Francis; Drolle, Elizabeth; Gaikwad, Ravi; Faught, Erin; Leonenko, Zoya

    2011-01-01

    Amyloid fibril formation is generally associated with many neurodegenerative disorders, including Alzheimer's disease (AD). Although fibril plaque formation is associated with biological membranes in vivo, the role of the cell surfaces in amyloid fibril formation and the molecular mechanism of amyloid toxicity are not well understood. Understanding the details of amyloid interaction with lipid membrane may shed light on the mechanism of amyloid toxicity. Using atomic force microscopy, we investigated aggregation of amyloid-β1-42 (Aβ1-42) on model phospholipid membranes as a function of time and membrane composition. Neutral, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), anionic - 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DOPG), and cationic - 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), were used to study the effect of lipid type on amyloid binding. We showed that both the charge on the lipid head group and lipid phase affect the interaction of amyloid oligomers with the membrane surface changing the rate of adsorption and causing changes in membrane structure and structure of amyloid deposits. We observed that amyloid aggregates progressively accumulate in a similar manner on the surface of neutral DPPC gel phase membrane and on the surface of fluid phase negatively charged DOPG membrane. In contrast to DPPC and DOPG, positively charged fluid DOTAP membrane and neutral fluid phase DOPC membrane contain amyloid deposits with reduced height, which suggests fusing of Aβ1-42 into the lipid membrane surface. PMID:21694459

  14. Reducing Excessive Deadline Obligations Act of 2013

    THOMAS, 113th Congress

    Rep. Gardner, Cory [R-CO-4

    2013-06-06

    01/13/2014 Received in the Senate and Read twice and referred to the Committee on Environment and Public Works. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  15. Why Alzheimer trials fail: removing soluble oligomeric beta amyloid is essential, inconsistent, and difficult.

    PubMed

    Rosenblum, William I

    2014-05-01

    Before amyloid formation, peptides cleaved from the amyloid precursor protein (APP) exist as soluble oligomers. These are extremely neurotoxic. Their concentration is strongly correlated with synaptic impairment in animals and parallel cognitive decline in animals and humans. Clinical trials have largely been aimed at removing insoluble beta amyloid in senile plaques and have not reduced soluble load. Even treatment that should remove soluble oligomers has not consistently reduced the load. Failure to significantly improve cognition has frequently been attributed to failure of the amyloid hypothesis or to irreversible alteration in the brain. Instead, trial failures may be because of failure to significantly reduce load of toxic Aβ oligomers. Moreover, targeting only synthesis of Aβ peptides, only the oligomers themselves, or only the final insoluble amyloid may fail to significantly reduce soluble load because of the interrelationship between these 3 points in the amyloid cascade. Thus, treatments may fail unless trials target simultaneously all 3 points in the equation-"triple therapy". Cerebrospinal fluid analysis and other monitoring tools may in the future provide reliable measurement of soluble load. But currently, only analysis of autopsied brains can provide this data and thus enable proper evaluation and explanation of the outcome of clinical trials. These data are essential before attributing trial failures to the advanced nature of the disease or asserting that failures prove that the theory linking Alzheimer's disease to products of amyloid precursor protein is incorrect. PMID:24210593

  16. Elongation dynamics of amyloid fibrils: A rugged energy landscape picture

    NASA Astrophysics Data System (ADS)

    Lee, Chiu Fan; Loken, James; Jean, Létitia; Vaux, David J.

    2009-10-01

    Protein amyloid fibrils are a form of linear protein aggregates that are implicated in many neurodegenerative diseases. Here, we study the dynamics of amyloid fibril elongation by performing Langevin dynamic simulations on a coarse-grained model of peptides. Our simulation results suggest that the elongation process is dominated by a series of local minimum due to frustration in monomer-fibril interactions. This rugged energy landscape picture indicates that the amount of recycling of monomers at the fibrils’ ends before being fibrilized is substantially reduced in comparison to the conventional two-step elongation model. This picture, along with other predictions discussed, can be tested with current experimental techniques.

  17. Proteomic Screening for Amyloid Proteins

    PubMed Central

    Nizhnikov, Anton A.; Alexandrov, Alexander I.; Ryzhova, Tatyana A.; Mitkevich, Olga V.; Dergalev, Alexander A.; Ter-Avanesyan, Michael D.; Galkin, Alexey P.

    2014-01-01

    Despite extensive study, progress in elucidation of biological functions of amyloids and their role in pathology is largely restrained due to the lack of universal and reliable biochemical methods for their discovery. All biochemical methods developed so far allowed only identification of glutamine/asparagine-rich amyloid-forming proteins or proteins comprising amyloids that form large deposits. In this article we present a proteomic approach which may enable identification of a broad range of amyloid-forming proteins independently of specific features of their sequences or levels of expression. This approach is based on the isolation of protein fractions enriched with amyloid aggregates via sedimentation by ultracentrifugation in the presence of strong ionic detergents, such as sarkosyl or SDS. Sedimented proteins are then separated either by 2D difference gel electrophoresis or by SDS-PAGE, if they are insoluble in the buffer used for 2D difference gel electrophoresis, after which they are identified by mass-spectrometry. We validated this approach by detection of known yeast prions and mammalian proteins with established capacity for amyloid formation and also revealed yeast proteins forming detergent-insoluble aggregates in the presence of human huntingtin with expanded polyglutamine domain. Notably, with one exception, all these proteins contained glutamine/asparagine-rich stretches suggesting that their aggregates arose due to polymerization cross-seeding by human huntingtin. Importantly, though the approach was developed in a yeast model, it can easily be applied to any organism thus representing an efficient and universal tool for screening for amyloid proteins. PMID:25549323

  18. Amyloid mediates the association of apolipoprotein E e4 allele to cognitive function in older people

    PubMed Central

    Bennett, D; Schneider, J; Wilson, R; Bienias, J; Berry-Kravis, E; Arnold, S

    2005-01-01

    Background: The neurobiological changes underlying the association of the apolipoprotein E (APOE) e4 allele with level of cognition are poorly understood. Objective: To test the hypothesis that amyloid load can account for (mediate) the association of the APOE e4 allele with level of cognition assessed proximate to death. Methods: There were 44 subjects with clinically diagnosed Alzheimer's disease and 50 without dementia, who had participated in the Religious Orders Study. They underwent determination of APOE allele status, had comprehensive cognitive testing in the last year of life, and brain autopsy at death. The percentage area of cortex occupied by amyloid beta and the density of tau positive neurofibrillary tangles were quantified from six brain regions and averaged to yield summary measures of amyloid load and neurofibrillary tangles. Multiple regression analyses were used to examine whether amyloid load could account for the effect of allele status on level of cognition, controlling for age, sex, and education. Results: Possession of at least one APOE e4 allele was associated with lower level of cognitive function proximate to death (p = 0.04). The effect of the e4 allele was reduced by nearly 60% and was no longer significant after controlling for the effect of amyloid load, whereas there was a robust inverse association between amyloid and cognition (p = 0.001). Because prior work had suggested that neurofibrillary tangles could account for the association of amyloid on cognition, we next examined whether amyloid could account for the effect of allele status on tangles. In a series of regression analyses, e4 was associated with density of tangles (p = 0.002), but the effect of the e4 allele was reduced by more than 50% and was no longer significant after controlling for the effect of amyloid load. Conclusion: These findings are consistent with a sequence of events whereby the e4 allele works through amyloid deposition and subsequent tangle formation to

  19. Genetics Home Reference: hereditary cerebral amyloid angiopathy

    MedlinePlus

    ... recurrent seizures (epilepsy). People with the Flemish and Italian types of hereditary cerebral amyloid angiopathy are prone ... amyloid angiopathy . APP gene mutations cause the Dutch, Italian, Arctic, Iowa, Flemish, and Piedmont types of this ...

  20. β-Amyloid 42/40 ratio and kalirin expression in Alzheimer disease with psychosis

    PubMed Central

    Murray, Patrick S.; Kirkwood, Caitlin M.; Gray, Megan C.; Ikonomovic, Milos D.; Paljug, William R.; Abrahamson, Eric E.; Henteleff, Ruth A.; Hamilton, Ronald L.; Kofler, Julia K.; Klunk, William E.; Lopez, Oscar L.; Penzes, Peter; Sweet, Robert A.

    2012-01-01

    Psychosis in Alzheimer disease differentiates a subgroup with more rapid decline, is heritable, and aggregates within families, suggesting a distinct neurobiology. Evidence indicates that greater impairments of cerebral cortical synapses, particularly in dorsolateral prefrontal cortex, may contribute to the pathogenesis of psychosis in AD phenotype. Soluble β-amyloid induces loss of dendritic spine synapses through impairment of long term potentiation. In contrast, the Rho GEF kalirin is an essential mediator of spine maintenance and growth in cerebral cortex. We therefore hypothesized that psychosis in AD would be associated with increased soluble β-amyloid and reduced expression of kalirin in the cortex. We tested this hypothesis in postmortem cortical gray matter extracts from fifty-two AD subjects with and without psychosis. In subjects with psychosis, the β-amyloid1-42/β-amyloid1-40 ratio was increased, due primarily to reduced soluble β-amyloid1-40, and kalirin-7, -9, and -12 were reduced. These findings suggest that increased cortical β-amyloid1-42/β-amyloid1-40 ratio and decreased kalirin expression may both contribute to the pathogenesis of psychosis in AD. PMID:22429885

  1. In Vivo Detection of Amyloid Plaques by Gadolinium-Stained MRI Can Be Used to Demonstrate the Efficacy of an Anti-amyloid Immunotherapy

    PubMed Central

    Santin, Mathieu D.; Vandenberghe, Michel E.; Herard, Anne-Sophie; Pradier, Laurent; Cohen, Caroline; Debeir, Thomas; Delzescaux, Thierry; Rooney, Thomas; Dhenain, Marc

    2016-01-01

    Extracellular deposition of β amyloid plaques is an early event associated to Alzheimer’s disease. Here, we have used in vivo gadolinium-stained high resolution (29∗29∗117 μm3) magnetic resonance imaging (MRI) to follow-up in a longitudinal way individual amyloid plaques in APP/PS1 mice and evaluate the efficacy of a new immunotherapy (SAR255952) directed against protofibrillar and fibrillary forms of Aβ. APP/PS1 mice were treated for 5 months between the age of 3.5 and 8.5 months. SAR255952 reduced amyloid load in 8.5-months-old animals, but not in 5.5-months animals compared to mice treated with a control antibody (DM4). Histological evaluation confirmed the reduction of amyloid load and revealed a lower density of amyloid plaques in 8.5-months SAR255952-treated animals. The longitudinal follow-up of individual amyloid plaques by MRI revealed that plaques that were visible at 5.5 months were still visible at 8.5 months in both SAR255952 and DM4-treated mice. This suggests that the amyloid load reduction induced by SAR255952 is related to a slowing down in the formation of new plaques rather than to the clearance of already formed plaques. PMID:27047372

  2. Porcine prion protein amyloid

    PubMed Central

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    ABSTRACT Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions. PMID:26218890

  3. Dietary low or excess levels of lipids reduced growth performance, and impaired immune function and structure of head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella) under the infection of Aeromonas hydrophila.

    PubMed

    Ni, Pei-Jun; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-08-01

    Our study explored the effect of dietary lipids on growth and immunity and structure (head kidney, spleen and skin) of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp with an average initial weight of 261.41 ± 0.53 g were fed diets containing six graded levels of lipids at 5.9-80.1 g/kg diet for 8 weeks. After that, a challenge trial was conducted by injection of Aeromonas hydrophila over 2 weeks. The results indicated that compared with optimal lipids supplementation, low and excess levels of lipids down-regulated the mRNA levels of antimicrobial peptides, anti-inflammatory cytokines, inhibitor of κBα (IκBα) and ribosomal p70S6 kinase (S6K1), and up-regulated pro-inflammatory cytokines, nuclear factor κB p65 (NF-κB p65), NF-κB c-Rel (not p52), IκB kinase α (IKKα), IKKβ, IKKγ, and eIF4E-binding protein (4EBP) mRNA levels in the head kidney and spleen of young grass carp (P < 0.05). Low or excess levels of lipids also increased reactive oxygen species (ROS) production and malondialdehyde (MDA) and protein carbonyl (PC) contents, reduced the activities of antioxidant enzymes (P < 0.05), down-regulate the relative mRNA levels of antioxidant enzymes and NF-E2-related factor 2 (Nrf2), and up-regulated the expression levels of Kelch-like ECH-associating protein 1a (Keap1a) and Keap1b in the head kidney and spleen. In addition, low or excess levels of lipids down-regulated the mRNA levels of B-cell lymphoma-2 (Bcl-2) and inhibitor of apoptosis protein (IAP) in the head kidney and spleen, whereas up-regulated the mRNA levels of apoptotic protease activating factor-1 (Apaf-1), caspase 3, 7, 8 and 9 mRNA levels in the head kidney and spleen and Fas ligand (FasL) mRNA levels in the spleen of young grass carp, suggesting that low or excess levels of lipids could decrease the head kidney and spleen immune function, induce oxidative damage and apoptosis and impair antioxidant system of young grass carp. At last, low or excess

  4. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy.

    PubMed

    Reijmer, Yael D; Fotiadis, Panagiotis; Martinez-Ramirez, Sergi; Salat, David H; Schultz, Aaron; Shoamanesh, Ashkan; Ayres, Alison M; Vashkevich, Anastasia; Rosas, Diana; Schwab, Kristin; Leemans, Alexander; Biessels, Geert-Jan; Rosand, Jonathan; Johnson, Keith A; Viswanathan, Anand; Gurol, M Edip; Greenberg, Steven M

    2015-01-01

    Cerebral amyloid angiopathy is a common form of small-vessel disease and an important risk factor for cognitive impairment. The mechanisms linking small-vessel disease to cognitive impairment are not well understood. We hypothesized that in patients with cerebral amyloid angiopathy, multiple small spatially distributed lesions affect cognition through disruption of brain connectivity. We therefore compared the structural brain network in patients with cerebral amyloid angiopathy to healthy control subjects and examined the relationship between markers of cerebral amyloid angiopathy-related brain injury, network efficiency, and potential clinical consequences. Structural brain networks were reconstructed from diffusion-weighted magnetic resonance imaging in 38 non-demented patients with probable cerebral amyloid angiopathy (69 ± 10 years) and 29 similar aged control participants. The efficiency of the brain network was characterized using graph theory and brain amyloid deposition was quantified by Pittsburgh compound B retention on positron emission tomography imaging. Global efficiency of the brain network was reduced in patients compared to controls (0.187 ± 0.018 and 0.201 ± 0.015, respectively, P < 0.001). Network disturbances were most pronounced in the occipital, parietal, and posterior temporal lobes. Among patients, lower global network efficiency was related to higher cortical amyloid load (r = -0.52; P = 0.004), and to magnetic resonance imaging markers of small-vessel disease including increased white matter hyperintensity volume (P < 0.001), lower total brain volume (P = 0.02), and number of microbleeds (trend P = 0.06). Lower global network efficiency was also related to worse performance on tests of processing speed (r = 0.58, P < 0.001), executive functioning (r = 0.54, P = 0.001), gait velocity (r = 0.41, P = 0.02), but not memory. Correlations with cognition were independent of age, sex, education level, and other magnetic resonance imaging

  5. Template-directed deposition of amyloid

    NASA Astrophysics Data System (ADS)

    Ha, Chanki

    The formation of amyloid plaques in tissue is a pathological feature of many neurodegenerative diseases. Amyloid deposition, the process of amyloid plaque growth by the association of individual soluble amyloid molecules with a pre-existing amyloid template (i.e. plaque), is known to be critical for amyloid formation in vivo. In order to characterize amyloid deposition, we developed novel, synthetic amyloid templates like amyloid plaques in the human Alzheimer's brain by attaching amyloid seeds covalently onto an N-hydroxysuccinimide-activated surface. Amyloid plaques with a characteristic beta-sheet structure formed through a conformational rearrangement of soluble insulin or Abeta monomers upon interaction with the template. The amyloid deposition rate followed saturation kinetics with respect to insulin concentration in the solution. According to visualization of temporal evolution of Abeta plaque deposition on a template, it was found that mature amyloid plaques serve as a sink of soluble Abeta in a solution as well as a reservoir of small aggregates such as oligomers and protofibrils. Quantitative analysis of seeding efficiencies of three different Abeta species revealed that oligomeric forms of Abeta act more efficiently as seeds than monomers or fibrils do. Furthermore, studies on the interaction between Abeta40 and 42 showed an important role of Abeta42 in amyloid deposition. A slightly acidic condition was found to be unfavorable for amyloid plaque formation. Effects of metal ions on amyloid deposition indicated that Fe3+, but not Cu3 and Zn2+, is important for the deposition of amyloid plaques. The binding of Fe3+ to Abeta42 peptide was confirmed by using SIMS analysis. Zn2+ induced nonfibrillar amorphous aggregates, but the release of Zn2+ from Abeta42 deposits by Fe3+ triggered the formation of amyloid fibers. Effects or metal ion chelators such as ethylenediamine tetraacetic acid, deferoxamine, and clioquinol on amyloid deposition were tested to

  6. Capturing a Reactive State of Amyloid Aggregates

    PubMed Central

    Parthasarathy, Sudhakar; Yoo, Brian; McElheny, Dan; Tay, William; Ishii, Yoshitaka

    2014-01-01

    The interaction of redox-active copper ions with misfolded amyloid β (Aβ) is linked to production of reactive oxygen species (ROS), which has been associated with oxidative stress and neuronal damages in Alzheimer disease. Despite intensive studies, it is still not conclusive how the interaction of Cu+/Cu2+ with Aβ aggregates leads to ROS production even at the in vitro level. In this study, we examined the interaction between Cu+/Cu2+ and Aβ fibrils by solid-state NMR (SSNMR) and other spectroscopic methods. Our photometric studies confirmed the production of ∼60 μm hydrogen peroxide (H2O2) from a solution of 20 μm Cu2+ ions in complex with Aβ(1–40) in fibrils ([Cu2+]/[Aβ] = 0.4) within 2 h of incubation after addition of biological reducing agent ascorbate at the physiological concentration (∼1 mm). Furthermore, SSNMR 1H T1 measurements demonstrated that during ROS production the conversion of paramagnetic Cu2+ into diamagnetic Cu+ occurs while the reactive Cu+ ions remain bound to the amyloid fibrils. The results also suggest that O2 is required for rapid recycling of Cu+ bound to Aβ back to Cu2+, which allows for continuous production of H2O2. Both 13C and 15N SSNMR results show that Cu+ coordinates to Aβ(1–40) fibrils primarily through the side chain Nδ of both His-13 and His-14, suggesting major rearrangements from the Cu2+ coordination via Nϵ in the redox cycle. 13C SSNMR chemical shift analysis suggests that the overall Aβ conformations are largely unaffected by Cu+ binding. These results present crucial site-specific evidence of how the full-length Aβ in amyloid fibrils offers catalytic Cu+ centers. PMID:24523414

  7. Problems of Excess Capacity

    NASA Technical Reports Server (NTRS)

    Douglas, G.

    1972-01-01

    The problems of excess capacity in the airline industry are discussed with focus on the following topics: load factors; fair rate of return on investment; service-quality rivalry among airlines; pricing (fare) policies; aircraft production; and the impacts of excess capacity on operating costs. Also included is a discussion of the interrelationships among these topics.

  8. Excessive acquisition in hoarding.

    PubMed

    Frost, Randy O; Tolin, David F; Steketee, Gail; Fitch, Kristin E; Selbo-Bruns, Alexandra

    2009-06-01

    Compulsive hoarding (the acquisition of and failure to discard large numbers of possessions) is associated with substantial health risk, impairment, and economic burden. However, little research has examined separate components of this definition, particularly excessive acquisition. The present study examined acquisition in hoarding. Participants, 878 self-identified with hoarding and 665 family informants (not matched to hoarding participants), completed an Internet survey. Among hoarding participants who met criteria for clinically significant hoarding, 61% met criteria for a diagnosis of compulsive buying and approximately 85% reported excessive acquisition. Family informants indicated that nearly 95% exhibited excessive acquisition. Those who acquired excessively had more severe hoarding; their hoarding had an earlier onset and resulted in more psychiatric work impairment days; and they experienced more symptoms of obsessive-compulsive disorder, depression, and anxiety. Two forms of excessive acquisition (buying and free things) each contributed independent variance in the prediction of hoarding severity and related symptoms. PMID:19261435

  9. Excessive Acquisition in Hoarding

    PubMed Central

    Frost, Randy O.; Tolin, David F.; Steketee, Gail; Fitch, Kristin E.; Selbo-Bruns, Alexandra

    2009-01-01

    Compulsive hoarding (the acquisition of and failure to discard large numbers of possessions) is associated with substantial health risk, impairment, and economic burden. However, little research has examined separate components of this definition, particularly excessive acquisition. The present study examined acquisition in hoarding. Participants, 878 self-identified with hoarding and 665 family informants (not matched to hoarding participants), completed an internet survey. Among hoarding participants who met criteria for clinically significant hoarding, 61% met criteria for a diagnosis of compulsive buying and approximately 85% reported excessive acquisition. Family informants indicated that nearly 95% exhibited excessive acquisition. Those who acquired excessively had more severe hoarding; their hoarding had an earlier onset and resulted in more psychiatric work impairment days; and they experienced more symptoms of obsessive-compulsive disorder, depression, and anxiety. Two forms of excessive acquisition (buying and free things) each contributed independent variance in the prediction of hoarding severity and related symptoms. PMID:19261435

  10. A Novel Retro-Inverso Peptide Inhibitor Reduces Amyloid Deposition, Oxidation and Inflammation and Stimulates Neurogenesis in the APPswe/PS1ΔE9 Mouse Model of Alzheimer’s Disease

    PubMed Central

    Parthsarathy, Vadivel; McClean, Paula L.; Hölscher, Christian; Taylor, Mark; Tinker, Claire; Jones, Glynn; Kolosov, Oleg; Salvati, Elisa; Gregori, Maria; Masserini, Massimo; Allsop, David

    2013-01-01

    Previously, we have developed a retro-inverso peptide inhibitor (RI-OR2, rGffvlkGr) that blocks the in vitro formation and toxicity of the Aβ oligomers which are thought to be a cause of neurodegeneration and memory loss in Alzheimer’s disease. We have now attached a retro-inverted version of the HIV protein transduction domain ‘TAT’ to RI-OR2 to target this new inhibitor (RI-OR2-TAT, Ac-rGffvlkGrrrrqrrkkrGy-NH2) into the brain. Following its peripheral injection, a fluorescein-labelled version of RI-OR2-TAT was found to cross the blood brain barrier and bind to the amyloid plaques and activated microglial cells present in the cerebral cortex of 17-months-old APPswe/PS1ΔE9 transgenic mice. Daily intraperitoneal injection of RI-OR2-TAT (at 100 nmol/kg) for 21 days into 10-months-old APPswe/PS1ΔE9 mice resulted in a 25% reduction (p<0.01) in the cerebral cortex of Aβ oligomer levels, a 32% reduction (p<0.0001) of β-amyloid plaque count, a 44% reduction (p<0.0001) in the numbers of activated microglial cells, and a 25% reduction (p<0.0001) in oxidative damage, while the number of young neurons in the dentate gyrus was increased by 210% (p<0.0001), all compared to control APPswe/PS1ΔE9 mice injected with vehicle (saline) alone. Our data suggest that oxidative damage, inflammation, and inhibition of neurogenesis are all a downstream consequence of Aβ aggregation, and identify a novel brain-penetrant retro-inverso peptide inhibitor of Aβ oligomer formation for further testing in humans as a potential disease-modifying treatment for Alzheimer’s disease. PMID:23382963

  11. Independent information from cerebrospinal fluid amyloid-β and florbetapir imaging in Alzheimer's disease.

    PubMed

    Mattsson, Niklas; Insel, Philip S; Donohue, Michael; Landau, Susan; Jagust, William J; Shaw, Leslie M; Trojanowski, John Q; Zetterberg, Henrik; Blennow, Kaj; Weiner, Michael W

    2015-03-01

    Reduced cerebrospinal fluid amyloid-β42 and increased retention of florbetapir positron emission tomography are biomarkers reflecting cortical amyloid load in Alzheimer's disease. However, these measurements do not always agree and may represent partly different aspects of the underlying Alzheimer's disease pathology. The goal of this study was therefore to test if cerebrospinal fluid and positron emission tomography amyloid-β biomarkers are independently related to other Alzheimer's disease markers, and to examine individuals who are discordantly classified by these two biomarker modalities. Cerebrospinal fluid and positron emission tomography amyloid-β were measured at baseline in 769 persons [161 healthy controls, 68 subjective memory complaints, 419 mild cognitive impairment and 121 Alzheimer's disease dementia, mean age 72 years (standard deviation 7 years), 47% females] and used to predict diagnosis, APOE ε4 carriage status, cerebral blood flow, cerebrospinal fluid total-tau and phosphorylated-tau levels (cross-sectionally); and hippocampal volume, fluorodeoxyglucose positron emission tomography results and Alzheimer's Disease Assessment Scale-cognitive subscale scores (longitudinally). Cerebrospinal fluid and positron emission tomography amyloid-β were highly correlated, but adjusting one of these predictors for the other revealed that they both provided partially independent information when predicting diagnosis, APOE ε4, hippocampal volume, metabolism, cognition, total-tau and phosphorylated-tau (the 95% confidence intervals of the adjusted effects did not include zero). Cerebrospinal fluid amyloid-β was more strongly related to APOE ε4 whereas positron emission tomography amyloid-β was more strongly related to tau levels (P < 0.05). Discordance (mainly isolated cerebrospinal fluid amyloid-β positivity) differed by diagnostic group (P < 0.001) and was seen in 21% of cognitively healthy people but only 6% in dementia patients. The finding that

  12. Independent information from cerebrospinal fluid amyloid-β and florbetapir imaging in Alzheimer's disease

    PubMed Central

    Insel, Philip S.; Donohue, Michael; Landau, Susan; Jagust, William J.; Shaw, Leslie M.; Trojanowski, John Q.; Zetterberg, Henrik; Blennow, Kaj; Weiner, Michael W.

    2015-01-01

    Reduced cerebrospinal fluid amyloid-β42 and increased retention of florbetapir positron emission tomography are biomarkers reflecting cortical amyloid load in Alzheimer's disease. However, these measurements do not always agree and may represent partly different aspects of the underlying Alzheimer's disease pathology. The goal of this study was therefore to test if cerebrospinal fluid and positron emission tomography amyloid-β biomarkers are independently related to other Alzheimer's disease markers, and to examine individuals who are discordantly classified by these two biomarker modalities. Cerebrospinal fluid and positron emission tomography amyloid-β were measured at baseline in 769 persons [161 healthy controls, 68 subjective memory complaints, 419 mild cognitive impairment and 121 Alzheimer's disease dementia, mean age 72 years (standard deviation 7 years), 47% females] and used to predict diagnosis, APOE ε4 carriage status, cerebral blood flow, cerebrospinal fluid total-tau and phosphorylated-tau levels (cross-sectionally); and hippocampal volume, fluorodeoxyglucose positron emission tomography results and Alzheimer's Disease Assessment Scale-cognitive subscale scores (longitudinally). Cerebrospinal fluid and positron emission tomography amyloid-β were highly correlated, but adjusting one of these predictors for the other revealed that they both provided partially independent information when predicting diagnosis, APOE ε4, hippocampal volume, metabolism, cognition, total-tau and phosphorylated-tau (the 95% confidence intervals of the adjusted effects did not include zero). Cerebrospinal fluid amyloid-β was more strongly related to APOE ε4 whereas positron emission tomography amyloid-β was more strongly related to tau levels (P < 0.05). Discordance (mainly isolated cerebrospinal fluid amyloid-β positivity) differed by diagnostic group (P < 0.001) and was seen in 21% of cognitively healthy people but only 6% in dementia patients. The finding that

  13. Nanomechanical properties of single amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Sweers, K. K. M.; Bennink, M. L.; Subramaniam, V.

    2012-06-01

    Amyloid fibrils are traditionally associated with neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease or Creutzfeldt-Jakob disease. However, the ability to form amyloid fibrils appears to be a more generic property of proteins. While disease-related, or pathological, amyloid fibrils are relevant for understanding the pathology and course of the disease, functional amyloids are involved, for example, in the exceptionally strong adhesive properties of natural adhesives. Amyloid fibrils are thus becoming increasingly interesting as versatile nanobiomaterials for applications in biotechnology. In the last decade a number of studies have reported on the intriguing mechanical characteristics of amyloid fibrils. In most of these studies atomic force microscopy (AFM) and atomic force spectroscopy play a central role. AFM techniques make it possible to probe, at nanometer length scales, and with exquisite control over the applied forces, biological samples in different environmental conditions. In this review we describe the different AFM techniques used for probing mechanical properties of single amyloid fibrils on the nanoscale. An overview is given of the existing mechanical studies on amyloid. We discuss the difficulties encountered with respect to the small fibril sizes and polymorphic behavior of amyloid fibrils. In particular, the different conformational packing of monomers within the fibrils leads to a heterogeneity in mechanical properties. We conclude with a brief outlook on how our knowledge of these mechanical properties of the amyloid fibrils can be exploited in the construction of nanomaterials from amyloid fibrils.

  14. Excessive Blinking in Children

    MedlinePlus

    ... scratch on the front surface of the eye), conjunctivitis (pink eye), foreign body in the eye, or ... is excessive blinking treated? If an abrasion or conjunctivitis is diagnosed, eye drops or ointment may be ...

  15. Candidate anti-Aβ fluorene compounds selected from analogs of amyloid imaging agents

    PubMed Central

    Hong, Hyun-Seok; Maezawa, Izumi; Budamagunta, Madhu; Rana, Sandeep; Shi, Aibin; Vassar, Robert; Liu, Ruiwu; Lam, Kit S.; Cheng, R. Holland; Hua, Duy H.; Voss, John C.; Jin, Lee-Way

    2009-01-01

    Alzheimer’s disease (AD) is characterized by depositions of β-amyloid (Aβ) aggregates as amyloid in the brain. To facilitate diagnosis of AD by radioligand imaging, several highly specific small-molecule amyloid ligands have been developed. Because amyloid ligands display excellent pharmacokinetics properties and brain bioavailability, and because we have previously shown that some amyloid ligands bind the highly neurotoxic Aβ oligomers (AβO) with high affinities, they may also be valuable candidates for anti-Aβ therapies. Here we identified two fluorene compounds from libraries of amyloid ligands, initially based on their ability to block cell death secondary to intracellular AβO. We found that the lead fluorenes were able to reduce the amyloid burden including the levels of AβO in cultured neurons and in 5xFAD mice. To explain these in vitro and in vivo effects, we found that the lead fluorenes bind and destabilize AβO as shown by electron paramagnetic resonance spectroscopy studies, and block the harmful AβO-synapse interaction. These fluorenes and future derivatives, therefore, have a potential use in AD therapy and research. PMID:19022536

  16. Amyloid formation in human islets is enhanced by heparin and inhibited by heparinase.

    PubMed

    Potter, K J; Werner, I; Denroche, H C; Montane, J; Plesner, A; Chen, Y; Lei, D; Soukhatcheva, G; Warnock, G L; Oberholzer, J; Fraser, P E; Verchere, C B

    2015-06-01

    Islet transplantation is a promising therapy for patients with diabetes, but its long-term success is limited by many factors, including the formation of islet amyloid deposits. Heparin is employed in clinical islet transplantation to reduce clotting but also promotes fibrillization of amyloidogenic proteins. We hypothesized that heparin treatment of islets during pre-transplant culture may enhance amyloid formation leading to beta cell loss and graft dysfunction. Heparin promoted the fibrillization of human islet amyloid polypeptide (IAPP) and enhanced its toxicity to INS-1 beta cells. Heparin increased amyloid deposition in cultured human islets, but surprisingly decreased islet cell apoptosis. Treatment of human islets with heparin prior to transplantation increased the likelihood of graft failure. Removal of islet heparan sulfate glycosaminoglycans, which localize with islet amyloid deposits in type 2 diabetes, by heparinase treatment decreased amyloid deposition and protected against islet cell death. These findings raise the possibility that pretransplant treatment of human islets with heparin could potentiate IAPP aggregation and amyloid formation and may be detrimental to subsequent graft function. PMID:25833002

  17. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden.

    PubMed

    Hedden, Trey; Van Dijk, Koene R A; Becker, J Alex; Mehta, Angel; Sperling, Reisa A; Johnson, Keith A; Buckner, Randy L

    2009-10-01

    Amyloid deposition is present in 20-50% of nondemented older adults yet the functional consequences remain unclear. The current study found that amyloid accumulation is correlated with functional disruption of the default network as measured by intrinsic activity correlations. Clinically normal participants (n = 38, aged 60-88 years) were characterized using (11)C-labeled Pittsburgh Compound B positron emission tomography imaging to estimate fibrillar amyloid burden and, separately, underwent functional magnetic resonance imaging (fMRI). The integrity of the default network was estimated by correlating rest-state fMRI time courses extracted from a priori regions including the posterior cingulate, lateral parietal, and medial prefrontal cortices. Clinically normal participants with high amyloid burden displayed significantly reduced functional correlations within the default network relative to participants with low amyloid burden. These reductions were also observed when amyloid burden was treated as a continuous, rather than a dichotomous, measure and when controlling for age and structural atrophy. Whole-brain analyses initiated by seeding the posterior cingulate cortex, a region of high amyloid burden in Alzheimer's disease, revealed significant disruption in the default network including functional disconnection of the hippocampal formation. PMID:19812343

  18. Amyloid formation: functional friend or fearful foe?

    PubMed

    Bergman, P; Roan, N R; Römling, U; Bevins, C L; Münch, J

    2016-08-01

    Amyloid formation has been most studied in the context of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, as well as in amyloidosis. However, it is becoming increasingly clear that amyloid is also present in the healthy setting; for example nontoxic amyloid formation is important for melanin synthesis and in innate immunity. Furthermore, bacteria have mechanisms to produce functional amyloid structures with important roles in bacterial physiology and interaction with host cells. Here, we will discuss some novel aspects of fibril-forming proteins in humans and bacteria. First, the amyloid-forming properties of the antimicrobial peptide human defensin 6 (HD6) will be considered. Intriguingly, unlike other antimicrobial peptides, HD6 does not kill bacteria. However, recent data show that HD6 can form amyloid structures at the gut mucosa with strong affinity for bacterial surfaces. These so-called nanonets block bacterial invasion by entangling the bacteria in net-like structures. Next, the role of functional amyloid fibrils in human semen will be discussed. These fibrils were discovered through their property to enhance HIV infection but they may also have other yet unknown functions. Finally, the role of amyloid formation in bacteria will be reviewed. The recent finding that bacteria can make amyloid in a controlled fashion without toxic effects is of particular interest and may have implications for human disease. The role of amyloid in health and disease is beginning to be unravelled, and here, we will review some of the most recent findings in this exciting area. PMID:27151743

  19. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Bayliss, D. L.; Walsh, J. L.; Shama, G.; Iza, F.; Kong, M. G.

    2009-11-01

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  20. Polymorph-specific kinetics and thermodynamics of β-amyloid fibril growth

    PubMed Central

    Qiang, Wei; Kelley, Kevin; Tycko, Robert

    2013-01-01

    Amyloid fibrils formed by the 40-residue β-amyloid peptide (Aβ1–40) are highly polymorphic, with molecular structures that depend on the details of growth conditions. Underlying differences in physical properties are not well understood. Here, we investigate differences in growth kinetics and thermodynamic stabilities of two Aβ1–40 fibril polymorphs for which detailed structural models are available from solid state nuclear magnetic resonance (NMR) studies. Rates of seeded fibril elongation in the presence of excess soluble Aβ1–40 and shrinkage in the absence of soluble Aβ1–40 are determined with atomic force microscopy (AFM). From these rates, we derive polymorph-specific values for the soluble Aβ1–40 concentration at quasi-equilibrium, from which relative stabilities can be derived. The AFM results are supported by direct measurements by ultraviolet absorbance, using a novel dialysis system to establish quasi-equilibrium. At 24° C, the two polymorphs have significantly different elongation and shrinkage kinetics but similar thermodynamic stabilities. At 37° C, differences in kinetics are reduced, and thermodynamic stabilities are increased significantly. Fibril length distributions in AFM images provide support for an intermittent growth model, in which fibrils switch randomly between an "on" state (capable of elongation) and an "off" state (incapable of elongation). We also monitor interconversion between polymorphs at 24° C by solid state NMR, showing that the two-fold symmetric "agitated" () polymorph is more stable than the three-fold symmetric "quiescent" polymorph. Finally, we show that the two polymorphs have significantly different rates of fragmentation in the presence of shear forces, a difference that helps explain the observed predominance of the structure when fibrils are grown in agitated solutions. PMID:23627695

  1. Early identification of amyloid heart disease by technetium-99m-pyrophosphate scintigraphy: a study with familial amyloid polyneuropathy

    SciTech Connect

    Hongo, M.; Hirayama, J.; Fujii, T.; Yamada, H.; Okubo, S.; Kusama, S.; Ikeda, S.

    1987-03-01

    To determine whether technetium-99m-pyrophosphate (Tc-99m-PYP) scanning or two-dimensional echocardiography can detect amyloid heart disease in an earlier stage of familial amyloid polyneuropathy, 15 patients were examined. Although 10 of the 15 patients had no clinical evidence of congestive heart failure, as well as normal ventricular wall thickness and normal values for left ventricular systolic function, five (50%) of them showed mild or moderate myocardial uptake. On the other hand, none had characteristic highly refractile myocardial echoes on the two-dimensional echocardiographic images (p less than 0.01), and values for diastolic function were reduced in four of the five and normal in the remaining one. In 85 control subjects, diffuse positive pyrophosphate scans of the heart were found in four (5%) of them (three with dilated cardiomyopathy and one with sarcoidosis), and highly refractile granular sparkling echoes were observed in nine (11%) (five with hypertrophic cardiomyopathy, three with aortic stenosis, and one with hypereosinophilic syndrome). We conclude that Tc-99m-PYP scanning is a more sensitive and specific method and may have the potential ability to detect amyloid heart disease in the earlier stage of familial amyloid polyneuropathy than two-dimensional echocardiography.

  2. Are elevated serum amyloid A levels and amyloid-enhancing factor sufficient to induce inflammation-associated amyloid deposition?

    PubMed

    Kisilevsky, R; Tan, R; Subrahmanyan, L; Snow, A

    1984-01-01

    During inflammation-associated amyloidosis two coincident factors, serum amyloid A (SAA) and amyloid-enhancing factor (AEF) are apparently necessary for amyloid A (AA) deposition. It is shown by passive transfer of cytokines, which stimulate SAA production, and AEF that these are not sufficient. A further factor(s) is necessary, which stems from the acute inflammatory response. Potential candidates are serum or tissue glycosaminoglycans. PMID:6400464

  3. RESTORED STREAMS ENHANCE ABILITY TO REMOVE EXCESS NITROGEN

    EPA Science Inventory

    Issue: Excess nitrogen from fertilizer, septic tanks, animal feedlots, and runoff from pavement can threaten human and aquatic ecosystem health. Furthermore, degraded ecosystems like those impacted by urbanization have reduced ability to process and remove excess nitrogen from t...

  4. Amyloid Fibrils: Formation, Polymorphism, and Inhibition.

    PubMed

    Härd, Torleif

    2014-02-01

    Amyloid fibrils with cross-β spine basic architectures are prevalent and stable forms of peptides and proteins. Recent research has provided significant contributions to our understanding of the mechanisms of fibril formation and to the surprising diversity and persistence of structural polymorphism in amyloid fibrils. There have also been successful demonstrations of how molecules can be engineered to inhibit unwanted amyloid formation by different mechanisms. Future research in these areas will include investigations of mechanisms for primary nucleation and the structure of oligomeric intermediates, the general role of secondary nucleation events (autocatalysis), elucidation of the mechanisms and implications of preservation of structural morphology in amyloid propagation, and research into the largely unexplored phenomenon of cross-seeding, by which amyloid fibrils of one species induce the formation of amyloid by another species. PMID:26276617

  5. Insight into Amyloid Structure Using Chemical Probes

    PubMed Central

    Reinke, Ashley A.; Gestwicki, Jason E.

    2011-01-01

    Alzheimer’s disease (AD) is a common neurodegenerative disorder characterized by the deposition of amyloids in the brain. One prominent form of amyloid is composed of repeating units of the amyloid-β (Aβ) peptide. Over the past decade, it has become clear that these Aβ amyloids are not homogeneous; rather, they are composed of a series of structures varying in their overall size and shape and the number of Aβ peptides they contain. Recent theories suggest that these different amyloid conformations may play distinct roles in disease, although their relative contributions are still being discovered. Here, we review how chemical probes, such as congo red, thioflavin T and their derivatives, have been powerful tools for better understanding amyloid structure and function. Moreover, we discuss how design and deployment of conformationally selective probes might be used to test emerging models of AD. PMID:21457473

  6. Amyloid Goiter Secondary to Ulcerative Colitis

    PubMed Central

    Aydin, Bunyamin; Koca, Tugba; Yildiz, Ihsan; Gerek Celikden, Sevda; Ciris, Metin

    2016-01-01

    Diffuse amyloid goiter (AG) is an entity characterized by the deposition of amyloid in the thyroid gland. AG may be associated with either primary or secondary amyloidosis. Secondary amyloidosis is rarely caused by inflammatory bowel diseases. Secondary amyloidosis is relatively more common in the patients with Crohn's disease, whereas it is highly rare in patients with ulcerative colitis. Diffuse amyloid goiter caused by ulcerative colitis is also a rare condition. In the presence of amyloid in the thyroid gland, medullary thyroid cancer should be kept in mind in the differential diagnosis. Imaging techniques and biochemical tests are not very helpful in the diagnosis of secondary amyloid goiter and the definitive diagnosis is established based on the histopathologic analysis and histochemical staining techniques. In this report, we present a 35-year-old male patient with diffuse amyloid goiter caused by secondary amyloidosis associated with ulcerative colitis. PMID:27051538

  7. Amyloid Structures as Biofilm Matrix Scaffolds.

    PubMed

    Taglialegna, Agustina; Lasa, Iñigo; Valle, Jaione

    2016-10-01

    Recent insights into bacterial biofilm matrix structures have induced a paradigm shift toward the recognition of amyloid fibers as common building block structures that confer stability to the exopolysaccharide matrix. Here we describe the functional amyloid systems related to biofilm matrix formation in both Gram-negative and Gram-positive bacteria and recent knowledge regarding the interaction of amyloids with other biofilm matrix components such as extracellular DNA (eDNA) and the host immune system. In addition, we summarize the efforts to identify compounds that target amyloid fibers for therapeutic purposes and recent developments that take advantage of the amyloid structure to engineer amyloid fibers of bacterial biofilm matrices for biotechnological applications. PMID:27185827

  8. Amyloid Goiter Secondary to Ulcerative Colitis.

    PubMed

    Aydin, Bunyamin; Koca, Yavuz Savas; Koca, Tugba; Yildiz, Ihsan; Gerek Celikden, Sevda; Ciris, Metin

    2016-01-01

    Diffuse amyloid goiter (AG) is an entity characterized by the deposition of amyloid in the thyroid gland. AG may be associated with either primary or secondary amyloidosis. Secondary amyloidosis is rarely caused by inflammatory bowel diseases. Secondary amyloidosis is relatively more common in the patients with Crohn's disease, whereas it is highly rare in patients with ulcerative colitis. Diffuse amyloid goiter caused by ulcerative colitis is also a rare condition. In the presence of amyloid in the thyroid gland, medullary thyroid cancer should be kept in mind in the differential diagnosis. Imaging techniques and biochemical tests are not very helpful in the diagnosis of secondary amyloid goiter and the definitive diagnosis is established based on the histopathologic analysis and histochemical staining techniques. In this report, we present a 35-year-old male patient with diffuse amyloid goiter caused by secondary amyloidosis associated with ulcerative colitis. PMID:27051538

  9. The Human Disease-Associated Aβ Amyloid Core Sequence Forms Functional Amyloids in a Fungal Adhesin

    PubMed Central

    Rameau, Rachele D.; Jackson, Desmond N.; Beaussart, Audrey; Dufrêne, Yves F.

    2016-01-01

    ABSTRACT There is increasing evidence that many amyloids in living cells have physiological functions. On the surfaces of fungal cells, amyloid core sequences in adhesins can aggregate into 100- to 1,000-nm-wide patches to form high-avidity adhesion nanodomains on the cell surface. The nanodomains form through interactions that have amyloid-like properties: binding of amyloid dyes, perturbation by antiamyloid agents, and interaction with homologous sequences. To test whether these functional interactions are mediated by typical amyloid interactions, we substituted an amyloid core sequence, LVFFA, from human Aβ protein for the native sequence IVIVA in the 1,419-residue Candida albicans adhesin Als5p. The chimeric protein formed cell surface nanodomains and mediated cellular aggregation. The native sequence and chimeric adhesins responded similarly to the amyloid dye thioflavin T and to amyloid perturbants. However, unlike the native protein, the nanodomains formed by the chimeric protein were not force activated and formed less-robust aggregates under flow. These results showed the similarity of amyloid interactions in the amyloid core sequences of native Als5p and Aβ, but they also highlighted emergent properties of the native sequence. Also, a peptide composed of the Aβ amyloid sequence flanked by amino acids from the adhesin formed two-dimensional sheets with sizes similar to the cell surface patches of the adhesins. These results inform an initial model for the structure of fungal cell surface amyloid nanodomains. PMID:26758179

  10. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection

    PubMed Central

    2009-01-01

    Background Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF) biomarkers related of amyloid and tau metabolism in HIV-infected patients. Methods In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPα and sAPPβ), amyloid beta fragment 1-42 (Aβ1-42), and total and hyperphosphorylated tau (t-tau and p-tau) in CSF of 86 HIV-infected (HIV+) subjects, including 21 with AIDS dementia complex (ADC), 25 with central nervous system (CNS) opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV-) subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease. Results CSF sAPPα and sAPPβ concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF Aβ1-42 in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections. Conclusions Parallel reductions of CSF sAPPα and sAPPβ in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those of Alzheimer's disease

  11. Towards a Pharmacophore for Amyloid

    PubMed Central

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.; Laganowsky, Arthur; Jiang, Lin; Sievers, Stuart A.; Liu, Jie; Barrio, Jorge R.; Eisenberg, David

    2011-01-01

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of β-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. PMID:21695112

  12. An energy-reduced dietary pattern, including moderate protein and increased nonfat dairy intake combined with walking promotes beneficial body composition and metabolic changes in women with excess adiposity: a randomized comparative trial

    PubMed Central

    Shlisky, Julie D; Durward, Carrie M; Zack, Melissa K; Gugger, Carolyn K; Campbell, Jessica K; Nickols-Richardson, Sharon M

    2015-01-01

    Moderate protein and nonfat dairy intake within an energy-reduced diet (ERD) may contribute to health benefits achieved with body weight (BW) loss. The current study examined the effectiveness of a weight-loss/weight-loss maintenance intervention using an ERD with moderate dietary protein (30% of kcals) and increased nonfat dairy intake (4–5 svg/d), including yogurt (INT group) and daily walking compared to an ERD with standard protein (16–17% of kcals) and standard nonfat dairy intake (3 svg/d) (COM group) with daily walking. A randomized comparative trial with 104 healthy premenopausal women with overweight/obesity was conducted in a university setting. Women were randomized to INT group or COM group. Anthropometric measurements, as well as dietary intake, selected vital signs, resting energy expenditure, blood lipids, glucose, insulin, and selected adipose-derived hormones were measured at baseline, and weeks 2, 12, and 24. Targets for dietary protein and nonfat dairy intake, while initially achieved, were not sustained in the INT group. There were no significant effects of diet group on anthropometric measurements. Women in the INT group and COM group, respectively, reduced BW (−4.9 ± 3.2 and −4.3 ± 3.3 kg, P < 0.001) and fat mass (−3.0 ± 2.2 and −2.3 ± 2.3 kg, P < 0.001) during the 12-week weight-loss phase and maintained these losses at 24 weeks. Both groups experienced significant decreases in body mass index, fat-free soft tissue mass, body fat percentage, waist and hip circumferences and serum triglycerides, total cholesterol, and leptin (all P < 0.001). Healthy premenopausal women with excess adiposity effectively lost BW and fat mass and improved some metabolic risk factors following an ERD with approximately 20% protein and 3 svg/d of nonfat dairy intake. PMID:26405524

  13. [Amyloid deposition in chronic joint disease].

    PubMed

    Saitou, H

    1994-07-01

    As a screening procedure for the detection of amyloidosis secondary to rheumatoid arthritis, abdominal subcutaneous fat tissues were aspirated, and were examined after Congo red staining by polarized microscopy. Positive amyloid deposits were found in 7.1 percent of the rheumatoid patients, and the amyloid in the subcutaneous fat was determined to be AA type by permanganate oxidation. The occurrence of amyloid deposition was significantly correlated with the duration of the articular symptoms, the progression of the class, and also with proteinuria. Additionally the joint capsules, including the synovium and synovial fluid sediment, from patients with rheumatoid arthritis and osteoarthritis were examined for amyloid deposition. Deposits of amyloid in the hip and knee joints were found more frequently in those with rheumatoid arthritis than in those with osteoarthritis. In osteoarthritis, the frequency of amyloid deposition tended to increase with advancing age. However these amyloid deposits in the joint structure were discovered to be resistant to permanganate oxidation. Therefore it was suspected that these amyloid deposits were of a type different from AA amyloid. PMID:8071579

  14. Molecular cloning of amyloid cDNA derived from mRNA of the Alzheimer disease brain: coding and noncoding regions of the fetal precursor mRNA are expressed in the cortex

    SciTech Connect

    Zain, S.B.; Salim, M.; Chou, W.G.; Sajdel-Sulkowska, E.M.; Majocha, R.E.; Marotta, C.A.

    1988-02-01

    To gain insight into factors associated with the excessive accumulation of ..beta..-amyloid in the Alzheimer disease (AD) brain, the present studies were initiated to distinguish between a unique primary structure of the AD-specific amyloid precursor mRNA vis a vis other determinants that may affect amyloid levels. Previous molecular cloning experiments focused on amyloid derived from sources other than AD cases. In the present work, the authors cloned and characterized amyloid cDNA derived directly from AD brain mRNA. Poly(A)/sup +/ RNA from AD cortices was used for the preparation of lambdagt11 recombinant cDNA libraries. An insert of 1564 nucleotides was isolated that included the ..beta..-amyloid domain and corresponded to 75% of the coding region and approx. = 70% of the 3'-noncoding region of the fetal precursor amyloid cDNA reported by others. On RNA blots, the AD amyloid mRNA consisted of a doublet of 3.2 and 3.4 kilobases. In control and AD cases, the amyloid mRNA levels were nonuniform and were independent of glial-specific mRNA levels. Based on the sequence analysis data, they conclude that a segment of the amyloid gene is expressed in the AD cortex as a high molecular weight precursor mRNA with major coding and 3'-noncoding regions that are identical to the fetal brain gene product.

  15. HIV Excess Cancers JNCI

    Cancer.gov

    In 2010, an estimated 7,760 new cancers were diagnosed among the nearly 900,000 Americans known to be living with HIV infection. According to the first comprehensive study in the United States, approximately half of these cancers were in excess of what wo

  16. Bacterial Chaperones CsgE and CsgC Differentially Modulate Human α-Synuclein Amyloid Formation via Transient Contacts

    PubMed Central

    Evans, Margery L.; Jain, Neha; Götheson, Anna; Åden, Jörgen; Chapman, Matthew R.; Almqvist, Fredrik; Wittung-Stafshede, Pernilla

    2015-01-01

    Amyloid formation is historically associated with cytotoxicity, but many organisms produce functional amyloid fibers (e.g., curli) as a normal part of cell biology. Two E. coli genes in the curli operon encode the chaperone-like proteins CsgC and CsgE that both can reduce in vitro amyloid formation by CsgA. CsgC was also found to arrest amyloid formation of the human amyloidogenic protein α-synuclein, which is involved in Parkinson’s disease. Here, we report that the inhibitory effects of CsgC arise due to transient interactions that promote the formation of spherical α-synuclein oligomers. We find that CsgE also modulates α-synuclein amyloid formation through transient contacts but, in contrast to CsgC, CsgE accelerates α-synuclein amyloid formation. Our results demonstrate the significance of transient protein interactions in amyloid regulation and emphasize that the same protein may inhibit one type of amyloid while accelerating another. PMID:26465894

  17. Histological Staining of Amyloid and Pre-Amyloid Peptides and Proteins in Mouse Tissue

    PubMed Central

    Rajamohamedsait, Hameetha B.; Sigurdsson, Einar M.

    2013-01-01

    The increased availability of transgenic mouse models for studying human diseases has shifted the focus of many laboratories from in vitro to in vivo assays. Herein, methods are described to allow investigators to obtain well preserved mouse tissue to be stained with the standard histological dyes for amyloid, Congo Red and Thioflavin S. These sections can as well be used for immunohistological procedures that allow detection of tissue amyloid and pre-amyloid, such as those composed of the amyloid-β peptide, the tau protein, and the islet amyloid polypeptide. PMID:22528106

  18. The influence of biological and technical factors on quantitative analysis of amyloid PET: Points to consider and recommendations for controlling variability in longitudinal data.

    PubMed

    Schmidt, Mark E; Chiao, Ping; Klein, Gregory; Matthews, Dawn; Thurfjell, Lennart; Cole, Patricia E; Margolin, Richard; Landau, Susan; Foster, Norman L; Mason, N Scott; De Santi, Susan; Suhy, Joyce; Koeppe, Robert A; Jagust, William

    2015-09-01

    In vivo imaging of amyloid burden with positron emission tomography (PET) provides a means for studying the pathophysiology of Alzheimer's and related diseases. Measurement of subtle changes in amyloid burden requires quantitative analysis of image data. Reliable quantitative analysis of amyloid PET scans acquired at multiple sites and over time requires rigorous standardization of acquisition protocols, subject management, tracer administration, image quality control, and image processing and analysis methods. We review critical points in the acquisition and analysis of amyloid PET, identify ways in which technical factors can contribute to measurement variability, and suggest methods for mitigating these sources of noise. Improved quantitative accuracy could reduce the sample size necessary to detect intervention effects when amyloid PET is used as a treatment end point and allow more reliable interpretation of change in amyloid burden and its relationship to clinical course. PMID:25457431

  19. The otherness of sexuality: excess.

    PubMed

    Stein, Ruth

    2008-03-01

    The present essay, the second of a series of three, aims at developing an experience-near account of sexuality by rehabilitating the idea of excess and its place in sexual experience. It is suggested that various types of excess, such as excess of excitation (Freud), the excess of the other (Laplanche), excess beyond symbolization and the excess of the forbidden object of desire (Leviticus; Lacan) work synergistically to constitute the compelling power of sexuality. In addition to these notions, further notions of excess touch on its transformative potential. Such notions address excess that shatters psychic structures and that is actively sought so as to enable new ones to evolve (Bersani). Work is quoted that regards excess as a way of dealing with our lonely, discontinuous being by using the "excessive" cosmic energy circulating through us to achieve continuity against death (Bataille). Two contemporary analytic thinkers are engaged who deal with the object-relational and intersubjective vicissitudes of excess. PMID:18430702

  20. The amyloid in familial amyloid cardiomyopathy of Danish origin is related to pre-albumin.

    PubMed Central

    Husby, G; Ranløv, P J; Sletten, K; Marhaug, G

    1985-01-01

    Amyloid obtained from the myocardium of a patient (Han) with familial amyloid cardiomyopathy of Danish origin was studied. Gel filtration and electrophoresis of purified and denatured amyloid fibrils Han revealed various fractions ranging in mol. wt from 40,000 to 8,000 daltons. Amyloid Han and fractions reacted with an antiserum against amyloid Han showing a reaction of identity with each other; partial identity between Han and human pre-albumin was observed, while no reaction was seen with AA or AL proteins. Cardiac tissue sections from Han showed reactivity with antisera to amyloid Han, pre-albumin and protein AP, but not with anti-AA or anti-AL in indirect immunofluorescence. Amino acid composition and sequence studies of a protein fraction of amyloid Han with mol. wt 15,000 daltons confirmed the structural relationship with pre-albumin. Images Fig. 2 Fig. 3 PMID:3924450

  1. The amyloid in familial amyloid cardiomyopathy of Danish origin is related to pre-albumin.

    PubMed

    Husby, G; Ranløv, P J; Sletten, K; Marhaug, G

    1985-04-01

    Amyloid obtained from the myocardium of a patient (Han) with familial amyloid cardiomyopathy of Danish origin was studied. Gel filtration and electrophoresis of purified and denatured amyloid fibrils Han revealed various fractions ranging in mol. wt from 40,000 to 8,000 daltons. Amyloid Han and fractions reacted with an antiserum against amyloid Han showing a reaction of identity with each other; partial identity between Han and human pre-albumin was observed, while no reaction was seen with AA or AL proteins. Cardiac tissue sections from Han showed reactivity with antisera to amyloid Han, pre-albumin and protein AP, but not with anti-AA or anti-AL in indirect immunofluorescence. Amino acid composition and sequence studies of a protein fraction of amyloid Han with mol. wt 15,000 daltons confirmed the structural relationship with pre-albumin. PMID:3924450

  2. Amyloid-first and neurodegeneration-first profiles characterize incident amyloid PET positivity

    PubMed Central

    Wiste, Heather J.; Weigand, Stephen D.; Knopman, David S.; Lowe, Val; Vemuri, Prashanthi; Mielke, Michelle M.; Jones, David T.; Senjem, Matthew L.; Gunter, Jeffrey L.; Gregg, Brian E.; Pankratz, Vernon S.; Petersen, Ronald C.

    2013-01-01

    Objective: To estimate the incidence of and to characterize cognitive and imaging findings associated with incident amyloid PET positivity. Methods: Cognitively normal (CN) participants in the Mayo Clinic Study of Aging who had 2 or more serial imaging assessments, which included amyloid PET, FDG-PET, and MRI at each time point, were eligible for analysis (n = 207). Twelve subjects with Alzheimer disease dementia were included for comparison. Results: Of the 123 CN participants who were amyloid-negative at baseline, 26 met criteria for incident amyloid PET positivity. Compared to the 69 subjects who remained stable amyloid-negative, on average these 26 did not differ on any imaging, demographic, or cognitive variables except amyloid PET (by definition) and task-free functional connectivity, which at baseline was greater in the incident amyloid-positive group. Eleven of the 26 incident amyloid-positive subjects had abnormal hippocampal volume, FDG-PET, or both at baseline. Conclusions: The incidence of amyloid PET positivity is approximately 13% per year among CN participants over age 70 sampled from a population-based cohort. In 15/26 (58%), incident amyloid positivity occurred prior to abnormalities in FDG-PET and hippocampal volume. However, 11/26 (42%) incident amyloid-positive subjects had evidence of neurodegeneration prior to incident amyloid positivity. These 11 could be subjects with combinations of preexisting non-Alzheimer pathophysiologies and tau-mediated neurodegeneration who newly entered the amyloid pathway. Our findings suggest that both “amyloid-first” and “neurodegeneration-first” biomarker profile pathways to preclinical AD exist. PMID:24132377

  3. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation

    PubMed Central

    Mander, Bryce A.; Marks, Shawn M.; Vogel, Jacob W.; Rao, Vikram; Lu, Brandon; Saletin, Jared M.; Ancoli-Israel, Sonia; Jagust, William J.; Walker, Matthew P.

    2015-01-01

    Independent evidence associates β-amyloid pathology with both NREM sleep disruption and memory impairment in older adults. However, whether the influence of β-amyloid pathology on hippocampus-dependent memory is, in part, driven by impairments of NREM slow wave activity (SWA) and associated overnight memory consolidation is unknown. Here, we show that β-amyloid burden within medial prefrontal cortex (mPFC) is significantly correlated with the severity of impairment in NREM SWA generation. Moreover, reduced NREM SWA generation was further associated with impaired overnight memory consolidation and impoverished hippocampal-neocortical memory transformation. Furthermore, structural equation models revealed that the association between mPFC β-amyloid pathology and impaired hippocampus-dependent memory consolidation is not direct, but instead, statistically depends on the intermediary factor of diminished NREM SWA. By linking β-amyloid pathology with impaired NREM SWA, these data implicate sleep disruption as a novel mechanistic pathway through which β-amyloid pathology may contribute to hippocampus-dependent cognitive decline in the elderly. PMID:26030850

  4. Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein.

    PubMed

    Ben Halima, Saoussen; Mishra, Sabyashachi; Raja, K Muruga Poopathi; Willem, Michael; Baici, Antonio; Simons, Kai; Brüstle, Oliver; Koch, Philipp; Haass, Christian; Caflisch, Amedeo; Rajendran, Lawrence

    2016-03-01

    Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neuregulin. We report that β-secretase has a higher affinity for Neuregulin than it does for APP. Kinetic studies demonstrate that the affinities and catalytic efficiencies of β-secretase are higher toward non-amyloid substrates than toward APP. We show that non-amyloid substrates are processed by β-secretase in an endocytosis-independent manner. Exploiting this compartmentalization of substrates, we specifically target the endosomal β-secretase by an endosomally targeted β-secretase inhibitor, which blocked cleavage of APP but not non-amyloid substrates in many cell systems, including induced pluripotent stem cell (iPSC)-derived neurons. β-secretase inhibitors can be designed to specifically inhibit the Alzheimer process, enhancing their potential as AD therapeutics without undesired side effects. PMID:26923602

  5. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation.

    PubMed

    Mander, Bryce A; Marks, Shawn M; Vogel, Jacob W; Rao, Vikram; Lu, Brandon; Saletin, Jared M; Ancoli-Israel, Sonia; Jagust, William J; Walker, Matthew P

    2015-07-01

    Independent evidence associates β-amyloid pathology with both non-rapid eye movement (NREM) sleep disruption and memory impairment in older adults. However, whether the influence of β-amyloid pathology on hippocampus-dependent memory is, in part, driven by impairments of NREM slow wave activity (SWA) and associated overnight memory consolidation is unknown. Here we show that β-amyloid burden in medial prefrontal cortex (mPFC) correlates significantly with the severity of impairment in NREM SWA generation. Moreover, reduced NREM SWA generation was further associated with impaired overnight memory consolidation and impoverished hippocampal-neocortical memory transformation. Furthermore, structural equation models revealed that the association between mPFC β-amyloid pathology and impaired hippocampus-dependent memory consolidation was not direct, but instead statistically depended on the intermediary factor of diminished NREM SWA. By linking β-amyloid pathology with impaired NREM SWA, these data implicate sleep disruption as a mechanistic pathway through which β-amyloid pathology may contribute to hippocampus-dependent cognitive decline in the elderly. PMID:26030850

  6. Specific Amyloid β Clearance by a Catalytic Antibody Construct*

    PubMed Central

    Planque, Stephanie A.; Nishiyama, Yasuhiro; Sonoda, Sari; Lin, Yan; Taguchi, Hiroaki; Hara, Mariko; Kolodziej, Steven; Mitsuda, Yukie; Gonzalez, Veronica; Sait, Hameetha B. R.; Fukuchi, Ken-ichiro; Massey, Richard J.; Friedland, Robert P.; O'Nuallain, Brian; Sigurdsson, Einar M.; Paul, Sudhir

    2015-01-01

    Classical immunization methods do not generate catalytic antibodies (catabodies), but recent findings suggest that the innate antibody repertoire is a rich catabody source. We describe the specificity and amyloid β (Aβ)-clearing effect of a catabody construct engineered from innate immunity principles. The catabody recognized the Aβ C terminus noncovalently and hydrolyzed Aβ rapidly, with no reactivity to the Aβ precursor protein, transthyretin amyloid aggregates, or irrelevant proteins containing the catabody-sensitive Aβ dipeptide unit. The catabody dissolved preformed Aβ aggregates and inhibited Aβ aggregation more potently than an Aβ-binding IgG. Intravenous catabody treatment reduced brain Aβ deposits in a mouse Alzheimer disease model without inducing microgliosis or microhemorrhages. Specific Aβ hydrolysis appears to be an innate immune function that could be applied for therapeutic Aβ removal. PMID:25724648

  7. Early Detection of Autism (ASD) by a Non-invasive Quick Measurement of Markedly Reduced Acetylcholine & DHEA and Increased β-Amyloid (1-42), Asbestos (Chrysotile), Titanium Dioxide, Al, Hg & often Coexisting Virus Infections (CMV, HPV 16 and 18), Bacterial Infections etc. in the Brain and Corresponding Safe Individualized Effective Treatment.

    PubMed

    Omura, Yoshiaki; Lu, Dominic; Jones, Marilyn K; Nihrane, Ahdallah; Duvvi, Harsha; Shimotsuura, Yasuhiro; Ohki, Motomu

    2015-01-01

    A brief historical background on Autism & some of the important symptoms associated with Autism are summarized. Using strong Electro Magnetic Field Resonance Phenomenon between 2 identical molecules with identical weight (which received U.S. Patent) non-invasively & rapidly we can detect various molecules including neurotransmitters, bacteria, virus, fungus, metals & abnormal molecules. Simple non- invasive measurement of various molecules through pupils & head of diagnosed or suspected Autism patients indicated that in Autism patients following changes were often found: 1) Acetylcholine is markedly reduced; 2) Alzheimer's disease markers (i.e. β-Amyloid (1-42), Tau Protein, Apolipoprotein (Apo E4)) are markedly increased; 3) Chrysotile Asbestos is increased; 4) Titanium Dioxide (TiO2) is moderately increased; 5) Al is moderately increased; 6) Hg is moderately increased; 7) Dopamine, Serotonin & GABA are significantly reduced (up to about 1/10 of normal); 8) Often viral infections (such as CMV, HHV-6, HPV-16, HPV-18, etc.), and Bacterial infections (such as Chlamydia trachomatis, Mycobacterium TB, Borrelia Burgdorferi, etc.) coexist. Research by others on Autism spectrum disorder (ASD) shows that it is a group of complex neurodevelopmental disorders, with about 70% of ASD patients also suffering from gastro-intestinal problems. While Alzheimer disease (AD) is characterized by formation of 1) Amyloid plaques, 2) Neurofibrillary tangles inside of neurons, and 3) Loss of connections between neurons. More than 90% of AD develops in people over the age of 65. These 3 characteristics often progressively worsen over time. Although Autism Spectrum Disorder and Alzheimer's disease are completely different diseases they have some similar biochemical changes. Eight examples of such measurement & analysis are shown for comparison. Most of Autism patients improved significantly by removing the source or preventing intake of Asbestos, TiO2, Al & Hg or enhancing urinary output

  8. Chiral recognition in amyloid fiber growth.

    PubMed

    Torbeev, Vladimir; Grogg, Marcel; Ruiz, Jérémy; Boehringer, Régis; Schirer, Alicia; Hellwig, Petra; Jeschke, Gunnar; Hilvert, Donald

    2016-05-01

    Insoluble amyloid fibers represent a pathological signature of many human diseases. To treat such diseases, inhibition of amyloid formation has been proposed as a possible therapeutic strategy. d-Peptides, which possess high proteolytic stability and lessened immunogenicity, are attractive candidates in this context. However, a molecular understanding of chiral recognition phenomena for d-peptides and l-amyloids is currently incomplete. Here we report experiments on amyloid growth of individual enantiomers and their mixtures for two distinct polypeptide systems of different length and structural organization: a 44-residue covalently-linked dimer derived from a peptide corresponding to the [20-41]-fragment of human β2-microglobulin (β2m) and the 99-residue full-length protein. For the dimeric [20-41]β2m construct, a combination of electron paramagnetic resonance of nitroxide-labeled constructs and (13) C-isotope edited FT-IR spectroscopy of (13) C-labeled preparations was used to show that racemic mixtures precipitate as intact homochiral fibers, i.e. undergo spontaneous Pasteur-like resolution into a mixture of left- and right-handed amyloids. In the case of full-length β2m, the presence of the mirror-image d-protein affords morphologically distinct amyloids that are composed largely of enantiopure domains. Removal of the l-component from hybrid amyloids by proteolytic digestion results in their rapid transformation into characteristic long straight d-β2m amyloids. Furthermore, the full-length d-enantiomer of β2m was found to be an efficient inhibitor of l-β2m amyloid growth. This observation highlights the potential of longer d-polypeptides for future development into inhibitors of amyloid propagation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:26929241

  9. Amyloid beta peptide immunotherapy in Alzheimer disease.

    PubMed

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation. PMID:25459121

  10. Excess flow shutoff valve

    DOEpatents

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  11. Deficiency in either COX-1 or COX-2 genes does not affect amyloid beta protein burden in amyloid precursor protein transgenic mice.

    PubMed

    Park, Sun Ah; Chevallier, Nathalie; Tejwani, Karishma; Hung, Mary M; Maruyama, Hiroko; Golde, Todd E; Koo, Edward H

    2016-09-01

    Epidemiologic studies indicate that chronic use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with a lower risk for developing Alzheimer's disease (AD). Because the primary mode of action of NSAIDs is to inhibit cyclooxygenase (COX) activity, it has been proposed that perturbed activity of COX-1 or COX-2 contributes to AD pathogenesis. To test the role of COX-1 or COX-2 in amyloid deposition and amyloid-associated inflammatory changes, we examined amyloid precursor protein (APP) transgenic mice in the context of either COX-1 or COX-2 deficiency. Our studies showed that loss of either COX-1 or COX-2 gene did not alter amyloid burden in brains of the APP transgenic mice. However, one marker of microglial activation (CD45) was decreased in brains of COX-1 deficient/APP animals and showed a strong trend in reduction in COX-2 deficient/APP animals. These results suggest that COX activity and amyloid deposition in brain are likely independent processes. Further, if NSAIDs do causally reduce the risks of AD, then our findings indicate that the mechanisms are likely not due primarily to their inhibition on COX or γ-secretase modulation activity, the latter reported recently after acute dosing of ibuprofen in humans and nonhuman primates. PMID:27425247

  12. Loss of Metal Ions, Disulfide Reduction and Mutations Related to Familial ALS Promote Formation of Amyloid-Like Aggregates from Superoxide Dismutase

    PubMed Central

    Oztug Durer, Zeynep A.; Cohlberg, Jeffrey A.; Dinh, Phong; Padua, Shelby; Ehrenclou, Krista; Downes, Sean; Tan, James K.; Nakano, Yoko; Bowman, Christopher J.; Hoskins, Jessica L.; Kwon, Chuhee; Mason, Andrew Z.; Rodriguez, Jorge A.; Doucette, Peter A.; Shaw, Bryan F.; Valentine, Joan Selverstone

    2009-01-01

    Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (FALS). Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1) formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1. PMID:19325915

  13. Intermediate Tyrosyl Radical and Amyloid Structure in Peroxide-Activated Cytoglobin.

    PubMed

    Ferreira, Juliana C; Marcondes, Marcelo F; Icimoto, Marcelo Y; Cardoso, Thyago H S; Tofanello, Aryane; Pessoto, Felipe S; Miranda, Erica G A; Prieto, Tatiana; Nascimento, Otaciro R; Oliveira, Vitor; Nantes, Iseli L

    2015-01-01

    We characterized the peroxidase mechanism of recombinant rat brain cytoglobin (Cygb) challenged by hydrogen peroxide, tert-butylhydroperoxide and by cumene hydroperoxide. The peroxidase mechanism of Cygb is similar to that of myoglobin. Cygb challenged by hydrogen peroxide is converted to a Fe4+ oxoferryl π cation, which is converted to Fe4+ oxoferryl and tyrosyl radical detected by direct continuous wave-electron paramagnetic resonance and by 3,5-dibromo-4-nitrosobenzene sulfonate spin trapping. When organic peroxides are used as substrates at initial reaction times, and given an excess of peroxide present, the EPR signals of the corresponding peroxyl radicals precede those of the direct tyrosyl radical. This result is consistent with the use of peroxide as a reducing agent for the recycling of Cygb high-valence species. Furthermore, we found that the Cygb oxidation by peroxides leads to the formation of amyloid fibrils. This result suggests that Cygb possibly participates in the development of degenerative diseases; our findings also support the possible biological role of Cygb related to peroxidase activity. PMID:26312997

  14. Intermediate Tyrosyl Radical and Amyloid Structure in Peroxide-Activated Cytoglobin

    PubMed Central

    Ferreira, Juliana C.; Marcondes, Marcelo F.; Icimoto, Marcelo Y.; Cardoso, Thyago H. S.; Tofanello, Aryane; Pessoto, Felipe S.; Miranda, Erica G. A.; Prieto, Tatiana; Nascimento, Otaciro R.; Oliveira, Vitor; Nantes, Iseli L.

    2015-01-01

    We characterized the peroxidase mechanism of recombinant rat brain cytoglobin (Cygb) challenged by hydrogen peroxide, tert-butylhydroperoxide and by cumene hydroperoxide. The peroxidase mechanism of Cygb is similar to that of myoglobin. Cygb challenged by hydrogen peroxide is converted to a Fe4+ oxoferryl π cation, which is converted to Fe4+ oxoferryl and tyrosyl radical detected by direct continuous wave-electron paramagnetic resonance and by 3,5-dibromo-4-nitrosobenzene sulfonate spin trapping. When organic peroxides are used as substrates at initial reaction times, and given an excess of peroxide present, the EPR signals of the corresponding peroxyl radicals precede those of the direct tyrosyl radical. This result is consistent with the use of peroxide as a reducing agent for the recycling of Cygb high-valence species. Furthermore, we found that the Cygb oxidation by peroxides leads to the formation of amyloid fibrils. This result suggests that Cygb possibly participates in the development of degenerative diseases; our findings also support the possible biological role of Cygb related to peroxidase activity. PMID:26312997

  15. Nucleation of polymorphic amyloid fibrils.

    PubMed

    Auer, Stefan

    2015-03-10

    One and the same protein can self-assemble into amyloid fibrils with different morphologies. The phenomenon of fibril polymorphism is relevant biologically because different fibril polymorphs can have different toxicity, but there is no tool for predicting which polymorph forms and under what conditions. Here, we consider the nucleation of polymorphic amyloid fibrils occurring by direct polymerization of monomeric proteins into fibrils. We treat this process within the framework of our newly developed nonstandard nucleation theory, which allows prediction of the concentration dependence of the nucleation rate for different fibril polymorphs. The results highlight that the concentration dependence of the nucleation rate is closely linked with the protein solubility and a threshold monomer concentration below which fibril formation becomes biologically irrelevant. The relation between the nucleation rate, the fibril solubility, the threshold concentration, and the binding energies of the fibril building blocks within fibrils might prove a valuable tool for designing new experiments to control the formation of particular fibril polymorphs. PMID:25762329

  16. Amyloid-Associated Nucleic Acid Hybridisation

    PubMed Central

    Braun, Sebastian; Humphreys, Christine; Fraser, Elizabeth; Brancale, Andrea; Bochtler, Matthias; Dale, Trevor C.

    2011-01-01

    Nucleic acids promote amyloid formation in diseases including Alzheimer's and Creutzfeldt-Jakob disease. However, it remains unclear whether the close interactions between amyloid and nucleic acid allow nucleic acid secondary structure to play a role in modulating amyloid structure and function. Here we have used a simplified system of short basic peptides with alternating hydrophobic and hydrophilic amino acid residues to study nucleic acid - amyloid interactions. Employing biophysical techniques including X-ray fibre diffraction, circular dichroism spectroscopy and electron microscopy we show that the polymerized charges of nucleic acids concentrate and enhance the formation of amyloid from short basic peptides, many of which would not otherwise form fibres. In turn, the amyloid component binds nucleic acids and promotes their hybridisation at concentrations below their solution Kd, as shown by time-resolved FRET studies. The self-reinforcing interactions between peptides and nucleic acids lead to the formation of amyloid nucleic acid (ANA) fibres whose properties are distinct from their component polymers. In addition to their importance in disease and potential in engineering, ANA fibres formed from prebiotically-produced peptides and nucleic acids may have played a role in early evolution, constituting the first entities subject to Darwinian evolution. PMID:21625537

  17. Plasma β-amyloid in Alzheimer's disease and vascular disease.

    PubMed

    Janelidze, Shorena; Stomrud, Erik; Palmqvist, Sebastian; Zetterberg, Henrik; van Westen, Danielle; Jeromin, Andreas; Song, Linan; Hanlon, David; Tan Hehir, Cristina A; Baker, David; Blennow, Kaj; Hansson, Oskar

    2016-01-01

    Implementation of amyloid biomarkers in clinical practice would be accelerated if such biomarkers could be measured in blood. We analyzed plasma levels of Aβ42 and Aβ40 in a cohort of 719 individuals (the Swedish BioFINDER study), including patients with subjective cognitive decline (SCD), mild cognitive impairment (MCI), Alzheimer's disease (AD) dementia and cognitively healthy elderly, using a ultrasensitive immunoassay (Simoa platform). There were weak positive correlations between plasma and cerebrospinal fluid (CSF) levels for both Aβ42 and Aβ40, and negative correlations between plasma Aβ42 and neocortical amyloid deposition (measured with PET). Plasma levels of Aβ42 and Aβ40 were reduced in AD dementia compared with all other diagnostic groups. However, during the preclinical or prodromal AD stages (i.e. in amyloid positive controls, SCD and MCI) plasma concentration of Aβ42 was just moderately decreased whereas Aβ40 levels were unchanged. Higher plasma (but not CSF) levels of Aβ were associated with white matter lesions, cerebral microbleeds, hypertension, diabetes and ischemic heart disease. In summary, plasma Aβ is overtly decreased during the dementia stage of AD indicating that prominent changes in Aβ metabolism occur later in the periphery compared to the brain. Further, increased levels of Aβ in plasma are associated with vascular disease. PMID:27241045

  18. Regulation of amyloid precursor protein processing by serotonin signaling.

    PubMed

    Pimenova, Anna A; Thathiah, Amantha; De Strooper, Bart; Tesseur, Ina

    2014-01-01

    Proteolytic processing of the amyloid precursor protein (APP) by the β- and γ-secretases releases the amyloid-β peptide (Aβ), which deposits in senile plaques and contributes to the etiology of Alzheimer's disease (AD). The α-secretase cleaves APP in the Aβ peptide sequence to generate soluble APPα (sAPPα). Upregulation of α-secretase activity through the 5-hydroxytryptamine 4 (5-HT4) receptor has been shown to reduce Aβ production, amyloid plaque load and to improve cognitive impairment in transgenic mouse models of AD. Consequently, activation of 5-HT4 receptors following agonist stimulation is considered to be a therapeutic strategy for AD treatment; however, the signaling cascade involved in 5-HT4 receptor-stimulated proteolysis of APP remains to be determined. Here we used chemical and siRNA inhibition to identify the proteins which mediate 5-HT4d receptor-stimulated α-secretase activity in the SH-SY5Y human neuronal cell line. We show that G protein and Src dependent activation of phospholipase C are required for α-secretase activity, while, unexpectedly, adenylyl cyclase and cAMP are not involved. Further elucidation of the signaling pathway indicates that inositol triphosphate phosphorylation and casein kinase 2 activation is also a prerequisite for α-secretase activity. Our findings provide a novel route to explore the treatment of AD through 5-HT4 receptor-induced α-secretase activation. PMID:24466315

  19. Magnetic Fluids Have Ability to Decrease Amyloid Aggregation Associated with Amyloid-Related Diseases

    NASA Astrophysics Data System (ADS)

    Antosova, Andrea; Koneracka, Martina; Siposova, Katarina; Zavisova, Vlasta; Daxnerova, Zuzana; Vavra, Ivo; Fabian, Martin; Kopcansky, Peter; Gazova, Zuzana

    2010-12-01

    At least twenty human proteins can fold abnormally to form pathological deposits that are associated with several amyloid-related diseases. We have investigated the effect of four magnetic fluids (MFs)—electrostatically stabilized Fe3O4 magnetic nanoparticles (MF1) and sterically stabilized Fe3O4 magnetic nanoparticles by sodium oleate (MF2, MF3 and MF4) with adsorbed BSA (MF2) or dextran (MF4)—on amyloid aggregation of two proteins, human insulin and chicken egg lysozyme. The morphology, particle size and size distribution of the prepared magnetic fluids were characterized. We have found that MFs are able to decrease amyloid aggregation of both studied proteins and the extent of depolymerization depended on the MF properties. The most effective reduction was observed for MF4 as 90% decrease of amyloids was detected for insulin and lysozyme amyloid aggregates. Our findings indicate that MFs have potential to be used for treatment of amyloid diseases.

  20. All-atom Simulation of Amyloid Aggregates

    NASA Astrophysics Data System (ADS)

    Berhanu, Workalemahu M.; Alred, Erik J.; Bernhardt, Nathan A.; Hansmann, Ulrich H. E.

    Molecular simulations are now commonly used to complement experiments in the investigation of amyloid formation and their role in human diseases. While various simulations based on enhanced sampling techniques are used in amyloid formation simulations, this article will focus on those using standard atomistic simulations to evaluate the stability of fibril models. Such studies explore the limitations that arise from the choice of force field or polymorphism; and explore the stability of in vivo and in vitro forms of Aβ fibril aggregates, and the role of heterologous seeding as a link between different amyloid diseases.

  1. Amyloid domains in the cell nucleus controlled by nucleoskeletal protein lamin B1 reveal a new pathway of mercury neurotoxicity

    PubMed Central

    Arnhold, Florian; Gührs, Karl-Heinz

    2015-01-01

    Mercury (Hg) is a bioaccumulating trace metal that globally circulates the atmosphere and waters in its elemental, inorganic and organic chemical forms. While Hg represents a notorious neurotoxicant, the underlying cellular pathways are insufficiently understood. We identify amyloid protein aggregation in the cell nucleus as a novel pathway of Hg-bio-interactions. By mass spectrometry of purified protein aggregates, a subset of spliceosomal components and nucleoskeletal protein lamin B1 were detected as constituent parts of an Hg-induced nuclear aggregome network. The aggregome network was located by confocal imaging of amyloid-specific antibodies and dyes to amyloid cores within splicing-speckles that additionally recruit components of the ubiquitin-proteasome system. Hg significantly enhances global proteasomal activity in the nucleus, suggesting that formation of amyloid speckles plays a role in maintenance of protein homeostasis. RNAi knock down showed that lamin B1 for its part regulates amyloid speckle formation and thus likewise participates in nuclear protein homeostasis. As the Hg-induced cascade of interactions between the nucleoskeleton and protein homeostasis reduces neuronal signalling, amyloid fibrillation in the cell nucleus is introduced as a feature of Hg-neurotoxicity that opens new avenues of future research. Similar to protein aggregation events in the cytoplasm that are controlled by the cytoskeleton, amyloid fibrillation of nuclear proteins may be driven by the nucleoskeleton. PMID:25699204

  2. Amyloid imaging as a surrogate marker in clinical trials in Alzheimer's disease.

    PubMed

    Scheinin, Noora M; Scheinin, Mika; Rinne, J O

    2011-06-01

    New treatments against Alzheimer's disease (AD) may be just around the corner. A common approach in developing these disease-modifying treatments is to target beta-amyloid (Aβ). Aβ is excessively present in the AD brain and it likely starts to accumulate long before clinical symptoms become apparent. As Aβ is hypothesized to be the causative agent in the pathophysiological cascade leading to progressive neurodegeneration in AD, efforts to e.g. prevent its formation, to promote its clearance from brain tissue, and to inhibit its toxicity, are warranted. This quest for an effective AD treatment needs valid biomarker outcome measures, for instance because clinical benefit takes long to present itself and is difficult to measure, and also because treatment would likely be most efficacious if administered already before symptoms occur. In vivo amyloid imaging has evolved in the past decade to be a feasible means to monitor brain Aβ deposits in the human brain. It effectively differentiates AD patients from healthy age-matched controls, and also shows promise in the early, even presymptomatic, detection of AD. Amyloid imaging will likely also broaden and deepen our understanding of AD and other neurodegenerative disorders. It could prove valuable e.g. in subject selection and stratification for clinical trials, in safety and proof-of-concept assessments, and in monitoring of treatment effects. This article aims to review the motives, prerequisites, potential, and challenges of using amyloid imaging as a surrogate marker in clinical therapeutic trials in AD. PMID:21532540

  3. Fate of excess sulfur in higher plants

    SciTech Connect

    Rennenberg, H.

    1984-01-01

    The mechanisms which have evolved in higher plants to cope with excess sulfur in their environments are reviewed. Survival in a sulfur-rich environment is seldom achieved through avoidance of the intake of sulfur. The presence of excess sulfur in the soil or in the air usually results in an intake of excess sulfur into plants. An immediate injury by the excess sulfur taken up is, however, prevented by a series of metabolic processes. Storage of excess sulfur in a metabolically inactive compartment, i.e. the vacuole, appears to occur in most plants. The finding of a storage of glutathione is several investigations suggests that with increasing accumulation of sulfate its reduction also increases. Under these conditions the cysteine concentration in different compartments of the cell may still be maintained at a low level by the incorporation of the excess cysteine synthesized into glutathione. This peptide appears to be the storage form of reduced sulfur in higher plants. 167 references, 2 figures.

  4. Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer's disease and mild cognitive impairment.

    PubMed

    Mattsson, Niklas; Tosun, Duygu; Insel, Philip S; Simonson, Alix; Jack, Clifford R; Beckett, Laurel A; Donohue, Michael; Jagust, William; Schuff, Norbert; Weiner, Michael W

    2014-05-01

    Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to

  5. The Luminescent Oligothiophene p-FTAA Converts Toxic Aβ1–42 Species into Nontoxic Amyloid Fibers with Altered Properties*

    PubMed Central

    Civitelli, Livia; Sandin, Linnea; Nelson, Erin; Khattak, Sikander Iqbal; Kågedal, Katarina

    2016-01-01

    Aggregation of the amyloid-β peptide (Aβ) in the brain leads to the formation of extracellular amyloid plaques, which is one of the pathological hallmarks of Alzheimer disease (AD). It is a general hypothesis that soluble prefibrillar assemblies of the Aβ peptide, rather than mature amyloid fibrils, cause neuronal dysfunction and memory impairment in AD. Thus, reducing the level of these prefibrillar species by using molecules that can interfere with the Aβ fibrillation pathway may be a valid approach to reduce Aβ cytotoxicity. Luminescent-conjugated oligothiophenes (LCOs) have amyloid binding properties and spectral properties that differ when they bind to protein aggregates with different morphologies and can therefore be used to visualize protein aggregates. In this study, cell toxicity experiments and biophysical studies demonstrated that the LCO p-FTAA was able to reduce the pool of soluble toxic Aβ species in favor of the formation of larger insoluble nontoxic amyloid fibrils, there by counteracting Aβ-mediated cytotoxicity. Moreover, p-FTAA bound to early formed Aβ species and induced a rapid formation of β-sheet structures. These p-FTAA generated amyloid fibrils were less hydrophobic and more resistant to proteolysis by proteinase K. In summary, our data show that p-FTAA promoted the formation of insoluble and stable Aβ species that were nontoxic which indicates that p-FTAA might have therapeutic potential. PMID:26907684

  6. The Luminescent Oligothiophene p-FTAA Converts Toxic Aβ1-42 Species into Nontoxic Amyloid Fibers with Altered Properties.

    PubMed

    Civitelli, Livia; Sandin, Linnea; Nelson, Erin; Khattak, Sikander Iqbal; Brorsson, Ann-Christin; Kågedal, Katarina

    2016-04-22

    Aggregation of the amyloid-β peptide (Aβ) in the brain leads to the formation of extracellular amyloid plaques, which is one of the pathological hallmarks of Alzheimer disease (AD). It is a general hypothesis that soluble prefibrillar assemblies of the Aβ peptide, rather than mature amyloid fibrils, cause neuronal dysfunction and memory impairment in AD. Thus, reducing the level of these prefibrillar species by using molecules that can interfere with the Aβ fibrillation pathway may be a valid approach to reduce Aβ cytotoxicity. Luminescent-conjugated oligothiophenes (LCOs) have amyloid binding properties and spectral properties that differ when they bind to protein aggregates with different morphologies and can therefore be used to visualize protein aggregates. In this study, cell toxicity experiments and biophysical studies demonstrated that the LCO p-FTAA was able to reduce the pool of soluble toxic Aβ species in favor of the formation of larger insoluble nontoxic amyloid fibrils, there by counteracting Aβ-mediated cytotoxicity. Moreover, p-FTAA bound to early formed Aβ species and induced a rapid formation of β-sheet structures. These p-FTAA generated amyloid fibrils were less hydrophobic and more resistant to proteolysis by proteinase K. In summary, our data show that p-FTAA promoted the formation of insoluble and stable Aβ species that were nontoxic which indicates that p-FTAA might have therapeutic potential. PMID:26907684

  7. The multiple mechanisms of amyloid deposition

    PubMed Central

    Mena, Maria A; Rodríguez-Navarro, José A

    2009-01-01

    Amyloid deposition is one of the central neuropathological abnormalities in Alzheimer disease (AD) but it also takes places in many neurodegenerative diseases such as prionic disorders, Huntington's disease (HD) and others. Up to very recently amyloid formation was considered a very slow process of deposition of an abnormal protein due to genetic abnormalities or post-translational modification of the deposited protein. Recent data suggest that the process of amyloidogenesis may be much more rapid in many cases and due to multiple mechanisms. We have found a mouse model of progressive neurodegeneration that resemble motor, behavioral and pathological hallmarks of parkinsonism and tauopathies, but surprisingly, also present amyloid deposits in brain and peripheral organs. Here we review some of these recent works which may provide new insight into the process of formation of amyloid and, perhaps, new ideas for its treatment. PMID:19270506

  8. Amyloid angiopathy and lobar cerebral haemorrhage.

    PubMed Central

    Ishii, N; Nishihara, Y; Horie, A

    1984-01-01

    Seven cases of lobar cerebral haemorrhage due to amyloid angiopathy were found among 60 necropsy cases of intracerebral haemorrhage. Clinically five patients were demented and two had hypertension. Immediately after the onset of stroke there was a high incidence of headache and vomiting, followed by nuchal rigidity. Amyloid angiopathy was most prominent in the cerebral cortex and the leptomeninges. Senile plaques were noted in all cases. One should suspect that a haemorrhage may be due to amyloid angiopathy, when lobar cerebral haemorrhage occurs in an aged, normotensive patient with or without dementia. Surgical evacuation of the haematoma is inadvisable, because of the diffuse nature of amyloid angiopathy, high recurrence rate and less tendency to cause brain stem compression. Images PMID:6502178

  9. Biofilm Inhibitors that Target Amyloid Proteins

    PubMed Central

    Romero, Diego; Sanabria-Valentín, Edgardo; Vlamakis, Hera; Kolter, Roberto

    2012-01-01

    Summary Bacteria establish stable communities, known as biofilms, that are resistant to antimicrobials. Biofilm robustness is due to the presence of an extracellular matrix, which for several species - among them Bacillus subtilis - includes amyloid-like protein fibers. In this work, we show that B. subtilis biofilms can be a simple and reliable tool for screening of molecules with anti-amyloid activity. We identified two molecules, AA-861 and parthenolide, which efficiently inhibited biofilms by preventing the formation of amyloid-like fibers. We found that parthenolide also disrupted pre-established biofilms. These molecules also impeded the formation of biofilms of other bacterial species that secrete amyloid proteins, such as Bacillus cereus and Escherichia coli. Furthermore, the identified molecules decreased the conversion of the yeast protein New1 to the prion state in a heterologous host, indicating the broad range of activity of the molecules. PMID:23352144

  10. Polymorphism of Amyloid Fibrils In Vivo.

    PubMed

    Annamalai, Karthikeyan; Gührs, Karl-Heinz; Koehler, Rolf; Schmidt, Matthias; Michel, Henri; Loos, Cornelia; Gaffney, Patricia M; Sigurdson, Christina J; Hegenbart, Ute; Schönland, Stefan; Fändrich, Marcus

    2016-04-01

    Polymorphism is a wide-spread feature of amyloid-like fibrils formed in vitro, but it has so far remained unclear whether the fibrils formed within a patient are also affected by this phenomenon. In this study we show that the amyloid fibrils within a diseased individual can vary considerably in their three-dimensional architecture. We demonstrate this heterogeneity with amyloid fibrils deposited within different organs, formed from sequentially non-homologous polypeptide chains and affecting human or animals. Irrespective of amyloid type or source, we found in vivo fibrils to be polymorphic. These data imply that the chemical principles of fibril assembly that lead to such polymorphism are fundamentally conserved in vivo and in vitro. PMID:26954430

  11. Amyloid Polymorphism: Structural Basis and Neurobiological Relevance

    PubMed Central

    Tycko, Robert

    2015-01-01

    Summary Our understanding of the molecular structures of amyloid fibrils that are associated with neurodegenerative diseases, of mechanisms by which disease-associated peptides and proteins aggregate into fibrils, and of structural properties of aggregation intermediates has advanced considerably in recent years. Detailed molecular structural models for certain fibrils and aggregation intermediates are now available. It is now well established that amyloid fibrils are generally polymorphic at the molecular level, with a given peptide or protein being capable of forming a variety of distinct, self-propagating fibril structures. Recent results from structural studies and from studies involving cell cultures, transgenic animals, and human tissue provide initial evidence that molecular structural variations in amyloid fibrils and related aggregates may correlate with or even produce variations in disease development. This article reviews our current knowledge of the structural and mechanistic aspects of amyloid formation, as well as current evidence for the biological relevance of structural variations. PMID:25950632

  12. Multiphoton absorption in amyloid protein fibres

    NASA Astrophysics Data System (ADS)

    Hanczyc, Piotr; Samoc, Marek; Norden, Bengt

    2013-12-01

    Fibrillization of peptides leads to the formation of amyloid fibres, which, when in large aggregates, are responsible for diseases such as Alzheimer's and Parkinson's. Here, we show that amyloids have strong nonlinear optical absorption, which is not present in native non-fibrillized protein. Z-scan and pump-probe experiments indicate that insulin and lysozyme β-amyloids, as well as α-synuclein fibres, exhibit either two-photon, three-photon or higher multiphoton absorption processes, depending on the wavelength of light. We propose that the enhanced multiphoton absorption is due to a cooperative mechanism involving through-space dipolar coupling between excited states of aromatic amino acids densely packed in the fibrous structures. This finding will provide the opportunity to develop nonlinear optical techniques to detect and study amyloid structures and also suggests that new protein-based materials with sizable multiphoton absorption could be designed for specific applications in nanotechnology, photonics and optoelectronics.

  13. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology.

    PubMed

    Akter, Rehana; Cao, Ping; Noor, Harris; Ridgway, Zachary; Tu, Ling-Hsien; Wang, Hui; Wong, Amy G; Zhang, Xiaoxue; Abedini, Andisheh; Schmidt, Ann Marie; Raleigh, Daniel P

    2016-01-01

    The hormone islet amyloid polypeptide (IAPP, or amylin) plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy. PMID:26649319

  14. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    PubMed Central

    Akter, Rehana; Cao, Ping; Noor, Harris; Ridgway, Zachary; Tu, Ling-Hsien; Wang, Hui; Wong, Amy G.; Zhang, Xiaoxue; Abedini, Andisheh; Schmidt, Ann Marie; Raleigh, Daniel P.

    2016-01-01

    The hormone islet amyloid polypeptide (IAPP, or amylin) plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy. PMID:26649319

  15. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    PubMed

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane. PMID:26673736

  16. Supersaturation-limited and Unlimited Phase Transitions Compete to Produce the Pathway Complexity in Amyloid Fibrillation.

    PubMed

    Adachi, Masayuki; So, Masatomo; Sakurai, Kazumasa; Kardos, József; Goto, Yuji

    2015-07-17

    Although amyloid fibrils and amorphous aggregates are two types of aggregates formed by denatured proteins, their relationship currently remains unclear. We used β2-microglobulin (β2m), a protein responsible for dialysis-related amyloidosis, to clarify the mechanism by which proteins form either amyloid fibrils or amorphous aggregates. When ultrasonication was used to accelerate the spontaneous fibrillation of β2m at pH 2.0, the effects observed depended on ultrasonic power; although stronger ultrasonic power effectively accelerated fibrillation, excessively strong ultrasonic power decreased the amount of fibrils formed, as monitored by thioflavin T fluorescence. An analysis of the products formed indicated that excessively strong ultrasonic power generated fibrillar aggregates that retained β-structures but without high efficiency as seeds. On the other hand, when the spontaneous fibrillation of β2m was induced at higher concentrations of NaCl at pH 2.0 with stirring, amorphous aggregates became more dominant than amyloid fibrils. These apparent complexities in fibrillation were explained comprehensively by a competitive mechanism in which supersaturation-limited reactions competed with supersaturation-unlimited reactions. We link the kinetics of protein aggregation and a conformational phase diagram, in which supersaturation played important roles. PMID:26063798

  17. A Generic Crystallization-like Model That Describes the Kinetics of Amyloid Fibril Formation*♦

    PubMed Central

    Crespo, Rosa; Rocha, Fernando A.; Damas, Ana M.; Martins, Pedro M.

    2012-01-01

    Associated with neurodegenerative disorders such as Alzheimer, Parkinson, or prion diseases, the conversion of soluble proteins into amyloid fibrils remains poorly understood. Extensive “in vitro” measurements of protein aggregation kinetics have been reported, but no consensus mechanism has emerged until now. This contribution aims at overcoming this gap by proposing a theoretically consistent crystallization-like model (CLM) that is able to describe the classic types of amyloid fibrillization kinetics identified in our literature survey. Amyloid conversion represented as a function of time is shown to follow different curve shapes, ranging from sigmoidal to hyperbolic, according to the relative importance of the nucleation and growth steps. Using the CLM, apparently unrelated data are deconvoluted into generic mechanistic information integrating the combined influence of seeding, nucleation, growth, and fibril breakage events. It is notable that this complex assembly of interdependent events is ultimately reduced to a mathematically simple model, whose two parameters can be determined by little more than visual inspection. The good fitting results obtained for all cases confirm the CLM as a good approximation to the generalized underlying principle governing amyloid fibrillization. A perspective is presented on possible applications of the CLM during the development of new targets for amyloid disease therapeutics. PMID:22767606

  18. Amyloid-modifying therapies for Alzheimer’s disease: therapeutic progress and its implications

    PubMed Central

    Milgram, Norton W.

    2010-01-01

    Alzheimer’s disease (AD) is the most prevalent form of dementia, affecting an estimated 4.8 million people in North America. For the past decade, the amyloid cascade hypothesis has dominated the field of AD research. This theory posits that the deposition of amyloid-beta protein (Aβ) in the brain is the key pathologic event in AD, which induces a series of neuropathological changes that manifest as cognitive decline and eventual dementia. Based on this theory, interventions that reduce Aβ burden in the brain would be expected to alleviate both the neuropathological changes and dementia, which characterize AD. Several diverse pharmacological strategies have been developed to accomplish this. These include inhibiting the formation of Aβ, preventing the aggregation of Aβ into insoluble aggregates, preventing the entry of Aβ into the brain from the periphery and enhancing the clearance of Aβ from the central nervous system. To date, no amyloid-modifying therapy has yet been successful in phase 3 clinical trials; however, several trials are currently underway. This article provides a review of the status of amyloid-modifying therapies and the implications for the amyloid cascade hypothesis. PMID:20640545

  19. A generic crystallization-like model that describes the kinetics of amyloid fibril formation.

    PubMed

    Crespo, Rosa; Rocha, Fernando A; Damas, Ana M; Martins, Pedro M

    2012-08-31

    Associated with neurodegenerative disorders such as Alzheimer, Parkinson, or prion diseases, the conversion of soluble proteins into amyloid fibrils remains poorly understood. Extensive "in vitro" measurements of protein aggregation kinetics have been reported, but no consensus mechanism has emerged until now. This contribution aims at overcoming this gap by proposing a theoretically consistent crystallization-like model (CLM) that is able to describe the classic types of amyloid fibrillization kinetics identified in our literature survey. Amyloid conversion represented as a function of time is shown to follow different curve shapes, ranging from sigmoidal to hyperbolic, according to the relative importance of the nucleation and growth steps. Using the CLM, apparently unrelated data are deconvoluted into generic mechanistic information integrating the combined influence of seeding, nucleation, growth, and fibril breakage events. It is notable that this complex assembly of interdependent events is ultimately reduced to a mathematically simple model, whose two parameters can be determined by little more than visual inspection. The good fitting results obtained for all cases confirm the CLM as a good approximation to the generalized underlying principle governing amyloid fibrillization. A perspective is presented on possible applications of the CLM during the development of new targets for amyloid disease therapeutics. PMID:22767606

  20. The polyphenol Oleuropein aglycone hinders the growth of toxic transthyretin amyloid assemblies.

    PubMed

    Leri, Manuela; Nosi, Daniele; Natalello, Antonino; Porcari, Riccardo; Ramazzotti, Matteo; Chiti, Fabrizio; Bellotti, Vittorio; Doglia, Silvia Maria; Stefani, Massimo; Bucciantini, Monica

    2016-04-01

    Transthyretin (TTR) is involved in a subset of familial or sporadic amyloid diseases including senile systemic amyloidosis (SSA), familial amyloid polyneuropathy and cardiomyopathy (FAP/FAC) for which no effective therapy has been found yet. These conditions are characterized by extracellular deposits primarily found in the heart parenchyma and in peripheral nerves whose main component are amyloid fibrils, presently considered the main culprits of cell sufferance. The latter are polymeric assemblies grown from misfolded TTR, either wt or carrying one out of many identified mutations. The recent introduction in the clinical practice of synthetic TTR-stabilizing molecules that reduce protein aggregation provides the rationale to search natural effective molecules able to interfere with TTR amyloid aggregation by hindering the appearance of toxic species or by favoring the growth of harmless aggregates. Here we carried out an in depth biophysical and morphological study on the molecular features of the aggregation of wt- and L55P-TTR involved in SSA or FAP/FAC, respectively, and on the interference with fibril aggregation, stability and toxicity to cardiac HL-1 cells to demonstrate the ability of Oleuropein aglycone (OleA), the main phenolic component of the extra virgin olive oil. We describe the molecular basis of such interference and the resulting reduction of TTR amyloid aggregate cytotoxicity. Our data offer the possibility to validate and optimize the use of OleA or its molecular scaffold to rationally design promising drugs against TTR-related pathologies that could enter a clinical experimental phase. PMID:27012632

  1. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar Aβ phagocytosis

    PubMed Central

    Liu, Zhiqiang; Condello, Carlo; Schain, Aaron; Harb, Roa; Grutzendler, Jaime

    2010-01-01

    In Alzheimer’s disease (AD), amyloid-β (Aβ) deposits are frequently surrounded by activated microglia but the precise role of these cells in disease progression remains unclear. The chemokine receptor CX3CR1 is selectively expressed in microglia and is thought to modulate their activity. To study the specific effects of microglia activation on amyloid pathology in vivo, we crossbred mice lacking CX3CR1 with the Alzheimer’s mouse model CRND8. Surprisingly, we found that CX3CR1 deficient mice had lower brain levels of Aβ40 and Aβ42 and reduced amyloid deposits. Quantification of Aβ within microglia and time-lapse two photon microscopy in live mice revealed that these cells were highly effective at the uptake of protofibrillar amyloid but were incapable of phagocytosis of fibrillar congophilic Aβ. CX3CR1 deletion was associated with increased phagocytic ability which led to greater amyloid content within microglial phagolysosomes. Furthermore, CX3CR1 deficient mice had an increased number of microglia around individual plaques due to higher proliferative rates, which likely contributed to an overall greater phagocytic capacity. CX3CR1 deletion did not affect the degree of neuronal or synaptic damage around plaques despite increased microglia density. Our results demonstrate that microglia can regulate brain Aβ levels and plaque deposition via selective protofibrillar Aβ phagocytosis. Modulation of microglia activity and proliferation by CX3CR1 signaling may represent a therapeutic strategy for AD. PMID:21159979

  2. Carnosine's Effect on Amyloid Fibril Formation and Induced Cytotoxicity of Lysozyme

    PubMed Central

    Wu, Josephine W.; Liu, Kuan-Nan; How, Su-Chun; Chen, Wei-An; Lai, Chia-Min; Liu, Hwai-Shen; Hu, Chaur-Jong; Wang, Steven S. -S.

    2013-01-01

    Carnosine, a common dipeptide in mammals, has previously been shown to dissemble alpha-crystallin amyloid fibrils. To date, the dipeptide's anti-fibrillogensis effect has not been thoroughly characterized in other proteins. For a more complete understanding of carnosine's mechanism of action in amyloid fibril inhibition, we have investigated the effect of the dipeptide on lysozyme fibril formation and induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Our study demonstrates a positive correlation between the concentration and inhibitory effect of carnosine against lysozyme fibril formation. Molecular docking results show carnosine's mechanism of fibrillogenesis inhibition may be initiated by binding with the aggregation-prone region of the protein. The dipeptide attenuates the amyloid fibril-induced cytotoxicity of human neuronal cells by reducing both apoptotic and necrotic cell deaths. Our study provides solid support for carnosine's amyloid fibril inhibitory property and its effect against fibril-induced cytotoxicity in SH-SY5Y cells. The additional insights gained herein may pave way to the discovery of other small molecules that may exert similar effects against amyloid fibril formation and its associated neurodegenerative diseases. PMID:24349167

  3. Nanoliposomes protect against human arteriole endothelial dysfunction induced by β-amyloid peptide.

    PubMed

    Truran, Seth; Weissig, Volkmar; Madine, Jillian; Davies, Hannah A; Guzman-Villanueva, Diana; Franco, Daniel A; Karamanova, Nina; Burciu, Camelia; Serrano, Geidy; Beach, Thomas G; Migrino, Raymond Q

    2016-02-01

    We tested whether nanoliposomes containing phosphatidylcholine, cholesterol and phosphatidic acid (NLPA) prevent β-amyloid 1-42 (Aβ42) fibrillation and Aβ42-induced human arteriole endothelial dysfunction. NLPA abolished Aβ42 fibril formation (thioflavin-T fluorescence/electron microscopy). In ex-vivo human adipose and leptomeningeal arterioles, Aβ42 impaired dilator response to acetylcholine that was reversed by NLPA; this protection was abolished by L-NG-nitroarginine methyl ester. Aβ42 reduced human umbilical vein endothelial cell NO production that was restored by NLPA. Nanoliposomes prevented Aβ42 amyloid formation, reversed Aβ42-induced human microvascular endothelial dysfunction and may be useful in Alzheimer's disease. PMID:26661197

  4. Beyond Amyloid: Getting Real about Non-Amyloid Targets in Alzheimer’s Disease

    PubMed Central

    Herrup, Karl; Carrillo, Maria; Schenk, Dale; Cacace, Angela; DeSanti, Susan; Fremeau, Robert; Bhat, Ratan; Glicksman, Marcie; May, Patrick; Swerdlow, Russell; van Eldik, Linda; Bain, Lisa J.; Budd, Samantha

    2014-01-01

    For decades, researchers have focused primarily on a pathway initiated by beta-amyloid (Aβ) aggregation, amyloid deposition, and accumulation in the brain as the key mechanism underlying the disease and the most important treatment target. However, evidence increasingly suggests that amyloid is deposited early in the course of disease, even prior to the onset of clinical symptoms; thus, targeting amyloid in mild-to-moderate patients, as past failed clinical trials have done, may be insufficient to halt further disease progression. Scientists are investigating other molecular and cellular pathways and processes that contribute to AD pathogenesis. Thus, the Alzheimer’s Association’s Research Roundtable convened a meeting in April 2012 to move beyond amyloid and explore AD as a complex multi-factorial disease, with the goal of using a more inclusive perspective to identify novel treatment strategies. PMID:23809366

  5. The Role of the 14–20 Domain of the Islet Amyloid Polypeptide in Amyloid Formation

    PubMed Central

    Gilead, Sharon; Gazit, Ehud

    2008-01-01

    The molecular mechanism of amyloid formation by the islet amyloid polypeptide (IAPP) has been intensively studied since its identification in the late 1980s. The IAPP(20–29) region is considered to be the central amyloidogenic module of the polypeptide. This assumption is mainly based on the amyloidogenic properties of the region and on the large sequence diversity within this region between the human and mouse IAPP, as the mouse IAPP does not form amyloids. A few years ago, another region within IAPP was identified that seems to be at least as important as IAPP(20–29) in facilitation of molecular recognition that leads to amyloid formation. Here, we reinforce our and others' previous findings by analyzing supporting evidence from the recent literature. Moreover, we provide new proofs to our hypothesis by comparing between the amyloidogenic properties of the two regions derived from the IAPP of cats, which is also known to form amyloid fibrils. PMID:18566678

  6. Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers.

    PubMed

    Sparr, Emma; Engel, Maarten F M; Sakharov, Dmitri V; Sprong, Mariette; Jacobs, Jet; de Kruijff, Ben; Höppener, Jo W M; Killian, J Antoinette

    2004-11-01

    Fibril formation of islet amyloid polypeptide (IAPP) is associated with cell death of the insulin-producing pancreatic beta-cells in patients with Type 2 Diabetes Mellitus. A likely cause for the cytotoxicity of human IAPP is that it destroys the barrier properties of the cell membrane. Here, we show by fluorescence confocal microscopy on lipid vesicles that the process of hIAPP amyloid formation is accompanied by a loss of barrier function, whereby lipids are extracted from the membrane and taken up in the forming amyloid deposits. No membrane interaction was observed when preformed fibrils were used. It is proposed that lipid uptake from the cell membrane is responsible for amyloid-induced membrane damage and that this represents a general mechanism underlying the cytotoxicity of amyloid forming proteins. PMID:15527771

  7. Tau, Amyloid, and Hypometabolism in a Patient with Posterior Cortical Atrophy

    PubMed Central

    Ossenkoppele, Rik; Schonhaut, Daniel R.; Baker, Suzanne L.; O'Neil, James P.; Janabi, Mustafa; Ghosh, Pia M.; Santos, Miguel; Miller, Zachary A.; Bettcher, Brianne M.; Gorno-Tempini, Maria L.; Miller, Bruce L.; Jagust, William J.; Rabinovici, Gil D.

    2015-01-01

    Determining the relative contribution of amyloid plaques and neurofibrillary tangles to brain dysfunction in Alzheimer disease is critical for therapeutic approaches, but until recently could only be assessed at autopsy. We report a patient with posterior cortical atrophy (visual variant of Alzheimer disease) who was studied using the novel tau tracer [18F]AV-1451 in conjunction with [11C]Pittsburgh compound B (PIB; amyloid) and [18F]fluorodeoxyglucose (FDG) positron emission tomography. Whereas [11C]PIB bound throughout association neocortex, [18F]AV-1451 was selectively retained in posterior brain regions that were affected clinically and showed markedly reduced [18F]FDG uptake. This provides preliminary in vivo evidence that tau is more closely linked to hypometabolism and symptomatology than amyloid. PMID:25448043

  8. Real-time monitoring of amyloid growth in a rigid gel matrix.

    PubMed

    Dalpadado, Roshan C; Maat, Hendrik; Carver, John A; Hall, Damien

    2016-10-15

    We demonstrate the real-time monitoring of the growth of amyloid-protein aggregates in a semi-rigid gel environment constructed from a 5% w/v gelatin solution. The kinetics of amyloid fibril growth from reduced and carboxy-methylated κ-casein occurring in the gel medium was contrasted against that obtained in a regular solution assay. Aggregation kinetics were recorded using Thioflavin T fluorescence. Transmission electron microscopy was used to confirm the aggregates' existence and morphology. The current demonstration of controlled amyloid growth in a gel environment represents the first step towards development of an experimental model for investigating the role of spatial and medium factors in the kinetics of aggregation-based proteopathies. PMID:27477869

  9. Cyclic N-Terminal Loop of Amylin Forms Non Amyloid Fibers

    PubMed Central

    Cope, Stephanie M.; Shinde, Sandip; Best, Robert B.; Ghirlanda, Giovanna; Vaiana, Sara M.

    2013-01-01

    We report for the first time, to our knowledge, that the N-terminal loop (N_loop) of amylin (islet amyloid polypeptide (IAPP) residues 1–8) forms extremely long and stable non-β-sheet fibers in solution under the same conditions in which human amylin (hIAPP) forms amyloid fibers. This observation applies to the cyclic, oxidized form of the N_loop but not to the linear, reduced form, which does not form fibers. Our findings indicate a potential role of direct N_loop-N_loop interactions in hIAPP aggregation, which has not been previously explored, with important implications for the mechanism of hIAPP amyloid fiber formation, the inhibitory action of IAPP variants, and the competition between ordered and disordered aggregation in peptides of the calcitonin peptide family. PMID:24094407

  10. Contemporary treatment of amyloid heart disease.

    PubMed

    Palecek, Tomas; Fikrle, Michal; Nemecek, Eduard; Bauerova, Lenka; Kuchynka, Petr; Louch, William E; Spicka, Ivan; Rysava, Romana

    2015-01-01

    The amyloidoses represent a group of diseases characterized by extracellular deposition of abnormal protein, amyloid, which is formed by insoluble extracellular fibrils in β-pleated sheets. Although cardiac involvement may occur in all types of amyloidoses, clinically relevant amyloid cardiomyopathy is a typical feature of AL amyloidosis and transthyretin-related amyloidoses. Congestive heart failure represents the commonest manifestation of amyloid heart disease. Noninvasive imaging techniques, especially echocardiography and cardiac magnetic resonance, play a major role in the diagnosis of amyloid cardiomyopathy; however, histological confirmation and exact typing of amyloid deposits is necessary whether in extracardiac location or directly in the myocardium. Early diagnosis of amyloid heart disease is of utmost importance as the presence and especially the severity of cardiac involvement generally drives the prognosis of affected subjects and plays a major role in determining the intensity of specific treatment, namely in AL amyloidosis. The management of patients with amyloid heart disease is complex. Loop diuretics together with aldosterone antagonists represent the basis for influencing signs of congestion. In AL amyloidosis, high-dose chemotherapy followed by autologous stem cell transplantation is generally considered to be a front-line treatment option, if the disease is diagnosed at its early stage. The combination of mephalan with dexamethasone has been the standard therapy for severely affected individuals; however, the combinations with several novel agents including immunomodulatory drugs and bortezomibe have been tested in clinical trials with promising results. New therapeutic substances with the potential to slow or even stop the progression of transthyretin-related amyloidosis are also extensively studied. PMID:25483951

  11. Multimodal nanoprobes to target cerebrovascular amyloid in Alzheimer's disease brain.

    PubMed

    Jaruszewski, Kristen M; Curran, Geoffry L; Swaminathan, Suresh K; Rosenberg, Jens T; Grant, Samuel C; Ramakrishnan, Subramanian; Lowe, Val J; Poduslo, Joseph F; Kandimalla, Karunya K

    2014-02-01

    Cerebral amyloid angiopathy (CAA) results from the accumulation of Aβ proteins primarily within the media and adventitia of small arteries and capillaries of the cortex and leptomeninges. CAA affects a majority of Alzheimer's disease (AD) patients and is associated with a rapid decline in cognitive reserve. Unfortunately, there is no pre-mortem diagnosis available for CAA. Furthermore, treatment options are few and relatively ineffective. To combat this issue, we have designed nanovehicles (nanoparticles-IgG4.1) capable of targeting cerebrovascular amyloid (CVA) and serving as early diagnostic and therapeutic agents. These nanovehicles were loaded with Gadolinium (Gd) based (Magnevist(®)) magnetic resonance imaging contrast agents or single photon emission computed tomography (SPECT) agents, such as (125)I. In addition, the nanovehicles carry either anti-inflammatory and anti-amyloidogenic agents such as curcumin or immunosuppressants such as dexamethasone, which were previously shown to reduce cerebrovascular inflammation. Owing to the anti-amyloid antibody (IgG4.1) grafted on the surface, the nanovehicles are capable of specifically targeting CVA deposits. The nanovehicles effectively marginate from the blood flow to the vascular wall as determined by using quartz crystal microbalance with dissipation monitoring (QCM-D) technology. They demonstrate excellent distribution to the brain vasculature and target CVA, thus providing MRI and SPECT contrast specific to the CVA in the brain. In addition, they also display the potential to carry therapeutic agents to reduce cerebrovascular inflammation associated with CAA, which is believed to trigger hemorrhage in CAA patients. PMID:24331706

  12. Exploiting the therapeutic potential of 8-β-d-glucopyranosylgenistein: synthesis, antidiabetic activity, and molecular interaction with islet amyloid polypeptide and amyloid β-peptide (1-42).

    PubMed

    Jesus, Ana R; Dias, Catarina; Matos, Ana M; de Almeida, Rodrigo F M; Viana, Ana S; Marcelo, Filipa; Ribeiro, Rogério T; Macedo, Maria P; Airoldi, Cristina; Nicotra, Francesco; Martins, Alice; Cabrita, Eurico J; Jiménez-Barbero, Jesús; Rauter, Amélia P

    2014-11-26

    8-β-d-Glucopyranosylgenistein (1), the major component of Genista tenera, was synthesized and showed an extensive therapeutical impact in the treatment of STZ-induced diabetic rats, producing normalization of fasting hyperglycemia and amelioration of excessive postprandial glucose excursions and and increasing β-cell sensitivity, insulin secretion, and circulating insulin within 7 days at a dose of 4 (mg/kg bw)/day. Suppression of islet amyloid polypeptide (IAPP) fibril formation by compound 1 was demonstrated by thioflavin T fluorescence and atomic force microscopy. Molecular recognition studies with IAPP and Aβ1-42 employing saturation transfer difference (STD) confirmed the same binding mode for both amyloid peptides as suggested by their deduced epitope. Insights into the preferred conformation in the bound state and conformers' geometry resulting from interaction with Aβ1-42 were also given by STD, trNOESY, and MM calculations. These studies strongly support 8-β-d-glucopyranosylgenistein as a promising molecular entity for intervention in amyloid events of both diabetes and the frequently associated Alzheimer's disease. PMID:25347820

  13. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto.

    PubMed

    Hsu, Ruei-Lin; Lee, Kung-Ta; Wang, Jung-Hao; Lee, Lily Y-L; Chen, Rita P-Y

    2009-01-28

    More than 20 unrelated proteins can form amyloid fibrils in vivo which are related to various diseases, such as Alzheimer's disease, prion disease, and systematic amyloidosis. Amyloid fibrils are an ordered protein aggregate with a lamellar cross-beta structure. Enhancing amyloid clearance is one of the targets of the therapy of these amyloid-related diseases. Although there is debate on whether the toxicity is due to amyloids or their precursors, research on the degradation of amyloids may help prevent or alleviate these diseases. In this study, we explored the amyloid-degrading ability of nattokinase, a fibrinolytic subtilisin-like serine protease, and determined the optimal conditions for amyloid hydrolysis. This ability is shared by proteinase K and subtilisin Carlsberg, but not by trypsin or plasmin. PMID:19117402

  14. A brief overview of amyloids and Alzheimer’s disease

    PubMed Central

    Ow, Sian-Yang; Dunstan, Dave E

    2014-01-01

    Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with a number of presently incurable diseases such as Alzheimer’s and Parkinson’s disease. Millions of people worldwide suffer from amyloid diseases. This review summarizes the unique cross-β structure of amyloid fibrils, morphological variations, the kinetics of amyloid fibril formation, and the cytotoxic effects of these fibrils and oligomers. Alzheimer’s disease is also explored as an example of an amyloid disease to show the various approaches to treat these amyloid diseases. Finally, this review investigates the nanotechnological and biological applications of amyloid fibrils; as well as a summary of the typical biological pathways involved in the disposal of amyloid fibrils and their precursors. PMID:25042050

  15. Physical and structural basis for polymorphism in amyloid fibrils

    PubMed Central

    Tycko, Robert

    2014-01-01

    As our understanding of the molecular structures of amyloid fibrils has matured over the past 15 years, it has become clear that, while amyloid fibrils do have well-defined molecular structures, their molecular structures are not uniquely determined by the amino acid sequences of their constituent peptides and proteins. Self-propagating molecular-level polymorphism is a common phenomenon. This article reviews current information about amyloid fibril structures, variations in molecular structures that underlie amyloid polymorphism, and physical considerations that explain the development and persistence of amyloid polymorphism. Much of this information has been obtained through solid state nuclear magnetic resonance measurements. The biological significance of amyloid polymorphism is also discussed briefly. Although this article focuses primarily on studies of fibrils formed by amyloid-β peptides, the same principles apply to many amyloid-forming peptides and proteins. PMID:25179159

  16. Superresolution Imaging of Amyloid Fibrils with Binding-Activated Probes

    PubMed Central

    2013-01-01

    Protein misfolding into amyloid-like aggregates underlies many neurodegenerative diseases. Thus, insights into the structure and function of these amyloids will provide valuable information on the pathological mechanisms involved and aid in the design of improved drugs for treating amyloid-based disorders. However, determining the structure of endogenous amyloids at high resolution has been difficult. Here we employ binding-activated localization microscopy (BALM) to acquire superresolution images of α-synuclein amyloid fibrils with unprecedented optical resolution. We propose that BALM imaging can be extended to study the structure of other amyloids, for differential diagnosis of amyloid-related diseases and for discovery of drugs that perturb amyloid structure for therapy. PMID:23594172

  17. Rapid Generation of Amyloid from Native Proteins In vitro

    PubMed Central

    Dorta-Estremera, Stephanie M; Li, Jingjing; Cao, Wei

    2013-01-01

    Proteins carry out crucial tasks in organisms by exerting functions elicited from their specific three dimensional folds. Although the native structures of polypeptides fulfill many purposes, it is now recognized that most proteins can adopt an alternative assembly of beta-sheet rich amyloid. Insoluble amyloid fibrils are initially associated with multiple human ailments, but they are increasingly shown as functional players participating in various important cellular processes. In addition, amyloid deposited in patient tissues contains nonproteinaceous components, such as nucleic acids and glycosaminoglycans (GAGs). These cofactors can facilitate the formation of amyloid, resulting in the generation of different types of insoluble precipitates. By taking advantage of our understanding how proteins misfold via an intermediate stage of soluble amyloid precursor, we have devised a method to convert native proteins to amyloid fibrils in vitro. This approach allows one to prepare amyloid in large quantities, examine the properties of amyloid generated from specific proteins, and evaluate the structural changes accompanying the conversion. PMID:24335677

  18. Cell Adhesion on Amyloid Fibrils Lacking Integrin Recognition Motif.

    PubMed

    Jacob, Reeba S; George, Edna; Singh, Pradeep K; Salot, Shimul; Anoop, Arunagiri; Jha, Narendra Nath; Sen, Shamik; Maji, Samir K

    2016-03-01

    Amyloids are highly ordered, cross-β-sheet-rich protein/peptide aggregates associated with both human diseases and native functions. Given the well established ability of amyloids in interacting with cell membranes, we hypothesize that amyloids can serve as universal cell-adhesive substrates. Here, we show that, similar to the extracellular matrix protein collagen, amyloids of various proteins/peptides support attachment and spreading of cells via robust stimulation of integrin expression and formation of integrin-based focal adhesions. Additionally, amyloid fibrils are also capable of immobilizing non-adherent red blood cells through charge-based interactions. Together, our results indicate that both active and passive mechanisms contribute to adhesion on amyloid fibrils. The present data may delineate the functional aspect of cell adhesion on amyloids by various organisms and its involvement in human diseases. Our results also raise the exciting possibility that cell adhesivity might be a generic property of amyloids. PMID:26742841

  19. Iron enhances the neurotoxicity of amyloid β.

    PubMed

    Wang, Lin; Xi, Guohua; Keep, Richard F; Hua, Ya

    2012-03-01

    Brain microbleeds often occur in Alzheimer's disease patients. Our previous studies have demonstrated that iron contributes to brain injury following intracerebral hemorrhage. This study investigated the effect of iron on amyloid β (Aβ)-mediated brain injury. There were two parts to this study. In first part, rats received an intracaudate injection of saline, iron, Aβ 25-35 or iron+Aβ 25-35. In the second part, rats received intracaudate injection of iron+Aβ and were treated with saline or cystamine, an inhibitor of transglutaminase. Rats were killed after 24 hours for brain edema measurement. DNA damage, neuronal death and tissue-type transglutaminase (tTG) expression were also examined. We found that brain water content in the ipsilateral caudate was higher (p<0.05) in rats injected with iron+Aβ than with iron, Aβ or saline. Combined iron+Aβ injection also resulted in more severe DNA damage (both single- and double-strand; p<0.01) and more Fluoro-Jade C staining (p<0.05). Expression of tTG increased markedly in the iron+Aβ group (p<0.05) and treatment with a tTG inhibitor reduced brain edema (p<0.05) and reduced degenerating neurons (124±25 vs. 249±50/mm(2) in vehicle-treated group, p<0.05). These results suggest that increased brain iron from microbleeds may exaggerate brain Aβ toxicity and that tTG is involved in the enhanced toxicity. PMID:22822413

  20. Blueberry Opposes β-Amyloid Peptide-Induced Microglial Activation Via Inhibition of p44/42 Mitogen-Activation Protein Kinase

    PubMed Central

    Zhu, Yuyan; Bickford, Paula C.; Sanberg, Paul; Giunta, Brian

    2008-01-01

    Abstract Alzheimer's Disease (AD) is the most common age-related dementia, with a current prevalence in excess of five million individuals in the United States. The aggregation of amyloid-beta (Aβ) into fibrillar amyloid plaques is a key pathological event in the development of the disease. Microglial proinflammatory activation is widely known to cause neuronal and synaptic damage that correlates with cognitive impairment in AD. However, current pharmacological attempts at reducing neuroinflammation mediated via microglial activation have been largely negative in terms of slowing AD progression. Previously, we have shown that microglia express proinflammatory cytokines and a reduced capacity to phagocytose Aβ in the context of CD40, Aβ peptides and/or lipopolysaccharide (LPS) stimulation, a phenomenon that can be opposed by attenuation of p44/42 mitogen-activated protein kinase (MAPK) signaling. Other groups have found that blueberry (BB) extract both inhibits phosphorylation of this MAPK module and also improves cognitive deficits in AD model mice. Given these considerations and the lack of reduced Aβ quantities in behaviorally improved BB-fed mice, we wished to determine whether BB supplementation would alter the microglial proinflammatory activation state in response to Aβ. We found that BB significantly enhances microglial clearance of Aβ, inhibits aggregation of Aβ1–42, and suppresses microglial activation, all via suppression of the p44/42 MAPK module. Thus, these data may explain the previously observed behavioral recovery in PSAPP mice and suggest a means by which dietary supplementation could mitigate an undesirable microglial response toward fibrillar Aβ. PMID:18789000

  1. Appropriate Use Criteria for Amyloid PET

    PubMed Central

    Johnson, Keith A.; Minoshima, Satoshi; Bohnen, Nicolaas I.; Donohoe, Kevin J.; Foster, Norman L.; Herscovitch, Peter; Karlawish, Jason H.; Rowe, Christopher C.; Carrillo, Maria C.; Hartley, Dean M.; Hedrick, Saima; Mitchell, Kristi; Pappas, Virginia; Thies, William H.

    2013-01-01

    Positron Emission Tomography (PET) of brain amyloid-beta is a technology that is becoming more available, but its clinical utility in medical practice requires careful definition. In order to provide guidance to dementia care practitioners, patients and caregivers, the Alzheimer Association and the Society of Nuclear Medicine and Molecular Imaging convened the Amyloid Imaging Taskforce (AIT). The AIT considered a broad range of specific clinical scenarios in which amyloid PET could potentially be appropriately used. Peer-reviewed, published literature was searched to ascertain available evidence relevant to these scenarios, and the AIT developed a consensus of expert opinion. While empirical evidence of impact on clinical outcomes is not yet available, a set of specific Appropriate Use Criteria (AUC) were agreed upon that define the types of patients and clinical circumstances in which amyloid PET could be used. Both appropriate and inappropriate uses were considered and formulated, and are reported and discussed here. Because both dementia care and amyloid PET technology are in active development, these AUC will require periodic reassessment. Future research directions are also outlined, including diagnostic utility and patient-centered outcomes. PMID:23360977

  2. Shear flow promotes amyloid-{beta} fibrilization.

    PubMed

    Dunstan, Dave E; Hamilton-Brown, Paul; Asimakis, Peter; Ducker, William; Bertolini, Joseph

    2009-12-01

    The rate of formation of amyloid fibrils in an aqueous solution of amyloid-beta (Abeta) is greatly increased when the solution is sheared. When Abeta solution is stirred with a magnetic stirrer bar at 37 degrees C, a rapid increase in thioflavin T fluorescence is observed. Atomic Force Microscopy (AFM) images show the formation of aggregates, the growth of fibrils and the intertwining of the fibrils with time. Circular dichroism (CD) spectroscopy of samples taken after stirring shows a transition from random coil to alpha-helix to beta-sheet secondary structure over 20 h at 37 degrees C. The fluorescence, AFM and CD measurements are all consistent with the formation of amyloid fibrils. Quiescent, non-stirred solutions incubated at 37 degrees C showed no evidence of amyloid formation over a period of 3 days. Couette flow was found to accelerate the formation of amyloid fibrils demonstrating that the primary effect of stirring is not mixing but shearing. Only very small shear forces are applied to individual molecules in our experiments. Simple calculation suggests that the force is too small to support a hypothesis that shearing promotes partial unfolding of the protein as is observed. PMID:19850675

  3. Functional Amyloids in the Mouse Sperm Acrosome

    PubMed Central

    Guyonnet, Benoit; Egge, Nathan

    2014-01-01

    The acrosomal matrix (AM) is an insoluble structure within the sperm acrosome that serves as a scaffold controlling the release of AM-associated proteins during the sperm acrosome reaction. The AM also interacts with the zona pellucida (ZP) that surrounds the oocyte, suggesting a remarkable stability that allows its survival despite being surrounded by proteolytic and hydrolytic enzymes released during the acrosome reaction. To date, the mechanism responsible for the stability of the AM is not known. Our studies demonstrate that amyloids are present within the sperm AM and contribute to the formation of an SDS- and formic-acid-resistant core. The AM core contained several known amyloidogenic proteins, as well as many proteins predicted to form amyloid, including several ZP binding proteins, suggesting a functional role for the amyloid core in sperm-ZP interactions. While stable at pH 3, at pH 7, the sperm AM rapidly destabilized. The pH-dependent dispersion of the AM correlated with a change in amyloid structure leading to a loss of mature forms and a gain of immature forms, suggesting that the reversal of amyloid is integral to AM dispersion. PMID:24797071

  4. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets

    PubMed Central

    Larsson, Marie H.; Håkansson, Pernilla; Jansen, Frank P.; Magnell, Kerstin; Brodin, Peter

    2015-01-01

    The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance. PMID:26397098

  5. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets.

    PubMed

    Larsson, Marie H; Håkansson, Pernilla; Jansen, Frank P; Magnell, Kerstin; Brodin, Peter

    2015-01-01

    The calcium activated cation channel transient receptor potential channel type M5 (TRPM5) is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD) and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance. PMID:26397098

  6. Heparan Sulfate Proteoglycans Are Important for Islet Amyloid Formation and Islet Amyloid Polypeptide-induced Apoptosis*

    PubMed Central

    Oskarsson, Marie E.; Singh, Kailash; Wang, Jian; Vlodavsky, Israel; Li, Jin-ping; Westermark, Gunilla T.

    2015-01-01

    Deposition of β cell toxic islet amyloid is a cardinal finding in type 2 diabetes. In addition to the main amyloid component islet amyloid polypeptide (IAPP), heparan sulfate proteoglycan is constantly present in the amyloid deposit. Heparan sulfate (HS) side chains bind to IAPP, inducing conformational changes of the IAPP structure and an acceleration of fibril formation. We generated a double-transgenic mouse strain (hpa-hIAPP) that overexpresses human heparanase and human IAPP but is deficient of endogenous mouse IAPP. Culture of hpa-hIAPP islets in 20 mm glucose resulted in less amyloid formation compared with the amyloid load developed in cultured islets isolated from littermates expressing human IAPP only. A similar reduction of amyloid was achieved when human islets were cultured in the presence of heparin fragments. Furthermore, we used CHO cells and the mutant CHO pgsD-677 cell line (deficient in HS synthesis) to explore the effect of cellular HS on IAPP-induced cytotoxicity. Seeding of IAPP aggregation on CHO cells resulted in caspase-3 activation and apoptosis that could be prevented by inhibition of caspase-8. No IAPP-induced apoptosis was seen in HS-deficient CHO pgsD-677 cells. These results suggest that β cell death caused by extracellular IAPP requires membrane-bound HS. The interaction between HS and IAPP or the subsequent effects represent a possible therapeutic target whose blockage can lead to a prolonged survival of β cells. PMID:25922077

  7. Measuring Excess Noise in SDL's

    NASA Technical Reports Server (NTRS)

    Katzberg, S. J.; Kowitz, H. R.; Rowland, C. W.; Shull, T. A.; Ruggles, S. L.; Matthews, L. F.

    1983-01-01

    New instrument gives quantitive information on "excess noise" in semiconductor-diode laser (SDL's). By proper selection of detector, instrument tests any SDL from visible wavelengths through thermal infrared. Lasers determine excess noise in SKL source by measuring photocurrent generated in photodetector exposed first to reference laser then to SKL under test.

  8. Bapineuzumab Alters Aβ Composition: Implications for the Amyloid Cascade Hypothesis and Anti-Amyloid Immunotherapy

    PubMed Central

    Roher, Alex E.; Cribbs, David H.; Kim, Ronald C.; Maarouf, Chera L.; Whiteside, Charisse M.; Kokjohn, Tyler A.; Daugs, Ian D.; Head, Elizabeth; Liebsack, Carolyn; Serrano, Geidy; Belden, Christine; Sabbagh, Marwan N.; Beach, Thomas G.

    2013-01-01

    The characteristic neuropathological changes associated with Alzheimer’s disease (AD) and other lines of evidence support the amyloid cascade hypothesis. Viewing amyloid deposits as the prime instigator of dementia has now led to clinical trials of multiple strategies to remove or prevent their formation. We performed neuropathological and biochemical assessments of 3 subjects treated with bapineuzumab infusions. Histological analyses were conducted to quantify amyloid plaque densities, Braak stages and the extent of cerebral amyloid angiopathy (CAA). Amyloid-β (Aβ) species in frontal and temporal lobe samples were quantified by ELISA. Western blots of amyloid-β precursor protein (AβPP) and its C-terminal (CT) fragments as well as tau species were performed. Bapineuzumab-treated (Bapi-AD) subjects were compared to non-immunized age-matched subjects with AD (NI-AD) and non-demented control (NDC) cases. Our study revealed that Bapi-AD subjects exhibited overall amyloid plaque densities similar to those of NI-AD cases. In addition, CAA was moderate to severe in NI-AD and Bapi-AD patients. Although histologically-demonstrable leptomeningeal, cerebrovascular and neuroparenchymal-amyloid densities all appeared unaffected by treatment, Aβ peptide profiles were significantly altered in Bapi-AD subjects. There was a trend for reduction in total Aβ42 levels as well as an increase in Aβ40 which led to a corresponding significant decrease in Aβ42:Aβ40 ratio in comparison to NI-AD subjects. There were no differences in the levels of AβPP, CT99 and CT83 or tau species between Bapi-AD and NI-AD subjects. The remarkable alteration in Aβ profiles reveals a dynamic amyloid production in which removal and depositional processes were apparently perturbed by bapineuzumab therapy. Despite the alteration in biochemical composition, all 3 immunized subjects exhibited continued cognitive decline. PMID:23555764

  9. Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches.

    PubMed

    Salahuddin, Parveen; Fatima, Munazza Tamkeen; Abdelhameed, Ali Saber; Nusrat, Saima; Khan, Rizwan Hasan

    2016-05-23

    Protein misfolding is one of the leading causes of amyloidoses. Protein misfolding occurs from changes in environmental conditions and host of other factors, including errors in post-translational modifications, increase in the rate of degradation, error in trafficking, loss of binding partners and oxidative damage. Misfolding gives rise to the formation of partially unfolded or misfolded intermediates, which have exposed hydrophobic residues and interact with complementary intermediates to form oligomers and consequently protofibrils and fibrils. The amyloid fibrils accumulate as amyloid deposits in the brain and central nervous system in Alzheimer's disease (AD), Prion disease and Parkinson's disease (PD). Initial studies have shown that amyloid fibrils were the main culprit behind toxicity that cause neurodegenerative diseases. However, attention shifted to the cytotoxicity of amyloid fibril precursors, notably amyloid oligomers, which are the major cause of toxicity. The mechanism of toxicity triggered by amyloid oligomers remains elusive. In this review, we have focused on the current knowledge of the structures of different aggregated states, including amyloid fibril, protofibrils, annular aggregates and oligomers. Based on the studies on the mechanism of toxicities, we hypothesize two major possible mechanisms of toxicities instigated by oligomers of Aβ (amyloid beta), PrP (prion protein) (106-126), and α-Syn (alpha-synuclein) including direct formation of ion channels and neuron membrane disruption by the increase in membrane conductance or leakage in the presence of small globulomers to large prefibrillar assemblies. Finally, we have discussed various novel innovative approaches that target amyloid oligomers in Alzheimer's diseases, Prion disease and Parkinson's disease. PMID:26974374

  10. Investigation of the inhibitory effects of TiO(2) on the β-amyloid peptide aggregation.

    PubMed

    Ahmed, Mukhtar H; Byrne, John A; Keyes, Tia E

    2014-06-01

    TiO2 thin films are of great interest as biocompatible coatings and also as photocatalytic self-cleaning and antimicrobial coatings. In this work we used β-amyloid as a model for infectious protein to investigate the attachment and photocatalytic degradation. TiO2 films were prepared on stainless steel substrates using magnetron sputtering. The films were characterised before and after exposure to β-amyloid (1-42), using XRD, Raman spectroscopy, XPS and AFM. The TiO2 film was mostly composed of the anatase phase with a relatively high surface roughness. The presence of Raman peaks at 1668cm(-1) and 1263cm(-1), with the XPS spectral feature for nitrogen at 400eV, confirmed the adsorption of amyloid on surface. Following exposure of the β-amyloid contaminated TiO2 to UV-B irradiation a slight shift of amide modes was observed. Furthermore, the amide I spectra show an overall decrease in α-helix content with presence of a minor peak around 1591cm(-1), which is related to tryptophanyl and tyrosinyl radicals, which can lead to conformational change of β-amyloid. The C1s band at 292.2eV suggests the formation of free carboxylic acid. The loss in the crucial structure of β-amyloid leads to reduce the fibril formation, thought to be induced through a photocatalytic process. PMID:24863220

  11. Fibrillar dimer formation of islet amyloid polypeptides

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-cheng; de Pablo, Juan J.

    2015-09-01

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 - 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 - 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  12. Fibrillar dimer formation of islet amyloid polypeptides

    SciTech Connect

    Chiu, Chi-cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  13. Neuropsychological Effects of Cerebral Amyloid Angiopathy.

    PubMed

    Schrag, Matthew; Kirshner, Howard

    2016-08-01

    Cerebral amyloid angiopathy is a condition of the cerebral arterioles and to a lesser extent capillaries and veins, wherein beta-amyloid is deposited. In arterioles, this preferentially targets vascular smooth muscle cells and in the later stages undermines the stability of the vessel. This condition is frequently comorbid with Alzheimer's disease and its role in cognitive impairment and dementia is a topic of considerable recent research. This article reviews recent literature which confirms that CAA independently contributes to cognitive impairment by potentiating the neurodegeneration of Alzheimer's disease, by predisposing to microhemorrhagic and microischemic injury to the brain parenchyma, and by interfering with the autoregulation of CNS blood flow. In this review, we discuss the clinical presentation of cerebral amyloid angiopathy, with a focus on the neuropsychological manifestations of this vasculopathy. PMID:27357378

  14. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice.

    PubMed

    Yan, Ping; Bero, Adam W; Cirrito, John R; Xiao, Qingli; Hu, Xiaoyan; Wang, Yan; Gonzales, Ernesto; Holtzman, David M; Lee, Jin-Moo

    2009-08-26

    Amyloid plaques are primarily composed of extracellular aggregates of amyloid-beta (Abeta) peptide and are a pathological signature of Alzheimer's disease. However, the factors that influence the dynamics of amyloid plaque formation and growth in vivo are largely unknown. Using serial intravital multiphoton microscopy through a thinned-skull cranial window in APP/PS1 transgenic mice, we found that amyloid plaques appear and grow over a period of weeks before reaching a mature size. Growth was more prominent early after initial plaque formation: plaques grew faster in 6-month-old compared with 10-month-old mice. Plaque growth rate was also size-related, as smaller plaques exhibited more rapid growth relative to larger plaques. Alterations in interstitial Abeta concentrations were associated with changes in plaque growth. Parallel studies using multiphoton microscopy and in vivo microdialysis revealed that pharmacological reduction of soluble extracellular Abeta by as little as 20-25% was associated with a dramatic decrease in plaque formation and growth. Furthermore, this small reduction in Abeta synthesis was sufficient to reduce amyloid plaque load in 6-month-old but not 10-month-old mice, suggesting that treatment early in disease pathogenesis may be more effective than later treatment. In contrast to thinned-skull windows, no significant plaque growth was observed under open-skull windows, which demonstrated extensive microglial and astrocytic activation. Together, these findings indicate that individual amyloid plaque growth in vivo occurs over a period of weeks and may be influenced by interstitial Abeta concentration as well as reactive gliosis. PMID:19710322

  15. Molecular Structure of Amyloid Fibrils Controls the Relationship between Fibrillar Size and Toxicity

    PubMed Central

    Lee, Young Jin; Savtchenko, Regina; Ostapchenko, Valeriy G.; Makarava, Natallia; Baskakov, Ilia V.

    2011-01-01

    Background According to the prevailing view, soluble oligomers or small fibrillar fragments are considered to be the most toxic species in prion diseases. To test this hypothesis, two conformationally different amyloid states were produced from the same highly pure recombinant full-length prion protein (rPrP). The cytotoxic potential of intact fibrils and fibrillar fragments generated by sonication from these two states was tested using cultured cells. Methodology/Principal Findings For one amyloid state, fibril fragmentation was found to enhance its cytotoxic potential, whereas for another amyloid state formed within the same amino acid sequence, the fragmented fibrils were found to be substantially less toxic than the intact fibrils. Consistent with the previous studies, the toxic effects were more pronounced for cell cultures expressing normal isoform of the prion protein (PrPC) at high levels confirming that cytotoxicity was in part PrPC-dependent. Silencing of PrPC expression by small hairpin RNAs designed to silence expression of human PrPC (shRNA-PrPC) deminished the deleterious effects of the two amyloid states to a different extent, suggesting that the role of PrPC-mediated and PrPC-independent mechanisms depends on the structure of the aggregates. Conclusions/Significance This work provides a direct illustration that the relationship between an amyloid's physical dimension and its toxic potential is not unidirectional but is controlled by the molecular structure of prion protein (PrP) molecules within aggregated states. Depending on the structure, a decrease in size of amyloid fibrils can either enhance or abolish their cytotoxic effect. Regardless of the molecular structure or size of PrP aggregates, silencing of PrPC expression can be exploited to reduce their deleterious effects. PMID:21625461

  16. Pharmacological removal of serum amyloid P component from intracerebral plaques and cerebrovascular Aβ amyloid deposits in vivo

    PubMed Central

    Millar, David J.; Richard-Londt, Angela

    2016-01-01

    Human amyloid deposits always contain the normal plasma protein serum amyloid P component (SAP), owing to its avid but reversible binding to all amyloid fibrils, including the amyloid β (Aβ) fibrils in the cerebral parenchyma plaques and cerebrovascular amyloid deposits of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). SAP promotes amyloid fibril formation in vitro, contributes to persistence of amyloid in vivo and is also itself directly toxic to cerebral neurons. We therefore developed (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC), a drug that removes SAP from the blood, and thereby also from the cerebrospinal fluid (CSF), in patients with AD. Here we report that, after introduction of transgenic human SAP expression in the TASTPM double transgenic mouse model of AD, all the amyloid deposits contained human SAP. Depletion of circulating human SAP by CPHPC administration in these mice removed all detectable human SAP from both the intracerebral and cerebrovascular amyloid. The demonstration that removal of SAP from the blood and CSF also removes it from these amyloid deposits crucially validates the strategy of the forthcoming ‘Depletion of serum amyloid P component in Alzheimer's disease (DESPIAD)’ clinical trial of CPHPC. The results also strongly support clinical testing of CPHPC in patients with CAA. PMID:26842068

  17. Compressive deformation of ultralong amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Paparcone, Raffaella; Cranford, Steven; Buehler, Markus J.

    2010-12-01

    Involved in various neurodegenerative diseases, amyloid fibrils and plaques feature a hierarchical structure, ranging from the atomistic to the micrometer scale. At the atomistic level, a dense and organized hydrogen bond network is resembled in a beta-sheet rich secondary structure, which drives a remarkable stiffness in the range of 10-20GPa, larger than many other biological nanofibrils, a result confirmed by both experiment and theory. However, the understanding of how these exceptional mechanical properties transfer from the atomistic to the nanoscale remains unknown. Here we report a multiscale analysis that, from the atomistic-level structure of a single fibril, extends to the mesoscale level, reaching size scales of hundreds of nanometers. We use parameters directly derived from full atomistic simulations of A β (1-40) amyloid fibrils to parameterize a mesoscopic coarse-grained model, which is used to reproduce the elastic properties of amyloid fibrils. We then apply our mesoscopic model in an analysis of the buckling behavior of amyloid fibrils with different lengths and report a comparison with predictions from continuum beam theory. An important implication of our results is a severe reduction of the effective modulus due to buckling, an effect that could be important to interpret experimental results of ultra-long amyloid fibrils. Our model represents a powerful tool to mechanically characterize molecular structures on the order of hundreds of nanometers to micrometers on the basis of the underlying atomistic behavior. The work provides insight into structural and mechanical properties of amyloid fibrils and may enable further analysis of larger-scale assemblies such as amyloidogenic bundles or plaques as found in disease states.

  18. [Treatment of familial amyloid polyneuropathy].

    PubMed

    Adams, David; Samuel, Didier; Slama, Michel

    2012-09-01

    The treatment of familial amyloid polyneuropathies (FAP) is complex and requires a neurological and cardiological multidisciplinary coverage. It includes specific treatments to control the progression of the systemic amyloidogenesis, the symptomatic treatment of the peripheral and autonomic neuropathy (digestive, urinary, sexual, postural hypotension) and the treatment of organs severely involved by amyloidosis (heart, eyes, kidneys). First line specific treatment of met30 TTR-FAP is liver transplantation (LT) which allows to suppress the main source of mutant TTR, to stop the progression of the neuropathy in 70 % of cases at long-term (with an experience of 18 years) and to double the median survival. In case of severe renal or cardiac insufficiency, a double transplant kidney-liver or heart-liver can be discussed. The tafamidis (in temporary authorization of use in France) is a stabilizing medicine of the tetrameric TTR which showed in very early stages of met30 TTR-FAP short-term capacities to stop the progress of the peripheral neuropathy in 60 % of the cases versus 38 % with placebo. It should be proposed in case of contraindication of TH (age>70 years [20 % of the cases]), of very early stages (very low NIS-LL score), or for the period of wait of LT. Other innovative medicines issued from biopharmaceutical companies have been developed to block the hepatic production of both mutant and wild TTR which are noxious in the late forms NAH (>50 years old) (RNAi [RNA interference] therapeutics, AntiSens oligonucleotids), for removing the amyloid deposits (monoclonal antibody anti-SAP), or to slow down the formation of deposits of TTR and amyloidosis (combination of doxycycline-TUDCA). Clinical trials should be first addressed to the patients with a late onset of FAP or non-met30 TTR-FAP who are less responding to LT and patients with contraindications in the LT. Initial cardiac assessment and periodic cardiac investigations are important for the FAP according to the

  19. Amyloid pore-channel hypothesis: effect of ethanol on aggregation state using frog oocytes for an Alzheimer’s disease study

    PubMed Central

    Parodi, Jorge; Ormeño, David; la Paz, Lenin D. Ochoa-de

    2015-01-01

    Alzheimer's disease severely compromises cognitive function. One of the mechanisms to explain the pathology of Alzheimer’s disease has been the hypotheses of amyloid-pore/channel formation by complex Aβ-aggregates. Clinical studies suggested the moderate alcohol consumption can reduces probability developing neurodegenerative pathologies. A recent report explored the ability of ethanol to disrupt the generation of complex Aβ in vitro and reduce the toxicity in two cell lines. Molecular dynamics simulations were applied to understand how ethanol blocks the aggregation of amyloid. On the other hand, the in silico modeling showed ethanol effect over the dynamics assembling for complex Aβ-aggregates mediated by break the hydrosaline bridges between Asp 23 and Lys 28, was are key element for amyloid dimerization. The amyloid pore/channel hypothesis has been explored only in neuronal models, however recently experiments suggested the frog oocytes such an excellent model to explore the mechanism of the amyloid pore/channel hypothesis. So, the used of frog oocytes to explored the mechanism of amyloid aggregates is new, mainly for amyloid/pore hypothesis. Therefore, this experimental model is a powerful tool to explore the mechanism implicates in the Alzheimer’s disease pathology and also suggests a model to prevent the Alzheimer’s disease pathology. [BMB Reports 2015; 48(1): 13-18] PMID:25047445

  20. [Familial amyloid polyneuropathies: therapeutic issues].

    PubMed

    Adams, David; Cauquil, Cécile; Théaudin, Marie

    2012-10-01

    Patients with familial amyloidpolyneuropathies (FAP) require multidisciplinary neurologic and cardiologic management, including specific treatments to control the progression of systemic amyloidogenesis, symptomatic treatment of peripheral and autonomic neuropathies, and management of severe organ involvement (heart, eyes, kidneys). The first-line specific treatment of choice for met30 TTR-FAP is liver transplantation (LT) which suppresses the main source of mutant TTR, halts the progression of neuropathy in 70% of cases, and doubles the median survival time. Dual kidney-liver or heart-liver transplantation may be appropriate for patients with severe renal or cardiac failure. Tafamidis (Vyndaqel(R), Pfizer), a novel stabilizer of tetrameric TTR, has shown short-term effectiveness in slowing the progression of peripheral neuropathy in very early stages of met30 TTR-FAP This drug should thus be proposed for stage 1 symptomatic polyneuropathy. Other innovative medicines (RNA interference, antisense oligonucleotides) have been developed to block hepatic production of both mutant and wildtype TTR (noxious in late-onset forms of NAH after age 50 years), and to remove amyloid deposits (monoclonal anti-SAP). Clinical trials should first include patients with late-onset FAP or non-met30 TTR-FAP who are less responsive to LT7 and patients in whom Vyndaqel(R) is ineffective or inappropriate. Initial and periodic cardiac assessment is necessary, as cardiac impairment is inevitable and largely responsible for mortality. Symptomatic treatment is crucial to improve these patients' quality of life. Familial screening for carriers of the TTR gene mutation and regular clinical examination are essential to detect disease onset and to start specific therapy in a timely manner. PMID:23815018

  1. Amyloid growth: combining experiment and kinetic theory

    NASA Astrophysics Data System (ADS)

    Knowles, Tuomas; Cohen, Samuel; Vendruscolo, Michele; Dobson, Christopher

    2012-02-01

    The conversion of proteins from their soluble forms into fibrillar amyloid nanostructures is a general type of behaviour encountered for many different proteins in the context of disease as well as for the generation of a select class of functional materials in nature. This talk focuses on the problem of defining the rates of the individual molecular level processes involved in the overall conversion reaction. A master equation approach is discussedootnotetextCohen et al, J Chem Phys 2011, 135, 065106 ootnotetextKnowles et al, Science, 2009, 326, 1533-1537 and used in combination with kinetic measurements to yield mechanistic insights into the amyloid growth phenomenon.

  2. Amyloids or prions? That is the question

    PubMed Central

    Sabate, Raimon; Rousseau, Frederic; Schymkowitz, Joost; Batlle, Cristina; Ventura, Salvador

    2015-01-01

    ABSTRACT Despite major efforts devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the amino acid sequence. In recent years, experimental data on yeast prion domains allow to start at least partially decrypting the sequence requirements of prion formation. These experiments illustrate the need for intrinsically disordered sequence regions enriched with a particularly high proportion of glutamine and asparagine. Bioinformatic analysis suggests that these regions strike a balance between sufficient amyloid nucleation propensity on the one hand and disorder on the other, which ensures availability of the amyloid prone regions but entropically prevents unwanted nucleation and facilitates brittleness required for propagation. PMID:26039159

  3. Quenched Hydrogen Exchange NMR of Amyloid Fibrils.

    PubMed

    Alexandrescu, Andrei T

    2016-01-01

    Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular β-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils. PMID:26453215

  4. Arf6 controls beta-amyloid production by regulating macropinocytosis of the Amyloid Precursor Protein to lysosomes.

    PubMed

    Tang, Weihao; Tam, Joshua H K; Seah, Claudia; Chiu, Justin; Tyrer, Andrea; Cregan, Sean P; Meakin, Susan O; Pasternak, Stephen H

    2015-01-01

    Alzheimer's disease (AD) is characterized by the deposition of Beta-Amyloid (Aβ) peptides in the brain. Aβ peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the β - and γ - secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer's disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aβ40 and Aβ42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aβ production and that altering APP trafficking represents a viable strategy to reduce Aβ production. PMID:26170135

  5. Sporadic Cerebral Amyloid Angiopathy: Pathophysiology, Neuroimaging Features, and Clinical Implications.

    PubMed

    Boulouis, Gregoire; Charidimou, Andreas; Greenberg, Steven M

    2016-06-01

    Sporadic cerebral amyloid angiopathy is a small vessel disorder defined pathologically by progressive amyloid deposition in the walls of cortical and leptomeningeal vessels resulting from disruption of a complex balance between production, circulation, and clearance of amyloid-β peptide (Aβ) in the brain. Cerebral amyloid angiopathy is a major cause of lobar symptomatic intracerebral hemorrhage, transient focal neurologic episodes, and a key contributor to vascular cognitive impairment. The mechanisms and consequences of amyloid-β deposition at the pathological level and its neuroimaging manifestations, clinical consequences, and implications for patient care are addressed in this review. PMID:27214698

  6. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers.

    PubMed

    Umeda, Tomohiro; Ono, Kenjiro; Sakai, Ayumi; Yamashita, Minato; Mizuguchi, Mineyuki; Klein, William L; Yamada, Masahito; Mori, Hiroshi; Tomiyama, Takami

    2016-05-01

    Amyloid-β, tau, and α-synuclein, or more specifically their soluble oligomers, are the aetiologic molecules in Alzheimer's disease, tauopathies, and α-synucleinopathies, respectively. These proteins have been shown to interact to accelerate each other's pathology. Clinical studies of amyloid-β-targeting therapies in Alzheimer's disease have revealed that the treatments after disease onset have little benefit on patient cognition. These findings prompted us to explore a preventive medicine which is orally available, has few adverse effects, and is effective at reducing neurotoxic oligomers with a broad spectrum. We initially tested five candidate compounds: rifampicin, curcumin, epigallocatechin-3-gallate, myricetin, and scyllo-inositol, in cells expressing amyloid precursor protein (APP) with the Osaka (E693Δ) mutation, which promotes amyloid-β oligomerization. Among these compounds, rifampicin, a well-known antibiotic, showed the strongest activities against the accumulation and toxicity (i.e. cytochrome c release from mitochondria) of intracellular amyloid-β oligomers. Under cell-free conditions, rifampicin inhibited oligomer formation of amyloid-β, tau, and α-synuclein, indicating its broad spectrum. The inhibitory effects of rifampicin against amyloid-β and tau oligomers were evaluated in APPOSK mice (amyloid-β oligomer model), Tg2576 mice (Alzheimer's disease model), and tau609 mice (tauopathy model). When orally administered to 17-month-old APPOSK mice at 0.5 and 1 mg/day for 1 month, rifampicin reduced the accumulation of amyloid-β oligomers as well as tau hyperphosphorylation, synapse loss, and microglial activation in a dose-dependent manner. In the Morris water maze, rifampicin at 1 mg/day improved memory of the mice to a level similar to that in non-transgenic littermates. Rifampicin also inhibited cytochrome c release from the mitochondria and caspase 3 activation in the hippocampus. In 13-month-old Tg2576 mice, oral rifampicin at 0.5 mg

  7. 20 CFR 404.437 - Excess earnings; benefit rate subject to deductions because of excess earnings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... excess earnings (see § 404.430), after your benefits may have been reduced because of the following: (a) The family maximum (see §§ 404.403 and 404.404), which applies to entitled beneficiaries remaining...); (b) Your entitlement to benefits (see § 404.410) for months before you reach full retirement age...

  8. Is the Amyloid Hypothesis of Alzheimer's disease therapeutically relevant?

    PubMed Central

    Teich, Andrew F.; Arancio, Ottavio

    2013-01-01

    The conventional view of AD (Alzheimer's disease) is that much of the pathology is driven by an increased load of β-amyloid in the brain of AD patients (the ‘Amyloid Hypothesis’). Yet, many therapeutic strategies based on lowering β-amyloid have so far failed in clinical trials. This failure of β-amyloid-lowering agents has caused many to question the Amyloid Hypothesis itself. However, AD is likely to be a complex disease driven by multiple factors. In addition, it is increasingly clear that β-amyloid processing involves many enzymes and signalling pathways that play a role in a diverse array of cellular processes. Thus the clinical failure of β-amyloid-lowering agents does not mean that the hypothesis itself is incorrect; it may simply mean that manipulating β-amyloid directly is an unrealistic strategy for therapeutic intervention, given the complex role of β-amyloid in neuronal physiology. Another possible problem may be that toxic β-amyloid levels have already caused irreversible damage to downstream cellular pathways by the time dementia sets in. We argue in the present review that a more direct (and possibly simpler) approach to AD therapeutics is to rescue synaptic dysfunction directly, by focusing on the mechanisms by which elevated levels of β-amyloid disrupt synaptic physiology. PMID:22891628

  9. Amyloid fibril formation by macrophage migration inhibitory factor

    SciTech Connect

    Lashuel, Hilal A. . E-mail: hilal.lashuel@epfl.ch; Aljabari, Bayan; Sigurdsson, Einar M.; Metz, Christine N.; Leng Lin; Callaway, David J.E.; Bucala, Richard

    2005-12-16

    We demonstrate herein that human macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine expressed in the brain and not previously considered to be amyloidogenic, forms amyloid fibrils similar to those derived from the disease associated amyloidogenic proteins {beta}-amyloid and {alpha}-synuclein. Acid denaturing conditions were found to readily induce MIF to undergo amyloid fibril formation. MIF aggregates to form amyloid-like structures with a morphology that is highly dependent on pH. The mechanism of MIF amyloid formation was probed by electron microscopy, turbidity, Thioflavin T binding, circular dichroism spectroscopy, and analytical ultracentrifugation. The fibrillar structures formed by MIF bind Congo red and exhibit the characteristic green birefringence under polarized light. These results are consistent with the notion that amyloid fibril formation is not an exclusive property of a select group of amyloidogenic proteins, and contribute to a better understanding of the factors which govern protein conformational changes and amyloid fibril formation in vivo.

  10. Immunohistochemical characterization of amyloid proteins in sural nerves and clinical associations in amyloid neuropathy.

    PubMed Central

    Li, K.; Kyle, R. A.; Dyck, P. J.

    1992-01-01

    To test whether immunohistochemical characterization of proteins in amyloid deposits in biopsied sural nerves gives reliable and useful diagnostic information using commercially available reagents, biopsy specimens of sural nerves from 38 patients with amyloid neuropathy were studied. Transthyretin (TTR) was detected in the amyloid deposits of 11 nerves, lambda light chains (LC) in 8 nerves, kappa LC in 7 nerves, and both lambda and kappa LC in 3 nerves. In 9 nerves, the amyloid deposits were too small to allow adequate immunohistochemical characterization of amyloid proteins in serial sections. Evidence that immunohistochemical characterization was correct came from: 1) evaluation of kin, 2) search for monoclonal proteins in the plasma, and 3) sequencing of the gene abnormalities in TTR+ cases. In 9 of 11 TTR+ cases, in which DNA could be obtained, sequencing of the gene showed that each of the 9 cases was heterozygous for a gene mutation; 7 had previously described mutations and 2 undescribed mutations. Therefore, in the nine sporadic cases without plasma monoclonal light chains, the immunohistochemical characterization correctly identified the protein in amyloid as transthyretin. Likewise, there was a high concordance between immunoglobulin light chains in plasma and light chains in amyloid in primary amyloidosis. Evaluation of the type, distribution, and severity of the neurologic symptoms and deficits showed: 1) the sensorimotor and autonomic neuropathy of amyloidosis characteristically affects proximal as well as distal limbs, and 2) the type of amyloidosis probably cannot be determined from the characteristics or severity of the neuropathy alone or from the location or size of amyloid deposits in nerve. Images Figure 1 PMID:1321563

  11. Mineralocorticoid Excess or Glucocorticoid Insufficiency

    PubMed Central

    Kenyon, Christopher J.; Bailey, Matthew A.; Conway, Bryan R.; Diaz, Mary E.; Mullins, John J.

    2015-01-01

    Obesity and hypertension are 2 major health issues of the 21st century. The syndrome of apparent mineralocorticoid excess is caused by deficiency of 11β-hydroxysteroid dehydrogenase type 2 (Hsd11b2), which normally inactivates glucocorticoids, rendering the mineralocorticoid receptor aldosterone–specific. The metabolic consequences of Hsd11b2 knockout in the rat are investigated in parallel with electrolyte homeostasis. Hsd11b2 was knocked out, by pronuclear microinjection of targeted zinc-finger nuclease mRNAs, and 1 line was characterized for its response to renal and metabolic challenges. Plasma 11-dehydrocorticosterone was below detection thresholds, and Hsd11b2 protein was undetected by Western blot, indicating complete ablation. Homozygotes were 13% smaller than wild-type littermates, and were polydipsic and polyuric. Their kidneys, adrenals, and hearts were significantly enlarged, but mesenteric fat pads and liver were significantly smaller. On a 0.3% Na diet, mean arterial blood pressure was ≈65 mm Hg higher than controls but only 25 mm Hg higher on a 0.03% Na+ diet. Urinary Na/K ratio of homozygotes was similar to controls on 0.3% Na+ diet but urinary albumin and calcium were elevated. Corticosterone and aldosterone levels showed normal circadian variation on both a 0.3% and 0.03% Na+ diet, but plasma renin was suppressed in homozygotes on both diets. Plasma glucose responses to an oral glucose challenge were reduced despite low circulating insulin, indicating much greater sensitivity to insulin in homozygotes. The rat model reveals mechanisms linking electrolyte homeostasis and metabolic control through the restriction of Hsd11b1 substrate availability. PMID:26077568

  12. Amyloid-carbon hybrid membranes for universal water purification.

    PubMed

    Bolisetty, Sreenath; Mezzenga, Raffaele

    2016-04-01

    Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films. PMID:26809058

  13. Nanoparticles and amyloid systems: A fatal encounter?

    NASA Astrophysics Data System (ADS)

    Abel, Bernd

    2014-10-01

    Nanoparticles (NPs) are used in many products of our daily life, however, there has been concern that they may also be harmful to human health. Recently NPs thave been found to accelerate the fibrillation kinetics of amyloid systems. In the past this has been preliminarily attributed to a nucleation effect. Nanoparticle surfaces and interfaces appear to limit the degrees of freedom of amyloid systems (i.e., peptides and proteins) due to a phase space constraint such that rapid cross-beta structures are formed faster than without interface interactions and in turn fibril formation is enhanced significantly. Here we explore if lipid bilayers in the form of liposomes (140nm) also accelerate fibril formation for amyloid systems. We have investigated a fragment NNFGAIL of the Human islet amyloid polypeptide (hIAPP) in contact with 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) liposomes in aqueous solution. We found that the lipid bilayer vesicles do accelerate fibril formation in time-resolved off-line detected atomic force microscopy experiments. Characteristic Thioflavine-T fluorescence on the same structures verify that the structures consist of aggregated peptides in a typical cross-β-structure arrangement.

  14. Serum amyloid P inhibits dermal wound healing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The repair of open wounds depends on granulation tissue formation and contraction, which is primarily mediated by myofibroblasts. A subset of myofibroblasts originates from bone-marrow-derived monocytes which differentiate into fibroblast-like cells called fibrocytes. Serum amyloid P (SAP) inhibits ...

  15. Bap: A New Type of Functional Amyloid.

    PubMed

    Di Martino, Patrick

    2016-09-01

    Bacteria can build a biofilm matrix scaffold from exopolysaccharides or proteins, and DNA. In a recent report, Taglialegna and colleagues show that pathogenic Staphylococcus aureus produces a protein scaffold based on amyloid assembly of fragments from the biofilm-associated protein. Amyloidogenesis occurs in response to environmental signals. PMID:27451288

  16. Fibrillar Amyloid Plaque Formation Precedes Microglial Activation

    PubMed Central

    Steinbach, Sonja; Blazquez-Llorca, Lidia; Herms, Jochen

    2015-01-01

    In Alzheimer’s disease (AD), hallmark β-amyloid deposits are characterized by the presence of activated microglia around them. Despite an extensive characterization of the relation of amyloid plaques with microglia, little is known about the initiation of this interaction. In this study, the detailed investigation of very small plaques in brain slices in AD transgenic mice of the line APP-PS1(dE9) revealed different levels of microglia recruitment. Analysing plaques with a diameter of up to 10 μm we find that only the half are associated with clear morphologically activated microglia. Utilizing in vivo imaging of new appearing amyloid plaques in double-transgenic APP-PS1(dE9)xCX3CR1+/- mice further characterized the dynamic of morphological microglia activation. We observed no correlation of morphological microglia activation and plaque volume or plaque lifetime. Taken together, our results demonstrate a very prominent variation in size as well as in lifetime of new plaques relative to the state of microglia reaction. These observations might question the existing view that amyloid deposits by themselves are sufficient to attract and activate microglia in vivo. PMID:25799372

  17. Nanoparticles and amyloid systems: A fatal encounter?

    SciTech Connect

    Abel, Bernd

    2014-10-06

    Nanoparticles (NPs) are used in many products of our daily life, however, there has been concern that they may also be harmful to human health. Recently NPs have been found to accelerate the fibrillation kinetics of amyloid systems. In the past this has been preliminarily attributed to a nucleation effect. Nanoparticle surfaces and interfaces appear to limit the degrees of freedom of amyloid systems (i.e., peptides and proteins) due to a phase space constraint such that rapid cross-beta structures are formed faster than without interface interactions and in turn fibril formation is enhanced significantly. Here we explore if lipid bilayers in the form of liposomes (140nm) also accelerate fibril formation for amyloid systems. We have investigated a fragment NNFGAIL of the Human islet amyloid polypeptide (hIAPP) in contact with 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) liposomes in aqueous solution. We found that the lipid bilayer vesicles do accelerate fibril formation in time-resolved off-line detected atomic force microscopy experiments. Characteristic Thioflavine-T fluorescence on the same structures verify that the structures consist of aggregated peptides in a typical cross-β-structure arrangement.

  18. Immunoglobulin light chains, glycosaminoglycans and amyloid.

    SciTech Connect

    Stevens, F. J.; Kisilevsky, R.; Biosciences Division; Queen's Univ.

    2000-03-01

    Immunoglobulin light chains are the precursor proteins for fibrils that are formed during primary amyloidosis and in amyloidosis associated with multiple myeloma. As found for the approximately 20 currently described forms of focal, localized, or systemic amyloidoses, light chain-related fibrils extracted from physiological deposits are invariably associated with glycosaminoglycans, predominantly heparan sulfate. Other amyloid-related proteins are either structurally normal, such as g2-microglobulin and islet amyloid polypeptide, fragments of normal proteins such as serum amyloid A protein or the precursor protein of the g peptide involved in Alzheimer's disease, or are inherited forms of single amino acid variants of a normal protein such as found in the familial forms of amyloid associated with transthyretin. In contrast, the primary structures of light chains involved in fibril formation exhibit extensive mutational diversity rendering some proteins highly amyloidogenic and others non-pathological. The interactions between light chains and glycosaminoglycans are also affected by amino acid variation and may influence the clinical course of disease by enhancing fibril stability and contributing to resistance to protease degradation. Relatively little is currently known about the mechanisms by which glycosaminoglycans interact with light chains and light-chain fibrils. It is probable that future studies of this uniquely diverse family of proteins will continue o shed light on the processes of amyloidosis, and contribute as well to a greater understanding of the normal physiological roles of glycosaminoglycans.

  19. Interactions between Amyloid-β and Tau Fragments Promote Aberrant Aggregates: Implications for Amyloid Toxicity

    PubMed Central

    2015-01-01

    We have investigated at the oligomeric level interactions between Aβ(25–35) and Tau(273–284), two important fragments of the amyloid-β and Tau proteins, implicated in Alzheimer’s disease. We are able to directly observe the coaggregation of these two peptides by probing the conformations of early heteroligomers and the macroscopic morphologies of the aggregates. Ion-mobility experiment and theoretical modeling indicate that the interactions of the two fragments affect the self-assembly processes of both peptides. Tau(273–284) shows a high affinity to form heteroligomers with existing Aβ(25–35) monomer and oligomers in solution. The configurations and characteristics of the heteroligomers are determined by whether the population of Aβ(25–35) or Tau(273–284) is dominant. As a result, two types of aggregates are observed in the mixture with distinct morphologies and dimensions from those of pure Aβ(25–35) fibrils. The incorporation of some Tau into β-rich Aβ(25–35) oligomers reduces the aggregation propensity of Aβ(25–35) but does not fully abolish fibril formation. On the other hand, by forming complexes with Aβ(25–35), Tau monomers and dimers can advance to larger oligomers and form granular aggregates. These heteroligomers may contribute to toxicity through loss of normal function of Tau or inherent toxicity of the aggregates themselves. PMID:25153942

  20. Modeling the Interaction between β-Amyloid Aggregates and Choline Acetyltransferase Activity and Its Relation with Cholinergic Dysfunction through Two-Enzyme/Two-Compartment Model

    PubMed Central

    Fgaier, Hedia; Mustafa, Ibrahim H. I.; Awad, Asmaa A. R.; Elkamel, Ali

    2015-01-01

    The effect of β-amyloid aggregates on activity of choline acetyltransferase (ChAT) which is responsible for synthesizing acetylcholine (ACh) in human brain is investigated through the two-enzyme/two-compartment (2E2C) model where the presynaptic neuron is considered as compartment 1 while both the synaptic cleft and the postsynaptic neuron are considered as compartment 2 through suggesting three different kinetic mechanisms for the inhibition effect. It is found that the incorporation of ChAT inhibition by β-amyloid aggregates into the 2E2C model is able to yield dynamic solutions for concentrations of generated β-amyloid, ACh, choline, acetate, and pH in addition to the rates of ACh synthesis and ACh hydrolysis in compartments 1 and 2. It is observed that ChAT activity needs a high concentration of β-amyloid aggregates production rate. It is found that ChAT activity is reduced significantly when neurons are exposed to high levels of β-amyloid aggregates leading to reduction in levels of ACh which is one of the most significant physiological symptoms of AD. Furthermore, the system of ACh neurocycle is dominated by the oscillatory behavior when ChAT enzyme is completely inhibited by β-amyloid. It is observed that the direct inactivation of ChAT by β-amyloid aggregates may be a probable mechanism contributing to the development of AD. PMID:26413144

  1. Current and future treatment of amyloid diseases.

    PubMed

    Ankarcrona, M; Winblad, B; Monteiro, C; Fearns, C; Powers, E T; Johansson, J; Westermark, G T; Presto, J; Ericzon, B-G; Kelly, J W

    2016-08-01

    There are more than 30 human proteins whose aggregation appears to cause degenerative maladies referred to as amyloid diseases or amyloidoses. These disorders are named after the characteristic cross-β-sheet amyloid fibrils that accumulate systemically or are localized to specific organs. In most cases, current treatment is limited to symptomatic approaches and thus disease-modifying therapies are needed. Alzheimer's disease is a neurodegenerative disorder with extracellular amyloid β-peptide (Aβ) fibrils and intracellular tau neurofibrillary tangles as pathological hallmarks. Numerous clinical trials have been conducted with passive and active immunotherapy, and small molecules to inhibit Aβ formation and aggregation or to enhance Aβ clearance; so far such clinical trials have been unsuccessful. Novel strategies are therefore required and here we will discuss the possibility of utilizing the chaperone BRICHOS to prevent Aβ aggregation and toxicity. Type 2 diabetes mellitus is symptomatically treated with insulin. However, the underlying pathology is linked to the aggregation and progressive accumulation of islet amyloid polypeptide as fibrils and oligomers, which are cytotoxic. Several compounds have been shown to inhibit islet amyloid aggregation and cytotoxicity in vitro. Future animal studies and clinical trials have to be conducted to determine their efficacy in vivo. The transthyretin (TTR) amyloidoses are a group of systemic degenerative diseases compromising multiple organ systems, caused by TTR aggregation. Liver transplantation decreases the generation of misfolded TTR and improves the quality of life for a subgroup of this patient population. Compounds that stabilize the natively folded, nonamyloidogenic, tetrameric conformation of TTR have been developed and the drug tafamidis is available as a promising treatment. PMID:27165517

  2. Adenoviral expression of murine serum amyloid A proteins to study amyloid fibrillogenesis.

    PubMed

    Kindy, M S; King, A R; Yu, J; Gerardot, C; Whitley, J; de Beer, F C

    1998-06-15

    Serum amyloid A (SAA) proteins are one of the most inducible acute-phase reactants and are precursors of secondary amyloidosis. In the mouse, SAA1 and SAA2 are induced in approximately equal quantities in response to amyloid induction models. These two isotypes differ in only 9 of 103 amino acid residues; however, only SAA2 is selectively deposited into amyloid fibrils. SAA expression in the CE/J mouse species is an exception in that gene duplication did not occur and the CE/J variant is a hybrid molecule sharing features of SAA1 and SAA2. However, even though it is more closely related to SAA2 it is not deposited as amyloid fibrils. We have developed an adenoviral vector system to overexpress SAA proteins in cell culture to determine the ability of these proteins to form amyloid fibrils, and to study the structural features in relation to amyloid formation. Both the SAA2 and CE/J SAA proteins were synthesized in large quantities and purified to homogeneity. Electron microscopic analysis of the SAA proteins revealed that the SAA2 protein was capable of forming amyloid fibrils, whereas the CE/J SAA was incapable. Radiolabelled SAAs were associated with normal or acute-phase high-density lipoproteins (HDLs); we examined them for their clearance from the circulation. In normal mice, SAA2 had a half-life of 70 min and CE/J SAA had a half-life of 120 min; however, in amyloid mice 50% of the SAA2 cleared in 55 min, compared with 135 min for the CE/J protein. When the SAA proteins were associated with acute-phase HDLs, SAA2 clearance was decreased to 60 min in normal mice compared with 30 min in amyloidogenic mice. Both normal and acute-phase HDLs were capable of depositing SAA2 into preformed amyloid fibrils, whereas the CE/J protein did not become associated with amyloid fibrils. This established approach opens the doors for large-scale SAA production and for the examination of specific amino acids involved in the fibrillogenic capability of the SAA2 molecule in vitro

  3. A Cultivated Form of a Red Seaweed (Chondrus crispus), Suppresses β-Amyloid-Induced Paralysis in Caenorhabditis elegans.

    PubMed

    Sangha, Jatinder Singh; Wally, Owen; Banskota, Arjun H; Stefanova, Roumiana; Hafting, Jeff T; Critchley, Alan T; Prithiviraj, Balakrishnan

    2015-10-01

    We report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against β-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aβ1-42 gene. The methanol extract of C. crispus (CCE), delayed β-amyloid-induced paralysis, whereas the water extract (CCW) was not effective. The CCE treatment did not affect the transcript abundance of amy1; however, Western blot analysis revealed a significant decrease of Aβ species, as compared to untreated worms. The transcript abundance of stress response genes; sod3, hsp16.2 and skn1 increased in CCE-treated worms. Bioassay guided fractionation of the CCE yielded a fraction enriched in monogalactosyl diacylglycerols (MGDG) that significantly delayed the onset of β-amyloid-induced paralysis. Taken together, these results suggested that the cultivated strain of C. crispus, whilst providing dietary nutritional value, may also have significant protective effects against β-amyloid-induced toxicity in C. elegans, partly through reduced β-amyloid species, up-regulation of stress induced genes and reduced accumulation of reactive oxygen species (ROS). PMID:26492254

  4. A Cultivated Form of a Red Seaweed (Chondrus crispus), Suppresses β-Amyloid-Induced Paralysis in Caenorhabditis elegans

    PubMed Central

    Sangha, Jatinder Singh; Wally, Owen; Banskota, Arjun H.; Stefanova, Roumiana; Hafting, Jeff T.; Critchley, Alan T.; Prithiviraj, Balakrishnan

    2015-01-01

    We report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against β-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aβ1-42 gene. The methanol extract of C. crispus (CCE), delayed β-amyloid-induced paralysis, whereas the water extract (CCW) was not effective. The CCE treatment did not affect the transcript abundance of amy1; however, Western blot analysis revealed a significant decrease of Aβ species, as compared to untreated worms. The transcript abundance of stress response genes; sod3, hsp16.2 and skn1 increased in CCE-treated worms. Bioassay guided fractionation of the CCE yielded a fraction enriched in monogalactosyl diacylglycerols (MGDG) that significantly delayed the onset of β-amyloid-induced paralysis. Taken together, these results suggested that the cultivated strain of C. crispus, whilst providing dietary nutritional value, may also have significant protective effects against β-amyloid-induced toxicity in C. elegans, partly through reduced β-amyloid species, up-regulation of stress induced genes and reduced accumulation of reactive oxygen species (ROS). PMID:26492254

  5. Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARγ involvement.

    PubMed

    Scuderi, Caterina; Steardo, Luca; Esposito, Giuseppe

    2014-07-01

    The amyloidogenic cascade is regarded as a key factor at the basis of Alzheimer's disease (AD) pathogenesis. The aberrant cleavage of amyloid precursor protein (APP) induces an increased production and a subsequent aggregation of beta amyloid (Aβ) peptide in limbic and association cortices. As a result, altered neuronal homeostasis and oxidative injury provoke tangle formation with consequent neuronal loss. Cannabidiol (CBD), a Cannabis derivative devoid of psychotropic effects, has attracted much attention because it may beneficially interfere with several Aβ-triggered neurodegenerative pathways, even though the mechanism responsible for such actions remains unknown. In the present research, the role of CBD was investigated as a possible modulating compound of APP processing in SHSY5Y(APP+) neurons. In addition, the putative involvement of peroxisome proliferator-activated receptor-γ (PPARγ) was explored as a candidate molecular site responsible for CBD actions. Results indicated the CBD capability to induce the ubiquitination of APP protein which led to a substantial decrease in APP full length protein levels in SHSY5Y(APP+) with the consequent decrease in Aβ production. Moreover, CBD promoted an increased survival of SHSY5Y(APP+) neurons, by reducing their long-term apoptotic rate. Obtained results also showed that all, here observed, CBD effects were dependent on the selective activation of PPARγ. PMID:24288245

  6. The Effect of Milk Constituents and Crowding Agents on Amyloid Fibril Formation by κ-Casein.

    PubMed

    Liu, Jihua; Dehle, Francis C; Liu, Yanqin; Bahraminejad, Elmira; Ecroyd, Heath; Thorn, David C; Carver, John A

    2016-02-17

    When not incorporated into the casein micelle, κ-casein, a major milk protein, rapidly forms amyloid fibrils at physiological pH and temperature. In this study, the effects of milk components (calcium, lactose, lipids, and heparan sulfate) and crowding agents on reduced and carboxymethylated (RCM) κ-casein fibril formation was investigated using far-UV circular dichroism spectroscopy, thioflavin T binding assays, and transmission electron microscopy. Longer-chain phosphatidylcholine lipids, which form the lining of milk ducts and milk fat globules, enhanced RCM κ-casein fibril formation irrespective of whether the lipids were in a monomeric or micellar state, whereas shorter-chain phospholipids and triglycerides had little effect. Heparan sulfate, a component of the milk fat globule membrane and catalyst of amyloid deposition in extracellular tissue, had little effect on the kinetics of RCM κ-casein fibril formation. Major nutritional components such as calcium and lactose also had no significant effect. Macromolecular crowding enhances protein-protein interactions, but in contrast to other fibril-forming species, the extent of RCM κ-casein fibril formation was reduced by the presence of a variety of crowding agents. These data are consistent with a mechanism of κ-casein fibril formation in which the rate-determining step is dissociation from the oligomer to give the highly amyloidogenic monomer. We conclude that the interaction of κ-casein with membrane-associated phospholipids along its secretory pathway may contribute to the development of amyloid deposits in mammary tissue. However, the formation of spherical oligomers such as casein micelles is favored over amyloid fibrils in the crowded environment of milk, within which the occurrence of amyloid fibrils is low. PMID:26807595

  7. Action of Caffeine as an Amyloid Inhibitor in the Aggregation of Aβ16-22 Peptides.

    PubMed

    Sharma, Bhanita; Paul, Sandip

    2016-09-01

    Alzheimer's disease (AD) is a neurodegenerative disease caused due to aggregation of Aβ peptides in the brain tissues. Recently, several studies on AD transgenic mice have shown the effect of caffeine in significantly reducing the Aβ amyloid level in their brains. However, the mechanism and mode of caffeine action on amyloid aggregation are not known. Therefore, in this study, we have carried out molecular dynamics simulations of five amyloid-forming Aβ16-22 peptides in pure water and in a regime of caffeine solutions, with different caffeine/peptide stoichiometric ratios. The secondary structure analyses of peptides in pure water show the formation of β-sheet conformations, whereas on addition of caffeine, these ordered conformations become negligible. The radial distribution function, contact map, nonbonding interaction energy, hydrogen bonding, potential of mean force, and hydration analyses show that there is less interpeptide interaction in the presence of caffeine, and the effect is greater with an increasing caffeine ratio. The interaction of aromatic phenylalanine residues of peptides with caffeine restricts the interpeptide interaction tendency. Upon increasing the number of caffeine molecules, interaction of caffeine with other hydrophobic residues also increases. Thus, the hydrophobic core-recognition motif of amyloid formation of peptides is physically blocked by caffeine, thereby abolishing the self-assembly formation. PMID:27487451

  8. Endoplasmic Reticulum Quality Control and Systemic Amyloid Disease: Impacting Protein Stability from the Inside Out

    PubMed Central

    Chen, John J.; Genereux, Joseph C.; Wiseman, R. Luke

    2015-01-01

    The endoplasmic reticulum (ER) is responsible for regulating proteome integrity throughout the secretory pathway. The ER protects downstream secretory environments such as the extracellular space by partitioning proteins between ER protein folding, trafficking and degradation pathways in a process called ER quality control. In this process, ER quality control factors identify misfolded, aggregation-prone protein conformations and direct them towards ER protein folding or degradation, reducing their secretion to the extracellular space where they could further misfold or aggregate into proteotoxic conformations. Despite the general efficiency of ER quality control, many human diseases, such as the systemic amyloidoses, involve aggregation of destabilized, aggregation-prone proteins in the extracellular space. A common feature for all systemic amyloid diseases is the ability for amyloidogenic proteins to evade ER quality control and be efficiently secreted. The efficient secretion of these amyloidogenic proteins increases their serum concentrations available for the distal proteotoxic aggregation characteristic of these diseases. This indicates that ER quality control, and the regulation thereof, is a critical determinant in defining the onset and pathology of systemic amyloid diseases. Here, we discuss the pathologic and potential therapeutic relationship between ER quality control, protein secretion and distal deposition of amyloidogenic proteins involved in systemic amyloid diseases. Furthermore, we present evidence that the Unfolded Protein Response, the stress-responsive signaling pathway that regulates ER quality control, is involved in the pathogenesis of systemic amyloid diseases and represents a promising emerging therapeutic target to intervene in this class of human disease. PMID:26018985

  9. Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology.

    PubMed

    Spangenberg, Elizabeth E; Lee, Rafael J; Najafi, Allison R; Rice, Rachel A; Elmore, Monica R P; Blurton-Jones, Mathew; West, Brian L; Green, Kim N

    2016-04-01

    In addition to amyloid-β plaque and tau neurofibrillary tangle deposition, neuroinflammation is considered a key feature of Alzheimer's disease pathology. Inflammation in Alzheimer's disease is characterized by the presence of reactive astrocytes and activated microglia surrounding amyloid plaques, implicating their role in disease pathogenesis. Microglia in the healthy adult mouse depend on colony-stimulating factor 1 receptor (CSF1R) signalling for survival, and pharmacological inhibition of this receptor results in rapid elimination of nearly all of the microglia in the central nervous system. In this study, we set out to determine if chronically activated microglia in the Alzheimer's disease brain are also dependent on CSF1R signalling, and if so, how these cells contribute to disease pathogenesis. Ten-month-old 5xfAD mice were treated with a selective CSF1R inhibitor for 1 month, resulting in the elimination of ∼80% of microglia. Chronic microglial elimination does not alter amyloid-β levels or plaque load; however, it does rescue dendritic spine loss and prevent neuronal loss in 5xfAD mice, as well as reduce overall neuroinflammation. Importantly, behavioural testing revealed improvements in contextual memory. Collectively, these results demonstrate that microglia contribute to neuronal loss, as well as memory impairments in 5xfAD mice, but do not mediate or protect from amyloid pathology. PMID:26921617

  10. Development of magnetic resonance imaging based detection methods for beta amyloids via sialic acid-functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kouyoumdjian, Hovig

    The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.

  11. Centrally Delivered BACE1 Inhibitor Activates Microglia, and Reverses Amyloid Pathology and Cognitive Deficit in Aged Tg2576 Mice.

    PubMed

    Thakker, Deepak R; Sankaranarayanan, Sethu; Weatherspoon, Marcy R; Harrison, Jonathan; Pierdomenico, Maria; Heisel, Jennifer M; Thompson, Lorin A; Haskell, Roy; Grace, James E; Taylor, Sarah J; Albright, Charles F; Shafer, Lisa L

    2015-04-29

    Multiple small-molecule inhibitors of the β-secretase enzyme (BACE1) are under preclinical or clinical investigation for Alzheimer's disease (AD). Prior work has illustrated robust lowering of central amyloid β (Aβ) after acute administration of BACE1 inhibitors. However, very few studies have assessed the overall impact of chronically administered BACE1 inhibitors on brain amyloid burden, neuropathology, and behavioral function in aged preclinical models. We investigated the effects of a potent nonbrain-penetrant BACE1 inhibitor, delivered directly to the brain using intracerebroventricular infusion in an aged transgenic mouse model. Intracerebroventricular infusion of the BACE1 inhibitor (0.3-23.5 μg/d) for 8 weeks, initiated in 17-month-old Tg2576 mice, produced dose-dependent increases in brain inhibitor concentrations (0.2-13 μm). BACE1 inhibition significantly reversed the behavioral deficit in contextual fear conditioning, and reduced brain Aβ levels, plaque burden, and associated pathology (e.g., dystrophic neurites), with maximal effects attained with ∼1 μg/d dose. Strikingly, the BACE1 inhibitor also reversed amyloid pathology below baseline levels (amyloid burden at the start of treatment), without adversely affecting cerebral amyloid angiopathy, microhemorrhages, myelination, or neuromuscular function. Inhibitor-mediated decline in brain amyloid pathology was associated with an increase in microglial ramification. This is the first demonstration of chronically administered BACE1 inhibitor to activate microglia, reverse brain amyloid pathology, and elicit functional improvement in an aged transgenic mouse model. Thus, engagement of novel glial-mediated clearance mechanisms may drive disease-modifying therapeutic benefit with BACE1 inhibition in AD. PMID:25926467

  12. Memory decline shows stronger associations with estimated spatial patterns of amyloid deposition progression than total amyloid burden.

    PubMed

    Yotter, Rachel A; Doshi, Jimit; Clark, Vanessa; Sojkova, Jitka; Zhou, Yun; Wong, Dean F; Ferrucci, Luigi; Resnick, Susan M; Davatzikos, Christos

    2013-12-01

    The development of amyloid imaging compounds has allowed in vivo imaging of amyloid deposition. In this study, we examined the spatial patterns of amyloid deposition throughout the brain using Pittsburgh Compound Blue ((11)C-PiB) positron emission tomography data from the Baltimore Longitudinal Study of Aging. We used a new methodology that allowed us to approximate spatial patterns of the temporal progression of amyloid plaque deposition from cross-sectional data. Our results are consistent with patterns of progression known from autopsy studies, with frontal and precuneus regions affected early and occipital and sensorimotor cortices affected later in disease progression--here, disease progression means lower-to-higher total amyloid burden. Furthermore, we divided participants into subgroups based on longitudinal change in memory performance, and demonstrated significantly different spatial patterns of the estimated progression of amyloid deposition between these subgroups. Our results indicate that the spatial pattern of amyloid deposition is related to cognitive performance and may be more informative than a biomarker reflecting total amyloid burden, the use of which is the current practice. This finding has broad implications for our understanding of the relationship between cognitive decline/resilience and amyloid deposition, as well as for the use of amyloid imaging as a biomarker in research and clinical applications. PMID:23859610

  13. Amyloid persistence in decellularized liver: biochemical and histopathological characterization

    PubMed Central

    Mazza, Giuseppe; Simons, J. Paul; Al-Shawi, Raya; Ellmerich, Stephan; Urbani, Luca; Giorgetti, Sofia; Taylor, Graham W.; Gilbertson, Janet A.; Hall, Andrew R.; Al-Akkad, Walid; Dhar, Dipok; Hawkins, Philip N.; De Coppi, Paolo; Pinzani, Massimo; Bellotti, Vittorio; Mangione, P. Patrizia

    2016-01-01

    Abstract Systemic amyloidoses are a group of debilitating and often fatal diseases in which fibrillar protein aggregates are deposited in the extracellular spaces of a range of tissues. The molecular basis of amyloid formation and tissue localization is still unclear. Although it is likely that the extracellular matrix (ECM) plays an important role in amyloid deposition, this interaction is largely unexplored, mostly because current analytical approaches may alter the delicate and complicated three-dimensional architecture of both ECM and amyloid. We describe here a decellularization procedure for the amyloidotic mouse liver which allows high-resolution visualization of the interactions between amyloid and the constitutive fibers of the extracellular matrix. The primary structure of the fibrillar proteins remains intact and the amyloid fibrils retain their amyloid enhancing factor activity. PMID:26646718

  14. Direct observation of amyloid nucleation under nanomechanical stretching

    NASA Astrophysics Data System (ADS)

    Varongchayakul, Nitinun

    Self-assembly of amyloid nanofiber is associated with functional and pathological processes such as in neurodegenerative diseases. Despite intensive studies, stochastic nature of the process has made it difficult to elucidate molecular mechanisms for the key amyloid nucleation. Here, we investigated the amyloid nucleation of silk-elastin-like peptide (SELP) using time-lapse lateral force microscopy (LFM). By repeated scanning a single line on a SELP-coated mica surface, we observed sudden stepwise height increases, corresponds to nucleation of an amyloid fiber. The lateral force profiles followed either a worm-like chain model or an exponential function, suggesting that the atomic force microscopy (AFM) tip stretches a single or multiple SELP molecules along the scanning direction, serves as the template for further self-assembly perpendicular to the scan direction. Such mechanically induced nucleation of amyloid fibrils allows positional and directional control of amyloid assembly in vitro , which we demonstrate by generating single nanofibers at predetermined nucleation sites.

  15. Molecular basis for amyloid fibril formation and stability

    PubMed Central

    Makin, O. Sumner; Atkins, Edward; Sikorski, Pawel; Johansson, Jan; Serpell, Louise C.

    2005-01-01

    The molecular structure of the amyloid fibril has remained elusive because of the difficulty of growing well diffracting crystals. By using a sequence-designed polypeptide, we have produced crystals of an amyloid fiber. These crystals diffract to high resolution (1 Å) by electron and x-ray diffraction, enabling us to determine a detailed structure for amyloid. The structure reveals that the polypeptides form fibrous crystals composed of antiparallel β-sheets in a cross-β arrangement, characteristic of all amyloid fibers, and allows us to determine the side-chain packing within an amyloid fiber. The antiparallel β-sheets are zipped together by means of π-bonding between adjacent phenylalanine rings and salt-bridges between charge pairs (glutamic acid–lysine), thus controlling and stabilizing the structure. These interactions are likely to be important in the formation and stability of other amyloid fibrils. PMID:15630094

  16. Size Effect of Graphene Oxide on Modulating Amyloid Peptide Assembly.

    PubMed

    Wang, Jie; Cao, Yunpeng; Li, Qiang; Liu, Lei; Dong, Mingdong

    2015-06-26

    Protein misfolding and abnormal assembly could lead to aggregates such as oligomer, proto-fibril, mature fibril, and senior amyloid plaques, which are associated with the pathogenesis of many amyloid diseases. These irreversible amyloid aggregates typically form in vivo and researchers have been endeavoring to find new modulators to invert the aggregation propensity in vitro, which could increase understanding in the mechanism of the aggregation of amyloid protein and pave the way to potential clinical treatment. Graphene oxide (GO) was shown to be a good modulator, which could strongly control the amyloidosis of Aβ (33-42). In particular, quartz crystal microbalance (QCM), circular dichroism (CD) spectroscopy, and atomic force microscopy (AFM) measurements revealed the size-dependent manner of GO on modulating the assembly of amyloid peptides, which could be a possible way to regulate the self-assembled nanostructure of amyloid peptide in a predictable manner. PMID:26031933

  17. Atomic View of a Toxic Amyloid Small Oligomer

    SciTech Connect

    Laganowsky, Arthur; Liu, Cong; Sawaya, Michael R.; Whitelegge, Julian P.; Park, Jiyong; Zhao, Minglei; Pensalfini, Anna; Soriaga, Angela B.; Landau, Meytal; Teng, Poh K.; Cascio, Duilio; Glabe, Charles; Eisenberg, David

    2012-04-30

    Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein {alpha}{beta} crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: {beta}-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the {beta}-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.

  18. Amyloid persistence in decellularized liver: biochemical and histopathological characterization.

    PubMed

    Mazza, Giuseppe; Simons, J Paul; Al-Shawi, Raya; Ellmerich, Stephan; Urbani, Luca; Giorgetti, Sofia; Taylor, Graham W; Gilbertson, Janet A; Hall, Andrew R; Al-Akkad, Walid; Dhar, Dipok; Hawkins, Philip N; De Coppi, Paolo; Pinzani, Massimo; Bellotti, Vittorio; Mangione, P Patrizia

    2016-01-01

    Systemic amyloidoses are a group of debilitating and often fatal diseases in which fibrillar protein aggregates are deposited in the extracellular spaces of a range of tissues. The molecular basis of amyloid formation and tissue localization is still unclear. Although it is likely that the extracellular matrix (ECM) plays an important role in amyloid deposition, this interaction is largely unexplored, mostly because current analytical approaches may alter the delicate and complicated three-dimensional architecture of both ECM and amyloid. We describe here a decellularization procedure for the amyloidotic mouse liver which allows high-resolution visualization of the interactions between amyloid and the constitutive fibers of the extracellular matrix. The primary structure of the fibrillar proteins remains intact and the amyloid fibrils retain their amyloid enhancing factor activity. PMID:26646718

  19. Structural requirements of glycosaminoglycans for facilitating amyloid fibril formation of human serum amyloid A.

    PubMed

    Takase, Hiroka; Tanaka, Masafumi; Yamamoto, Aki; Watanabe, Shiori; Takahashi, Sanae; Nadanaka, Satomi; Kitagawa, Hiroshi; Yamada, Toshiyuki; Mukai, Takahiro

    2016-06-01

    Serum amyloid A (SAA) is a precursor protein of amyloid fibrils. Given that heparan sulfate (HS), a glycosaminoglycan (GAG), is detected in amyloid deposits, it has been suggested that GAG is a key component of amyloid fibril formation. We previously reported that heparin (an analog of HS) facilitates the fibril formation of SAA, but the structural requirements remain unknown. In the present study, we investigated the structural requirements of GAGs for facilitating the amyloid fibril formation of SAA. Spectroscopic analyses using structurally diverse GAG analogs suggested that the fibril formation of SAA was facilitated irrespective of the backbone structure of GAGs; however, the facilitating effect was strongly correlated with the degree of sulfation. Microscopic analyses revealed that the morphologies of SAA aggregates were modulated by the GAGs. The HS molecule, which is less sulfated than heparin but contains highly sulfated domains, exhibited a relatively high potential to facilitate fibril formation compared to other GAGs. The length dependence of fragmented heparins on the facilitating effect suggested that a high density of sulfate groups is also required. These results indicate that not only the degree of sulfation but also the lengths of sulfated domains in GAG play important roles in fibril formation of SAA. PMID:27097047

  20. Excessive or unwanted hair in women

    MedlinePlus

    Hypertrichosis; Hirsutism; Hair - excessive (women); Excessive hair in women; Hair - women - excessive or unwanted ... much of this hormone, you may have unwanted hair growth. In most cases, the exact cause is ...

  1. The infrared excess - age relationship: debris, a NASA key project

    NASA Astrophysics Data System (ADS)

    Spangler, C.; Silverstone, M. D.; Becklin, E. E.; Hare, J.; Zuckerman, B.; Sargent, A. I.; Goldreich, P.

    1999-03-01

    The DEBRIS project is primarily a survey of infrared radiation from nearby solar-like stars to establish how many display infrared emission in excess of that from the stellar photosphere and the timescale over which the excess persists. Such excess infrared emission indicates associated circumstellar material that could be the debris of planet formation. This survey used the ISOPHOT C100 detector ( te{lem96}) and the 60 and 90 μm filters to search for infrared flux around approximately 300 stellar targets with a variety of ages, masses and multiplicities. Here we present a summary of our results. The preliminary description of a drop of infrared excess as a function of age reported earlier by te*{bec98} is substantiated. Using a larger data set, better reduced data, and new age estimates, we find τpropto{age}-2. Several main sequence stars with newly discovered excesses are also discussed.

  2. Outflows in Sodium Excess Objects

    NASA Astrophysics Data System (ADS)

    Park, Jongwon; Jeong, Hyunjin; Yi, Sukyoung K.

    2015-08-01

    Van Dokkum and Conroy revisited the unexpectedly strong Na i lines at 8200 Å found in some giant elliptical galaxies and interpreted them as evidence for an unusually bottom-heavy initial mass function. Jeong et al. later found a large population of galaxies showing equally extraordinary Na D doublet absorption lines at 5900 Å (Na D excess objects: NEOs) and showed that their origins can be different for different types of galaxies. While a Na D excess seems to be related to the interstellar medium (ISM) in late-type galaxies, smooth-looking early-type NEOs show little or no dust extinction and hence no compelling signs of ISM contributions. To further test this finding, we measured the Doppler components in the Na D lines. We hypothesized that the ISM would have a better (albeit not definite) chance of showing a blueshift Doppler departure from the bulk of the stellar population due to outflow caused by either star formation or AGN activities. Many of the late-type NEOs clearly show blueshift in their Na D lines, which is consistent with the former interpretation that the Na D excess found in them is related to gas outflow caused by star formation. On the contrary, smooth-looking early-type NEOs do not show any notable Doppler components, which is also consistent with the interpretation of Jeong et al. that the Na D excess in early-type NEOs is likely not related to ISM activities but is purely stellar in origin.

  3. Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems.

    PubMed

    El-Khoury, Riyad; Kaulio, Eveliina; Lassila, Katariina A; Crowther, Damian C; Jacobs, Howard T; Rustin, Pierre

    2016-07-01

    Mitochondrial dysfunction has been widely associated with the pathology of Alzheimer's disease, but there is no consensus on whether it is a cause or consequence of disease, nor on the precise mechanism(s). We addressed these issues by testing the effects of expressing the alternative oxidase AOX from Ciona intestinalis, in different models of AD pathology. AOX can restore respiratory electron flow when the cytochrome segment of the mitochondrial respiratory chain is inhibited, supporting ATP synthesis, maintaining cellular redox homeostasis and mitigating excess superoxide production at respiratory complexes I and III. In human HEK293-derived cells, AOX expression decreased the production of beta-amyloid peptide resulting from antimycin inhibition of respiratory complex III. Because hydrogen peroxide was neither a direct product nor substrate of AOX, the ability of AOX to mimic antioxidants in this assay must be indirect. In addition, AOX expression was able to partially alleviate the short lifespan of Drosophila models neuronally expressing human beta-amyloid peptides, whilst abrogating the induction of markers of oxidative stress. Our findings support the idea of respiratory chain dysfunction and excess ROS production as both an early step and as a pathologically meaningful target in Alzheimer's disease pathogenesis, supporting the concept of a mitochondrial vicious cycle underlying the disease. PMID:27094492

  4. Recognizing and analyzing variability in amyloid formation kinetics: Simulation and statistical methods.

    PubMed

    Hall, Damien; Zhao, Ran; So, Masatomo; Adachi, Masayuki; Rivas, Germán; Carver, John A; Goto, Yuji

    2016-10-01

    We examine the phenomenon of variability in the kinetics of amyloid formation and detail methods for its simulation, identification and analysis. Simulated data, reflecting intrinsic variability, were produced using rate constants, randomly sampled from a pre-defined distribution, as parameters in an irreversible nucleation-growth kinetic model. Simulated kinetic traces were reduced in complexity through description in terms of three characteristic parameters. Practical methods for assessing convergence of the reduced parameter distributions were introduced and a bootstrap procedure was applied to determine convergence for different levels of intrinsic variation. Statistical methods for assessing the significance of shifts in parameter distributions, relating to either change in parameter mean or distribution shape, were tested. Robust methods for analyzing and interpreting kinetic data possessing significant intrinsic variance will allow greater scrutiny of the effects of anti-amyloid compounds in drug trials. PMID:27430932

  5. Elucidating the Role of Disulfide Bond on Amyloid Formation and Fibril Reversibility of Somatostatin-14

    PubMed Central

    Anoop, Arunagiri; Ranganathan, Srivastav; Dhaked, Bhagwan Das; Jha, Narendra Nath; Pratihar, Supriya; Ghosh, Saikat; Sahay, Shruti; Kumar, Santosh; Das, Subhadeep; Kombrabail, Mamata; Agarwal, Kumud; Jacob, Reeba S.; Singru, Praful; Bhaumik, Prasenjit; Padinhateeri, Ranjith; Kumar, Ashutosh; Maji, Samir K.

    2014-01-01

    The storage of protein/peptide hormones within subcellular compartments and subsequent release are crucial for their native function, and hence these processes are intricately regulated in mammalian systems. Several peptide hormones were recently suggested to be stored as amyloids within endocrine secretory granules. This leads to an apparent paradox where storage requires formation of aggregates, and their function requires a supply of non-aggregated peptides on demand. The precise mechanism behind amyloid formation by these hormones and their subsequent release remain an open question. To address this, we examined aggregation and fibril reversibility of a cyclic peptide hormone somatostatin (SST)-14 using various techniques. After proving that SST gets stored as amyloid in vivo, we investigated the role of native structure in modulating its conformational dynamics and self-association by disrupting the disulfide bridge (Cys3–Cys14) in SST. Using two-dimensional NMR, we resolved the initial structure of somatostatin-14 leading to aggregation and further probed its conformational dynamics in silico. The perturbation in native structure (S-S cleavage) led to a significant increase in conformational flexibility and resulted in rapid amyloid formation. The fibrils formed by disulfide-reduced noncyclic SST possess greater resistance to denaturing conditions with decreased monomer releasing potency. MD simulations reveal marked differences in the intermolecular interactions in SST and noncyclic SST providing plausible explanation for differential aggregation and fibril reversibility observed experimentally in these structural variants. Our findings thus emphasize that subtle changes in the native structure of peptide hormone(s) could alter its conformational dynamics and amyloid formation, which might have significant implications on their reversible storage and secretion. PMID:24782311

  6. Development and characterization of a TAPIR-like mouse monoclonal antibody to amyloid-beta.

    PubMed

    Wang, Jun; Hara, Hideo; Makifuchi, Takao; Tabira, Takeshi

    2008-06-01

    Tissue amyloid plaque immuno-reactive (TAPIR) antibody was better related to the effect of immunotherapy in Alzheimer's disease (AD) than ELISA antibody. Here we used a hybridoma technique to develop a TAPIR-like anti-human amyloid-beta (Abeta) mouse monoclonal antibody. The obtained monoclonal antibody, 3.4A10, was an IgG2b isotype and recognized N-terminal portion of Abeta1-42 without binding denatured or native amyloid-beta protein precursor. It had higher affinity to Abeta1-42 than to Abeta1-40 by Biacore affinity analysis and stained preferably the peripheral part of senile plaques and recognized the plaque core less than 4G8. It inhibited the Abeta1-42 fibril formation as well as degraded pre-aggregated Abeta1-42 peptide in a thioflavin T fluorescence spectrophotometry assay. The in vivo studies showed that 3.4A10 treatment decreased amyloid burden compared to the control group and significantly reduced Abeta42 levels rather than Abeta40 levels in brain lysates as well as the Abeta*56 oligomer (12mer) in TBS fraction of the brain lysates. 3.4A10 entered brain and decorated some plaques, which is surrounded by more Iba1-positive microglia. 3.4A10 therapy did not induce lymphocytic infiltration and obvious increase in microhemorrhage. We conclude that 3.4A10 is a TAPIR-like anti-human amyloid monoclonal antibody, and has a potential of therapeutic application for AD. PMID:18560128

  7. Amyloid-β-Induced Dysregulation of AMPA Receptor Trafficking

    PubMed Central

    Guntupalli, Sumasri; Widagdo, Jocelyn; Anggono, Victor

    2016-01-01

    Evidence from neuropathological, genetic, animal model, and biochemical studies has indicated that the accumulation of amyloid-beta (Aβ) is associated with, and probably induces, profound neuronal changes in brain regions critical for memory and cognition in the development of Alzheimer's disease (AD). There is considerable evidence that synapses are particularly vulnerable to AD, establishing synaptic dysfunction as one of the earliest events in pathogenesis, prior to neuronal loss. It is clear that excessive Aβ levels can disrupt excitatory synaptic transmission and plasticity, mainly due to dysregulation of the AMPA and NMDA glutamate receptors in the brain. Importantly, AMPA receptors are the principal glutamate receptors that mediate fast excitatory neurotransmission. This is essential for synaptic plasticity, a cellular correlate of learning and memory, which are the cognitive functions that are most disrupted in AD. Here we review recent advances in the field and provide insights into the molecular mechanisms that underlie Aβ-induced dysfunction of AMPA receptor trafficking. This review focuses primarily on NMDA receptor- and metabotropic glutamate receptor-mediated signaling. In particular, we highlight several mechanisms that underlie synaptic long-term depression as common signaling pathways that are hijacked by the neurotoxic effects of Aβ. PMID:27073700

  8. Amyloid-β-Induced Dysregulation of AMPA Receptor Trafficking.

    PubMed

    Guntupalli, Sumasri; Widagdo, Jocelyn; Anggono, Victor

    2016-01-01

    Evidence from neuropathological, genetic, animal model, and biochemical studies has indicated that the accumulation of amyloid-beta (Aβ) is associated with, and probably induces, profound neuronal changes in brain regions critical for memory and cognition in the development of Alzheimer's disease (AD). There is considerable evidence that synapses are particularly vulnerable to AD, establishing synaptic dysfunction as one of the earliest events in pathogenesis, prior to neuronal loss. It is clear that excessive Aβ levels can disrupt excitatory synaptic transmission and plasticity, mainly due to dysregulation of the AMPA and NMDA glutamate receptors in the brain. Importantly, AMPA receptors are the principal glutamate receptors that mediate fast excitatory neurotransmission. This is essential for synaptic plasticity, a cellular correlate of learning and memory, which are the cognitive functions that are most disrupted in AD. Here we review recent advances in the field and provide insights into the molecular mechanisms that underlie Aβ-induced dysfunction of AMPA receptor trafficking. This review focuses primarily on NMDA receptor- and metabotropic glutamate receptor-mediated signaling. In particular, we highlight several mechanisms that underlie synaptic long-term depression as common signaling pathways that are hijacked by the neurotoxic effects of Aβ. PMID:27073700

  9. Self-Assembly of Amyloid Fibrils That Display Active Enzymes

    PubMed Central

    Zhou, Xiao-Ming; Entwistle, Aiman; Zhang, Hong; Jackson, Antony P; Mason, Thomas O; Shimanovich, Ulyana; Knowles, Tuomas P J; Smith, Andrew T; Sawyer, Elizabeth B; Perrett, Sarah

    2014-01-01

    Enzyme immobilization is an important strategy to enhance the stability and recoverability of enzymes and to facilitate the separation of enzymes from reaction products. However, enzyme purification followed by separate chemical steps to allow immobilization on a solid support reduces the efficiency and yield of the active enzyme. Here we describe polypeptide constructs that self-assemble spontaneously into nanofibrils with fused active enzyme subunits displayed on the amyloid fibril surface. We measured the steady-state kinetic parameters for the appended enzymes in situ within fibrils and compare these with the identical protein constructs in solution. Finally, we demonstrated that the fibrils can be recycled and reused in functional assays both in conventional batch processes and in a continuous-flow microreactor. PMID:25937845

  10. Amyloids, Melanins and Oxidative Stress in Melanomagenesis

    PubMed Central

    Liu-Smith, Feng; Poe, Carrie; Farmer, Patrick J.; Meyskens, Frank L.

    2015-01-01

    Melanoma has traditionally been viewed as an ultra-violet (UV) radiation induced malignancy. While UV is a common inducing factor, other endogenous stresses such as metal ion accumulation or the melanin pigment itself, may provide alternative pathways to melanoma progression. Eumelanosomes within melanoma often exhibit disrupted membranes and fragmented pigment which may be due to alterations in their amyloid-based striatial matrix. The melanosomal amyloid can itself be toxic, especially in combination with reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated by endogenous NADPH oxidase (NOX) and nitric oxide synthase (NOS) enzymes; a toxic mix that may initiate melanomagenesis. Further understanding of the loss of the melanosomal organization, the behavior of the exposed melanin, and the induction of ROS/RNS in melanomas may provide critical insights into this deadly disease. PMID:25271672

  11. Stability and cytotoxicity of crystallin amyloid nanofibrils.

    PubMed

    Kaur, Manmeet; Healy, Jackie; Vasudevamurthy, Madhusudan; Lassé, Moritz; Puskar, Ljiljana; Tobin, Mark J; Valery, Celine; Gerrard, Juliet A; Sasso, Luigi

    2014-11-01

    Previous work has identified crystallin proteins extracted from fish eye lenses as a cheap and readily available source for the self-assembly of amyloid nanofibrils. However, before exploring potential applications, the biophysical aspects and safety of this bionanomaterial need to be assessed so as to ensure that it can be effectively and safely used. In this study, crude crystallin amyloid fibrils are shown to be stable across a wide pH range, in a number of industrially relevant solvents, at both low and high temperatures, and in the presence of proteases. Crystallin nanofibrils were compared to well characterised insulin and whey protein fibrils using Thioflavin T assays and TEM imaging. Cell cytotoxicity assays suggest no adverse impact of both mature and fragmented crystallin fibrils on cell viability of Hec-1a endometrial cells. An IR microspectroscopy study supports long-term structural integrity of crystallin nanofibrils. PMID:25255060

  12. General anesthetics and β-amyloid protein.

    PubMed

    Xie, Zhongcong; Xu, Zhipeng

    2013-12-01

    With roughly 234 million people undergoing surgery with anesthesia each year worldwide, it is important to determine whether commonly used anesthetics can induce any neurotoxicity. Alzheimer's disease (AD) is the most common form of age-related dementia, and a rapidly growing health problem. Several studies suggest that anesthesia could be associated with the development of AD. Moreover, studies in cultured cells and animals show that commonly used inhalation anesthetics may induce changes consistent with AD neuropathogenesis, e.g., β-amyloid protein accumulation. Therefore, in this mini review, we focus on the recent research investigating the effects of commonly used anesthetics including isoflurane, sevoflurane, desflurane, nitrous oxide, and propofol, on Aβ accumulation in vitro and in vivo. We further discuss the future direction of the research determining the effects of anesthetics on β-amyloid protein accumulation. PMID:22918033

  13. Alzheimer's silent partner: cerebral amyloid angiopathy.

    PubMed

    Cupino, Tanya L; Zabel, Matthew K

    2014-06-01

    Alzheimer's disease (AD) is the most common form of dementia, which completely lacks a viable, long-term therapeutic intervention. This is partly due to an incomplete understanding of AD etiology and the possible confounding factors associated with its genotypic and phenotypic heterogeneity. Cerebral amyloid angiopathy (CAA) is a common, yet frequently overlooked, pathology associated with AD. CAA manifests with deposition amyloid-beta (Aβ) within the smooth muscle layer of cerebral arteries and arterioles. The role of Aβ in AD and CAA pathophysiology has long been controversial. Although it has demonstrated toxicity at super-physiological levels in vitro, Aβ load does not necessarily correlate with cognitive demise in humans. In this review, we describe the contributions of CAA to AD pathophysiology and important pathomechanisms that may lead to vascular fragility and hemorrhages. Additionally, we discuss the effect of Aβ on smooth muscle cell phenotype and viability, especially in terms of the complement cascade. PMID:24323728

  14. Combined treatment with a BACE inhibitor and anti-Aβ antibody gantenerumab enhances amyloid reduction in APPLondon mice.

    PubMed

    Jacobsen, Helmut; Ozmen, Laurence; Caruso, Antonello; Narquizian, Robert; Hilpert, Hans; Jacobsen, Bjoern; Terwel, Dick; Tanghe, An; Bohrmann, Bernd

    2014-08-27

    Therapeutic approaches for prevention or reduction of amyloidosis are currently a main objective in basic and clinical research on Alzheimer's disease. Among the agents explored in clinical trials are anti-Aβ peptide antibodies and secretase inhibitors. Most anti-Aβ antibodies are considered to act via inhibition of amyloidosis and enhanced clearance of existing amyloid, although secretase inhibitors reduce the de novo production of Aβ. Limited information is currently available on the efficacy and potential advantages of combinatorial antiamyloid treatment. We performed a chronic study in APPLondon transgenic mice that received treatment with anti-Aβ antibody gantenerumab and BACE inhibitor RO5508887, either as mono- or combination treatment. Treatment aimed to evaluate efficacy on amyloid progression, similar to preexisting amyloidosis as present in Alzheimer's disease patients. Mono-treatments with either compound caused a dose-dependent reduction of total brain Aβ and amyloid burden. Combination treatment with both compounds significantly enhanced the antiamyloid effect. The observed combination effect was most pronounced for lowering of amyloid plaque load and plaque number, which suggests effective inhibition of de novo plaque formation. Moreover, significantly enhanced clearance of pre-existing amyloid plaques was observed when gantenerumab was coadministered with RO5508887. BACE inhibition led to a significant time- and dose-dependent decrease in CSF Aβ, which was not observed for gantenerumab treatment. Our results demonstrate that combining these two antiamyloid agents enhances overall efficacy and suggests that combination treatments may be of clinical relevance. PMID:25164658

  15. Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms.

    PubMed

    Tükel, Cagla; Nishimori, Jessalyn H; Wilson, R Paul; Winter, Maria G; Keestra, A Marijke; van Putten, Jos P M; Bäumler, Andreas J

    2010-10-01

    Responses to host amyloids and curli amyloid fibrils of Escherichia coli and Salmonella enterica serotype Typhimurium are mediated through Toll-like receptor (TLR) 2. Here we show that TLR2 alone was not sufficient for mediating responses to curli. Instead, transfection experiments with human cervical cancer (HeLa) cells and antibody-mediated inhibition of TLR signalling in human macrophage-like (THP-1) cells suggested that TLR2 interacts with TLR1 to recognize curli amyloid fibrils. TLR1/TLR2 also serves as a receptor for tri-acylated lipoproteins, which are produced by E. coli and other Gram-negative bacteria. Despite the presence of multiple TLR1/TLR2 ligands on intact bacterial cells, an inability to produce curli amyloid fibrils markedly reduced the ability of E. coli to induce TLR2-dependent responses in vitro and in vivo. Collectively, our data suggest that curli amyloid fibrils from enterobacterial biofilms significantly contribute to TLR1/TLR2-mediated host responses against intact bacterial cells. PMID:20497180

  16. Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms

    PubMed Central

    Tükel, Çagla; Nishimori, Jessalyn H.; Wilson, R. Paul; Winter, Maria G.; Keestra, A. Marijke; van Putten, Jos P. M.; Bäumler, Andreas J.

    2013-01-01

    Responses to host amyloids and curli amyloid fibrils of Escherichia coli and Salmonella enterica serotype Typhimurium are mediated through Toll-like receptor (TLR) 2. Here we show that TLR2 alone was not sufficient for mediating responses to curli. Instead, transfection experiments with human cervical cancer (HeLa) cells and antibody-mediated inhibition of TLR signaling in human macrophage-like (THP-1) cells suggested that TLR2 interacts with TLR1 to recognize curli amyloid fibrils. TLR1/TLR2 also serves as a receptor for tri-acylated lipoproteins, which are produced by E. coli and other Gram-negative bacteria. Despite the presence of multiple TLR1/TLR2 ligands on intact bacterial cells, an inability to produce curli amyloid fibrils markedly reduced the ability of E. coli to induce TLR2-dependent responses in vitro and in vivo. Collectively, our data suggest that curli amyloid fibrils from enterobacterial biofilms significantly contribute to TLR1/TLR2-mediated host responses against intact bacterial cells. PMID:20497180

  17. Combined Treatment with a BACE Inhibitor and Anti-Aβ Antibody Gantenerumab Enhances Amyloid Reduction in APPLondon Mice

    PubMed Central

    Ozmen, Laurence; Caruso, Antonello; Narquizian, Robert; Hilpert, Hans; Jacobsen, Bjoern; Terwel, Dick; Tanghe, An

    2014-01-01

    Therapeutic approaches for prevention or reduction of amyloidosis are currently a main objective in basic and clinical research on Alzheimer‘s disease. Among the agents explored in clinical trials are anti-Aβ peptide antibodies and secretase inhibitors. Most anti-Aβ antibodies are considered to act via inhibition of amyloidosis and enhanced clearance of existing amyloid, although secretase inhibitors reduce the de novo production of Aβ. Limited information is currently available on the efficacy and potential advantages of combinatorial antiamyloid treatment. We performed a chronic study in APPLondon transgenic mice that received treatment with anti-Aβ antibody gantenerumab and BACE inhibitor RO5508887, either as mono- or combination treatment. Treatment aimed to evaluate efficacy on amyloid progression, similar to preexisting amyloidosis as present in Alzheimer's disease patients. Mono-treatments with either compound caused a dose-dependent reduction of total brain Aβ and amyloid burden. Combination treatment with both compounds significantly enhanced the antiamyloid effect. The observed combination effect was most pronounced for lowering of amyloid plaque load and plaque number, which suggests effective inhibition of de novo plaque formation. Moreover, significantly enhanced clearance of pre-existing amyloid plaques was observed when gantenerumab was coadministered with RO5508887. BACE inhibition led to a significant time- and dose-dependent decrease in CSF Aβ, which was not observed for gantenerumab treatment. Our results demonstrate that combining these two antiamyloid agents enhances overall efficacy and suggests that combination treatments may be of clinical relevance. PMID:25164658

  18. NOVEL AMYLOID-BETA SPECIFIC scFv and VH ANTIBODY FRAGMENTS FROM HUMAN AND MOUSE PHAGE DISPLAY ANTIBODY LIBRARIES

    PubMed Central

    Medecigo, M.; Manoutcharian, K.; Vasilevko, V.; Govezensky, T.; Munguia, M. E.; Becerril, B.; Luz-Madrigal, A.; Vaca, L.; Cribbs, D. H.; Gevorkian, G.

    2010-01-01

    Anti-amyloid immunotherapy has been proposed as an appropriate therapeutic approach for Alzheimer’s disease (AD). Significant efforts have been made towards the generation and assessment of antibody-based reagents capable of preventing and clearing amyloid aggregates as well as preventing their synaptotoxic effects. In this study, we selected a novel set of human anti-amyloid-beta peptide 1-42 (Aβ1-42) recombinant monoclonal antibodies in a single chain fragment variable (scFv) and a single domain (VH) formats. We demonstrated that these antibody fragments recognize in a specific manner amyloid beta deposits in APP/Tg mouse brains, inhibit toxicity of oligomeric Aβ1-42 in neuroblastoma cell cultures in a concentration-dependently manner and reduced amyloid deposits in APP/Tg2576 mice after intracranial administration. These antibody fragments recognize epitopes in the middle/C-terminus region of Aβ, which makes them strong therapeutic candidates due to the fact that most of the Aβ species found in the brains of AD patients display extensive N-terminus truncations/modifications. PMID:20451261

  19. Aggregation of β-amyloid fragments

    NASA Astrophysics Data System (ADS)

    Meinke, Jan H.; Hansmann, Ulrich H. E.

    2007-01-01

    The authors study the folding and aggregation of six chains of the β-amyloid fragment 16-22 using Monte Carlo simulations. While the isolated fragment prefers a helical form at room temperature, in the system of six interacting fragments one observes both parallel and antiparallel β sheets below a crossover temperature Tx≈420K. The antiparallel sheets have lower energy and are therefore more stable. Above the nucleation temperature the aggregate quickly dissolves into widely separated, weakly interacting chains.

  20. Amylin Amyloid Inhibition by Flavonoid Baicalein: Key Roles of Its Vicinal Dihydroxyl Groups of the Catechol Moiety.

    PubMed

    Velander, Paul; Wu, Ling; Ray, W Keith; Helm, Richard F; Xu, Bin

    2016-08-01

    Amyloid formation of the 37-residue amylin is involved in the pathogenesis of type 2 diabetes and, potentially, diabetes-induced neurological deficits. Numerous flavonoids exhibit inhibitory effects against amylin amyloidosis, but the mechanisms of inhibition remain unclear. Screening a library of natural compounds uncovered a potent lead compound, the flavone baicalein. Baicalein inhibits amylin amyloid formation and reduces amylin-induced cytotoxicity. Analogue analyses demonstrated, for the first time, key roles of the vicinal hydroxyl groups on the A-ring. We provided mass spectrometric evidence that incubating baicalein and amylin leads to their conjugation, consistent with a Schiff base mechanism. PMID:27431615

  1. Amyloid Triangles, Squares, and Loops of Apolipoprotein C-III

    PubMed Central

    2015-01-01

    While a significant component of atherosclerotic plaques has been characterized as amyloid, the specific proteins remain to be fully identified. Probable amyloidogenic proteins are apolipoproteins (Apos), which are vital for the formation and function of lipoproteins. ApoCIII is an abundant protein implicated in atherosclerosis, and we show it forms a ribbonlike looped amyloid, strikingly similar to that previously reported for ApoAI and ApoCII. Triangles and squares with a width of ∼50 nm were also observed, which may be a novel form of amyloid or related to previously reported amyloid rings. PMID:24804986

  2. Specific chaperones and regulatory domains in control of amyloid formation.

    PubMed

    Landreh, Michael; Rising, Anna; Presto, Jenny; Jörnvall, Hans; Johansson, Jan

    2015-10-30

    Many proteins can form amyloid-like fibrils in vitro, but only about 30 amyloids are linked to disease, whereas some proteins form physiological amyloid-like assemblies. This raises questions of how the formation of toxic protein species during amyloidogenesis is prevented or contained in vivo. Intrinsic chaperoning or regulatory factors can control the aggregation in different protein systems, thereby preventing unwanted aggregation and enabling the biological use of amyloidogenic proteins. The molecular actions of these chaperones and regulators provide clues to the prevention of amyloid disease, as well as to the harnessing of amyloidogenic proteins in medicine and biotechnology. PMID:26354437

  3. Prions, amyloids, and RNA: Pieces of a puzzle.

    PubMed

    Nizhnikov, Anton A; Antonets, Kirill S; Bondarev, Stanislav A; Inge-Vechtomov, Sergey G; Derkatch, Irina L

    2016-05-01

    Amyloids are protein aggregates consisting of fibrils rich in β-sheets. Growth of amyloid fibrils occurs by the addition of protein molecules to the tip of an aggregate with a concurrent change of a conformation. Thus, amyloids are self-propagating protein conformations. In certain cases these conformations are transmissible / infectious; they are known as prions. Initially, amyloids were discovered as pathological extracellular deposits occurring in different tissues and organs. To date, amyloids and prions have been associated with over 30 incurable diseases in humans and animals. However, a number of recent studies demonstrate that amyloids are also functionally involved in a variety of biological processes, from biofilm formation by bacteria, to long-term memory in animals. Interestingly, amyloid-forming proteins are highly overrepresented among cellular factors engaged in all stages of mRNA life cycle: from transcription and translation, to storage and degradation. Here we review rapidly accumulating data on functional and pathogenic amyloids associated with mRNA processing, and discuss possible significance of prion and amyloid networks in the modulation of key cellular functions. PMID:27248002

  4. Transgenic Mice Overexpressing Amyloid Precursor Protein Exhibit Early Metabolic Deficits and a Pathologically Low Leptin State Associated with Hypothalamic Dysfunction in Arcuate Neuropeptide Y Neurons

    PubMed Central

    Ishii, Makoto; Wang, Gang; Racchumi, Gianfranco; Dyke, Jonathan P.

    2014-01-01

    Weight loss is a prominent early feature of Alzheimer's disease (AD) that often precedes the cognitive decline and clinical diagnosis. While the exact pathogenesis of AD remains unclear, accumulation of amyloid-β (Aβ) derived from the amyloid precursor protein (APP) in the brain is thought to lead to the neuronal dysfunction and death underlying the dementia. In this study, we examined whether transgenic mice overexpressing the Swedish mutation of APP (Tg2576), recapitulating selected features of AD, have hypothalamic leptin signaling dysfunction leading to early body weight deficits. We found that 3-month-old Tg2576 mice, before amyloid plaque formation, exhibit decreased weight with markedly decreased adiposity, low plasma leptin levels, and increased energy expenditure without alterations in feeding behavior. The expression of the orexigenic neuropeptide Y (NPY) in the hypothalamus to the low leptin state was abnormal at basal and fasting conditions. In addition, arcuate NPY neurons exhibited abnormal electrophysiological responses to leptin in Tg2576 hypothalamic slices or wild-type slices treated with Aβ. Finally, the metabolic deficits worsened as Tg2576 mice aged and amyloid burden increased in the brain. These results indicate that excess Aβ can potentially disrupt hypothalamic arcuate NPY neurons leading to weight loss and a pathologically low leptin state early in the disease process that progressively worsens as the amyloid burden increases. Collectively, these findings suggest that weight loss is an intrinsic pathological feature of Aβ accumulation and identify hypothalamic leptin signaling as a previously unrecognized pathogenic site of action for Aβ. PMID:24990930

  5. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores.

    PubMed

    Arbor, Sage C; LaFontaine, Mike; Cumbay, Medhane

    2016-03-01

    Amyloid beta (Aβ), the hallmark of Alzheimer's Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review. PMID:27505013

  6. Amyloid precursor protein and amyloid precursor-like protein 2 in cancer

    PubMed Central

    Pandey, Poomy; Sliker, Bailee; Peters, Haley L.; Tuli, Amit; Herskovitz, Jonathan; Smits, Kaitlin; Purohit, Abhilasha; Singh, Rakesh K.; Dong, Jixin; Batra, Surinder K.; Coulter, Donald W.; Solheim, Joyce C.

    2016-01-01

    Amyloid precursor protein (APP) and its family members amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are type 1 transmembrane glycoproteins that are highly conserved across species. The transcriptional regulation of APP and APLP2 is similar but not identical, and the cleavage of both proteins is regulated by phosphorylation. APP has been implicated in Alzheimer's disease causation, and in addition to its importance in neurology, APP is deregulated in cancer cells. APLP2 is likewise overexpressed in cancer cells, and APLP2 and APP are linked to increased tumor cell proliferation, migration, and invasion. In this present review, we discuss the unfolding account of these APP family members’ roles in cancer progression and metastasis. PMID:26840089

  7. Amyloid-beta Alzheimer targets — protein processing, lipid rafts, and amyloid-beta pores

    PubMed Central

    Arbor, Sage C.; LaFontaine, Mike; Cumbay, Medhane

    2016-01-01

    Amyloid beta (Aβ), the hallmark of Alzheimer’s Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review. PMID:27505013

  8. Partial Volume Correction in Quantitative Amyloid Imaging

    PubMed Central

    Su, Yi; Blazey, Tyler M.; Snyder, Abraham Z.; Raichle, Marcus E.; Marcus, Daniel S.; Ances, Beau M.; Bateman, Randall J.; Cairns, Nigel J.; Aldea, Patricia; Cash, Lisa; Christensen, Jon J.; Friedrichsen, Karl; Hornbeck, Russ C.; Farrar, Angela M.; Owen, Christopher J.; Mayeux, Richard; Brickman, Adam M.; Klunk, William; Price, Julie C.; Thompson, Paul M.; Ghetti, Bernardino; Saykin, Andrew J.; Sperling, Reisa A.; Johnson, Keith A.; Schofield, Peter R.; Buckles, Virginia; Morris, John C.; Benzinger, Tammie. LS.

    2014-01-01

    Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition. PMID:25485714

  9. Partial volume correction in quantitative amyloid imaging.

    PubMed

    Su, Yi; Blazey, Tyler M; Snyder, Abraham Z; Raichle, Marcus E; Marcus, Daniel S; Ances, Beau M; Bateman, Randall J; Cairns, Nigel J; Aldea, Patricia; Cash, Lisa; Christensen, Jon J; Friedrichsen, Karl; Hornbeck, Russ C; Farrar, Angela M; Owen, Christopher J; Mayeux, Richard; Brickman, Adam M; Klunk, William; Price, Julie C; Thompson, Paul M; Ghetti, Bernadino; Saykin, Andrew J; Sperling, Reisa A; Johnson, Keith A; Schofield, Peter R; Buckles, Virginia; Morris, John C; Benzinger, Tammie L S

    2015-02-15

    Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition. PMID:25485714

  10. Fibrillar dimer formation of islet amyloid polypeptides

    DOE PAGESBeta

    Chiu, Chi -cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimentalmore » and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.« less

  11. Cooperative Hydrogen Bonding in Amyloid Formation.

    SciTech Connect

    Tsemekhman, Kiril L.; Goldschmidt, Lukasz; Eisenberg, Dvaid; Baker, David

    2007-04-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Amyloid diseases, including Alzheimer's and prion diseases, are each associated with unbranched protein fibrils. Each fibril is made of a particular protein, yet they share common properties. One such property is nucleation-dependent fibril growth. Monomers of amyloid-forming proteins can remain in dissolved form for long periods, before rapidly assembly into fibrils. The lag before growth has been attributed to slow kinetics of formation of a nucleus, on which other molecules can deposit to form the fibril. We have explored the energetics of fibril formation, based on the known molecular structure of a fibril-forming peptide from the yeast prion, Sup35, using both classical and quantum (density functional theory) methods. We find that the energetics of fibril formation for the first three layers are cooperative using both methods. This cooperativity is consistent with the observation that formation of amyloid fibrils involves slow nucleation and faster growth.

  12. Non-amyloid and amyloid prion protein deposits in prion-infected mice differ in blockage of interstitial brain fluid

    PubMed Central

    Rangel, Alejandra; Race, Brent; Striebel, James; Chesebro, Bruce

    2012-01-01

    Aims Prion diseases are characterized by brain deposits of misfolded aggregated protease-resistant prion protein (PrP), termed PrPres. In humans and animals, PrPres is found as either disorganized non-amyloid aggregates or organized amyloid fibrils. Both PrPres forms are found in extracellular spaces of the brain. Thus, both might block drainage of brain interstitial fluid (ISF). The present experiments studied whether ISF blockage occurred during amyloid and/or non-amyloid prion diseases. Methods Various-sized fluorescein-labeled ISF tracers were stereotactically inoculated into the striatum of adult mice. At times from 5 min to 77 hours, uninfected and scrapie-infected mice were compared. C57BL/10 mice expressing wild-type anchored PrP, which develop non-amyloid PrPres similar to humans with sporadic CJD, were compared with Tg44+/+ mice expressing anchorless PrP, which develop amyloid PrPres similar to certain human familial prion diseases. Results In C57BL/10 mice, extensive non-amyloid PrPres aggregate deposition was not associated with abnormal clearance kinetics of tracers. In contrast, scrapie-infected Tg44+/+ mice showed blockage of tracer clearance and co-localization of tracer with perivascular PrPres amyloid. Conclusions Since tracer localization and clearance was normal in infected C57BL/10 mice, ISF blockage was not an important pathogenic mechanism in this model. Therefore, ISF blockage is unlikely to be a problem in non-amyloid human prion diseases such as sporadic CJD. In contrast, partial ISF blockage appeared to be a possible pathogenic mechanism in Tg44+/+ mice. Thus this mechanism might also influence human amyloid prion diseases where expression of anchorless or mutated PrP results in perivascular amyloid PrPres deposition and cerebral amyloid angiopathy (CAA). PMID:22998478

  13. Inhibition of islet amyloid polypeptide aggregation and associated cytotoxicity by nonsteroidal anti-inflammatory drugs.

    PubMed

    Fortin, Jessica S; Benoit-Biancamano, Marie-Odile

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) constitute an important pharmacotherapeutic class that, over the past decade, have expanded in application to a panoply of medical conditions. They have been tested for neurodegenerative diseases such as Alzheimer's to reduce inflammation and also in the attempt to abrogate amyloid deposition. However, the use of NSAIDs as aggregation inhibitors has not been extensively studied in pancreatic amyloid deposition. Pancreatic amyloidosis involves the misfolding of islet amyloid polypeptide (IAPP) and contributes to the progression of type-2 diabetes in humans and felines. To ascertain their antiamyloidogenic activity, several NSAIDs were tested using fluorometric thioflavin-T assays, circular dichroism, photo-induced cross-linking assays, and cell culture. Celecoxib, diclofenac, indomethacin, meloxicam, niflumic acid, nimesulide, phenylbutazone, piroxicam, sulindac, and tenoxicam reduced fibrillization at a molar ratio of 1:10. The circular dichroism spectra of diclofenac, piroxicam, and sulindac showed characteristic spectral signatures found in predominantly α-helical structures. The oligomerization of human IAPP was abrogated with diclofenac and sulindac at a molar ratio of 1:5. The cytotoxic effects of pre-incubated human IAPP on cultured INS-1 cells were noticeably reduced in the presence of diclofenac, meloxicam, phenylbutazone, sulindac, and tenoxicam at a molar ratio of 1:10. Our results demonstrate that NSAIDs can provide chemical scaffolds to generate new and promising antiamyloidogenic agents that can be used alone or as a coadjuvant therapy. PMID:26524404

  14. Multiple mechanisms of iron-induced amyloid beta-peptide accumulation in SHSY5Y cells: protective action of negletein.

    PubMed

    Banerjee, Priyanjalee; Sahoo, Arghyadip; Anand, Shruti; Ganguly, Anirban; Righi, Giuliana; Bovicelli, Paolo; Saso, Luciano; Chakrabarti, Sasanka

    2014-12-01

    The increased accumulation of iron in the brain in Alzheimer's disease (AD) is well documented, and excess iron is strongly implicated in the pathogenesis of the disease. The adverse effects of accumulated iron in AD brain may include the oxidative stress, altered amyloid beta-metabolism and the augmented toxicity of metal-bound amyloid beta 42. In this study, we have shown that exogenously added iron in the form of ferric ammonium citrate (FAC) leads to considerable accumulation of amyloid precursor protein (APP) without a corresponding change in the concerned gene expression in cultured SHSY5Y cells during exposure up to 48 h. This phenomenon is also associated with increased β-secretase activity and augmented release of amyloid beta 42 in the medium. Further, the increase in β-secretase activity, in SHSY5Y cells, upon exposure to iron apparently involves reactive oxygen species (ROS) and NF-κB activation. The synthetic flavone negletein (5,6-dihydroxy-7-methoxyflavone), which is a known chelator for iron, can significantly prevent the effects of FAC on APP metabolism in SHSY5Y cells. Further, this compound inhibits the iron-dependent formation of ROS and also blocks the iron-induced oligomerization of amyloid beta 42 in vitro. In concentrations used in this study, negletein alone appears to have only marginal toxic effects on cell viability, but, on the other hand, the drug is capable of ameliorating the iron-induced loss of cell viability considerably. Our results provide the initial evidence of potential therapeutic effects of negletein, which should be explored in suitable animal models of AD. PMID:25249289

  15. Regional brain hypometabolism is unrelated to regional amyloid plaque burden.

    PubMed

    Altmann, Andre; Ng, Bernard; Landau, Susan M; Jagust, William J; Greicius, Michael D

    2015-12-01

    In its original form, the amyloid cascade hypothesis of Alzheimer's disease holds that fibrillar deposits of amyloid are an early, driving force in pathological events leading ultimately to neuronal death. Early clinicopathological investigations highlighted a number of inconsistencies leading to an updated hypothesis in which amyloid plaques give way to amyloid oligomers as the driving force in pathogenesis. Rather than focusing on the inconsistencies, amyloid imaging studies have tended to highlight the overlap between regions that show early amyloid plaque signal on positron emission tomography and that also happen to be affected early in Alzheimer's disease. Recent imaging studies investigating the regional dependency between metabolism and amyloid plaque deposition have arrived at conflicting results, with some showing regional associations and other not. We extracted multimodal neuroimaging data from the Alzheimer's disease neuroimaging database for 227 healthy controls and 434 subjects with mild cognitive impairment. We analysed regional patterns of amyloid deposition, regional glucose metabolism and regional atrophy using florbetapir ((18)F) positron emission tomography, (18)F-fluordeoxyglucose positron emission tomography and T1-weighted magnetic resonance imaging, respectively. Specifically, we derived grey matter density and standardized uptake value ratios for both positron emission tomography tracers in 404 functionally defined regions of interest. We examined the relation between regional glucose metabolism and amyloid plaques using linear models. For each region of interest, correcting for regional grey matter density, age, education and disease status, we tested the association of regional glucose metabolism with (i) cortex-wide florbetapir uptake; (ii) regional (i.e. in the same region of interest) florbetapir uptake; and (iii) regional florbetapir uptake while correcting in addition for cortex-wide florbetapir uptake. P-values for each setting

  16. Amyloid cascade in Alzheimer's disease: Recent advances in medicinal chemistry.

    PubMed

    Mohamed, Tarek; Shakeri, Arash; Rao, Praveen P N

    2016-05-01

    Alzheimer's disease is of major concern all over the world due to a number of factors including (i) an aging population (ii) increasing life span and (iii) lack of effective pharmacotherapy options. The past decade has seen intense research in discovering disease-modifying multitargeting small molecules as therapeutic options. The pathophysiology of Alzheimer's disease is attributed to a number of factors such as the cholinergic dysfunction, amyloid/tau toxicity and oxidative stress/mitochondrial dysfunction. In recent years, targeting the amyloid cascade has emerged as an attractive strategy to discover novel neurotherapeutics. Formation of beta-amyloid species, with different degrees of solubility and neurotoxicity is associated with the gradual decline in cognition leading to dementia. The two commonly used approaches to prevent beta-amyloid accumulation in the brain include (i) development of beta-secretase inhibitors and (ii) designing direct inhibitors of beta-amyloid (self-induced) aggregation. This review highlights the amyloid cascade hypothesis and the key chemical features required to design small molecules that inhibit lower and higher order beta-amyloid aggregates. Several recent examples of small synthetic molecules with disease-modifying properties were considered and their molecular docking studies were conducted using either a dimer or steric-zipper assembly of beta-amyloid. These investigations provide a mechanistic understanding on the structural requirements needed to design novel small molecules with anti-amyloid aggregation properties. Significantly, this work also demonstrates that the structural requirements to prevent aggregation of various amyloid species differs considerably, which explains the fact that many small molecules do not exhibit similar inhibition profile toward diverse amyloid species such as dimers, trimers, tetramers, oligomers, protofibrils and fibrils. PMID:26945113

  17. Outflows in Sodium Excess Objects

    NASA Astrophysics Data System (ADS)

    Park, Jongwon; Jeong, Hyunjin; Yi, Sukyoung

    2016-01-01

    van Dokkum and Conroy reported that some giant elliptical galaxies show extraordinarily strong Na I absorption lines and suggested that this is the evidence of unusually bottom-heavy initial mass function. Jeong et al. later studied galaxies with unexpectedly strong Na D absorption lines (Na D excess objects: NEOs) and showed that the origins of NEOs are different for different types of galaxies. According to their study, the origin of Na D excess seems to be related to interstellar medium (ISM) in late-type galaxies, but there seems to be no contributions from ISM in smooth-looking early-type galaxies. In order to test this finding, we measured the Doppler components in Na D lines of NEOs. We hypothesized that if Na D absorption line is related to ISM, the absorption line is more likely to be blueshifted in the spectrum by the motion of ISM caused by outflow. Many of late-type NEOs show blueshifted Na D absorption lines, so their origin seems related to ISM. On the other hand, smooth-looking early-type NEOs do not show Doppler departure and Na D excess in early-type NEOs is likely not related to ISM, which is consistent with the finding of Jeong et al.

  18. The Cosmic Ray Electron Excess

    NASA Technical Reports Server (NTRS)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  19. Excess carbon in silicon carbide

    SciTech Connect

    Shen, X; Oxley, Mark P.; Puzyrev, Y; Tuttle, B R; Duscher, Gerd; Pantelides, Sokrates T.

    2010-01-01

    The application of SiC in electronic devices is currently hindered by low carrier mobility at the SiC/SiO{sub 2} interfaces. Recently, it was reported that 4H-SiC/SiO{sub 2} interfaces might have a transition layer on the SiC substrate side with C/Si ratio as high as 1.2, suggesting that carbon is injected into the SiC substrate during oxidation or other processing steps. We report finite-temperature quantum molecular dynamics simulations that explore the behavior of excess carbon in SiC. For SiC with 20% excess carbon, we find that, over short time ({approx} 24 ps), carbon atoms bond to each other and form various complexes, while the silicon lattice is largely unperturbed. These results, however, suggest that at macroscopic times scale, C segregation is likely to occur; therefore a transition layer with 20% extra carbon would not be stable. For a dilute distribution of excess carbon, we explore the pairing of carbon interstitials and show that the formation of dicarbon interstitial cluster is kinetically very favorable, which suggests that isolated carbon clusters may exist inside SiC substrate.

  20. Verification of excess defense material

    SciTech Connect

    Fearey, B.L.; Pilat, J.F.; Eccleston, G.W.; Nicholas, N.J.; Tape, J.W.

    1997-12-01

    The international community in the post-Cold War period has expressed an interest in the International Atomic Energy Agency (IAEA) using its expertise in support of the arms control and disarmament process in unprecedented ways. The pledges of the US and Russian presidents to place excess defense materials under some type of international inspections raises the prospect of using IAEA safeguards approaches for monitoring excess materials, which include both classified and unclassified materials. Although the IAEA has suggested the need to address inspections of both types of materials, the most troublesome and potentially difficult problems involve approaches to the inspection of classified materials. The key issue for placing classified nuclear components and materials under IAEA safeguards is the conflict between these traditional IAEA materials accounting procedures and the US classification laws and nonproliferation policy designed to prevent the disclosure of critical weapon-design information. Possible verification approaches to classified excess defense materials could be based on item accountancy, attributes measurements, and containment and surveillance. Such approaches are not wholly new; in fact, they are quite well established for certain unclassified materials. Such concepts may be applicable to classified items, but the precise approaches have yet to be identified, fully tested, or evaluated for technical and political feasibility, or for their possible acceptability in an international inspection regime. Substantial work remains in these areas. This paper examines many of the challenges presented by international inspections of classified materials.

  1. 12 CFR 925.23 - Excess stock.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Excess stock. 925.23 Section 925.23 Banks and... BANKS Stock Requirements § 925.23 Excess stock. (a) Sale of excess stock. Subject to the restriction in paragraph (b) of this section, a member may purchase excess stock as long as the purchase is approved by...

  2. 34 CFR 300.16 - Excess costs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Excess costs. 300.16 Section 300.16 Education... DISABILITIES General Definitions Used in This Part § 300.16 Excess costs. Excess costs means those costs that... for an example of how excess costs must be calculated.) (Authority: 20 U.S.C. 1401(8))...

  3. 34 CFR 300.16 - Excess costs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Excess costs. 300.16 Section 300.16 Education... DISABILITIES General Definitions Used in This Part § 300.16 Excess costs. Excess costs means those costs that... for an example of how excess costs must be calculated.) (Authority: 20 U.S.C. 1401(8))...

  4. 34 CFR 300.16 - Excess costs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Excess costs. 300.16 Section 300.16 Education... DISABILITIES General Definitions Used in This Part § 300.16 Excess costs. Excess costs means those costs that... for an example of how excess costs must be calculated.) (Authority: 20 U.S.C. 1401(8))...

  5. Fueling the Fire with Fibers: Bacterial Amyloids Promote Inflammatory Disorders.

    PubMed

    Spaulding, Caitlin N; Dodson, Karen W; Chapman, Matthew R; Hultgren, Scott J

    2015-07-01

    Bacterial infection is associated with increased morbidity in patients with systematic lupus erythematosus. In a recent Immunity paper, Gallo et al. (2015) report that extracellular DNA is bound tightly by bacterial amyloid fibrils during biofilm formation and that amyloid/DNA composites are immune stimulators when injected into mice, leading to autoimmunity. PMID:26159711

  6. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    PubMed Central

    Zeng, Guanghong; Vad, Brian S.; Dueholm, Morten S.; Christiansen, Gunna; Nilsson, Martin; Tolker-Nielsen, Tim; Nielsen, Per H.; Meyer, Rikke L.; Otzen, Daniel E.

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm stiffness 20-fold. Deletion of any one of the individual members of in the fap operon (except the putative chaperone FapA) abolishes this ability to increase biofilm stiffness and correlates with the loss of amyloid. We conclude that amyloid makes major contributions to biofilm mechanical robustness. PMID:26500638

  7. The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids.

    PubMed

    Dueholm, Morten S; Larsen, Poul; Finster, Kai; Stenvang, Marcel R; Christiansen, Gunna; Vad, Brian S; Bøggild, Andreas; Otzen, Daniel E; Nielsen, Per Halkjær

    2015-08-14

    Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold. PMID:26109065

  8. Enhanced antidepressant efficacy of sigma1 receptor agonists in rats after chronic intracerebroventricular infusion of beta-amyloid-(1-40) protein.

    PubMed

    Urani, Alexandre; Romieu, Pascal; Roman, François J; Yamada, Kiyofumi; Noda, Yukihiro; Kamei, Hiroyuki; Manh Tran, Hung; Nagai, Taku; Nabeshima, Toshitaka; Maurice, Tangui

    2004-02-20

    Treatment of depressive symptoms in patients suffering from neurodegenerative disorders remains a challenging issue, since few available antidepressants present an adequate efficacy during pathological aging. Previous reports suggested that selective sigma(1) receptor agonists might constitute putative candidates. We here examined the pharmacological efficacy of igmesine and (+)-SKF-10,047 and the sigma(1) receptor-related neuroactive steroid dehydroepiandrosterone sulfate, in rats infused intracerebroventricularly during 14 days with the beta-amyloid-(1-40) protein and then submitted to the conditioned fear stress test. Igmesine and (+)-SKF-10,047 significantly reduced the stress-induced motor suppression at 30 and 6 mg/kg, respectively, in beta-amyloid-(40-1)-treated control rats. Active doses were decreased, to 10 and 3 mg/kg, respectively, in beta-amyloid-(1-40)-treated animals. The dehydroepiandrosterone sulfate effect was also facilitated, both in dose (10 vs. 30 mg/kg) and intensity, in beta-amyloid-(1-40)-treated rats. Neurosteroid levels were measured in several brain structures after beta-amyloid infusion, in basal and stress conditions. Progesterone levels, both under basal and stress-induced conditions, were decreased in the hippocampus and cortex of beta-amyloid-(1-40)-treated rats. The levels in pregnenolone, dehydroepiandrosterone and their sulfate esters appeared less affected by the beta-amyloid infusion. The sigma(1) receptor agonist efficacy is known to be inversely correlated to brain progesterone levels, synthesized mainly by neurons that are mainly affected by the beta-amyloid toxicity. The present study suggests that sigma(1) receptor agonists, due to their enhanced efficacy in a nontransgenic animal model, may alleviate Alzheimer's disease-associated depressive symptoms. PMID:14975704

  9. Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease.

    PubMed Central

    Evans, K C; Berger, E P; Cho, C G; Weisgraber, K H; Lansbury, P T

    1995-01-01

    The apolipoprotein E4 (APOE4) allele is associated with an early age of onset of the nonfamilial form of Alzheimer disease (AD) and with increased beta protein amyloid deposition in the brain. These two observations may both arise from an effect of the apoE family of proteins on the rate of in vivo amyloidogenesis. We report here that apoE3, the common apoE isoform, is an in vitro amyloid nucleation inhibitor at physiological concentrations. A significant delay in the onset of amyloid fibril formation by the beta-amyloid protein of AD (beta 1-40) was observed at a low apoE3 concentration (40 nM), corresponding to an apoE3/beta protein molar ratio of 1:1000. The inhibitory activity of a proteolytic fragment of apoE3, containing the N-terminal 191 amino acids, is comparable to the native protein, whereas the C-terminal fragment has no activity. ApoE4 is equipotent or slightly less potent than apoE3, which may be due to its inability to form a disulfide dimer, since the apoE3 dimer is a significantly more potent nucleation inhibitor than apoE4. Neither apoE3 nor apoE4 inhibits the seeded growth of amyloid or affects the solubility or structure of the amyloid fibrils, indicating that apoE is not a thermodynamic amyloid inhibitor. We propose that the linkage between the APOE4 allele and AD reflects the reduced ability of APOE4 homozygotes to suppress in vivo amyloid formation. Images Fig. 4 PMID:7846048

  10. Detection of amyloid plaques targeted by USPIO-Aβ1-42 in Alzheimer's disease transgenic mice using magnetic resonance microimaging.

    PubMed

    Yang, Jing; Wadghiri, Youssef Zaim; Hoang, Dung Minh; Tsui, Wai; Sun, Yanjie; Chung, Erika; Li, Yongsheng; Wang, Andrew; de Leon, Mony; Wisniewski, Thomas

    2011-04-15

    Amyloid plaques are one of the pathological hallmarks of Alzheimer's disease (AD). The visualization of amyloid plaques in the brain is important to monitor AD progression and to evaluate the efficacy of therapeutic interventions. Our group has developed several contrast agents to detect amyloid plaques in vivo using magnetic resonance microimaging (μMRI) in AD transgenic mice, where we used intra-carotid mannitol to enhance blood-brain barrier (BBB) permeability. In the present study, we used ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, chemically coupled with Aβ1-42 peptide to detect amyloid deposition along with mannitol for in vivo μMRI by femoral intravenous injection. A 3D gradient multi-echo sequence was used for imaging with a 100μm isotropic resolution. The amyloid plaques detected by T2*-weighted μMRI were confirmed with matched histological sections. Furthermore, two different quantitative analyses were used. The region of interest-based quantitative measurement of T2* values showed contrast-injected APP/PS1 mice had significantly reduced T2* values compared to wild-type mice. In addition, the scans were examined with voxel-based morphometry (VBM) using statistical parametric mapping (SPM) for comparison of contrast-injected AD transgenic and wild-type mice. The regional differences seen in VBM comparing USPIO-Aβ1-42 injected APP/PS1 and wild-type mice correlated with the amyloid plaque distribution histologically, contrasting with no differences between the two groups of mice without contrast agent injection in regions of the brain with amyloid deposition. Our results demonstrated that both approaches were able to identify the differences between AD transgenic mice and wild-type mice, after injected with USPIO-Aβ1-42. The feasibility of using less invasive intravenous femoral injections for amyloid plaque detection in AD transgenic mice facilitates using this method for longitudinal studies in the pathogenesis of AD. PMID

  11. Competitive Mirror Image Phage Display Derived Peptide Modulates Amyloid Beta Aggregation and Toxicity

    PubMed Central

    Rudolph, Stephan; Klein, Antonia Nicole; Tusche, Markus; Schlosser, Christine; Elfgen, Anne; Brener, Oleksandr; Teunissen, Charlotte; Gremer, Lothar; Funke, Susanne Aileen; Kutzsche, Janine; Willbold, Dieter

    2016-01-01

    Alzheimer´s disease is the most prominent type of dementia and currently no causative treatment is available. According to recent studies, oligomeric species of the amyloid beta (Aβ) peptide appear to be the most toxic Aβ assemblies. Aβ monomers, however, may be not toxic per se and may even have a neuroprotective role. Here we describe a competitive mirror image phage display procedure that allowed us to identify preferentially Aβ1–42 monomer binding and thereby stabilizing peptides, which destabilize and thereby eliminate toxic oligomer species. One of the peptides, called Mosd1 (monomer specific d-peptide 1), was characterized in more detail. Mosd1 abolished oligomers from a mixture of Aβ1–42 species, reduced Aβ1–42 toxicity in cell culture, and restored the physiological phenotype in neuronal cells stably transfected with the gene coding for human amyloid precursor protein. PMID:26840229

  12. Hook Proteins: Association with Alzheimer Pathology and Regulatory Role of Hook3 in Amyloid Beta Generation

    PubMed Central

    Arsalan-Werner, Annika; Hilbrich, Isabel; Jäger, Carsten; Flach, Katharina; Suttkus, Anne; Lachmann, Ingolf; Arendt, Thomas; Holzer, Max

    2015-01-01

    Defects in intracellular transport are implicated in the pathogenesis of Alzheimer’s disease (AD). Hook proteins are a family of cytoplasmic linker proteins that participate in endosomal transport. In this study we show that Hook1 and Hook3 are expressed in neurons while Hook2 is predominantly expressed in astrocytes. Furthermore, Hook proteins are associated with pathological hallmarks in AD; Hook1 and Hook3 are localized to tau aggregates and Hook2 to glial components within amyloid plaques. Additionally, the expression of Hook3 is reduced in AD. Modelling of Hook3 deficiency in cultured cells leads to slowing of endosomal transport and increases β-amyloid production. We propose that Hook3 plays a role in pathogenic events exacerbating AD. PMID:25799409

  13. Oxidative Stress Alters the Morphology and Toxicity of Aortic Medial Amyloid.

    PubMed

    Davies, Hannah A; Phelan, Marie M; Wilkinson, Mark C; Migrino, Raymond Q; Truran, Seth; Franco, Daniel A; Liu, Lu-Ning; Longmore, Christopher J; Madine, Jillian

    2015-12-01

    The aggregation and fibril deposition of amyloid proteins have been implicated in a range of neurodegenerative and vascular diseases, and yet the underlying molecular mechanisms are poorly understood. Here, we use a combination of cell-based assays, biophysical analysis, and atomic force microscopy to investigate the potential involvement of oxidative stress in aortic medial amyloid (AMA) pathogenesis and deposition. We show that medin, the main constituent of AMA, can induce an environment rich in oxidative species, increasing superoxide and reducing bioavailable nitric oxide in human cells. We investigate the role that this oxidative environment may play in altering the aggregation process of medin and identify potential posttranslational modification sites where site-specific modification and interaction can be unambiguously demonstrated. In an oxidizing environment, medin is nitrated at tyrosine and tryptophan residues, with resultant effects on morphology that lead to longer fibrils with increased toxicity. This provides further motivation to investigate the role of oxidative stress in AMA pathogenicity. PMID:26636947

  14. Ketones block amyloid entry and improve cognition in an Alzheimer's model.

    PubMed

    Yin, Jun Xiang; Maalouf, Marwan; Han, Pengcheng; Zhao, Minglei; Gao, Ming; Dharshaun, Turner; Ryan, Christopher; Whitelegge, Julian; Wu, Jie; Eisenberg, David; Reiman, Eric M; Schweizer, Felix E; Shi, Jiong

    2016-03-01

    Sporadic Alzheimer's disease (AD) is responsible for 60%-80% of dementia cases, and the most opportune time for preventive intervention is in the earliest stage of its preclinical phase. As traditional mitochondrial energy substrates, ketone bodies (ketones, for short), beta-hydroxybutyrate, and acetoacetate, have been reported to provide symptomatic improvement and disease-modifying activity in epilepsy and neurodegenerative disorders. Recently, ketones are thought as more than just metabolites and also as endogenous factors protecting against AD. In this study, we discovered a novel neuroprotective mechanism of ketones in which they blocked amyloid-β 42, a pathologic hallmark protein of AD, entry into neurons. The suppression of intracellular amyloid-β 42 accumulation rescued mitochondrial complex I activity, reduced oxidative stress, and improved synaptic plasticity. Most importantly, we show that peripheral administration of ketones significantly reduced amyloid burden and greatly improved learning and memory ability in a symptomatic mouse model of AD. These observations provide us insights to understand and to establish a novel therapeutic use of ketones in AD prevention. PMID:26923399

  15. Silencing of Amyloid Precursor Protein Expression Using a New Engineered Delta Ribozyme

    PubMed Central

    Ben Aissa, Manel; April, Marie-Claude; Bergeron, Lucien-Junior; Perreault, Jean-Pierre; Levesque, Georges

    2012-01-01

    Alzheimer's disease (AD) etiological studies suggest that an elevation in amyloid-β peptides (Aβ) level contributes to aggregations of the peptide and subsequent development of the disease. The major constituent of these amyloid peptides is the 1 to 40–42 residue peptide (Aβ40−42) derived from amyloid protein precursor (APP). Most likely, reducing Aβ levels in the brain may block both its aggregation and neurotoxicity and would be beneficial for patients with AD. Among the several possible ways to lower Aβ accumulation in the cells, we have selectively chosen to target the primary step in the Aβ cascade, namely, to reduce APP gene expression. Toward this end, we engineered specific SOFA-HDV ribozymes, a new generation of catalytic RNA tools, to decrease APP mRNA levels. Additionally, we demonstrated that APP-ribozymes are effective at decreasing APP mRNA and protein levels as well as Aβ levels in neuronal cells. Our results could lay the groundwork for a new protective treatment for AD. PMID:22482079

  16. Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain.

    PubMed

    Cox, Paul Alan; Davis, David A; Mash, Deborah C; Metcalf, James S; Banack, Sandra Anne

    2016-01-27

    Neurofibrillary tangles (NFT) and β-amyloid plaques are the neurological hallmarks of both Alzheimer's disease and an unusual paralytic illness suffered by Chamorro villagers on the Pacific island of Guam. Many Chamorros with the disease suffer dementia, and in some villages one-quarter of the adults perished from the disease. Like Alzheimer's, the causal factors of Guamanian amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) are poorly understood. In replicated experiments, we found that chronic dietary exposure to a cyanobacterial toxin present in the traditional Chamorro diet, β-N-methylamino-l-alanine (BMAA), triggers the formation of both NFT and β-amyloid deposits similar in structure and density to those found in brain tissues of Chamorros who died with ALS/PDC. Vervets (Chlorocebus sabaeus) fed for 140 days with BMAA-dosed fruit developed NFT and sparse β-amyloid deposits in the brain. Co-administration of the dietary amino acid l-serine with l-BMAA significantly reduced the density of NFT. These findings indicate that while chronic exposure to the environmental toxin BMAA can trigger neurodegeneration in vulnerable individuals, increasing the amount of l-serine in the diet can reduce the risk. PMID:26791617

  17. Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain

    PubMed Central

    Cox, Paul Alan; Davis, David A.; Mash, Deborah C.; Metcalf, James S.; Banack, Sandra Anne

    2016-01-01

    Neurofibrillary tangles (NFT) and β-amyloid plaques are the neurological hallmarks of both Alzheimer's disease and an unusual paralytic illness suffered by Chamorro villagers on the Pacific island of Guam. Many Chamorros with the disease suffer dementia, and in some villages one-quarter of the adults perished from the disease. Like Alzheimer's, the causal factors of Guamanian amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) are poorly understood. In replicated experiments, we found that chronic dietary exposure to a cyanobacterial toxin present in the traditional Chamorro diet, β-N-methylamino-l-alanine (BMAA), triggers the formation of both NFT and β-amyloid deposits similar in structure and density to those found in brain tissues of Chamorros who died with ALS/PDC. Vervets (Chlorocebus sabaeus) fed for 140 days with BMAA-dosed fruit developed NFT and sparse β-amyloid deposits in the brain. Co-administration of the dietary amino acid l-serine with l-BMAA significantly reduced the density of NFT. These findings indicate that while chronic exposure to the environmental toxin BMAA can trigger neurodegeneration in vulnerable individuals, increasing the amount of l-serine in the diet can reduce the risk. PMID:26791617

  18. Requirement of aggregation propensity of Alzheimer amyloid peptides for neuronal cell surface binding

    PubMed Central

    Bateman, David A; McLaurin, JoAnne; Chakrabartty, Avijit

    2007-01-01

    Background Aggregation of the amyloid peptides, Aβ40 and Aβ42, is known to be involved in the pathology of Alzheimer's disease (AD). Here we investigate the relationship between peptide aggregation and cell surface binding of three forms of Aβ (Aβ40, Aβ42, and an Aβ mutant). Results Using confocal microscopy and flow cytometry with fluorescently labelled Aβ, we demonstrate a correlation between the aggregation propensity of the Alzheimer amyloid peptides and their neuronal cell surface association. We find that the highly aggregation prone Aβ42 associates with the surface of neuronal cells within one hour, while the less aggregation prone Aβ40 associates over 24 hours. We show that a double mutation in Aβ42 that reduces its aggregation propensity also reduces its association with the cell surface. Furthermore, we find that a cell line that is resistant to Aβ cytotoxicity, the non-neuronal human lymphoma cell line U937, does not bind either Aβ40 or Aβ42. Conclusion Taken together, our findings reveal that amyloid peptide aggregation propensity is an essential determinant of neuronal cell surface association. We anticipate that our approach, involving Aβ imaging in live cells, will be highly useful for evaluating the efficacy of therapeutic drugs that prevent toxic Aβ association with neuronal cells. PMID:17475015

  19. Prevalence of excessive screen time and associated factors in adolescents

    PubMed Central

    de Lucena, Joana Marcela Sales; Cheng, Luanna Alexandra; Cavalcante, Thaísa Leite Mafaldo; da Silva, Vanessa Araújo; de Farias, José Cazuza

    2015-01-01

    Objective: To determine the prevalence of excessive screen time and to analyze associated factors among adolescents. Methods: This was a cross-sectional school-based epidemiological study with 2874 high school adolescents with age 14-19 years (57.8% female) from public and private schools in the city of João Pessoa, PB, Northeast Brazil. Excessive screen time was defined as watching television and playing video games or using the computer for more than 2 h/day. The associated factors analyzed were: sociodemographic (gender, age, economic class, and skin color), physical activity and nutritional status of adolescents. Results: The prevalence of excessive screen time was 79.5% (95%CI 78.1-81.1) and it was higher in males (84.3%) compared to females (76.1%; p<0.001). In multivariate analysis, adolescent males, those aged 14-15 year old and the highest economic class had higher chances of exposure to excessive screen time. The level of physical activity and nutritional status of adolescents were not associated with excessive screen time. Conclusions: The prevalence of excessive screen time was high and varied according to sociodemographic characteristics of adolescents. It is necessary to develop interventions to reduce the excessive screen time among adolescents, particularly in subgroups with higher exposure. PMID:26298661

  20. Inhibition of Toxic IAPP Amyloid by Extracts of Common Fruits

    PubMed Central

    Kao, Pei-Yu; Green, Evangeline; Pereira, Catalina; Ekimura, Shauna; Juarez, Dennis; Whyte, Travis; Arhar, Taylor; Malaspina, Bianca; Nogaj, Luiza A; Moffet, David A

    2016-01-01

    The aggregation of the 37-amino acid polypeptide islet amyloid polypeptide (IAPP, amylin), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of pancreatic β-islet cells in type 2 diabetes. It is believed that inhibiting the aggregation of IAPP may slow down, if not prevent entirely, the progression of this disease. Extracts of thirteen different common fruits were analyzed for their ability to prevent the aggregation of amyloidogenic IAPP. Thioflavin T binding, immuno-detection and circular dichroism assays were performed to test the in vitro inhibitory potential of each extract. Atomic force microscopy was used to visualize the formation of amyloid fibrils with and without each fruit extract. Finally, extracts were tested for their ability to protect living mammalian cells from the toxic effects of amyloid IAPP. Several fruits showed substantial ability to inhibit IAPP aggregation and protect living cells from toxic IAPP amyloid. PMID:26893614

  1. Metastable Amyloid Phases and their Conversion to Mature Fibrils

    NASA Astrophysics Data System (ADS)

    Muschol, Martin; Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy

    Self-assembly of proteins into amyloid fibrils plays a key role in both functional biological responses and pathogenic disorders which include Alzheimer's disease and type II diabetes. Amyloid fibril assembly frequently generates compact oligomeric and curvilinear polymeric intermediates which are implicated to be toxic to cells. Yet, the relation between these early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. Our measurements indicate that lysozyme amyloid oligomers and their curvilinear fibrils only form after crossing a salt and protein concentration dependent threshold. These oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. Our experimental transition boundaries match well with colloidal model predictions accounting for salt-modulated charge repulsion. We also report our preliminary findings on the mechanism by which these metastable oligomeric phases are converted into stable amyloid fibrils.

  2. Conformational dynamics of amyloid proteins at the aqueous interface

    NASA Astrophysics Data System (ADS)

    Armbruster, Matthew; Horst, Nathan; Aoki, Brendy; Malik, Saad; Soto, Patricia

    2013-03-01

    Amyloid proteins is a class of proteins that exhibit distinct monomeric and oligomeric conformational states hallmark of deleterious neurological diseases for which there are not yet cures. Our goal is to examine the extent of which the aqueous/membrane interface modulates the folding energy landscape of amyloid proteins. To this end, we probe the dynamic conformational ensemble of amyloids (monomer prion protein and Alzheimer's Ab protofilaments) interacting with model bilayers. We will present the results of our coarse grain molecular modeling study in terms of the existence of preferential binding spots of the amyloid to the bilayer and the response of the bilayer to the interaction with the amyloid. NSF Nebraska EPSCoR First Award

  3. Amyloid imaging in Alzheimer's disease: a literature review.

    PubMed

    Saidlitz, P; Voisin, T; Vellas, B; Payoux, P; Gabelle, A; Formaglio, M; Delrieu, J

    2014-07-01

    Therapies targeting amyloid-β peptide currently represent approximately 50% of drugs now being developed for Alzheimer's disease. Some, including active and passive anti-Aβ immunotherapy, directly target the amyloid plaques. The new amyloid tracers are increasingly being included in the proposed updated diagnostic criteria, and may allow earlier diagnosis. Those targeting amyloid-β peptide allow identification of amyloid plaques in vivo. We need to gain insight into all aspects of their application. As florbetapir (Amyvid™) and flutemetamol (Vizamyl™) have received marketing authorization, clinicians require deeper knowledge to be rationally used in diagnosis. In this paper, we review both completed and ongoing observational, longitudinal and interventional studies of these tracers, our main objective being to show the performance of the four most commonly used tracers and their validation. PMID:25226113

  4. Atomic View of a Toxic Amyloid Small Oligomer

    PubMed Central

    Laganowsky, Arthur; Liu, Cong; Sawaya, Michael R.; Whitelegge, Julian P.; Park, Jiyong; Zhao, Minglei; Pensalfini, Anna; Soriaga, Angela; Landau, Meytal; Teng, Poh K.; Cascio, Duilio; Glabe, Charles; Eisenberg, David

    2014-01-01

    Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here we identify a segment of the amyloid-forming protein, alphaB crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: beta-sheet-rich structure, cytotoxicity, and recognition by an anti-oligomer antibody. The X-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six anti-parallel, protein strands, which we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the Abeta protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers. PMID:22403391

  5. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  6. [Cytotoxicity of amyloid fibrils of X-protein].

    PubMed

    Marsagishvili, L G; Shpagina, M D; Shatalin, Iu V; Shubina, V S; Naumov, A A; Potselueva, M M; Podlubnaia, Z A

    2006-01-01

    It is known that amyloid oligomers, protofibrils, and fibrils induce cell death, and antibiotic tetracycline inhibits the fibrillization of beta amyloid peptides and other amyloidogenic proteins and disassembles their pre-formed fibrils. Earlier we have demonstrated that sarcomeric cytoskeletal proteins of the titin family (X-, C-, and H-proteins) are capable to form in vitro amyloid fibrils, and tetracycline effectively destroys these fibrils. Here we show that the viability of polymorphonuclear leukocytes in the presence of X-protein amyloids depends on the concentration of amyloid fibrils of X-protein and the time of incubation. In addition to the disaggregation of X-protein fibrils, tetracycline eliminated the cytotoxic effect of the protein. The antibiotic itself did not show a toxic effect, and the cell viability in its presence even increased. Our results evidence the potential of this approach for evaluating the effectiveness of drugs preventing or treating amyloidoses. PMID:17131815

  7. Is amyloid beta-protein glycated in Alzheimer's disease?

    PubMed

    Tabaton, M; Perry, G; Smith, M; Vitek, M; Angelini, G; Dapino, D; Garibaldi, S; Zaccheo, D; Odetti, P

    1997-03-01

    Recent data suggest that protein glycation is involved in the process of amyloid formation in Alzheimer's disease (AD). To further investigate this issue, we analyzed the presence of advanced glycation end products (AGE) in soluble and insoluble forms of amyloid beta-protein (A beta) as well as in apolipoprotein E (apoE), a protein bound to amyloid deposits. Both proteins were extracted from cerebral cortex obtained from patients with AD and probed by immunoblotting with two antibodies specific for different AGE, already known to immunocytochemically label amyloid plaques. All the AGE antibodies failed to recognize either A beta or apoE, whereas they reacted with synthetic A beta glycated in vitro. These findings indicate that other proteins associated with amyloid deposits are candidates to be modified with AGE in Alzheimer's cerebral tissue. PMID:9141062

  8. Development of [F-18]-Labeled Amyloid Imaging Agents for PET

    SciTech Connect

    Mathis, CA

    2007-05-09

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the "amyloid cascade hypothesis" which holds that amyloid accumulation is the primary cause of AD.

  9. Amyloid-Like Protein Inclusions in Tobacco Transgenic Plants

    PubMed Central

    Villar-Piqué, Anna; Sabaté, Raimon; Lopera, Oriol; Gibert, Jordi; Torne, Josep Maria; Santos, Mireya; Ventura, Salvador

    2010-01-01

    The formation of insoluble protein deposits in human tissues is linked to the onset of more than 40 different disorders, ranging from dementia to diabetes. In these diseases, the proteins usually self-assemble into ordered β-sheet enriched aggregates known as amyloid fibrils. Here we study the structure of the inclusions formed by maize transglutaminase (TGZ) in the chloroplasts of tobacco transplastomic plants and demonstrate that they have an amyloid-like nature. Together with the evidence of amyloid structures in bacteria and fungi our data argue that amyloid formation is likely a ubiquitous process occurring across the different kingdoms of life. The discovery of amyloid conformations inside inclusions of genetically modified plants might have implications regarding their use for human applications. PMID:21049018

  10. Amyloid fibril disruption by ultrasonic cavitation: nonequilibrium molecular dynamics simulations.

    PubMed

    Okumura, Hisashi; Itoh, Satoru G

    2014-07-30

    We describe the disruption of amyloid fibrils of Alzheimer's amyloid-β peptides by ultrasonic cavitation. For this purpose, we performed nonequilibrium all-atom molecular dynamics simulations with sinusoidal pressure and visualized the process with movies. When the pressure is negative, a bubble is formed, usually at hydrophobic residues in the transmembrane region. Most β-strands maintain their secondary structures in the bubble. When the pressure becomes positive, the bubble collapses, and water molecules crash against the hydrophilic residues in the nontransmembrane region to disrupt the amyloid. Shorter amyloids require longer sonication times for disruption because they do not have enough hydrophobic residues to serve as a nucleus to form a bubble. These results agree with experiments in which monodispersed amyloid fibrils were obtained by ultrasonication. PMID:24987794

  11. The amyloid cascade hypothesis has misled the pharmaceutical industry.

    PubMed

    2011-08-01

    The pharmaceutical industry has invested a great deal of time and finance in the development of therapeutics targeting amyloid generation, signalling and plaque stability. This has been based on the amyloid cascade hypothesis which states that abnormal amyloid precursor protein processing and the formation of amyloid plaques is the central process in the development of the symptoms of Alzheimer's disease. However, most clinical trials in this area have been disappointing; therefore the attendees of the Models of Dementia: the Good, the Bad and the Future meeting were given the opportunity to openly debate the proposal 'the amyloid cascade has misled the pharmaceutical industry', with the main contributions from Professor John Hardy and Professor John Mayer. The present article is a representation of the debate. PMID:21787324

  12. Correlation between nanomechanics and polymorphic conformations in amyloid fibrils.

    PubMed

    Usov, Ivan; Mezzenga, Raffaele

    2014-11-25

    Amyloid fibrils occur in diverse morphologies, but how polymorphism affects the resulting mechanical properties is still not fully appreciated. Using formalisms from the theory of elasticity, we propose an original way of averaging the second area moment of inertia for non-axisymmetric fibrils, which constitutes the great majority of amyloid fibrils. By following this approach, we derive theoretical expressions for the bending properties of the most common polymorphic forms of amyloid fibrils (twisted ribbons, helical ribbons, and nanotubes), and we benchmark the predictions to experimental cases. These results not only allow an accurate estimation of the amyloid fibrils' elastic moduli but also bring insight into the structure-property relationships in the nanomechanics of amyloid systems, such as in the closure of helical ribbons into nanotubes. PMID:25275956

  13. Rational design of potent human transthyretin amyloid disease inhibitors.

    PubMed

    Klabunde, T; Petrassi, H M; Oza, V B; Raman, P; Kelly, J W; Sacchettini, J C

    2000-04-01

    The human amyloid disorders, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and senile systemic amyloidosis, are caused by insoluble transthyretin (TTR) fibrils, which deposit in the peripheral nerves and heart tissue. Several nonsteroidal anti-inflammatory drugs and structurally similar compounds have been found to strongly inhibit the formation of TTR amyloid fibrils in vitro. These include flufenamic acid, diclofenac, flurbiprofen, and resveratrol. Crystal structures of the protein-drug complexes have been determined to allow detailed analyses of the protein-drug interactions that stabilize the native tetrameric conformation of TTR and inhibit the formation of amyloidogenic TTR. Using a structure-based drug design approach ortho-trifluormethylphenyl anthranilic acid and N-(meta-trifluoromethylphenyl) phenoxazine 4, 6-dicarboxylic acid have been discovered to be very potent and specific TTR fibril formation inhibitors. This research provides a rationale for a chemotherapeutic approach for the treatment of TTR-associated amyloid diseases. PMID:10742177

  14. Beyond amyloid: getting real about nonamyloid targets in Alzheimer's disease.

    PubMed

    Herrup, Karl; Carrillo, Maria C; Schenk, Dale; Cacace, Angela; Desanti, Susan; Fremeau, Robert; Bhat, Ratan; Glicksman, Marcie; May, Patrick; Swerdlow, Russell; Van Eldik, Linda J; Bain, Lisa J; Budd, Samantha

    2013-07-01

    For decades, researchers have focused primarily on a pathway initiated by amyloid beta aggregation, amyloid deposition, and accumulation in the brain as the key mechanism underlying the disease and the most important treatment target. However, evidence increasingly suggests that amyloid is deposited early during the course of disease, even prior to the onset of clinical symptoms. Thus, targeting amyloid in patients with mild to moderate Alzheimer's disease (AD), as past failed clinical trials have done, may be insufficient to halt further disease progression. Scientists are investigating other molecular and cellular pathways and processes that contribute to AD pathogenesis. Thus, the Alzheimer's Association's Research Roundtable convened a meeting in April 2012 to move beyond amyloid and explore AD as a complex multifactorial disease, with the goal of using a more inclusive perspective to identify novel treatment strategies. PMID:23809366

  15. Is in vivo amyloid distribution asymmetric in primary progressive aphasia?

    PubMed

    Martersteck, Adam; Murphy, Christopher; Rademaker, Alfred; Wieneke, Christina; Weintraub, Sandra; Chen, Kewei; Mesulam, M-Marsel; Rogalski, Emily

    2016-03-01

    We aimed to determine whether (18) F-florbetapir amyloid positron emission tomography imaging shows a clinically concordant, left-hemisphere-dominant pattern of deposition in primary progressive aphasia (PPA). Elevated cortical amyloid (Aβ(+) ) was found in 19 of 32 PPA patients. Hemispheric laterality of amyloid burden was compared between Aβ(+) PPA and an Aβ(+) amnestic dementia groups (n = 22). The parietal region showed significantly greater left lateralized amyloid uptake in the PPA group than the amnestic group (p < 0.007), consistent with the left lateralized pattern of neurodegeneration in PPA. These results suggest that the cortical distribution of amyloid may have a greater clinical concordance than previously reported. PMID:26600088

  16. Mechanistic Contributions of Biological Cofactors in Islet Amyloid Polypeptide Amyloidogenesis

    PubMed Central

    Nguyen, Phuong Trang; Andraka, Nagore; De Carufel, Carole Anne; Bourgault, Steve

    2015-01-01

    Type II diabetes mellitus is associated with the deposition of fibrillar aggregates in pancreatic islets. The major protein component of islet amyloids is the glucomodulatory hormone islet amyloid polypeptide (IAPP). Islet amyloid fibrils are virtually always associated with several biomolecules, including apolipoprotein E, metals, glycosaminoglycans, and various lipids. IAPP amyloidogenesis has been originally perceived as a self-assembly homogeneous process in which the inherent aggregation propensity of the peptide and its local concentration constitute the major driving forces to fibrillization. However, over the last two decades, numerous studies have shown a prominent role of amyloid cofactors in IAPP fibrillogenesis associated with the etiology of type II diabetes. It is increasingly evident that the biochemical microenvironment in which IAPP amyloid formation occurs and the interactions of the polypeptide with various biomolecules not only modulate the rate and extent of aggregation, but could also remodel the amyloidogenesis process as well as the structure, toxicity, and stability of the resulting fibrils. PMID:26576436

  17. Enhancing Astrocytic Lysosome Biogenesis Facilitates Aβ Clearance and Attenuates Amyloid Plaque Pathogenesis

    PubMed Central

    Xiao, Qingli; Yan, Ping; Ma, Xiucui; Liu, Haiyan; Perez, Ronaldo; Zhu, Alec; Gonzales, Ernesto; Burchett, Jack M.; Schuler, Dorothy R.; Cirrito, John R.

    2014-01-01

    In sporadic Alzheimer's disease (AD), impaired Aβ removal contributes to elevated extracellular Aβ levels that drive amyloid plaque pathogenesis. Extracellular proteolysis, export across the blood–brain barrier, and cellular uptake facilitate physiologic Aβ clearance. Astrocytes can take up and degrade Aβ, but it remains unclear whether this function is insufficient in AD or can be enhanced to accelerate Aβ removal. Additionally, age-related dysfunction of lysosomes, the major degradative organelles wherein Aβ localizes after uptake, has been implicated in amyloid plaque pathogenesis. We tested the hypothesis that enhancing lysosomal function in astrocytes with transcription factor EB (TFEB), a master regulator of lysosome biogenesis, would promote Aβ uptake and catabolism and attenuate plaque pathogenesis. Exogenous TFEB localized to the nucleus with transcriptional induction of lysosomal biogenesis and function in vitro. This resulted in significantly accelerated uptake of exogenously applied Aβ42, with increased localization to and degradation within lysosomes in C17.2 cells and primary astrocytes, indicating that TFEB is sufficient to coordinately enhance uptake, trafficking, and degradation of Aβ. Stereotactic injection of adeno-associated viral particles carrying TFEB driven by a glial fibrillary acidic protein promoter was used to achieve astrocyte-specific expression in the hippocampus of APP/PS1 transgenic mice. Exogenous TFEB localized to astrocyte nuclei and enhanced lysosome function, resulting in reduced Aβ levels and shortened half-life in the brain interstitial fluid and reduced amyloid plaque load in the hippocampus compared with control virus-injected mice. Therefore, activation of TFEB in astrocytes is an effective strategy to restore adequate Aβ removal and counter amyloid plaque pathogenesis in AD. PMID:25031402

  18. Glycosaminoglycans in extracts of cardiac amyloid fibrils from familial amyloid cardiomyopathy of Danish origin related to variant transthyretin Met 111.

    PubMed

    Magnus, J H; Stenstad, T; Kolset, S O; Husby, G

    1991-07-01

    We have previously demonstrated an association between secondary AA type amyloid fibrils and glycosaminoglycans (GAGs) in human liver. The present study was aimed at investigating whether a similar association could be demonstrated in isolated cardiac amyloid fibrils from a unique Danish family with amyloid cardiomyopathy related to variant transthyretin (TTR) with a single amino acid substitution of a methionin for leucine at position 111 (TTR Met 111). Using gel filtration and ion exchange chromatography, significant amounts of GAGs were detected in close association with purified myocardial amyloid fibrils, whereas only trace amounts of polysaccharides were present in the corresponding normal preparation. The GAGs were identified as 50% chondroitin sulfate, 33% heparin/heparan sulfate, and 17% hyaluronan. With the methods used the amyloid associated GAGs appeared as high molecular weight free polysaccharide chains, and not as part of intact proteoglycans (PGs) in the fibril extracts. We conclude that the association between purified amyloid fibrils and GAGs may be a general feature of amyloid deposits. Also, we suggest that the proportion of different GAGs in the amyloid deposits may depend both on the organ or tissues affected and the type of proteins making up the fibrils. PMID:2068532

  19. Imaging of dialysis-related amyloid (AB-amyloid) deposits with sup 131 I-beta 2-microglobulin

    SciTech Connect

    Floege, J.; Burchert, W.; Brandis, A.; Gielow, P.; Nonnast-Daniel, B.; Spindler, E.; Hundeshagen, H.; Shaldon, S.; Koch, K.M. )

    1990-12-01

    The diagnosis of dialysis-related amyloid (AB-amyloid) has been based usually on clinical and radiological criteria. Following the discovery that beta 2-microglobulin was the major protein of this amyloid, we isolated and radiolabelled uremic plasma beta 2-microglobulin. After intravenous injection, gamma-camera images of selected joint areas were obtained from 42 patients who were on regular hemodialysis therapy. Positive scans involving the shoulder, hip, knee and carpal regions were found in 13 of 14 patients treated for more than 10 years and 10 of 16 patients treated for 5 to 10 years. Patients treated for less time had negative scans. Specificity was indicated by negative scans in non-amyloid inflammatory lesions in control hemodialysis patients. Up to 48-fold tracer enrichment was detected in excised AB-amyloid containing tissue as compared to amyloid-free tissue. These findings suggest that circulating radiolabelled beta 2-microglobulin is taken up by the amyloid deposits. This method may non-invasively detect tissue infiltrates of amyloid. It may also permit prospective evaluation of the efficacy of prophylactic dialysis strategies which are designed to prevent or delay the onset of this complication of long-term dialysis.

  20. Stability and cytotoxicity of crystallin amyloid nanofibrils

    NASA Astrophysics Data System (ADS)

    Kaur, Manmeet; Healy, Jackie; Vasudevamurthy, Madhusudan; Lassé, Moritz; Puskar, Ljiljana; Tobin, Mark J.; Valery, Celine; Gerrard, Juliet A.; Sasso, Luigi

    2014-10-01

    Previous work has identified crystallin proteins extracted from fish eye lenses as a cheap and readily available source for the self-assembly of amyloid nanofibrils. However, before exploring potential applications, the biophysical aspects and safety of this bionanomaterial need to be assessed so as to ensure that it can be effectively and safely used. In this study, crude crystallin amyloid fibrils are shown to be stable across a wide pH range, in a number of industrially relevant solvents, at both low and high temperatures, and in the presence of proteases. Crystallin nanofibrils were compared to well characterised insulin and whey protein fibrils using Thioflavin T assays and TEM imaging. Cell cytotoxicity assays suggest no adverse impact of both mature and fragmented crystallin fibrils on cell viability of Hec-1a endometrial cells. An IR microspectroscopy study supports long-term structural integrity of crystallin nanofibrils.Previous work has identified crystallin proteins extracted from fish eye lenses as a cheap and readily available source for the self-assembly of amyloid nanofibrils. However, before exploring potential applications, the biophysical aspects and safety of this bionanomaterial need to be assessed so as to ensure that it can be effectively and safely used. In this study, crude crystallin amyloid fibrils are shown to be stable across a wide pH range, in a number of industrially relevant solvents, at both low and high temperatures, and in the presence of proteases. Crystallin nanofibrils were compared to well characterised insulin and whey protein fibrils using Thioflavin T assays and TEM imaging. Cell cytotoxicity assays suggest no adverse impact of both mature and fragmented crystallin fibrils on cell viability of Hec-1a endometrial cells. An IR microspectroscopy study supports long-term structural integrity of crystallin nanofibrils. Electronic supplementary information (ESI) available: ThT fluorescence graphs of buffers and solvents used for

  1. Aggregation of beta-amyloid fragments.

    PubMed

    Meinke, Jan H; Hansmann, Ulrich H E

    2007-01-01

    The authors study the folding and aggregation of six chains of the beta-amyloid fragment 16-22 using Monte Carlo simulations. While the isolated fragment prefers a helical form at room temperature, in the system of six interacting fragments one observes both parallel and antiparallel beta sheets below a crossover temperature T(x) approximately equal to 420 K. The antiparallel sheets have lower energy and are therefore more stable. Above the nucleation temperature the aggregate quickly dissolves into widely separated, weakly interacting chains. PMID:17212510

  2. Amyloid precursor protein and neural development.

    PubMed

    Nicolas, Maya; Hassan, Bassem A

    2014-07-01

    Interest in the amyloid precursor protein (APP) has increased in recent years due to its involvement in Alzheimer's disease. Since its molecular cloning, significant genetic and biochemical work has focused on the role of APP in the pathogenesis of this disease. Thus far, however, these studies have failed to deliver successful therapies. This suggests that understanding the basic biology of APP and its physiological role during development might be a crucial missing link for a better comprehension of Alzheimer's disease. Here, we present an overview of some of the key studies performed in various model organisms that have revealed roles for APP at different stages of neuronal development. PMID:24961795

  3. Design and Optimization of Anti-amyloid Domain Antibodies Specific for β-Amyloid and Islet Amyloid Polypeptide.

    PubMed

    Lee, Christine C; Julian, Mark C; Tiller, Kathryn E; Meng, Fanling; DuConge, Sarah E; Akter, Rehana; Raleigh, Daniel P; Tessier, Peter M

    2016-02-01

    Antibodies with conformational specificity are important for detecting and interfering with polypeptide aggregation linked to several human disorders. We are developing a motif-grafting approach for designing lead antibody candidates specific for amyloid-forming polypeptides such as the Alzheimer peptide (Aβ). This approach involves grafting amyloidogenic peptide segments into the complementarity-determining regions (CDRs) of single-domain (VH) antibodies. Here we have investigated the impact of polar mutations inserted at the edges of a large hydrophobic Aβ42 peptide segment (Aβ residues 17-42) in CDR3 on the solubility and conformational specificity of the corresponding VH domains. We find that VH expression and solubility are strongly enhanced by introducing multiple negatively charged or asparagine residues at the edges of CDR3, whereas other polar mutations are less effective (glutamine and serine) or ineffective (threonine, lysine, and arginine). Moreover, Aβ VH domains with negatively charged CDR3 mutations show significant preference for recognizing Aβ fibrils relative to Aβ monomers, whereas the same VH domains with other polar CDR3 mutations recognize both Aβ conformers. We observe similar behavior for a VH domain grafted with a large hydrophobic peptide from islet amyloid polypeptide (residues 8-37) that contains negatively charged mutations at the edges of CDR3. These findings highlight the sensitivity of antibody binding and solubility to residues at the edges of CDRs, and provide guidelines for designing other grafted antibody fragments with hydrophobic binding loops. PMID:26601942

  4. Longitudinal influence of microglial activation and amyloid on neuronal function in Alzheimer's disease.

    PubMed

    Fan, Zhen; Okello, Aren A; Brooks, David J; Edison, Paul

    2015-12-01

    's disease process with associated synaptic dysfunction and reduced glucose metabolism. Voxel-wise correlation analysis suggests that neuroinflammation is associated with localized amyloid deposition and glucose metabolism over time, however, the level of inflammation could also occur independently of amyloid pathology, especially in the later stages of Alzheimer's disease. PMID:26510952

  5. Amyloid-β pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after disease onset.

    PubMed

    Dionísio, Pedro A; Amaral, Joana D; Ribeiro, Maria F; Lo, Adrian C; D'Hooge, Rudi; Rodrigues, Cecília M P

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder hallmarked by the accumulation of extracellular amyloid-β (Aβ) peptide and intraneuronal hyperphosphorylated tau, as well as chronic neuroinflammation. Tauroursodeoxycholic acid (TUDCA) is an endogenous anti-apoptotic bile acid with potent neuroprotective properties in several experimental models of AD. We have previously reported the therapeutic efficacy of TUDCA treatment before amyloid plaque deposition in APP/PS1 double-transgenic mice. In the present study, we evaluated the protective effects of TUDCA when administrated after the onset of amyloid pathology. APP/PS1 transgenic mice with 7 months of age were injected intraperitoneally with TUDCA (500 mg/kg) every 3 days for 3 months. TUDCA treatment significantly attenuated Aβ deposition in the brain, with a concomitant decrease in Aβ₁₋₄₀ and Aβ₁₋₄₂ levels. The amyloidogenic processing of amyloid precursor protein was also reduced, indicating that TUDCA interferes with Aβ production. In addition, TUDCA abrogated GSK3β hyperactivity, which is highly implicated in tau hyperphosphorylation and glial activation. This effect was likely dependent on the specific activation of the upstream kinase, Akt. Finally, TUDCA treatment decreased glial activation and reduced proinflammatory cytokine messenger RNA expression, while partially rescuing synaptic loss. Overall, our results suggest that TUDCA is a promising therapeutic strategy not only for prevention but also for treatment of AD after disease onset. PMID:25443293

  6. Dynamic relationships between age, amyloid-β deposition, and glucose metabolism link to the regional vulnerability to Alzheimer's disease.

    PubMed

    Oh, Hwamee; Madison, Cindee; Baker, Suzanne; Rabinovici, Gil; Jagust, William

    2016-08-01

    = 10.62, P < 0.001), but, only the Pittsburgh compound B-positive cognitively normal older subjects group showed significantly higher Pittsburgh compound B retention in the highest compared to the lowest glucose metabolism regions defined in young adults (T = 2.05, P < 0.05). Regional differences in age and amyloid-β-dependent changes in glucose metabolism were found such that frontal glucose metabolism was reduced with age, while glucose metabolism in the precuneus was maintained across the lifespan (right hemisphere: F = 7.69, P < 0.001; left hemisphere: F = 8.69, P < 0.001). Greater Alzheimer's disease-related hypometabolism was observed in brain regions that showed both age-invariance and amyloid-β-related increases in glucose metabolism. Our results indicate that although early and life-long regional variation in glucose metabolism relates to the regional vulnerability to amyloid-β accumulation, Alzheimer's disease-related hypometabolism is more specific to brain regions showing age-invariant glucose metabolism and amyloid-β-related hypermetabolism. PMID:27190008

  7. Individual antigenic specificity and cross-reactions among amyloid preparations from different individuals

    PubMed Central

    Husby, G.; Natvig, J. B.

    1972-01-01

    Amyloid fibrils were isolated from eleven amyloid-laden organs of six patients. By alkaline degradation, soluble units were obtained which gave antibody formation in rabbits. Gel precipitation and haemagglutination inhibition were used to characterize antigens of the amyloid. Evidence was obtained that amyloids from different organs of the same individual were identical in the antigenicity. In contrast, amyloids from different individuals each showed unique individual specificity. Besides this, antigenic cross-reactions were noted between the amyloid preparations. Finally, evidence for antigenic cross-reactivity between certain amyloid preparations and immunoglobulin light chains was obtained. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:4624554

  8. Amyloids assemble as part of recognizable structures during oogenesis in Xenopus

    PubMed Central

    Hayes, Michael H.

    2016-01-01

    ABSTRACT A hallmark of Alzheimer's, Huntington's and similar diseases is the assembly of proteins into amyloids rather than folding into their native state. There is an increasing appreciation that amyloids, under specific conditions, may be non-pathogenic. Here we show that amyloids form as a normal part of Xenopus oocyte development. Amyloids are detectable in the cytosol and the nucleus using an amyloid binding dye and antibodies that recognize amyloid structure. In the cytosol, yolk platelets are amyloid reactive, as are a number of yet to be characterized particles. In the nucleus, we find particles associated with transcription by RNA polymerase I, II and III and RNA processing contain amyloids. Nuclear amyloids remain intact for hours following isolation; however, RNase treatment rapidly disrupts nuclear amyloids. PMID:27215327

  9. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    PubMed Central

    Yano, Akira; Ito, Kaori; Miwa, Yoshikatsu; Kanazawa, Yoshito; Chiba, Akiko; Iigo, Yutaka; Kashimoto, Yoshinori; Kanda, Akira; Murata, Shinji; Makino, Mitsuhiro

    2015-01-01

    The reduction of brain amyloid beta (Aβ) peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer's disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT) induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ40, and Aβ42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies. PMID:26539559

  10. Glucose regulates amyloid β production via AMPK.

    PubMed

    Yang, Ting-Ting; Shih, Yao-Shan; Chen, Yun-Wen; Kuo, Yu-Min; Lee, Chu-Wan

    2015-10-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Accumulation of Aβ peptides in the brain has been suggested as the cause of AD (amyloid cascade hypothesis); however, the mechanism for the abnormal accumulation of Aβ in the brains of AD patients remains unclear. A plethora of evidence has emerged to support a link between metabolic disorders and AD. This study was designed to examine the relationship between energy status and Aβ production. Neuro 2a neuroblastoma cells overexpressing human amyloid precursor protein 695 (APP cells) were cultured in media containing different concentrations of glucose and agonist or antagonist of AMP-activated-protein-kinase (AMPK), a metabolic master sensor. The results showed that concentrations of glucose in the culture media were negatively associated with the activation statuses of AMPK in APP cells, but positively correlated with the levels of secreted Aβ. Modulating AMPK activities affected the production of Aβ. If APP cells were cultured in high glucose medium (i.e., AMPK was inactive), stimulation of AMPK activity decreased the production levels of Aβ. On the contrary, if APP cells were incubated in medium containing no glucose (i.e., AMPK was activated), inhibition of AMPK activity largely increased Aβ production. As AMPK activation is a common defect in metabolic abnormalities, our study supports the premise that metabolic disorders may aggravate AD pathogenesis. PMID:26071020

  11. Magnetite nanoparticle interactions with insulin amyloid fibrils.

    PubMed

    Chen, Yun-Wen; Chang, Chiung-Wen; Hung, Huey-Shan; Kung, Mei-Lang; Yeh, Bi-Wen; Hsieh, Shuchen

    2016-10-14

    Accumulation of amyloid fibrils is one of the likely key factors leading to the development of Alzheimer's disease and other amyloidosis associated diseases. Magnetic nanoparticles (NPs) have been developed as promising medical materials for many medical applications. In this study, we have explored the effects of Fe3O4 NPs on the fibrillogenesis process of insulin fibrils. When Fe3O4 NPs were co-incubated with insulin, Fe3O4 NPs had no effect on the structural transformation into amyloid-like fibrils but had higher affinity toward insulin fibrils. We demonstrated that the zeta potential of insulin fibrils and Fe3O4 NPs were both positive, suggesting the binding forces between Fe3O4 NPs and insulin fibrils were van der Waals forces but not surface charge. Moreover, a different amount of Fe3O4 NPs added had no effect on secondary structural changes of insulin fibrils. These results propose the potential use of Fe3O4 NPs as therapeutic agents against diseases related to protein aggregation or contrast agents for magnetic resonance imaging. PMID:27585675

  12. Functional Hydrogel Materials Inspired by Amyloid

    NASA Astrophysics Data System (ADS)

    Schneider, Joel

    2012-02-01

    Protein assembly resulting in the formation of amyloid fibrils, assemblies rich in cross beta-sheet structure, is normally thought of as a deleterious event associated with disease. However, amyloid formation is also involved in a diverse array of normal biological functions such as cell adhesion, melanin synthesis, insect defense mechanism and modulation of water surface tension by fungi and bacteria. These findings indicate that Nature has evolved to take advantage of large, proteinaceous fibrillar assemblies to elicit function. We are designing functional materials, namely hydrogels, from peptides that self-assembled into fibrillar networks, rich in cross beta-sheet structure. These gels can be used for the direct encapsulation and delivery of small molecule-, protein- and cell-based therapeutics. Loaded gels exhibit shear-thinning/self-healing mechanical properties enabling their delivery via syringe. In addition to their use for delivery, we have found that some of these gels display antibacterial activity. Although cytocompatible towards mammalian cells, the hydrogels can kill a broad spectrum of bacteria on contact.

  13. Atomistic theory of amyloid fibril nucleation

    NASA Astrophysics Data System (ADS)

    Cabriolu, Raffaela; Kashchiev, Dimo; Auer, Stefan

    2010-12-01

    We consider the nucleation of amyloid fibrils at the molecular level when the process takes place by a direct polymerization of peptides or protein segments into β-sheets. Employing the atomistic nucleation theory (ANT), we derive a general expression for the work to form a nanosized amyloid fibril (protofilament) composed of successively layered β-sheets. The application of this expression to a recently studied peptide system allows us to determine the size of the fibril nucleus, the fibril nucleation work, and the fibril nucleation rate as functions of the supersaturation of the protein solution. Our analysis illustrates the unique feature of ANT that the size of the fibril nucleus is a constant integer in a given supersaturation range. We obtain the ANT nucleation rate and compare it with the rates determined previously in the scope of the classical nucleation theory (CNT) and the corrected classical nucleation theory (CCNT). We find that while the CNT nucleation rate is orders of magnitude greater than the ANT one, the CCNT and ANT nucleation rates are in very good quantitative agreement. The results obtained are applicable to homogeneous nucleation, which occurs when the protein solution is sufficiently pure and/or strongly supersaturated.

  14. Fibril structure of human islet amyloid polypeptide.

    PubMed

    Bedrood, Sahar; Li, Yiyu; Isas, J Mario; Hegde, Balachandra G; Baxa, Ulrich; Haworth, Ian S; Langen, Ralf

    2012-02-17

    Misfolding and amyloid fibril formation by human islet amyloid polypeptide (hIAPP) are thought to be important in the pathogenesis of type 2 diabetes, but the structures of the misfolded forms remain poorly understood. Here we developed an approach that combines site-directed spin labeling with continuous wave and pulsed EPR to investigate local secondary structure and to determine the relative orientation of the secondary structure elements with respect to each other. These data indicated that individual hIAPP molecules take up a hairpin fold within the fibril. This fold contains two β-strands that are much farther apart than expected from previous models. Atomistic structural models were obtained using computational refinement with EPR data as constraints. The resulting family of structures exhibited a left-handed helical twist, in agreement with the twisted morphology observed by electron microscopy. The fibril protofilaments contain stacked hIAPP monomers that form opposing β-sheets that twist around each other. The two β-strands of the monomer adopt out-of-plane positions and are staggered by about three peptide layers (∼15 Å). These results provide a mechanism for hIAPP fibril formation and could explain the remarkable stability of the fibrils. Thus, the structural model serves as a starting point for understanding and preventing hIAPP misfolding. PMID:22187437

  15. [Ocular involvement in familial amyloid polyneuropathy].

    PubMed

    Rousseau, A; Kaswin, G; Adams, D; Cauquil, C; Théaudin, M; Mincheva, Z; M'garrech, M; Labetoulle, M; Barreau, E

    2013-11-01

    Familial amyloid polyneuropathy (FAP) or transthyretin (TTR) amyloid polyneuropathy is a progressive sensorimotor and autonomic neuropathy of adult onset, which is transmitted as an autosomal dominant trait. In addition to neurologic symptoms, FAP may be associated with weight loss, cardiac and renal failure and ocular complications. FAP is a devastating disease, causing death within 10years after the first symptoms. The TTR Val30Met mutation is the most common of more than 100 amyloidogenic mutations identified worldwide. Liver transplantation (LT) is currently the only treatment for preventing synthesis of the amyloidogenic variants of TTR. LT can halt progression of the neuropathy in up to 70% of cases and doubles the overall median survival of young Val30Met patients. Oral administration of tafamidis, which prevents deposition of mutated TTR, is now available to delay neurologic complications in early stages of the disease. Ocular manifestations of FAP are frequent and mainly include keratoconjunctivitis sicca, secondary glaucoma, vitreous deposits and pupillary abnormalities. Retinal and choroidal vascular abnormalities are more rare. Since ocular TTR is synthesized, at least in part, in the retinal pigment epithelium, LT does not influence the course of ocular involvement. The effects of tafamidis on the latter are still unknown. Because LT and symptomatic treatments greatly improve life expectancy of patients with FAP, ocular involvement is becoming a more frequent challenge to address. This review summarizes the pathophysiology, clinical findings and possible treatments of ocular manifestations of FAP. PMID:24144522

  16. Comparison of four chemical uncouplers for excess sludge reduction.

    PubMed

    Aragón, C; Quiroga, J M; Coello, M D

    2009-06-01

    A substantial part of the operating costs of wastewater treatment plants (WWTP) is associated with the management and treatment of the excess sludge generated during the treatment process. Different strategies have been applied for excess sludge reduction, such as the oxic-settling-anaerobic process, the high dissolved oxygen process, the uncoupler-containing activated sludge process, the ozonation-combined activated sludge process, control of sludge retention time and biodegradation of sludge in a membrane-assisted reactor. Chemical uncouplers have been shown to reduce excess sludge production, disassociating the energy coupling between catabolism and anabolism. These metabolic uncouplers may be organic compounds, such as 2,4-dinitrophenol (2,4-DNP) or 3,3',4',5-tetrachlorosalicylanilide (TCS), or heavy metals. In this paper, four different chemicals (2,4-DNP, TCS, copper (Cu) and zinc (Zn)) were chosen for short-term tests for studying their ability to reduce sludge yield (Y(x/s)) and, consequently, their potential for reducing excess sludge production. According to the results obtained, only TCS seems to be very effective in reducing sludge production from the activated sludge process. Compared with the control test, Y(x/s) can be reduced by over 30% at 0.8 mg/l TCS. It was also found that the substrate removal capability was not adversely affected by the presence of TCS. Furthermore, an increase in the microbial activity of the system was observed. PMID:19705608

  17. Amyloid precursor protein modulates β-catenin degradation

    PubMed Central

    Chen, Yuzhi; Bodles, Angela M

    2007-01-01

    Background The amyloid precursor protein (APP) is genetically associated with Alzheimer's disease (AD). Elucidating the function of APP should help understand AD pathogenesis and provide insights into therapeutic designs against this devastating neurodegenerative disease. Results We demonstrate that APP expression in primary neurons induces β-catenin phosphorylation at Ser33, Ser37, and Thr41 (S33/37/T41) residues, which is a prerequisite for β-catenin ubiquitinylation and proteasomal degradation. APP-induced phosphorylation of β-catenin resulted in the reduction of total β-catenin levels, suggesting that APP expression promotes β-catenin degradation. In contrast, treatment of neurons with APP siRNAs increased total β-catenin levels and decreased β-catenin phosphorylation at residues S33/37/T41. Further, β-catenin was dramatically increased in hippocampal CA1 pyramidal cells from APP knockout animals. Acute expression of wild type APP or of familial AD APP mutants in primary neurons downregulated β-catenin in membrane and cytosolic fractions, and did not appear to affect nuclear β-catenin or β-catenin-dependent transcription. Conversely, in APP knockout CA1 pyramidal cells, accumulation of β-catenin was associated with the upregulation of cyclin D1, a downstream target of β-catenin signaling. Together, these data establish that APP downregulates β-catenin and suggest a role for APP in sustaining neuronal function by preventing cell cycle reactivation and maintaining synaptic integrity. Conclusion We have provided strong evidence that APP modulates β-catenin degradation in vitro and in vivo. Future studies may investigate whether APP processing is necessary for β-catenin downregulation, and determine if excessive APP expression contributes to AD pathogenesis through abnormal β-catenin downregulation. PMID:18070361

  18. [Iodine excess induced thyroid dysfunction].

    PubMed

    Egloff, Michael; Philippe, Jacques

    2016-04-20

    The principle sources of iodine overload, amiodarone and radiologic contrast media, are frequently used in modern medicine. The thyroid gland exerts a protective effect against iodine excess by suppressing iodine internalization into the thyrocyte and iodine organification, the Wolff-Chaikoff effect. Insufficiency of this effect or lack of escape from it leads to hypo- or hyperthyroidism respectively. Amiodarone induced thyrotoxicosis is a complex condition marked by two different pathophysiological mechanisms with different treatments. Thyroid metabolism changes after exposure to radiologic contrast media are frequent, but they rarely need to be treated. High risk individuals need to be identifed in order to delay the exam or to monitor thyroid function or apply prophylactic measures in selected cases. PMID:27276725

  19. Diphoton excess and running couplings

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Endo, Motoi; Hamaguchi, Koichi; Moroi, Takeo

    2016-06-01

    The recently observed diphoton excess at the LHC may suggest the existence of a singlet (pseudo-)scalar particle with a mass of 750 GeV which couples to gluons and photons. Assuming that the couplings to gluons and photons originate from loops of fermions and/or scalars charged under the Standard Model gauge groups, we show that there is a model-independent upper bound on the cross section σ (pp → S → γγ) as a function of the cutoff scale Λ and masses of the fermions and scalars in the loop. Such a bound comes from the fact that the contribution of each particle to the diphoton event amplitude is proportional to its contribution to the one-loop β functions of the gauge couplings. We also investigate the perturbativity of running Yukawa couplings in models with fermion loops, and show the upper bounds on σ (pp → S → γγ) for explicit models.

  20. Inhibition of the Enhancement of Infection of Human Immunodeficiency Virus by Semen-Derived Enhancer of Virus Infection Using Amyloid-Targeting Polymeric Nanoparticles

    PubMed Central

    Frantzen, Kristen; Dewhurst, Stephen; Yang, Jerry

    2015-01-01

    The semen-derived enhancer of virus infection (SEVI) is natural amyloid material that has been shown to substantially increase viral attachment and infectivity of HIV in cells. We previously reported that synthetic monomeric and oligomeric amyloid-targeting molecules could form protein-resistive coatings on SEVI and inhibit SEVI- and semen-mediated enhancement of HIV infectivity. While oligomeric amyloid-binding compounds showed substantial improvement in apparent binding to SEVI compared to monomeric compounds, we observed only a modest correlation between apparent binding to SEVI and activity for reducing SEVI-mediated HIV infection. Here, we synthesized amyloid-binding polyacrylate-based polymers and polymeric nanoparticles of comparable size to HIV virus particles (~150 nm) to assess the effect of sterics on the inhibition of SEVI-mediated enhancement of HIV infectivity. We show that these polymeric materials exhibit excellent capability to reduce SEVI-mediated enhancement of HIV infection, with the nanoparticles exhibiting the greatest activity (IC50 value of ~4 μg/mL, or 59 nM based on polymer) of any SEVI-neutralizing agent reported to date. The results support that the improved activity of these nanomaterials is likely due to their increased size (diameters = 80-200 nm) compared to amyloid-targeting small molecules, and that steric interactions may play as important a role as binding affinity in inhibiting viral infection mediated by SEVI amyloids. In contrast to the previously reported SEVI neutralizing, amyloid-targeting molecules (which required concentrations at least 100-fold above the Kd to observe activity), the approximate 1:1 ratio of apparent Kd to IC50 for activity of these polymeric materials, suggests the majority of polymer molecules that are bound to SEVI contribute to the inhibition of HIV infectivity enhanced by SEVI. Such size-related effects on physical inhibition of protein-protein interactions may open further opportunities for the use

  1. Self-assembled amyloid fibrils with controllable conformational heterogeneity.

    PubMed

    Lee, Gyudo; Lee, Wonseok; Lee, Hyungbeen; Lee, Chang Young; Eom, Kilho; Kwon, Taeyun

    2015-01-01

    Amyloid fibrils are a hallmark of neurodegenerative diseases and exhibit a conformational diversity that governs their pathological functions. Despite recent findings concerning the pathological role of their conformational diversity, the way in which the heterogeneous conformations of amyloid fibrils can be formed has remained elusive. Here, we show that microwave-assisted chemistry affects the self-assembly process of amyloid fibril formation, which results in their conformational heterogeneity. In particular, microwave-assisted chemistry allows for delicate control of the thermodynamics of the self-assembly process, which enabled us to tune the molecular structure of β-lactoglobulin amyloid fibrils. The heterogeneous conformations of amyloid fibrils, which can be tuned with microwave-assisted chemistry, are attributed to the microwave-driven thermal energy affecting the electrostatic interaction during the self-assembly process. Our study demonstrates how microwave-assisted chemistry can be used to gain insight into the origin of conformational heterogeneity of amyloid fibrils as well as the design principles showing how the molecular structures of amyloid fibrils can be controlled. PMID:26592772

  2. Self-assembled amyloid fibrils with controllable conformational heterogeneity

    NASA Astrophysics Data System (ADS)

    Lee, Gyudo; Lee, Wonseok; Lee, Hyungbeen; Lee, Chang Young; Eom, Kilho; Kwon, Taeyun

    2015-11-01

    Amyloid fibrils are a hallmark of neurodegenerative diseases and exhibit a conformational diversity that governs their pathological functions. Despite recent findings concerning the pathological role of their conformational diversity, the way in which the heterogeneous conformations of amyloid fibrils can be formed has remained elusive. Here, we show that microwave-assisted chemistry affects the self-assembly process of amyloid fibril formation, which results in their conformational heterogeneity. In particular, microwave-assisted chemistry allows for delicate control of the thermodynamics of the self-assembly process, which enabled us to tune the molecular structure of β-lactoglobulin amyloid fibrils. The heterogeneous conformations of amyloid fibrils, which can be tuned with microwave-assisted chemistry, are attributed to the microwave-driven thermal energy affecting the electrostatic interaction during the self-assembly process. Our study demonstrates how microwave-assisted chemistry can be used to gain insight into the origin of conformational heterogeneity of amyloid fibrils as well as the design principles showing how the molecular structures of amyloid fibrils can be controlled.

  3. Self-assembled amyloid fibrils with controllable conformational heterogeneity

    PubMed Central

    Lee, Gyudo; Lee, Wonseok; Lee, Hyungbeen; Lee, Chang Young; Eom, Kilho; Kwon, Taeyun

    2015-01-01

    Amyloid fibrils are a hallmark of neurodegenerative diseases and exhibit a conformational diversity that governs their pathological functions. Despite recent findings concerning the pathological role of their conformational diversity, the way in which the heterogeneous conformations of amyloid fibrils can be formed has remained elusive. Here, we show that microwave-assisted chemistry affects the self-assembly process of amyloid fibril formation, which results in their conformational heterogeneity. In particular, microwave-assisted chemistry allows for delicate control of the thermodynamics of the self-assembly process, which enabled us to tune the molecular structure of β-lactoglobulin amyloid fibrils. The heterogeneous conformations of amyloid fibrils, which can be tuned with microwave-assisted chemistry, are attributed to the microwave-driven thermal energy affecting the electrostatic interaction during the self-assembly process. Our study demonstrates how microwave-assisted chemistry can be used to gain insight into the origin of conformational heterogeneity of amyloid fibrils as well as the design principles showing how the molecular structures of amyloid fibrils can be controlled. PMID:26592772

  4. Inhibition of amyloid aggregation by formation of helical assemblies.

    PubMed

    Brandenburg, Enrico; von Berlepsch, Hans; Gerling, Ulla I M; Böttcher, Christoph; Koksch, Beate

    2011-09-12

    The formation of amyloid aggregates is responsible for a wide range of diseases, including Alzheimer's and Parkinson's disease. Although the amyloid-forming proteins have different structures and sequences, all undergo a conformational change to form amyloid aggregates that have a characteristic cross-β-structure. The mechanistic details of this process are poorly understood, but different strategies for the development of inhibitors of amyloid formation have been proposed. In most cases, chemically diverse compounds bind to an elongated form of the protein in a β-strand conformation and thereby exert their therapeutic effect. However, this approach could favor the formation of prefibrillar oligomeric species, which are thought to be toxic. Herein, we report an alternative approach in which a helical coiled-coil-based inhibitor peptide has been designed to engage a coiled-coil-based amyloid-forming model peptide in a stable coiled-coil arrangement, thereby preventing rearrangement into a β-sheet conformation and the subsequent formation of amyloid-like fibrils. Moreover, we show that the helix-forming peptide is able to disassemble mature amyloid-like fibrils. PMID:22003512

  5. The metazoan protein disaggregase and amyloid depolymerase system

    PubMed Central

    Torrente, Mariana P; Shorter, James

    2013-01-01

    A baffling aspect of metazoan proteostasis is the lack of an Hsp104 ortholog that rapidly disaggregates and reactivates misfolded polypeptides trapped in stress induced disordered aggregates, preamyloid oligomers, or amyloid fibrils. By contrast, in bacteria, protozoa, chromista, fungi, and plants, Hsp104 orthologs are highly conserved and confer huge selective advantages in stress tolerance. Moreover, in fungi, the amyloid remodeling activity of Hsp104 has enabled deployment of prions for various beneficial modalities. Thus, a longstanding conundrum has remained unanswered: how do metazoan cells renature aggregated proteins or resolve amyloid fibrils without Hsp104? Here, we highlight recent advances that unveil the metazoan protein-disaggregase machinery, comprising Hsp110, Hsp70, and Hsp40, which synergize to dissolve disordered aggregates, but are unable to rapidly solubilize stable amyloid fibrils. However, Hsp110, Hsp70, and Hsp40 exploit the slow monomer exchange dynamics of amyloid, and can slowly depolymerize amyloid fibrils from their ends in a manner that is stimulated by small heat shock proteins. Upregulation of this system could have key therapeutic applications in various protein-misfolding disorders. Intriguingly, yeast Hsp104 can interface with metazoan Hsp110, Hsp70, and Hsp40 to rapidly eliminate disease associated amyloid. Thus, metazoan proteostasis is receptive to augmentation with exogenous disaggregases, which opens a number of therapeutic opportunities. PMID:24401655

  6. Stable, Metastable, and Kinetically Trapped Amyloid Aggregate Phases

    PubMed Central

    2015-01-01

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer’s disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid–liquid phase separation of proteins and to surfactant aggregation are discussed. PMID:25469942

  7. Dietary (-)-epicatechin as a potent inhibitor of βγ-secretase amyloid precursor protein processing.

    PubMed

    Cox, Carla J; Choudhry, Fahd; Peacey, Eleanor; Perkinton, Michael S; Richardson, Jill C; Howlett, David R; Lichtenthaler, Stefan F; Francis, Paul T; Williams, Robert J

    2015-01-01

    Flavonoids, a group of dietary polyphenols have been shown to possess cognitive health benefits. Epidemiologic evidence suggests that they could play a role in risk reduction in dementia. Amyloid precursor protein processing and the subsequent generation of amyloid beta (Aβ) are central to the pathogenesis of Alzheimer's disease, as soluble, oligomeric Aβ is thought to be the toxic species driving disease progression. We undertook an in vitro screen to identify flavonoids with bioactivity at βγ-mediated amyloid precursor protein processing, which lead to identification of a number of flavonoids bioactive at 100 nM. Because of known bioavailability, we investigated the catechin family further and identified epigallocatechin and (-)-epicatechin as potent (nanomolar) inhibitors of amyloidogenic processing. Supporting this finding, we have shown reduced Aβ pathology and Aβ levels following short term, a 21-day oral delivery of (-)-epicatechin in 7-month-old TASTPM mice. Further, in vitro mechanistic studies suggest this is likely because of indirect BACE1 inhibition. Taken together, our results suggest that orally delivered (-)-epicatechin may be a potential prophylactic for Alzheimer's disease. PMID:25316600

  8. Impact of peripheral myeloid cells on amyloid-β pathology in Alzheimer's disease-like mice.

    PubMed

    Prokop, Stefan; Miller, Kelly R; Drost, Natalia; Handrick, Susann; Mathur, Vidhu; Luo, Jian; Wegner, Anja; Wyss-Coray, Tony; Heppner, Frank L

    2015-10-19

    Although central nervous system-resident microglia are believed to be ineffective at phagocytosing and clearing amyloid-β (Aβ), a major pathological hallmark of Alzheimer's disease (AD), it has been suggested that peripheral myeloid cells constitute a heterogeneous cell population with greater Aβ-clearing capabilities. Here, we demonstrate that the conditional ablation of resident microglia in CD11b-HSVTK (TK) mice is followed by a rapid repopulation of the brain by peripherally derived myeloid cells. We used this system to directly assess the ability of peripheral macrophages to reduce Aβ plaque pathology and therefore depleted and replaced the pool of resident microglia with peripherally derived myeloid cells in Aβ-carrying APPPS1 mice crossed to TK mice (APPPS1;TK). Despite a nearly complete exchange of resident microglia with peripheral myeloid cells, there was no significant change in Aβ burden or APP processing in APPPS1;TK mice. Importantly, however, newly recruited peripheral myeloid cells failed to cluster around Aβ deposits. Even additional anti-Aβ antibody treatment aimed at engaging myeloid cells with amyloid plaques neither directed peripherally derived myeloid cells to amyloid plaques nor altered Aβ burden. These data demonstrate that mere recruitment of peripheral myeloid cells to the brain is insufficient in substantially clearing Aβ burden and suggest that specific additional triggers appear to be required to exploit the full potential of myeloid cell-based therapies for AD. PMID:26458768

  9. EFhd2 is a novel amyloid protein associated with pathological tau in Alzheimer's disease.

    PubMed

    Ferrer-Acosta, Yancy; Rodríguez-Cruz, Eva N; Orange, François; De Jesús-Cortés, Hector; Madera, Bismark; Vaquer-Alicea, Jaime; Ballester, Juan; Guinel, Maxime J-F; Bloom, George S; Vega, Irving E

    2013-06-01

    EFhd2 is a conserved calcium-binding protein, abundant within the central nervous system. Previous studies identified EFhd2 associated with pathological forms of tau proteins in the tauopathy mouse model JNPL3, which expresses the human tau(P301L) mutant. This association was validated in human tauopathies, such as Alzheimer's disease (AD). However, the role that EFhd2 may play in tauopathies is still unknown. Here, we show that EFhd2 formed amyloid structures in vitro, a capability that is reduced by calcium ions. Electron microscopy (EM) analyses demonstrated that recombinant EFhd2 formed filamentous structures. EM analyses of sarkosyl-insoluble fractions derived from human AD brains also indicated that EFhd2 co-localizes with aggregated tau proteins and formed granular structures. Immunohistological analyses of brain slices demonstrated that EFhd2 co-localizes with pathological tau proteins in AD brains, confirming the co-aggregation of EFhd2 and pathological tau. Furthermore, EFhd2's coiled-coil domain mediated its self-oligomerization in vitro and its association with tau proteins in JNPL3 mouse brain extracts. The results demonstrate that EFhd2 is a novel amyloid protein associated with pathological tau proteins in AD brain and that calcium binding may regulate the formation of EFhd2's amyloid structures. Hence, EFhd2 may play an important role in the pathobiology of tau-mediated neurodegeneration. PMID:23331044

  10. Amyloid Plaques in PSAPP Mice Bind Less Metal than Plaques in Human Alzheimer’s Disease

    PubMed Central

    Leskovjan, Andreana C.; Lanzirotti, Antonio; Miller, Lisa M.

    2009-01-01

    Amyloid beta (Aβ) is the primary component of Alzheimer’s disease (AD) plaques, a key pathological feature of the disease. Metal ions of zinc (Zn), copper (Cu), iron (Fe), and calcium (Ca) are elevated in human amyloid plaques and are thought to be involved in neurodegeneration. Transgenic mouse models of AD also exhibit amyloid plaques, but fail to exhibit the high degree of neurodegeneration observed in humans. In this study, we imaged the Zn, Cu, Fe, and Ca ion distribution in the PSAPP transgenic mouse model representing end-stage AD (N = 6) using synchrotron X-ray fluorescence (XRF) microprobe. In order to account for differences in density in the plaques, the relative protein content was imaged with synchrotron Fourier transform infrared microspectroscopy (FTIRM) on the same samples. FTIRM results revealed a 61% increase in protein content in the plaques compared to the surrounding tissue. After normalizing to protein density, we found that the PSAPP plaques contained only a 29% increase in Zn and there was actually less Cu, Fe, and Ca in the plaque compared to the surrounding tissue. Since metal-binding to Aβ is thought to induce redox chemistry that is toxic to neurons, the reduced metal-binding in PSAPP mice is consistent with the lack of neurodegeneration in these animals. These findings were in stark contrast to the high metal ion content observed in human AD plaques, further implicating the role of metal ions in human AD pathology. PMID:19481608

  11. Defined DNA sequences promote the assembly of a bacterial protein into distinct amyloid nanostructures

    PubMed Central

    Giraldo, Rafael

    2007-01-01

    RepA, the replication initiator protein of Pseudomonas pPS10 plasmid, is made of two winged-helix (WH) domains. RepA dimers undergo a structural transformation upon binding to origin DNA sequences (iterons), resulting in monomerization and α-helix into β-strand conversion. This affects the N-terminal domain (WH1) and generates a metastable intermediate. Here it is shown that the interaction of short dsDNA oligonucleotides, including iteron or operator RepA targets, with the isolated WH1 domain promotes the assembly of different nanostructures. These range from irregular aggregates to amyloid spheroids and fibers. Their intrinsic order inversely correlates with the extent of the transformation induced by each DNA sequence on RepA. However, DNA is not a constituent of the assembled fibers, in agreement with the protein-only principle for amyloid structure. Thus, the RepA-WH1 domain on DNA binding mimics the behavior of the mammalian prion protein. The stretch of amino acids responsible for WH1 aggregation has been identified, leading to the design of mutants with enhanced or reduced amyloidogenicity and the synthesis of a peptide that assembles into a cross-β structure. RepA amyloid assemblies could have a role in the negative regulation of plasmid replication. This article underlines the potential of specific nucleic acid sequences in promoting protein amyloidogenesis at nearly physiological conditions. PMID:17959784

  12. Anti-amyloid compounds protect from silica nanoparticle-induced neurotoxicity in the nematode C. elegans

    PubMed Central

    Scharf, Andrea; Gührs, Karl-Heinz; von Mikecz, Anna

    2016-01-01

    Abstract Identifying nanomaterial-bio-interactions are imperative due to the broad introduction of nanoparticle (NP) applications and their distribution. Here, we demonstrate that silica NPs effect widespread protein aggregation in the soil nematode Caenorhabditis elegans ranging from induction of amyloid in nucleoli of intestinal cells to facilitation of protein aggregation in body wall muscles and axons of neural cells. Proteomic screening revealed that exposure of adult C. elegans with silica NPs promotes segregation of proteins belonging to the gene ontology (GO) group of “protein folding, proteolysis and stress response” to an SDS-resistant aggregome network. Candidate proteins in this group include chaperones, heat shock proteins and subunits of the 26S proteasome which are all decisively involved in protein homeostasis. The pathway of protein homeostasis was validated as a major target of silica NPs by behavioral phenotyping, as inhibitors of amyloid formation rescued NP-induced defects of locomotory patterns and egg laying. The analysis of a reporter worm for serotonergic neural cells revealed that silica NP-induced protein aggregation likewise occurs in axons of HSN neurons, where presynaptic accumulation of serotonin, e.g. disturbed axonal transport reduces the capacity for neurotransmission and egg laying. The results suggest that in C. elegans silica NPs promote a cascade of events including disturbance of protein homeostasis, widespread protein aggregation and inhibition of serotonergic neurotransmission which can be interrupted by compounds preventing amyloid fibrillation. PMID:26444998

  13. Ubiquilin-1 Is a Molecular Chaperone for the Amyloid Precursor Protein*

    PubMed Central

    Stieren, Emily S.; El Ayadi, Amina; Xiao, Yao; Siller, Efraín; Landsverk, Megan L.; Oberhauser, Andres F.; Barral, José M.; Boehning, Darren

    2011-01-01

    Alzheimer disease (AD) is associated with extracellular deposition of proteolytic fragments of amyloid precursor protein (APP). Although mutations in APP and proteases that mediate its processing are known to result in familial, early onset forms of AD, the mechanisms underlying the more common sporadic, yet genetically complex forms of the disease are still unclear. Four single-nucleotide polymorphisms within the ubiquilin-1 gene have been shown to be genetically associated with AD, implicating its gene product in the pathogenesis of late onset AD. However, genetic linkage between ubiquilin-1 and AD has not been confirmed in studies examining different populations. Here we show that regardless of genotype, ubiquilin-1 protein levels are significantly decreased in late onset AD patient brains, suggesting that diminished ubiquilin function may be a common denominator in AD progression. Our interrogation of putative ubiquilin-1 activities based on sequence similarities to proteins involved in cellular quality control showed that ubiquilin-1 can be biochemically defined as a bona fide molecular chaperone and that this activity is capable of preventing the aggregation of amyloid precursor protein both in vitro and in live neurons. Furthermore, we show that reduced activity of ubiquilin-1 results in augmented production of pathogenic amyloid precursor protein fragments as well as increased neuronal death. Our results support the notion that ubiquilin-1 chaperone activity is necessary to regulate the production of APP and its fragments and that diminished ubiquilin-1 levels may contribute to AD pathogenesis. PMID:21852239

  14. Plasma β-amyloid in Alzheimer’s disease and vascular disease

    PubMed Central

    Janelidze, Shorena; Stomrud, Erik; Palmqvist, Sebastian; Zetterberg, Henrik; van Westen, Danielle; Jeromin, Andreas; Song, Linan; Hanlon, David; Tan Hehir, Cristina A.; Baker, David; Blennow, Kaj; Hansson, Oskar

    2016-01-01

    Implementation of amyloid biomarkers in clinical practice would be accelerated if such biomarkers could be measured in blood. We analyzed plasma levels of Aβ42 and Aβ40 in a cohort of 719 individuals (the Swedish BioFINDER study), including patients with subjective cognitive decline (SCD), mild cognitive impairment (MCI), Alzheimer’s disease (AD) dementia and cognitively healthy elderly, using a ultrasensitive immunoassay (Simoa platform). There were weak positive correlations between plasma and cerebrospinal fluid (CSF) levels for both Aβ42 and Aβ40, and negative correlations between plasma Aβ42 and neocortical amyloid deposition (measured with PET). Plasma levels of Aβ42 and Aβ40 were reduced in AD dementia compared with all other diagnostic groups. However, during the preclinical or prodromal AD stages (i.e. in amyloid positive controls, SCD and MCI) plasma concentration of Aβ42 was just moderately decreased whereas Aβ40 levels were unchanged. Higher plasma (but not CSF) levels of Aβ were associated with white matter lesions, cerebral microbleeds, hypertension, diabetes and ischemic heart disease. In summary, plasma Aβ is overtly decreased during the dementia stage of AD indicating that prominent changes in Aβ metabolism occur later in the periphery compared to the brain. Further, increased levels of Aβ in plasma are associated with vascular disease. PMID:27241045

  15. Amyloid Plaques in PSAPP Mice Bind Less Metal than Plaques in Human Alzheimer's Disease

    SciTech Connect

    Leskovjan, A.; Lanzirotti, A; Miller, L

    2009-01-01

    Amyloid beta (A{Beta}) is the primary component of Alzheimer's disease (AD) plaques, a key pathological feature of the disease. Metal ions of zinc (Zn), copper (Cu), iron (Fe), and calcium (Ca) are elevated in human amyloid plaques and are thought to be involved in neurodegeneration. Transgenic mouse models of AD also exhibit amyloid plaques, but fail to exhibit the high degree of neurodegeneration observed in humans. In this study, we imaged the Zn, Cu, Fe, and Ca ion distribution in the PSAPP transgenic mouse model representing end-stage AD (N = 6) using synchrotron X-ray fluorescence (XRF) microprobe. In order to account for differences in density in the plaques, the relative protein content was imaged with synchrotron Fourier transform infrared microspectroscopy (FTIRM) on the same samples. FTIRM results revealed a 61% increase in protein content in the plaques compared to the surrounding tissue. After normalizing to protein density, we found that the PSAPP plaques contained only a 29% increase in Zn and there was actually less Cu, Fe, and Ca in the plaque compared to the surrounding tissue. Since metal binding to A{beta} is thought to induce redox chemistry that is toxic to neurons, the reduced metal binding in PSAPP mice is consistent with the lack of neurodegeneration in these animals. These findings were in stark contrast to the high metal ion content observed in human AD plaques, further implicating the role of metal ions in human AD pathology.

  16. The chaperone domain BRICHOS prevents CNS toxicity of amyloid-β peptide in Drosophila melanogaster

    PubMed Central

    Hermansson, Erik; Schultz, Sebastian; Crowther, Damian; Linse, Sara; Winblad, Bengt; Westermark, Gunilla; Johansson, Jan; Presto, Jenny

    2014-01-01

    Aggregation of the amyloid-β peptide (Aβ) into toxic oligomers and amyloid fibrils is linked to the development of Alzheimer’s disease (AD). Mutations of the BRICHOS chaperone domain are associated with amyloid disease and recent in vitro data show that BRICHOS efficiently delays Aβ42 oligomerization and fibril formation. We have generated transgenic Drosophila melanogaster flies that express the Aβ42 peptide and the BRICHOS domain in the central nervous system (CNS). Co-expression of Aβ42 and BRICHOS resulted in delayed Aβ42 aggregation and dramatic improvements of both lifespan and locomotor function compared with flies expressing Aβ42 alone. Moreover, BRICHOS increased the ratio of soluble:insoluble Aβ42 and bound to deposits of Aβ42 in the fly brain. Our results show that the BRICHOS domain efficiently reduces the neurotoxic effects of Aβ42, although significant Aβ42 aggregation is taking place. We propose that BRICHOS-based approaches should be explored with an aim towards the future prevention and treatment of AD. PMID:24682783

  17. Cytotoxic Aggregation and Amyloid Formation by the Myostatin Precursor Protein

    PubMed Central

    Starck, Carlene S.; Sutherland-Smith, Andrew J.

    2010-01-01

    Myostatin, a negative regulator of muscle growth, has been implicated in sporadic inclusion body myositis (sIBM). sIBM is the most common age-related muscle-wastage disease with a pathogenesis similar to that of amyloid disorders such as Alzheimer's and Parkinson's diseases. Myostatin precursor protein (MstnPP) has been shown to associate with large molecular weight filamentous inclusions containing the Alzheimer's amyloid beta peptide in sIBM tissue, and MstnPP is upregulated following ER stress. The mechanism for how MstnPP contributes to disease pathogenesis is unknown. Here, we show for the first time that MstnPP is capable of forming amyloid fibrils in vitro. When MstnPP-containing Escherichia coli inclusion bodies are refolded and purified, a proportion of MstnPP spontaneously misfolds into amyloid-like aggregates as characterised by electron microscopy and binding of the amyloid-specific dye thioflavin T. When subjected to a slightly acidic pH and elevated temperature, the aggregates form straight and unbranched amyloid fibrils 15 nm in diameter and also exhibit higher order amyloid structures. Circular dichroism spectroscopy reveals that the amyloid fibrils are dominated by β-sheet and that their formation occurs via a conformational change that occurs at a physiologically relevant temperature. Importantly, MstnPP aggregates and protofibrils have a negative effect on the viability of myoblasts. These novel results show that the myostatin precursor protein is capable of forming amyloid structures in vitro with implications for a role in sIBM pathogenesis. PMID:20161792

  18. Impaired fasting glucose is associated with increased regional cerebral amyloid.

    PubMed

    Morris, Jill K; Vidoni, Eric D; Wilkins, Heather M; Archer, Ashley E; Burns, Nicole C; Karcher, Rainer T; Graves, Rasinio S; Swerdlow, Russell H; Thyfault, John P; Burns, Jeffrey M

    2016-08-01

    The Alzheimer's disease risk gene apolipoprotein E epsilon 4 (APOE ε4) is associated with increased cerebral amyloid. Although impaired glucose metabolism is linked to Alzheimer's disease risk, the relationship between impaired glycemia and cerebral amyloid is unclear. To investigate the independent effects of APOE ε4 and impaired glycemia on cerebral amyloid, we stratified nondemented subjects (n = 73) into 4 groups: normal glucose, APOE ε4 noncarrier (control [CNT]; n = 31), normal glucose, APOE ε4 carrier (E4 only; n = 14) impaired glycemia, APOE ε4 noncarrier (IG only; n = 18), and impaired glycemia, APOE ε4 carrier (IG+E4; n = 10). Cerebral amyloid differed both globally (p = 0.023) and regionally; precuneus (p = 0.007), posterior cingulate (PCC; p = 0.020), superior parietal cortex (SPC; p = 0.029), anterior cingulate (p = 0.027), and frontal cortex (p = 0.018). Post hoc analyses revealed that E4 only subjects had increased cerebral amyloid versus CNT globally and regionally in the precuneus, PCC, SPC, anterior cingulate, and frontal cortex. In IG only subjects, increased cerebral amyloid compared with CNT was restricted to precuneus, PCC, and SPC. IG+E4 subjects exhibited higher cerebral amyloid only in the precuneus relative to CNT. These results indicate that impaired glycemia and APOE ε4 genotype are independent risk factors for regional cerebral amyloid deposition. However, APOE ε4 and impaired glycemia did not have an additive effect on cerebral amyloid. PMID:27318141

  19. Methionine oxidation induces amyloid fibril formation by full-length apolipoprotein A-I

    PubMed Central

    Wong, Yuan Qi; Binger, Katrina J.; Howlett, Geoffrey J.; Griffin, Michael D. W.

    2010-01-01

    Apolipoprotein A-I (apoA-I) is the major protein component of HDL, where it plays an important role in cholesterol transport. The deposition of apoA-I derived amyloid is associated with various hereditary systemic amyloidoses and atherosclerosis; however, very little is known about the mechanism of apoA-I amyloid formation. Methionine residues in apoA-I are oxidized via several mechanisms in vivo to form methionine sulfoxide (MetO), and significant levels of methionine oxidized apoA-I (MetO-apoA-I) are present in normal human serum. We investigated the effect of methionine oxidation on the structure, stability, and aggregation of full-length, lipid-free apoA-I. Circular dichrosim spectroscopy showed that oxidation of all three methionine residues in apoA-I caused partial unfolding of the protein and decreased its thermal stability, reducing the melting temperature (Tm) from 58.7 °C for native apoA-I to 48.2 °C for MetO-apoA-I. Analytical ultracentrifugation revealed that methionine oxidation inhibited the native self association of apoA-I to form dimers and tetramers. Incubation of MetO-apoA-I for extended periods resulted in aggregation of the protein, and these aggregates bound Thioflavin T and Congo Red. Inspection of the aggregates by electron microscopy revealed fibrillar structures with a ribbon-like morphology, widths of approximately 11 nm, and lengths of up to several microns. X-ray fibre diffraction studies of the fibrils revealed a diffraction pattern with orthogonal peaks at spacings of 4.64 Å and 9.92 Å, indicating a cross-β amyloid structure. This systematic study of fibril formation by full-length apoA-I represents the first demonstration that methionine oxidation can induce amyloid fibril formation. PMID:20133843

  20. An azobenzene photoswitch sheds light on turn nucleation in amyloid-β self-assembly.

    PubMed

    Doran, Todd M; Anderson, Elizabeth A; Latchney, Sarah E; Opanashuk, Lisa A; Nilsson, Bradley L

    2012-03-21

    Amyloid-β (Aβ) self-assembly into cross-β amyloid fibrils is implicated in a causative role in Alzheimer's disease pathology. Uncertainties persist regarding the mechanisms of amyloid self-assembly and the role of metastable prefibrillar aggregates. Aβ fibrils feature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the self-assembly pathway. Herein, we report the use of an azobenzene β-hairpin mimetic to study the role turn nucleation plays on Aβ self-assembly. [3-(3-Aminomethyl)phenylazo]phenylacetic acid (AMPP) was incorporated into the putative turn region of Aβ42 to elicit temporal control over Aβ42 turn nucleation; it was hypothesized that self-assembly would be favored in the cis-AMPP conformation if β-hairpin formation occurs during Aβ self-assembly and that the trans-AMPP conformer would display attenuated fibrillization propensity. It was unexpectedly observed that the trans-AMPP Aβ42 conformer forms fibrillar constructs that are similar in almost all characteristics, including cytotoxicity, to wild-type Aβ42. Conversely, the cis-AMPP Aβ42 congeners formed nonfibrillar, amorphous aggregates that exhibited no cytotoxicity. Additionally, cis-trans photoisomerization resulted in rapid formation of native-like amyloid fibrils and trans-cis conversion in the fibril state reduced the population of native-like fibrils. Thus, temporal photocontrol over Aβ turn conformation provides significant insight into Aβ self-assembly. Specifically, Aβ mutants that adopt stable β-turns form aggregate structures that are unable to enter folding pathways leading to cross-β fibrils and cytotoxic prefibrillar intermediates. PMID:22860190

  1. The roles of amyloid precursor protein (APP) in neurogenesis, implications to pathogenesis and therapy of Alzheimer disease (AD)

    PubMed Central

    Ma, Quan-hong; Xu, Xiao-hong

    2011-01-01

    The amyloid-beta (Aβ) peptide is the derivative of amyloid precursor protein (APP) generated through sequential proteolytic processing by β- and γ-secretases. Excessive accumulation of Aβ, the main constituent of amyloid plaques, has been implicated in the etiology of Alzheimer disease (AD). It was found recently that the impairments of neurogenesis in brain were associated with the pathogenesis of AD. Furthermore recent findings implicated that APP could function to influence proliferation of neural progenitor cells (NPC) and might regulate transcriptional activity of various genes. Studies demonstrated that influence of neurogenesis by APP is conferred differently via its two separate domains, soluble secreted APPs (sAPPs, mainly sAPPα) and APP intracellular domain (AICD). The sAPPα was shown to be neuroprotective and important to neurogenesis, whereas AICD was found to negatively modulate neurogenesis. Furthermore, it was demonstrated recently that microRNA could function to regulate APP expression, APP processing, Aβ accumulation and subsequently influence neurotoxicity and neurogenesis related to APP, which was implicated to AD pathogenesis, especially for sporadic AD. Based on data accumulated, secretase balances were proposed. These secretase balances could influence the downstream balance related to regulation of neurogenesis by AICD and sAPPα as well as balance related to influence of neuron viability by Aβ and sAPPα. Disruption of these secretase balances could be culprits to AD onset. PMID:21785276

  2. 12 CFR 1263.23 - Excess stock.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Excess stock. 1263.23 Section 1263.23 Banks and Banking FEDERAL HOUSING FINANCE AGENCY FEDERAL HOME LOAN BANKS MEMBERS OF THE BANKS Stock Requirements § 1263.23 Excess stock. (a) Sale of excess stock. Subject to the restriction in paragraph (b) of...

  3. 7 CFR 985.56 - Excess oil.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Excess oil. 985.56 Section 985.56 Agriculture... HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST Order Regulating Handling Volume Limitations § 985.56 Excess oil. Oil of any class in excess of a producer's applicable annual allotment shall be identified...

  4. 7 CFR 985.56 - Excess oil.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Excess oil. 985.56 Section 985.56 Agriculture... HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST Order Regulating Handling Volume Limitations § 985.56 Excess oil. Oil of any class in excess of a producer's applicable annual allotment shall be identified...

  5. 7 CFR 985.56 - Excess oil.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Excess oil. 985.56 Section 985.56 Agriculture... HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST Order Regulating Handling Volume Limitations § 985.56 Excess oil. Oil of any class in excess of a producer's applicable annual allotment shall be identified...

  6. 7 CFR 985.56 - Excess oil.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Excess oil. 985.56 Section 985.56 Agriculture... HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST Order Regulating Handling Volume Limitations § 985.56 Excess oil. Oil of any class in excess of a producer's applicable annual allotment shall be identified...

  7. 7 CFR 985.56 - Excess oil.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Excess oil. 985.56 Section 985.56 Agriculture... HANDLING OF SPEARMINT OIL PRODUCED IN THE FAR WEST Order Regulating Handling Volume Limitations § 985.56 Excess oil. Oil of any class in excess of a producer's applicable annual allotment shall be identified...

  8. 43 CFR 426.12 - Excess land.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Excess land. 426.12 Section 426.12 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR ACREAGE LIMITATION RULES AND REGULATIONS § 426.12 Excess land. (a) The process of designating excess and nonexcess land. If a landowner owns...

  9. 10 CFR 904.10 - Excess energy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Excess energy. 904.10 Section 904.10 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.10 Excess energy. (a) If excess Energy is determined by the United States to be...

  10. 10 CFR 904.10 - Excess energy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Excess energy. 904.10 Section 904.10 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.10 Excess energy. (a) If excess Energy is determined by the United States to be...

  11. 10 CFR 904.10 - Excess energy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Excess energy. 904.10 Section 904.10 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.10 Excess energy. (a) If excess Energy is determined by the United States to be...

  12. 10 CFR 904.10 - Excess energy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Excess energy. 904.10 Section 904.10 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.10 Excess energy. (a) If excess Energy is determined by the United States to be...

  13. Sortilin and SorLA display distinct roles in processing and trafficking of amyloid precursor protein.

    PubMed

    Gustafsen, Camilla; Glerup, Simon; Pallesen, Lone Tjener; Olsen, Ditte; Andersen, Olav M; Nykjær, Anders; Madsen, Peder; Petersen, Claus Munck

    2013-01-01

    The development and progression of Alzheimer's disease is linked to excessive production of toxic amyloid-β peptide, initiated by β-secretase cleavage of the amyloid precursor protein (APP). In contrast, soluble APPα (sAPPα) generated by the α-secretase is known to stimulate dendritic branching and enhance synaptic function. Regulation of APP processing, and the shift from neurotrophic to neurotoxic APP metabolism remains poorly understood, but the cellular localization of APP and its interaction with various receptors is considered important. We here identify sortilin as a novel APP interaction partner. Like the related APP receptor SorLA, sortilin is highly expressed in the CNS, but whereas SorLA mainly colocalizes with APP in the soma, sortilin interacts with APP in neurites. The presence of sortilin promotes α-secretase cleavage of APP, unlike SorLA, which inhibits the generation of all soluble products. Also, sortilin and SorLA both bind and mediate internalization of sAPP but to different cellular compartments. The interaction involves the 6A domain of APP, present in both neuronal and non-neuronal APP isoforms. This is important as sAPP receptors described so far only bind the non-neuronal isoforms, leaving SorLA and sortilin as the only receptors for sAPP generated by neurons. Together, our findings establish sortilin, as a novel APP interaction partner that influences both production and cellular uptake of sAPP. PMID:23283322

  14. Glutamate carboxypeptidase II is not an amyloid peptide-degrading enzyme.

    PubMed

    Alt, Jesse; Stathis, Marigo; Rojas, Camilo; Slusher, Barbara

    2013-07-01

    Glutamate carboxypeptidase II (GCPII) is an exopeptidase that catalyzes the hydrolysis of N-acetylated aspartate-glutamate (NAAG) to N-acetyl aspartate (NAA) and glutamate. Consequently, GCPII inhibition has been of interest for the treatment of central and peripheral nervous system diseases associated with excess glutamate. Recently, it was reported that GCPII can also serve as an endopeptidase cleaving amyloid β (Aβ) peptides and that its inhibition could increase the risk of Alzheimer's disease by increasing brain Aβ levels. This study aimed to corroborate and extend these new findings. We incubated Aβ peptides (20 μM) with human recombinant GCPII (300 ng/ml) and monitored the appearance of degradation products by mass spectrometry. Aβ peptides remained intact after 18 h incubation with GCPII. Under the same experimental conditions, Aβ1-40 (20 μM) was incubated with neprilysin (300 ng/ml), an endopeptidase known to hydrolyze Aβ1-40 and the expected cleavage products were observed. GCPII was confirmed active by catalyzing the complete hydrolysis of NAAG (100 μM). We also studied the hydrolysis of [(3)H]-NAAG (30 nM) catalyzed by GCPII (40 pM) in the presence of Aβ peptides (picomolar to micromolar range). The addition of Aβ peptides did not alter [(3)H]-NAAG hydrolysis. We conclude that GCPII is not an amyloid peptide-degrading enzyme. PMID:23525278

  15. Serum amyloid A impairs the antiinflammatory properties of HDL

    PubMed Central

    Han, Chang Yeop; Tang, Chongren; Guevara, Myriam E.; Wei, Hao; Wietecha, Tomasz; Shao, Baohai; Subramanian, Savitha; Omer, Mohamed; Wang, Shari; O’Brien, Kevin D.; Marcovina, Santica M.; Wight, Thomas N.; Vaisar, Tomas; de Beer, Maria C.; de Beer, Frederick C.; Osborne, William R.; Elkon, Keith B.; Chait, Alan

    2015-01-01

    HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface–associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane. PMID:26642365

  16. Serum amyloid A impairs the antiinflammatory properties of HDL.

    PubMed

    Han, Chang Yeop; Tang, Chongren; Guevara, Myriam E; Wei, Hao; Wietecha, Tomasz; Shao, Baohai; Subramanian, Savitha; Omer, Mohamed; Wang, Shari; O'Brien, Kevin D; Marcovina, Santica M; Wight, Thomas N; Vaisar, Tomas; de Beer, Maria C; de Beer, Frederick C; Osborne, William R; Elkon, Keith B; Chait, Alan

    2016-01-01

    HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface-associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane. PMID:26642365

  17. Glimepiride protects neurons against amyloid-β-induced synapse damage.

    PubMed

    Osborne, Craig; West, Ewan; Nolan, William; McHale-Owen, Harriet; Williams, Alun; Bate, Clive

    2016-02-01

    Alzheimer's disease is associated with the accumulation within the brain of amyloid-β (Aβ) peptides that damage synapses and affect memory acquisition. This process can be modelled by observing the effects of Aβ on synapses in cultured neurons. The addition of picomolar concentrations of soluble Aβ derived from brain extracts triggered the loss of synaptic proteins including synaptophysin, synapsin-1 and cysteine string protein from cultured neurons. Glimepiride, a sulphonylurea used for the treatment of diabetes, protected neurons against synapse damage induced by Aβ. The protective effects of glimepiride were multi-faceted. Glimepiride treatment was associated with altered synaptic membranes including the loss of specific glycosylphosphatidylinositol (GPI)-anchored proteins including the cellular prion protein (PrP(C)) that acts as a receptor for Aβ42, increased synaptic gangliosides and altered cell signalling. More specifically, glimepiride reduced the Aβ-induced increase in cholesterol and the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) in synapses that occurred within cholesterol-dense membrane rafts. Aβ42 binding to glimepiride-treated neurons was not targeted to membrane rafts and less Aβ42 accumulated within synapses. These studies indicate that glimepiride modified the membrane micro-environments in which Aβ-induced signalling leads to synapse damage. In addition, soluble PrP(C), released from neurons by glimepiride, neutralised Aβ-induced synapse damage. Such observations raise the possibility that glimepiride may reduce synapse damage and hence delay the progression of cognitive decline in Alzheimer's disease. PMID:26432105

  18. The Cerebrovascular Basement Membrane: Role in the Clearance of β-amyloid and Cerebral Amyloid Angiopathy

    PubMed Central

    Morris, Alan W. J.; Carare, Roxana O.; Schreiber, Stefanie; Hawkes, Cheryl A.

    2014-01-01

    Cerebral amyloid angiopathy (CAA), the accumulation of β-amyloid (Aβ) peptides in the walls of cerebral blood vessels, is observed in the majority of Alzheimer’s disease (AD) brains and is thought to be due to a failure of the aging brain to clear Aβ. Perivascular drainage of Aβ along cerebrovascular basement membranes (CVBMs) is one of the mechanisms by which Aβ is removed from the brain. CVBMs are specialized sheets of extracellular matrix that provide structural and functional support for cerebral blood vessels. Changes in CVBM composition and structure are observed in the aged and AD brain and may contribute to the development and progression of CAA. This review summarizes the properties of the CVBM, its role in mediating clearance of interstitial fluids and solutes from the brain, and evidence supporting a role for CVBM in the etiology of CAA. PMID:25285078

  19. The Amyloid Precursor Protein Forms Plasmalemmal Clusters via Its Pathogenic Amyloid-β Domain

    PubMed Central

    Schreiber, Arne; Fischer, Sebastian; Lang, Thorsten

    2012-01-01

    The amyloid precursor protein (APP) is a large, ubiquitous integral membrane protein with a small amyloid-β (Aβ) domain. In the human brain, endosomal processing of APP produces neurotoxic Aβ-peptides, which are involved in Alzheimer's disease. Here, we show that the Aβ sequence exerts a physiological function when still present in the unprocessed APP molecule. From the extracellular site, Aβ concentrates APP molecules into plasmalemmal membrane protein clusters. Moreover, Aβ stabilization of clusters is a prerequisite for their targeting to endocytic clathrin structures. Therefore, we conclude that the Aβ domain directly mediates a central step in APP trafficking, driving its own conversion into neurotoxic peptides. PMID:22455924

  20. Monoclonal antibodies to amyloid subunit proteins for in vivo radioimmunodetection of amyloid diseases

    SciTech Connect

    Srivastava, S.C.; Meinken, G.E.; Gorevic, P.; Atkins, H.L.; Fand, I.; Marshall, J.; McNally, W.; Muller, D.; Wood, D.

    1984-01-01

    Amyloid fibrils of systemic amyloidosis are low molecular weight subunit proteins with poor immunogenicity and a tendency to polymerize. Antibodies to these proteins are useful for the detection of amyloid deposits in-situ. The extracellular location of amyloid deposits and proximity to congophilic angiopathy suggest the potential of labeled monocional antibodies (MAb) for in vivo radioimmunodetection. The authors tested feasibility of this approach using two rat MAbs to mouse AA protein in casein-induced amyloidosis, a model system for human secondary amyloidosis. The antibodies were labeled with I-125, I-123, and In-111 with good specificity retention. Amyloidotic mice were pretreated with 50 ..mu..g colchicine ip 3 hr before receiving radioiodinated MAb via the tall vein. Controls included injection of MAb to normal mice and of labeled polyclonal normal rat IgG (pIg) into amyloidotic and control mice. Blood clearance of MAb was faster in amyloidotic than control groups. Fractionation studies showed that both MAb and pIg were uncomplexed. Studies up to 96 hr showed specific and high uptake at sites of amyloid deposition (saline perfused liver, spleen, kidney. Specific localization was confirmed by whole body autoradiography (I-125, 20 ..mu..Ci/animal; 50 ..mu..g MAb) and by external imaging (I-123, 200 ..mu..Ci/animal, 10-15 ..mu..g MAb) of amyloidotic mice studied at 4-72 hr. Amyloidotic animals showed perifollicular localization in spleen, periportal in liver, and glomerular in kidney; scans of controls showed diffuse early washout. These results document the feasibility of using MAbs to fibril subunit proteins for the in vivo detection and therapy of amyloidosis.

  1. Early oligomerization stages for the non-amyloid component of α-synuclein amyloid

    NASA Astrophysics Data System (ADS)

    Eugene, Cindie; Laghaei, Rozita; Mousseau, Normand

    2014-10-01

    In recent years, much effort has focused on the early stages of aggregation and the formation of amyloid oligomers. Aggregation processes for these proteins are complex and their non-equilibrium nature makes any experimental study very difficult. Under these conditions, simulations provide a useful alternative for understanding the dynamics of the early stages of oligomerization. Here, we focus on the non-Aβ amyloid component (NAC) of the monomer, dimer, and trimer of α-synuclein, an important 35-residue sequence involved in the aggregation and fibrillation of this protein associated with Parkinson's disease. Using Hamiltonian and temperature replica exchange molecular dynamics simulations combined with the coarse grained Optimized Potential for Efficient peptide structure Prediction potential, we identify the role of the various regions and the secondary structures for the onset of oligomerization. For this sequence, we clearly observe the passage from α-helix to β-sheet, a characteristic transition of amyloid proteins. More precisely, we find that the NAC monomer is highly structured with two α-helical regions, between residues 2-13 and 19-25. As the dimer and trimer form, β-sheet structures between residues 2-14 and 26-34 appear and rapidly structure the system. The resulting conformations are much more structured than similar dimers and trimers of β-amyloid and amylin proteins and yet display a strong polymorphism at these early stages of aggregation. In addition to its inherent experimental interest, comparison with other sequences shows that NAC could be a very useful numerical model for understanding the onset of aggregation.

  2. The beta-amyloid domain is essential for axonal sorting of amyloid precursor protein.

    PubMed Central

    Tienari, P J; De Strooper, B; Ikonen, E; Simons, M; Weidemann, A; Czech, C; Hartmann, T; Ida, N; Multhaup, G; Masters, C L; Van Leuven, F; Beyreuther, K; Dotti, C G

    1996-01-01

    We have analysed the axonal sorting signals of amyloid precursor protein (APP). Wild-type and mutant versions of human APP were expressed in hippocampal neurons using the Semliki forest virus system. We show that wild-type APP and mutations implicated in Alzheimer's disease and another brain beta-amyloidosis are sorted to the axon. By analysis of deletion mutants we found that the membrane-inserted APP ectodomain but not the cytoplasmic tail is required for axonal sorting. Systematic deletions of the APP ectodomain identified two regions required for axonal delivery: one encoded by exons 11-15 in the carbohydrate domain, the other encoded by exons 16-17 in the juxtamembraneous beta-amyloid domain. Treatment of the cells with the N-glycosylation inhibitor tunicamycin induced missorting of wild-type APP, supporting the importance of glycosylation in axonal sorting of APP. The data revealed a hierarchy of sorting signals on APP: the beta-amyloid-dependent membrane proximal signal was the major contributor to axonal sorting, while N-glycosylation had a weaker effect. Furthermore, recessive somatodendritic signals, most likely in the cytoplasmic tail, directed the protein to the dendrites when the ectodomain was deleted. Analysis of detergent solubility of APP and another axonally delivered protein, hemagglutinin, demonstrated that only hemagglutinin formed CHAPS-insoluble complexes, suggesting distinct mechanisms of axonal sorting for these two proteins. This study is the first delineation of sorting requirements of an axonally targeted protein in polarized neurons and indicates that the beta-amyloid domain plays a major role in axonal delivery of APP. Images PMID:8895567

  3. Acute γ-secretase Inhibition of Nonhuman Primate CNS Shifts Amyloid Precursor Protein (APP) Metabolism from Amyloid-β Production to Alternative APP Fragments without Amyloid-β Rebound

    PubMed Central

    Cook, Jacquelynn J.; Wildsmith, Kristin R.; Gilberto, David B.; Holahan, Marie A.; Kinney, Gene G.; Mathers, Parker D.; Michener, Maria S.; Price, Eric A.; Shearman, Mark S.; Simon, Adam J.; Wang, Jennifer X.; Wu, Guoxin; Yarasheski, Kevin E.; Bateman, Randall J.

    2010-01-01

    The accumulation of amyloid beta (Aβ) in Alzheimer’s disease is caused by an imbalance of production and clearance, which leads to increased soluble Aβ species and extracellular plaque formation in the brain. Multiple Aβ-lowering therapies are currently in development: an important goal is to characterize the molecular mechanisms of action and effects on physiological processing of Aβ, as well as other amyloid precursor protein (APP) metabolites, in models which approximate human Aβ physiology. To this end, we report the translation of the human in vivo stable-isotope-labeling kinetics (SILK) method to a rhesus monkey cisterna magna ported (CMP) nonhuman primate model, and use the model to test the mechanisms of action of a γ-secretase inhibitor (GSI). A major concern of inhibiting the enzymes which produce Aβ (β- and γ-secretase) is that precursors of Aβ may accumulate and cause a rapid increase in Aβ production when enzyme inhibition discontinues. In this study, the GSI MK-0752 was administered to conscious CMP rhesus monkeys in conjunction with in vivo stable isotope labeling, and dose-dependently reduced newly generated CNS Aβ. In contrast to systemic Aβ metabolism, CNS Aβ production was not increased after the GSI was cleared. These results indicate that most of the CNS APP was metabolized to products other than Aβ, including C-terminal truncated forms of Aβ: 1–14, 1–15 and 1–16; this demonstrates an alternative degradation pathway for CNS amyloid precursor protein during γ-secretase inhibition. PMID:20463236

  4. 19 CFR 10.625 - Refunds of excess customs duties.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Refunds of excess customs duties. 10.625 Section 10.625 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican...

  5. 19 CFR 10.625 - Refunds of excess customs duties.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Refunds of excess customs duties. 10.625 Section 10.625 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican...

  6. 19 CFR 10.625 - Refunds of excess customs duties.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Refunds of excess customs duties. 10.625 Section 10.625 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. Dominican...

  7. 26 CFR 1.1251-2 - Excess deductions account.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... taxpayer from making an election under section 3251(b)(4). Any acceptable inventory method will satisfy the... inventory, the amount equal to the excess of its adjusted basis as computed in (a) of this subdivision over... in the opening inventory, such opening inventory shall be reduced by the inventory value of...

  8. Tensile deformation and failure of amyloid and amyloid-like protein fibrils

    NASA Astrophysics Data System (ADS)

    Solar, Max; Buehler, Markus J.

    2014-03-01

    Here we report a series of full atomistic molecular dynamics simulations of six amyloid or amyloid-like protein fibrils in order to systematically understand the effect of different secondary structure motifs on the mechanical tensile and failure response of cross-\\beta protein fibrils. We find a similar failure behavior across the six structures; an initial failure event occurs at small strains involving cooperative rupture of a group of hydrogen bonds, followed by a slow one-by-one hydrogen bond rupture process as the remaining \\beta -sheets peel off with very low applied stress. We also find that the ultimate tensile strength of the protein fibrils investigated scales directly with the number of hydrogen bonds per unit area which break in the initial rupture event. Our results provide insights into structure-property relationships in protein fibrils important for disease and engineering applications and lay the groundwork for the development of materials selection criteria for the design of de novo amyloid-based functional biomaterials.

  9. Dynamics of the formation of a hydrogel by a pathogenic amyloid peptide: islet amyloid polypeptide.

    PubMed

    Jean, Létitia; Lee, Chiu Fan; Hodder, Peter; Hawkins, Nick; Vaux, David J

    2016-01-01

    Many chronic degenerative diseases result from aggregation of misfolded polypeptides to form amyloids. Many amyloidogenic polypeptides are surfactants and their assembly can be catalysed by hydrophobic-hydrophilic interfaces (an air-water interface in-vitro or membranes in-vivo). We recently demonstrated the specificity of surface-induced amyloidogenesis but the mechanisms of amyloidogenesis and more specifically of adsorption at hydrophobic-hydrophilic interfaces remain poorly understood. Thus, it is critical to determine how amyloidogenic polypeptides behave at interfaces. Here we used surface tensiometry, rheology and electron microscopy to demonstrate the complex dynamics of gelation by full-length human islet amyloid polypeptide (involved in type II diabetes) both in the bulk solution and at hydrophobic-hydrophilic interfaces (air-water interface and phospholipids). We show that the hydrogel consists of a 3D supramolecular network of fibrils. We also assessed the role of solvation and dissected the evolution over time of the assembly processes. Amyloid gelation could have important pathological consequences for membrane integrity and cellular functions. PMID:27535008

  10. Stabilization of a β-hairpin in monomeric Alzheimer's amyloid-β peptide inhibits amyloid formation

    PubMed Central

    Hoyer, Wolfgang; Grönwall, Caroline; Jonsson, Andreas; Ståhl, Stefan; Härd, Torleif

    2008-01-01

    According to the amyloid hypothesis, the pathogenesis of Alzheimer's disease is triggered by the oligomerization and aggregation of the amyloid-β (Aβ) peptide into protein plaques. Formation of the potentially toxic oligomeric and fibrillar Aβ assemblies is accompanied by a conformational change toward a high content of β-structure. Here, we report the solution structure of Aβ(1–40) in complex with the phage-display selected affibody protein ZAβ3, a binding protein of nanomolar affinity. Bound Aβ(1–40) features a β-hairpin comprising residues 17–36, providing the first high-resolution structure of Aβ in β conformation. The positions of the secondary structure elements strongly resemble those observed for fibrillar Aβ. ZAβ3 stabilizes the β-sheet by extending it intermolecularly and by burying both of the mostly nonpolar faces of the Aβ hairpin within a large hydrophobic tunnel-like cavity. Consequently, ZAβ3 acts as a stoichiometric inhibitor of Aβ fibrillation. The selected Aβ conformation allows us to suggest a structural mechanism for amyloid formation based on soluble oligomeric hairpin intermediates. PMID:18375754

  11. Dynamics of the formation of a hydrogel by a pathogenic amyloid peptide: islet amyloid polypeptide

    PubMed Central

    Jean, Létitia; Lee, Chiu Fan; Hodder, Peter; Hawkins, Nick; Vaux, David J.

    2016-01-01

    Many chronic degenerative diseases result from aggregation of misfolded polypeptides to form amyloids. Many amyloidogenic polypeptides are surfactants and their assembly can be catalysed by hydrophobic-hydrophilic interfaces (an air-water interface in-vitro or membranes in-vivo). We recently demonstrated the specificity of surface-induced amyloidogenesis but the mechanisms of amyloidogenesis and more specifically of adsorption at hydrophobic-hydrophilic interfaces remain poorly understood. Thus, it is critical to determine how amyloidogenic polypeptides behave at interfaces. Here we used surface tensiometry, rheology and electron microscopy to demonstrate the complex dynamics of gelation by full-length human islet amyloid polypeptide (involved in type II diabetes) both in the bulk solution and at hydrophobic-hydrophilic interfaces (air-water interface and phospholipids). We show that the hydrogel consists of a 3D supramolecular network of fibrils. We also assessed the role of solvation and dissected the evolution over time of the assembly processes. Amyloid gelation could have important pathological consequences for membrane integrity and cellular functions. PMID:27535008

  12. Danish dementia mice suggest that loss of function and not the amyloid cascade causes synaptic plasticity and memory deficits

    PubMed Central

    Tamayev, Robert; Matsuda, Shuji; Fà, Mauro; Arancio, Ottavio; D’Adamio, Luciano

    2010-01-01

    According to the prevailing “amyloid cascade hypothesis,” genetic dementias such as Alzheimer’s disease and familial Danish dementia (FDD) are caused by amyloid deposits that trigger tauopathy, neurodegeneration, and behavioral/cognitive alterations. To efficiently reproduce amyloid lesions, murine models of human dementias invariably use transgenic expression systems. However, recent FDD transgenic models showed that Danish amyloidosis does not cause memory defects, suggesting that other mechanisms cause Danish dementia. We studied an animal knock-in model of FDD (FDDKI/+) genetically congruous with human cases. FDDKI/+ mice present reduced Bri2 levels, impaired synaptic plasticity and severe hippocampal memory deficits. These animals show no cerebral lesions that are reputed characteristics of human dementia, such as tangles or amyloid plaques. Bri2+/− mice exhibit synaptic and memory deficits similar to FDDKI/+ mice, and memory loss of FDDKI/+ mice is prevented by expression of WT BRI2, indicating that Danish dementia is caused by loss of BRI2 function. Together, the data suggest that clinical dementia in Danish patients occurs via a loss of function mechanism and not as a result of amyloidosis and tauopathy. PMID:21098268

  13. Human Islet Amyloid Polypeptide N-Terminus Fragment Self-Assembly: Effect of Conserved Disulfide Bond on Aggregation Propensity

    NASA Astrophysics Data System (ADS)

    Ilitchev, Alexandre I.; Giammona, Maxwell J.; Do, Thanh D.; Wong, Amy G.; Buratto, Steven K.; Shea, Joan-Emma; Raleigh, Daniel P.; Bowers, Michael T.

    2016-02-01

    Amyloid formation by human islet amyloid polypeptide (hIAPP) has long been implicated in the pathogeny of type 2 diabetes mellitus (T2DM) and failure of islet transplants, but the mechanism of IAPP self-assembly is still unclear. Numerous fragments of hIAPP are capable of self-association into oligomeric aggregates, both amyloid and non-amyloid in structure. The N-terminal region of IAPP contains a conserved disulfide bond between cysteines at position 2 and 7, which is important to hIAPP's in vivo function and may play a role in in vitro aggregation. The importance of the disulfide bond in this region was probed using a combination of ion mobility-based mass spectrometry experiments, molecular dynamics simulations, and high-resolution atomic force microscopy imaging on the wildtype 1-8 hIAPP fragment, a reduced fragment with no disulfide bond, and a fragment with both cysteines at positions 2 and 7 mutated to serine. The results indicate the wildtype fragment aggregates by a different pathway than either comparison peptide and that the intact disulfide bond may be protective against aggregation due to a reduction of inter-peptide hydrogen bonding.

  14. Platelet-activating factor mediates the cytotoxicity induced by W7FW14F apomyoglobin amyloid aggregates in neuroblastoma cells.

    PubMed

    Sirangelo, Ivana; Giovane, Alfonso; Maritato, Rosa; D'Onofrio, Nunzia; Iannuzzi, Clara; Giordano, Antonio; Irace, Gaetano; Balestrieri, Maria Luisa

    2014-12-01

    W7FW14F apomyoglobin (W7FW14F ApoMb) amyloid aggregates induce cytotoxicity in SH-SY5Y human neuroblastoma cells through a mechanism not fully elucidated. Amyloid neurotoxicity process involves calcium dyshomeostasis and reactive oxygen species (ROS) production. Another key mediator of the amyloid neurotoxicity is Platelet-Activating Factor (PAF), an inflammatory phospholipid implicated in neurodegenerative diseases. Here, with the aim at evaluating the possible involvement of PAF signaling in the W7FW14F ApoMb-induced cytotoxicity, we show that the presence of CV3899, a PAF receptor (PAF-R) antagonist, prevented the detrimental effect of W7FW14F ApoMb aggregates on SH-SY5Y cell viability. Noticeably, we found that the activation of PAF signaling, following treatment with W7FW14F ApoMb, involves a decreased expression of the PAF acetylhydroase II (PAF-AH II). Interestingly, the reduced PAF-AH II expression was associated with a decreased acetylhydrolase (AH) activity and to an increased sphingosine-transacetylase activity (TA(S)) with production of N-acetylsphingosine (C2-ceramide), a well known mediator of neuronal caspase-dependent apoptosis. These findings suggest that an altered PAF catabolism takes part to the molecular events leading to W7FW14F ApoMb amyloid aggregates-induced cell death. PMID:25053109

  15. Human Islet Amyloid Polypeptide N-Terminus Fragment Self-Assembly: Effect of Conserved Disulfide Bond on Aggregation Propensity.

    PubMed

    Ilitchev, Alexandre I; Giammona, Maxwell J; Do, Thanh D; Wong, Amy G; Buratto, Steven K; Shea, Joan-Emma; Raleigh, Daniel P; Bowers, Michael T

    2016-06-01

    Amyloid formation by human islet amyloid polypeptide (hIAPP) has long been implicated in the pathogeny of type 2 diabetes mellitus (T2DM) and failure of islet transplants, but the mechanism of IAPP self-assembly is still unclear. Numerous fragments of hIAPP are capable of self-association into oligomeric aggregates, both amyloid and non-amyloid in structure. The N-terminal region of IAPP contains a conserved disulfide bond between cysteines at position 2 and 7, which is important to hIAPP's in vivo function and may play a role in in vitro aggregation. The importance of the disulfide bond in this region was probed using a combination of ion mobility-based mass spectrometry experiments, molecular dynamics simulations, and high-resolution atomic force microscopy imaging on the wildtype 1-8 hIAPP fragment, a reduced fragment with no disulfide bond, and a fragment with both cysteines at positions 2 and 7 mutated to serine. The results indicate the wildtype fragment aggregates by a different pathway than either comparison peptide and that the intact disulfide bond may be protective against aggregation due to a reduction of inter-peptide hydrogen bonding. Graphical Abstract ᅟ. PMID:26894887

  16. Human Islet Amyloid Polypeptide N-Terminus Fragment Self-Assembly: Effect of Conserved Disulfide Bond on Aggregation Propensity

    NASA Astrophysics Data System (ADS)

    Ilitchev, Alexandre I.; Giammona, Maxwell J.; Do, Thanh D.; Wong, Amy G.; Buratto, Steven K.; Shea, Joan-Emma; Raleigh, Daniel P.; Bowers, Michael T.

    2016-06-01

    Amyloid formation by human islet amyloid polypeptide (hIAPP) has long been implicated in the pathogeny of type 2 diabetes mellitus (T2DM) and failure of islet transplants, but the mechanism of IAPP self-assembly is still unclear. Numerous fragments of hIAPP are capable of self-association into oligomeric aggregates, both amyloid and non-amyloid in structure. The N-terminal region of IAPP contains a conserved disulfide bond between cysteines at position 2 and 7, which is important to hIAPP's in vivo function and may play a role in in vitro aggregation. The importance of the disulfide bond in this region was probed using a combination of ion mobility-based mass spectrometry experiments, molecular dynamics simulations, and high-resolution atomic force microscopy imaging on the wildtype 1-8 hIAPP fragment, a reduced fragment with no disulfide bond, and a fragment with both cysteines at positions 2 and 7 mutated to serine. The results indicate the wildtype fragment aggregates by a different pathway than either comparison peptide and that the intact disulfide bond may be protective against aggregation due to a reduction of inter-peptide hydrogen bonding.

  17. β2-Microglobulin Amyloid Fibrils Are Nanoparticles That Disrupt Lysosomal Membrane Protein Trafficking and Inhibit Protein Degradation by Lysosomes*

    PubMed Central

    Jakhria, Toral; Hellewell, Andrew L.; Porter, Morwenna Y.; Jackson, Matthew P.; Tipping, Kevin W.; Xue, Wei-Feng; Radford, Sheena E.; Hewitt, Eric W.

    2014-01-01

    Fragmentation of amyloid fibrils produces fibrils that are reduced in length but have an otherwise unchanged molecular architecture. The resultant nanoscale fibril particles inhibit the cellular reduction of the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), a substrate commonly used to measure cell viability, to a greater extent than unfragmented fibrils. Here we show that the internalization of β2-microglobulin (β2m) amyloid fibrils is dependent on fibril length, with fragmented fibrils being more efficiently internalized by cells. Correspondingly, inhibiting the internalization of fragmented β2m fibrils rescued cellular MTT reduction. Incubation of cells with fragmented β2m fibrils did not, however, cause cell death. Instead, fragmented β2m fibrils accumulate in lysosomes, alter the trafficking of lysosomal membrane proteins, and inhibit the degradation of a model protein substrate by lysosomes. These findings suggest that nanoscale fibrils formed early during amyloid assembly reactions or by the fragmentation of longer fibrils could play a role in amyloid disease by disrupting protein degradation by lysosomes and trafficking in the endolysosomal pathway. PMID:25378395

  18. Serum amyloid A changes high density lipoprotein's cellular affinity. A clue to serum amyloid A's principal function.

    PubMed

    Kisilevsky, R; Subrahmanyan, L

    1992-06-01

    The affinity of high density lipoproteins (HDL), or HDL carrying serum amyloid A (HDL/SAA), for hepatocytes or peritoneal macrophages was examined, as part of an investigation exploring the principal function of SAA and how this may be related to amyloidogenesis. The binding results in conjunction with SAA's existence primarily on HDL during inflammation, and HDL's known "reverse cholesterol transport" function suggest a clear role for SAA in the afferent arm of the reverse cholesterol transport pathway during the process of inflammation. The presence of SAA reduced HDL's affinity for normal hepatocytes by a factor of 2. In contrast, HDL/SAA had a 3- to 4-fold higher affinity for macrophages than HDL alone. Furthermore, the number of binding sites for HDL/SAA increased on macrophages during inflammation, while decreasing on hepatocytes. The net effect was a significant shift in HDL cholesterol carrying capacity towards the macrophage. Competition experiments demonstrated that HDL/SAA is only half as effective as HDL in inhibiting radiolabeled HDL binding to macrophages. This is in keeping with the reduced apolipoprotein A-1 content in HDL/SAA. Strikingly, although HDL contains twice as much apolipoprotein A-1 as HDL/SAA, it is only one-tenth as effective as HDL/SAA in inhibiting radiolabeled HDL/SAA binding to macrophages. The latter results suggest that there is a specific SAA binding site on macrophages. PMID:1602745

  19. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury.

    PubMed

    Cho, Dong-Hyung; Nakamura, Tomohiro; Fang, Jianguo; Cieplak, Piotr; Godzik, Adam; Gu, Zezong; Lipton, Stuart A

    2009-04-01

    Mitochondria continuously undergo two opposing processes, fission and fusion. The disruption of this dynamic equilibrium may herald cell injury or death and may contribute to developmental and neurodegenerative disorders. Nitric oxide functions as a signaling molecule, but in excess it mediates neuronal injury, in part via mitochondrial fission or fragmentation. However, the underlying mechanism for nitric oxide-induced pathological fission remains unclear. We found that nitric oxide produced in response to beta-amyloid protein, thought to be a key mediator of Alzheimer's disease, triggered mitochondrial fission, synaptic loss, and neuronal damage, in part via S-nitrosylation of dynamin-related protein 1 (forming SNO-Drp1). Preventing nitrosylation of Drp1 by cysteine mutation abrogated these neurotoxic events. SNO-Drp1 is increased in brains of human Alzheimer's disease patients and may thus contribute to the pathogenesis of neurodegeneration. PMID:19342591

  20. Adsorption and excess fission xenon

    NASA Technical Reports Server (NTRS)

    Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.

    1982-01-01

    The adsorption of Xe and Kr on lunar soil 10084 was measured by a method that employs only very low fractions of monolayer coverage. Results are presented as parameters for calculation of the Henry constant for adsorption as a function of temperature. The adsorption potentials are about 3 kcal/mole for Kr and 5 kcal/mole for Xe; heating the sample in vacuum increased the Xe potential to nearly 7 kcal/mole. Henry constants at the characteristic lunar temperature are about 0.3 cu cm STP/g-atm. These data were applied to consider whether adsorption is important in producing the excess fission Xe effect characteristic of highland breccias. Sorption equilibrium with a transient lunar atmosphere vented fission Xe produces concentrations seven orders of magnitude lower than observed concentrations. Higher concentrations result because of the resistance of the regolith to upward diffusion of Xe. A diffusion coefficient of 0.26 sq cm/sec is estimated for this process.

  1. Estimation from moments measurements for amyloid depolymerisation.

    PubMed

    Armiento, Aurora; Doumic, Marie; Moireau, Philippe; Rezaei, H

    2016-05-21

    Estimating reaction rates and size distributions of protein polymers is an important step for understanding the mechanisms of protein misfolding and aggregation, a key feature for amyloid diseases. This study aims at setting this framework problem when the experimental measurements consist in the time-dynamics of a moment of the population (i.e. for instance the total polymerised mass, as in Thioflavin T measurements, or the second moment measured by Static Light Scattering). We propose a general methodology, and we solve the problem theoretically and numerically in the case of a depolymerising system. We then apply our method to experimental data of depolymerising oligomers, and conclude that smaller aggregates of ovPrP protein should be more stable than larger ones. This has an important biological implication, since it is commonly admitted that small oligomers constitute the most cytotoxic species during prion misfolding process. PMID:26953651

  2. Phosphorylation modifies the molecular stability of β-amyloid deposits

    NASA Astrophysics Data System (ADS)

    Rezaei-Ghaleh, Nasrollah; Amininasab, Mehriar; Kumar, Sathish; Walter, Jochen; Zweckstetter, Markus

    2016-04-01

    Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β-amyloid at serine 8 increases the stability of its pathogenic aggregates against high-pressure and SDS-induced dissociation. We further demonstrate that phosphorylation results in an elevated number of hydrogen bonds at the N terminus of β-amyloid, the region that is critically regulated by a variety of post-translational modifications. Because of the increased lifetime of phosphorylated β-amyloid aggregates, phosphorylation can promote the spreading of β-amyloid in Alzheimer pathogenesis. Our study suggests that regulation of the molecular stability of protein aggregates by post-translational modifications is a crucial factor for disease progression in the brain.

  3. Scanning ion conductance microscopy studies of amyloid fibrils at nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Cho, Sang-Joon; Busuttil, Katerina; Wang, Chen; Besenbacher, Flemming; Dong, Mingdong

    2012-05-01

    Atomic force microscopy (AFM) has developed to become a very versatile nano-scale technique to reveal the three-dimensional (3D) morphology of amyloid aggregates under physiological conditions. However, the imaging principle of AFM is based on measuring the `force' between a sharp tip and a given nanostructure, which may cause mechanical deformation of relatively soft objects. To avoid the deformation, scanning ion conductance microscopy (SICM) is an alternative scanning probe microscopy technique, operating with alternating current mode. Here we can indeed reveal the 3D morphology of amyloid fibrils and it is capable of exploring proteins with nanoscale resolution. Compared with conventional AFM, we show that SICM can provide precise height measurements of amyloid protein aggregates, a feature that enables us to obtain unique insight into the detailed nucleation and growth mechanisms behind amyloid self-assembly.

  4. Tau/Amyloid Beta 42 Peptide Test (Alzheimer Biomarkers)

    MedlinePlus

    ... page: Was this page helpful? Also known as: Alzheimer Biomarkers Formal name: Tau Protein and Amyloid Beta ... supplemental tests to help establish a diagnosis of Alzheimer disease and to distinguish between AD and other ...

  5. Phosphorylation modifies the molecular stability of β-amyloid deposits

    PubMed Central

    Rezaei-Ghaleh, Nasrollah; Amininasab, Mehriar; Kumar, Sathish; Walter, Jochen; Zweckstetter, Markus

    2016-01-01

    Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β-amyloid at serine 8 increases the stability of its pathogenic aggregates against high-pressure and SDS-induced dissociation. We further demonstrate that phosphorylation results in an elevated number of hydrogen bonds at the N terminus of β-amyloid, the region that is critically regulated by a variety of post-translational modifications. Because of the increased lifetime of phosphorylated β-amyloid aggregates, phosphorylation can promote the spreading of β-amyloid in Alzheimer pathogenesis. Our study suggests that regulation of the molecular stability of protein aggregates by post-translational modifications is a crucial factor for disease progression in the brain. PMID:27072999

  6. Search for Amyloid-Binding Proteins by Affinity Chromatography

    PubMed Central

    Calero, Miguel; Rostagno, Agueda; Ghiso, Jorge

    2013-01-01

    Amyloid binging proteins’ is a generic term used to designate proteins that interact with different forms of amyloidogenic peptides or proteins and that, as a result, may modulate their physiological and pathological functions by altering solubility, transport, clearance, degradation, and fibril formation. We describe a simple affinity chromatography protocol to isolate and characterize amyloid-binding proteins based on the use of sequential elution steps that may provide further information on the type of binding interaction. As an example, we depict the application of this protocol to the study of Alzheimer’s amyloid β (Aβ) peptide-binding proteins derived from human plasma. Biochemical analysis of the proteins eluted under different conditions identified serum amyloid P component (SAP) and apolipoprotein J (clusterin) as the main plasma Aβ-binding proteins while various apolipoproteins (apoA-IV, apoE, and apoA-I), as well as albumin (HSA) and fibulin were identified as minor contributors. PMID:22528093

  7. Amyloid fibrils as functionalizable components of nanocomposite materials.

    PubMed

    Rao, Shiva P; Meade, Susie J; Healy, Jackie P; Sutton, Kevin H; Larsen, Nigel G; Staiger, Mark P; Gerrard, Juliet A

    2012-01-01

    Amyloid fibrils are a form of protein nanofiber that show promise as components of multifunctional bionanomaterials. In this work, native bovine insulin and bovine insulin that had been previously converted into amyloid fibrils were combined with poly(vinyl alcohol) (PVOH) via solution casting to determine the effect of fibrillization on the thermomechanical properties of the resulting composite. The synthesis method was found to preserve the amyloid fibril structure and properties of the resulting fibril-PVOH composite were investigated. At a filling level of 0.6 wt %, the fibril-reinforced PVOH was 15% stiffer than the PVOH control. Various properties of the films, including the glass transition temperature, degradation temperature, microstructure, and film morphology were characterized. Although more work is required to optimize the properties of the composites, this study provides proof of principle that incorporation of amyloid fibrils into a polymeric material can impart useful changes to the mechanical and morphological properties of the films. PMID:22002950

  8. White Matter Lesion Load Is Associated With Resting State Functional MRI Activity and Amyloid PET but not FDG in Mild Cognitive Impairment and Early Alzheimer's Disease Patients

    PubMed Central

    Zhou, Yongxia; Yu, Fang; Duong, Timothy Q.

    2014-01-01

    Purpose To quantify and investigate the interactions between multimodal MRI/positron emission tomography (PET) imaging metrics in elderly patients with early Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy controls. Materials and Methods Thirteen early AD, 17 MCI patients, and 14 age-matched healthy aging controls from the Alzheimer's Disease Neuroimaging Initiative database were selected based on availability of data. Default mode network (DMN) functional connectivity and fractional amplitude of low frequency fluctuation (fALFF) were obtained for resting state functional MRI (RS-fMRI). White matter lesion load (WMLL) was quantified from MRI T2-weighted FLAIR images. Amyloid deposition with PET [18F]-Florbetapir tracer and metabolism of glucose by means of [18F]-fluoro-2-deoxyglucose (FDG) images were quantified using ratio of standard uptake values (rSUV). Results Whole-brain WMLL and amyloid deposition were significantly higher (P < 0.005) in MCI and AD patients compared with controls. RS-fMRI results showed significantly reduced (corrected P < 0.05) DMN connectiv ity and altered fALFF activity in both MCI and AD groups. FDG uptake results showed hypometabolism in AD and MCI patients compared with controls. Correlations (P < 0.05) were found between WMLL and amyloid load, FDG uptake and amyloid load, as well as between amyloid load (rSUV) and fALFF. Conclusion Our quantitative results of four MRI and PET imaging metrics (fALFF/DMN, WMLL, amyloid, and FDG rSUV values) agree with published values. Signifi-cant correlations between MRI metrics, including WMLL/ functional activity and PET amyloid load suggest the potential of MRI and PET-based biomarkers for early detection of AD. PMID:24382798

  9. Interactions driving the collapse of islet amyloid polypeptide: Implications for amyloid aggregation

    NASA Astrophysics Data System (ADS)

    Cope, Stephanie M.

    Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-residue intrinsically disordered hormone involved in glucose regulation and gastric emptying. The aggregation of hIAPP into amyloid fibrils is believed to play a causal role in type 2 diabetes. To date, not much is known about the monomeric state of hIAPP or how it undergoes an irreversible transformation from disordered peptide to insoluble aggregate. IAPP contains a highly conserved disulfide bond that restricts hIAPP(1-8) into a short ring-like structure: N_loop. Removal or chemical reduction of N_loop not only prevents cell response upon binding to the CGRP receptor, but also alters the mass per length distribution of hIAPP fibers and the kinetics of fibril formation. The mechanism by which N_loop affects hIAPP aggregation is not yet understood, but is important for rationalizing kinetics and developing potential inhibitors. By measuring end-to-end contact formation rates, Vaiana et al. showed that N_loop induces collapsed states in IAPP monomers, implying attractive interactions between N_loop and other regions of the disordered polypeptide chain . We show that in addition to being involved in intra-protein interactions, the N_loop is involved in inter-protein interactions, which lead to the formation of extremely long and stable beta-turn fibers. These non-amyloid fibers are present in the 10 muM concentration range, under the same solution conditions in which hIAPP forms amyloid fibers. We discuss the effect of peptide cyclization on both intra- and inter-protein interactions, and its possible implications for aggregation. Our findings indicate a potential role of N_loop-N_loop interactions in hIAPP aggregation, which has not previously been explored. Though our findings suggest that N_loop plays an important role in the pathway of amyloid formation, other naturally occurring IAPP variants that contain this structural feature are incapable of forming amyloids. For example, hIAPP readily

  10. Destroying activity of